xref: /linux/mm/truncate.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * mm/truncate.c - code for taking down pages from address_spaces
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 10Sep2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/dax.h>
13 #include <linux/gfp.h>
14 #include <linux/mm.h>
15 #include <linux/swap.h>
16 #include <linux/export.h>
17 #include <linux/pagemap.h>
18 #include <linux/highmem.h>
19 #include <linux/pagevec.h>
20 #include <linux/task_io_accounting_ops.h>
21 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
22 				   do_invalidatepage */
23 #include <linux/cleancache.h>
24 #include <linux/rmap.h>
25 #include "internal.h"
26 
27 static void clear_exceptional_entry(struct address_space *mapping,
28 				    pgoff_t index, void *entry)
29 {
30 	struct radix_tree_node *node;
31 	void **slot;
32 
33 	/* Handled by shmem itself */
34 	if (shmem_mapping(mapping))
35 		return;
36 
37 	if (dax_mapping(mapping)) {
38 		dax_delete_mapping_entry(mapping, index);
39 		return;
40 	}
41 	spin_lock_irq(&mapping->tree_lock);
42 	/*
43 	 * Regular page slots are stabilized by the page lock even
44 	 * without the tree itself locked.  These unlocked entries
45 	 * need verification under the tree lock.
46 	 */
47 	if (!__radix_tree_lookup(&mapping->page_tree, index, &node,
48 				&slot))
49 		goto unlock;
50 	if (*slot != entry)
51 		goto unlock;
52 	radix_tree_replace_slot(slot, NULL);
53 	mapping->nrexceptional--;
54 	if (!node)
55 		goto unlock;
56 	workingset_node_shadows_dec(node);
57 	/*
58 	 * Don't track node without shadow entries.
59 	 *
60 	 * Avoid acquiring the list_lru lock if already untracked.
61 	 * The list_empty() test is safe as node->private_list is
62 	 * protected by mapping->tree_lock.
63 	 */
64 	if (!workingset_node_shadows(node) &&
65 	    !list_empty(&node->private_list))
66 		list_lru_del(&workingset_shadow_nodes,
67 				&node->private_list);
68 	__radix_tree_delete_node(&mapping->page_tree, node);
69 unlock:
70 	spin_unlock_irq(&mapping->tree_lock);
71 }
72 
73 /**
74  * do_invalidatepage - invalidate part or all of a page
75  * @page: the page which is affected
76  * @offset: start of the range to invalidate
77  * @length: length of the range to invalidate
78  *
79  * do_invalidatepage() is called when all or part of the page has become
80  * invalidated by a truncate operation.
81  *
82  * do_invalidatepage() does not have to release all buffers, but it must
83  * ensure that no dirty buffer is left outside @offset and that no I/O
84  * is underway against any of the blocks which are outside the truncation
85  * point.  Because the caller is about to free (and possibly reuse) those
86  * blocks on-disk.
87  */
88 void do_invalidatepage(struct page *page, unsigned int offset,
89 		       unsigned int length)
90 {
91 	void (*invalidatepage)(struct page *, unsigned int, unsigned int);
92 
93 	invalidatepage = page->mapping->a_ops->invalidatepage;
94 #ifdef CONFIG_BLOCK
95 	if (!invalidatepage)
96 		invalidatepage = block_invalidatepage;
97 #endif
98 	if (invalidatepage)
99 		(*invalidatepage)(page, offset, length);
100 }
101 
102 /*
103  * If truncate cannot remove the fs-private metadata from the page, the page
104  * becomes orphaned.  It will be left on the LRU and may even be mapped into
105  * user pagetables if we're racing with filemap_fault().
106  *
107  * We need to bale out if page->mapping is no longer equal to the original
108  * mapping.  This happens a) when the VM reclaimed the page while we waited on
109  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
110  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
111  */
112 static int
113 truncate_complete_page(struct address_space *mapping, struct page *page)
114 {
115 	if (page->mapping != mapping)
116 		return -EIO;
117 
118 	if (page_has_private(page))
119 		do_invalidatepage(page, 0, PAGE_SIZE);
120 
121 	/*
122 	 * Some filesystems seem to re-dirty the page even after
123 	 * the VM has canceled the dirty bit (eg ext3 journaling).
124 	 * Hence dirty accounting check is placed after invalidation.
125 	 */
126 	cancel_dirty_page(page);
127 	ClearPageMappedToDisk(page);
128 	delete_from_page_cache(page);
129 	return 0;
130 }
131 
132 /*
133  * This is for invalidate_mapping_pages().  That function can be called at
134  * any time, and is not supposed to throw away dirty pages.  But pages can
135  * be marked dirty at any time too, so use remove_mapping which safely
136  * discards clean, unused pages.
137  *
138  * Returns non-zero if the page was successfully invalidated.
139  */
140 static int
141 invalidate_complete_page(struct address_space *mapping, struct page *page)
142 {
143 	int ret;
144 
145 	if (page->mapping != mapping)
146 		return 0;
147 
148 	if (page_has_private(page) && !try_to_release_page(page, 0))
149 		return 0;
150 
151 	ret = remove_mapping(mapping, page);
152 
153 	return ret;
154 }
155 
156 int truncate_inode_page(struct address_space *mapping, struct page *page)
157 {
158 	if (page_mapped(page)) {
159 		unmap_mapping_range(mapping,
160 				   (loff_t)page->index << PAGE_SHIFT,
161 				   PAGE_SIZE, 0);
162 	}
163 	return truncate_complete_page(mapping, page);
164 }
165 
166 /*
167  * Used to get rid of pages on hardware memory corruption.
168  */
169 int generic_error_remove_page(struct address_space *mapping, struct page *page)
170 {
171 	if (!mapping)
172 		return -EINVAL;
173 	/*
174 	 * Only punch for normal data pages for now.
175 	 * Handling other types like directories would need more auditing.
176 	 */
177 	if (!S_ISREG(mapping->host->i_mode))
178 		return -EIO;
179 	return truncate_inode_page(mapping, page);
180 }
181 EXPORT_SYMBOL(generic_error_remove_page);
182 
183 /*
184  * Safely invalidate one page from its pagecache mapping.
185  * It only drops clean, unused pages. The page must be locked.
186  *
187  * Returns 1 if the page is successfully invalidated, otherwise 0.
188  */
189 int invalidate_inode_page(struct page *page)
190 {
191 	struct address_space *mapping = page_mapping(page);
192 	if (!mapping)
193 		return 0;
194 	if (PageDirty(page) || PageWriteback(page))
195 		return 0;
196 	if (page_mapped(page))
197 		return 0;
198 	return invalidate_complete_page(mapping, page);
199 }
200 
201 /**
202  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
203  * @mapping: mapping to truncate
204  * @lstart: offset from which to truncate
205  * @lend: offset to which to truncate (inclusive)
206  *
207  * Truncate the page cache, removing the pages that are between
208  * specified offsets (and zeroing out partial pages
209  * if lstart or lend + 1 is not page aligned).
210  *
211  * Truncate takes two passes - the first pass is nonblocking.  It will not
212  * block on page locks and it will not block on writeback.  The second pass
213  * will wait.  This is to prevent as much IO as possible in the affected region.
214  * The first pass will remove most pages, so the search cost of the second pass
215  * is low.
216  *
217  * We pass down the cache-hot hint to the page freeing code.  Even if the
218  * mapping is large, it is probably the case that the final pages are the most
219  * recently touched, and freeing happens in ascending file offset order.
220  *
221  * Note that since ->invalidatepage() accepts range to invalidate
222  * truncate_inode_pages_range is able to handle cases where lend + 1 is not
223  * page aligned properly.
224  */
225 void truncate_inode_pages_range(struct address_space *mapping,
226 				loff_t lstart, loff_t lend)
227 {
228 	pgoff_t		start;		/* inclusive */
229 	pgoff_t		end;		/* exclusive */
230 	unsigned int	partial_start;	/* inclusive */
231 	unsigned int	partial_end;	/* exclusive */
232 	struct pagevec	pvec;
233 	pgoff_t		indices[PAGEVEC_SIZE];
234 	pgoff_t		index;
235 	int		i;
236 
237 	cleancache_invalidate_inode(mapping);
238 	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
239 		return;
240 
241 	/* Offsets within partial pages */
242 	partial_start = lstart & (PAGE_SIZE - 1);
243 	partial_end = (lend + 1) & (PAGE_SIZE - 1);
244 
245 	/*
246 	 * 'start' and 'end' always covers the range of pages to be fully
247 	 * truncated. Partial pages are covered with 'partial_start' at the
248 	 * start of the range and 'partial_end' at the end of the range.
249 	 * Note that 'end' is exclusive while 'lend' is inclusive.
250 	 */
251 	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
252 	if (lend == -1)
253 		/*
254 		 * lend == -1 indicates end-of-file so we have to set 'end'
255 		 * to the highest possible pgoff_t and since the type is
256 		 * unsigned we're using -1.
257 		 */
258 		end = -1;
259 	else
260 		end = (lend + 1) >> PAGE_SHIFT;
261 
262 	pagevec_init(&pvec, 0);
263 	index = start;
264 	while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
265 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
266 			indices)) {
267 		for (i = 0; i < pagevec_count(&pvec); i++) {
268 			struct page *page = pvec.pages[i];
269 
270 			/* We rely upon deletion not changing page->index */
271 			index = indices[i];
272 			if (index >= end)
273 				break;
274 
275 			if (radix_tree_exceptional_entry(page)) {
276 				clear_exceptional_entry(mapping, index, page);
277 				continue;
278 			}
279 
280 			if (!trylock_page(page))
281 				continue;
282 			WARN_ON(page->index != index);
283 			if (PageWriteback(page)) {
284 				unlock_page(page);
285 				continue;
286 			}
287 			truncate_inode_page(mapping, page);
288 			unlock_page(page);
289 		}
290 		pagevec_remove_exceptionals(&pvec);
291 		pagevec_release(&pvec);
292 		cond_resched();
293 		index++;
294 	}
295 
296 	if (partial_start) {
297 		struct page *page = find_lock_page(mapping, start - 1);
298 		if (page) {
299 			unsigned int top = PAGE_SIZE;
300 			if (start > end) {
301 				/* Truncation within a single page */
302 				top = partial_end;
303 				partial_end = 0;
304 			}
305 			wait_on_page_writeback(page);
306 			zero_user_segment(page, partial_start, top);
307 			cleancache_invalidate_page(mapping, page);
308 			if (page_has_private(page))
309 				do_invalidatepage(page, partial_start,
310 						  top - partial_start);
311 			unlock_page(page);
312 			put_page(page);
313 		}
314 	}
315 	if (partial_end) {
316 		struct page *page = find_lock_page(mapping, end);
317 		if (page) {
318 			wait_on_page_writeback(page);
319 			zero_user_segment(page, 0, partial_end);
320 			cleancache_invalidate_page(mapping, page);
321 			if (page_has_private(page))
322 				do_invalidatepage(page, 0,
323 						  partial_end);
324 			unlock_page(page);
325 			put_page(page);
326 		}
327 	}
328 	/*
329 	 * If the truncation happened within a single page no pages
330 	 * will be released, just zeroed, so we can bail out now.
331 	 */
332 	if (start >= end)
333 		return;
334 
335 	index = start;
336 	for ( ; ; ) {
337 		cond_resched();
338 		if (!pagevec_lookup_entries(&pvec, mapping, index,
339 			min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
340 			/* If all gone from start onwards, we're done */
341 			if (index == start)
342 				break;
343 			/* Otherwise restart to make sure all gone */
344 			index = start;
345 			continue;
346 		}
347 		if (index == start && indices[0] >= end) {
348 			/* All gone out of hole to be punched, we're done */
349 			pagevec_remove_exceptionals(&pvec);
350 			pagevec_release(&pvec);
351 			break;
352 		}
353 		for (i = 0; i < pagevec_count(&pvec); i++) {
354 			struct page *page = pvec.pages[i];
355 
356 			/* We rely upon deletion not changing page->index */
357 			index = indices[i];
358 			if (index >= end) {
359 				/* Restart punch to make sure all gone */
360 				index = start - 1;
361 				break;
362 			}
363 
364 			if (radix_tree_exceptional_entry(page)) {
365 				clear_exceptional_entry(mapping, index, page);
366 				continue;
367 			}
368 
369 			lock_page(page);
370 			WARN_ON(page->index != index);
371 			wait_on_page_writeback(page);
372 			truncate_inode_page(mapping, page);
373 			unlock_page(page);
374 		}
375 		pagevec_remove_exceptionals(&pvec);
376 		pagevec_release(&pvec);
377 		index++;
378 	}
379 	cleancache_invalidate_inode(mapping);
380 }
381 EXPORT_SYMBOL(truncate_inode_pages_range);
382 
383 /**
384  * truncate_inode_pages - truncate *all* the pages from an offset
385  * @mapping: mapping to truncate
386  * @lstart: offset from which to truncate
387  *
388  * Called under (and serialised by) inode->i_mutex.
389  *
390  * Note: When this function returns, there can be a page in the process of
391  * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
392  * mapping->nrpages can be non-zero when this function returns even after
393  * truncation of the whole mapping.
394  */
395 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
396 {
397 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
398 }
399 EXPORT_SYMBOL(truncate_inode_pages);
400 
401 /**
402  * truncate_inode_pages_final - truncate *all* pages before inode dies
403  * @mapping: mapping to truncate
404  *
405  * Called under (and serialized by) inode->i_mutex.
406  *
407  * Filesystems have to use this in the .evict_inode path to inform the
408  * VM that this is the final truncate and the inode is going away.
409  */
410 void truncate_inode_pages_final(struct address_space *mapping)
411 {
412 	unsigned long nrexceptional;
413 	unsigned long nrpages;
414 
415 	/*
416 	 * Page reclaim can not participate in regular inode lifetime
417 	 * management (can't call iput()) and thus can race with the
418 	 * inode teardown.  Tell it when the address space is exiting,
419 	 * so that it does not install eviction information after the
420 	 * final truncate has begun.
421 	 */
422 	mapping_set_exiting(mapping);
423 
424 	/*
425 	 * When reclaim installs eviction entries, it increases
426 	 * nrexceptional first, then decreases nrpages.  Make sure we see
427 	 * this in the right order or we might miss an entry.
428 	 */
429 	nrpages = mapping->nrpages;
430 	smp_rmb();
431 	nrexceptional = mapping->nrexceptional;
432 
433 	if (nrpages || nrexceptional) {
434 		/*
435 		 * As truncation uses a lockless tree lookup, cycle
436 		 * the tree lock to make sure any ongoing tree
437 		 * modification that does not see AS_EXITING is
438 		 * completed before starting the final truncate.
439 		 */
440 		spin_lock_irq(&mapping->tree_lock);
441 		spin_unlock_irq(&mapping->tree_lock);
442 
443 		truncate_inode_pages(mapping, 0);
444 	}
445 }
446 EXPORT_SYMBOL(truncate_inode_pages_final);
447 
448 /**
449  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
450  * @mapping: the address_space which holds the pages to invalidate
451  * @start: the offset 'from' which to invalidate
452  * @end: the offset 'to' which to invalidate (inclusive)
453  *
454  * This function only removes the unlocked pages, if you want to
455  * remove all the pages of one inode, you must call truncate_inode_pages.
456  *
457  * invalidate_mapping_pages() will not block on IO activity. It will not
458  * invalidate pages which are dirty, locked, under writeback or mapped into
459  * pagetables.
460  */
461 unsigned long invalidate_mapping_pages(struct address_space *mapping,
462 		pgoff_t start, pgoff_t end)
463 {
464 	pgoff_t indices[PAGEVEC_SIZE];
465 	struct pagevec pvec;
466 	pgoff_t index = start;
467 	unsigned long ret;
468 	unsigned long count = 0;
469 	int i;
470 
471 	pagevec_init(&pvec, 0);
472 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
473 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
474 			indices)) {
475 		for (i = 0; i < pagevec_count(&pvec); i++) {
476 			struct page *page = pvec.pages[i];
477 
478 			/* We rely upon deletion not changing page->index */
479 			index = indices[i];
480 			if (index > end)
481 				break;
482 
483 			if (radix_tree_exceptional_entry(page)) {
484 				clear_exceptional_entry(mapping, index, page);
485 				continue;
486 			}
487 
488 			if (!trylock_page(page))
489 				continue;
490 			WARN_ON(page->index != index);
491 			ret = invalidate_inode_page(page);
492 			unlock_page(page);
493 			/*
494 			 * Invalidation is a hint that the page is no longer
495 			 * of interest and try to speed up its reclaim.
496 			 */
497 			if (!ret)
498 				deactivate_file_page(page);
499 			count += ret;
500 		}
501 		pagevec_remove_exceptionals(&pvec);
502 		pagevec_release(&pvec);
503 		cond_resched();
504 		index++;
505 	}
506 	return count;
507 }
508 EXPORT_SYMBOL(invalidate_mapping_pages);
509 
510 /*
511  * This is like invalidate_complete_page(), except it ignores the page's
512  * refcount.  We do this because invalidate_inode_pages2() needs stronger
513  * invalidation guarantees, and cannot afford to leave pages behind because
514  * shrink_page_list() has a temp ref on them, or because they're transiently
515  * sitting in the lru_cache_add() pagevecs.
516  */
517 static int
518 invalidate_complete_page2(struct address_space *mapping, struct page *page)
519 {
520 	unsigned long flags;
521 
522 	if (page->mapping != mapping)
523 		return 0;
524 
525 	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
526 		return 0;
527 
528 	spin_lock_irqsave(&mapping->tree_lock, flags);
529 	if (PageDirty(page))
530 		goto failed;
531 
532 	BUG_ON(page_has_private(page));
533 	__delete_from_page_cache(page, NULL);
534 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
535 
536 	if (mapping->a_ops->freepage)
537 		mapping->a_ops->freepage(page);
538 
539 	put_page(page);	/* pagecache ref */
540 	return 1;
541 failed:
542 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
543 	return 0;
544 }
545 
546 static int do_launder_page(struct address_space *mapping, struct page *page)
547 {
548 	if (!PageDirty(page))
549 		return 0;
550 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
551 		return 0;
552 	return mapping->a_ops->launder_page(page);
553 }
554 
555 /**
556  * invalidate_inode_pages2_range - remove range of pages from an address_space
557  * @mapping: the address_space
558  * @start: the page offset 'from' which to invalidate
559  * @end: the page offset 'to' which to invalidate (inclusive)
560  *
561  * Any pages which are found to be mapped into pagetables are unmapped prior to
562  * invalidation.
563  *
564  * Returns -EBUSY if any pages could not be invalidated.
565  */
566 int invalidate_inode_pages2_range(struct address_space *mapping,
567 				  pgoff_t start, pgoff_t end)
568 {
569 	pgoff_t indices[PAGEVEC_SIZE];
570 	struct pagevec pvec;
571 	pgoff_t index;
572 	int i;
573 	int ret = 0;
574 	int ret2 = 0;
575 	int did_range_unmap = 0;
576 
577 	cleancache_invalidate_inode(mapping);
578 	pagevec_init(&pvec, 0);
579 	index = start;
580 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
581 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
582 			indices)) {
583 		for (i = 0; i < pagevec_count(&pvec); i++) {
584 			struct page *page = pvec.pages[i];
585 
586 			/* We rely upon deletion not changing page->index */
587 			index = indices[i];
588 			if (index > end)
589 				break;
590 
591 			if (radix_tree_exceptional_entry(page)) {
592 				clear_exceptional_entry(mapping, index, page);
593 				continue;
594 			}
595 
596 			lock_page(page);
597 			WARN_ON(page->index != index);
598 			if (page->mapping != mapping) {
599 				unlock_page(page);
600 				continue;
601 			}
602 			wait_on_page_writeback(page);
603 			if (page_mapped(page)) {
604 				if (!did_range_unmap) {
605 					/*
606 					 * Zap the rest of the file in one hit.
607 					 */
608 					unmap_mapping_range(mapping,
609 					   (loff_t)index << PAGE_SHIFT,
610 					   (loff_t)(1 + end - index)
611 							 << PAGE_SHIFT,
612 							 0);
613 					did_range_unmap = 1;
614 				} else {
615 					/*
616 					 * Just zap this page
617 					 */
618 					unmap_mapping_range(mapping,
619 					   (loff_t)index << PAGE_SHIFT,
620 					   PAGE_SIZE, 0);
621 				}
622 			}
623 			BUG_ON(page_mapped(page));
624 			ret2 = do_launder_page(mapping, page);
625 			if (ret2 == 0) {
626 				if (!invalidate_complete_page2(mapping, page))
627 					ret2 = -EBUSY;
628 			}
629 			if (ret2 < 0)
630 				ret = ret2;
631 			unlock_page(page);
632 		}
633 		pagevec_remove_exceptionals(&pvec);
634 		pagevec_release(&pvec);
635 		cond_resched();
636 		index++;
637 	}
638 	cleancache_invalidate_inode(mapping);
639 	return ret;
640 }
641 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
642 
643 /**
644  * invalidate_inode_pages2 - remove all pages from an address_space
645  * @mapping: the address_space
646  *
647  * Any pages which are found to be mapped into pagetables are unmapped prior to
648  * invalidation.
649  *
650  * Returns -EBUSY if any pages could not be invalidated.
651  */
652 int invalidate_inode_pages2(struct address_space *mapping)
653 {
654 	return invalidate_inode_pages2_range(mapping, 0, -1);
655 }
656 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
657 
658 /**
659  * truncate_pagecache - unmap and remove pagecache that has been truncated
660  * @inode: inode
661  * @newsize: new file size
662  *
663  * inode's new i_size must already be written before truncate_pagecache
664  * is called.
665  *
666  * This function should typically be called before the filesystem
667  * releases resources associated with the freed range (eg. deallocates
668  * blocks). This way, pagecache will always stay logically coherent
669  * with on-disk format, and the filesystem would not have to deal with
670  * situations such as writepage being called for a page that has already
671  * had its underlying blocks deallocated.
672  */
673 void truncate_pagecache(struct inode *inode, loff_t newsize)
674 {
675 	struct address_space *mapping = inode->i_mapping;
676 	loff_t holebegin = round_up(newsize, PAGE_SIZE);
677 
678 	/*
679 	 * unmap_mapping_range is called twice, first simply for
680 	 * efficiency so that truncate_inode_pages does fewer
681 	 * single-page unmaps.  However after this first call, and
682 	 * before truncate_inode_pages finishes, it is possible for
683 	 * private pages to be COWed, which remain after
684 	 * truncate_inode_pages finishes, hence the second
685 	 * unmap_mapping_range call must be made for correctness.
686 	 */
687 	unmap_mapping_range(mapping, holebegin, 0, 1);
688 	truncate_inode_pages(mapping, newsize);
689 	unmap_mapping_range(mapping, holebegin, 0, 1);
690 }
691 EXPORT_SYMBOL(truncate_pagecache);
692 
693 /**
694  * truncate_setsize - update inode and pagecache for a new file size
695  * @inode: inode
696  * @newsize: new file size
697  *
698  * truncate_setsize updates i_size and performs pagecache truncation (if
699  * necessary) to @newsize. It will be typically be called from the filesystem's
700  * setattr function when ATTR_SIZE is passed in.
701  *
702  * Must be called with a lock serializing truncates and writes (generally
703  * i_mutex but e.g. xfs uses a different lock) and before all filesystem
704  * specific block truncation has been performed.
705  */
706 void truncate_setsize(struct inode *inode, loff_t newsize)
707 {
708 	loff_t oldsize = inode->i_size;
709 
710 	i_size_write(inode, newsize);
711 	if (newsize > oldsize)
712 		pagecache_isize_extended(inode, oldsize, newsize);
713 	truncate_pagecache(inode, newsize);
714 }
715 EXPORT_SYMBOL(truncate_setsize);
716 
717 /**
718  * pagecache_isize_extended - update pagecache after extension of i_size
719  * @inode:	inode for which i_size was extended
720  * @from:	original inode size
721  * @to:		new inode size
722  *
723  * Handle extension of inode size either caused by extending truncate or by
724  * write starting after current i_size. We mark the page straddling current
725  * i_size RO so that page_mkwrite() is called on the nearest write access to
726  * the page.  This way filesystem can be sure that page_mkwrite() is called on
727  * the page before user writes to the page via mmap after the i_size has been
728  * changed.
729  *
730  * The function must be called after i_size is updated so that page fault
731  * coming after we unlock the page will already see the new i_size.
732  * The function must be called while we still hold i_mutex - this not only
733  * makes sure i_size is stable but also that userspace cannot observe new
734  * i_size value before we are prepared to store mmap writes at new inode size.
735  */
736 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
737 {
738 	int bsize = 1 << inode->i_blkbits;
739 	loff_t rounded_from;
740 	struct page *page;
741 	pgoff_t index;
742 
743 	WARN_ON(to > inode->i_size);
744 
745 	if (from >= to || bsize == PAGE_SIZE)
746 		return;
747 	/* Page straddling @from will not have any hole block created? */
748 	rounded_from = round_up(from, bsize);
749 	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
750 		return;
751 
752 	index = from >> PAGE_SHIFT;
753 	page = find_lock_page(inode->i_mapping, index);
754 	/* Page not cached? Nothing to do */
755 	if (!page)
756 		return;
757 	/*
758 	 * See clear_page_dirty_for_io() for details why set_page_dirty()
759 	 * is needed.
760 	 */
761 	if (page_mkclean(page))
762 		set_page_dirty(page);
763 	unlock_page(page);
764 	put_page(page);
765 }
766 EXPORT_SYMBOL(pagecache_isize_extended);
767 
768 /**
769  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
770  * @inode: inode
771  * @lstart: offset of beginning of hole
772  * @lend: offset of last byte of hole
773  *
774  * This function should typically be called before the filesystem
775  * releases resources associated with the freed range (eg. deallocates
776  * blocks). This way, pagecache will always stay logically coherent
777  * with on-disk format, and the filesystem would not have to deal with
778  * situations such as writepage being called for a page that has already
779  * had its underlying blocks deallocated.
780  */
781 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
782 {
783 	struct address_space *mapping = inode->i_mapping;
784 	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
785 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
786 	/*
787 	 * This rounding is currently just for example: unmap_mapping_range
788 	 * expands its hole outwards, whereas we want it to contract the hole
789 	 * inwards.  However, existing callers of truncate_pagecache_range are
790 	 * doing their own page rounding first.  Note that unmap_mapping_range
791 	 * allows holelen 0 for all, and we allow lend -1 for end of file.
792 	 */
793 
794 	/*
795 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
796 	 * once (before truncating pagecache), and without "even_cows" flag:
797 	 * hole-punching should not remove private COWed pages from the hole.
798 	 */
799 	if ((u64)unmap_end > (u64)unmap_start)
800 		unmap_mapping_range(mapping, unmap_start,
801 				    1 + unmap_end - unmap_start, 0);
802 	truncate_inode_pages_range(mapping, lstart, lend);
803 }
804 EXPORT_SYMBOL(truncate_pagecache_range);
805