1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/blkdev.h> 10 #include <linux/mm.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/task.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mman.h> 15 #include <linux/slab.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/swap.h> 18 #include <linux/vmalloc.h> 19 #include <linux/pagemap.h> 20 #include <linux/namei.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/blk-cgroup.h> 23 #include <linux/random.h> 24 #include <linux/writeback.h> 25 #include <linux/proc_fs.h> 26 #include <linux/seq_file.h> 27 #include <linux/init.h> 28 #include <linux/ksm.h> 29 #include <linux/rmap.h> 30 #include <linux/security.h> 31 #include <linux/backing-dev.h> 32 #include <linux/mutex.h> 33 #include <linux/capability.h> 34 #include <linux/syscalls.h> 35 #include <linux/memcontrol.h> 36 #include <linux/poll.h> 37 #include <linux/oom.h> 38 #include <linux/swapfile.h> 39 #include <linux/export.h> 40 #include <linux/swap_slots.h> 41 #include <linux/sort.h> 42 #include <linux/completion.h> 43 #include <linux/suspend.h> 44 #include <linux/zswap.h> 45 #include <linux/plist.h> 46 47 #include <asm/tlbflush.h> 48 #include <linux/swapops.h> 49 #include <linux/swap_cgroup.h> 50 #include "internal.h" 51 #include "swap.h" 52 53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 54 unsigned char); 55 static void free_swap_count_continuations(struct swap_info_struct *); 56 static void swap_entry_range_free(struct swap_info_struct *si, 57 struct swap_cluster_info *ci, 58 swp_entry_t entry, unsigned int nr_pages); 59 static void swap_range_alloc(struct swap_info_struct *si, 60 unsigned int nr_entries); 61 static bool folio_swapcache_freeable(struct folio *folio); 62 static struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 63 unsigned long offset); 64 static inline void unlock_cluster(struct swap_cluster_info *ci); 65 66 static DEFINE_SPINLOCK(swap_lock); 67 static unsigned int nr_swapfiles; 68 atomic_long_t nr_swap_pages; 69 /* 70 * Some modules use swappable objects and may try to swap them out under 71 * memory pressure (via the shrinker). Before doing so, they may wish to 72 * check to see if any swap space is available. 73 */ 74 EXPORT_SYMBOL_GPL(nr_swap_pages); 75 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 76 long total_swap_pages; 77 static int least_priority = -1; 78 unsigned long swapfile_maximum_size; 79 #ifdef CONFIG_MIGRATION 80 bool swap_migration_ad_supported; 81 #endif /* CONFIG_MIGRATION */ 82 83 static const char Bad_file[] = "Bad swap file entry "; 84 static const char Unused_file[] = "Unused swap file entry "; 85 static const char Bad_offset[] = "Bad swap offset entry "; 86 static const char Unused_offset[] = "Unused swap offset entry "; 87 88 /* 89 * all active swap_info_structs 90 * protected with swap_lock, and ordered by priority. 91 */ 92 static PLIST_HEAD(swap_active_head); 93 94 /* 95 * all available (active, not full) swap_info_structs 96 * protected with swap_avail_lock, ordered by priority. 97 * This is used by folio_alloc_swap() instead of swap_active_head 98 * because swap_active_head includes all swap_info_structs, 99 * but folio_alloc_swap() doesn't need to look at full ones. 100 * This uses its own lock instead of swap_lock because when a 101 * swap_info_struct changes between not-full/full, it needs to 102 * add/remove itself to/from this list, but the swap_info_struct->lock 103 * is held and the locking order requires swap_lock to be taken 104 * before any swap_info_struct->lock. 105 */ 106 static struct plist_head *swap_avail_heads; 107 static DEFINE_SPINLOCK(swap_avail_lock); 108 109 static struct swap_info_struct *swap_info[MAX_SWAPFILES]; 110 111 static DEFINE_MUTEX(swapon_mutex); 112 113 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 114 /* Activity counter to indicate that a swapon or swapoff has occurred */ 115 static atomic_t proc_poll_event = ATOMIC_INIT(0); 116 117 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 118 119 static struct swap_info_struct *swap_type_to_swap_info(int type) 120 { 121 if (type >= MAX_SWAPFILES) 122 return NULL; 123 124 return READ_ONCE(swap_info[type]); /* rcu_dereference() */ 125 } 126 127 static inline unsigned char swap_count(unsigned char ent) 128 { 129 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 130 } 131 132 /* 133 * Use the second highest bit of inuse_pages counter as the indicator 134 * if one swap device is on the available plist, so the atomic can 135 * still be updated arithmetically while having special data embedded. 136 * 137 * inuse_pages counter is the only thing indicating if a device should 138 * be on avail_lists or not (except swapon / swapoff). By embedding the 139 * off-list bit in the atomic counter, updates no longer need any lock 140 * to check the list status. 141 * 142 * This bit will be set if the device is not on the plist and not 143 * usable, will be cleared if the device is on the plist. 144 */ 145 #define SWAP_USAGE_OFFLIST_BIT (1UL << (BITS_PER_TYPE(atomic_t) - 2)) 146 #define SWAP_USAGE_COUNTER_MASK (~SWAP_USAGE_OFFLIST_BIT) 147 static long swap_usage_in_pages(struct swap_info_struct *si) 148 { 149 return atomic_long_read(&si->inuse_pages) & SWAP_USAGE_COUNTER_MASK; 150 } 151 152 /* Reclaim the swap entry anyway if possible */ 153 #define TTRS_ANYWAY 0x1 154 /* 155 * Reclaim the swap entry if there are no more mappings of the 156 * corresponding page 157 */ 158 #define TTRS_UNMAPPED 0x2 159 /* Reclaim the swap entry if swap is getting full */ 160 #define TTRS_FULL 0x4 161 /* Reclaim directly, bypass the slot cache and don't touch device lock */ 162 #define TTRS_DIRECT 0x8 163 164 static bool swap_is_has_cache(struct swap_info_struct *si, 165 unsigned long offset, int nr_pages) 166 { 167 unsigned char *map = si->swap_map + offset; 168 unsigned char *map_end = map + nr_pages; 169 170 do { 171 VM_BUG_ON(!(*map & SWAP_HAS_CACHE)); 172 if (*map != SWAP_HAS_CACHE) 173 return false; 174 } while (++map < map_end); 175 176 return true; 177 } 178 179 static bool swap_is_last_map(struct swap_info_struct *si, 180 unsigned long offset, int nr_pages, bool *has_cache) 181 { 182 unsigned char *map = si->swap_map + offset; 183 unsigned char *map_end = map + nr_pages; 184 unsigned char count = *map; 185 186 if (swap_count(count) != 1) 187 return false; 188 189 while (++map < map_end) { 190 if (*map != count) 191 return false; 192 } 193 194 *has_cache = !!(count & SWAP_HAS_CACHE); 195 return true; 196 } 197 198 /* 199 * returns number of pages in the folio that backs the swap entry. If positive, 200 * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no 201 * folio was associated with the swap entry. 202 */ 203 static int __try_to_reclaim_swap(struct swap_info_struct *si, 204 unsigned long offset, unsigned long flags) 205 { 206 swp_entry_t entry = swp_entry(si->type, offset); 207 struct address_space *address_space = swap_address_space(entry); 208 struct swap_cluster_info *ci; 209 struct folio *folio; 210 int ret, nr_pages; 211 bool need_reclaim; 212 213 folio = filemap_get_folio(address_space, swap_cache_index(entry)); 214 if (IS_ERR(folio)) 215 return 0; 216 217 nr_pages = folio_nr_pages(folio); 218 ret = -nr_pages; 219 220 /* 221 * When this function is called from scan_swap_map_slots() and it's 222 * called by vmscan.c at reclaiming folios. So we hold a folio lock 223 * here. We have to use trylock for avoiding deadlock. This is a special 224 * case and you should use folio_free_swap() with explicit folio_lock() 225 * in usual operations. 226 */ 227 if (!folio_trylock(folio)) 228 goto out; 229 230 /* offset could point to the middle of a large folio */ 231 entry = folio->swap; 232 offset = swp_offset(entry); 233 234 need_reclaim = ((flags & TTRS_ANYWAY) || 235 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) || 236 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio))); 237 if (!need_reclaim || !folio_swapcache_freeable(folio)) 238 goto out_unlock; 239 240 /* 241 * It's safe to delete the folio from swap cache only if the folio's 242 * swap_map is HAS_CACHE only, which means the slots have no page table 243 * reference or pending writeback, and can't be allocated to others. 244 */ 245 ci = lock_cluster(si, offset); 246 need_reclaim = swap_is_has_cache(si, offset, nr_pages); 247 unlock_cluster(ci); 248 if (!need_reclaim) 249 goto out_unlock; 250 251 if (!(flags & TTRS_DIRECT)) { 252 /* Free through slot cache */ 253 delete_from_swap_cache(folio); 254 folio_set_dirty(folio); 255 ret = nr_pages; 256 goto out_unlock; 257 } 258 259 xa_lock_irq(&address_space->i_pages); 260 __delete_from_swap_cache(folio, entry, NULL); 261 xa_unlock_irq(&address_space->i_pages); 262 folio_ref_sub(folio, nr_pages); 263 folio_set_dirty(folio); 264 265 ci = lock_cluster(si, offset); 266 swap_entry_range_free(si, ci, entry, nr_pages); 267 unlock_cluster(ci); 268 ret = nr_pages; 269 out_unlock: 270 folio_unlock(folio); 271 out: 272 folio_put(folio); 273 return ret; 274 } 275 276 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 277 { 278 struct rb_node *rb = rb_first(&sis->swap_extent_root); 279 return rb_entry(rb, struct swap_extent, rb_node); 280 } 281 282 static inline struct swap_extent *next_se(struct swap_extent *se) 283 { 284 struct rb_node *rb = rb_next(&se->rb_node); 285 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 286 } 287 288 /* 289 * swapon tell device that all the old swap contents can be discarded, 290 * to allow the swap device to optimize its wear-levelling. 291 */ 292 static int discard_swap(struct swap_info_struct *si) 293 { 294 struct swap_extent *se; 295 sector_t start_block; 296 sector_t nr_blocks; 297 int err = 0; 298 299 /* Do not discard the swap header page! */ 300 se = first_se(si); 301 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 302 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 303 if (nr_blocks) { 304 err = blkdev_issue_discard(si->bdev, start_block, 305 nr_blocks, GFP_KERNEL); 306 if (err) 307 return err; 308 cond_resched(); 309 } 310 311 for (se = next_se(se); se; se = next_se(se)) { 312 start_block = se->start_block << (PAGE_SHIFT - 9); 313 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 314 315 err = blkdev_issue_discard(si->bdev, start_block, 316 nr_blocks, GFP_KERNEL); 317 if (err) 318 break; 319 320 cond_resched(); 321 } 322 return err; /* That will often be -EOPNOTSUPP */ 323 } 324 325 static struct swap_extent * 326 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 327 { 328 struct swap_extent *se; 329 struct rb_node *rb; 330 331 rb = sis->swap_extent_root.rb_node; 332 while (rb) { 333 se = rb_entry(rb, struct swap_extent, rb_node); 334 if (offset < se->start_page) 335 rb = rb->rb_left; 336 else if (offset >= se->start_page + se->nr_pages) 337 rb = rb->rb_right; 338 else 339 return se; 340 } 341 /* It *must* be present */ 342 BUG(); 343 } 344 345 sector_t swap_folio_sector(struct folio *folio) 346 { 347 struct swap_info_struct *sis = swp_swap_info(folio->swap); 348 struct swap_extent *se; 349 sector_t sector; 350 pgoff_t offset; 351 352 offset = swp_offset(folio->swap); 353 se = offset_to_swap_extent(sis, offset); 354 sector = se->start_block + (offset - se->start_page); 355 return sector << (PAGE_SHIFT - 9); 356 } 357 358 /* 359 * swap allocation tell device that a cluster of swap can now be discarded, 360 * to allow the swap device to optimize its wear-levelling. 361 */ 362 static void discard_swap_cluster(struct swap_info_struct *si, 363 pgoff_t start_page, pgoff_t nr_pages) 364 { 365 struct swap_extent *se = offset_to_swap_extent(si, start_page); 366 367 while (nr_pages) { 368 pgoff_t offset = start_page - se->start_page; 369 sector_t start_block = se->start_block + offset; 370 sector_t nr_blocks = se->nr_pages - offset; 371 372 if (nr_blocks > nr_pages) 373 nr_blocks = nr_pages; 374 start_page += nr_blocks; 375 nr_pages -= nr_blocks; 376 377 start_block <<= PAGE_SHIFT - 9; 378 nr_blocks <<= PAGE_SHIFT - 9; 379 if (blkdev_issue_discard(si->bdev, start_block, 380 nr_blocks, GFP_NOIO)) 381 break; 382 383 se = next_se(se); 384 } 385 } 386 387 #ifdef CONFIG_THP_SWAP 388 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 389 390 #define swap_entry_order(order) (order) 391 #else 392 #define SWAPFILE_CLUSTER 256 393 394 /* 395 * Define swap_entry_order() as constant to let compiler to optimize 396 * out some code if !CONFIG_THP_SWAP 397 */ 398 #define swap_entry_order(order) 0 399 #endif 400 #define LATENCY_LIMIT 256 401 402 static inline bool cluster_is_empty(struct swap_cluster_info *info) 403 { 404 return info->count == 0; 405 } 406 407 static inline bool cluster_is_discard(struct swap_cluster_info *info) 408 { 409 return info->flags == CLUSTER_FLAG_DISCARD; 410 } 411 412 static inline bool cluster_is_usable(struct swap_cluster_info *ci, int order) 413 { 414 if (unlikely(ci->flags > CLUSTER_FLAG_USABLE)) 415 return false; 416 if (!order) 417 return true; 418 return cluster_is_empty(ci) || order == ci->order; 419 } 420 421 static inline unsigned int cluster_index(struct swap_info_struct *si, 422 struct swap_cluster_info *ci) 423 { 424 return ci - si->cluster_info; 425 } 426 427 static inline struct swap_cluster_info *offset_to_cluster(struct swap_info_struct *si, 428 unsigned long offset) 429 { 430 return &si->cluster_info[offset / SWAPFILE_CLUSTER]; 431 } 432 433 static inline unsigned int cluster_offset(struct swap_info_struct *si, 434 struct swap_cluster_info *ci) 435 { 436 return cluster_index(si, ci) * SWAPFILE_CLUSTER; 437 } 438 439 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 440 unsigned long offset) 441 { 442 struct swap_cluster_info *ci; 443 444 ci = offset_to_cluster(si, offset); 445 spin_lock(&ci->lock); 446 447 return ci; 448 } 449 450 static inline void unlock_cluster(struct swap_cluster_info *ci) 451 { 452 spin_unlock(&ci->lock); 453 } 454 455 static void move_cluster(struct swap_info_struct *si, 456 struct swap_cluster_info *ci, struct list_head *list, 457 enum swap_cluster_flags new_flags) 458 { 459 VM_WARN_ON(ci->flags == new_flags); 460 461 BUILD_BUG_ON(1 << sizeof(ci->flags) * BITS_PER_BYTE < CLUSTER_FLAG_MAX); 462 lockdep_assert_held(&ci->lock); 463 464 spin_lock(&si->lock); 465 if (ci->flags == CLUSTER_FLAG_NONE) 466 list_add_tail(&ci->list, list); 467 else 468 list_move_tail(&ci->list, list); 469 spin_unlock(&si->lock); 470 471 if (ci->flags == CLUSTER_FLAG_FRAG) 472 atomic_long_dec(&si->frag_cluster_nr[ci->order]); 473 else if (new_flags == CLUSTER_FLAG_FRAG) 474 atomic_long_inc(&si->frag_cluster_nr[ci->order]); 475 ci->flags = new_flags; 476 } 477 478 /* Add a cluster to discard list and schedule it to do discard */ 479 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 480 struct swap_cluster_info *ci) 481 { 482 unsigned int idx = cluster_index(si, ci); 483 /* 484 * If scan_swap_map_slots() can't find a free cluster, it will check 485 * si->swap_map directly. To make sure the discarding cluster isn't 486 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied). 487 * It will be cleared after discard 488 */ 489 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 490 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 491 VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE); 492 move_cluster(si, ci, &si->discard_clusters, CLUSTER_FLAG_DISCARD); 493 schedule_work(&si->discard_work); 494 } 495 496 static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci) 497 { 498 lockdep_assert_held(&ci->lock); 499 move_cluster(si, ci, &si->free_clusters, CLUSTER_FLAG_FREE); 500 ci->order = 0; 501 } 502 503 /* 504 * Isolate and lock the first cluster that is not contented on a list, 505 * clean its flag before taken off-list. Cluster flag must be in sync 506 * with list status, so cluster updaters can always know the cluster 507 * list status without touching si lock. 508 * 509 * Note it's possible that all clusters on a list are contented so 510 * this returns NULL for an non-empty list. 511 */ 512 static struct swap_cluster_info *isolate_lock_cluster( 513 struct swap_info_struct *si, struct list_head *list) 514 { 515 struct swap_cluster_info *ci, *ret = NULL; 516 517 spin_lock(&si->lock); 518 519 if (unlikely(!(si->flags & SWP_WRITEOK))) 520 goto out; 521 522 list_for_each_entry(ci, list, list) { 523 if (!spin_trylock(&ci->lock)) 524 continue; 525 526 /* We may only isolate and clear flags of following lists */ 527 VM_BUG_ON(!ci->flags); 528 VM_BUG_ON(ci->flags > CLUSTER_FLAG_USABLE && 529 ci->flags != CLUSTER_FLAG_FULL); 530 531 list_del(&ci->list); 532 ci->flags = CLUSTER_FLAG_NONE; 533 ret = ci; 534 break; 535 } 536 out: 537 spin_unlock(&si->lock); 538 539 return ret; 540 } 541 542 /* 543 * Doing discard actually. After a cluster discard is finished, the cluster 544 * will be added to free cluster list. Discard cluster is a bit special as 545 * they don't participate in allocation or reclaim, so clusters marked as 546 * CLUSTER_FLAG_DISCARD must remain off-list or on discard list. 547 */ 548 static bool swap_do_scheduled_discard(struct swap_info_struct *si) 549 { 550 struct swap_cluster_info *ci; 551 bool ret = false; 552 unsigned int idx; 553 554 spin_lock(&si->lock); 555 while (!list_empty(&si->discard_clusters)) { 556 ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list); 557 /* 558 * Delete the cluster from list to prepare for discard, but keep 559 * the CLUSTER_FLAG_DISCARD flag, there could be percpu_cluster 560 * pointing to it, or ran into by relocate_cluster. 561 */ 562 list_del(&ci->list); 563 idx = cluster_index(si, ci); 564 spin_unlock(&si->lock); 565 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 566 SWAPFILE_CLUSTER); 567 568 spin_lock(&ci->lock); 569 /* 570 * Discard is done, clear its flags as it's off-list, then 571 * return the cluster to allocation list. 572 */ 573 ci->flags = CLUSTER_FLAG_NONE; 574 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 575 0, SWAPFILE_CLUSTER); 576 __free_cluster(si, ci); 577 spin_unlock(&ci->lock); 578 ret = true; 579 spin_lock(&si->lock); 580 } 581 spin_unlock(&si->lock); 582 return ret; 583 } 584 585 static void swap_discard_work(struct work_struct *work) 586 { 587 struct swap_info_struct *si; 588 589 si = container_of(work, struct swap_info_struct, discard_work); 590 591 swap_do_scheduled_discard(si); 592 } 593 594 static void swap_users_ref_free(struct percpu_ref *ref) 595 { 596 struct swap_info_struct *si; 597 598 si = container_of(ref, struct swap_info_struct, users); 599 complete(&si->comp); 600 } 601 602 /* 603 * Must be called after freeing if ci->count == 0, moves the cluster to free 604 * or discard list. 605 */ 606 static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci) 607 { 608 VM_BUG_ON(ci->count != 0); 609 VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE); 610 lockdep_assert_held(&ci->lock); 611 612 /* 613 * If the swap is discardable, prepare discard the cluster 614 * instead of free it immediately. The cluster will be freed 615 * after discard. 616 */ 617 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 618 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 619 swap_cluster_schedule_discard(si, ci); 620 return; 621 } 622 623 __free_cluster(si, ci); 624 } 625 626 /* 627 * Must be called after freeing if ci->count != 0, moves the cluster to 628 * nonfull list. 629 */ 630 static void partial_free_cluster(struct swap_info_struct *si, 631 struct swap_cluster_info *ci) 632 { 633 VM_BUG_ON(!ci->count || ci->count == SWAPFILE_CLUSTER); 634 lockdep_assert_held(&ci->lock); 635 636 if (ci->flags != CLUSTER_FLAG_NONFULL) 637 move_cluster(si, ci, &si->nonfull_clusters[ci->order], 638 CLUSTER_FLAG_NONFULL); 639 } 640 641 /* 642 * Must be called after allocation, moves the cluster to full or frag list. 643 * Note: allocation doesn't acquire si lock, and may drop the ci lock for 644 * reclaim, so the cluster could be any where when called. 645 */ 646 static void relocate_cluster(struct swap_info_struct *si, 647 struct swap_cluster_info *ci) 648 { 649 lockdep_assert_held(&ci->lock); 650 651 /* Discard cluster must remain off-list or on discard list */ 652 if (cluster_is_discard(ci)) 653 return; 654 655 if (!ci->count) { 656 free_cluster(si, ci); 657 } else if (ci->count != SWAPFILE_CLUSTER) { 658 if (ci->flags != CLUSTER_FLAG_FRAG) 659 move_cluster(si, ci, &si->frag_clusters[ci->order], 660 CLUSTER_FLAG_FRAG); 661 } else { 662 if (ci->flags != CLUSTER_FLAG_FULL) 663 move_cluster(si, ci, &si->full_clusters, 664 CLUSTER_FLAG_FULL); 665 } 666 } 667 668 /* 669 * The cluster corresponding to page_nr will be used. The cluster will not be 670 * added to free cluster list and its usage counter will be increased by 1. 671 * Only used for initialization. 672 */ 673 static void inc_cluster_info_page(struct swap_info_struct *si, 674 struct swap_cluster_info *cluster_info, unsigned long page_nr) 675 { 676 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 677 struct swap_cluster_info *ci; 678 679 ci = cluster_info + idx; 680 ci->count++; 681 682 VM_BUG_ON(ci->count > SWAPFILE_CLUSTER); 683 VM_BUG_ON(ci->flags); 684 } 685 686 static bool cluster_reclaim_range(struct swap_info_struct *si, 687 struct swap_cluster_info *ci, 688 unsigned long start, unsigned long end) 689 { 690 unsigned char *map = si->swap_map; 691 unsigned long offset = start; 692 int nr_reclaim; 693 694 spin_unlock(&ci->lock); 695 do { 696 switch (READ_ONCE(map[offset])) { 697 case 0: 698 offset++; 699 break; 700 case SWAP_HAS_CACHE: 701 nr_reclaim = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY | TTRS_DIRECT); 702 if (nr_reclaim > 0) 703 offset += nr_reclaim; 704 else 705 goto out; 706 break; 707 default: 708 goto out; 709 } 710 } while (offset < end); 711 out: 712 spin_lock(&ci->lock); 713 /* 714 * Recheck the range no matter reclaim succeeded or not, the slot 715 * could have been be freed while we are not holding the lock. 716 */ 717 for (offset = start; offset < end; offset++) 718 if (READ_ONCE(map[offset])) 719 return false; 720 721 return true; 722 } 723 724 static bool cluster_scan_range(struct swap_info_struct *si, 725 struct swap_cluster_info *ci, 726 unsigned long start, unsigned int nr_pages, 727 bool *need_reclaim) 728 { 729 unsigned long offset, end = start + nr_pages; 730 unsigned char *map = si->swap_map; 731 732 for (offset = start; offset < end; offset++) { 733 switch (READ_ONCE(map[offset])) { 734 case 0: 735 continue; 736 case SWAP_HAS_CACHE: 737 if (!vm_swap_full()) 738 return false; 739 *need_reclaim = true; 740 continue; 741 default: 742 return false; 743 } 744 } 745 746 return true; 747 } 748 749 static bool cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci, 750 unsigned int start, unsigned char usage, 751 unsigned int order) 752 { 753 unsigned int nr_pages = 1 << order; 754 755 lockdep_assert_held(&ci->lock); 756 757 if (!(si->flags & SWP_WRITEOK)) 758 return false; 759 760 /* 761 * The first allocation in a cluster makes the 762 * cluster exclusive to this order 763 */ 764 if (cluster_is_empty(ci)) 765 ci->order = order; 766 767 memset(si->swap_map + start, usage, nr_pages); 768 swap_range_alloc(si, nr_pages); 769 ci->count += nr_pages; 770 771 return true; 772 } 773 774 /* Try use a new cluster for current CPU and allocate from it. */ 775 static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si, 776 struct swap_cluster_info *ci, 777 unsigned long offset, 778 unsigned int order, 779 unsigned char usage) 780 { 781 unsigned int next = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID; 782 unsigned long start = ALIGN_DOWN(offset, SWAPFILE_CLUSTER); 783 unsigned long end = min(start + SWAPFILE_CLUSTER, si->max); 784 unsigned int nr_pages = 1 << order; 785 bool need_reclaim, ret; 786 787 lockdep_assert_held(&ci->lock); 788 789 if (end < nr_pages || ci->count + nr_pages > SWAPFILE_CLUSTER) 790 goto out; 791 792 for (end -= nr_pages; offset <= end; offset += nr_pages) { 793 need_reclaim = false; 794 if (!cluster_scan_range(si, ci, offset, nr_pages, &need_reclaim)) 795 continue; 796 if (need_reclaim) { 797 ret = cluster_reclaim_range(si, ci, offset, offset + nr_pages); 798 /* 799 * Reclaim drops ci->lock and cluster could be used 800 * by another order. Not checking flag as off-list 801 * cluster has no flag set, and change of list 802 * won't cause fragmentation. 803 */ 804 if (!cluster_is_usable(ci, order)) 805 goto out; 806 if (cluster_is_empty(ci)) 807 offset = start; 808 /* Reclaim failed but cluster is usable, try next */ 809 if (!ret) 810 continue; 811 } 812 if (!cluster_alloc_range(si, ci, offset, usage, order)) 813 break; 814 found = offset; 815 offset += nr_pages; 816 if (ci->count < SWAPFILE_CLUSTER && offset <= end) 817 next = offset; 818 break; 819 } 820 out: 821 relocate_cluster(si, ci); 822 unlock_cluster(ci); 823 if (si->flags & SWP_SOLIDSTATE) 824 __this_cpu_write(si->percpu_cluster->next[order], next); 825 else 826 si->global_cluster->next[order] = next; 827 return found; 828 } 829 830 /* Return true if reclaimed a whole cluster */ 831 static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force) 832 { 833 long to_scan = 1; 834 unsigned long offset, end; 835 struct swap_cluster_info *ci; 836 unsigned char *map = si->swap_map; 837 int nr_reclaim; 838 839 if (force) 840 to_scan = swap_usage_in_pages(si) / SWAPFILE_CLUSTER; 841 842 while ((ci = isolate_lock_cluster(si, &si->full_clusters))) { 843 offset = cluster_offset(si, ci); 844 end = min(si->max, offset + SWAPFILE_CLUSTER); 845 to_scan--; 846 847 while (offset < end) { 848 if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) { 849 spin_unlock(&ci->lock); 850 nr_reclaim = __try_to_reclaim_swap(si, offset, 851 TTRS_ANYWAY | TTRS_DIRECT); 852 spin_lock(&ci->lock); 853 if (nr_reclaim) { 854 offset += abs(nr_reclaim); 855 continue; 856 } 857 } 858 offset++; 859 } 860 861 unlock_cluster(ci); 862 if (to_scan <= 0) 863 break; 864 } 865 } 866 867 static void swap_reclaim_work(struct work_struct *work) 868 { 869 struct swap_info_struct *si; 870 871 si = container_of(work, struct swap_info_struct, reclaim_work); 872 873 swap_reclaim_full_clusters(si, true); 874 } 875 876 /* 877 * Try to get swap entries with specified order from current cpu's swap entry 878 * pool (a cluster). This might involve allocating a new cluster for current CPU 879 * too. 880 */ 881 static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order, 882 unsigned char usage) 883 { 884 struct swap_cluster_info *ci; 885 unsigned int offset, found = 0; 886 887 if (si->flags & SWP_SOLIDSTATE) { 888 /* Fast path using per CPU cluster */ 889 local_lock(&si->percpu_cluster->lock); 890 offset = __this_cpu_read(si->percpu_cluster->next[order]); 891 } else { 892 /* Serialize HDD SWAP allocation for each device. */ 893 spin_lock(&si->global_cluster_lock); 894 offset = si->global_cluster->next[order]; 895 } 896 897 if (offset) { 898 ci = lock_cluster(si, offset); 899 /* Cluster could have been used by another order */ 900 if (cluster_is_usable(ci, order)) { 901 if (cluster_is_empty(ci)) 902 offset = cluster_offset(si, ci); 903 found = alloc_swap_scan_cluster(si, ci, offset, 904 order, usage); 905 } else { 906 unlock_cluster(ci); 907 } 908 if (found) 909 goto done; 910 } 911 912 new_cluster: 913 ci = isolate_lock_cluster(si, &si->free_clusters); 914 if (ci) { 915 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci), 916 order, usage); 917 if (found) 918 goto done; 919 } 920 921 /* Try reclaim from full clusters if free clusters list is drained */ 922 if (vm_swap_full()) 923 swap_reclaim_full_clusters(si, false); 924 925 if (order < PMD_ORDER) { 926 unsigned int frags = 0, frags_existing; 927 928 while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[order]))) { 929 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci), 930 order, usage); 931 if (found) 932 goto done; 933 /* Clusters failed to allocate are moved to frag_clusters */ 934 frags++; 935 } 936 937 frags_existing = atomic_long_read(&si->frag_cluster_nr[order]); 938 while (frags < frags_existing && 939 (ci = isolate_lock_cluster(si, &si->frag_clusters[order]))) { 940 atomic_long_dec(&si->frag_cluster_nr[order]); 941 /* 942 * Rotate the frag list to iterate, they were all 943 * failing high order allocation or moved here due to 944 * per-CPU usage, but they could contain newly released 945 * reclaimable (eg. lazy-freed swap cache) slots. 946 */ 947 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci), 948 order, usage); 949 if (found) 950 goto done; 951 frags++; 952 } 953 } 954 955 /* 956 * We don't have free cluster but have some clusters in 957 * discarding, do discard now and reclaim them, then 958 * reread cluster_next_cpu since we dropped si->lock 959 */ 960 if ((si->flags & SWP_PAGE_DISCARD) && swap_do_scheduled_discard(si)) 961 goto new_cluster; 962 963 if (order) 964 goto done; 965 966 /* Order 0 stealing from higher order */ 967 for (int o = 1; o < SWAP_NR_ORDERS; o++) { 968 /* 969 * Clusters here have at least one usable slots and can't fail order 0 970 * allocation, but reclaim may drop si->lock and race with another user. 971 */ 972 while ((ci = isolate_lock_cluster(si, &si->frag_clusters[o]))) { 973 atomic_long_dec(&si->frag_cluster_nr[o]); 974 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci), 975 0, usage); 976 if (found) 977 goto done; 978 } 979 980 while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[o]))) { 981 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci), 982 0, usage); 983 if (found) 984 goto done; 985 } 986 } 987 done: 988 if (si->flags & SWP_SOLIDSTATE) 989 local_unlock(&si->percpu_cluster->lock); 990 else 991 spin_unlock(&si->global_cluster_lock); 992 return found; 993 } 994 995 /* SWAP_USAGE_OFFLIST_BIT can only be set by this helper. */ 996 static void del_from_avail_list(struct swap_info_struct *si, bool swapoff) 997 { 998 int nid; 999 unsigned long pages; 1000 1001 spin_lock(&swap_avail_lock); 1002 1003 if (swapoff) { 1004 /* 1005 * Forcefully remove it. Clear the SWP_WRITEOK flags for 1006 * swapoff here so it's synchronized by both si->lock and 1007 * swap_avail_lock, to ensure the result can be seen by 1008 * add_to_avail_list. 1009 */ 1010 lockdep_assert_held(&si->lock); 1011 si->flags &= ~SWP_WRITEOK; 1012 atomic_long_or(SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages); 1013 } else { 1014 /* 1015 * If not called by swapoff, take it off-list only if it's 1016 * full and SWAP_USAGE_OFFLIST_BIT is not set (strictly 1017 * si->inuse_pages == pages), any concurrent slot freeing, 1018 * or device already removed from plist by someone else 1019 * will make this return false. 1020 */ 1021 pages = si->pages; 1022 if (!atomic_long_try_cmpxchg(&si->inuse_pages, &pages, 1023 pages | SWAP_USAGE_OFFLIST_BIT)) 1024 goto skip; 1025 } 1026 1027 for_each_node(nid) 1028 plist_del(&si->avail_lists[nid], &swap_avail_heads[nid]); 1029 1030 skip: 1031 spin_unlock(&swap_avail_lock); 1032 } 1033 1034 /* SWAP_USAGE_OFFLIST_BIT can only be cleared by this helper. */ 1035 static void add_to_avail_list(struct swap_info_struct *si, bool swapon) 1036 { 1037 int nid; 1038 long val; 1039 unsigned long pages; 1040 1041 spin_lock(&swap_avail_lock); 1042 1043 /* Corresponding to SWP_WRITEOK clearing in del_from_avail_list */ 1044 if (swapon) { 1045 lockdep_assert_held(&si->lock); 1046 si->flags |= SWP_WRITEOK; 1047 } else { 1048 if (!(READ_ONCE(si->flags) & SWP_WRITEOK)) 1049 goto skip; 1050 } 1051 1052 if (!(atomic_long_read(&si->inuse_pages) & SWAP_USAGE_OFFLIST_BIT)) 1053 goto skip; 1054 1055 val = atomic_long_fetch_and_relaxed(~SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages); 1056 1057 /* 1058 * When device is full and device is on the plist, only one updater will 1059 * see (inuse_pages == si->pages) and will call del_from_avail_list. If 1060 * that updater happen to be here, just skip adding. 1061 */ 1062 pages = si->pages; 1063 if (val == pages) { 1064 /* Just like the cmpxchg in del_from_avail_list */ 1065 if (atomic_long_try_cmpxchg(&si->inuse_pages, &pages, 1066 pages | SWAP_USAGE_OFFLIST_BIT)) 1067 goto skip; 1068 } 1069 1070 for_each_node(nid) 1071 plist_add(&si->avail_lists[nid], &swap_avail_heads[nid]); 1072 1073 skip: 1074 spin_unlock(&swap_avail_lock); 1075 } 1076 1077 /* 1078 * swap_usage_add / swap_usage_sub of each slot are serialized by ci->lock 1079 * within each cluster, so the total contribution to the global counter should 1080 * always be positive and cannot exceed the total number of usable slots. 1081 */ 1082 static bool swap_usage_add(struct swap_info_struct *si, unsigned int nr_entries) 1083 { 1084 long val = atomic_long_add_return_relaxed(nr_entries, &si->inuse_pages); 1085 1086 /* 1087 * If device is full, and SWAP_USAGE_OFFLIST_BIT is not set, 1088 * remove it from the plist. 1089 */ 1090 if (unlikely(val == si->pages)) { 1091 del_from_avail_list(si, false); 1092 return true; 1093 } 1094 1095 return false; 1096 } 1097 1098 static void swap_usage_sub(struct swap_info_struct *si, unsigned int nr_entries) 1099 { 1100 long val = atomic_long_sub_return_relaxed(nr_entries, &si->inuse_pages); 1101 1102 /* 1103 * If device is not full, and SWAP_USAGE_OFFLIST_BIT is set, 1104 * remove it from the plist. 1105 */ 1106 if (unlikely(val & SWAP_USAGE_OFFLIST_BIT)) 1107 add_to_avail_list(si, false); 1108 } 1109 1110 static void swap_range_alloc(struct swap_info_struct *si, 1111 unsigned int nr_entries) 1112 { 1113 if (swap_usage_add(si, nr_entries)) { 1114 if (vm_swap_full()) 1115 schedule_work(&si->reclaim_work); 1116 } 1117 } 1118 1119 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 1120 unsigned int nr_entries) 1121 { 1122 unsigned long begin = offset; 1123 unsigned long end = offset + nr_entries - 1; 1124 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 1125 unsigned int i; 1126 1127 /* 1128 * Use atomic clear_bit operations only on zeromap instead of non-atomic 1129 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes. 1130 */ 1131 for (i = 0; i < nr_entries; i++) { 1132 clear_bit(offset + i, si->zeromap); 1133 zswap_invalidate(swp_entry(si->type, offset + i)); 1134 } 1135 1136 if (si->flags & SWP_BLKDEV) 1137 swap_slot_free_notify = 1138 si->bdev->bd_disk->fops->swap_slot_free_notify; 1139 else 1140 swap_slot_free_notify = NULL; 1141 while (offset <= end) { 1142 arch_swap_invalidate_page(si->type, offset); 1143 if (swap_slot_free_notify) 1144 swap_slot_free_notify(si->bdev, offset); 1145 offset++; 1146 } 1147 clear_shadow_from_swap_cache(si->type, begin, end); 1148 1149 /* 1150 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0 1151 * only after the above cleanups are done. 1152 */ 1153 smp_wmb(); 1154 atomic_long_add(nr_entries, &nr_swap_pages); 1155 swap_usage_sub(si, nr_entries); 1156 } 1157 1158 static int cluster_alloc_swap(struct swap_info_struct *si, 1159 unsigned char usage, int nr, 1160 swp_entry_t slots[], int order) 1161 { 1162 int n_ret = 0; 1163 1164 while (n_ret < nr) { 1165 unsigned long offset = cluster_alloc_swap_entry(si, order, usage); 1166 1167 if (!offset) 1168 break; 1169 slots[n_ret++] = swp_entry(si->type, offset); 1170 } 1171 1172 return n_ret; 1173 } 1174 1175 static int scan_swap_map_slots(struct swap_info_struct *si, 1176 unsigned char usage, int nr, 1177 swp_entry_t slots[], int order) 1178 { 1179 unsigned int nr_pages = 1 << order; 1180 1181 /* 1182 * We try to cluster swap pages by allocating them sequentially 1183 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 1184 * way, however, we resort to first-free allocation, starting 1185 * a new cluster. This prevents us from scattering swap pages 1186 * all over the entire swap partition, so that we reduce 1187 * overall disk seek times between swap pages. -- sct 1188 * But we do now try to find an empty cluster. -Andrea 1189 * And we let swap pages go all over an SSD partition. Hugh 1190 */ 1191 if (order > 0) { 1192 /* 1193 * Should not even be attempting large allocations when huge 1194 * page swap is disabled. Warn and fail the allocation. 1195 */ 1196 if (!IS_ENABLED(CONFIG_THP_SWAP) || 1197 nr_pages > SWAPFILE_CLUSTER) { 1198 VM_WARN_ON_ONCE(1); 1199 return 0; 1200 } 1201 1202 /* 1203 * Swapfile is not block device so unable 1204 * to allocate large entries. 1205 */ 1206 if (!(si->flags & SWP_BLKDEV)) 1207 return 0; 1208 } 1209 1210 return cluster_alloc_swap(si, usage, nr, slots, order); 1211 } 1212 1213 static bool get_swap_device_info(struct swap_info_struct *si) 1214 { 1215 if (!percpu_ref_tryget_live(&si->users)) 1216 return false; 1217 /* 1218 * Guarantee the si->users are checked before accessing other 1219 * fields of swap_info_struct, and si->flags (SWP_WRITEOK) is 1220 * up to dated. 1221 * 1222 * Paired with the spin_unlock() after setup_swap_info() in 1223 * enable_swap_info(), and smp_wmb() in swapoff. 1224 */ 1225 smp_rmb(); 1226 return true; 1227 } 1228 1229 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_order) 1230 { 1231 int order = swap_entry_order(entry_order); 1232 unsigned long size = 1 << order; 1233 struct swap_info_struct *si, *next; 1234 long avail_pgs; 1235 int n_ret = 0; 1236 int node; 1237 1238 spin_lock(&swap_avail_lock); 1239 1240 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 1241 if (avail_pgs <= 0) { 1242 spin_unlock(&swap_avail_lock); 1243 goto noswap; 1244 } 1245 1246 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs); 1247 1248 atomic_long_sub(n_goal * size, &nr_swap_pages); 1249 1250 start_over: 1251 node = numa_node_id(); 1252 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1253 /* requeue si to after same-priority siblings */ 1254 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1255 spin_unlock(&swap_avail_lock); 1256 if (get_swap_device_info(si)) { 1257 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 1258 n_goal, swp_entries, order); 1259 put_swap_device(si); 1260 if (n_ret || size > 1) 1261 goto check_out; 1262 } 1263 1264 spin_lock(&swap_avail_lock); 1265 /* 1266 * if we got here, it's likely that si was almost full before, 1267 * and since scan_swap_map_slots() can drop the si->lock, 1268 * multiple callers probably all tried to get a page from the 1269 * same si and it filled up before we could get one; or, the si 1270 * filled up between us dropping swap_avail_lock and taking 1271 * si->lock. Since we dropped the swap_avail_lock, the 1272 * swap_avail_head list may have been modified; so if next is 1273 * still in the swap_avail_head list then try it, otherwise 1274 * start over if we have not gotten any slots. 1275 */ 1276 if (plist_node_empty(&next->avail_lists[node])) 1277 goto start_over; 1278 } 1279 1280 spin_unlock(&swap_avail_lock); 1281 1282 check_out: 1283 if (n_ret < n_goal) 1284 atomic_long_add((long)(n_goal - n_ret) * size, 1285 &nr_swap_pages); 1286 noswap: 1287 return n_ret; 1288 } 1289 1290 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1291 { 1292 struct swap_info_struct *si; 1293 unsigned long offset; 1294 1295 if (!entry.val) 1296 goto out; 1297 si = swp_swap_info(entry); 1298 if (!si) 1299 goto bad_nofile; 1300 if (data_race(!(si->flags & SWP_USED))) 1301 goto bad_device; 1302 offset = swp_offset(entry); 1303 if (offset >= si->max) 1304 goto bad_offset; 1305 if (data_race(!si->swap_map[swp_offset(entry)])) 1306 goto bad_free; 1307 return si; 1308 1309 bad_free: 1310 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); 1311 goto out; 1312 bad_offset: 1313 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1314 goto out; 1315 bad_device: 1316 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); 1317 goto out; 1318 bad_nofile: 1319 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1320 out: 1321 return NULL; 1322 } 1323 1324 static unsigned char __swap_entry_free_locked(struct swap_info_struct *si, 1325 unsigned long offset, 1326 unsigned char usage) 1327 { 1328 unsigned char count; 1329 unsigned char has_cache; 1330 1331 count = si->swap_map[offset]; 1332 1333 has_cache = count & SWAP_HAS_CACHE; 1334 count &= ~SWAP_HAS_CACHE; 1335 1336 if (usage == SWAP_HAS_CACHE) { 1337 VM_BUG_ON(!has_cache); 1338 has_cache = 0; 1339 } else if (count == SWAP_MAP_SHMEM) { 1340 /* 1341 * Or we could insist on shmem.c using a special 1342 * swap_shmem_free() and free_shmem_swap_and_cache()... 1343 */ 1344 count = 0; 1345 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1346 if (count == COUNT_CONTINUED) { 1347 if (swap_count_continued(si, offset, count)) 1348 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1349 else 1350 count = SWAP_MAP_MAX; 1351 } else 1352 count--; 1353 } 1354 1355 usage = count | has_cache; 1356 if (usage) 1357 WRITE_ONCE(si->swap_map[offset], usage); 1358 else 1359 WRITE_ONCE(si->swap_map[offset], SWAP_HAS_CACHE); 1360 1361 return usage; 1362 } 1363 1364 /* 1365 * When we get a swap entry, if there aren't some other ways to 1366 * prevent swapoff, such as the folio in swap cache is locked, RCU 1367 * reader side is locked, etc., the swap entry may become invalid 1368 * because of swapoff. Then, we need to enclose all swap related 1369 * functions with get_swap_device() and put_swap_device(), unless the 1370 * swap functions call get/put_swap_device() by themselves. 1371 * 1372 * RCU reader side lock (including any spinlock) is sufficient to 1373 * prevent swapoff, because synchronize_rcu() is called in swapoff() 1374 * before freeing data structures. 1375 * 1376 * Check whether swap entry is valid in the swap device. If so, 1377 * return pointer to swap_info_struct, and keep the swap entry valid 1378 * via preventing the swap device from being swapoff, until 1379 * put_swap_device() is called. Otherwise return NULL. 1380 * 1381 * Notice that swapoff or swapoff+swapon can still happen before the 1382 * percpu_ref_tryget_live() in get_swap_device() or after the 1383 * percpu_ref_put() in put_swap_device() if there isn't any other way 1384 * to prevent swapoff. The caller must be prepared for that. For 1385 * example, the following situation is possible. 1386 * 1387 * CPU1 CPU2 1388 * do_swap_page() 1389 * ... swapoff+swapon 1390 * __read_swap_cache_async() 1391 * swapcache_prepare() 1392 * __swap_duplicate() 1393 * // check swap_map 1394 * // verify PTE not changed 1395 * 1396 * In __swap_duplicate(), the swap_map need to be checked before 1397 * changing partly because the specified swap entry may be for another 1398 * swap device which has been swapoff. And in do_swap_page(), after 1399 * the page is read from the swap device, the PTE is verified not 1400 * changed with the page table locked to check whether the swap device 1401 * has been swapoff or swapoff+swapon. 1402 */ 1403 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1404 { 1405 struct swap_info_struct *si; 1406 unsigned long offset; 1407 1408 if (!entry.val) 1409 goto out; 1410 si = swp_swap_info(entry); 1411 if (!si) 1412 goto bad_nofile; 1413 if (!get_swap_device_info(si)) 1414 goto out; 1415 offset = swp_offset(entry); 1416 if (offset >= si->max) 1417 goto put_out; 1418 1419 return si; 1420 bad_nofile: 1421 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1422 out: 1423 return NULL; 1424 put_out: 1425 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1426 percpu_ref_put(&si->users); 1427 return NULL; 1428 } 1429 1430 static unsigned char __swap_entry_free(struct swap_info_struct *si, 1431 swp_entry_t entry) 1432 { 1433 struct swap_cluster_info *ci; 1434 unsigned long offset = swp_offset(entry); 1435 unsigned char usage; 1436 1437 ci = lock_cluster(si, offset); 1438 usage = __swap_entry_free_locked(si, offset, 1); 1439 if (!usage) 1440 swap_entry_range_free(si, ci, swp_entry(si->type, offset), 1); 1441 unlock_cluster(ci); 1442 1443 return usage; 1444 } 1445 1446 static bool __swap_entries_free(struct swap_info_struct *si, 1447 swp_entry_t entry, int nr) 1448 { 1449 unsigned long offset = swp_offset(entry); 1450 unsigned int type = swp_type(entry); 1451 struct swap_cluster_info *ci; 1452 bool has_cache = false; 1453 unsigned char count; 1454 int i; 1455 1456 if (nr <= 1 || swap_count(data_race(si->swap_map[offset])) != 1) 1457 goto fallback; 1458 /* cross into another cluster */ 1459 if (nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER) 1460 goto fallback; 1461 1462 ci = lock_cluster(si, offset); 1463 if (!swap_is_last_map(si, offset, nr, &has_cache)) { 1464 unlock_cluster(ci); 1465 goto fallback; 1466 } 1467 for (i = 0; i < nr; i++) 1468 WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE); 1469 if (!has_cache) 1470 swap_entry_range_free(si, ci, entry, nr); 1471 unlock_cluster(ci); 1472 1473 return has_cache; 1474 1475 fallback: 1476 for (i = 0; i < nr; i++) { 1477 if (data_race(si->swap_map[offset + i])) { 1478 count = __swap_entry_free(si, swp_entry(type, offset + i)); 1479 if (count == SWAP_HAS_CACHE) 1480 has_cache = true; 1481 } else { 1482 WARN_ON_ONCE(1); 1483 } 1484 } 1485 return has_cache; 1486 } 1487 1488 /* 1489 * Drop the last HAS_CACHE flag of swap entries, caller have to 1490 * ensure all entries belong to the same cgroup. 1491 */ 1492 static void swap_entry_range_free(struct swap_info_struct *si, 1493 struct swap_cluster_info *ci, 1494 swp_entry_t entry, unsigned int nr_pages) 1495 { 1496 unsigned long offset = swp_offset(entry); 1497 unsigned char *map = si->swap_map + offset; 1498 unsigned char *map_end = map + nr_pages; 1499 1500 /* It should never free entries across different clusters */ 1501 VM_BUG_ON(ci != offset_to_cluster(si, offset + nr_pages - 1)); 1502 VM_BUG_ON(cluster_is_empty(ci)); 1503 VM_BUG_ON(ci->count < nr_pages); 1504 1505 ci->count -= nr_pages; 1506 do { 1507 VM_BUG_ON(*map != SWAP_HAS_CACHE); 1508 *map = 0; 1509 } while (++map < map_end); 1510 1511 mem_cgroup_uncharge_swap(entry, nr_pages); 1512 swap_range_free(si, offset, nr_pages); 1513 1514 if (!ci->count) 1515 free_cluster(si, ci); 1516 else 1517 partial_free_cluster(si, ci); 1518 } 1519 1520 static void cluster_swap_free_nr(struct swap_info_struct *si, 1521 unsigned long offset, int nr_pages, 1522 unsigned char usage) 1523 { 1524 struct swap_cluster_info *ci; 1525 unsigned long end = offset + nr_pages; 1526 1527 ci = lock_cluster(si, offset); 1528 do { 1529 if (!__swap_entry_free_locked(si, offset, usage)) 1530 swap_entry_range_free(si, ci, swp_entry(si->type, offset), 1); 1531 } while (++offset < end); 1532 unlock_cluster(ci); 1533 } 1534 1535 /* 1536 * Caller has made sure that the swap device corresponding to entry 1537 * is still around or has not been recycled. 1538 */ 1539 void swap_free_nr(swp_entry_t entry, int nr_pages) 1540 { 1541 int nr; 1542 struct swap_info_struct *sis; 1543 unsigned long offset = swp_offset(entry); 1544 1545 sis = _swap_info_get(entry); 1546 if (!sis) 1547 return; 1548 1549 while (nr_pages) { 1550 nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER); 1551 cluster_swap_free_nr(sis, offset, nr, 1); 1552 offset += nr; 1553 nr_pages -= nr; 1554 } 1555 } 1556 1557 /* 1558 * Called after dropping swapcache to decrease refcnt to swap entries. 1559 */ 1560 void put_swap_folio(struct folio *folio, swp_entry_t entry) 1561 { 1562 unsigned long offset = swp_offset(entry); 1563 struct swap_cluster_info *ci; 1564 struct swap_info_struct *si; 1565 int size = 1 << swap_entry_order(folio_order(folio)); 1566 1567 si = _swap_info_get(entry); 1568 if (!si) 1569 return; 1570 1571 ci = lock_cluster(si, offset); 1572 if (swap_is_has_cache(si, offset, size)) 1573 swap_entry_range_free(si, ci, entry, size); 1574 else { 1575 for (int i = 0; i < size; i++, entry.val++) { 1576 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) 1577 swap_entry_range_free(si, ci, entry, 1); 1578 } 1579 } 1580 unlock_cluster(ci); 1581 } 1582 1583 void swapcache_free_entries(swp_entry_t *entries, int n) 1584 { 1585 int i; 1586 struct swap_cluster_info *ci; 1587 struct swap_info_struct *si = NULL; 1588 1589 if (n <= 0) 1590 return; 1591 1592 for (i = 0; i < n; ++i) { 1593 si = _swap_info_get(entries[i]); 1594 if (si) { 1595 ci = lock_cluster(si, swp_offset(entries[i])); 1596 swap_entry_range_free(si, ci, entries[i], 1); 1597 unlock_cluster(ci); 1598 } 1599 } 1600 } 1601 1602 int __swap_count(swp_entry_t entry) 1603 { 1604 struct swap_info_struct *si = swp_swap_info(entry); 1605 pgoff_t offset = swp_offset(entry); 1606 1607 return swap_count(si->swap_map[offset]); 1608 } 1609 1610 /* 1611 * How many references to @entry are currently swapped out? 1612 * This does not give an exact answer when swap count is continued, 1613 * but does include the high COUNT_CONTINUED flag to allow for that. 1614 */ 1615 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1616 { 1617 pgoff_t offset = swp_offset(entry); 1618 struct swap_cluster_info *ci; 1619 int count; 1620 1621 ci = lock_cluster(si, offset); 1622 count = swap_count(si->swap_map[offset]); 1623 unlock_cluster(ci); 1624 return count; 1625 } 1626 1627 /* 1628 * How many references to @entry are currently swapped out? 1629 * This considers COUNT_CONTINUED so it returns exact answer. 1630 */ 1631 int swp_swapcount(swp_entry_t entry) 1632 { 1633 int count, tmp_count, n; 1634 struct swap_info_struct *si; 1635 struct swap_cluster_info *ci; 1636 struct page *page; 1637 pgoff_t offset; 1638 unsigned char *map; 1639 1640 si = _swap_info_get(entry); 1641 if (!si) 1642 return 0; 1643 1644 offset = swp_offset(entry); 1645 1646 ci = lock_cluster(si, offset); 1647 1648 count = swap_count(si->swap_map[offset]); 1649 if (!(count & COUNT_CONTINUED)) 1650 goto out; 1651 1652 count &= ~COUNT_CONTINUED; 1653 n = SWAP_MAP_MAX + 1; 1654 1655 page = vmalloc_to_page(si->swap_map + offset); 1656 offset &= ~PAGE_MASK; 1657 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1658 1659 do { 1660 page = list_next_entry(page, lru); 1661 map = kmap_local_page(page); 1662 tmp_count = map[offset]; 1663 kunmap_local(map); 1664 1665 count += (tmp_count & ~COUNT_CONTINUED) * n; 1666 n *= (SWAP_CONT_MAX + 1); 1667 } while (tmp_count & COUNT_CONTINUED); 1668 out: 1669 unlock_cluster(ci); 1670 return count; 1671 } 1672 1673 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1674 swp_entry_t entry, int order) 1675 { 1676 struct swap_cluster_info *ci; 1677 unsigned char *map = si->swap_map; 1678 unsigned int nr_pages = 1 << order; 1679 unsigned long roffset = swp_offset(entry); 1680 unsigned long offset = round_down(roffset, nr_pages); 1681 int i; 1682 bool ret = false; 1683 1684 ci = lock_cluster(si, offset); 1685 if (nr_pages == 1) { 1686 if (swap_count(map[roffset])) 1687 ret = true; 1688 goto unlock_out; 1689 } 1690 for (i = 0; i < nr_pages; i++) { 1691 if (swap_count(map[offset + i])) { 1692 ret = true; 1693 break; 1694 } 1695 } 1696 unlock_out: 1697 unlock_cluster(ci); 1698 return ret; 1699 } 1700 1701 static bool folio_swapped(struct folio *folio) 1702 { 1703 swp_entry_t entry = folio->swap; 1704 struct swap_info_struct *si = _swap_info_get(entry); 1705 1706 if (!si) 1707 return false; 1708 1709 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio))) 1710 return swap_swapcount(si, entry) != 0; 1711 1712 return swap_page_trans_huge_swapped(si, entry, folio_order(folio)); 1713 } 1714 1715 static bool folio_swapcache_freeable(struct folio *folio) 1716 { 1717 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1718 1719 if (!folio_test_swapcache(folio)) 1720 return false; 1721 if (folio_test_writeback(folio)) 1722 return false; 1723 1724 /* 1725 * Once hibernation has begun to create its image of memory, 1726 * there's a danger that one of the calls to folio_free_swap() 1727 * - most probably a call from __try_to_reclaim_swap() while 1728 * hibernation is allocating its own swap pages for the image, 1729 * but conceivably even a call from memory reclaim - will free 1730 * the swap from a folio which has already been recorded in the 1731 * image as a clean swapcache folio, and then reuse its swap for 1732 * another page of the image. On waking from hibernation, the 1733 * original folio might be freed under memory pressure, then 1734 * later read back in from swap, now with the wrong data. 1735 * 1736 * Hibernation suspends storage while it is writing the image 1737 * to disk so check that here. 1738 */ 1739 if (pm_suspended_storage()) 1740 return false; 1741 1742 return true; 1743 } 1744 1745 /** 1746 * folio_free_swap() - Free the swap space used for this folio. 1747 * @folio: The folio to remove. 1748 * 1749 * If swap is getting full, or if there are no more mappings of this folio, 1750 * then call folio_free_swap to free its swap space. 1751 * 1752 * Return: true if we were able to release the swap space. 1753 */ 1754 bool folio_free_swap(struct folio *folio) 1755 { 1756 if (!folio_swapcache_freeable(folio)) 1757 return false; 1758 if (folio_swapped(folio)) 1759 return false; 1760 1761 delete_from_swap_cache(folio); 1762 folio_set_dirty(folio); 1763 return true; 1764 } 1765 1766 /** 1767 * free_swap_and_cache_nr() - Release reference on range of swap entries and 1768 * reclaim their cache if no more references remain. 1769 * @entry: First entry of range. 1770 * @nr: Number of entries in range. 1771 * 1772 * For each swap entry in the contiguous range, release a reference. If any swap 1773 * entries become free, try to reclaim their underlying folios, if present. The 1774 * offset range is defined by [entry.offset, entry.offset + nr). 1775 */ 1776 void free_swap_and_cache_nr(swp_entry_t entry, int nr) 1777 { 1778 const unsigned long start_offset = swp_offset(entry); 1779 const unsigned long end_offset = start_offset + nr; 1780 struct swap_info_struct *si; 1781 bool any_only_cache = false; 1782 unsigned long offset; 1783 1784 if (non_swap_entry(entry)) 1785 return; 1786 1787 si = get_swap_device(entry); 1788 if (!si) 1789 return; 1790 1791 if (WARN_ON(end_offset > si->max)) 1792 goto out; 1793 1794 /* 1795 * First free all entries in the range. 1796 */ 1797 any_only_cache = __swap_entries_free(si, entry, nr); 1798 1799 /* 1800 * Short-circuit the below loop if none of the entries had their 1801 * reference drop to zero. 1802 */ 1803 if (!any_only_cache) 1804 goto out; 1805 1806 /* 1807 * Now go back over the range trying to reclaim the swap cache. This is 1808 * more efficient for large folios because we will only try to reclaim 1809 * the swap once per folio in the common case. If we do 1810 * __swap_entry_free() and __try_to_reclaim_swap() in the same loop, the 1811 * latter will get a reference and lock the folio for every individual 1812 * page but will only succeed once the swap slot for every subpage is 1813 * zero. 1814 */ 1815 for (offset = start_offset; offset < end_offset; offset += nr) { 1816 nr = 1; 1817 if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 1818 /* 1819 * Folios are always naturally aligned in swap so 1820 * advance forward to the next boundary. Zero means no 1821 * folio was found for the swap entry, so advance by 1 1822 * in this case. Negative value means folio was found 1823 * but could not be reclaimed. Here we can still advance 1824 * to the next boundary. 1825 */ 1826 nr = __try_to_reclaim_swap(si, offset, 1827 TTRS_UNMAPPED | TTRS_FULL); 1828 if (nr == 0) 1829 nr = 1; 1830 else if (nr < 0) 1831 nr = -nr; 1832 nr = ALIGN(offset + 1, nr) - offset; 1833 } 1834 } 1835 1836 out: 1837 put_swap_device(si); 1838 } 1839 1840 #ifdef CONFIG_HIBERNATION 1841 1842 swp_entry_t get_swap_page_of_type(int type) 1843 { 1844 struct swap_info_struct *si = swap_type_to_swap_info(type); 1845 swp_entry_t entry = {0}; 1846 1847 if (!si) 1848 goto fail; 1849 1850 /* This is called for allocating swap entry, not cache */ 1851 if (get_swap_device_info(si)) { 1852 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry, 0)) 1853 atomic_long_dec(&nr_swap_pages); 1854 put_swap_device(si); 1855 } 1856 fail: 1857 return entry; 1858 } 1859 1860 /* 1861 * Find the swap type that corresponds to given device (if any). 1862 * 1863 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1864 * from 0, in which the swap header is expected to be located. 1865 * 1866 * This is needed for the suspend to disk (aka swsusp). 1867 */ 1868 int swap_type_of(dev_t device, sector_t offset) 1869 { 1870 int type; 1871 1872 if (!device) 1873 return -1; 1874 1875 spin_lock(&swap_lock); 1876 for (type = 0; type < nr_swapfiles; type++) { 1877 struct swap_info_struct *sis = swap_info[type]; 1878 1879 if (!(sis->flags & SWP_WRITEOK)) 1880 continue; 1881 1882 if (device == sis->bdev->bd_dev) { 1883 struct swap_extent *se = first_se(sis); 1884 1885 if (se->start_block == offset) { 1886 spin_unlock(&swap_lock); 1887 return type; 1888 } 1889 } 1890 } 1891 spin_unlock(&swap_lock); 1892 return -ENODEV; 1893 } 1894 1895 int find_first_swap(dev_t *device) 1896 { 1897 int type; 1898 1899 spin_lock(&swap_lock); 1900 for (type = 0; type < nr_swapfiles; type++) { 1901 struct swap_info_struct *sis = swap_info[type]; 1902 1903 if (!(sis->flags & SWP_WRITEOK)) 1904 continue; 1905 *device = sis->bdev->bd_dev; 1906 spin_unlock(&swap_lock); 1907 return type; 1908 } 1909 spin_unlock(&swap_lock); 1910 return -ENODEV; 1911 } 1912 1913 /* 1914 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1915 * corresponding to given index in swap_info (swap type). 1916 */ 1917 sector_t swapdev_block(int type, pgoff_t offset) 1918 { 1919 struct swap_info_struct *si = swap_type_to_swap_info(type); 1920 struct swap_extent *se; 1921 1922 if (!si || !(si->flags & SWP_WRITEOK)) 1923 return 0; 1924 se = offset_to_swap_extent(si, offset); 1925 return se->start_block + (offset - se->start_page); 1926 } 1927 1928 /* 1929 * Return either the total number of swap pages of given type, or the number 1930 * of free pages of that type (depending on @free) 1931 * 1932 * This is needed for software suspend 1933 */ 1934 unsigned int count_swap_pages(int type, int free) 1935 { 1936 unsigned int n = 0; 1937 1938 spin_lock(&swap_lock); 1939 if ((unsigned int)type < nr_swapfiles) { 1940 struct swap_info_struct *sis = swap_info[type]; 1941 1942 spin_lock(&sis->lock); 1943 if (sis->flags & SWP_WRITEOK) { 1944 n = sis->pages; 1945 if (free) 1946 n -= swap_usage_in_pages(sis); 1947 } 1948 spin_unlock(&sis->lock); 1949 } 1950 spin_unlock(&swap_lock); 1951 return n; 1952 } 1953 #endif /* CONFIG_HIBERNATION */ 1954 1955 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1956 { 1957 return pte_same(pte_swp_clear_flags(pte), swp_pte); 1958 } 1959 1960 /* 1961 * No need to decide whether this PTE shares the swap entry with others, 1962 * just let do_wp_page work it out if a write is requested later - to 1963 * force COW, vm_page_prot omits write permission from any private vma. 1964 */ 1965 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1966 unsigned long addr, swp_entry_t entry, struct folio *folio) 1967 { 1968 struct page *page; 1969 struct folio *swapcache; 1970 spinlock_t *ptl; 1971 pte_t *pte, new_pte, old_pte; 1972 bool hwpoisoned = false; 1973 int ret = 1; 1974 1975 swapcache = folio; 1976 folio = ksm_might_need_to_copy(folio, vma, addr); 1977 if (unlikely(!folio)) 1978 return -ENOMEM; 1979 else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 1980 hwpoisoned = true; 1981 folio = swapcache; 1982 } 1983 1984 page = folio_file_page(folio, swp_offset(entry)); 1985 if (PageHWPoison(page)) 1986 hwpoisoned = true; 1987 1988 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1989 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte), 1990 swp_entry_to_pte(entry)))) { 1991 ret = 0; 1992 goto out; 1993 } 1994 1995 old_pte = ptep_get(pte); 1996 1997 if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) { 1998 swp_entry_t swp_entry; 1999 2000 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 2001 if (hwpoisoned) { 2002 swp_entry = make_hwpoison_entry(page); 2003 } else { 2004 swp_entry = make_poisoned_swp_entry(); 2005 } 2006 new_pte = swp_entry_to_pte(swp_entry); 2007 ret = 0; 2008 goto setpte; 2009 } 2010 2011 /* 2012 * Some architectures may have to restore extra metadata to the page 2013 * when reading from swap. This metadata may be indexed by swap entry 2014 * so this must be called before swap_free(). 2015 */ 2016 arch_swap_restore(folio_swap(entry, folio), folio); 2017 2018 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 2019 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 2020 folio_get(folio); 2021 if (folio == swapcache) { 2022 rmap_t rmap_flags = RMAP_NONE; 2023 2024 /* 2025 * See do_swap_page(): writeback would be problematic. 2026 * However, we do a folio_wait_writeback() just before this 2027 * call and have the folio locked. 2028 */ 2029 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 2030 if (pte_swp_exclusive(old_pte)) 2031 rmap_flags |= RMAP_EXCLUSIVE; 2032 /* 2033 * We currently only expect small !anon folios, which are either 2034 * fully exclusive or fully shared. If we ever get large folios 2035 * here, we have to be careful. 2036 */ 2037 if (!folio_test_anon(folio)) { 2038 VM_WARN_ON_ONCE(folio_test_large(folio)); 2039 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 2040 folio_add_new_anon_rmap(folio, vma, addr, rmap_flags); 2041 } else { 2042 folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags); 2043 } 2044 } else { /* ksm created a completely new copy */ 2045 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 2046 folio_add_lru_vma(folio, vma); 2047 } 2048 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot)); 2049 if (pte_swp_soft_dirty(old_pte)) 2050 new_pte = pte_mksoft_dirty(new_pte); 2051 if (pte_swp_uffd_wp(old_pte)) 2052 new_pte = pte_mkuffd_wp(new_pte); 2053 setpte: 2054 set_pte_at(vma->vm_mm, addr, pte, new_pte); 2055 swap_free(entry); 2056 out: 2057 if (pte) 2058 pte_unmap_unlock(pte, ptl); 2059 if (folio != swapcache) { 2060 folio_unlock(folio); 2061 folio_put(folio); 2062 } 2063 return ret; 2064 } 2065 2066 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 2067 unsigned long addr, unsigned long end, 2068 unsigned int type) 2069 { 2070 pte_t *pte = NULL; 2071 struct swap_info_struct *si; 2072 2073 si = swap_info[type]; 2074 do { 2075 struct folio *folio; 2076 unsigned long offset; 2077 unsigned char swp_count; 2078 swp_entry_t entry; 2079 int ret; 2080 pte_t ptent; 2081 2082 if (!pte++) { 2083 pte = pte_offset_map(pmd, addr); 2084 if (!pte) 2085 break; 2086 } 2087 2088 ptent = ptep_get_lockless(pte); 2089 2090 if (!is_swap_pte(ptent)) 2091 continue; 2092 2093 entry = pte_to_swp_entry(ptent); 2094 if (swp_type(entry) != type) 2095 continue; 2096 2097 offset = swp_offset(entry); 2098 pte_unmap(pte); 2099 pte = NULL; 2100 2101 folio = swap_cache_get_folio(entry, vma, addr); 2102 if (!folio) { 2103 struct vm_fault vmf = { 2104 .vma = vma, 2105 .address = addr, 2106 .real_address = addr, 2107 .pmd = pmd, 2108 }; 2109 2110 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 2111 &vmf); 2112 } 2113 if (!folio) { 2114 swp_count = READ_ONCE(si->swap_map[offset]); 2115 if (swp_count == 0 || swp_count == SWAP_MAP_BAD) 2116 continue; 2117 return -ENOMEM; 2118 } 2119 2120 folio_lock(folio); 2121 folio_wait_writeback(folio); 2122 ret = unuse_pte(vma, pmd, addr, entry, folio); 2123 if (ret < 0) { 2124 folio_unlock(folio); 2125 folio_put(folio); 2126 return ret; 2127 } 2128 2129 folio_free_swap(folio); 2130 folio_unlock(folio); 2131 folio_put(folio); 2132 } while (addr += PAGE_SIZE, addr != end); 2133 2134 if (pte) 2135 pte_unmap(pte); 2136 return 0; 2137 } 2138 2139 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 2140 unsigned long addr, unsigned long end, 2141 unsigned int type) 2142 { 2143 pmd_t *pmd; 2144 unsigned long next; 2145 int ret; 2146 2147 pmd = pmd_offset(pud, addr); 2148 do { 2149 cond_resched(); 2150 next = pmd_addr_end(addr, end); 2151 ret = unuse_pte_range(vma, pmd, addr, next, type); 2152 if (ret) 2153 return ret; 2154 } while (pmd++, addr = next, addr != end); 2155 return 0; 2156 } 2157 2158 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 2159 unsigned long addr, unsigned long end, 2160 unsigned int type) 2161 { 2162 pud_t *pud; 2163 unsigned long next; 2164 int ret; 2165 2166 pud = pud_offset(p4d, addr); 2167 do { 2168 next = pud_addr_end(addr, end); 2169 if (pud_none_or_clear_bad(pud)) 2170 continue; 2171 ret = unuse_pmd_range(vma, pud, addr, next, type); 2172 if (ret) 2173 return ret; 2174 } while (pud++, addr = next, addr != end); 2175 return 0; 2176 } 2177 2178 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 2179 unsigned long addr, unsigned long end, 2180 unsigned int type) 2181 { 2182 p4d_t *p4d; 2183 unsigned long next; 2184 int ret; 2185 2186 p4d = p4d_offset(pgd, addr); 2187 do { 2188 next = p4d_addr_end(addr, end); 2189 if (p4d_none_or_clear_bad(p4d)) 2190 continue; 2191 ret = unuse_pud_range(vma, p4d, addr, next, type); 2192 if (ret) 2193 return ret; 2194 } while (p4d++, addr = next, addr != end); 2195 return 0; 2196 } 2197 2198 static int unuse_vma(struct vm_area_struct *vma, unsigned int type) 2199 { 2200 pgd_t *pgd; 2201 unsigned long addr, end, next; 2202 int ret; 2203 2204 addr = vma->vm_start; 2205 end = vma->vm_end; 2206 2207 pgd = pgd_offset(vma->vm_mm, addr); 2208 do { 2209 next = pgd_addr_end(addr, end); 2210 if (pgd_none_or_clear_bad(pgd)) 2211 continue; 2212 ret = unuse_p4d_range(vma, pgd, addr, next, type); 2213 if (ret) 2214 return ret; 2215 } while (pgd++, addr = next, addr != end); 2216 return 0; 2217 } 2218 2219 static int unuse_mm(struct mm_struct *mm, unsigned int type) 2220 { 2221 struct vm_area_struct *vma; 2222 int ret = 0; 2223 VMA_ITERATOR(vmi, mm, 0); 2224 2225 mmap_read_lock(mm); 2226 for_each_vma(vmi, vma) { 2227 if (vma->anon_vma && !is_vm_hugetlb_page(vma)) { 2228 ret = unuse_vma(vma, type); 2229 if (ret) 2230 break; 2231 } 2232 2233 cond_resched(); 2234 } 2235 mmap_read_unlock(mm); 2236 return ret; 2237 } 2238 2239 /* 2240 * Scan swap_map from current position to next entry still in use. 2241 * Return 0 if there are no inuse entries after prev till end of 2242 * the map. 2243 */ 2244 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 2245 unsigned int prev) 2246 { 2247 unsigned int i; 2248 unsigned char count; 2249 2250 /* 2251 * No need for swap_lock here: we're just looking 2252 * for whether an entry is in use, not modifying it; false 2253 * hits are okay, and sys_swapoff() has already prevented new 2254 * allocations from this area (while holding swap_lock). 2255 */ 2256 for (i = prev + 1; i < si->max; i++) { 2257 count = READ_ONCE(si->swap_map[i]); 2258 if (count && swap_count(count) != SWAP_MAP_BAD) 2259 break; 2260 if ((i % LATENCY_LIMIT) == 0) 2261 cond_resched(); 2262 } 2263 2264 if (i == si->max) 2265 i = 0; 2266 2267 return i; 2268 } 2269 2270 static int try_to_unuse(unsigned int type) 2271 { 2272 struct mm_struct *prev_mm; 2273 struct mm_struct *mm; 2274 struct list_head *p; 2275 int retval = 0; 2276 struct swap_info_struct *si = swap_info[type]; 2277 struct folio *folio; 2278 swp_entry_t entry; 2279 unsigned int i; 2280 2281 if (!swap_usage_in_pages(si)) 2282 goto success; 2283 2284 retry: 2285 retval = shmem_unuse(type); 2286 if (retval) 2287 return retval; 2288 2289 prev_mm = &init_mm; 2290 mmget(prev_mm); 2291 2292 spin_lock(&mmlist_lock); 2293 p = &init_mm.mmlist; 2294 while (swap_usage_in_pages(si) && 2295 !signal_pending(current) && 2296 (p = p->next) != &init_mm.mmlist) { 2297 2298 mm = list_entry(p, struct mm_struct, mmlist); 2299 if (!mmget_not_zero(mm)) 2300 continue; 2301 spin_unlock(&mmlist_lock); 2302 mmput(prev_mm); 2303 prev_mm = mm; 2304 retval = unuse_mm(mm, type); 2305 if (retval) { 2306 mmput(prev_mm); 2307 return retval; 2308 } 2309 2310 /* 2311 * Make sure that we aren't completely killing 2312 * interactive performance. 2313 */ 2314 cond_resched(); 2315 spin_lock(&mmlist_lock); 2316 } 2317 spin_unlock(&mmlist_lock); 2318 2319 mmput(prev_mm); 2320 2321 i = 0; 2322 while (swap_usage_in_pages(si) && 2323 !signal_pending(current) && 2324 (i = find_next_to_unuse(si, i)) != 0) { 2325 2326 entry = swp_entry(type, i); 2327 folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry)); 2328 if (IS_ERR(folio)) 2329 continue; 2330 2331 /* 2332 * It is conceivable that a racing task removed this folio from 2333 * swap cache just before we acquired the page lock. The folio 2334 * might even be back in swap cache on another swap area. But 2335 * that is okay, folio_free_swap() only removes stale folios. 2336 */ 2337 folio_lock(folio); 2338 folio_wait_writeback(folio); 2339 folio_free_swap(folio); 2340 folio_unlock(folio); 2341 folio_put(folio); 2342 } 2343 2344 /* 2345 * Lets check again to see if there are still swap entries in the map. 2346 * If yes, we would need to do retry the unuse logic again. 2347 * Under global memory pressure, swap entries can be reinserted back 2348 * into process space after the mmlist loop above passes over them. 2349 * 2350 * Limit the number of retries? No: when mmget_not_zero() 2351 * above fails, that mm is likely to be freeing swap from 2352 * exit_mmap(), which proceeds at its own independent pace; 2353 * and even shmem_writepage() could have been preempted after 2354 * folio_alloc_swap(), temporarily hiding that swap. It's easy 2355 * and robust (though cpu-intensive) just to keep retrying. 2356 */ 2357 if (swap_usage_in_pages(si)) { 2358 if (!signal_pending(current)) 2359 goto retry; 2360 return -EINTR; 2361 } 2362 2363 success: 2364 /* 2365 * Make sure that further cleanups after try_to_unuse() returns happen 2366 * after swap_range_free() reduces si->inuse_pages to 0. 2367 */ 2368 smp_mb(); 2369 return 0; 2370 } 2371 2372 /* 2373 * After a successful try_to_unuse, if no swap is now in use, we know 2374 * we can empty the mmlist. swap_lock must be held on entry and exit. 2375 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2376 * added to the mmlist just after page_duplicate - before would be racy. 2377 */ 2378 static void drain_mmlist(void) 2379 { 2380 struct list_head *p, *next; 2381 unsigned int type; 2382 2383 for (type = 0; type < nr_swapfiles; type++) 2384 if (swap_usage_in_pages(swap_info[type])) 2385 return; 2386 spin_lock(&mmlist_lock); 2387 list_for_each_safe(p, next, &init_mm.mmlist) 2388 list_del_init(p); 2389 spin_unlock(&mmlist_lock); 2390 } 2391 2392 /* 2393 * Free all of a swapdev's extent information 2394 */ 2395 static void destroy_swap_extents(struct swap_info_struct *sis) 2396 { 2397 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2398 struct rb_node *rb = sis->swap_extent_root.rb_node; 2399 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2400 2401 rb_erase(rb, &sis->swap_extent_root); 2402 kfree(se); 2403 } 2404 2405 if (sis->flags & SWP_ACTIVATED) { 2406 struct file *swap_file = sis->swap_file; 2407 struct address_space *mapping = swap_file->f_mapping; 2408 2409 sis->flags &= ~SWP_ACTIVATED; 2410 if (mapping->a_ops->swap_deactivate) 2411 mapping->a_ops->swap_deactivate(swap_file); 2412 } 2413 } 2414 2415 /* 2416 * Add a block range (and the corresponding page range) into this swapdev's 2417 * extent tree. 2418 * 2419 * This function rather assumes that it is called in ascending page order. 2420 */ 2421 int 2422 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2423 unsigned long nr_pages, sector_t start_block) 2424 { 2425 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2426 struct swap_extent *se; 2427 struct swap_extent *new_se; 2428 2429 /* 2430 * place the new node at the right most since the 2431 * function is called in ascending page order. 2432 */ 2433 while (*link) { 2434 parent = *link; 2435 link = &parent->rb_right; 2436 } 2437 2438 if (parent) { 2439 se = rb_entry(parent, struct swap_extent, rb_node); 2440 BUG_ON(se->start_page + se->nr_pages != start_page); 2441 if (se->start_block + se->nr_pages == start_block) { 2442 /* Merge it */ 2443 se->nr_pages += nr_pages; 2444 return 0; 2445 } 2446 } 2447 2448 /* No merge, insert a new extent. */ 2449 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2450 if (new_se == NULL) 2451 return -ENOMEM; 2452 new_se->start_page = start_page; 2453 new_se->nr_pages = nr_pages; 2454 new_se->start_block = start_block; 2455 2456 rb_link_node(&new_se->rb_node, parent, link); 2457 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2458 return 1; 2459 } 2460 EXPORT_SYMBOL_GPL(add_swap_extent); 2461 2462 /* 2463 * A `swap extent' is a simple thing which maps a contiguous range of pages 2464 * onto a contiguous range of disk blocks. A rbtree of swap extents is 2465 * built at swapon time and is then used at swap_writepage/swap_read_folio 2466 * time for locating where on disk a page belongs. 2467 * 2468 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2469 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2470 * swap files identically. 2471 * 2472 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2473 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2474 * swapfiles are handled *identically* after swapon time. 2475 * 2476 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2477 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray 2478 * blocks are found which do not fall within the PAGE_SIZE alignment 2479 * requirements, they are simply tossed out - we will never use those blocks 2480 * for swapping. 2481 * 2482 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2483 * prevents users from writing to the swap device, which will corrupt memory. 2484 * 2485 * The amount of disk space which a single swap extent represents varies. 2486 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2487 * extents in the rbtree. - akpm. 2488 */ 2489 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2490 { 2491 struct file *swap_file = sis->swap_file; 2492 struct address_space *mapping = swap_file->f_mapping; 2493 struct inode *inode = mapping->host; 2494 int ret; 2495 2496 if (S_ISBLK(inode->i_mode)) { 2497 ret = add_swap_extent(sis, 0, sis->max, 0); 2498 *span = sis->pages; 2499 return ret; 2500 } 2501 2502 if (mapping->a_ops->swap_activate) { 2503 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2504 if (ret < 0) 2505 return ret; 2506 sis->flags |= SWP_ACTIVATED; 2507 if ((sis->flags & SWP_FS_OPS) && 2508 sio_pool_init() != 0) { 2509 destroy_swap_extents(sis); 2510 return -ENOMEM; 2511 } 2512 return ret; 2513 } 2514 2515 return generic_swapfile_activate(sis, swap_file, span); 2516 } 2517 2518 static int swap_node(struct swap_info_struct *si) 2519 { 2520 struct block_device *bdev; 2521 2522 if (si->bdev) 2523 bdev = si->bdev; 2524 else 2525 bdev = si->swap_file->f_inode->i_sb->s_bdev; 2526 2527 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2528 } 2529 2530 static void setup_swap_info(struct swap_info_struct *si, int prio, 2531 unsigned char *swap_map, 2532 struct swap_cluster_info *cluster_info, 2533 unsigned long *zeromap) 2534 { 2535 int i; 2536 2537 if (prio >= 0) 2538 si->prio = prio; 2539 else 2540 si->prio = --least_priority; 2541 /* 2542 * the plist prio is negated because plist ordering is 2543 * low-to-high, while swap ordering is high-to-low 2544 */ 2545 si->list.prio = -si->prio; 2546 for_each_node(i) { 2547 if (si->prio >= 0) 2548 si->avail_lists[i].prio = -si->prio; 2549 else { 2550 if (swap_node(si) == i) 2551 si->avail_lists[i].prio = 1; 2552 else 2553 si->avail_lists[i].prio = -si->prio; 2554 } 2555 } 2556 si->swap_map = swap_map; 2557 si->cluster_info = cluster_info; 2558 si->zeromap = zeromap; 2559 } 2560 2561 static void _enable_swap_info(struct swap_info_struct *si) 2562 { 2563 atomic_long_add(si->pages, &nr_swap_pages); 2564 total_swap_pages += si->pages; 2565 2566 assert_spin_locked(&swap_lock); 2567 /* 2568 * both lists are plists, and thus priority ordered. 2569 * swap_active_head needs to be priority ordered for swapoff(), 2570 * which on removal of any swap_info_struct with an auto-assigned 2571 * (i.e. negative) priority increments the auto-assigned priority 2572 * of any lower-priority swap_info_structs. 2573 * swap_avail_head needs to be priority ordered for folio_alloc_swap(), 2574 * which allocates swap pages from the highest available priority 2575 * swap_info_struct. 2576 */ 2577 plist_add(&si->list, &swap_active_head); 2578 2579 /* Add back to available list */ 2580 add_to_avail_list(si, true); 2581 } 2582 2583 static void enable_swap_info(struct swap_info_struct *si, int prio, 2584 unsigned char *swap_map, 2585 struct swap_cluster_info *cluster_info, 2586 unsigned long *zeromap) 2587 { 2588 spin_lock(&swap_lock); 2589 spin_lock(&si->lock); 2590 setup_swap_info(si, prio, swap_map, cluster_info, zeromap); 2591 spin_unlock(&si->lock); 2592 spin_unlock(&swap_lock); 2593 /* 2594 * Finished initializing swap device, now it's safe to reference it. 2595 */ 2596 percpu_ref_resurrect(&si->users); 2597 spin_lock(&swap_lock); 2598 spin_lock(&si->lock); 2599 _enable_swap_info(si); 2600 spin_unlock(&si->lock); 2601 spin_unlock(&swap_lock); 2602 } 2603 2604 static void reinsert_swap_info(struct swap_info_struct *si) 2605 { 2606 spin_lock(&swap_lock); 2607 spin_lock(&si->lock); 2608 setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap); 2609 _enable_swap_info(si); 2610 spin_unlock(&si->lock); 2611 spin_unlock(&swap_lock); 2612 } 2613 2614 static bool __has_usable_swap(void) 2615 { 2616 return !plist_head_empty(&swap_active_head); 2617 } 2618 2619 bool has_usable_swap(void) 2620 { 2621 bool ret; 2622 2623 spin_lock(&swap_lock); 2624 ret = __has_usable_swap(); 2625 spin_unlock(&swap_lock); 2626 return ret; 2627 } 2628 2629 /* 2630 * Called after clearing SWP_WRITEOK, ensures cluster_alloc_range 2631 * see the updated flags, so there will be no more allocations. 2632 */ 2633 static void wait_for_allocation(struct swap_info_struct *si) 2634 { 2635 unsigned long offset; 2636 unsigned long end = ALIGN(si->max, SWAPFILE_CLUSTER); 2637 struct swap_cluster_info *ci; 2638 2639 BUG_ON(si->flags & SWP_WRITEOK); 2640 2641 for (offset = 0; offset < end; offset += SWAPFILE_CLUSTER) { 2642 ci = lock_cluster(si, offset); 2643 unlock_cluster(ci); 2644 offset += SWAPFILE_CLUSTER; 2645 } 2646 } 2647 2648 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2649 { 2650 struct swap_info_struct *p = NULL; 2651 unsigned char *swap_map; 2652 unsigned long *zeromap; 2653 struct swap_cluster_info *cluster_info; 2654 struct file *swap_file, *victim; 2655 struct address_space *mapping; 2656 struct inode *inode; 2657 struct filename *pathname; 2658 int err, found = 0; 2659 2660 if (!capable(CAP_SYS_ADMIN)) 2661 return -EPERM; 2662 2663 BUG_ON(!current->mm); 2664 2665 pathname = getname(specialfile); 2666 if (IS_ERR(pathname)) 2667 return PTR_ERR(pathname); 2668 2669 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2670 err = PTR_ERR(victim); 2671 if (IS_ERR(victim)) 2672 goto out; 2673 2674 mapping = victim->f_mapping; 2675 spin_lock(&swap_lock); 2676 plist_for_each_entry(p, &swap_active_head, list) { 2677 if (p->flags & SWP_WRITEOK) { 2678 if (p->swap_file->f_mapping == mapping) { 2679 found = 1; 2680 break; 2681 } 2682 } 2683 } 2684 if (!found) { 2685 err = -EINVAL; 2686 spin_unlock(&swap_lock); 2687 goto out_dput; 2688 } 2689 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2690 vm_unacct_memory(p->pages); 2691 else { 2692 err = -ENOMEM; 2693 spin_unlock(&swap_lock); 2694 goto out_dput; 2695 } 2696 spin_lock(&p->lock); 2697 del_from_avail_list(p, true); 2698 if (p->prio < 0) { 2699 struct swap_info_struct *si = p; 2700 int nid; 2701 2702 plist_for_each_entry_continue(si, &swap_active_head, list) { 2703 si->prio++; 2704 si->list.prio--; 2705 for_each_node(nid) { 2706 if (si->avail_lists[nid].prio != 1) 2707 si->avail_lists[nid].prio--; 2708 } 2709 } 2710 least_priority++; 2711 } 2712 plist_del(&p->list, &swap_active_head); 2713 atomic_long_sub(p->pages, &nr_swap_pages); 2714 total_swap_pages -= p->pages; 2715 spin_unlock(&p->lock); 2716 spin_unlock(&swap_lock); 2717 2718 wait_for_allocation(p); 2719 2720 disable_swap_slots_cache_lock(); 2721 2722 set_current_oom_origin(); 2723 err = try_to_unuse(p->type); 2724 clear_current_oom_origin(); 2725 2726 if (err) { 2727 /* re-insert swap space back into swap_list */ 2728 reinsert_swap_info(p); 2729 reenable_swap_slots_cache_unlock(); 2730 goto out_dput; 2731 } 2732 2733 reenable_swap_slots_cache_unlock(); 2734 2735 /* 2736 * Wait for swap operations protected by get/put_swap_device() 2737 * to complete. Because of synchronize_rcu() here, all swap 2738 * operations protected by RCU reader side lock (including any 2739 * spinlock) will be waited too. This makes it easy to 2740 * prevent folio_test_swapcache() and the following swap cache 2741 * operations from racing with swapoff. 2742 */ 2743 percpu_ref_kill(&p->users); 2744 synchronize_rcu(); 2745 wait_for_completion(&p->comp); 2746 2747 flush_work(&p->discard_work); 2748 flush_work(&p->reclaim_work); 2749 2750 destroy_swap_extents(p); 2751 if (p->flags & SWP_CONTINUED) 2752 free_swap_count_continuations(p); 2753 2754 if (!p->bdev || !bdev_nonrot(p->bdev)) 2755 atomic_dec(&nr_rotate_swap); 2756 2757 mutex_lock(&swapon_mutex); 2758 spin_lock(&swap_lock); 2759 spin_lock(&p->lock); 2760 drain_mmlist(); 2761 2762 swap_file = p->swap_file; 2763 p->swap_file = NULL; 2764 p->max = 0; 2765 swap_map = p->swap_map; 2766 p->swap_map = NULL; 2767 zeromap = p->zeromap; 2768 p->zeromap = NULL; 2769 cluster_info = p->cluster_info; 2770 p->cluster_info = NULL; 2771 spin_unlock(&p->lock); 2772 spin_unlock(&swap_lock); 2773 arch_swap_invalidate_area(p->type); 2774 zswap_swapoff(p->type); 2775 mutex_unlock(&swapon_mutex); 2776 free_percpu(p->percpu_cluster); 2777 p->percpu_cluster = NULL; 2778 kfree(p->global_cluster); 2779 p->global_cluster = NULL; 2780 vfree(swap_map); 2781 kvfree(zeromap); 2782 kvfree(cluster_info); 2783 /* Destroy swap account information */ 2784 swap_cgroup_swapoff(p->type); 2785 exit_swap_address_space(p->type); 2786 2787 inode = mapping->host; 2788 2789 inode_lock(inode); 2790 inode->i_flags &= ~S_SWAPFILE; 2791 inode_unlock(inode); 2792 filp_close(swap_file, NULL); 2793 2794 /* 2795 * Clear the SWP_USED flag after all resources are freed so that swapon 2796 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2797 * not hold p->lock after we cleared its SWP_WRITEOK. 2798 */ 2799 spin_lock(&swap_lock); 2800 p->flags = 0; 2801 spin_unlock(&swap_lock); 2802 2803 err = 0; 2804 atomic_inc(&proc_poll_event); 2805 wake_up_interruptible(&proc_poll_wait); 2806 2807 out_dput: 2808 filp_close(victim, NULL); 2809 out: 2810 putname(pathname); 2811 return err; 2812 } 2813 2814 #ifdef CONFIG_PROC_FS 2815 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2816 { 2817 struct seq_file *seq = file->private_data; 2818 2819 poll_wait(file, &proc_poll_wait, wait); 2820 2821 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2822 seq->poll_event = atomic_read(&proc_poll_event); 2823 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2824 } 2825 2826 return EPOLLIN | EPOLLRDNORM; 2827 } 2828 2829 /* iterator */ 2830 static void *swap_start(struct seq_file *swap, loff_t *pos) 2831 { 2832 struct swap_info_struct *si; 2833 int type; 2834 loff_t l = *pos; 2835 2836 mutex_lock(&swapon_mutex); 2837 2838 if (!l) 2839 return SEQ_START_TOKEN; 2840 2841 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2842 if (!(si->flags & SWP_USED) || !si->swap_map) 2843 continue; 2844 if (!--l) 2845 return si; 2846 } 2847 2848 return NULL; 2849 } 2850 2851 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2852 { 2853 struct swap_info_struct *si = v; 2854 int type; 2855 2856 if (v == SEQ_START_TOKEN) 2857 type = 0; 2858 else 2859 type = si->type + 1; 2860 2861 ++(*pos); 2862 for (; (si = swap_type_to_swap_info(type)); type++) { 2863 if (!(si->flags & SWP_USED) || !si->swap_map) 2864 continue; 2865 return si; 2866 } 2867 2868 return NULL; 2869 } 2870 2871 static void swap_stop(struct seq_file *swap, void *v) 2872 { 2873 mutex_unlock(&swapon_mutex); 2874 } 2875 2876 static int swap_show(struct seq_file *swap, void *v) 2877 { 2878 struct swap_info_struct *si = v; 2879 struct file *file; 2880 int len; 2881 unsigned long bytes, inuse; 2882 2883 if (si == SEQ_START_TOKEN) { 2884 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 2885 return 0; 2886 } 2887 2888 bytes = K(si->pages); 2889 inuse = K(swap_usage_in_pages(si)); 2890 2891 file = si->swap_file; 2892 len = seq_file_path(swap, file, " \t\n\\"); 2893 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n", 2894 len < 40 ? 40 - len : 1, " ", 2895 S_ISBLK(file_inode(file)->i_mode) ? 2896 "partition" : "file\t", 2897 bytes, bytes < 10000000 ? "\t" : "", 2898 inuse, inuse < 10000000 ? "\t" : "", 2899 si->prio); 2900 return 0; 2901 } 2902 2903 static const struct seq_operations swaps_op = { 2904 .start = swap_start, 2905 .next = swap_next, 2906 .stop = swap_stop, 2907 .show = swap_show 2908 }; 2909 2910 static int swaps_open(struct inode *inode, struct file *file) 2911 { 2912 struct seq_file *seq; 2913 int ret; 2914 2915 ret = seq_open(file, &swaps_op); 2916 if (ret) 2917 return ret; 2918 2919 seq = file->private_data; 2920 seq->poll_event = atomic_read(&proc_poll_event); 2921 return 0; 2922 } 2923 2924 static const struct proc_ops swaps_proc_ops = { 2925 .proc_flags = PROC_ENTRY_PERMANENT, 2926 .proc_open = swaps_open, 2927 .proc_read = seq_read, 2928 .proc_lseek = seq_lseek, 2929 .proc_release = seq_release, 2930 .proc_poll = swaps_poll, 2931 }; 2932 2933 static int __init procswaps_init(void) 2934 { 2935 proc_create("swaps", 0, NULL, &swaps_proc_ops); 2936 return 0; 2937 } 2938 __initcall(procswaps_init); 2939 #endif /* CONFIG_PROC_FS */ 2940 2941 #ifdef MAX_SWAPFILES_CHECK 2942 static int __init max_swapfiles_check(void) 2943 { 2944 MAX_SWAPFILES_CHECK(); 2945 return 0; 2946 } 2947 late_initcall(max_swapfiles_check); 2948 #endif 2949 2950 static struct swap_info_struct *alloc_swap_info(void) 2951 { 2952 struct swap_info_struct *p; 2953 struct swap_info_struct *defer = NULL; 2954 unsigned int type; 2955 int i; 2956 2957 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2958 if (!p) 2959 return ERR_PTR(-ENOMEM); 2960 2961 if (percpu_ref_init(&p->users, swap_users_ref_free, 2962 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { 2963 kvfree(p); 2964 return ERR_PTR(-ENOMEM); 2965 } 2966 2967 spin_lock(&swap_lock); 2968 for (type = 0; type < nr_swapfiles; type++) { 2969 if (!(swap_info[type]->flags & SWP_USED)) 2970 break; 2971 } 2972 if (type >= MAX_SWAPFILES) { 2973 spin_unlock(&swap_lock); 2974 percpu_ref_exit(&p->users); 2975 kvfree(p); 2976 return ERR_PTR(-EPERM); 2977 } 2978 if (type >= nr_swapfiles) { 2979 p->type = type; 2980 /* 2981 * Publish the swap_info_struct after initializing it. 2982 * Note that kvzalloc() above zeroes all its fields. 2983 */ 2984 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ 2985 nr_swapfiles++; 2986 } else { 2987 defer = p; 2988 p = swap_info[type]; 2989 /* 2990 * Do not memset this entry: a racing procfs swap_next() 2991 * would be relying on p->type to remain valid. 2992 */ 2993 } 2994 p->swap_extent_root = RB_ROOT; 2995 plist_node_init(&p->list, 0); 2996 for_each_node(i) 2997 plist_node_init(&p->avail_lists[i], 0); 2998 p->flags = SWP_USED; 2999 spin_unlock(&swap_lock); 3000 if (defer) { 3001 percpu_ref_exit(&defer->users); 3002 kvfree(defer); 3003 } 3004 spin_lock_init(&p->lock); 3005 spin_lock_init(&p->cont_lock); 3006 atomic_long_set(&p->inuse_pages, SWAP_USAGE_OFFLIST_BIT); 3007 init_completion(&p->comp); 3008 3009 return p; 3010 } 3011 3012 static int claim_swapfile(struct swap_info_struct *si, struct inode *inode) 3013 { 3014 if (S_ISBLK(inode->i_mode)) { 3015 si->bdev = I_BDEV(inode); 3016 /* 3017 * Zoned block devices contain zones that have a sequential 3018 * write only restriction. Hence zoned block devices are not 3019 * suitable for swapping. Disallow them here. 3020 */ 3021 if (bdev_is_zoned(si->bdev)) 3022 return -EINVAL; 3023 si->flags |= SWP_BLKDEV; 3024 } else if (S_ISREG(inode->i_mode)) { 3025 si->bdev = inode->i_sb->s_bdev; 3026 } 3027 3028 return 0; 3029 } 3030 3031 3032 /* 3033 * Find out how many pages are allowed for a single swap device. There 3034 * are two limiting factors: 3035 * 1) the number of bits for the swap offset in the swp_entry_t type, and 3036 * 2) the number of bits in the swap pte, as defined by the different 3037 * architectures. 3038 * 3039 * In order to find the largest possible bit mask, a swap entry with 3040 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 3041 * decoded to a swp_entry_t again, and finally the swap offset is 3042 * extracted. 3043 * 3044 * This will mask all the bits from the initial ~0UL mask that can't 3045 * be encoded in either the swp_entry_t or the architecture definition 3046 * of a swap pte. 3047 */ 3048 unsigned long generic_max_swapfile_size(void) 3049 { 3050 return swp_offset(pte_to_swp_entry( 3051 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 3052 } 3053 3054 /* Can be overridden by an architecture for additional checks. */ 3055 __weak unsigned long arch_max_swapfile_size(void) 3056 { 3057 return generic_max_swapfile_size(); 3058 } 3059 3060 static unsigned long read_swap_header(struct swap_info_struct *si, 3061 union swap_header *swap_header, 3062 struct inode *inode) 3063 { 3064 int i; 3065 unsigned long maxpages; 3066 unsigned long swapfilepages; 3067 unsigned long last_page; 3068 3069 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 3070 pr_err("Unable to find swap-space signature\n"); 3071 return 0; 3072 } 3073 3074 /* swap partition endianness hack... */ 3075 if (swab32(swap_header->info.version) == 1) { 3076 swab32s(&swap_header->info.version); 3077 swab32s(&swap_header->info.last_page); 3078 swab32s(&swap_header->info.nr_badpages); 3079 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 3080 return 0; 3081 for (i = 0; i < swap_header->info.nr_badpages; i++) 3082 swab32s(&swap_header->info.badpages[i]); 3083 } 3084 /* Check the swap header's sub-version */ 3085 if (swap_header->info.version != 1) { 3086 pr_warn("Unable to handle swap header version %d\n", 3087 swap_header->info.version); 3088 return 0; 3089 } 3090 3091 maxpages = swapfile_maximum_size; 3092 last_page = swap_header->info.last_page; 3093 if (!last_page) { 3094 pr_warn("Empty swap-file\n"); 3095 return 0; 3096 } 3097 if (last_page > maxpages) { 3098 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 3099 K(maxpages), K(last_page)); 3100 } 3101 if (maxpages > last_page) { 3102 maxpages = last_page + 1; 3103 /* p->max is an unsigned int: don't overflow it */ 3104 if ((unsigned int)maxpages == 0) 3105 maxpages = UINT_MAX; 3106 } 3107 3108 if (!maxpages) 3109 return 0; 3110 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 3111 if (swapfilepages && maxpages > swapfilepages) { 3112 pr_warn("Swap area shorter than signature indicates\n"); 3113 return 0; 3114 } 3115 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 3116 return 0; 3117 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 3118 return 0; 3119 3120 return maxpages; 3121 } 3122 3123 #define SWAP_CLUSTER_INFO_COLS \ 3124 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 3125 #define SWAP_CLUSTER_SPACE_COLS \ 3126 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 3127 #define SWAP_CLUSTER_COLS \ 3128 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 3129 3130 static int setup_swap_map_and_extents(struct swap_info_struct *si, 3131 union swap_header *swap_header, 3132 unsigned char *swap_map, 3133 unsigned long maxpages, 3134 sector_t *span) 3135 { 3136 unsigned int nr_good_pages; 3137 unsigned long i; 3138 int nr_extents; 3139 3140 nr_good_pages = maxpages - 1; /* omit header page */ 3141 3142 for (i = 0; i < swap_header->info.nr_badpages; i++) { 3143 unsigned int page_nr = swap_header->info.badpages[i]; 3144 if (page_nr == 0 || page_nr > swap_header->info.last_page) 3145 return -EINVAL; 3146 if (page_nr < maxpages) { 3147 swap_map[page_nr] = SWAP_MAP_BAD; 3148 nr_good_pages--; 3149 } 3150 } 3151 3152 if (nr_good_pages) { 3153 swap_map[0] = SWAP_MAP_BAD; 3154 si->max = maxpages; 3155 si->pages = nr_good_pages; 3156 nr_extents = setup_swap_extents(si, span); 3157 if (nr_extents < 0) 3158 return nr_extents; 3159 nr_good_pages = si->pages; 3160 } 3161 if (!nr_good_pages) { 3162 pr_warn("Empty swap-file\n"); 3163 return -EINVAL; 3164 } 3165 3166 return nr_extents; 3167 } 3168 3169 static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si, 3170 union swap_header *swap_header, 3171 unsigned long maxpages) 3172 { 3173 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3174 struct swap_cluster_info *cluster_info; 3175 unsigned long i, j, k, idx; 3176 int cpu, err = -ENOMEM; 3177 3178 cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL); 3179 if (!cluster_info) 3180 goto err; 3181 3182 for (i = 0; i < nr_clusters; i++) 3183 spin_lock_init(&cluster_info[i].lock); 3184 3185 if (si->flags & SWP_SOLIDSTATE) { 3186 si->percpu_cluster = alloc_percpu(struct percpu_cluster); 3187 if (!si->percpu_cluster) 3188 goto err_free; 3189 3190 for_each_possible_cpu(cpu) { 3191 struct percpu_cluster *cluster; 3192 3193 cluster = per_cpu_ptr(si->percpu_cluster, cpu); 3194 for (i = 0; i < SWAP_NR_ORDERS; i++) 3195 cluster->next[i] = SWAP_ENTRY_INVALID; 3196 local_lock_init(&cluster->lock); 3197 } 3198 } else { 3199 si->global_cluster = kmalloc(sizeof(*si->global_cluster), 3200 GFP_KERNEL); 3201 if (!si->global_cluster) 3202 goto err_free; 3203 for (i = 0; i < SWAP_NR_ORDERS; i++) 3204 si->global_cluster->next[i] = SWAP_ENTRY_INVALID; 3205 spin_lock_init(&si->global_cluster_lock); 3206 } 3207 3208 /* 3209 * Mark unusable pages as unavailable. The clusters aren't 3210 * marked free yet, so no list operations are involved yet. 3211 * 3212 * See setup_swap_map_and_extents(): header page, bad pages, 3213 * and the EOF part of the last cluster. 3214 */ 3215 inc_cluster_info_page(si, cluster_info, 0); 3216 for (i = 0; i < swap_header->info.nr_badpages; i++) 3217 inc_cluster_info_page(si, cluster_info, 3218 swap_header->info.badpages[i]); 3219 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 3220 inc_cluster_info_page(si, cluster_info, i); 3221 3222 INIT_LIST_HEAD(&si->free_clusters); 3223 INIT_LIST_HEAD(&si->full_clusters); 3224 INIT_LIST_HEAD(&si->discard_clusters); 3225 3226 for (i = 0; i < SWAP_NR_ORDERS; i++) { 3227 INIT_LIST_HEAD(&si->nonfull_clusters[i]); 3228 INIT_LIST_HEAD(&si->frag_clusters[i]); 3229 atomic_long_set(&si->frag_cluster_nr[i], 0); 3230 } 3231 3232 /* 3233 * Reduce false cache line sharing between cluster_info and 3234 * sharing same address space. 3235 */ 3236 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 3237 j = k % SWAP_CLUSTER_COLS; 3238 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 3239 struct swap_cluster_info *ci; 3240 idx = i * SWAP_CLUSTER_COLS + j; 3241 ci = cluster_info + idx; 3242 if (idx >= nr_clusters) 3243 continue; 3244 if (ci->count) { 3245 ci->flags = CLUSTER_FLAG_NONFULL; 3246 list_add_tail(&ci->list, &si->nonfull_clusters[0]); 3247 continue; 3248 } 3249 ci->flags = CLUSTER_FLAG_FREE; 3250 list_add_tail(&ci->list, &si->free_clusters); 3251 } 3252 } 3253 3254 return cluster_info; 3255 3256 err_free: 3257 kvfree(cluster_info); 3258 err: 3259 return ERR_PTR(err); 3260 } 3261 3262 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 3263 { 3264 struct swap_info_struct *si; 3265 struct filename *name; 3266 struct file *swap_file = NULL; 3267 struct address_space *mapping; 3268 struct dentry *dentry; 3269 int prio; 3270 int error; 3271 union swap_header *swap_header; 3272 int nr_extents; 3273 sector_t span; 3274 unsigned long maxpages; 3275 unsigned char *swap_map = NULL; 3276 unsigned long *zeromap = NULL; 3277 struct swap_cluster_info *cluster_info = NULL; 3278 struct folio *folio = NULL; 3279 struct inode *inode = NULL; 3280 bool inced_nr_rotate_swap = false; 3281 3282 if (swap_flags & ~SWAP_FLAGS_VALID) 3283 return -EINVAL; 3284 3285 if (!capable(CAP_SYS_ADMIN)) 3286 return -EPERM; 3287 3288 if (!swap_avail_heads) 3289 return -ENOMEM; 3290 3291 si = alloc_swap_info(); 3292 if (IS_ERR(si)) 3293 return PTR_ERR(si); 3294 3295 INIT_WORK(&si->discard_work, swap_discard_work); 3296 INIT_WORK(&si->reclaim_work, swap_reclaim_work); 3297 3298 name = getname(specialfile); 3299 if (IS_ERR(name)) { 3300 error = PTR_ERR(name); 3301 name = NULL; 3302 goto bad_swap; 3303 } 3304 swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0); 3305 if (IS_ERR(swap_file)) { 3306 error = PTR_ERR(swap_file); 3307 swap_file = NULL; 3308 goto bad_swap; 3309 } 3310 3311 si->swap_file = swap_file; 3312 mapping = swap_file->f_mapping; 3313 dentry = swap_file->f_path.dentry; 3314 inode = mapping->host; 3315 3316 error = claim_swapfile(si, inode); 3317 if (unlikely(error)) 3318 goto bad_swap; 3319 3320 inode_lock(inode); 3321 if (d_unlinked(dentry) || cant_mount(dentry)) { 3322 error = -ENOENT; 3323 goto bad_swap_unlock_inode; 3324 } 3325 if (IS_SWAPFILE(inode)) { 3326 error = -EBUSY; 3327 goto bad_swap_unlock_inode; 3328 } 3329 3330 /* 3331 * Read the swap header. 3332 */ 3333 if (!mapping->a_ops->read_folio) { 3334 error = -EINVAL; 3335 goto bad_swap_unlock_inode; 3336 } 3337 folio = read_mapping_folio(mapping, 0, swap_file); 3338 if (IS_ERR(folio)) { 3339 error = PTR_ERR(folio); 3340 goto bad_swap_unlock_inode; 3341 } 3342 swap_header = kmap_local_folio(folio, 0); 3343 3344 maxpages = read_swap_header(si, swap_header, inode); 3345 if (unlikely(!maxpages)) { 3346 error = -EINVAL; 3347 goto bad_swap_unlock_inode; 3348 } 3349 3350 /* OK, set up the swap map and apply the bad block list */ 3351 swap_map = vzalloc(maxpages); 3352 if (!swap_map) { 3353 error = -ENOMEM; 3354 goto bad_swap_unlock_inode; 3355 } 3356 3357 error = swap_cgroup_swapon(si->type, maxpages); 3358 if (error) 3359 goto bad_swap_unlock_inode; 3360 3361 nr_extents = setup_swap_map_and_extents(si, swap_header, swap_map, 3362 maxpages, &span); 3363 if (unlikely(nr_extents < 0)) { 3364 error = nr_extents; 3365 goto bad_swap_unlock_inode; 3366 } 3367 3368 /* 3369 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might 3370 * be above MAX_PAGE_ORDER incase of a large swap file. 3371 */ 3372 zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long), 3373 GFP_KERNEL | __GFP_ZERO); 3374 if (!zeromap) { 3375 error = -ENOMEM; 3376 goto bad_swap_unlock_inode; 3377 } 3378 3379 if (si->bdev && bdev_stable_writes(si->bdev)) 3380 si->flags |= SWP_STABLE_WRITES; 3381 3382 if (si->bdev && bdev_synchronous(si->bdev)) 3383 si->flags |= SWP_SYNCHRONOUS_IO; 3384 3385 if (si->bdev && bdev_nonrot(si->bdev)) { 3386 si->flags |= SWP_SOLIDSTATE; 3387 } else { 3388 atomic_inc(&nr_rotate_swap); 3389 inced_nr_rotate_swap = true; 3390 } 3391 3392 cluster_info = setup_clusters(si, swap_header, maxpages); 3393 if (IS_ERR(cluster_info)) { 3394 error = PTR_ERR(cluster_info); 3395 cluster_info = NULL; 3396 goto bad_swap_unlock_inode; 3397 } 3398 3399 if ((swap_flags & SWAP_FLAG_DISCARD) && 3400 si->bdev && bdev_max_discard_sectors(si->bdev)) { 3401 /* 3402 * When discard is enabled for swap with no particular 3403 * policy flagged, we set all swap discard flags here in 3404 * order to sustain backward compatibility with older 3405 * swapon(8) releases. 3406 */ 3407 si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3408 SWP_PAGE_DISCARD); 3409 3410 /* 3411 * By flagging sys_swapon, a sysadmin can tell us to 3412 * either do single-time area discards only, or to just 3413 * perform discards for released swap page-clusters. 3414 * Now it's time to adjust the p->flags accordingly. 3415 */ 3416 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3417 si->flags &= ~SWP_PAGE_DISCARD; 3418 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3419 si->flags &= ~SWP_AREA_DISCARD; 3420 3421 /* issue a swapon-time discard if it's still required */ 3422 if (si->flags & SWP_AREA_DISCARD) { 3423 int err = discard_swap(si); 3424 if (unlikely(err)) 3425 pr_err("swapon: discard_swap(%p): %d\n", 3426 si, err); 3427 } 3428 } 3429 3430 error = init_swap_address_space(si->type, maxpages); 3431 if (error) 3432 goto bad_swap_unlock_inode; 3433 3434 error = zswap_swapon(si->type, maxpages); 3435 if (error) 3436 goto free_swap_address_space; 3437 3438 /* 3439 * Flush any pending IO and dirty mappings before we start using this 3440 * swap device. 3441 */ 3442 inode->i_flags |= S_SWAPFILE; 3443 error = inode_drain_writes(inode); 3444 if (error) { 3445 inode->i_flags &= ~S_SWAPFILE; 3446 goto free_swap_zswap; 3447 } 3448 3449 mutex_lock(&swapon_mutex); 3450 prio = -1; 3451 if (swap_flags & SWAP_FLAG_PREFER) 3452 prio = 3453 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3454 enable_swap_info(si, prio, swap_map, cluster_info, zeromap); 3455 3456 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n", 3457 K(si->pages), name->name, si->prio, nr_extents, 3458 K((unsigned long long)span), 3459 (si->flags & SWP_SOLIDSTATE) ? "SS" : "", 3460 (si->flags & SWP_DISCARDABLE) ? "D" : "", 3461 (si->flags & SWP_AREA_DISCARD) ? "s" : "", 3462 (si->flags & SWP_PAGE_DISCARD) ? "c" : ""); 3463 3464 mutex_unlock(&swapon_mutex); 3465 atomic_inc(&proc_poll_event); 3466 wake_up_interruptible(&proc_poll_wait); 3467 3468 error = 0; 3469 goto out; 3470 free_swap_zswap: 3471 zswap_swapoff(si->type); 3472 free_swap_address_space: 3473 exit_swap_address_space(si->type); 3474 bad_swap_unlock_inode: 3475 inode_unlock(inode); 3476 bad_swap: 3477 free_percpu(si->percpu_cluster); 3478 si->percpu_cluster = NULL; 3479 kfree(si->global_cluster); 3480 si->global_cluster = NULL; 3481 inode = NULL; 3482 destroy_swap_extents(si); 3483 swap_cgroup_swapoff(si->type); 3484 spin_lock(&swap_lock); 3485 si->swap_file = NULL; 3486 si->flags = 0; 3487 spin_unlock(&swap_lock); 3488 vfree(swap_map); 3489 kvfree(zeromap); 3490 kvfree(cluster_info); 3491 if (inced_nr_rotate_swap) 3492 atomic_dec(&nr_rotate_swap); 3493 if (swap_file) 3494 filp_close(swap_file, NULL); 3495 out: 3496 if (!IS_ERR_OR_NULL(folio)) 3497 folio_release_kmap(folio, swap_header); 3498 if (name) 3499 putname(name); 3500 if (inode) 3501 inode_unlock(inode); 3502 if (!error) 3503 enable_swap_slots_cache(); 3504 return error; 3505 } 3506 3507 void si_swapinfo(struct sysinfo *val) 3508 { 3509 unsigned int type; 3510 unsigned long nr_to_be_unused = 0; 3511 3512 spin_lock(&swap_lock); 3513 for (type = 0; type < nr_swapfiles; type++) { 3514 struct swap_info_struct *si = swap_info[type]; 3515 3516 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3517 nr_to_be_unused += swap_usage_in_pages(si); 3518 } 3519 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3520 val->totalswap = total_swap_pages + nr_to_be_unused; 3521 spin_unlock(&swap_lock); 3522 } 3523 3524 /* 3525 * Verify that nr swap entries are valid and increment their swap map counts. 3526 * 3527 * Returns error code in following case. 3528 * - success -> 0 3529 * - swp_entry is invalid -> EINVAL 3530 * - swp_entry is migration entry -> EINVAL 3531 * - swap-cache reference is requested but there is already one. -> EEXIST 3532 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3533 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3534 */ 3535 static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr) 3536 { 3537 struct swap_info_struct *si; 3538 struct swap_cluster_info *ci; 3539 unsigned long offset; 3540 unsigned char count; 3541 unsigned char has_cache; 3542 int err, i; 3543 3544 si = swp_swap_info(entry); 3545 3546 offset = swp_offset(entry); 3547 VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER); 3548 VM_WARN_ON(usage == 1 && nr > 1); 3549 ci = lock_cluster(si, offset); 3550 3551 err = 0; 3552 for (i = 0; i < nr; i++) { 3553 count = si->swap_map[offset + i]; 3554 3555 /* 3556 * swapin_readahead() doesn't check if a swap entry is valid, so the 3557 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3558 */ 3559 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3560 err = -ENOENT; 3561 goto unlock_out; 3562 } 3563 3564 has_cache = count & SWAP_HAS_CACHE; 3565 count &= ~SWAP_HAS_CACHE; 3566 3567 if (!count && !has_cache) { 3568 err = -ENOENT; 3569 } else if (usage == SWAP_HAS_CACHE) { 3570 if (has_cache) 3571 err = -EEXIST; 3572 } else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) { 3573 err = -EINVAL; 3574 } 3575 3576 if (err) 3577 goto unlock_out; 3578 } 3579 3580 for (i = 0; i < nr; i++) { 3581 count = si->swap_map[offset + i]; 3582 has_cache = count & SWAP_HAS_CACHE; 3583 count &= ~SWAP_HAS_CACHE; 3584 3585 if (usage == SWAP_HAS_CACHE) 3586 has_cache = SWAP_HAS_CACHE; 3587 else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3588 count += usage; 3589 else if (swap_count_continued(si, offset + i, count)) 3590 count = COUNT_CONTINUED; 3591 else { 3592 /* 3593 * Don't need to rollback changes, because if 3594 * usage == 1, there must be nr == 1. 3595 */ 3596 err = -ENOMEM; 3597 goto unlock_out; 3598 } 3599 3600 WRITE_ONCE(si->swap_map[offset + i], count | has_cache); 3601 } 3602 3603 unlock_out: 3604 unlock_cluster(ci); 3605 return err; 3606 } 3607 3608 /* 3609 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3610 * (in which case its reference count is never incremented). 3611 */ 3612 void swap_shmem_alloc(swp_entry_t entry, int nr) 3613 { 3614 __swap_duplicate(entry, SWAP_MAP_SHMEM, nr); 3615 } 3616 3617 /* 3618 * Increase reference count of swap entry by 1. 3619 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3620 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3621 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3622 * might occur if a page table entry has got corrupted. 3623 */ 3624 int swap_duplicate(swp_entry_t entry) 3625 { 3626 int err = 0; 3627 3628 while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM) 3629 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3630 return err; 3631 } 3632 3633 /* 3634 * @entry: first swap entry from which we allocate nr swap cache. 3635 * 3636 * Called when allocating swap cache for existing swap entries, 3637 * This can return error codes. Returns 0 at success. 3638 * -EEXIST means there is a swap cache. 3639 * Note: return code is different from swap_duplicate(). 3640 */ 3641 int swapcache_prepare(swp_entry_t entry, int nr) 3642 { 3643 return __swap_duplicate(entry, SWAP_HAS_CACHE, nr); 3644 } 3645 3646 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr) 3647 { 3648 unsigned long offset = swp_offset(entry); 3649 3650 cluster_swap_free_nr(si, offset, nr, SWAP_HAS_CACHE); 3651 } 3652 3653 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3654 { 3655 return swap_type_to_swap_info(swp_type(entry)); 3656 } 3657 3658 /* 3659 * out-of-line methods to avoid include hell. 3660 */ 3661 struct address_space *swapcache_mapping(struct folio *folio) 3662 { 3663 return swp_swap_info(folio->swap)->swap_file->f_mapping; 3664 } 3665 EXPORT_SYMBOL_GPL(swapcache_mapping); 3666 3667 pgoff_t __folio_swap_cache_index(struct folio *folio) 3668 { 3669 return swap_cache_index(folio->swap); 3670 } 3671 EXPORT_SYMBOL_GPL(__folio_swap_cache_index); 3672 3673 /* 3674 * add_swap_count_continuation - called when a swap count is duplicated 3675 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3676 * page of the original vmalloc'ed swap_map, to hold the continuation count 3677 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3678 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3679 * 3680 * These continuation pages are seldom referenced: the common paths all work 3681 * on the original swap_map, only referring to a continuation page when the 3682 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3683 * 3684 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3685 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3686 * can be called after dropping locks. 3687 */ 3688 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3689 { 3690 struct swap_info_struct *si; 3691 struct swap_cluster_info *ci; 3692 struct page *head; 3693 struct page *page; 3694 struct page *list_page; 3695 pgoff_t offset; 3696 unsigned char count; 3697 int ret = 0; 3698 3699 /* 3700 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3701 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3702 */ 3703 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3704 3705 si = get_swap_device(entry); 3706 if (!si) { 3707 /* 3708 * An acceptable race has occurred since the failing 3709 * __swap_duplicate(): the swap device may be swapoff 3710 */ 3711 goto outer; 3712 } 3713 3714 offset = swp_offset(entry); 3715 3716 ci = lock_cluster(si, offset); 3717 3718 count = swap_count(si->swap_map[offset]); 3719 3720 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3721 /* 3722 * The higher the swap count, the more likely it is that tasks 3723 * will race to add swap count continuation: we need to avoid 3724 * over-provisioning. 3725 */ 3726 goto out; 3727 } 3728 3729 if (!page) { 3730 ret = -ENOMEM; 3731 goto out; 3732 } 3733 3734 head = vmalloc_to_page(si->swap_map + offset); 3735 offset &= ~PAGE_MASK; 3736 3737 spin_lock(&si->cont_lock); 3738 /* 3739 * Page allocation does not initialize the page's lru field, 3740 * but it does always reset its private field. 3741 */ 3742 if (!page_private(head)) { 3743 BUG_ON(count & COUNT_CONTINUED); 3744 INIT_LIST_HEAD(&head->lru); 3745 set_page_private(head, SWP_CONTINUED); 3746 si->flags |= SWP_CONTINUED; 3747 } 3748 3749 list_for_each_entry(list_page, &head->lru, lru) { 3750 unsigned char *map; 3751 3752 /* 3753 * If the previous map said no continuation, but we've found 3754 * a continuation page, free our allocation and use this one. 3755 */ 3756 if (!(count & COUNT_CONTINUED)) 3757 goto out_unlock_cont; 3758 3759 map = kmap_local_page(list_page) + offset; 3760 count = *map; 3761 kunmap_local(map); 3762 3763 /* 3764 * If this continuation count now has some space in it, 3765 * free our allocation and use this one. 3766 */ 3767 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3768 goto out_unlock_cont; 3769 } 3770 3771 list_add_tail(&page->lru, &head->lru); 3772 page = NULL; /* now it's attached, don't free it */ 3773 out_unlock_cont: 3774 spin_unlock(&si->cont_lock); 3775 out: 3776 unlock_cluster(ci); 3777 put_swap_device(si); 3778 outer: 3779 if (page) 3780 __free_page(page); 3781 return ret; 3782 } 3783 3784 /* 3785 * swap_count_continued - when the original swap_map count is incremented 3786 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3787 * into, carry if so, or else fail until a new continuation page is allocated; 3788 * when the original swap_map count is decremented from 0 with continuation, 3789 * borrow from the continuation and report whether it still holds more. 3790 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3791 * lock. 3792 */ 3793 static bool swap_count_continued(struct swap_info_struct *si, 3794 pgoff_t offset, unsigned char count) 3795 { 3796 struct page *head; 3797 struct page *page; 3798 unsigned char *map; 3799 bool ret; 3800 3801 head = vmalloc_to_page(si->swap_map + offset); 3802 if (page_private(head) != SWP_CONTINUED) { 3803 BUG_ON(count & COUNT_CONTINUED); 3804 return false; /* need to add count continuation */ 3805 } 3806 3807 spin_lock(&si->cont_lock); 3808 offset &= ~PAGE_MASK; 3809 page = list_next_entry(head, lru); 3810 map = kmap_local_page(page) + offset; 3811 3812 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3813 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3814 3815 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3816 /* 3817 * Think of how you add 1 to 999 3818 */ 3819 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3820 kunmap_local(map); 3821 page = list_next_entry(page, lru); 3822 BUG_ON(page == head); 3823 map = kmap_local_page(page) + offset; 3824 } 3825 if (*map == SWAP_CONT_MAX) { 3826 kunmap_local(map); 3827 page = list_next_entry(page, lru); 3828 if (page == head) { 3829 ret = false; /* add count continuation */ 3830 goto out; 3831 } 3832 map = kmap_local_page(page) + offset; 3833 init_map: *map = 0; /* we didn't zero the page */ 3834 } 3835 *map += 1; 3836 kunmap_local(map); 3837 while ((page = list_prev_entry(page, lru)) != head) { 3838 map = kmap_local_page(page) + offset; 3839 *map = COUNT_CONTINUED; 3840 kunmap_local(map); 3841 } 3842 ret = true; /* incremented */ 3843 3844 } else { /* decrementing */ 3845 /* 3846 * Think of how you subtract 1 from 1000 3847 */ 3848 BUG_ON(count != COUNT_CONTINUED); 3849 while (*map == COUNT_CONTINUED) { 3850 kunmap_local(map); 3851 page = list_next_entry(page, lru); 3852 BUG_ON(page == head); 3853 map = kmap_local_page(page) + offset; 3854 } 3855 BUG_ON(*map == 0); 3856 *map -= 1; 3857 if (*map == 0) 3858 count = 0; 3859 kunmap_local(map); 3860 while ((page = list_prev_entry(page, lru)) != head) { 3861 map = kmap_local_page(page) + offset; 3862 *map = SWAP_CONT_MAX | count; 3863 count = COUNT_CONTINUED; 3864 kunmap_local(map); 3865 } 3866 ret = count == COUNT_CONTINUED; 3867 } 3868 out: 3869 spin_unlock(&si->cont_lock); 3870 return ret; 3871 } 3872 3873 /* 3874 * free_swap_count_continuations - swapoff free all the continuation pages 3875 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3876 */ 3877 static void free_swap_count_continuations(struct swap_info_struct *si) 3878 { 3879 pgoff_t offset; 3880 3881 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3882 struct page *head; 3883 head = vmalloc_to_page(si->swap_map + offset); 3884 if (page_private(head)) { 3885 struct page *page, *next; 3886 3887 list_for_each_entry_safe(page, next, &head->lru, lru) { 3888 list_del(&page->lru); 3889 __free_page(page); 3890 } 3891 } 3892 } 3893 } 3894 3895 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3896 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp) 3897 { 3898 struct swap_info_struct *si, *next; 3899 int nid = folio_nid(folio); 3900 3901 if (!(gfp & __GFP_IO)) 3902 return; 3903 3904 if (!__has_usable_swap()) 3905 return; 3906 3907 if (!blk_cgroup_congested()) 3908 return; 3909 3910 /* 3911 * We've already scheduled a throttle, avoid taking the global swap 3912 * lock. 3913 */ 3914 if (current->throttle_disk) 3915 return; 3916 3917 spin_lock(&swap_avail_lock); 3918 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], 3919 avail_lists[nid]) { 3920 if (si->bdev) { 3921 blkcg_schedule_throttle(si->bdev->bd_disk, true); 3922 break; 3923 } 3924 } 3925 spin_unlock(&swap_avail_lock); 3926 } 3927 #endif 3928 3929 static int __init swapfile_init(void) 3930 { 3931 int nid; 3932 3933 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3934 GFP_KERNEL); 3935 if (!swap_avail_heads) { 3936 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3937 return -ENOMEM; 3938 } 3939 3940 for_each_node(nid) 3941 plist_head_init(&swap_avail_heads[nid]); 3942 3943 swapfile_maximum_size = arch_max_swapfile_size(); 3944 3945 #ifdef CONFIG_MIGRATION 3946 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS)) 3947 swap_migration_ad_supported = true; 3948 #endif /* CONFIG_MIGRATION */ 3949 3950 return 0; 3951 } 3952 subsys_initcall(swapfile_init); 3953