1 /* 2 * mm/truncate.c - code for taking down pages from address_spaces 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 10Sep2002 Andrew Morton 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/backing-dev.h> 12 #include <linux/mm.h> 13 #include <linux/swap.h> 14 #include <linux/module.h> 15 #include <linux/pagemap.h> 16 #include <linux/highmem.h> 17 #include <linux/pagevec.h> 18 #include <linux/task_io_accounting_ops.h> 19 #include <linux/buffer_head.h> /* grr. try_to_release_page, 20 do_invalidatepage */ 21 #include "internal.h" 22 23 24 /** 25 * do_invalidatepage - invalidate part or all of a page 26 * @page: the page which is affected 27 * @offset: the index of the truncation point 28 * 29 * do_invalidatepage() is called when all or part of the page has become 30 * invalidated by a truncate operation. 31 * 32 * do_invalidatepage() does not have to release all buffers, but it must 33 * ensure that no dirty buffer is left outside @offset and that no I/O 34 * is underway against any of the blocks which are outside the truncation 35 * point. Because the caller is about to free (and possibly reuse) those 36 * blocks on-disk. 37 */ 38 void do_invalidatepage(struct page *page, unsigned long offset) 39 { 40 void (*invalidatepage)(struct page *, unsigned long); 41 invalidatepage = page->mapping->a_ops->invalidatepage; 42 #ifdef CONFIG_BLOCK 43 if (!invalidatepage) 44 invalidatepage = block_invalidatepage; 45 #endif 46 if (invalidatepage) 47 (*invalidatepage)(page, offset); 48 } 49 50 static inline void truncate_partial_page(struct page *page, unsigned partial) 51 { 52 zero_user_segment(page, partial, PAGE_CACHE_SIZE); 53 if (page_has_private(page)) 54 do_invalidatepage(page, partial); 55 } 56 57 /* 58 * This cancels just the dirty bit on the kernel page itself, it 59 * does NOT actually remove dirty bits on any mmap's that may be 60 * around. It also leaves the page tagged dirty, so any sync 61 * activity will still find it on the dirty lists, and in particular, 62 * clear_page_dirty_for_io() will still look at the dirty bits in 63 * the VM. 64 * 65 * Doing this should *normally* only ever be done when a page 66 * is truncated, and is not actually mapped anywhere at all. However, 67 * fs/buffer.c does this when it notices that somebody has cleaned 68 * out all the buffers on a page without actually doing it through 69 * the VM. Can you say "ext3 is horribly ugly"? Tought you could. 70 */ 71 void cancel_dirty_page(struct page *page, unsigned int account_size) 72 { 73 if (TestClearPageDirty(page)) { 74 struct address_space *mapping = page->mapping; 75 if (mapping && mapping_cap_account_dirty(mapping)) { 76 dec_zone_page_state(page, NR_FILE_DIRTY); 77 dec_bdi_stat(mapping->backing_dev_info, 78 BDI_RECLAIMABLE); 79 if (account_size) 80 task_io_account_cancelled_write(account_size); 81 } 82 } 83 } 84 EXPORT_SYMBOL(cancel_dirty_page); 85 86 /* 87 * If truncate cannot remove the fs-private metadata from the page, the page 88 * becomes orphaned. It will be left on the LRU and may even be mapped into 89 * user pagetables if we're racing with filemap_fault(). 90 * 91 * We need to bale out if page->mapping is no longer equal to the original 92 * mapping. This happens a) when the VM reclaimed the page while we waited on 93 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 94 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 95 */ 96 static void 97 truncate_complete_page(struct address_space *mapping, struct page *page) 98 { 99 if (page->mapping != mapping) 100 return; 101 102 if (page_has_private(page)) 103 do_invalidatepage(page, 0); 104 105 cancel_dirty_page(page, PAGE_CACHE_SIZE); 106 107 clear_page_mlock(page); 108 remove_from_page_cache(page); 109 ClearPageMappedToDisk(page); 110 page_cache_release(page); /* pagecache ref */ 111 } 112 113 /* 114 * This is for invalidate_mapping_pages(). That function can be called at 115 * any time, and is not supposed to throw away dirty pages. But pages can 116 * be marked dirty at any time too, so use remove_mapping which safely 117 * discards clean, unused pages. 118 * 119 * Returns non-zero if the page was successfully invalidated. 120 */ 121 static int 122 invalidate_complete_page(struct address_space *mapping, struct page *page) 123 { 124 int ret; 125 126 if (page->mapping != mapping) 127 return 0; 128 129 if (page_has_private(page) && !try_to_release_page(page, 0)) 130 return 0; 131 132 clear_page_mlock(page); 133 ret = remove_mapping(mapping, page); 134 135 return ret; 136 } 137 138 /** 139 * truncate_inode_pages - truncate range of pages specified by start & end byte offsets 140 * @mapping: mapping to truncate 141 * @lstart: offset from which to truncate 142 * @lend: offset to which to truncate 143 * 144 * Truncate the page cache, removing the pages that are between 145 * specified offsets (and zeroing out partial page 146 * (if lstart is not page aligned)). 147 * 148 * Truncate takes two passes - the first pass is nonblocking. It will not 149 * block on page locks and it will not block on writeback. The second pass 150 * will wait. This is to prevent as much IO as possible in the affected region. 151 * The first pass will remove most pages, so the search cost of the second pass 152 * is low. 153 * 154 * When looking at page->index outside the page lock we need to be careful to 155 * copy it into a local to avoid races (it could change at any time). 156 * 157 * We pass down the cache-hot hint to the page freeing code. Even if the 158 * mapping is large, it is probably the case that the final pages are the most 159 * recently touched, and freeing happens in ascending file offset order. 160 */ 161 void truncate_inode_pages_range(struct address_space *mapping, 162 loff_t lstart, loff_t lend) 163 { 164 const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 165 pgoff_t end; 166 const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1); 167 struct pagevec pvec; 168 pgoff_t next; 169 int i; 170 171 if (mapping->nrpages == 0) 172 return; 173 174 BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1)); 175 end = (lend >> PAGE_CACHE_SHIFT); 176 177 pagevec_init(&pvec, 0); 178 next = start; 179 while (next <= end && 180 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 181 for (i = 0; i < pagevec_count(&pvec); i++) { 182 struct page *page = pvec.pages[i]; 183 pgoff_t page_index = page->index; 184 185 if (page_index > end) { 186 next = page_index; 187 break; 188 } 189 190 if (page_index > next) 191 next = page_index; 192 next++; 193 if (!trylock_page(page)) 194 continue; 195 if (PageWriteback(page)) { 196 unlock_page(page); 197 continue; 198 } 199 if (page_mapped(page)) { 200 unmap_mapping_range(mapping, 201 (loff_t)page_index<<PAGE_CACHE_SHIFT, 202 PAGE_CACHE_SIZE, 0); 203 } 204 truncate_complete_page(mapping, page); 205 unlock_page(page); 206 } 207 pagevec_release(&pvec); 208 cond_resched(); 209 } 210 211 if (partial) { 212 struct page *page = find_lock_page(mapping, start - 1); 213 if (page) { 214 wait_on_page_writeback(page); 215 truncate_partial_page(page, partial); 216 unlock_page(page); 217 page_cache_release(page); 218 } 219 } 220 221 next = start; 222 for ( ; ; ) { 223 cond_resched(); 224 if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 225 if (next == start) 226 break; 227 next = start; 228 continue; 229 } 230 if (pvec.pages[0]->index > end) { 231 pagevec_release(&pvec); 232 break; 233 } 234 for (i = 0; i < pagevec_count(&pvec); i++) { 235 struct page *page = pvec.pages[i]; 236 237 if (page->index > end) 238 break; 239 lock_page(page); 240 wait_on_page_writeback(page); 241 if (page_mapped(page)) { 242 unmap_mapping_range(mapping, 243 (loff_t)page->index<<PAGE_CACHE_SHIFT, 244 PAGE_CACHE_SIZE, 0); 245 } 246 if (page->index > next) 247 next = page->index; 248 next++; 249 truncate_complete_page(mapping, page); 250 unlock_page(page); 251 } 252 pagevec_release(&pvec); 253 } 254 } 255 EXPORT_SYMBOL(truncate_inode_pages_range); 256 257 /** 258 * truncate_inode_pages - truncate *all* the pages from an offset 259 * @mapping: mapping to truncate 260 * @lstart: offset from which to truncate 261 * 262 * Called under (and serialised by) inode->i_mutex. 263 */ 264 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 265 { 266 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 267 } 268 EXPORT_SYMBOL(truncate_inode_pages); 269 270 /** 271 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode 272 * @mapping: the address_space which holds the pages to invalidate 273 * @start: the offset 'from' which to invalidate 274 * @end: the offset 'to' which to invalidate (inclusive) 275 * 276 * This function only removes the unlocked pages, if you want to 277 * remove all the pages of one inode, you must call truncate_inode_pages. 278 * 279 * invalidate_mapping_pages() will not block on IO activity. It will not 280 * invalidate pages which are dirty, locked, under writeback or mapped into 281 * pagetables. 282 */ 283 unsigned long invalidate_mapping_pages(struct address_space *mapping, 284 pgoff_t start, pgoff_t end) 285 { 286 struct pagevec pvec; 287 pgoff_t next = start; 288 unsigned long ret = 0; 289 int i; 290 291 pagevec_init(&pvec, 0); 292 while (next <= end && 293 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 294 for (i = 0; i < pagevec_count(&pvec); i++) { 295 struct page *page = pvec.pages[i]; 296 pgoff_t index; 297 int lock_failed; 298 299 lock_failed = !trylock_page(page); 300 301 /* 302 * We really shouldn't be looking at the ->index of an 303 * unlocked page. But we're not allowed to lock these 304 * pages. So we rely upon nobody altering the ->index 305 * of this (pinned-by-us) page. 306 */ 307 index = page->index; 308 if (index > next) 309 next = index; 310 next++; 311 if (lock_failed) 312 continue; 313 314 if (PageDirty(page) || PageWriteback(page)) 315 goto unlock; 316 if (page_mapped(page)) 317 goto unlock; 318 ret += invalidate_complete_page(mapping, page); 319 unlock: 320 unlock_page(page); 321 if (next > end) 322 break; 323 } 324 pagevec_release(&pvec); 325 cond_resched(); 326 } 327 return ret; 328 } 329 EXPORT_SYMBOL(invalidate_mapping_pages); 330 331 /* 332 * This is like invalidate_complete_page(), except it ignores the page's 333 * refcount. We do this because invalidate_inode_pages2() needs stronger 334 * invalidation guarantees, and cannot afford to leave pages behind because 335 * shrink_page_list() has a temp ref on them, or because they're transiently 336 * sitting in the lru_cache_add() pagevecs. 337 */ 338 static int 339 invalidate_complete_page2(struct address_space *mapping, struct page *page) 340 { 341 if (page->mapping != mapping) 342 return 0; 343 344 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) 345 return 0; 346 347 spin_lock_irq(&mapping->tree_lock); 348 if (PageDirty(page)) 349 goto failed; 350 351 clear_page_mlock(page); 352 BUG_ON(page_has_private(page)); 353 __remove_from_page_cache(page); 354 spin_unlock_irq(&mapping->tree_lock); 355 mem_cgroup_uncharge_cache_page(page); 356 page_cache_release(page); /* pagecache ref */ 357 return 1; 358 failed: 359 spin_unlock_irq(&mapping->tree_lock); 360 return 0; 361 } 362 363 static int do_launder_page(struct address_space *mapping, struct page *page) 364 { 365 if (!PageDirty(page)) 366 return 0; 367 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) 368 return 0; 369 return mapping->a_ops->launder_page(page); 370 } 371 372 /** 373 * invalidate_inode_pages2_range - remove range of pages from an address_space 374 * @mapping: the address_space 375 * @start: the page offset 'from' which to invalidate 376 * @end: the page offset 'to' which to invalidate (inclusive) 377 * 378 * Any pages which are found to be mapped into pagetables are unmapped prior to 379 * invalidation. 380 * 381 * Returns -EBUSY if any pages could not be invalidated. 382 */ 383 int invalidate_inode_pages2_range(struct address_space *mapping, 384 pgoff_t start, pgoff_t end) 385 { 386 struct pagevec pvec; 387 pgoff_t next; 388 int i; 389 int ret = 0; 390 int ret2 = 0; 391 int did_range_unmap = 0; 392 int wrapped = 0; 393 394 pagevec_init(&pvec, 0); 395 next = start; 396 while (next <= end && !wrapped && 397 pagevec_lookup(&pvec, mapping, next, 398 min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) { 399 for (i = 0; i < pagevec_count(&pvec); i++) { 400 struct page *page = pvec.pages[i]; 401 pgoff_t page_index; 402 403 lock_page(page); 404 if (page->mapping != mapping) { 405 unlock_page(page); 406 continue; 407 } 408 page_index = page->index; 409 next = page_index + 1; 410 if (next == 0) 411 wrapped = 1; 412 if (page_index > end) { 413 unlock_page(page); 414 break; 415 } 416 wait_on_page_writeback(page); 417 if (page_mapped(page)) { 418 if (!did_range_unmap) { 419 /* 420 * Zap the rest of the file in one hit. 421 */ 422 unmap_mapping_range(mapping, 423 (loff_t)page_index<<PAGE_CACHE_SHIFT, 424 (loff_t)(end - page_index + 1) 425 << PAGE_CACHE_SHIFT, 426 0); 427 did_range_unmap = 1; 428 } else { 429 /* 430 * Just zap this page 431 */ 432 unmap_mapping_range(mapping, 433 (loff_t)page_index<<PAGE_CACHE_SHIFT, 434 PAGE_CACHE_SIZE, 0); 435 } 436 } 437 BUG_ON(page_mapped(page)); 438 ret2 = do_launder_page(mapping, page); 439 if (ret2 == 0) { 440 if (!invalidate_complete_page2(mapping, page)) 441 ret2 = -EBUSY; 442 } 443 if (ret2 < 0) 444 ret = ret2; 445 unlock_page(page); 446 } 447 pagevec_release(&pvec); 448 cond_resched(); 449 } 450 return ret; 451 } 452 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 453 454 /** 455 * invalidate_inode_pages2 - remove all pages from an address_space 456 * @mapping: the address_space 457 * 458 * Any pages which are found to be mapped into pagetables are unmapped prior to 459 * invalidation. 460 * 461 * Returns -EIO if any pages could not be invalidated. 462 */ 463 int invalidate_inode_pages2(struct address_space *mapping) 464 { 465 return invalidate_inode_pages2_range(mapping, 0, -1); 466 } 467 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 468