xref: /linux/mm/swapfile.c (revision ff64846bee0e7e3e7bc9363ebad3bab42dd27e24)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 #include <linux/suspend.h>
44 #include <linux/zswap.h>
45 #include <linux/plist.h>
46 
47 #include <asm/tlbflush.h>
48 #include <linux/swapops.h>
49 #include <linux/swap_cgroup.h>
50 #include "internal.h"
51 #include "swap.h"
52 
53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
54 				 unsigned char);
55 static void free_swap_count_continuations(struct swap_info_struct *);
56 static void swap_entry_range_free(struct swap_info_struct *si,
57 				  struct swap_cluster_info *ci,
58 				  swp_entry_t entry, unsigned int nr_pages);
59 static void swap_range_alloc(struct swap_info_struct *si,
60 			     unsigned int nr_entries);
61 static bool folio_swapcache_freeable(struct folio *folio);
62 static struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
63 					      unsigned long offset);
64 static inline void unlock_cluster(struct swap_cluster_info *ci);
65 
66 static DEFINE_SPINLOCK(swap_lock);
67 static unsigned int nr_swapfiles;
68 atomic_long_t nr_swap_pages;
69 /*
70  * Some modules use swappable objects and may try to swap them out under
71  * memory pressure (via the shrinker). Before doing so, they may wish to
72  * check to see if any swap space is available.
73  */
74 EXPORT_SYMBOL_GPL(nr_swap_pages);
75 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
76 long total_swap_pages;
77 static int least_priority = -1;
78 unsigned long swapfile_maximum_size;
79 #ifdef CONFIG_MIGRATION
80 bool swap_migration_ad_supported;
81 #endif	/* CONFIG_MIGRATION */
82 
83 static const char Bad_file[] = "Bad swap file entry ";
84 static const char Unused_file[] = "Unused swap file entry ";
85 static const char Bad_offset[] = "Bad swap offset entry ";
86 static const char Unused_offset[] = "Unused swap offset entry ";
87 
88 /*
89  * all active swap_info_structs
90  * protected with swap_lock, and ordered by priority.
91  */
92 static PLIST_HEAD(swap_active_head);
93 
94 /*
95  * all available (active, not full) swap_info_structs
96  * protected with swap_avail_lock, ordered by priority.
97  * This is used by folio_alloc_swap() instead of swap_active_head
98  * because swap_active_head includes all swap_info_structs,
99  * but folio_alloc_swap() doesn't need to look at full ones.
100  * This uses its own lock instead of swap_lock because when a
101  * swap_info_struct changes between not-full/full, it needs to
102  * add/remove itself to/from this list, but the swap_info_struct->lock
103  * is held and the locking order requires swap_lock to be taken
104  * before any swap_info_struct->lock.
105  */
106 static struct plist_head *swap_avail_heads;
107 static DEFINE_SPINLOCK(swap_avail_lock);
108 
109 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
110 
111 static DEFINE_MUTEX(swapon_mutex);
112 
113 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
114 /* Activity counter to indicate that a swapon or swapoff has occurred */
115 static atomic_t proc_poll_event = ATOMIC_INIT(0);
116 
117 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
118 
119 static struct swap_info_struct *swap_type_to_swap_info(int type)
120 {
121 	if (type >= MAX_SWAPFILES)
122 		return NULL;
123 
124 	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
125 }
126 
127 static inline unsigned char swap_count(unsigned char ent)
128 {
129 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
130 }
131 
132 /*
133  * Use the second highest bit of inuse_pages counter as the indicator
134  * if one swap device is on the available plist, so the atomic can
135  * still be updated arithmetically while having special data embedded.
136  *
137  * inuse_pages counter is the only thing indicating if a device should
138  * be on avail_lists or not (except swapon / swapoff). By embedding the
139  * off-list bit in the atomic counter, updates no longer need any lock
140  * to check the list status.
141  *
142  * This bit will be set if the device is not on the plist and not
143  * usable, will be cleared if the device is on the plist.
144  */
145 #define SWAP_USAGE_OFFLIST_BIT (1UL << (BITS_PER_TYPE(atomic_t) - 2))
146 #define SWAP_USAGE_COUNTER_MASK (~SWAP_USAGE_OFFLIST_BIT)
147 static long swap_usage_in_pages(struct swap_info_struct *si)
148 {
149 	return atomic_long_read(&si->inuse_pages) & SWAP_USAGE_COUNTER_MASK;
150 }
151 
152 /* Reclaim the swap entry anyway if possible */
153 #define TTRS_ANYWAY		0x1
154 /*
155  * Reclaim the swap entry if there are no more mappings of the
156  * corresponding page
157  */
158 #define TTRS_UNMAPPED		0x2
159 /* Reclaim the swap entry if swap is getting full */
160 #define TTRS_FULL		0x4
161 /* Reclaim directly, bypass the slot cache and don't touch device lock */
162 #define TTRS_DIRECT		0x8
163 
164 static bool swap_is_has_cache(struct swap_info_struct *si,
165 			      unsigned long offset, int nr_pages)
166 {
167 	unsigned char *map = si->swap_map + offset;
168 	unsigned char *map_end = map + nr_pages;
169 
170 	do {
171 		VM_BUG_ON(!(*map & SWAP_HAS_CACHE));
172 		if (*map != SWAP_HAS_CACHE)
173 			return false;
174 	} while (++map < map_end);
175 
176 	return true;
177 }
178 
179 static bool swap_is_last_map(struct swap_info_struct *si,
180 		unsigned long offset, int nr_pages, bool *has_cache)
181 {
182 	unsigned char *map = si->swap_map + offset;
183 	unsigned char *map_end = map + nr_pages;
184 	unsigned char count = *map;
185 
186 	if (swap_count(count) != 1)
187 		return false;
188 
189 	while (++map < map_end) {
190 		if (*map != count)
191 			return false;
192 	}
193 
194 	*has_cache = !!(count & SWAP_HAS_CACHE);
195 	return true;
196 }
197 
198 /*
199  * returns number of pages in the folio that backs the swap entry. If positive,
200  * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
201  * folio was associated with the swap entry.
202  */
203 static int __try_to_reclaim_swap(struct swap_info_struct *si,
204 				 unsigned long offset, unsigned long flags)
205 {
206 	swp_entry_t entry = swp_entry(si->type, offset);
207 	struct address_space *address_space = swap_address_space(entry);
208 	struct swap_cluster_info *ci;
209 	struct folio *folio;
210 	int ret, nr_pages;
211 	bool need_reclaim;
212 
213 	folio = filemap_get_folio(address_space, swap_cache_index(entry));
214 	if (IS_ERR(folio))
215 		return 0;
216 
217 	nr_pages = folio_nr_pages(folio);
218 	ret = -nr_pages;
219 
220 	/*
221 	 * When this function is called from scan_swap_map_slots() and it's
222 	 * called by vmscan.c at reclaiming folios. So we hold a folio lock
223 	 * here. We have to use trylock for avoiding deadlock. This is a special
224 	 * case and you should use folio_free_swap() with explicit folio_lock()
225 	 * in usual operations.
226 	 */
227 	if (!folio_trylock(folio))
228 		goto out;
229 
230 	/* offset could point to the middle of a large folio */
231 	entry = folio->swap;
232 	offset = swp_offset(entry);
233 
234 	need_reclaim = ((flags & TTRS_ANYWAY) ||
235 			((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
236 			((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)));
237 	if (!need_reclaim || !folio_swapcache_freeable(folio))
238 		goto out_unlock;
239 
240 	/*
241 	 * It's safe to delete the folio from swap cache only if the folio's
242 	 * swap_map is HAS_CACHE only, which means the slots have no page table
243 	 * reference or pending writeback, and can't be allocated to others.
244 	 */
245 	ci = lock_cluster(si, offset);
246 	need_reclaim = swap_is_has_cache(si, offset, nr_pages);
247 	unlock_cluster(ci);
248 	if (!need_reclaim)
249 		goto out_unlock;
250 
251 	if (!(flags & TTRS_DIRECT)) {
252 		/* Free through slot cache */
253 		delete_from_swap_cache(folio);
254 		folio_set_dirty(folio);
255 		ret = nr_pages;
256 		goto out_unlock;
257 	}
258 
259 	xa_lock_irq(&address_space->i_pages);
260 	__delete_from_swap_cache(folio, entry, NULL);
261 	xa_unlock_irq(&address_space->i_pages);
262 	folio_ref_sub(folio, nr_pages);
263 	folio_set_dirty(folio);
264 
265 	ci = lock_cluster(si, offset);
266 	swap_entry_range_free(si, ci, entry, nr_pages);
267 	unlock_cluster(ci);
268 	ret = nr_pages;
269 out_unlock:
270 	folio_unlock(folio);
271 out:
272 	folio_put(folio);
273 	return ret;
274 }
275 
276 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
277 {
278 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
279 	return rb_entry(rb, struct swap_extent, rb_node);
280 }
281 
282 static inline struct swap_extent *next_se(struct swap_extent *se)
283 {
284 	struct rb_node *rb = rb_next(&se->rb_node);
285 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
286 }
287 
288 /*
289  * swapon tell device that all the old swap contents can be discarded,
290  * to allow the swap device to optimize its wear-levelling.
291  */
292 static int discard_swap(struct swap_info_struct *si)
293 {
294 	struct swap_extent *se;
295 	sector_t start_block;
296 	sector_t nr_blocks;
297 	int err = 0;
298 
299 	/* Do not discard the swap header page! */
300 	se = first_se(si);
301 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
302 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
303 	if (nr_blocks) {
304 		err = blkdev_issue_discard(si->bdev, start_block,
305 				nr_blocks, GFP_KERNEL);
306 		if (err)
307 			return err;
308 		cond_resched();
309 	}
310 
311 	for (se = next_se(se); se; se = next_se(se)) {
312 		start_block = se->start_block << (PAGE_SHIFT - 9);
313 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
314 
315 		err = blkdev_issue_discard(si->bdev, start_block,
316 				nr_blocks, GFP_KERNEL);
317 		if (err)
318 			break;
319 
320 		cond_resched();
321 	}
322 	return err;		/* That will often be -EOPNOTSUPP */
323 }
324 
325 static struct swap_extent *
326 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
327 {
328 	struct swap_extent *se;
329 	struct rb_node *rb;
330 
331 	rb = sis->swap_extent_root.rb_node;
332 	while (rb) {
333 		se = rb_entry(rb, struct swap_extent, rb_node);
334 		if (offset < se->start_page)
335 			rb = rb->rb_left;
336 		else if (offset >= se->start_page + se->nr_pages)
337 			rb = rb->rb_right;
338 		else
339 			return se;
340 	}
341 	/* It *must* be present */
342 	BUG();
343 }
344 
345 sector_t swap_folio_sector(struct folio *folio)
346 {
347 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
348 	struct swap_extent *se;
349 	sector_t sector;
350 	pgoff_t offset;
351 
352 	offset = swp_offset(folio->swap);
353 	se = offset_to_swap_extent(sis, offset);
354 	sector = se->start_block + (offset - se->start_page);
355 	return sector << (PAGE_SHIFT - 9);
356 }
357 
358 /*
359  * swap allocation tell device that a cluster of swap can now be discarded,
360  * to allow the swap device to optimize its wear-levelling.
361  */
362 static void discard_swap_cluster(struct swap_info_struct *si,
363 				 pgoff_t start_page, pgoff_t nr_pages)
364 {
365 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
366 
367 	while (nr_pages) {
368 		pgoff_t offset = start_page - se->start_page;
369 		sector_t start_block = se->start_block + offset;
370 		sector_t nr_blocks = se->nr_pages - offset;
371 
372 		if (nr_blocks > nr_pages)
373 			nr_blocks = nr_pages;
374 		start_page += nr_blocks;
375 		nr_pages -= nr_blocks;
376 
377 		start_block <<= PAGE_SHIFT - 9;
378 		nr_blocks <<= PAGE_SHIFT - 9;
379 		if (blkdev_issue_discard(si->bdev, start_block,
380 					nr_blocks, GFP_NOIO))
381 			break;
382 
383 		se = next_se(se);
384 	}
385 }
386 
387 #ifdef CONFIG_THP_SWAP
388 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
389 
390 #define swap_entry_order(order)	(order)
391 #else
392 #define SWAPFILE_CLUSTER	256
393 
394 /*
395  * Define swap_entry_order() as constant to let compiler to optimize
396  * out some code if !CONFIG_THP_SWAP
397  */
398 #define swap_entry_order(order)	0
399 #endif
400 #define LATENCY_LIMIT		256
401 
402 static inline bool cluster_is_empty(struct swap_cluster_info *info)
403 {
404 	return info->count == 0;
405 }
406 
407 static inline bool cluster_is_discard(struct swap_cluster_info *info)
408 {
409 	return info->flags == CLUSTER_FLAG_DISCARD;
410 }
411 
412 static inline bool cluster_is_usable(struct swap_cluster_info *ci, int order)
413 {
414 	if (unlikely(ci->flags > CLUSTER_FLAG_USABLE))
415 		return false;
416 	if (!order)
417 		return true;
418 	return cluster_is_empty(ci) || order == ci->order;
419 }
420 
421 static inline unsigned int cluster_index(struct swap_info_struct *si,
422 					 struct swap_cluster_info *ci)
423 {
424 	return ci - si->cluster_info;
425 }
426 
427 static inline struct swap_cluster_info *offset_to_cluster(struct swap_info_struct *si,
428 							  unsigned long offset)
429 {
430 	return &si->cluster_info[offset / SWAPFILE_CLUSTER];
431 }
432 
433 static inline unsigned int cluster_offset(struct swap_info_struct *si,
434 					  struct swap_cluster_info *ci)
435 {
436 	return cluster_index(si, ci) * SWAPFILE_CLUSTER;
437 }
438 
439 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
440 						     unsigned long offset)
441 {
442 	struct swap_cluster_info *ci;
443 
444 	ci = offset_to_cluster(si, offset);
445 	spin_lock(&ci->lock);
446 
447 	return ci;
448 }
449 
450 static inline void unlock_cluster(struct swap_cluster_info *ci)
451 {
452 	spin_unlock(&ci->lock);
453 }
454 
455 static void move_cluster(struct swap_info_struct *si,
456 			 struct swap_cluster_info *ci, struct list_head *list,
457 			 enum swap_cluster_flags new_flags)
458 {
459 	VM_WARN_ON(ci->flags == new_flags);
460 
461 	BUILD_BUG_ON(1 << sizeof(ci->flags) * BITS_PER_BYTE < CLUSTER_FLAG_MAX);
462 	lockdep_assert_held(&ci->lock);
463 
464 	spin_lock(&si->lock);
465 	if (ci->flags == CLUSTER_FLAG_NONE)
466 		list_add_tail(&ci->list, list);
467 	else
468 		list_move_tail(&ci->list, list);
469 	spin_unlock(&si->lock);
470 
471 	if (ci->flags == CLUSTER_FLAG_FRAG)
472 		atomic_long_dec(&si->frag_cluster_nr[ci->order]);
473 	else if (new_flags == CLUSTER_FLAG_FRAG)
474 		atomic_long_inc(&si->frag_cluster_nr[ci->order]);
475 	ci->flags = new_flags;
476 }
477 
478 /* Add a cluster to discard list and schedule it to do discard */
479 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
480 		struct swap_cluster_info *ci)
481 {
482 	unsigned int idx = cluster_index(si, ci);
483 	/*
484 	 * If scan_swap_map_slots() can't find a free cluster, it will check
485 	 * si->swap_map directly. To make sure the discarding cluster isn't
486 	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
487 	 * It will be cleared after discard
488 	 */
489 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
490 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
491 	VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);
492 	move_cluster(si, ci, &si->discard_clusters, CLUSTER_FLAG_DISCARD);
493 	schedule_work(&si->discard_work);
494 }
495 
496 static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
497 {
498 	lockdep_assert_held(&ci->lock);
499 	move_cluster(si, ci, &si->free_clusters, CLUSTER_FLAG_FREE);
500 	ci->order = 0;
501 }
502 
503 /*
504  * Isolate and lock the first cluster that is not contented on a list,
505  * clean its flag before taken off-list. Cluster flag must be in sync
506  * with list status, so cluster updaters can always know the cluster
507  * list status without touching si lock.
508  *
509  * Note it's possible that all clusters on a list are contented so
510  * this returns NULL for an non-empty list.
511  */
512 static struct swap_cluster_info *isolate_lock_cluster(
513 		struct swap_info_struct *si, struct list_head *list)
514 {
515 	struct swap_cluster_info *ci, *ret = NULL;
516 
517 	spin_lock(&si->lock);
518 
519 	if (unlikely(!(si->flags & SWP_WRITEOK)))
520 		goto out;
521 
522 	list_for_each_entry(ci, list, list) {
523 		if (!spin_trylock(&ci->lock))
524 			continue;
525 
526 		/* We may only isolate and clear flags of following lists */
527 		VM_BUG_ON(!ci->flags);
528 		VM_BUG_ON(ci->flags > CLUSTER_FLAG_USABLE &&
529 			  ci->flags != CLUSTER_FLAG_FULL);
530 
531 		list_del(&ci->list);
532 		ci->flags = CLUSTER_FLAG_NONE;
533 		ret = ci;
534 		break;
535 	}
536 out:
537 	spin_unlock(&si->lock);
538 
539 	return ret;
540 }
541 
542 /*
543  * Doing discard actually. After a cluster discard is finished, the cluster
544  * will be added to free cluster list. Discard cluster is a bit special as
545  * they don't participate in allocation or reclaim, so clusters marked as
546  * CLUSTER_FLAG_DISCARD must remain off-list or on discard list.
547  */
548 static bool swap_do_scheduled_discard(struct swap_info_struct *si)
549 {
550 	struct swap_cluster_info *ci;
551 	bool ret = false;
552 	unsigned int idx;
553 
554 	spin_lock(&si->lock);
555 	while (!list_empty(&si->discard_clusters)) {
556 		ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list);
557 		/*
558 		 * Delete the cluster from list to prepare for discard, but keep
559 		 * the CLUSTER_FLAG_DISCARD flag, there could be percpu_cluster
560 		 * pointing to it, or ran into by relocate_cluster.
561 		 */
562 		list_del(&ci->list);
563 		idx = cluster_index(si, ci);
564 		spin_unlock(&si->lock);
565 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
566 				SWAPFILE_CLUSTER);
567 
568 		spin_lock(&ci->lock);
569 		/*
570 		 * Discard is done, clear its flags as it's off-list, then
571 		 * return the cluster to allocation list.
572 		 */
573 		ci->flags = CLUSTER_FLAG_NONE;
574 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
575 				0, SWAPFILE_CLUSTER);
576 		__free_cluster(si, ci);
577 		spin_unlock(&ci->lock);
578 		ret = true;
579 		spin_lock(&si->lock);
580 	}
581 	spin_unlock(&si->lock);
582 	return ret;
583 }
584 
585 static void swap_discard_work(struct work_struct *work)
586 {
587 	struct swap_info_struct *si;
588 
589 	si = container_of(work, struct swap_info_struct, discard_work);
590 
591 	swap_do_scheduled_discard(si);
592 }
593 
594 static void swap_users_ref_free(struct percpu_ref *ref)
595 {
596 	struct swap_info_struct *si;
597 
598 	si = container_of(ref, struct swap_info_struct, users);
599 	complete(&si->comp);
600 }
601 
602 /*
603  * Must be called after freeing if ci->count == 0, moves the cluster to free
604  * or discard list.
605  */
606 static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
607 {
608 	VM_BUG_ON(ci->count != 0);
609 	VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);
610 	lockdep_assert_held(&ci->lock);
611 
612 	/*
613 	 * If the swap is discardable, prepare discard the cluster
614 	 * instead of free it immediately. The cluster will be freed
615 	 * after discard.
616 	 */
617 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
618 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
619 		swap_cluster_schedule_discard(si, ci);
620 		return;
621 	}
622 
623 	__free_cluster(si, ci);
624 }
625 
626 /*
627  * Must be called after freeing if ci->count != 0, moves the cluster to
628  * nonfull list.
629  */
630 static void partial_free_cluster(struct swap_info_struct *si,
631 				 struct swap_cluster_info *ci)
632 {
633 	VM_BUG_ON(!ci->count || ci->count == SWAPFILE_CLUSTER);
634 	lockdep_assert_held(&ci->lock);
635 
636 	if (ci->flags != CLUSTER_FLAG_NONFULL)
637 		move_cluster(si, ci, &si->nonfull_clusters[ci->order],
638 			     CLUSTER_FLAG_NONFULL);
639 }
640 
641 /*
642  * Must be called after allocation, moves the cluster to full or frag list.
643  * Note: allocation doesn't acquire si lock, and may drop the ci lock for
644  * reclaim, so the cluster could be any where when called.
645  */
646 static void relocate_cluster(struct swap_info_struct *si,
647 			     struct swap_cluster_info *ci)
648 {
649 	lockdep_assert_held(&ci->lock);
650 
651 	/* Discard cluster must remain off-list or on discard list */
652 	if (cluster_is_discard(ci))
653 		return;
654 
655 	if (!ci->count) {
656 		free_cluster(si, ci);
657 	} else if (ci->count != SWAPFILE_CLUSTER) {
658 		if (ci->flags != CLUSTER_FLAG_FRAG)
659 			move_cluster(si, ci, &si->frag_clusters[ci->order],
660 				     CLUSTER_FLAG_FRAG);
661 	} else {
662 		if (ci->flags != CLUSTER_FLAG_FULL)
663 			move_cluster(si, ci, &si->full_clusters,
664 				     CLUSTER_FLAG_FULL);
665 	}
666 }
667 
668 /*
669  * The cluster corresponding to page_nr will be used. The cluster will not be
670  * added to free cluster list and its usage counter will be increased by 1.
671  * Only used for initialization.
672  */
673 static void inc_cluster_info_page(struct swap_info_struct *si,
674 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
675 {
676 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
677 	struct swap_cluster_info *ci;
678 
679 	ci = cluster_info + idx;
680 	ci->count++;
681 
682 	VM_BUG_ON(ci->count > SWAPFILE_CLUSTER);
683 	VM_BUG_ON(ci->flags);
684 }
685 
686 static bool cluster_reclaim_range(struct swap_info_struct *si,
687 				  struct swap_cluster_info *ci,
688 				  unsigned long start, unsigned long end)
689 {
690 	unsigned char *map = si->swap_map;
691 	unsigned long offset = start;
692 	int nr_reclaim;
693 
694 	spin_unlock(&ci->lock);
695 	do {
696 		switch (READ_ONCE(map[offset])) {
697 		case 0:
698 			offset++;
699 			break;
700 		case SWAP_HAS_CACHE:
701 			nr_reclaim = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY | TTRS_DIRECT);
702 			if (nr_reclaim > 0)
703 				offset += nr_reclaim;
704 			else
705 				goto out;
706 			break;
707 		default:
708 			goto out;
709 		}
710 	} while (offset < end);
711 out:
712 	spin_lock(&ci->lock);
713 	/*
714 	 * Recheck the range no matter reclaim succeeded or not, the slot
715 	 * could have been be freed while we are not holding the lock.
716 	 */
717 	for (offset = start; offset < end; offset++)
718 		if (READ_ONCE(map[offset]))
719 			return false;
720 
721 	return true;
722 }
723 
724 static bool cluster_scan_range(struct swap_info_struct *si,
725 			       struct swap_cluster_info *ci,
726 			       unsigned long start, unsigned int nr_pages,
727 			       bool *need_reclaim)
728 {
729 	unsigned long offset, end = start + nr_pages;
730 	unsigned char *map = si->swap_map;
731 
732 	for (offset = start; offset < end; offset++) {
733 		switch (READ_ONCE(map[offset])) {
734 		case 0:
735 			continue;
736 		case SWAP_HAS_CACHE:
737 			if (!vm_swap_full())
738 				return false;
739 			*need_reclaim = true;
740 			continue;
741 		default:
742 			return false;
743 		}
744 	}
745 
746 	return true;
747 }
748 
749 static bool cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci,
750 				unsigned int start, unsigned char usage,
751 				unsigned int order)
752 {
753 	unsigned int nr_pages = 1 << order;
754 
755 	lockdep_assert_held(&ci->lock);
756 
757 	if (!(si->flags & SWP_WRITEOK))
758 		return false;
759 
760 	/*
761 	 * The first allocation in a cluster makes the
762 	 * cluster exclusive to this order
763 	 */
764 	if (cluster_is_empty(ci))
765 		ci->order = order;
766 
767 	memset(si->swap_map + start, usage, nr_pages);
768 	swap_range_alloc(si, nr_pages);
769 	ci->count += nr_pages;
770 
771 	return true;
772 }
773 
774 /* Try use a new cluster for current CPU and allocate from it. */
775 static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si,
776 					    struct swap_cluster_info *ci,
777 					    unsigned long offset,
778 					    unsigned int order,
779 					    unsigned char usage)
780 {
781 	unsigned int next = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID;
782 	unsigned long start = ALIGN_DOWN(offset, SWAPFILE_CLUSTER);
783 	unsigned long end = min(start + SWAPFILE_CLUSTER, si->max);
784 	unsigned int nr_pages = 1 << order;
785 	bool need_reclaim, ret;
786 
787 	lockdep_assert_held(&ci->lock);
788 
789 	if (end < nr_pages || ci->count + nr_pages > SWAPFILE_CLUSTER)
790 		goto out;
791 
792 	for (end -= nr_pages; offset <= end; offset += nr_pages) {
793 		need_reclaim = false;
794 		if (!cluster_scan_range(si, ci, offset, nr_pages, &need_reclaim))
795 			continue;
796 		if (need_reclaim) {
797 			ret = cluster_reclaim_range(si, ci, offset, offset + nr_pages);
798 			/*
799 			 * Reclaim drops ci->lock and cluster could be used
800 			 * by another order. Not checking flag as off-list
801 			 * cluster has no flag set, and change of list
802 			 * won't cause fragmentation.
803 			 */
804 			if (!cluster_is_usable(ci, order))
805 				goto out;
806 			if (cluster_is_empty(ci))
807 				offset = start;
808 			/* Reclaim failed but cluster is usable, try next */
809 			if (!ret)
810 				continue;
811 		}
812 		if (!cluster_alloc_range(si, ci, offset, usage, order))
813 			break;
814 		found = offset;
815 		offset += nr_pages;
816 		if (ci->count < SWAPFILE_CLUSTER && offset <= end)
817 			next = offset;
818 		break;
819 	}
820 out:
821 	relocate_cluster(si, ci);
822 	unlock_cluster(ci);
823 	if (si->flags & SWP_SOLIDSTATE)
824 		__this_cpu_write(si->percpu_cluster->next[order], next);
825 	else
826 		si->global_cluster->next[order] = next;
827 	return found;
828 }
829 
830 /* Return true if reclaimed a whole cluster */
831 static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force)
832 {
833 	long to_scan = 1;
834 	unsigned long offset, end;
835 	struct swap_cluster_info *ci;
836 	unsigned char *map = si->swap_map;
837 	int nr_reclaim;
838 
839 	if (force)
840 		to_scan = swap_usage_in_pages(si) / SWAPFILE_CLUSTER;
841 
842 	while ((ci = isolate_lock_cluster(si, &si->full_clusters))) {
843 		offset = cluster_offset(si, ci);
844 		end = min(si->max, offset + SWAPFILE_CLUSTER);
845 		to_scan--;
846 
847 		while (offset < end) {
848 			if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) {
849 				spin_unlock(&ci->lock);
850 				nr_reclaim = __try_to_reclaim_swap(si, offset,
851 								   TTRS_ANYWAY | TTRS_DIRECT);
852 				spin_lock(&ci->lock);
853 				if (nr_reclaim) {
854 					offset += abs(nr_reclaim);
855 					continue;
856 				}
857 			}
858 			offset++;
859 		}
860 
861 		unlock_cluster(ci);
862 		if (to_scan <= 0)
863 			break;
864 	}
865 }
866 
867 static void swap_reclaim_work(struct work_struct *work)
868 {
869 	struct swap_info_struct *si;
870 
871 	si = container_of(work, struct swap_info_struct, reclaim_work);
872 
873 	swap_reclaim_full_clusters(si, true);
874 }
875 
876 /*
877  * Try to get swap entries with specified order from current cpu's swap entry
878  * pool (a cluster). This might involve allocating a new cluster for current CPU
879  * too.
880  */
881 static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order,
882 					      unsigned char usage)
883 {
884 	struct swap_cluster_info *ci;
885 	unsigned int offset, found = 0;
886 
887 	if (si->flags & SWP_SOLIDSTATE) {
888 		/* Fast path using per CPU cluster */
889 		local_lock(&si->percpu_cluster->lock);
890 		offset = __this_cpu_read(si->percpu_cluster->next[order]);
891 	} else {
892 		/* Serialize HDD SWAP allocation for each device. */
893 		spin_lock(&si->global_cluster_lock);
894 		offset = si->global_cluster->next[order];
895 	}
896 
897 	if (offset) {
898 		ci = lock_cluster(si, offset);
899 		/* Cluster could have been used by another order */
900 		if (cluster_is_usable(ci, order)) {
901 			if (cluster_is_empty(ci))
902 				offset = cluster_offset(si, ci);
903 			found = alloc_swap_scan_cluster(si, ci, offset,
904 							order, usage);
905 		} else {
906 			unlock_cluster(ci);
907 		}
908 		if (found)
909 			goto done;
910 	}
911 
912 new_cluster:
913 	ci = isolate_lock_cluster(si, &si->free_clusters);
914 	if (ci) {
915 		found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
916 						order, usage);
917 		if (found)
918 			goto done;
919 	}
920 
921 	/* Try reclaim from full clusters if free clusters list is drained */
922 	if (vm_swap_full())
923 		swap_reclaim_full_clusters(si, false);
924 
925 	if (order < PMD_ORDER) {
926 		unsigned int frags = 0, frags_existing;
927 
928 		while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[order]))) {
929 			found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
930 							order, usage);
931 			if (found)
932 				goto done;
933 			/* Clusters failed to allocate are moved to frag_clusters */
934 			frags++;
935 		}
936 
937 		frags_existing = atomic_long_read(&si->frag_cluster_nr[order]);
938 		while (frags < frags_existing &&
939 		       (ci = isolate_lock_cluster(si, &si->frag_clusters[order]))) {
940 			atomic_long_dec(&si->frag_cluster_nr[order]);
941 			/*
942 			 * Rotate the frag list to iterate, they were all
943 			 * failing high order allocation or moved here due to
944 			 * per-CPU usage, but they could contain newly released
945 			 * reclaimable (eg. lazy-freed swap cache) slots.
946 			 */
947 			found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
948 							order, usage);
949 			if (found)
950 				goto done;
951 			frags++;
952 		}
953 	}
954 
955 	/*
956 	 * We don't have free cluster but have some clusters in
957 	 * discarding, do discard now and reclaim them, then
958 	 * reread cluster_next_cpu since we dropped si->lock
959 	 */
960 	if ((si->flags & SWP_PAGE_DISCARD) && swap_do_scheduled_discard(si))
961 		goto new_cluster;
962 
963 	if (order)
964 		goto done;
965 
966 	/* Order 0 stealing from higher order */
967 	for (int o = 1; o < SWAP_NR_ORDERS; o++) {
968 		/*
969 		 * Clusters here have at least one usable slots and can't fail order 0
970 		 * allocation, but reclaim may drop si->lock and race with another user.
971 		 */
972 		while ((ci = isolate_lock_cluster(si, &si->frag_clusters[o]))) {
973 			atomic_long_dec(&si->frag_cluster_nr[o]);
974 			found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
975 							0, usage);
976 			if (found)
977 				goto done;
978 		}
979 
980 		while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[o]))) {
981 			found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
982 							0, usage);
983 			if (found)
984 				goto done;
985 		}
986 	}
987 done:
988 	if (si->flags & SWP_SOLIDSTATE)
989 		local_unlock(&si->percpu_cluster->lock);
990 	else
991 		spin_unlock(&si->global_cluster_lock);
992 	return found;
993 }
994 
995 /* SWAP_USAGE_OFFLIST_BIT can only be set by this helper. */
996 static void del_from_avail_list(struct swap_info_struct *si, bool swapoff)
997 {
998 	int nid;
999 	unsigned long pages;
1000 
1001 	spin_lock(&swap_avail_lock);
1002 
1003 	if (swapoff) {
1004 		/*
1005 		 * Forcefully remove it. Clear the SWP_WRITEOK flags for
1006 		 * swapoff here so it's synchronized by both si->lock and
1007 		 * swap_avail_lock, to ensure the result can be seen by
1008 		 * add_to_avail_list.
1009 		 */
1010 		lockdep_assert_held(&si->lock);
1011 		si->flags &= ~SWP_WRITEOK;
1012 		atomic_long_or(SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages);
1013 	} else {
1014 		/*
1015 		 * If not called by swapoff, take it off-list only if it's
1016 		 * full and SWAP_USAGE_OFFLIST_BIT is not set (strictly
1017 		 * si->inuse_pages == pages), any concurrent slot freeing,
1018 		 * or device already removed from plist by someone else
1019 		 * will make this return false.
1020 		 */
1021 		pages = si->pages;
1022 		if (!atomic_long_try_cmpxchg(&si->inuse_pages, &pages,
1023 					     pages | SWAP_USAGE_OFFLIST_BIT))
1024 			goto skip;
1025 	}
1026 
1027 	for_each_node(nid)
1028 		plist_del(&si->avail_lists[nid], &swap_avail_heads[nid]);
1029 
1030 skip:
1031 	spin_unlock(&swap_avail_lock);
1032 }
1033 
1034 /* SWAP_USAGE_OFFLIST_BIT can only be cleared by this helper. */
1035 static void add_to_avail_list(struct swap_info_struct *si, bool swapon)
1036 {
1037 	int nid;
1038 	long val;
1039 	unsigned long pages;
1040 
1041 	spin_lock(&swap_avail_lock);
1042 
1043 	/* Corresponding to SWP_WRITEOK clearing in del_from_avail_list */
1044 	if (swapon) {
1045 		lockdep_assert_held(&si->lock);
1046 		si->flags |= SWP_WRITEOK;
1047 	} else {
1048 		if (!(READ_ONCE(si->flags) & SWP_WRITEOK))
1049 			goto skip;
1050 	}
1051 
1052 	if (!(atomic_long_read(&si->inuse_pages) & SWAP_USAGE_OFFLIST_BIT))
1053 		goto skip;
1054 
1055 	val = atomic_long_fetch_and_relaxed(~SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages);
1056 
1057 	/*
1058 	 * When device is full and device is on the plist, only one updater will
1059 	 * see (inuse_pages == si->pages) and will call del_from_avail_list. If
1060 	 * that updater happen to be here, just skip adding.
1061 	 */
1062 	pages = si->pages;
1063 	if (val == pages) {
1064 		/* Just like the cmpxchg in del_from_avail_list */
1065 		if (atomic_long_try_cmpxchg(&si->inuse_pages, &pages,
1066 					    pages | SWAP_USAGE_OFFLIST_BIT))
1067 			goto skip;
1068 	}
1069 
1070 	for_each_node(nid)
1071 		plist_add(&si->avail_lists[nid], &swap_avail_heads[nid]);
1072 
1073 skip:
1074 	spin_unlock(&swap_avail_lock);
1075 }
1076 
1077 /*
1078  * swap_usage_add / swap_usage_sub of each slot are serialized by ci->lock
1079  * within each cluster, so the total contribution to the global counter should
1080  * always be positive and cannot exceed the total number of usable slots.
1081  */
1082 static bool swap_usage_add(struct swap_info_struct *si, unsigned int nr_entries)
1083 {
1084 	long val = atomic_long_add_return_relaxed(nr_entries, &si->inuse_pages);
1085 
1086 	/*
1087 	 * If device is full, and SWAP_USAGE_OFFLIST_BIT is not set,
1088 	 * remove it from the plist.
1089 	 */
1090 	if (unlikely(val == si->pages)) {
1091 		del_from_avail_list(si, false);
1092 		return true;
1093 	}
1094 
1095 	return false;
1096 }
1097 
1098 static void swap_usage_sub(struct swap_info_struct *si, unsigned int nr_entries)
1099 {
1100 	long val = atomic_long_sub_return_relaxed(nr_entries, &si->inuse_pages);
1101 
1102 	/*
1103 	 * If device is not full, and SWAP_USAGE_OFFLIST_BIT is set,
1104 	 * remove it from the plist.
1105 	 */
1106 	if (unlikely(val & SWAP_USAGE_OFFLIST_BIT))
1107 		add_to_avail_list(si, false);
1108 }
1109 
1110 static void swap_range_alloc(struct swap_info_struct *si,
1111 			     unsigned int nr_entries)
1112 {
1113 	if (swap_usage_add(si, nr_entries)) {
1114 		if (vm_swap_full())
1115 			schedule_work(&si->reclaim_work);
1116 	}
1117 }
1118 
1119 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
1120 			    unsigned int nr_entries)
1121 {
1122 	unsigned long begin = offset;
1123 	unsigned long end = offset + nr_entries - 1;
1124 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
1125 	unsigned int i;
1126 
1127 	/*
1128 	 * Use atomic clear_bit operations only on zeromap instead of non-atomic
1129 	 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes.
1130 	 */
1131 	for (i = 0; i < nr_entries; i++) {
1132 		clear_bit(offset + i, si->zeromap);
1133 		zswap_invalidate(swp_entry(si->type, offset + i));
1134 	}
1135 
1136 	if (si->flags & SWP_BLKDEV)
1137 		swap_slot_free_notify =
1138 			si->bdev->bd_disk->fops->swap_slot_free_notify;
1139 	else
1140 		swap_slot_free_notify = NULL;
1141 	while (offset <= end) {
1142 		arch_swap_invalidate_page(si->type, offset);
1143 		if (swap_slot_free_notify)
1144 			swap_slot_free_notify(si->bdev, offset);
1145 		offset++;
1146 	}
1147 	clear_shadow_from_swap_cache(si->type, begin, end);
1148 
1149 	/*
1150 	 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
1151 	 * only after the above cleanups are done.
1152 	 */
1153 	smp_wmb();
1154 	atomic_long_add(nr_entries, &nr_swap_pages);
1155 	swap_usage_sub(si, nr_entries);
1156 }
1157 
1158 static int cluster_alloc_swap(struct swap_info_struct *si,
1159 			     unsigned char usage, int nr,
1160 			     swp_entry_t slots[], int order)
1161 {
1162 	int n_ret = 0;
1163 
1164 	while (n_ret < nr) {
1165 		unsigned long offset = cluster_alloc_swap_entry(si, order, usage);
1166 
1167 		if (!offset)
1168 			break;
1169 		slots[n_ret++] = swp_entry(si->type, offset);
1170 	}
1171 
1172 	return n_ret;
1173 }
1174 
1175 static int scan_swap_map_slots(struct swap_info_struct *si,
1176 			       unsigned char usage, int nr,
1177 			       swp_entry_t slots[], int order)
1178 {
1179 	unsigned int nr_pages = 1 << order;
1180 
1181 	/*
1182 	 * We try to cluster swap pages by allocating them sequentially
1183 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
1184 	 * way, however, we resort to first-free allocation, starting
1185 	 * a new cluster.  This prevents us from scattering swap pages
1186 	 * all over the entire swap partition, so that we reduce
1187 	 * overall disk seek times between swap pages.  -- sct
1188 	 * But we do now try to find an empty cluster.  -Andrea
1189 	 * And we let swap pages go all over an SSD partition.  Hugh
1190 	 */
1191 	if (order > 0) {
1192 		/*
1193 		 * Should not even be attempting large allocations when huge
1194 		 * page swap is disabled.  Warn and fail the allocation.
1195 		 */
1196 		if (!IS_ENABLED(CONFIG_THP_SWAP) ||
1197 		    nr_pages > SWAPFILE_CLUSTER) {
1198 			VM_WARN_ON_ONCE(1);
1199 			return 0;
1200 		}
1201 
1202 		/*
1203 		 * Swapfile is not block device so unable
1204 		 * to allocate large entries.
1205 		 */
1206 		if (!(si->flags & SWP_BLKDEV))
1207 			return 0;
1208 	}
1209 
1210 	return cluster_alloc_swap(si, usage, nr, slots, order);
1211 }
1212 
1213 static bool get_swap_device_info(struct swap_info_struct *si)
1214 {
1215 	if (!percpu_ref_tryget_live(&si->users))
1216 		return false;
1217 	/*
1218 	 * Guarantee the si->users are checked before accessing other
1219 	 * fields of swap_info_struct, and si->flags (SWP_WRITEOK) is
1220 	 * up to dated.
1221 	 *
1222 	 * Paired with the spin_unlock() after setup_swap_info() in
1223 	 * enable_swap_info(), and smp_wmb() in swapoff.
1224 	 */
1225 	smp_rmb();
1226 	return true;
1227 }
1228 
1229 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_order)
1230 {
1231 	int order = swap_entry_order(entry_order);
1232 	unsigned long size = 1 << order;
1233 	struct swap_info_struct *si, *next;
1234 	long avail_pgs;
1235 	int n_ret = 0;
1236 	int node;
1237 
1238 	spin_lock(&swap_avail_lock);
1239 
1240 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1241 	if (avail_pgs <= 0) {
1242 		spin_unlock(&swap_avail_lock);
1243 		goto noswap;
1244 	}
1245 
1246 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1247 
1248 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1249 
1250 start_over:
1251 	node = numa_node_id();
1252 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1253 		/* requeue si to after same-priority siblings */
1254 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1255 		spin_unlock(&swap_avail_lock);
1256 		if (get_swap_device_info(si)) {
1257 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1258 					n_goal, swp_entries, order);
1259 			put_swap_device(si);
1260 			if (n_ret || size > 1)
1261 				goto check_out;
1262 		}
1263 
1264 		spin_lock(&swap_avail_lock);
1265 		/*
1266 		 * if we got here, it's likely that si was almost full before,
1267 		 * and since scan_swap_map_slots() can drop the si->lock,
1268 		 * multiple callers probably all tried to get a page from the
1269 		 * same si and it filled up before we could get one; or, the si
1270 		 * filled up between us dropping swap_avail_lock and taking
1271 		 * si->lock. Since we dropped the swap_avail_lock, the
1272 		 * swap_avail_head list may have been modified; so if next is
1273 		 * still in the swap_avail_head list then try it, otherwise
1274 		 * start over if we have not gotten any slots.
1275 		 */
1276 		if (plist_node_empty(&next->avail_lists[node]))
1277 			goto start_over;
1278 	}
1279 
1280 	spin_unlock(&swap_avail_lock);
1281 
1282 check_out:
1283 	if (n_ret < n_goal)
1284 		atomic_long_add((long)(n_goal - n_ret) * size,
1285 				&nr_swap_pages);
1286 noswap:
1287 	return n_ret;
1288 }
1289 
1290 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1291 {
1292 	struct swap_info_struct *si;
1293 	unsigned long offset;
1294 
1295 	if (!entry.val)
1296 		goto out;
1297 	si = swp_swap_info(entry);
1298 	if (!si)
1299 		goto bad_nofile;
1300 	if (data_race(!(si->flags & SWP_USED)))
1301 		goto bad_device;
1302 	offset = swp_offset(entry);
1303 	if (offset >= si->max)
1304 		goto bad_offset;
1305 	if (data_race(!si->swap_map[swp_offset(entry)]))
1306 		goto bad_free;
1307 	return si;
1308 
1309 bad_free:
1310 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1311 	goto out;
1312 bad_offset:
1313 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1314 	goto out;
1315 bad_device:
1316 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1317 	goto out;
1318 bad_nofile:
1319 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1320 out:
1321 	return NULL;
1322 }
1323 
1324 static unsigned char __swap_entry_free_locked(struct swap_info_struct *si,
1325 					      unsigned long offset,
1326 					      unsigned char usage)
1327 {
1328 	unsigned char count;
1329 	unsigned char has_cache;
1330 
1331 	count = si->swap_map[offset];
1332 
1333 	has_cache = count & SWAP_HAS_CACHE;
1334 	count &= ~SWAP_HAS_CACHE;
1335 
1336 	if (usage == SWAP_HAS_CACHE) {
1337 		VM_BUG_ON(!has_cache);
1338 		has_cache = 0;
1339 	} else if (count == SWAP_MAP_SHMEM) {
1340 		/*
1341 		 * Or we could insist on shmem.c using a special
1342 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1343 		 */
1344 		count = 0;
1345 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1346 		if (count == COUNT_CONTINUED) {
1347 			if (swap_count_continued(si, offset, count))
1348 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1349 			else
1350 				count = SWAP_MAP_MAX;
1351 		} else
1352 			count--;
1353 	}
1354 
1355 	usage = count | has_cache;
1356 	if (usage)
1357 		WRITE_ONCE(si->swap_map[offset], usage);
1358 	else
1359 		WRITE_ONCE(si->swap_map[offset], SWAP_HAS_CACHE);
1360 
1361 	return usage;
1362 }
1363 
1364 /*
1365  * When we get a swap entry, if there aren't some other ways to
1366  * prevent swapoff, such as the folio in swap cache is locked, RCU
1367  * reader side is locked, etc., the swap entry may become invalid
1368  * because of swapoff.  Then, we need to enclose all swap related
1369  * functions with get_swap_device() and put_swap_device(), unless the
1370  * swap functions call get/put_swap_device() by themselves.
1371  *
1372  * RCU reader side lock (including any spinlock) is sufficient to
1373  * prevent swapoff, because synchronize_rcu() is called in swapoff()
1374  * before freeing data structures.
1375  *
1376  * Check whether swap entry is valid in the swap device.  If so,
1377  * return pointer to swap_info_struct, and keep the swap entry valid
1378  * via preventing the swap device from being swapoff, until
1379  * put_swap_device() is called.  Otherwise return NULL.
1380  *
1381  * Notice that swapoff or swapoff+swapon can still happen before the
1382  * percpu_ref_tryget_live() in get_swap_device() or after the
1383  * percpu_ref_put() in put_swap_device() if there isn't any other way
1384  * to prevent swapoff.  The caller must be prepared for that.  For
1385  * example, the following situation is possible.
1386  *
1387  *   CPU1				CPU2
1388  *   do_swap_page()
1389  *     ...				swapoff+swapon
1390  *     __read_swap_cache_async()
1391  *       swapcache_prepare()
1392  *         __swap_duplicate()
1393  *           // check swap_map
1394  *     // verify PTE not changed
1395  *
1396  * In __swap_duplicate(), the swap_map need to be checked before
1397  * changing partly because the specified swap entry may be for another
1398  * swap device which has been swapoff.  And in do_swap_page(), after
1399  * the page is read from the swap device, the PTE is verified not
1400  * changed with the page table locked to check whether the swap device
1401  * has been swapoff or swapoff+swapon.
1402  */
1403 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1404 {
1405 	struct swap_info_struct *si;
1406 	unsigned long offset;
1407 
1408 	if (!entry.val)
1409 		goto out;
1410 	si = swp_swap_info(entry);
1411 	if (!si)
1412 		goto bad_nofile;
1413 	if (!get_swap_device_info(si))
1414 		goto out;
1415 	offset = swp_offset(entry);
1416 	if (offset >= si->max)
1417 		goto put_out;
1418 
1419 	return si;
1420 bad_nofile:
1421 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1422 out:
1423 	return NULL;
1424 put_out:
1425 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1426 	percpu_ref_put(&si->users);
1427 	return NULL;
1428 }
1429 
1430 static unsigned char __swap_entry_free(struct swap_info_struct *si,
1431 				       swp_entry_t entry)
1432 {
1433 	struct swap_cluster_info *ci;
1434 	unsigned long offset = swp_offset(entry);
1435 	unsigned char usage;
1436 
1437 	ci = lock_cluster(si, offset);
1438 	usage = __swap_entry_free_locked(si, offset, 1);
1439 	if (!usage)
1440 		swap_entry_range_free(si, ci, swp_entry(si->type, offset), 1);
1441 	unlock_cluster(ci);
1442 
1443 	return usage;
1444 }
1445 
1446 static bool __swap_entries_free(struct swap_info_struct *si,
1447 		swp_entry_t entry, int nr)
1448 {
1449 	unsigned long offset = swp_offset(entry);
1450 	unsigned int type = swp_type(entry);
1451 	struct swap_cluster_info *ci;
1452 	bool has_cache = false;
1453 	unsigned char count;
1454 	int i;
1455 
1456 	if (nr <= 1 || swap_count(data_race(si->swap_map[offset])) != 1)
1457 		goto fallback;
1458 	/* cross into another cluster */
1459 	if (nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER)
1460 		goto fallback;
1461 
1462 	ci = lock_cluster(si, offset);
1463 	if (!swap_is_last_map(si, offset, nr, &has_cache)) {
1464 		unlock_cluster(ci);
1465 		goto fallback;
1466 	}
1467 	for (i = 0; i < nr; i++)
1468 		WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE);
1469 	if (!has_cache)
1470 		swap_entry_range_free(si, ci, entry, nr);
1471 	unlock_cluster(ci);
1472 
1473 	return has_cache;
1474 
1475 fallback:
1476 	for (i = 0; i < nr; i++) {
1477 		if (data_race(si->swap_map[offset + i])) {
1478 			count = __swap_entry_free(si, swp_entry(type, offset + i));
1479 			if (count == SWAP_HAS_CACHE)
1480 				has_cache = true;
1481 		} else {
1482 			WARN_ON_ONCE(1);
1483 		}
1484 	}
1485 	return has_cache;
1486 }
1487 
1488 /*
1489  * Drop the last HAS_CACHE flag of swap entries, caller have to
1490  * ensure all entries belong to the same cgroup.
1491  */
1492 static void swap_entry_range_free(struct swap_info_struct *si,
1493 				  struct swap_cluster_info *ci,
1494 				  swp_entry_t entry, unsigned int nr_pages)
1495 {
1496 	unsigned long offset = swp_offset(entry);
1497 	unsigned char *map = si->swap_map + offset;
1498 	unsigned char *map_end = map + nr_pages;
1499 
1500 	/* It should never free entries across different clusters */
1501 	VM_BUG_ON(ci != offset_to_cluster(si, offset + nr_pages - 1));
1502 	VM_BUG_ON(cluster_is_empty(ci));
1503 	VM_BUG_ON(ci->count < nr_pages);
1504 
1505 	ci->count -= nr_pages;
1506 	do {
1507 		VM_BUG_ON(*map != SWAP_HAS_CACHE);
1508 		*map = 0;
1509 	} while (++map < map_end);
1510 
1511 	mem_cgroup_uncharge_swap(entry, nr_pages);
1512 	swap_range_free(si, offset, nr_pages);
1513 
1514 	if (!ci->count)
1515 		free_cluster(si, ci);
1516 	else
1517 		partial_free_cluster(si, ci);
1518 }
1519 
1520 static void cluster_swap_free_nr(struct swap_info_struct *si,
1521 		unsigned long offset, int nr_pages,
1522 		unsigned char usage)
1523 {
1524 	struct swap_cluster_info *ci;
1525 	unsigned long end = offset + nr_pages;
1526 
1527 	ci = lock_cluster(si, offset);
1528 	do {
1529 		if (!__swap_entry_free_locked(si, offset, usage))
1530 			swap_entry_range_free(si, ci, swp_entry(si->type, offset), 1);
1531 	} while (++offset < end);
1532 	unlock_cluster(ci);
1533 }
1534 
1535 /*
1536  * Caller has made sure that the swap device corresponding to entry
1537  * is still around or has not been recycled.
1538  */
1539 void swap_free_nr(swp_entry_t entry, int nr_pages)
1540 {
1541 	int nr;
1542 	struct swap_info_struct *sis;
1543 	unsigned long offset = swp_offset(entry);
1544 
1545 	sis = _swap_info_get(entry);
1546 	if (!sis)
1547 		return;
1548 
1549 	while (nr_pages) {
1550 		nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
1551 		cluster_swap_free_nr(sis, offset, nr, 1);
1552 		offset += nr;
1553 		nr_pages -= nr;
1554 	}
1555 }
1556 
1557 /*
1558  * Called after dropping swapcache to decrease refcnt to swap entries.
1559  */
1560 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1561 {
1562 	unsigned long offset = swp_offset(entry);
1563 	struct swap_cluster_info *ci;
1564 	struct swap_info_struct *si;
1565 	int size = 1 << swap_entry_order(folio_order(folio));
1566 
1567 	si = _swap_info_get(entry);
1568 	if (!si)
1569 		return;
1570 
1571 	ci = lock_cluster(si, offset);
1572 	if (swap_is_has_cache(si, offset, size))
1573 		swap_entry_range_free(si, ci, entry, size);
1574 	else {
1575 		for (int i = 0; i < size; i++, entry.val++) {
1576 			if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE))
1577 				swap_entry_range_free(si, ci, entry, 1);
1578 		}
1579 	}
1580 	unlock_cluster(ci);
1581 }
1582 
1583 void swapcache_free_entries(swp_entry_t *entries, int n)
1584 {
1585 	int i;
1586 	struct swap_cluster_info *ci;
1587 	struct swap_info_struct *si = NULL;
1588 
1589 	if (n <= 0)
1590 		return;
1591 
1592 	for (i = 0; i < n; ++i) {
1593 		si = _swap_info_get(entries[i]);
1594 		if (si) {
1595 			ci = lock_cluster(si, swp_offset(entries[i]));
1596 			swap_entry_range_free(si, ci, entries[i], 1);
1597 			unlock_cluster(ci);
1598 		}
1599 	}
1600 }
1601 
1602 int __swap_count(swp_entry_t entry)
1603 {
1604 	struct swap_info_struct *si = swp_swap_info(entry);
1605 	pgoff_t offset = swp_offset(entry);
1606 
1607 	return swap_count(si->swap_map[offset]);
1608 }
1609 
1610 /*
1611  * How many references to @entry are currently swapped out?
1612  * This does not give an exact answer when swap count is continued,
1613  * but does include the high COUNT_CONTINUED flag to allow for that.
1614  */
1615 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1616 {
1617 	pgoff_t offset = swp_offset(entry);
1618 	struct swap_cluster_info *ci;
1619 	int count;
1620 
1621 	ci = lock_cluster(si, offset);
1622 	count = swap_count(si->swap_map[offset]);
1623 	unlock_cluster(ci);
1624 	return count;
1625 }
1626 
1627 /*
1628  * How many references to @entry are currently swapped out?
1629  * This considers COUNT_CONTINUED so it returns exact answer.
1630  */
1631 int swp_swapcount(swp_entry_t entry)
1632 {
1633 	int count, tmp_count, n;
1634 	struct swap_info_struct *si;
1635 	struct swap_cluster_info *ci;
1636 	struct page *page;
1637 	pgoff_t offset;
1638 	unsigned char *map;
1639 
1640 	si = _swap_info_get(entry);
1641 	if (!si)
1642 		return 0;
1643 
1644 	offset = swp_offset(entry);
1645 
1646 	ci = lock_cluster(si, offset);
1647 
1648 	count = swap_count(si->swap_map[offset]);
1649 	if (!(count & COUNT_CONTINUED))
1650 		goto out;
1651 
1652 	count &= ~COUNT_CONTINUED;
1653 	n = SWAP_MAP_MAX + 1;
1654 
1655 	page = vmalloc_to_page(si->swap_map + offset);
1656 	offset &= ~PAGE_MASK;
1657 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1658 
1659 	do {
1660 		page = list_next_entry(page, lru);
1661 		map = kmap_local_page(page);
1662 		tmp_count = map[offset];
1663 		kunmap_local(map);
1664 
1665 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1666 		n *= (SWAP_CONT_MAX + 1);
1667 	} while (tmp_count & COUNT_CONTINUED);
1668 out:
1669 	unlock_cluster(ci);
1670 	return count;
1671 }
1672 
1673 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1674 					 swp_entry_t entry, int order)
1675 {
1676 	struct swap_cluster_info *ci;
1677 	unsigned char *map = si->swap_map;
1678 	unsigned int nr_pages = 1 << order;
1679 	unsigned long roffset = swp_offset(entry);
1680 	unsigned long offset = round_down(roffset, nr_pages);
1681 	int i;
1682 	bool ret = false;
1683 
1684 	ci = lock_cluster(si, offset);
1685 	if (nr_pages == 1) {
1686 		if (swap_count(map[roffset]))
1687 			ret = true;
1688 		goto unlock_out;
1689 	}
1690 	for (i = 0; i < nr_pages; i++) {
1691 		if (swap_count(map[offset + i])) {
1692 			ret = true;
1693 			break;
1694 		}
1695 	}
1696 unlock_out:
1697 	unlock_cluster(ci);
1698 	return ret;
1699 }
1700 
1701 static bool folio_swapped(struct folio *folio)
1702 {
1703 	swp_entry_t entry = folio->swap;
1704 	struct swap_info_struct *si = _swap_info_get(entry);
1705 
1706 	if (!si)
1707 		return false;
1708 
1709 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1710 		return swap_swapcount(si, entry) != 0;
1711 
1712 	return swap_page_trans_huge_swapped(si, entry, folio_order(folio));
1713 }
1714 
1715 static bool folio_swapcache_freeable(struct folio *folio)
1716 {
1717 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1718 
1719 	if (!folio_test_swapcache(folio))
1720 		return false;
1721 	if (folio_test_writeback(folio))
1722 		return false;
1723 
1724 	/*
1725 	 * Once hibernation has begun to create its image of memory,
1726 	 * there's a danger that one of the calls to folio_free_swap()
1727 	 * - most probably a call from __try_to_reclaim_swap() while
1728 	 * hibernation is allocating its own swap pages for the image,
1729 	 * but conceivably even a call from memory reclaim - will free
1730 	 * the swap from a folio which has already been recorded in the
1731 	 * image as a clean swapcache folio, and then reuse its swap for
1732 	 * another page of the image.  On waking from hibernation, the
1733 	 * original folio might be freed under memory pressure, then
1734 	 * later read back in from swap, now with the wrong data.
1735 	 *
1736 	 * Hibernation suspends storage while it is writing the image
1737 	 * to disk so check that here.
1738 	 */
1739 	if (pm_suspended_storage())
1740 		return false;
1741 
1742 	return true;
1743 }
1744 
1745 /**
1746  * folio_free_swap() - Free the swap space used for this folio.
1747  * @folio: The folio to remove.
1748  *
1749  * If swap is getting full, or if there are no more mappings of this folio,
1750  * then call folio_free_swap to free its swap space.
1751  *
1752  * Return: true if we were able to release the swap space.
1753  */
1754 bool folio_free_swap(struct folio *folio)
1755 {
1756 	if (!folio_swapcache_freeable(folio))
1757 		return false;
1758 	if (folio_swapped(folio))
1759 		return false;
1760 
1761 	delete_from_swap_cache(folio);
1762 	folio_set_dirty(folio);
1763 	return true;
1764 }
1765 
1766 /**
1767  * free_swap_and_cache_nr() - Release reference on range of swap entries and
1768  *                            reclaim their cache if no more references remain.
1769  * @entry: First entry of range.
1770  * @nr: Number of entries in range.
1771  *
1772  * For each swap entry in the contiguous range, release a reference. If any swap
1773  * entries become free, try to reclaim their underlying folios, if present. The
1774  * offset range is defined by [entry.offset, entry.offset + nr).
1775  */
1776 void free_swap_and_cache_nr(swp_entry_t entry, int nr)
1777 {
1778 	const unsigned long start_offset = swp_offset(entry);
1779 	const unsigned long end_offset = start_offset + nr;
1780 	struct swap_info_struct *si;
1781 	bool any_only_cache = false;
1782 	unsigned long offset;
1783 
1784 	if (non_swap_entry(entry))
1785 		return;
1786 
1787 	si = get_swap_device(entry);
1788 	if (!si)
1789 		return;
1790 
1791 	if (WARN_ON(end_offset > si->max))
1792 		goto out;
1793 
1794 	/*
1795 	 * First free all entries in the range.
1796 	 */
1797 	any_only_cache = __swap_entries_free(si, entry, nr);
1798 
1799 	/*
1800 	 * Short-circuit the below loop if none of the entries had their
1801 	 * reference drop to zero.
1802 	 */
1803 	if (!any_only_cache)
1804 		goto out;
1805 
1806 	/*
1807 	 * Now go back over the range trying to reclaim the swap cache. This is
1808 	 * more efficient for large folios because we will only try to reclaim
1809 	 * the swap once per folio in the common case. If we do
1810 	 * __swap_entry_free() and __try_to_reclaim_swap() in the same loop, the
1811 	 * latter will get a reference and lock the folio for every individual
1812 	 * page but will only succeed once the swap slot for every subpage is
1813 	 * zero.
1814 	 */
1815 	for (offset = start_offset; offset < end_offset; offset += nr) {
1816 		nr = 1;
1817 		if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1818 			/*
1819 			 * Folios are always naturally aligned in swap so
1820 			 * advance forward to the next boundary. Zero means no
1821 			 * folio was found for the swap entry, so advance by 1
1822 			 * in this case. Negative value means folio was found
1823 			 * but could not be reclaimed. Here we can still advance
1824 			 * to the next boundary.
1825 			 */
1826 			nr = __try_to_reclaim_swap(si, offset,
1827 						   TTRS_UNMAPPED | TTRS_FULL);
1828 			if (nr == 0)
1829 				nr = 1;
1830 			else if (nr < 0)
1831 				nr = -nr;
1832 			nr = ALIGN(offset + 1, nr) - offset;
1833 		}
1834 	}
1835 
1836 out:
1837 	put_swap_device(si);
1838 }
1839 
1840 #ifdef CONFIG_HIBERNATION
1841 
1842 swp_entry_t get_swap_page_of_type(int type)
1843 {
1844 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1845 	swp_entry_t entry = {0};
1846 
1847 	if (!si)
1848 		goto fail;
1849 
1850 	/* This is called for allocating swap entry, not cache */
1851 	if (get_swap_device_info(si)) {
1852 		if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry, 0))
1853 			atomic_long_dec(&nr_swap_pages);
1854 		put_swap_device(si);
1855 	}
1856 fail:
1857 	return entry;
1858 }
1859 
1860 /*
1861  * Find the swap type that corresponds to given device (if any).
1862  *
1863  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1864  * from 0, in which the swap header is expected to be located.
1865  *
1866  * This is needed for the suspend to disk (aka swsusp).
1867  */
1868 int swap_type_of(dev_t device, sector_t offset)
1869 {
1870 	int type;
1871 
1872 	if (!device)
1873 		return -1;
1874 
1875 	spin_lock(&swap_lock);
1876 	for (type = 0; type < nr_swapfiles; type++) {
1877 		struct swap_info_struct *sis = swap_info[type];
1878 
1879 		if (!(sis->flags & SWP_WRITEOK))
1880 			continue;
1881 
1882 		if (device == sis->bdev->bd_dev) {
1883 			struct swap_extent *se = first_se(sis);
1884 
1885 			if (se->start_block == offset) {
1886 				spin_unlock(&swap_lock);
1887 				return type;
1888 			}
1889 		}
1890 	}
1891 	spin_unlock(&swap_lock);
1892 	return -ENODEV;
1893 }
1894 
1895 int find_first_swap(dev_t *device)
1896 {
1897 	int type;
1898 
1899 	spin_lock(&swap_lock);
1900 	for (type = 0; type < nr_swapfiles; type++) {
1901 		struct swap_info_struct *sis = swap_info[type];
1902 
1903 		if (!(sis->flags & SWP_WRITEOK))
1904 			continue;
1905 		*device = sis->bdev->bd_dev;
1906 		spin_unlock(&swap_lock);
1907 		return type;
1908 	}
1909 	spin_unlock(&swap_lock);
1910 	return -ENODEV;
1911 }
1912 
1913 /*
1914  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1915  * corresponding to given index in swap_info (swap type).
1916  */
1917 sector_t swapdev_block(int type, pgoff_t offset)
1918 {
1919 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1920 	struct swap_extent *se;
1921 
1922 	if (!si || !(si->flags & SWP_WRITEOK))
1923 		return 0;
1924 	se = offset_to_swap_extent(si, offset);
1925 	return se->start_block + (offset - se->start_page);
1926 }
1927 
1928 /*
1929  * Return either the total number of swap pages of given type, or the number
1930  * of free pages of that type (depending on @free)
1931  *
1932  * This is needed for software suspend
1933  */
1934 unsigned int count_swap_pages(int type, int free)
1935 {
1936 	unsigned int n = 0;
1937 
1938 	spin_lock(&swap_lock);
1939 	if ((unsigned int)type < nr_swapfiles) {
1940 		struct swap_info_struct *sis = swap_info[type];
1941 
1942 		spin_lock(&sis->lock);
1943 		if (sis->flags & SWP_WRITEOK) {
1944 			n = sis->pages;
1945 			if (free)
1946 				n -= swap_usage_in_pages(sis);
1947 		}
1948 		spin_unlock(&sis->lock);
1949 	}
1950 	spin_unlock(&swap_lock);
1951 	return n;
1952 }
1953 #endif /* CONFIG_HIBERNATION */
1954 
1955 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1956 {
1957 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1958 }
1959 
1960 /*
1961  * No need to decide whether this PTE shares the swap entry with others,
1962  * just let do_wp_page work it out if a write is requested later - to
1963  * force COW, vm_page_prot omits write permission from any private vma.
1964  */
1965 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1966 		unsigned long addr, swp_entry_t entry, struct folio *folio)
1967 {
1968 	struct page *page;
1969 	struct folio *swapcache;
1970 	spinlock_t *ptl;
1971 	pte_t *pte, new_pte, old_pte;
1972 	bool hwpoisoned = false;
1973 	int ret = 1;
1974 
1975 	swapcache = folio;
1976 	folio = ksm_might_need_to_copy(folio, vma, addr);
1977 	if (unlikely(!folio))
1978 		return -ENOMEM;
1979 	else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
1980 		hwpoisoned = true;
1981 		folio = swapcache;
1982 	}
1983 
1984 	page = folio_file_page(folio, swp_offset(entry));
1985 	if (PageHWPoison(page))
1986 		hwpoisoned = true;
1987 
1988 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1989 	if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
1990 						swp_entry_to_pte(entry)))) {
1991 		ret = 0;
1992 		goto out;
1993 	}
1994 
1995 	old_pte = ptep_get(pte);
1996 
1997 	if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
1998 		swp_entry_t swp_entry;
1999 
2000 		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2001 		if (hwpoisoned) {
2002 			swp_entry = make_hwpoison_entry(page);
2003 		} else {
2004 			swp_entry = make_poisoned_swp_entry();
2005 		}
2006 		new_pte = swp_entry_to_pte(swp_entry);
2007 		ret = 0;
2008 		goto setpte;
2009 	}
2010 
2011 	/*
2012 	 * Some architectures may have to restore extra metadata to the page
2013 	 * when reading from swap. This metadata may be indexed by swap entry
2014 	 * so this must be called before swap_free().
2015 	 */
2016 	arch_swap_restore(folio_swap(entry, folio), folio);
2017 
2018 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2019 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
2020 	folio_get(folio);
2021 	if (folio == swapcache) {
2022 		rmap_t rmap_flags = RMAP_NONE;
2023 
2024 		/*
2025 		 * See do_swap_page(): writeback would be problematic.
2026 		 * However, we do a folio_wait_writeback() just before this
2027 		 * call and have the folio locked.
2028 		 */
2029 		VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
2030 		if (pte_swp_exclusive(old_pte))
2031 			rmap_flags |= RMAP_EXCLUSIVE;
2032 		/*
2033 		 * We currently only expect small !anon folios, which are either
2034 		 * fully exclusive or fully shared. If we ever get large folios
2035 		 * here, we have to be careful.
2036 		 */
2037 		if (!folio_test_anon(folio)) {
2038 			VM_WARN_ON_ONCE(folio_test_large(folio));
2039 			VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
2040 			folio_add_new_anon_rmap(folio, vma, addr, rmap_flags);
2041 		} else {
2042 			folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
2043 		}
2044 	} else { /* ksm created a completely new copy */
2045 		folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
2046 		folio_add_lru_vma(folio, vma);
2047 	}
2048 	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
2049 	if (pte_swp_soft_dirty(old_pte))
2050 		new_pte = pte_mksoft_dirty(new_pte);
2051 	if (pte_swp_uffd_wp(old_pte))
2052 		new_pte = pte_mkuffd_wp(new_pte);
2053 setpte:
2054 	set_pte_at(vma->vm_mm, addr, pte, new_pte);
2055 	swap_free(entry);
2056 out:
2057 	if (pte)
2058 		pte_unmap_unlock(pte, ptl);
2059 	if (folio != swapcache) {
2060 		folio_unlock(folio);
2061 		folio_put(folio);
2062 	}
2063 	return ret;
2064 }
2065 
2066 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
2067 			unsigned long addr, unsigned long end,
2068 			unsigned int type)
2069 {
2070 	pte_t *pte = NULL;
2071 	struct swap_info_struct *si;
2072 
2073 	si = swap_info[type];
2074 	do {
2075 		struct folio *folio;
2076 		unsigned long offset;
2077 		unsigned char swp_count;
2078 		swp_entry_t entry;
2079 		int ret;
2080 		pte_t ptent;
2081 
2082 		if (!pte++) {
2083 			pte = pte_offset_map(pmd, addr);
2084 			if (!pte)
2085 				break;
2086 		}
2087 
2088 		ptent = ptep_get_lockless(pte);
2089 
2090 		if (!is_swap_pte(ptent))
2091 			continue;
2092 
2093 		entry = pte_to_swp_entry(ptent);
2094 		if (swp_type(entry) != type)
2095 			continue;
2096 
2097 		offset = swp_offset(entry);
2098 		pte_unmap(pte);
2099 		pte = NULL;
2100 
2101 		folio = swap_cache_get_folio(entry, vma, addr);
2102 		if (!folio) {
2103 			struct vm_fault vmf = {
2104 				.vma = vma,
2105 				.address = addr,
2106 				.real_address = addr,
2107 				.pmd = pmd,
2108 			};
2109 
2110 			folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2111 						&vmf);
2112 		}
2113 		if (!folio) {
2114 			swp_count = READ_ONCE(si->swap_map[offset]);
2115 			if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
2116 				continue;
2117 			return -ENOMEM;
2118 		}
2119 
2120 		folio_lock(folio);
2121 		folio_wait_writeback(folio);
2122 		ret = unuse_pte(vma, pmd, addr, entry, folio);
2123 		if (ret < 0) {
2124 			folio_unlock(folio);
2125 			folio_put(folio);
2126 			return ret;
2127 		}
2128 
2129 		folio_free_swap(folio);
2130 		folio_unlock(folio);
2131 		folio_put(folio);
2132 	} while (addr += PAGE_SIZE, addr != end);
2133 
2134 	if (pte)
2135 		pte_unmap(pte);
2136 	return 0;
2137 }
2138 
2139 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2140 				unsigned long addr, unsigned long end,
2141 				unsigned int type)
2142 {
2143 	pmd_t *pmd;
2144 	unsigned long next;
2145 	int ret;
2146 
2147 	pmd = pmd_offset(pud, addr);
2148 	do {
2149 		cond_resched();
2150 		next = pmd_addr_end(addr, end);
2151 		ret = unuse_pte_range(vma, pmd, addr, next, type);
2152 		if (ret)
2153 			return ret;
2154 	} while (pmd++, addr = next, addr != end);
2155 	return 0;
2156 }
2157 
2158 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2159 				unsigned long addr, unsigned long end,
2160 				unsigned int type)
2161 {
2162 	pud_t *pud;
2163 	unsigned long next;
2164 	int ret;
2165 
2166 	pud = pud_offset(p4d, addr);
2167 	do {
2168 		next = pud_addr_end(addr, end);
2169 		if (pud_none_or_clear_bad(pud))
2170 			continue;
2171 		ret = unuse_pmd_range(vma, pud, addr, next, type);
2172 		if (ret)
2173 			return ret;
2174 	} while (pud++, addr = next, addr != end);
2175 	return 0;
2176 }
2177 
2178 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2179 				unsigned long addr, unsigned long end,
2180 				unsigned int type)
2181 {
2182 	p4d_t *p4d;
2183 	unsigned long next;
2184 	int ret;
2185 
2186 	p4d = p4d_offset(pgd, addr);
2187 	do {
2188 		next = p4d_addr_end(addr, end);
2189 		if (p4d_none_or_clear_bad(p4d))
2190 			continue;
2191 		ret = unuse_pud_range(vma, p4d, addr, next, type);
2192 		if (ret)
2193 			return ret;
2194 	} while (p4d++, addr = next, addr != end);
2195 	return 0;
2196 }
2197 
2198 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
2199 {
2200 	pgd_t *pgd;
2201 	unsigned long addr, end, next;
2202 	int ret;
2203 
2204 	addr = vma->vm_start;
2205 	end = vma->vm_end;
2206 
2207 	pgd = pgd_offset(vma->vm_mm, addr);
2208 	do {
2209 		next = pgd_addr_end(addr, end);
2210 		if (pgd_none_or_clear_bad(pgd))
2211 			continue;
2212 		ret = unuse_p4d_range(vma, pgd, addr, next, type);
2213 		if (ret)
2214 			return ret;
2215 	} while (pgd++, addr = next, addr != end);
2216 	return 0;
2217 }
2218 
2219 static int unuse_mm(struct mm_struct *mm, unsigned int type)
2220 {
2221 	struct vm_area_struct *vma;
2222 	int ret = 0;
2223 	VMA_ITERATOR(vmi, mm, 0);
2224 
2225 	mmap_read_lock(mm);
2226 	for_each_vma(vmi, vma) {
2227 		if (vma->anon_vma && !is_vm_hugetlb_page(vma)) {
2228 			ret = unuse_vma(vma, type);
2229 			if (ret)
2230 				break;
2231 		}
2232 
2233 		cond_resched();
2234 	}
2235 	mmap_read_unlock(mm);
2236 	return ret;
2237 }
2238 
2239 /*
2240  * Scan swap_map from current position to next entry still in use.
2241  * Return 0 if there are no inuse entries after prev till end of
2242  * the map.
2243  */
2244 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2245 					unsigned int prev)
2246 {
2247 	unsigned int i;
2248 	unsigned char count;
2249 
2250 	/*
2251 	 * No need for swap_lock here: we're just looking
2252 	 * for whether an entry is in use, not modifying it; false
2253 	 * hits are okay, and sys_swapoff() has already prevented new
2254 	 * allocations from this area (while holding swap_lock).
2255 	 */
2256 	for (i = prev + 1; i < si->max; i++) {
2257 		count = READ_ONCE(si->swap_map[i]);
2258 		if (count && swap_count(count) != SWAP_MAP_BAD)
2259 			break;
2260 		if ((i % LATENCY_LIMIT) == 0)
2261 			cond_resched();
2262 	}
2263 
2264 	if (i == si->max)
2265 		i = 0;
2266 
2267 	return i;
2268 }
2269 
2270 static int try_to_unuse(unsigned int type)
2271 {
2272 	struct mm_struct *prev_mm;
2273 	struct mm_struct *mm;
2274 	struct list_head *p;
2275 	int retval = 0;
2276 	struct swap_info_struct *si = swap_info[type];
2277 	struct folio *folio;
2278 	swp_entry_t entry;
2279 	unsigned int i;
2280 
2281 	if (!swap_usage_in_pages(si))
2282 		goto success;
2283 
2284 retry:
2285 	retval = shmem_unuse(type);
2286 	if (retval)
2287 		return retval;
2288 
2289 	prev_mm = &init_mm;
2290 	mmget(prev_mm);
2291 
2292 	spin_lock(&mmlist_lock);
2293 	p = &init_mm.mmlist;
2294 	while (swap_usage_in_pages(si) &&
2295 	       !signal_pending(current) &&
2296 	       (p = p->next) != &init_mm.mmlist) {
2297 
2298 		mm = list_entry(p, struct mm_struct, mmlist);
2299 		if (!mmget_not_zero(mm))
2300 			continue;
2301 		spin_unlock(&mmlist_lock);
2302 		mmput(prev_mm);
2303 		prev_mm = mm;
2304 		retval = unuse_mm(mm, type);
2305 		if (retval) {
2306 			mmput(prev_mm);
2307 			return retval;
2308 		}
2309 
2310 		/*
2311 		 * Make sure that we aren't completely killing
2312 		 * interactive performance.
2313 		 */
2314 		cond_resched();
2315 		spin_lock(&mmlist_lock);
2316 	}
2317 	spin_unlock(&mmlist_lock);
2318 
2319 	mmput(prev_mm);
2320 
2321 	i = 0;
2322 	while (swap_usage_in_pages(si) &&
2323 	       !signal_pending(current) &&
2324 	       (i = find_next_to_unuse(si, i)) != 0) {
2325 
2326 		entry = swp_entry(type, i);
2327 		folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry));
2328 		if (IS_ERR(folio))
2329 			continue;
2330 
2331 		/*
2332 		 * It is conceivable that a racing task removed this folio from
2333 		 * swap cache just before we acquired the page lock. The folio
2334 		 * might even be back in swap cache on another swap area. But
2335 		 * that is okay, folio_free_swap() only removes stale folios.
2336 		 */
2337 		folio_lock(folio);
2338 		folio_wait_writeback(folio);
2339 		folio_free_swap(folio);
2340 		folio_unlock(folio);
2341 		folio_put(folio);
2342 	}
2343 
2344 	/*
2345 	 * Lets check again to see if there are still swap entries in the map.
2346 	 * If yes, we would need to do retry the unuse logic again.
2347 	 * Under global memory pressure, swap entries can be reinserted back
2348 	 * into process space after the mmlist loop above passes over them.
2349 	 *
2350 	 * Limit the number of retries? No: when mmget_not_zero()
2351 	 * above fails, that mm is likely to be freeing swap from
2352 	 * exit_mmap(), which proceeds at its own independent pace;
2353 	 * and even shmem_writepage() could have been preempted after
2354 	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2355 	 * and robust (though cpu-intensive) just to keep retrying.
2356 	 */
2357 	if (swap_usage_in_pages(si)) {
2358 		if (!signal_pending(current))
2359 			goto retry;
2360 		return -EINTR;
2361 	}
2362 
2363 success:
2364 	/*
2365 	 * Make sure that further cleanups after try_to_unuse() returns happen
2366 	 * after swap_range_free() reduces si->inuse_pages to 0.
2367 	 */
2368 	smp_mb();
2369 	return 0;
2370 }
2371 
2372 /*
2373  * After a successful try_to_unuse, if no swap is now in use, we know
2374  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2375  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2376  * added to the mmlist just after page_duplicate - before would be racy.
2377  */
2378 static void drain_mmlist(void)
2379 {
2380 	struct list_head *p, *next;
2381 	unsigned int type;
2382 
2383 	for (type = 0; type < nr_swapfiles; type++)
2384 		if (swap_usage_in_pages(swap_info[type]))
2385 			return;
2386 	spin_lock(&mmlist_lock);
2387 	list_for_each_safe(p, next, &init_mm.mmlist)
2388 		list_del_init(p);
2389 	spin_unlock(&mmlist_lock);
2390 }
2391 
2392 /*
2393  * Free all of a swapdev's extent information
2394  */
2395 static void destroy_swap_extents(struct swap_info_struct *sis)
2396 {
2397 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2398 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2399 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2400 
2401 		rb_erase(rb, &sis->swap_extent_root);
2402 		kfree(se);
2403 	}
2404 
2405 	if (sis->flags & SWP_ACTIVATED) {
2406 		struct file *swap_file = sis->swap_file;
2407 		struct address_space *mapping = swap_file->f_mapping;
2408 
2409 		sis->flags &= ~SWP_ACTIVATED;
2410 		if (mapping->a_ops->swap_deactivate)
2411 			mapping->a_ops->swap_deactivate(swap_file);
2412 	}
2413 }
2414 
2415 /*
2416  * Add a block range (and the corresponding page range) into this swapdev's
2417  * extent tree.
2418  *
2419  * This function rather assumes that it is called in ascending page order.
2420  */
2421 int
2422 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2423 		unsigned long nr_pages, sector_t start_block)
2424 {
2425 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2426 	struct swap_extent *se;
2427 	struct swap_extent *new_se;
2428 
2429 	/*
2430 	 * place the new node at the right most since the
2431 	 * function is called in ascending page order.
2432 	 */
2433 	while (*link) {
2434 		parent = *link;
2435 		link = &parent->rb_right;
2436 	}
2437 
2438 	if (parent) {
2439 		se = rb_entry(parent, struct swap_extent, rb_node);
2440 		BUG_ON(se->start_page + se->nr_pages != start_page);
2441 		if (se->start_block + se->nr_pages == start_block) {
2442 			/* Merge it */
2443 			se->nr_pages += nr_pages;
2444 			return 0;
2445 		}
2446 	}
2447 
2448 	/* No merge, insert a new extent. */
2449 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2450 	if (new_se == NULL)
2451 		return -ENOMEM;
2452 	new_se->start_page = start_page;
2453 	new_se->nr_pages = nr_pages;
2454 	new_se->start_block = start_block;
2455 
2456 	rb_link_node(&new_se->rb_node, parent, link);
2457 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2458 	return 1;
2459 }
2460 EXPORT_SYMBOL_GPL(add_swap_extent);
2461 
2462 /*
2463  * A `swap extent' is a simple thing which maps a contiguous range of pages
2464  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2465  * built at swapon time and is then used at swap_writepage/swap_read_folio
2466  * time for locating where on disk a page belongs.
2467  *
2468  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2469  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2470  * swap files identically.
2471  *
2472  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2473  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2474  * swapfiles are handled *identically* after swapon time.
2475  *
2476  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2477  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2478  * blocks are found which do not fall within the PAGE_SIZE alignment
2479  * requirements, they are simply tossed out - we will never use those blocks
2480  * for swapping.
2481  *
2482  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2483  * prevents users from writing to the swap device, which will corrupt memory.
2484  *
2485  * The amount of disk space which a single swap extent represents varies.
2486  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2487  * extents in the rbtree. - akpm.
2488  */
2489 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2490 {
2491 	struct file *swap_file = sis->swap_file;
2492 	struct address_space *mapping = swap_file->f_mapping;
2493 	struct inode *inode = mapping->host;
2494 	int ret;
2495 
2496 	if (S_ISBLK(inode->i_mode)) {
2497 		ret = add_swap_extent(sis, 0, sis->max, 0);
2498 		*span = sis->pages;
2499 		return ret;
2500 	}
2501 
2502 	if (mapping->a_ops->swap_activate) {
2503 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2504 		if (ret < 0)
2505 			return ret;
2506 		sis->flags |= SWP_ACTIVATED;
2507 		if ((sis->flags & SWP_FS_OPS) &&
2508 		    sio_pool_init() != 0) {
2509 			destroy_swap_extents(sis);
2510 			return -ENOMEM;
2511 		}
2512 		return ret;
2513 	}
2514 
2515 	return generic_swapfile_activate(sis, swap_file, span);
2516 }
2517 
2518 static int swap_node(struct swap_info_struct *si)
2519 {
2520 	struct block_device *bdev;
2521 
2522 	if (si->bdev)
2523 		bdev = si->bdev;
2524 	else
2525 		bdev = si->swap_file->f_inode->i_sb->s_bdev;
2526 
2527 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2528 }
2529 
2530 static void setup_swap_info(struct swap_info_struct *si, int prio,
2531 			    unsigned char *swap_map,
2532 			    struct swap_cluster_info *cluster_info,
2533 			    unsigned long *zeromap)
2534 {
2535 	int i;
2536 
2537 	if (prio >= 0)
2538 		si->prio = prio;
2539 	else
2540 		si->prio = --least_priority;
2541 	/*
2542 	 * the plist prio is negated because plist ordering is
2543 	 * low-to-high, while swap ordering is high-to-low
2544 	 */
2545 	si->list.prio = -si->prio;
2546 	for_each_node(i) {
2547 		if (si->prio >= 0)
2548 			si->avail_lists[i].prio = -si->prio;
2549 		else {
2550 			if (swap_node(si) == i)
2551 				si->avail_lists[i].prio = 1;
2552 			else
2553 				si->avail_lists[i].prio = -si->prio;
2554 		}
2555 	}
2556 	si->swap_map = swap_map;
2557 	si->cluster_info = cluster_info;
2558 	si->zeromap = zeromap;
2559 }
2560 
2561 static void _enable_swap_info(struct swap_info_struct *si)
2562 {
2563 	atomic_long_add(si->pages, &nr_swap_pages);
2564 	total_swap_pages += si->pages;
2565 
2566 	assert_spin_locked(&swap_lock);
2567 	/*
2568 	 * both lists are plists, and thus priority ordered.
2569 	 * swap_active_head needs to be priority ordered for swapoff(),
2570 	 * which on removal of any swap_info_struct with an auto-assigned
2571 	 * (i.e. negative) priority increments the auto-assigned priority
2572 	 * of any lower-priority swap_info_structs.
2573 	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2574 	 * which allocates swap pages from the highest available priority
2575 	 * swap_info_struct.
2576 	 */
2577 	plist_add(&si->list, &swap_active_head);
2578 
2579 	/* Add back to available list */
2580 	add_to_avail_list(si, true);
2581 }
2582 
2583 static void enable_swap_info(struct swap_info_struct *si, int prio,
2584 				unsigned char *swap_map,
2585 				struct swap_cluster_info *cluster_info,
2586 				unsigned long *zeromap)
2587 {
2588 	spin_lock(&swap_lock);
2589 	spin_lock(&si->lock);
2590 	setup_swap_info(si, prio, swap_map, cluster_info, zeromap);
2591 	spin_unlock(&si->lock);
2592 	spin_unlock(&swap_lock);
2593 	/*
2594 	 * Finished initializing swap device, now it's safe to reference it.
2595 	 */
2596 	percpu_ref_resurrect(&si->users);
2597 	spin_lock(&swap_lock);
2598 	spin_lock(&si->lock);
2599 	_enable_swap_info(si);
2600 	spin_unlock(&si->lock);
2601 	spin_unlock(&swap_lock);
2602 }
2603 
2604 static void reinsert_swap_info(struct swap_info_struct *si)
2605 {
2606 	spin_lock(&swap_lock);
2607 	spin_lock(&si->lock);
2608 	setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap);
2609 	_enable_swap_info(si);
2610 	spin_unlock(&si->lock);
2611 	spin_unlock(&swap_lock);
2612 }
2613 
2614 static bool __has_usable_swap(void)
2615 {
2616 	return !plist_head_empty(&swap_active_head);
2617 }
2618 
2619 bool has_usable_swap(void)
2620 {
2621 	bool ret;
2622 
2623 	spin_lock(&swap_lock);
2624 	ret = __has_usable_swap();
2625 	spin_unlock(&swap_lock);
2626 	return ret;
2627 }
2628 
2629 /*
2630  * Called after clearing SWP_WRITEOK, ensures cluster_alloc_range
2631  * see the updated flags, so there will be no more allocations.
2632  */
2633 static void wait_for_allocation(struct swap_info_struct *si)
2634 {
2635 	unsigned long offset;
2636 	unsigned long end = ALIGN(si->max, SWAPFILE_CLUSTER);
2637 	struct swap_cluster_info *ci;
2638 
2639 	BUG_ON(si->flags & SWP_WRITEOK);
2640 
2641 	for (offset = 0; offset < end; offset += SWAPFILE_CLUSTER) {
2642 		ci = lock_cluster(si, offset);
2643 		unlock_cluster(ci);
2644 		offset += SWAPFILE_CLUSTER;
2645 	}
2646 }
2647 
2648 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2649 {
2650 	struct swap_info_struct *p = NULL;
2651 	unsigned char *swap_map;
2652 	unsigned long *zeromap;
2653 	struct swap_cluster_info *cluster_info;
2654 	struct file *swap_file, *victim;
2655 	struct address_space *mapping;
2656 	struct inode *inode;
2657 	struct filename *pathname;
2658 	int err, found = 0;
2659 
2660 	if (!capable(CAP_SYS_ADMIN))
2661 		return -EPERM;
2662 
2663 	BUG_ON(!current->mm);
2664 
2665 	pathname = getname(specialfile);
2666 	if (IS_ERR(pathname))
2667 		return PTR_ERR(pathname);
2668 
2669 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2670 	err = PTR_ERR(victim);
2671 	if (IS_ERR(victim))
2672 		goto out;
2673 
2674 	mapping = victim->f_mapping;
2675 	spin_lock(&swap_lock);
2676 	plist_for_each_entry(p, &swap_active_head, list) {
2677 		if (p->flags & SWP_WRITEOK) {
2678 			if (p->swap_file->f_mapping == mapping) {
2679 				found = 1;
2680 				break;
2681 			}
2682 		}
2683 	}
2684 	if (!found) {
2685 		err = -EINVAL;
2686 		spin_unlock(&swap_lock);
2687 		goto out_dput;
2688 	}
2689 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2690 		vm_unacct_memory(p->pages);
2691 	else {
2692 		err = -ENOMEM;
2693 		spin_unlock(&swap_lock);
2694 		goto out_dput;
2695 	}
2696 	spin_lock(&p->lock);
2697 	del_from_avail_list(p, true);
2698 	if (p->prio < 0) {
2699 		struct swap_info_struct *si = p;
2700 		int nid;
2701 
2702 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2703 			si->prio++;
2704 			si->list.prio--;
2705 			for_each_node(nid) {
2706 				if (si->avail_lists[nid].prio != 1)
2707 					si->avail_lists[nid].prio--;
2708 			}
2709 		}
2710 		least_priority++;
2711 	}
2712 	plist_del(&p->list, &swap_active_head);
2713 	atomic_long_sub(p->pages, &nr_swap_pages);
2714 	total_swap_pages -= p->pages;
2715 	spin_unlock(&p->lock);
2716 	spin_unlock(&swap_lock);
2717 
2718 	wait_for_allocation(p);
2719 
2720 	disable_swap_slots_cache_lock();
2721 
2722 	set_current_oom_origin();
2723 	err = try_to_unuse(p->type);
2724 	clear_current_oom_origin();
2725 
2726 	if (err) {
2727 		/* re-insert swap space back into swap_list */
2728 		reinsert_swap_info(p);
2729 		reenable_swap_slots_cache_unlock();
2730 		goto out_dput;
2731 	}
2732 
2733 	reenable_swap_slots_cache_unlock();
2734 
2735 	/*
2736 	 * Wait for swap operations protected by get/put_swap_device()
2737 	 * to complete.  Because of synchronize_rcu() here, all swap
2738 	 * operations protected by RCU reader side lock (including any
2739 	 * spinlock) will be waited too.  This makes it easy to
2740 	 * prevent folio_test_swapcache() and the following swap cache
2741 	 * operations from racing with swapoff.
2742 	 */
2743 	percpu_ref_kill(&p->users);
2744 	synchronize_rcu();
2745 	wait_for_completion(&p->comp);
2746 
2747 	flush_work(&p->discard_work);
2748 	flush_work(&p->reclaim_work);
2749 
2750 	destroy_swap_extents(p);
2751 	if (p->flags & SWP_CONTINUED)
2752 		free_swap_count_continuations(p);
2753 
2754 	if (!p->bdev || !bdev_nonrot(p->bdev))
2755 		atomic_dec(&nr_rotate_swap);
2756 
2757 	mutex_lock(&swapon_mutex);
2758 	spin_lock(&swap_lock);
2759 	spin_lock(&p->lock);
2760 	drain_mmlist();
2761 
2762 	swap_file = p->swap_file;
2763 	p->swap_file = NULL;
2764 	p->max = 0;
2765 	swap_map = p->swap_map;
2766 	p->swap_map = NULL;
2767 	zeromap = p->zeromap;
2768 	p->zeromap = NULL;
2769 	cluster_info = p->cluster_info;
2770 	p->cluster_info = NULL;
2771 	spin_unlock(&p->lock);
2772 	spin_unlock(&swap_lock);
2773 	arch_swap_invalidate_area(p->type);
2774 	zswap_swapoff(p->type);
2775 	mutex_unlock(&swapon_mutex);
2776 	free_percpu(p->percpu_cluster);
2777 	p->percpu_cluster = NULL;
2778 	kfree(p->global_cluster);
2779 	p->global_cluster = NULL;
2780 	vfree(swap_map);
2781 	kvfree(zeromap);
2782 	kvfree(cluster_info);
2783 	/* Destroy swap account information */
2784 	swap_cgroup_swapoff(p->type);
2785 	exit_swap_address_space(p->type);
2786 
2787 	inode = mapping->host;
2788 
2789 	inode_lock(inode);
2790 	inode->i_flags &= ~S_SWAPFILE;
2791 	inode_unlock(inode);
2792 	filp_close(swap_file, NULL);
2793 
2794 	/*
2795 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2796 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2797 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2798 	 */
2799 	spin_lock(&swap_lock);
2800 	p->flags = 0;
2801 	spin_unlock(&swap_lock);
2802 
2803 	err = 0;
2804 	atomic_inc(&proc_poll_event);
2805 	wake_up_interruptible(&proc_poll_wait);
2806 
2807 out_dput:
2808 	filp_close(victim, NULL);
2809 out:
2810 	putname(pathname);
2811 	return err;
2812 }
2813 
2814 #ifdef CONFIG_PROC_FS
2815 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2816 {
2817 	struct seq_file *seq = file->private_data;
2818 
2819 	poll_wait(file, &proc_poll_wait, wait);
2820 
2821 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2822 		seq->poll_event = atomic_read(&proc_poll_event);
2823 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2824 	}
2825 
2826 	return EPOLLIN | EPOLLRDNORM;
2827 }
2828 
2829 /* iterator */
2830 static void *swap_start(struct seq_file *swap, loff_t *pos)
2831 {
2832 	struct swap_info_struct *si;
2833 	int type;
2834 	loff_t l = *pos;
2835 
2836 	mutex_lock(&swapon_mutex);
2837 
2838 	if (!l)
2839 		return SEQ_START_TOKEN;
2840 
2841 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2842 		if (!(si->flags & SWP_USED) || !si->swap_map)
2843 			continue;
2844 		if (!--l)
2845 			return si;
2846 	}
2847 
2848 	return NULL;
2849 }
2850 
2851 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2852 {
2853 	struct swap_info_struct *si = v;
2854 	int type;
2855 
2856 	if (v == SEQ_START_TOKEN)
2857 		type = 0;
2858 	else
2859 		type = si->type + 1;
2860 
2861 	++(*pos);
2862 	for (; (si = swap_type_to_swap_info(type)); type++) {
2863 		if (!(si->flags & SWP_USED) || !si->swap_map)
2864 			continue;
2865 		return si;
2866 	}
2867 
2868 	return NULL;
2869 }
2870 
2871 static void swap_stop(struct seq_file *swap, void *v)
2872 {
2873 	mutex_unlock(&swapon_mutex);
2874 }
2875 
2876 static int swap_show(struct seq_file *swap, void *v)
2877 {
2878 	struct swap_info_struct *si = v;
2879 	struct file *file;
2880 	int len;
2881 	unsigned long bytes, inuse;
2882 
2883 	if (si == SEQ_START_TOKEN) {
2884 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2885 		return 0;
2886 	}
2887 
2888 	bytes = K(si->pages);
2889 	inuse = K(swap_usage_in_pages(si));
2890 
2891 	file = si->swap_file;
2892 	len = seq_file_path(swap, file, " \t\n\\");
2893 	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2894 			len < 40 ? 40 - len : 1, " ",
2895 			S_ISBLK(file_inode(file)->i_mode) ?
2896 				"partition" : "file\t",
2897 			bytes, bytes < 10000000 ? "\t" : "",
2898 			inuse, inuse < 10000000 ? "\t" : "",
2899 			si->prio);
2900 	return 0;
2901 }
2902 
2903 static const struct seq_operations swaps_op = {
2904 	.start =	swap_start,
2905 	.next =		swap_next,
2906 	.stop =		swap_stop,
2907 	.show =		swap_show
2908 };
2909 
2910 static int swaps_open(struct inode *inode, struct file *file)
2911 {
2912 	struct seq_file *seq;
2913 	int ret;
2914 
2915 	ret = seq_open(file, &swaps_op);
2916 	if (ret)
2917 		return ret;
2918 
2919 	seq = file->private_data;
2920 	seq->poll_event = atomic_read(&proc_poll_event);
2921 	return 0;
2922 }
2923 
2924 static const struct proc_ops swaps_proc_ops = {
2925 	.proc_flags	= PROC_ENTRY_PERMANENT,
2926 	.proc_open	= swaps_open,
2927 	.proc_read	= seq_read,
2928 	.proc_lseek	= seq_lseek,
2929 	.proc_release	= seq_release,
2930 	.proc_poll	= swaps_poll,
2931 };
2932 
2933 static int __init procswaps_init(void)
2934 {
2935 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2936 	return 0;
2937 }
2938 __initcall(procswaps_init);
2939 #endif /* CONFIG_PROC_FS */
2940 
2941 #ifdef MAX_SWAPFILES_CHECK
2942 static int __init max_swapfiles_check(void)
2943 {
2944 	MAX_SWAPFILES_CHECK();
2945 	return 0;
2946 }
2947 late_initcall(max_swapfiles_check);
2948 #endif
2949 
2950 static struct swap_info_struct *alloc_swap_info(void)
2951 {
2952 	struct swap_info_struct *p;
2953 	struct swap_info_struct *defer = NULL;
2954 	unsigned int type;
2955 	int i;
2956 
2957 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2958 	if (!p)
2959 		return ERR_PTR(-ENOMEM);
2960 
2961 	if (percpu_ref_init(&p->users, swap_users_ref_free,
2962 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2963 		kvfree(p);
2964 		return ERR_PTR(-ENOMEM);
2965 	}
2966 
2967 	spin_lock(&swap_lock);
2968 	for (type = 0; type < nr_swapfiles; type++) {
2969 		if (!(swap_info[type]->flags & SWP_USED))
2970 			break;
2971 	}
2972 	if (type >= MAX_SWAPFILES) {
2973 		spin_unlock(&swap_lock);
2974 		percpu_ref_exit(&p->users);
2975 		kvfree(p);
2976 		return ERR_PTR(-EPERM);
2977 	}
2978 	if (type >= nr_swapfiles) {
2979 		p->type = type;
2980 		/*
2981 		 * Publish the swap_info_struct after initializing it.
2982 		 * Note that kvzalloc() above zeroes all its fields.
2983 		 */
2984 		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2985 		nr_swapfiles++;
2986 	} else {
2987 		defer = p;
2988 		p = swap_info[type];
2989 		/*
2990 		 * Do not memset this entry: a racing procfs swap_next()
2991 		 * would be relying on p->type to remain valid.
2992 		 */
2993 	}
2994 	p->swap_extent_root = RB_ROOT;
2995 	plist_node_init(&p->list, 0);
2996 	for_each_node(i)
2997 		plist_node_init(&p->avail_lists[i], 0);
2998 	p->flags = SWP_USED;
2999 	spin_unlock(&swap_lock);
3000 	if (defer) {
3001 		percpu_ref_exit(&defer->users);
3002 		kvfree(defer);
3003 	}
3004 	spin_lock_init(&p->lock);
3005 	spin_lock_init(&p->cont_lock);
3006 	atomic_long_set(&p->inuse_pages, SWAP_USAGE_OFFLIST_BIT);
3007 	init_completion(&p->comp);
3008 
3009 	return p;
3010 }
3011 
3012 static int claim_swapfile(struct swap_info_struct *si, struct inode *inode)
3013 {
3014 	if (S_ISBLK(inode->i_mode)) {
3015 		si->bdev = I_BDEV(inode);
3016 		/*
3017 		 * Zoned block devices contain zones that have a sequential
3018 		 * write only restriction.  Hence zoned block devices are not
3019 		 * suitable for swapping.  Disallow them here.
3020 		 */
3021 		if (bdev_is_zoned(si->bdev))
3022 			return -EINVAL;
3023 		si->flags |= SWP_BLKDEV;
3024 	} else if (S_ISREG(inode->i_mode)) {
3025 		si->bdev = inode->i_sb->s_bdev;
3026 	}
3027 
3028 	return 0;
3029 }
3030 
3031 
3032 /*
3033  * Find out how many pages are allowed for a single swap device. There
3034  * are two limiting factors:
3035  * 1) the number of bits for the swap offset in the swp_entry_t type, and
3036  * 2) the number of bits in the swap pte, as defined by the different
3037  * architectures.
3038  *
3039  * In order to find the largest possible bit mask, a swap entry with
3040  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
3041  * decoded to a swp_entry_t again, and finally the swap offset is
3042  * extracted.
3043  *
3044  * This will mask all the bits from the initial ~0UL mask that can't
3045  * be encoded in either the swp_entry_t or the architecture definition
3046  * of a swap pte.
3047  */
3048 unsigned long generic_max_swapfile_size(void)
3049 {
3050 	return swp_offset(pte_to_swp_entry(
3051 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
3052 }
3053 
3054 /* Can be overridden by an architecture for additional checks. */
3055 __weak unsigned long arch_max_swapfile_size(void)
3056 {
3057 	return generic_max_swapfile_size();
3058 }
3059 
3060 static unsigned long read_swap_header(struct swap_info_struct *si,
3061 					union swap_header *swap_header,
3062 					struct inode *inode)
3063 {
3064 	int i;
3065 	unsigned long maxpages;
3066 	unsigned long swapfilepages;
3067 	unsigned long last_page;
3068 
3069 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
3070 		pr_err("Unable to find swap-space signature\n");
3071 		return 0;
3072 	}
3073 
3074 	/* swap partition endianness hack... */
3075 	if (swab32(swap_header->info.version) == 1) {
3076 		swab32s(&swap_header->info.version);
3077 		swab32s(&swap_header->info.last_page);
3078 		swab32s(&swap_header->info.nr_badpages);
3079 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3080 			return 0;
3081 		for (i = 0; i < swap_header->info.nr_badpages; i++)
3082 			swab32s(&swap_header->info.badpages[i]);
3083 	}
3084 	/* Check the swap header's sub-version */
3085 	if (swap_header->info.version != 1) {
3086 		pr_warn("Unable to handle swap header version %d\n",
3087 			swap_header->info.version);
3088 		return 0;
3089 	}
3090 
3091 	maxpages = swapfile_maximum_size;
3092 	last_page = swap_header->info.last_page;
3093 	if (!last_page) {
3094 		pr_warn("Empty swap-file\n");
3095 		return 0;
3096 	}
3097 	if (last_page > maxpages) {
3098 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3099 			K(maxpages), K(last_page));
3100 	}
3101 	if (maxpages > last_page) {
3102 		maxpages = last_page + 1;
3103 		/* p->max is an unsigned int: don't overflow it */
3104 		if ((unsigned int)maxpages == 0)
3105 			maxpages = UINT_MAX;
3106 	}
3107 
3108 	if (!maxpages)
3109 		return 0;
3110 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3111 	if (swapfilepages && maxpages > swapfilepages) {
3112 		pr_warn("Swap area shorter than signature indicates\n");
3113 		return 0;
3114 	}
3115 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3116 		return 0;
3117 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3118 		return 0;
3119 
3120 	return maxpages;
3121 }
3122 
3123 #define SWAP_CLUSTER_INFO_COLS						\
3124 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3125 #define SWAP_CLUSTER_SPACE_COLS						\
3126 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3127 #define SWAP_CLUSTER_COLS						\
3128 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3129 
3130 static int setup_swap_map_and_extents(struct swap_info_struct *si,
3131 					union swap_header *swap_header,
3132 					unsigned char *swap_map,
3133 					unsigned long maxpages,
3134 					sector_t *span)
3135 {
3136 	unsigned int nr_good_pages;
3137 	unsigned long i;
3138 	int nr_extents;
3139 
3140 	nr_good_pages = maxpages - 1;	/* omit header page */
3141 
3142 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3143 		unsigned int page_nr = swap_header->info.badpages[i];
3144 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3145 			return -EINVAL;
3146 		if (page_nr < maxpages) {
3147 			swap_map[page_nr] = SWAP_MAP_BAD;
3148 			nr_good_pages--;
3149 		}
3150 	}
3151 
3152 	if (nr_good_pages) {
3153 		swap_map[0] = SWAP_MAP_BAD;
3154 		si->max = maxpages;
3155 		si->pages = nr_good_pages;
3156 		nr_extents = setup_swap_extents(si, span);
3157 		if (nr_extents < 0)
3158 			return nr_extents;
3159 		nr_good_pages = si->pages;
3160 	}
3161 	if (!nr_good_pages) {
3162 		pr_warn("Empty swap-file\n");
3163 		return -EINVAL;
3164 	}
3165 
3166 	return nr_extents;
3167 }
3168 
3169 static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si,
3170 						union swap_header *swap_header,
3171 						unsigned long maxpages)
3172 {
3173 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3174 	struct swap_cluster_info *cluster_info;
3175 	unsigned long i, j, k, idx;
3176 	int cpu, err = -ENOMEM;
3177 
3178 	cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL);
3179 	if (!cluster_info)
3180 		goto err;
3181 
3182 	for (i = 0; i < nr_clusters; i++)
3183 		spin_lock_init(&cluster_info[i].lock);
3184 
3185 	if (si->flags & SWP_SOLIDSTATE) {
3186 		si->percpu_cluster = alloc_percpu(struct percpu_cluster);
3187 		if (!si->percpu_cluster)
3188 			goto err_free;
3189 
3190 		for_each_possible_cpu(cpu) {
3191 			struct percpu_cluster *cluster;
3192 
3193 			cluster = per_cpu_ptr(si->percpu_cluster, cpu);
3194 			for (i = 0; i < SWAP_NR_ORDERS; i++)
3195 				cluster->next[i] = SWAP_ENTRY_INVALID;
3196 			local_lock_init(&cluster->lock);
3197 		}
3198 	} else {
3199 		si->global_cluster = kmalloc(sizeof(*si->global_cluster),
3200 				     GFP_KERNEL);
3201 		if (!si->global_cluster)
3202 			goto err_free;
3203 		for (i = 0; i < SWAP_NR_ORDERS; i++)
3204 			si->global_cluster->next[i] = SWAP_ENTRY_INVALID;
3205 		spin_lock_init(&si->global_cluster_lock);
3206 	}
3207 
3208 	/*
3209 	 * Mark unusable pages as unavailable. The clusters aren't
3210 	 * marked free yet, so no list operations are involved yet.
3211 	 *
3212 	 * See setup_swap_map_and_extents(): header page, bad pages,
3213 	 * and the EOF part of the last cluster.
3214 	 */
3215 	inc_cluster_info_page(si, cluster_info, 0);
3216 	for (i = 0; i < swap_header->info.nr_badpages; i++)
3217 		inc_cluster_info_page(si, cluster_info,
3218 				      swap_header->info.badpages[i]);
3219 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3220 		inc_cluster_info_page(si, cluster_info, i);
3221 
3222 	INIT_LIST_HEAD(&si->free_clusters);
3223 	INIT_LIST_HEAD(&si->full_clusters);
3224 	INIT_LIST_HEAD(&si->discard_clusters);
3225 
3226 	for (i = 0; i < SWAP_NR_ORDERS; i++) {
3227 		INIT_LIST_HEAD(&si->nonfull_clusters[i]);
3228 		INIT_LIST_HEAD(&si->frag_clusters[i]);
3229 		atomic_long_set(&si->frag_cluster_nr[i], 0);
3230 	}
3231 
3232 	/*
3233 	 * Reduce false cache line sharing between cluster_info and
3234 	 * sharing same address space.
3235 	 */
3236 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3237 		j = k % SWAP_CLUSTER_COLS;
3238 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3239 			struct swap_cluster_info *ci;
3240 			idx = i * SWAP_CLUSTER_COLS + j;
3241 			ci = cluster_info + idx;
3242 			if (idx >= nr_clusters)
3243 				continue;
3244 			if (ci->count) {
3245 				ci->flags = CLUSTER_FLAG_NONFULL;
3246 				list_add_tail(&ci->list, &si->nonfull_clusters[0]);
3247 				continue;
3248 			}
3249 			ci->flags = CLUSTER_FLAG_FREE;
3250 			list_add_tail(&ci->list, &si->free_clusters);
3251 		}
3252 	}
3253 
3254 	return cluster_info;
3255 
3256 err_free:
3257 	kvfree(cluster_info);
3258 err:
3259 	return ERR_PTR(err);
3260 }
3261 
3262 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3263 {
3264 	struct swap_info_struct *si;
3265 	struct filename *name;
3266 	struct file *swap_file = NULL;
3267 	struct address_space *mapping;
3268 	struct dentry *dentry;
3269 	int prio;
3270 	int error;
3271 	union swap_header *swap_header;
3272 	int nr_extents;
3273 	sector_t span;
3274 	unsigned long maxpages;
3275 	unsigned char *swap_map = NULL;
3276 	unsigned long *zeromap = NULL;
3277 	struct swap_cluster_info *cluster_info = NULL;
3278 	struct folio *folio = NULL;
3279 	struct inode *inode = NULL;
3280 	bool inced_nr_rotate_swap = false;
3281 
3282 	if (swap_flags & ~SWAP_FLAGS_VALID)
3283 		return -EINVAL;
3284 
3285 	if (!capable(CAP_SYS_ADMIN))
3286 		return -EPERM;
3287 
3288 	if (!swap_avail_heads)
3289 		return -ENOMEM;
3290 
3291 	si = alloc_swap_info();
3292 	if (IS_ERR(si))
3293 		return PTR_ERR(si);
3294 
3295 	INIT_WORK(&si->discard_work, swap_discard_work);
3296 	INIT_WORK(&si->reclaim_work, swap_reclaim_work);
3297 
3298 	name = getname(specialfile);
3299 	if (IS_ERR(name)) {
3300 		error = PTR_ERR(name);
3301 		name = NULL;
3302 		goto bad_swap;
3303 	}
3304 	swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
3305 	if (IS_ERR(swap_file)) {
3306 		error = PTR_ERR(swap_file);
3307 		swap_file = NULL;
3308 		goto bad_swap;
3309 	}
3310 
3311 	si->swap_file = swap_file;
3312 	mapping = swap_file->f_mapping;
3313 	dentry = swap_file->f_path.dentry;
3314 	inode = mapping->host;
3315 
3316 	error = claim_swapfile(si, inode);
3317 	if (unlikely(error))
3318 		goto bad_swap;
3319 
3320 	inode_lock(inode);
3321 	if (d_unlinked(dentry) || cant_mount(dentry)) {
3322 		error = -ENOENT;
3323 		goto bad_swap_unlock_inode;
3324 	}
3325 	if (IS_SWAPFILE(inode)) {
3326 		error = -EBUSY;
3327 		goto bad_swap_unlock_inode;
3328 	}
3329 
3330 	/*
3331 	 * Read the swap header.
3332 	 */
3333 	if (!mapping->a_ops->read_folio) {
3334 		error = -EINVAL;
3335 		goto bad_swap_unlock_inode;
3336 	}
3337 	folio = read_mapping_folio(mapping, 0, swap_file);
3338 	if (IS_ERR(folio)) {
3339 		error = PTR_ERR(folio);
3340 		goto bad_swap_unlock_inode;
3341 	}
3342 	swap_header = kmap_local_folio(folio, 0);
3343 
3344 	maxpages = read_swap_header(si, swap_header, inode);
3345 	if (unlikely(!maxpages)) {
3346 		error = -EINVAL;
3347 		goto bad_swap_unlock_inode;
3348 	}
3349 
3350 	/* OK, set up the swap map and apply the bad block list */
3351 	swap_map = vzalloc(maxpages);
3352 	if (!swap_map) {
3353 		error = -ENOMEM;
3354 		goto bad_swap_unlock_inode;
3355 	}
3356 
3357 	error = swap_cgroup_swapon(si->type, maxpages);
3358 	if (error)
3359 		goto bad_swap_unlock_inode;
3360 
3361 	nr_extents = setup_swap_map_and_extents(si, swap_header, swap_map,
3362 						maxpages, &span);
3363 	if (unlikely(nr_extents < 0)) {
3364 		error = nr_extents;
3365 		goto bad_swap_unlock_inode;
3366 	}
3367 
3368 	/*
3369 	 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might
3370 	 * be above MAX_PAGE_ORDER incase of a large swap file.
3371 	 */
3372 	zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long),
3373 				    GFP_KERNEL | __GFP_ZERO);
3374 	if (!zeromap) {
3375 		error = -ENOMEM;
3376 		goto bad_swap_unlock_inode;
3377 	}
3378 
3379 	if (si->bdev && bdev_stable_writes(si->bdev))
3380 		si->flags |= SWP_STABLE_WRITES;
3381 
3382 	if (si->bdev && bdev_synchronous(si->bdev))
3383 		si->flags |= SWP_SYNCHRONOUS_IO;
3384 
3385 	if (si->bdev && bdev_nonrot(si->bdev)) {
3386 		si->flags |= SWP_SOLIDSTATE;
3387 	} else {
3388 		atomic_inc(&nr_rotate_swap);
3389 		inced_nr_rotate_swap = true;
3390 	}
3391 
3392 	cluster_info = setup_clusters(si, swap_header, maxpages);
3393 	if (IS_ERR(cluster_info)) {
3394 		error = PTR_ERR(cluster_info);
3395 		cluster_info = NULL;
3396 		goto bad_swap_unlock_inode;
3397 	}
3398 
3399 	if ((swap_flags & SWAP_FLAG_DISCARD) &&
3400 	    si->bdev && bdev_max_discard_sectors(si->bdev)) {
3401 		/*
3402 		 * When discard is enabled for swap with no particular
3403 		 * policy flagged, we set all swap discard flags here in
3404 		 * order to sustain backward compatibility with older
3405 		 * swapon(8) releases.
3406 		 */
3407 		si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3408 			     SWP_PAGE_DISCARD);
3409 
3410 		/*
3411 		 * By flagging sys_swapon, a sysadmin can tell us to
3412 		 * either do single-time area discards only, or to just
3413 		 * perform discards for released swap page-clusters.
3414 		 * Now it's time to adjust the p->flags accordingly.
3415 		 */
3416 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3417 			si->flags &= ~SWP_PAGE_DISCARD;
3418 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3419 			si->flags &= ~SWP_AREA_DISCARD;
3420 
3421 		/* issue a swapon-time discard if it's still required */
3422 		if (si->flags & SWP_AREA_DISCARD) {
3423 			int err = discard_swap(si);
3424 			if (unlikely(err))
3425 				pr_err("swapon: discard_swap(%p): %d\n",
3426 					si, err);
3427 		}
3428 	}
3429 
3430 	error = init_swap_address_space(si->type, maxpages);
3431 	if (error)
3432 		goto bad_swap_unlock_inode;
3433 
3434 	error = zswap_swapon(si->type, maxpages);
3435 	if (error)
3436 		goto free_swap_address_space;
3437 
3438 	/*
3439 	 * Flush any pending IO and dirty mappings before we start using this
3440 	 * swap device.
3441 	 */
3442 	inode->i_flags |= S_SWAPFILE;
3443 	error = inode_drain_writes(inode);
3444 	if (error) {
3445 		inode->i_flags &= ~S_SWAPFILE;
3446 		goto free_swap_zswap;
3447 	}
3448 
3449 	mutex_lock(&swapon_mutex);
3450 	prio = -1;
3451 	if (swap_flags & SWAP_FLAG_PREFER)
3452 		prio =
3453 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3454 	enable_swap_info(si, prio, swap_map, cluster_info, zeromap);
3455 
3456 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3457 		K(si->pages), name->name, si->prio, nr_extents,
3458 		K((unsigned long long)span),
3459 		(si->flags & SWP_SOLIDSTATE) ? "SS" : "",
3460 		(si->flags & SWP_DISCARDABLE) ? "D" : "",
3461 		(si->flags & SWP_AREA_DISCARD) ? "s" : "",
3462 		(si->flags & SWP_PAGE_DISCARD) ? "c" : "");
3463 
3464 	mutex_unlock(&swapon_mutex);
3465 	atomic_inc(&proc_poll_event);
3466 	wake_up_interruptible(&proc_poll_wait);
3467 
3468 	error = 0;
3469 	goto out;
3470 free_swap_zswap:
3471 	zswap_swapoff(si->type);
3472 free_swap_address_space:
3473 	exit_swap_address_space(si->type);
3474 bad_swap_unlock_inode:
3475 	inode_unlock(inode);
3476 bad_swap:
3477 	free_percpu(si->percpu_cluster);
3478 	si->percpu_cluster = NULL;
3479 	kfree(si->global_cluster);
3480 	si->global_cluster = NULL;
3481 	inode = NULL;
3482 	destroy_swap_extents(si);
3483 	swap_cgroup_swapoff(si->type);
3484 	spin_lock(&swap_lock);
3485 	si->swap_file = NULL;
3486 	si->flags = 0;
3487 	spin_unlock(&swap_lock);
3488 	vfree(swap_map);
3489 	kvfree(zeromap);
3490 	kvfree(cluster_info);
3491 	if (inced_nr_rotate_swap)
3492 		atomic_dec(&nr_rotate_swap);
3493 	if (swap_file)
3494 		filp_close(swap_file, NULL);
3495 out:
3496 	if (!IS_ERR_OR_NULL(folio))
3497 		folio_release_kmap(folio, swap_header);
3498 	if (name)
3499 		putname(name);
3500 	if (inode)
3501 		inode_unlock(inode);
3502 	if (!error)
3503 		enable_swap_slots_cache();
3504 	return error;
3505 }
3506 
3507 void si_swapinfo(struct sysinfo *val)
3508 {
3509 	unsigned int type;
3510 	unsigned long nr_to_be_unused = 0;
3511 
3512 	spin_lock(&swap_lock);
3513 	for (type = 0; type < nr_swapfiles; type++) {
3514 		struct swap_info_struct *si = swap_info[type];
3515 
3516 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3517 			nr_to_be_unused += swap_usage_in_pages(si);
3518 	}
3519 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3520 	val->totalswap = total_swap_pages + nr_to_be_unused;
3521 	spin_unlock(&swap_lock);
3522 }
3523 
3524 /*
3525  * Verify that nr swap entries are valid and increment their swap map counts.
3526  *
3527  * Returns error code in following case.
3528  * - success -> 0
3529  * - swp_entry is invalid -> EINVAL
3530  * - swp_entry is migration entry -> EINVAL
3531  * - swap-cache reference is requested but there is already one. -> EEXIST
3532  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3533  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3534  */
3535 static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr)
3536 {
3537 	struct swap_info_struct *si;
3538 	struct swap_cluster_info *ci;
3539 	unsigned long offset;
3540 	unsigned char count;
3541 	unsigned char has_cache;
3542 	int err, i;
3543 
3544 	si = swp_swap_info(entry);
3545 
3546 	offset = swp_offset(entry);
3547 	VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
3548 	VM_WARN_ON(usage == 1 && nr > 1);
3549 	ci = lock_cluster(si, offset);
3550 
3551 	err = 0;
3552 	for (i = 0; i < nr; i++) {
3553 		count = si->swap_map[offset + i];
3554 
3555 		/*
3556 		 * swapin_readahead() doesn't check if a swap entry is valid, so the
3557 		 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3558 		 */
3559 		if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3560 			err = -ENOENT;
3561 			goto unlock_out;
3562 		}
3563 
3564 		has_cache = count & SWAP_HAS_CACHE;
3565 		count &= ~SWAP_HAS_CACHE;
3566 
3567 		if (!count && !has_cache) {
3568 			err = -ENOENT;
3569 		} else if (usage == SWAP_HAS_CACHE) {
3570 			if (has_cache)
3571 				err = -EEXIST;
3572 		} else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) {
3573 			err = -EINVAL;
3574 		}
3575 
3576 		if (err)
3577 			goto unlock_out;
3578 	}
3579 
3580 	for (i = 0; i < nr; i++) {
3581 		count = si->swap_map[offset + i];
3582 		has_cache = count & SWAP_HAS_CACHE;
3583 		count &= ~SWAP_HAS_CACHE;
3584 
3585 		if (usage == SWAP_HAS_CACHE)
3586 			has_cache = SWAP_HAS_CACHE;
3587 		else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3588 			count += usage;
3589 		else if (swap_count_continued(si, offset + i, count))
3590 			count = COUNT_CONTINUED;
3591 		else {
3592 			/*
3593 			 * Don't need to rollback changes, because if
3594 			 * usage == 1, there must be nr == 1.
3595 			 */
3596 			err = -ENOMEM;
3597 			goto unlock_out;
3598 		}
3599 
3600 		WRITE_ONCE(si->swap_map[offset + i], count | has_cache);
3601 	}
3602 
3603 unlock_out:
3604 	unlock_cluster(ci);
3605 	return err;
3606 }
3607 
3608 /*
3609  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3610  * (in which case its reference count is never incremented).
3611  */
3612 void swap_shmem_alloc(swp_entry_t entry, int nr)
3613 {
3614 	__swap_duplicate(entry, SWAP_MAP_SHMEM, nr);
3615 }
3616 
3617 /*
3618  * Increase reference count of swap entry by 1.
3619  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3620  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3621  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3622  * might occur if a page table entry has got corrupted.
3623  */
3624 int swap_duplicate(swp_entry_t entry)
3625 {
3626 	int err = 0;
3627 
3628 	while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM)
3629 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3630 	return err;
3631 }
3632 
3633 /*
3634  * @entry: first swap entry from which we allocate nr swap cache.
3635  *
3636  * Called when allocating swap cache for existing swap entries,
3637  * This can return error codes. Returns 0 at success.
3638  * -EEXIST means there is a swap cache.
3639  * Note: return code is different from swap_duplicate().
3640  */
3641 int swapcache_prepare(swp_entry_t entry, int nr)
3642 {
3643 	return __swap_duplicate(entry, SWAP_HAS_CACHE, nr);
3644 }
3645 
3646 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr)
3647 {
3648 	unsigned long offset = swp_offset(entry);
3649 
3650 	cluster_swap_free_nr(si, offset, nr, SWAP_HAS_CACHE);
3651 }
3652 
3653 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3654 {
3655 	return swap_type_to_swap_info(swp_type(entry));
3656 }
3657 
3658 /*
3659  * out-of-line methods to avoid include hell.
3660  */
3661 struct address_space *swapcache_mapping(struct folio *folio)
3662 {
3663 	return swp_swap_info(folio->swap)->swap_file->f_mapping;
3664 }
3665 EXPORT_SYMBOL_GPL(swapcache_mapping);
3666 
3667 pgoff_t __folio_swap_cache_index(struct folio *folio)
3668 {
3669 	return swap_cache_index(folio->swap);
3670 }
3671 EXPORT_SYMBOL_GPL(__folio_swap_cache_index);
3672 
3673 /*
3674  * add_swap_count_continuation - called when a swap count is duplicated
3675  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3676  * page of the original vmalloc'ed swap_map, to hold the continuation count
3677  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3678  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3679  *
3680  * These continuation pages are seldom referenced: the common paths all work
3681  * on the original swap_map, only referring to a continuation page when the
3682  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3683  *
3684  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3685  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3686  * can be called after dropping locks.
3687  */
3688 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3689 {
3690 	struct swap_info_struct *si;
3691 	struct swap_cluster_info *ci;
3692 	struct page *head;
3693 	struct page *page;
3694 	struct page *list_page;
3695 	pgoff_t offset;
3696 	unsigned char count;
3697 	int ret = 0;
3698 
3699 	/*
3700 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3701 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3702 	 */
3703 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3704 
3705 	si = get_swap_device(entry);
3706 	if (!si) {
3707 		/*
3708 		 * An acceptable race has occurred since the failing
3709 		 * __swap_duplicate(): the swap device may be swapoff
3710 		 */
3711 		goto outer;
3712 	}
3713 
3714 	offset = swp_offset(entry);
3715 
3716 	ci = lock_cluster(si, offset);
3717 
3718 	count = swap_count(si->swap_map[offset]);
3719 
3720 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3721 		/*
3722 		 * The higher the swap count, the more likely it is that tasks
3723 		 * will race to add swap count continuation: we need to avoid
3724 		 * over-provisioning.
3725 		 */
3726 		goto out;
3727 	}
3728 
3729 	if (!page) {
3730 		ret = -ENOMEM;
3731 		goto out;
3732 	}
3733 
3734 	head = vmalloc_to_page(si->swap_map + offset);
3735 	offset &= ~PAGE_MASK;
3736 
3737 	spin_lock(&si->cont_lock);
3738 	/*
3739 	 * Page allocation does not initialize the page's lru field,
3740 	 * but it does always reset its private field.
3741 	 */
3742 	if (!page_private(head)) {
3743 		BUG_ON(count & COUNT_CONTINUED);
3744 		INIT_LIST_HEAD(&head->lru);
3745 		set_page_private(head, SWP_CONTINUED);
3746 		si->flags |= SWP_CONTINUED;
3747 	}
3748 
3749 	list_for_each_entry(list_page, &head->lru, lru) {
3750 		unsigned char *map;
3751 
3752 		/*
3753 		 * If the previous map said no continuation, but we've found
3754 		 * a continuation page, free our allocation and use this one.
3755 		 */
3756 		if (!(count & COUNT_CONTINUED))
3757 			goto out_unlock_cont;
3758 
3759 		map = kmap_local_page(list_page) + offset;
3760 		count = *map;
3761 		kunmap_local(map);
3762 
3763 		/*
3764 		 * If this continuation count now has some space in it,
3765 		 * free our allocation and use this one.
3766 		 */
3767 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3768 			goto out_unlock_cont;
3769 	}
3770 
3771 	list_add_tail(&page->lru, &head->lru);
3772 	page = NULL;			/* now it's attached, don't free it */
3773 out_unlock_cont:
3774 	spin_unlock(&si->cont_lock);
3775 out:
3776 	unlock_cluster(ci);
3777 	put_swap_device(si);
3778 outer:
3779 	if (page)
3780 		__free_page(page);
3781 	return ret;
3782 }
3783 
3784 /*
3785  * swap_count_continued - when the original swap_map count is incremented
3786  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3787  * into, carry if so, or else fail until a new continuation page is allocated;
3788  * when the original swap_map count is decremented from 0 with continuation,
3789  * borrow from the continuation and report whether it still holds more.
3790  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3791  * lock.
3792  */
3793 static bool swap_count_continued(struct swap_info_struct *si,
3794 				 pgoff_t offset, unsigned char count)
3795 {
3796 	struct page *head;
3797 	struct page *page;
3798 	unsigned char *map;
3799 	bool ret;
3800 
3801 	head = vmalloc_to_page(si->swap_map + offset);
3802 	if (page_private(head) != SWP_CONTINUED) {
3803 		BUG_ON(count & COUNT_CONTINUED);
3804 		return false;		/* need to add count continuation */
3805 	}
3806 
3807 	spin_lock(&si->cont_lock);
3808 	offset &= ~PAGE_MASK;
3809 	page = list_next_entry(head, lru);
3810 	map = kmap_local_page(page) + offset;
3811 
3812 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3813 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3814 
3815 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3816 		/*
3817 		 * Think of how you add 1 to 999
3818 		 */
3819 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3820 			kunmap_local(map);
3821 			page = list_next_entry(page, lru);
3822 			BUG_ON(page == head);
3823 			map = kmap_local_page(page) + offset;
3824 		}
3825 		if (*map == SWAP_CONT_MAX) {
3826 			kunmap_local(map);
3827 			page = list_next_entry(page, lru);
3828 			if (page == head) {
3829 				ret = false;	/* add count continuation */
3830 				goto out;
3831 			}
3832 			map = kmap_local_page(page) + offset;
3833 init_map:		*map = 0;		/* we didn't zero the page */
3834 		}
3835 		*map += 1;
3836 		kunmap_local(map);
3837 		while ((page = list_prev_entry(page, lru)) != head) {
3838 			map = kmap_local_page(page) + offset;
3839 			*map = COUNT_CONTINUED;
3840 			kunmap_local(map);
3841 		}
3842 		ret = true;			/* incremented */
3843 
3844 	} else {				/* decrementing */
3845 		/*
3846 		 * Think of how you subtract 1 from 1000
3847 		 */
3848 		BUG_ON(count != COUNT_CONTINUED);
3849 		while (*map == COUNT_CONTINUED) {
3850 			kunmap_local(map);
3851 			page = list_next_entry(page, lru);
3852 			BUG_ON(page == head);
3853 			map = kmap_local_page(page) + offset;
3854 		}
3855 		BUG_ON(*map == 0);
3856 		*map -= 1;
3857 		if (*map == 0)
3858 			count = 0;
3859 		kunmap_local(map);
3860 		while ((page = list_prev_entry(page, lru)) != head) {
3861 			map = kmap_local_page(page) + offset;
3862 			*map = SWAP_CONT_MAX | count;
3863 			count = COUNT_CONTINUED;
3864 			kunmap_local(map);
3865 		}
3866 		ret = count == COUNT_CONTINUED;
3867 	}
3868 out:
3869 	spin_unlock(&si->cont_lock);
3870 	return ret;
3871 }
3872 
3873 /*
3874  * free_swap_count_continuations - swapoff free all the continuation pages
3875  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3876  */
3877 static void free_swap_count_continuations(struct swap_info_struct *si)
3878 {
3879 	pgoff_t offset;
3880 
3881 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3882 		struct page *head;
3883 		head = vmalloc_to_page(si->swap_map + offset);
3884 		if (page_private(head)) {
3885 			struct page *page, *next;
3886 
3887 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3888 				list_del(&page->lru);
3889 				__free_page(page);
3890 			}
3891 		}
3892 	}
3893 }
3894 
3895 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3896 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3897 {
3898 	struct swap_info_struct *si, *next;
3899 	int nid = folio_nid(folio);
3900 
3901 	if (!(gfp & __GFP_IO))
3902 		return;
3903 
3904 	if (!__has_usable_swap())
3905 		return;
3906 
3907 	if (!blk_cgroup_congested())
3908 		return;
3909 
3910 	/*
3911 	 * We've already scheduled a throttle, avoid taking the global swap
3912 	 * lock.
3913 	 */
3914 	if (current->throttle_disk)
3915 		return;
3916 
3917 	spin_lock(&swap_avail_lock);
3918 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3919 				  avail_lists[nid]) {
3920 		if (si->bdev) {
3921 			blkcg_schedule_throttle(si->bdev->bd_disk, true);
3922 			break;
3923 		}
3924 	}
3925 	spin_unlock(&swap_avail_lock);
3926 }
3927 #endif
3928 
3929 static int __init swapfile_init(void)
3930 {
3931 	int nid;
3932 
3933 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3934 					 GFP_KERNEL);
3935 	if (!swap_avail_heads) {
3936 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3937 		return -ENOMEM;
3938 	}
3939 
3940 	for_each_node(nid)
3941 		plist_head_init(&swap_avail_heads[nid]);
3942 
3943 	swapfile_maximum_size = arch_max_swapfile_size();
3944 
3945 #ifdef CONFIG_MIGRATION
3946 	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3947 		swap_migration_ad_supported = true;
3948 #endif	/* CONFIG_MIGRATION */
3949 
3950 	return 0;
3951 }
3952 subsys_initcall(swapfile_init);
3953