xref: /linux/mm/swapfile.c (revision f884ab15afdc5514e88105c92a4e2e1e6539869a)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37 
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/page_cgroup.h>
42 
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 				 unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47 
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages;
53 static int least_priority;
54 static atomic_t highest_priority_index = ATOMIC_INIT(-1);
55 
56 static const char Bad_file[] = "Bad swap file entry ";
57 static const char Unused_file[] = "Unused swap file entry ";
58 static const char Bad_offset[] = "Bad swap offset entry ";
59 static const char Unused_offset[] = "Unused swap offset entry ";
60 
61 struct swap_list_t swap_list = {-1, -1};
62 
63 struct swap_info_struct *swap_info[MAX_SWAPFILES];
64 
65 static DEFINE_MUTEX(swapon_mutex);
66 
67 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
68 /* Activity counter to indicate that a swapon or swapoff has occurred */
69 static atomic_t proc_poll_event = ATOMIC_INIT(0);
70 
71 static inline unsigned char swap_count(unsigned char ent)
72 {
73 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
74 }
75 
76 /* returns 1 if swap entry is freed */
77 static int
78 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
79 {
80 	swp_entry_t entry = swp_entry(si->type, offset);
81 	struct page *page;
82 	int ret = 0;
83 
84 	page = find_get_page(swap_address_space(entry), entry.val);
85 	if (!page)
86 		return 0;
87 	/*
88 	 * This function is called from scan_swap_map() and it's called
89 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
90 	 * We have to use trylock for avoiding deadlock. This is a special
91 	 * case and you should use try_to_free_swap() with explicit lock_page()
92 	 * in usual operations.
93 	 */
94 	if (trylock_page(page)) {
95 		ret = try_to_free_swap(page);
96 		unlock_page(page);
97 	}
98 	page_cache_release(page);
99 	return ret;
100 }
101 
102 /*
103  * swapon tell device that all the old swap contents can be discarded,
104  * to allow the swap device to optimize its wear-levelling.
105  */
106 static int discard_swap(struct swap_info_struct *si)
107 {
108 	struct swap_extent *se;
109 	sector_t start_block;
110 	sector_t nr_blocks;
111 	int err = 0;
112 
113 	/* Do not discard the swap header page! */
114 	se = &si->first_swap_extent;
115 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
116 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
117 	if (nr_blocks) {
118 		err = blkdev_issue_discard(si->bdev, start_block,
119 				nr_blocks, GFP_KERNEL, 0);
120 		if (err)
121 			return err;
122 		cond_resched();
123 	}
124 
125 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
126 		start_block = se->start_block << (PAGE_SHIFT - 9);
127 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
128 
129 		err = blkdev_issue_discard(si->bdev, start_block,
130 				nr_blocks, GFP_KERNEL, 0);
131 		if (err)
132 			break;
133 
134 		cond_resched();
135 	}
136 	return err;		/* That will often be -EOPNOTSUPP */
137 }
138 
139 /*
140  * swap allocation tell device that a cluster of swap can now be discarded,
141  * to allow the swap device to optimize its wear-levelling.
142  */
143 static void discard_swap_cluster(struct swap_info_struct *si,
144 				 pgoff_t start_page, pgoff_t nr_pages)
145 {
146 	struct swap_extent *se = si->curr_swap_extent;
147 	int found_extent = 0;
148 
149 	while (nr_pages) {
150 		struct list_head *lh;
151 
152 		if (se->start_page <= start_page &&
153 		    start_page < se->start_page + se->nr_pages) {
154 			pgoff_t offset = start_page - se->start_page;
155 			sector_t start_block = se->start_block + offset;
156 			sector_t nr_blocks = se->nr_pages - offset;
157 
158 			if (nr_blocks > nr_pages)
159 				nr_blocks = nr_pages;
160 			start_page += nr_blocks;
161 			nr_pages -= nr_blocks;
162 
163 			if (!found_extent++)
164 				si->curr_swap_extent = se;
165 
166 			start_block <<= PAGE_SHIFT - 9;
167 			nr_blocks <<= PAGE_SHIFT - 9;
168 			if (blkdev_issue_discard(si->bdev, start_block,
169 				    nr_blocks, GFP_NOIO, 0))
170 				break;
171 		}
172 
173 		lh = se->list.next;
174 		se = list_entry(lh, struct swap_extent, list);
175 	}
176 }
177 
178 static int wait_for_discard(void *word)
179 {
180 	schedule();
181 	return 0;
182 }
183 
184 #define SWAPFILE_CLUSTER	256
185 #define LATENCY_LIMIT		256
186 
187 static unsigned long scan_swap_map(struct swap_info_struct *si,
188 				   unsigned char usage)
189 {
190 	unsigned long offset;
191 	unsigned long scan_base;
192 	unsigned long last_in_cluster = 0;
193 	int latency_ration = LATENCY_LIMIT;
194 	int found_free_cluster = 0;
195 
196 	/*
197 	 * We try to cluster swap pages by allocating them sequentially
198 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
199 	 * way, however, we resort to first-free allocation, starting
200 	 * a new cluster.  This prevents us from scattering swap pages
201 	 * all over the entire swap partition, so that we reduce
202 	 * overall disk seek times between swap pages.  -- sct
203 	 * But we do now try to find an empty cluster.  -Andrea
204 	 * And we let swap pages go all over an SSD partition.  Hugh
205 	 */
206 
207 	si->flags += SWP_SCANNING;
208 	scan_base = offset = si->cluster_next;
209 
210 	if (unlikely(!si->cluster_nr--)) {
211 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
212 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
213 			goto checks;
214 		}
215 		if (si->flags & SWP_DISCARDABLE) {
216 			/*
217 			 * Start range check on racing allocations, in case
218 			 * they overlap the cluster we eventually decide on
219 			 * (we scan without swap_lock to allow preemption).
220 			 * It's hardly conceivable that cluster_nr could be
221 			 * wrapped during our scan, but don't depend on it.
222 			 */
223 			if (si->lowest_alloc)
224 				goto checks;
225 			si->lowest_alloc = si->max;
226 			si->highest_alloc = 0;
227 		}
228 		spin_unlock(&si->lock);
229 
230 		/*
231 		 * If seek is expensive, start searching for new cluster from
232 		 * start of partition, to minimize the span of allocated swap.
233 		 * But if seek is cheap, search from our current position, so
234 		 * that swap is allocated from all over the partition: if the
235 		 * Flash Translation Layer only remaps within limited zones,
236 		 * we don't want to wear out the first zone too quickly.
237 		 */
238 		if (!(si->flags & SWP_SOLIDSTATE))
239 			scan_base = offset = si->lowest_bit;
240 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
241 
242 		/* Locate the first empty (unaligned) cluster */
243 		for (; last_in_cluster <= si->highest_bit; offset++) {
244 			if (si->swap_map[offset])
245 				last_in_cluster = offset + SWAPFILE_CLUSTER;
246 			else if (offset == last_in_cluster) {
247 				spin_lock(&si->lock);
248 				offset -= SWAPFILE_CLUSTER - 1;
249 				si->cluster_next = offset;
250 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
251 				found_free_cluster = 1;
252 				goto checks;
253 			}
254 			if (unlikely(--latency_ration < 0)) {
255 				cond_resched();
256 				latency_ration = LATENCY_LIMIT;
257 			}
258 		}
259 
260 		offset = si->lowest_bit;
261 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
262 
263 		/* Locate the first empty (unaligned) cluster */
264 		for (; last_in_cluster < scan_base; offset++) {
265 			if (si->swap_map[offset])
266 				last_in_cluster = offset + SWAPFILE_CLUSTER;
267 			else if (offset == last_in_cluster) {
268 				spin_lock(&si->lock);
269 				offset -= SWAPFILE_CLUSTER - 1;
270 				si->cluster_next = offset;
271 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
272 				found_free_cluster = 1;
273 				goto checks;
274 			}
275 			if (unlikely(--latency_ration < 0)) {
276 				cond_resched();
277 				latency_ration = LATENCY_LIMIT;
278 			}
279 		}
280 
281 		offset = scan_base;
282 		spin_lock(&si->lock);
283 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
284 		si->lowest_alloc = 0;
285 	}
286 
287 checks:
288 	if (!(si->flags & SWP_WRITEOK))
289 		goto no_page;
290 	if (!si->highest_bit)
291 		goto no_page;
292 	if (offset > si->highest_bit)
293 		scan_base = offset = si->lowest_bit;
294 
295 	/* reuse swap entry of cache-only swap if not busy. */
296 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
297 		int swap_was_freed;
298 		spin_unlock(&si->lock);
299 		swap_was_freed = __try_to_reclaim_swap(si, offset);
300 		spin_lock(&si->lock);
301 		/* entry was freed successfully, try to use this again */
302 		if (swap_was_freed)
303 			goto checks;
304 		goto scan; /* check next one */
305 	}
306 
307 	if (si->swap_map[offset])
308 		goto scan;
309 
310 	if (offset == si->lowest_bit)
311 		si->lowest_bit++;
312 	if (offset == si->highest_bit)
313 		si->highest_bit--;
314 	si->inuse_pages++;
315 	if (si->inuse_pages == si->pages) {
316 		si->lowest_bit = si->max;
317 		si->highest_bit = 0;
318 	}
319 	si->swap_map[offset] = usage;
320 	si->cluster_next = offset + 1;
321 	si->flags -= SWP_SCANNING;
322 
323 	if (si->lowest_alloc) {
324 		/*
325 		 * Only set when SWP_DISCARDABLE, and there's a scan
326 		 * for a free cluster in progress or just completed.
327 		 */
328 		if (found_free_cluster) {
329 			/*
330 			 * To optimize wear-levelling, discard the
331 			 * old data of the cluster, taking care not to
332 			 * discard any of its pages that have already
333 			 * been allocated by racing tasks (offset has
334 			 * already stepped over any at the beginning).
335 			 */
336 			if (offset < si->highest_alloc &&
337 			    si->lowest_alloc <= last_in_cluster)
338 				last_in_cluster = si->lowest_alloc - 1;
339 			si->flags |= SWP_DISCARDING;
340 			spin_unlock(&si->lock);
341 
342 			if (offset < last_in_cluster)
343 				discard_swap_cluster(si, offset,
344 					last_in_cluster - offset + 1);
345 
346 			spin_lock(&si->lock);
347 			si->lowest_alloc = 0;
348 			si->flags &= ~SWP_DISCARDING;
349 
350 			smp_mb();	/* wake_up_bit advises this */
351 			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
352 
353 		} else if (si->flags & SWP_DISCARDING) {
354 			/*
355 			 * Delay using pages allocated by racing tasks
356 			 * until the whole discard has been issued. We
357 			 * could defer that delay until swap_writepage,
358 			 * but it's easier to keep this self-contained.
359 			 */
360 			spin_unlock(&si->lock);
361 			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
362 				wait_for_discard, TASK_UNINTERRUPTIBLE);
363 			spin_lock(&si->lock);
364 		} else {
365 			/*
366 			 * Note pages allocated by racing tasks while
367 			 * scan for a free cluster is in progress, so
368 			 * that its final discard can exclude them.
369 			 */
370 			if (offset < si->lowest_alloc)
371 				si->lowest_alloc = offset;
372 			if (offset > si->highest_alloc)
373 				si->highest_alloc = offset;
374 		}
375 	}
376 	return offset;
377 
378 scan:
379 	spin_unlock(&si->lock);
380 	while (++offset <= si->highest_bit) {
381 		if (!si->swap_map[offset]) {
382 			spin_lock(&si->lock);
383 			goto checks;
384 		}
385 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
386 			spin_lock(&si->lock);
387 			goto checks;
388 		}
389 		if (unlikely(--latency_ration < 0)) {
390 			cond_resched();
391 			latency_ration = LATENCY_LIMIT;
392 		}
393 	}
394 	offset = si->lowest_bit;
395 	while (++offset < scan_base) {
396 		if (!si->swap_map[offset]) {
397 			spin_lock(&si->lock);
398 			goto checks;
399 		}
400 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
401 			spin_lock(&si->lock);
402 			goto checks;
403 		}
404 		if (unlikely(--latency_ration < 0)) {
405 			cond_resched();
406 			latency_ration = LATENCY_LIMIT;
407 		}
408 	}
409 	spin_lock(&si->lock);
410 
411 no_page:
412 	si->flags -= SWP_SCANNING;
413 	return 0;
414 }
415 
416 swp_entry_t get_swap_page(void)
417 {
418 	struct swap_info_struct *si;
419 	pgoff_t offset;
420 	int type, next;
421 	int wrapped = 0;
422 	int hp_index;
423 
424 	spin_lock(&swap_lock);
425 	if (atomic_long_read(&nr_swap_pages) <= 0)
426 		goto noswap;
427 	atomic_long_dec(&nr_swap_pages);
428 
429 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
430 		hp_index = atomic_xchg(&highest_priority_index, -1);
431 		/*
432 		 * highest_priority_index records current highest priority swap
433 		 * type which just frees swap entries. If its priority is
434 		 * higher than that of swap_list.next swap type, we use it.  It
435 		 * isn't protected by swap_lock, so it can be an invalid value
436 		 * if the corresponding swap type is swapoff. We double check
437 		 * the flags here. It's even possible the swap type is swapoff
438 		 * and swapon again and its priority is changed. In such rare
439 		 * case, low prority swap type might be used, but eventually
440 		 * high priority swap will be used after several rounds of
441 		 * swap.
442 		 */
443 		if (hp_index != -1 && hp_index != type &&
444 		    swap_info[type]->prio < swap_info[hp_index]->prio &&
445 		    (swap_info[hp_index]->flags & SWP_WRITEOK)) {
446 			type = hp_index;
447 			swap_list.next = type;
448 		}
449 
450 		si = swap_info[type];
451 		next = si->next;
452 		if (next < 0 ||
453 		    (!wrapped && si->prio != swap_info[next]->prio)) {
454 			next = swap_list.head;
455 			wrapped++;
456 		}
457 
458 		spin_lock(&si->lock);
459 		if (!si->highest_bit) {
460 			spin_unlock(&si->lock);
461 			continue;
462 		}
463 		if (!(si->flags & SWP_WRITEOK)) {
464 			spin_unlock(&si->lock);
465 			continue;
466 		}
467 
468 		swap_list.next = next;
469 
470 		spin_unlock(&swap_lock);
471 		/* This is called for allocating swap entry for cache */
472 		offset = scan_swap_map(si, SWAP_HAS_CACHE);
473 		spin_unlock(&si->lock);
474 		if (offset)
475 			return swp_entry(type, offset);
476 		spin_lock(&swap_lock);
477 		next = swap_list.next;
478 	}
479 
480 	atomic_long_inc(&nr_swap_pages);
481 noswap:
482 	spin_unlock(&swap_lock);
483 	return (swp_entry_t) {0};
484 }
485 
486 /* The only caller of this function is now susupend routine */
487 swp_entry_t get_swap_page_of_type(int type)
488 {
489 	struct swap_info_struct *si;
490 	pgoff_t offset;
491 
492 	si = swap_info[type];
493 	spin_lock(&si->lock);
494 	if (si && (si->flags & SWP_WRITEOK)) {
495 		atomic_long_dec(&nr_swap_pages);
496 		/* This is called for allocating swap entry, not cache */
497 		offset = scan_swap_map(si, 1);
498 		if (offset) {
499 			spin_unlock(&si->lock);
500 			return swp_entry(type, offset);
501 		}
502 		atomic_long_inc(&nr_swap_pages);
503 	}
504 	spin_unlock(&si->lock);
505 	return (swp_entry_t) {0};
506 }
507 
508 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
509 {
510 	struct swap_info_struct *p;
511 	unsigned long offset, type;
512 
513 	if (!entry.val)
514 		goto out;
515 	type = swp_type(entry);
516 	if (type >= nr_swapfiles)
517 		goto bad_nofile;
518 	p = swap_info[type];
519 	if (!(p->flags & SWP_USED))
520 		goto bad_device;
521 	offset = swp_offset(entry);
522 	if (offset >= p->max)
523 		goto bad_offset;
524 	if (!p->swap_map[offset])
525 		goto bad_free;
526 	spin_lock(&p->lock);
527 	return p;
528 
529 bad_free:
530 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
531 	goto out;
532 bad_offset:
533 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
534 	goto out;
535 bad_device:
536 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
537 	goto out;
538 bad_nofile:
539 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
540 out:
541 	return NULL;
542 }
543 
544 /*
545  * This swap type frees swap entry, check if it is the highest priority swap
546  * type which just frees swap entry. get_swap_page() uses
547  * highest_priority_index to search highest priority swap type. The
548  * swap_info_struct.lock can't protect us if there are multiple swap types
549  * active, so we use atomic_cmpxchg.
550  */
551 static void set_highest_priority_index(int type)
552 {
553 	int old_hp_index, new_hp_index;
554 
555 	do {
556 		old_hp_index = atomic_read(&highest_priority_index);
557 		if (old_hp_index != -1 &&
558 			swap_info[old_hp_index]->prio >= swap_info[type]->prio)
559 			break;
560 		new_hp_index = type;
561 	} while (atomic_cmpxchg(&highest_priority_index,
562 		old_hp_index, new_hp_index) != old_hp_index);
563 }
564 
565 static unsigned char swap_entry_free(struct swap_info_struct *p,
566 				     swp_entry_t entry, unsigned char usage)
567 {
568 	unsigned long offset = swp_offset(entry);
569 	unsigned char count;
570 	unsigned char has_cache;
571 
572 	count = p->swap_map[offset];
573 	has_cache = count & SWAP_HAS_CACHE;
574 	count &= ~SWAP_HAS_CACHE;
575 
576 	if (usage == SWAP_HAS_CACHE) {
577 		VM_BUG_ON(!has_cache);
578 		has_cache = 0;
579 	} else if (count == SWAP_MAP_SHMEM) {
580 		/*
581 		 * Or we could insist on shmem.c using a special
582 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
583 		 */
584 		count = 0;
585 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
586 		if (count == COUNT_CONTINUED) {
587 			if (swap_count_continued(p, offset, count))
588 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
589 			else
590 				count = SWAP_MAP_MAX;
591 		} else
592 			count--;
593 	}
594 
595 	if (!count)
596 		mem_cgroup_uncharge_swap(entry);
597 
598 	usage = count | has_cache;
599 	p->swap_map[offset] = usage;
600 
601 	/* free if no reference */
602 	if (!usage) {
603 		if (offset < p->lowest_bit)
604 			p->lowest_bit = offset;
605 		if (offset > p->highest_bit)
606 			p->highest_bit = offset;
607 		set_highest_priority_index(p->type);
608 		atomic_long_inc(&nr_swap_pages);
609 		p->inuse_pages--;
610 		frontswap_invalidate_page(p->type, offset);
611 		if (p->flags & SWP_BLKDEV) {
612 			struct gendisk *disk = p->bdev->bd_disk;
613 			if (disk->fops->swap_slot_free_notify)
614 				disk->fops->swap_slot_free_notify(p->bdev,
615 								  offset);
616 		}
617 	}
618 
619 	return usage;
620 }
621 
622 /*
623  * Caller has made sure that the swapdevice corresponding to entry
624  * is still around or has not been recycled.
625  */
626 void swap_free(swp_entry_t entry)
627 {
628 	struct swap_info_struct *p;
629 
630 	p = swap_info_get(entry);
631 	if (p) {
632 		swap_entry_free(p, entry, 1);
633 		spin_unlock(&p->lock);
634 	}
635 }
636 
637 /*
638  * Called after dropping swapcache to decrease refcnt to swap entries.
639  */
640 void swapcache_free(swp_entry_t entry, struct page *page)
641 {
642 	struct swap_info_struct *p;
643 	unsigned char count;
644 
645 	p = swap_info_get(entry);
646 	if (p) {
647 		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
648 		if (page)
649 			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
650 		spin_unlock(&p->lock);
651 	}
652 }
653 
654 /*
655  * How many references to page are currently swapped out?
656  * This does not give an exact answer when swap count is continued,
657  * but does include the high COUNT_CONTINUED flag to allow for that.
658  */
659 int page_swapcount(struct page *page)
660 {
661 	int count = 0;
662 	struct swap_info_struct *p;
663 	swp_entry_t entry;
664 
665 	entry.val = page_private(page);
666 	p = swap_info_get(entry);
667 	if (p) {
668 		count = swap_count(p->swap_map[swp_offset(entry)]);
669 		spin_unlock(&p->lock);
670 	}
671 	return count;
672 }
673 
674 /*
675  * We can write to an anon page without COW if there are no other references
676  * to it.  And as a side-effect, free up its swap: because the old content
677  * on disk will never be read, and seeking back there to write new content
678  * later would only waste time away from clustering.
679  */
680 int reuse_swap_page(struct page *page)
681 {
682 	int count;
683 
684 	VM_BUG_ON(!PageLocked(page));
685 	if (unlikely(PageKsm(page)))
686 		return 0;
687 	count = page_mapcount(page);
688 	if (count <= 1 && PageSwapCache(page)) {
689 		count += page_swapcount(page);
690 		if (count == 1 && !PageWriteback(page)) {
691 			delete_from_swap_cache(page);
692 			SetPageDirty(page);
693 		}
694 	}
695 	return count <= 1;
696 }
697 
698 /*
699  * If swap is getting full, or if there are no more mappings of this page,
700  * then try_to_free_swap is called to free its swap space.
701  */
702 int try_to_free_swap(struct page *page)
703 {
704 	VM_BUG_ON(!PageLocked(page));
705 
706 	if (!PageSwapCache(page))
707 		return 0;
708 	if (PageWriteback(page))
709 		return 0;
710 	if (page_swapcount(page))
711 		return 0;
712 
713 	/*
714 	 * Once hibernation has begun to create its image of memory,
715 	 * there's a danger that one of the calls to try_to_free_swap()
716 	 * - most probably a call from __try_to_reclaim_swap() while
717 	 * hibernation is allocating its own swap pages for the image,
718 	 * but conceivably even a call from memory reclaim - will free
719 	 * the swap from a page which has already been recorded in the
720 	 * image as a clean swapcache page, and then reuse its swap for
721 	 * another page of the image.  On waking from hibernation, the
722 	 * original page might be freed under memory pressure, then
723 	 * later read back in from swap, now with the wrong data.
724 	 *
725 	 * Hibration suspends storage while it is writing the image
726 	 * to disk so check that here.
727 	 */
728 	if (pm_suspended_storage())
729 		return 0;
730 
731 	delete_from_swap_cache(page);
732 	SetPageDirty(page);
733 	return 1;
734 }
735 
736 /*
737  * Free the swap entry like above, but also try to
738  * free the page cache entry if it is the last user.
739  */
740 int free_swap_and_cache(swp_entry_t entry)
741 {
742 	struct swap_info_struct *p;
743 	struct page *page = NULL;
744 
745 	if (non_swap_entry(entry))
746 		return 1;
747 
748 	p = swap_info_get(entry);
749 	if (p) {
750 		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
751 			page = find_get_page(swap_address_space(entry),
752 						entry.val);
753 			if (page && !trylock_page(page)) {
754 				page_cache_release(page);
755 				page = NULL;
756 			}
757 		}
758 		spin_unlock(&p->lock);
759 	}
760 	if (page) {
761 		/*
762 		 * Not mapped elsewhere, or swap space full? Free it!
763 		 * Also recheck PageSwapCache now page is locked (above).
764 		 */
765 		if (PageSwapCache(page) && !PageWriteback(page) &&
766 				(!page_mapped(page) || vm_swap_full())) {
767 			delete_from_swap_cache(page);
768 			SetPageDirty(page);
769 		}
770 		unlock_page(page);
771 		page_cache_release(page);
772 	}
773 	return p != NULL;
774 }
775 
776 #ifdef CONFIG_HIBERNATION
777 /*
778  * Find the swap type that corresponds to given device (if any).
779  *
780  * @offset - number of the PAGE_SIZE-sized block of the device, starting
781  * from 0, in which the swap header is expected to be located.
782  *
783  * This is needed for the suspend to disk (aka swsusp).
784  */
785 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
786 {
787 	struct block_device *bdev = NULL;
788 	int type;
789 
790 	if (device)
791 		bdev = bdget(device);
792 
793 	spin_lock(&swap_lock);
794 	for (type = 0; type < nr_swapfiles; type++) {
795 		struct swap_info_struct *sis = swap_info[type];
796 
797 		if (!(sis->flags & SWP_WRITEOK))
798 			continue;
799 
800 		if (!bdev) {
801 			if (bdev_p)
802 				*bdev_p = bdgrab(sis->bdev);
803 
804 			spin_unlock(&swap_lock);
805 			return type;
806 		}
807 		if (bdev == sis->bdev) {
808 			struct swap_extent *se = &sis->first_swap_extent;
809 
810 			if (se->start_block == offset) {
811 				if (bdev_p)
812 					*bdev_p = bdgrab(sis->bdev);
813 
814 				spin_unlock(&swap_lock);
815 				bdput(bdev);
816 				return type;
817 			}
818 		}
819 	}
820 	spin_unlock(&swap_lock);
821 	if (bdev)
822 		bdput(bdev);
823 
824 	return -ENODEV;
825 }
826 
827 /*
828  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
829  * corresponding to given index in swap_info (swap type).
830  */
831 sector_t swapdev_block(int type, pgoff_t offset)
832 {
833 	struct block_device *bdev;
834 
835 	if ((unsigned int)type >= nr_swapfiles)
836 		return 0;
837 	if (!(swap_info[type]->flags & SWP_WRITEOK))
838 		return 0;
839 	return map_swap_entry(swp_entry(type, offset), &bdev);
840 }
841 
842 /*
843  * Return either the total number of swap pages of given type, or the number
844  * of free pages of that type (depending on @free)
845  *
846  * This is needed for software suspend
847  */
848 unsigned int count_swap_pages(int type, int free)
849 {
850 	unsigned int n = 0;
851 
852 	spin_lock(&swap_lock);
853 	if ((unsigned int)type < nr_swapfiles) {
854 		struct swap_info_struct *sis = swap_info[type];
855 
856 		spin_lock(&sis->lock);
857 		if (sis->flags & SWP_WRITEOK) {
858 			n = sis->pages;
859 			if (free)
860 				n -= sis->inuse_pages;
861 		}
862 		spin_unlock(&sis->lock);
863 	}
864 	spin_unlock(&swap_lock);
865 	return n;
866 }
867 #endif /* CONFIG_HIBERNATION */
868 
869 /*
870  * No need to decide whether this PTE shares the swap entry with others,
871  * just let do_wp_page work it out if a write is requested later - to
872  * force COW, vm_page_prot omits write permission from any private vma.
873  */
874 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
875 		unsigned long addr, swp_entry_t entry, struct page *page)
876 {
877 	struct page *swapcache;
878 	struct mem_cgroup *memcg;
879 	spinlock_t *ptl;
880 	pte_t *pte;
881 	int ret = 1;
882 
883 	swapcache = page;
884 	page = ksm_might_need_to_copy(page, vma, addr);
885 	if (unlikely(!page))
886 		return -ENOMEM;
887 
888 	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
889 					 GFP_KERNEL, &memcg)) {
890 		ret = -ENOMEM;
891 		goto out_nolock;
892 	}
893 
894 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
895 	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
896 		mem_cgroup_cancel_charge_swapin(memcg);
897 		ret = 0;
898 		goto out;
899 	}
900 
901 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
902 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
903 	get_page(page);
904 	set_pte_at(vma->vm_mm, addr, pte,
905 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
906 	if (page == swapcache)
907 		page_add_anon_rmap(page, vma, addr);
908 	else /* ksm created a completely new copy */
909 		page_add_new_anon_rmap(page, vma, addr);
910 	mem_cgroup_commit_charge_swapin(page, memcg);
911 	swap_free(entry);
912 	/*
913 	 * Move the page to the active list so it is not
914 	 * immediately swapped out again after swapon.
915 	 */
916 	activate_page(page);
917 out:
918 	pte_unmap_unlock(pte, ptl);
919 out_nolock:
920 	if (page != swapcache) {
921 		unlock_page(page);
922 		put_page(page);
923 	}
924 	return ret;
925 }
926 
927 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
928 				unsigned long addr, unsigned long end,
929 				swp_entry_t entry, struct page *page)
930 {
931 	pte_t swp_pte = swp_entry_to_pte(entry);
932 	pte_t *pte;
933 	int ret = 0;
934 
935 	/*
936 	 * We don't actually need pte lock while scanning for swp_pte: since
937 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
938 	 * page table while we're scanning; though it could get zapped, and on
939 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
940 	 * of unmatched parts which look like swp_pte, so unuse_pte must
941 	 * recheck under pte lock.  Scanning without pte lock lets it be
942 	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
943 	 */
944 	pte = pte_offset_map(pmd, addr);
945 	do {
946 		/*
947 		 * swapoff spends a _lot_ of time in this loop!
948 		 * Test inline before going to call unuse_pte.
949 		 */
950 		if (unlikely(pte_same(*pte, swp_pte))) {
951 			pte_unmap(pte);
952 			ret = unuse_pte(vma, pmd, addr, entry, page);
953 			if (ret)
954 				goto out;
955 			pte = pte_offset_map(pmd, addr);
956 		}
957 	} while (pte++, addr += PAGE_SIZE, addr != end);
958 	pte_unmap(pte - 1);
959 out:
960 	return ret;
961 }
962 
963 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
964 				unsigned long addr, unsigned long end,
965 				swp_entry_t entry, struct page *page)
966 {
967 	pmd_t *pmd;
968 	unsigned long next;
969 	int ret;
970 
971 	pmd = pmd_offset(pud, addr);
972 	do {
973 		next = pmd_addr_end(addr, end);
974 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
975 			continue;
976 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
977 		if (ret)
978 			return ret;
979 	} while (pmd++, addr = next, addr != end);
980 	return 0;
981 }
982 
983 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
984 				unsigned long addr, unsigned long end,
985 				swp_entry_t entry, struct page *page)
986 {
987 	pud_t *pud;
988 	unsigned long next;
989 	int ret;
990 
991 	pud = pud_offset(pgd, addr);
992 	do {
993 		next = pud_addr_end(addr, end);
994 		if (pud_none_or_clear_bad(pud))
995 			continue;
996 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
997 		if (ret)
998 			return ret;
999 	} while (pud++, addr = next, addr != end);
1000 	return 0;
1001 }
1002 
1003 static int unuse_vma(struct vm_area_struct *vma,
1004 				swp_entry_t entry, struct page *page)
1005 {
1006 	pgd_t *pgd;
1007 	unsigned long addr, end, next;
1008 	int ret;
1009 
1010 	if (page_anon_vma(page)) {
1011 		addr = page_address_in_vma(page, vma);
1012 		if (addr == -EFAULT)
1013 			return 0;
1014 		else
1015 			end = addr + PAGE_SIZE;
1016 	} else {
1017 		addr = vma->vm_start;
1018 		end = vma->vm_end;
1019 	}
1020 
1021 	pgd = pgd_offset(vma->vm_mm, addr);
1022 	do {
1023 		next = pgd_addr_end(addr, end);
1024 		if (pgd_none_or_clear_bad(pgd))
1025 			continue;
1026 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1027 		if (ret)
1028 			return ret;
1029 	} while (pgd++, addr = next, addr != end);
1030 	return 0;
1031 }
1032 
1033 static int unuse_mm(struct mm_struct *mm,
1034 				swp_entry_t entry, struct page *page)
1035 {
1036 	struct vm_area_struct *vma;
1037 	int ret = 0;
1038 
1039 	if (!down_read_trylock(&mm->mmap_sem)) {
1040 		/*
1041 		 * Activate page so shrink_inactive_list is unlikely to unmap
1042 		 * its ptes while lock is dropped, so swapoff can make progress.
1043 		 */
1044 		activate_page(page);
1045 		unlock_page(page);
1046 		down_read(&mm->mmap_sem);
1047 		lock_page(page);
1048 	}
1049 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1050 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1051 			break;
1052 	}
1053 	up_read(&mm->mmap_sem);
1054 	return (ret < 0)? ret: 0;
1055 }
1056 
1057 /*
1058  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1059  * from current position to next entry still in use.
1060  * Recycle to start on reaching the end, returning 0 when empty.
1061  */
1062 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1063 					unsigned int prev, bool frontswap)
1064 {
1065 	unsigned int max = si->max;
1066 	unsigned int i = prev;
1067 	unsigned char count;
1068 
1069 	/*
1070 	 * No need for swap_lock here: we're just looking
1071 	 * for whether an entry is in use, not modifying it; false
1072 	 * hits are okay, and sys_swapoff() has already prevented new
1073 	 * allocations from this area (while holding swap_lock).
1074 	 */
1075 	for (;;) {
1076 		if (++i >= max) {
1077 			if (!prev) {
1078 				i = 0;
1079 				break;
1080 			}
1081 			/*
1082 			 * No entries in use at top of swap_map,
1083 			 * loop back to start and recheck there.
1084 			 */
1085 			max = prev + 1;
1086 			prev = 0;
1087 			i = 1;
1088 		}
1089 		if (frontswap) {
1090 			if (frontswap_test(si, i))
1091 				break;
1092 			else
1093 				continue;
1094 		}
1095 		count = si->swap_map[i];
1096 		if (count && swap_count(count) != SWAP_MAP_BAD)
1097 			break;
1098 	}
1099 	return i;
1100 }
1101 
1102 /*
1103  * We completely avoid races by reading each swap page in advance,
1104  * and then search for the process using it.  All the necessary
1105  * page table adjustments can then be made atomically.
1106  *
1107  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1108  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1109  */
1110 int try_to_unuse(unsigned int type, bool frontswap,
1111 		 unsigned long pages_to_unuse)
1112 {
1113 	struct swap_info_struct *si = swap_info[type];
1114 	struct mm_struct *start_mm;
1115 	unsigned char *swap_map;
1116 	unsigned char swcount;
1117 	struct page *page;
1118 	swp_entry_t entry;
1119 	unsigned int i = 0;
1120 	int retval = 0;
1121 
1122 	/*
1123 	 * When searching mms for an entry, a good strategy is to
1124 	 * start at the first mm we freed the previous entry from
1125 	 * (though actually we don't notice whether we or coincidence
1126 	 * freed the entry).  Initialize this start_mm with a hold.
1127 	 *
1128 	 * A simpler strategy would be to start at the last mm we
1129 	 * freed the previous entry from; but that would take less
1130 	 * advantage of mmlist ordering, which clusters forked mms
1131 	 * together, child after parent.  If we race with dup_mmap(), we
1132 	 * prefer to resolve parent before child, lest we miss entries
1133 	 * duplicated after we scanned child: using last mm would invert
1134 	 * that.
1135 	 */
1136 	start_mm = &init_mm;
1137 	atomic_inc(&init_mm.mm_users);
1138 
1139 	/*
1140 	 * Keep on scanning until all entries have gone.  Usually,
1141 	 * one pass through swap_map is enough, but not necessarily:
1142 	 * there are races when an instance of an entry might be missed.
1143 	 */
1144 	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1145 		if (signal_pending(current)) {
1146 			retval = -EINTR;
1147 			break;
1148 		}
1149 
1150 		/*
1151 		 * Get a page for the entry, using the existing swap
1152 		 * cache page if there is one.  Otherwise, get a clean
1153 		 * page and read the swap into it.
1154 		 */
1155 		swap_map = &si->swap_map[i];
1156 		entry = swp_entry(type, i);
1157 		page = read_swap_cache_async(entry,
1158 					GFP_HIGHUSER_MOVABLE, NULL, 0);
1159 		if (!page) {
1160 			/*
1161 			 * Either swap_duplicate() failed because entry
1162 			 * has been freed independently, and will not be
1163 			 * reused since sys_swapoff() already disabled
1164 			 * allocation from here, or alloc_page() failed.
1165 			 */
1166 			if (!*swap_map)
1167 				continue;
1168 			retval = -ENOMEM;
1169 			break;
1170 		}
1171 
1172 		/*
1173 		 * Don't hold on to start_mm if it looks like exiting.
1174 		 */
1175 		if (atomic_read(&start_mm->mm_users) == 1) {
1176 			mmput(start_mm);
1177 			start_mm = &init_mm;
1178 			atomic_inc(&init_mm.mm_users);
1179 		}
1180 
1181 		/*
1182 		 * Wait for and lock page.  When do_swap_page races with
1183 		 * try_to_unuse, do_swap_page can handle the fault much
1184 		 * faster than try_to_unuse can locate the entry.  This
1185 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1186 		 * defer to do_swap_page in such a case - in some tests,
1187 		 * do_swap_page and try_to_unuse repeatedly compete.
1188 		 */
1189 		wait_on_page_locked(page);
1190 		wait_on_page_writeback(page);
1191 		lock_page(page);
1192 		wait_on_page_writeback(page);
1193 
1194 		/*
1195 		 * Remove all references to entry.
1196 		 */
1197 		swcount = *swap_map;
1198 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1199 			retval = shmem_unuse(entry, page);
1200 			/* page has already been unlocked and released */
1201 			if (retval < 0)
1202 				break;
1203 			continue;
1204 		}
1205 		if (swap_count(swcount) && start_mm != &init_mm)
1206 			retval = unuse_mm(start_mm, entry, page);
1207 
1208 		if (swap_count(*swap_map)) {
1209 			int set_start_mm = (*swap_map >= swcount);
1210 			struct list_head *p = &start_mm->mmlist;
1211 			struct mm_struct *new_start_mm = start_mm;
1212 			struct mm_struct *prev_mm = start_mm;
1213 			struct mm_struct *mm;
1214 
1215 			atomic_inc(&new_start_mm->mm_users);
1216 			atomic_inc(&prev_mm->mm_users);
1217 			spin_lock(&mmlist_lock);
1218 			while (swap_count(*swap_map) && !retval &&
1219 					(p = p->next) != &start_mm->mmlist) {
1220 				mm = list_entry(p, struct mm_struct, mmlist);
1221 				if (!atomic_inc_not_zero(&mm->mm_users))
1222 					continue;
1223 				spin_unlock(&mmlist_lock);
1224 				mmput(prev_mm);
1225 				prev_mm = mm;
1226 
1227 				cond_resched();
1228 
1229 				swcount = *swap_map;
1230 				if (!swap_count(swcount)) /* any usage ? */
1231 					;
1232 				else if (mm == &init_mm)
1233 					set_start_mm = 1;
1234 				else
1235 					retval = unuse_mm(mm, entry, page);
1236 
1237 				if (set_start_mm && *swap_map < swcount) {
1238 					mmput(new_start_mm);
1239 					atomic_inc(&mm->mm_users);
1240 					new_start_mm = mm;
1241 					set_start_mm = 0;
1242 				}
1243 				spin_lock(&mmlist_lock);
1244 			}
1245 			spin_unlock(&mmlist_lock);
1246 			mmput(prev_mm);
1247 			mmput(start_mm);
1248 			start_mm = new_start_mm;
1249 		}
1250 		if (retval) {
1251 			unlock_page(page);
1252 			page_cache_release(page);
1253 			break;
1254 		}
1255 
1256 		/*
1257 		 * If a reference remains (rare), we would like to leave
1258 		 * the page in the swap cache; but try_to_unmap could
1259 		 * then re-duplicate the entry once we drop page lock,
1260 		 * so we might loop indefinitely; also, that page could
1261 		 * not be swapped out to other storage meanwhile.  So:
1262 		 * delete from cache even if there's another reference,
1263 		 * after ensuring that the data has been saved to disk -
1264 		 * since if the reference remains (rarer), it will be
1265 		 * read from disk into another page.  Splitting into two
1266 		 * pages would be incorrect if swap supported "shared
1267 		 * private" pages, but they are handled by tmpfs files.
1268 		 *
1269 		 * Given how unuse_vma() targets one particular offset
1270 		 * in an anon_vma, once the anon_vma has been determined,
1271 		 * this splitting happens to be just what is needed to
1272 		 * handle where KSM pages have been swapped out: re-reading
1273 		 * is unnecessarily slow, but we can fix that later on.
1274 		 */
1275 		if (swap_count(*swap_map) &&
1276 		     PageDirty(page) && PageSwapCache(page)) {
1277 			struct writeback_control wbc = {
1278 				.sync_mode = WB_SYNC_NONE,
1279 			};
1280 
1281 			swap_writepage(page, &wbc);
1282 			lock_page(page);
1283 			wait_on_page_writeback(page);
1284 		}
1285 
1286 		/*
1287 		 * It is conceivable that a racing task removed this page from
1288 		 * swap cache just before we acquired the page lock at the top,
1289 		 * or while we dropped it in unuse_mm().  The page might even
1290 		 * be back in swap cache on another swap area: that we must not
1291 		 * delete, since it may not have been written out to swap yet.
1292 		 */
1293 		if (PageSwapCache(page) &&
1294 		    likely(page_private(page) == entry.val))
1295 			delete_from_swap_cache(page);
1296 
1297 		/*
1298 		 * So we could skip searching mms once swap count went
1299 		 * to 1, we did not mark any present ptes as dirty: must
1300 		 * mark page dirty so shrink_page_list will preserve it.
1301 		 */
1302 		SetPageDirty(page);
1303 		unlock_page(page);
1304 		page_cache_release(page);
1305 
1306 		/*
1307 		 * Make sure that we aren't completely killing
1308 		 * interactive performance.
1309 		 */
1310 		cond_resched();
1311 		if (frontswap && pages_to_unuse > 0) {
1312 			if (!--pages_to_unuse)
1313 				break;
1314 		}
1315 	}
1316 
1317 	mmput(start_mm);
1318 	return retval;
1319 }
1320 
1321 /*
1322  * After a successful try_to_unuse, if no swap is now in use, we know
1323  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1324  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1325  * added to the mmlist just after page_duplicate - before would be racy.
1326  */
1327 static void drain_mmlist(void)
1328 {
1329 	struct list_head *p, *next;
1330 	unsigned int type;
1331 
1332 	for (type = 0; type < nr_swapfiles; type++)
1333 		if (swap_info[type]->inuse_pages)
1334 			return;
1335 	spin_lock(&mmlist_lock);
1336 	list_for_each_safe(p, next, &init_mm.mmlist)
1337 		list_del_init(p);
1338 	spin_unlock(&mmlist_lock);
1339 }
1340 
1341 /*
1342  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1343  * corresponds to page offset for the specified swap entry.
1344  * Note that the type of this function is sector_t, but it returns page offset
1345  * into the bdev, not sector offset.
1346  */
1347 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1348 {
1349 	struct swap_info_struct *sis;
1350 	struct swap_extent *start_se;
1351 	struct swap_extent *se;
1352 	pgoff_t offset;
1353 
1354 	sis = swap_info[swp_type(entry)];
1355 	*bdev = sis->bdev;
1356 
1357 	offset = swp_offset(entry);
1358 	start_se = sis->curr_swap_extent;
1359 	se = start_se;
1360 
1361 	for ( ; ; ) {
1362 		struct list_head *lh;
1363 
1364 		if (se->start_page <= offset &&
1365 				offset < (se->start_page + se->nr_pages)) {
1366 			return se->start_block + (offset - se->start_page);
1367 		}
1368 		lh = se->list.next;
1369 		se = list_entry(lh, struct swap_extent, list);
1370 		sis->curr_swap_extent = se;
1371 		BUG_ON(se == start_se);		/* It *must* be present */
1372 	}
1373 }
1374 
1375 /*
1376  * Returns the page offset into bdev for the specified page's swap entry.
1377  */
1378 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1379 {
1380 	swp_entry_t entry;
1381 	entry.val = page_private(page);
1382 	return map_swap_entry(entry, bdev);
1383 }
1384 
1385 /*
1386  * Free all of a swapdev's extent information
1387  */
1388 static void destroy_swap_extents(struct swap_info_struct *sis)
1389 {
1390 	while (!list_empty(&sis->first_swap_extent.list)) {
1391 		struct swap_extent *se;
1392 
1393 		se = list_entry(sis->first_swap_extent.list.next,
1394 				struct swap_extent, list);
1395 		list_del(&se->list);
1396 		kfree(se);
1397 	}
1398 
1399 	if (sis->flags & SWP_FILE) {
1400 		struct file *swap_file = sis->swap_file;
1401 		struct address_space *mapping = swap_file->f_mapping;
1402 
1403 		sis->flags &= ~SWP_FILE;
1404 		mapping->a_ops->swap_deactivate(swap_file);
1405 	}
1406 }
1407 
1408 /*
1409  * Add a block range (and the corresponding page range) into this swapdev's
1410  * extent list.  The extent list is kept sorted in page order.
1411  *
1412  * This function rather assumes that it is called in ascending page order.
1413  */
1414 int
1415 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1416 		unsigned long nr_pages, sector_t start_block)
1417 {
1418 	struct swap_extent *se;
1419 	struct swap_extent *new_se;
1420 	struct list_head *lh;
1421 
1422 	if (start_page == 0) {
1423 		se = &sis->first_swap_extent;
1424 		sis->curr_swap_extent = se;
1425 		se->start_page = 0;
1426 		se->nr_pages = nr_pages;
1427 		se->start_block = start_block;
1428 		return 1;
1429 	} else {
1430 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1431 		se = list_entry(lh, struct swap_extent, list);
1432 		BUG_ON(se->start_page + se->nr_pages != start_page);
1433 		if (se->start_block + se->nr_pages == start_block) {
1434 			/* Merge it */
1435 			se->nr_pages += nr_pages;
1436 			return 0;
1437 		}
1438 	}
1439 
1440 	/*
1441 	 * No merge.  Insert a new extent, preserving ordering.
1442 	 */
1443 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1444 	if (new_se == NULL)
1445 		return -ENOMEM;
1446 	new_se->start_page = start_page;
1447 	new_se->nr_pages = nr_pages;
1448 	new_se->start_block = start_block;
1449 
1450 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1451 	return 1;
1452 }
1453 
1454 /*
1455  * A `swap extent' is a simple thing which maps a contiguous range of pages
1456  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1457  * is built at swapon time and is then used at swap_writepage/swap_readpage
1458  * time for locating where on disk a page belongs.
1459  *
1460  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1461  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1462  * swap files identically.
1463  *
1464  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1465  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1466  * swapfiles are handled *identically* after swapon time.
1467  *
1468  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1469  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1470  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1471  * requirements, they are simply tossed out - we will never use those blocks
1472  * for swapping.
1473  *
1474  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1475  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1476  * which will scribble on the fs.
1477  *
1478  * The amount of disk space which a single swap extent represents varies.
1479  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1480  * extents in the list.  To avoid much list walking, we cache the previous
1481  * search location in `curr_swap_extent', and start new searches from there.
1482  * This is extremely effective.  The average number of iterations in
1483  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1484  */
1485 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1486 {
1487 	struct file *swap_file = sis->swap_file;
1488 	struct address_space *mapping = swap_file->f_mapping;
1489 	struct inode *inode = mapping->host;
1490 	int ret;
1491 
1492 	if (S_ISBLK(inode->i_mode)) {
1493 		ret = add_swap_extent(sis, 0, sis->max, 0);
1494 		*span = sis->pages;
1495 		return ret;
1496 	}
1497 
1498 	if (mapping->a_ops->swap_activate) {
1499 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1500 		if (!ret) {
1501 			sis->flags |= SWP_FILE;
1502 			ret = add_swap_extent(sis, 0, sis->max, 0);
1503 			*span = sis->pages;
1504 		}
1505 		return ret;
1506 	}
1507 
1508 	return generic_swapfile_activate(sis, swap_file, span);
1509 }
1510 
1511 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1512 				unsigned char *swap_map)
1513 {
1514 	int i, prev;
1515 
1516 	if (prio >= 0)
1517 		p->prio = prio;
1518 	else
1519 		p->prio = --least_priority;
1520 	p->swap_map = swap_map;
1521 	p->flags |= SWP_WRITEOK;
1522 	atomic_long_add(p->pages, &nr_swap_pages);
1523 	total_swap_pages += p->pages;
1524 
1525 	/* insert swap space into swap_list: */
1526 	prev = -1;
1527 	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1528 		if (p->prio >= swap_info[i]->prio)
1529 			break;
1530 		prev = i;
1531 	}
1532 	p->next = i;
1533 	if (prev < 0)
1534 		swap_list.head = swap_list.next = p->type;
1535 	else
1536 		swap_info[prev]->next = p->type;
1537 }
1538 
1539 static void enable_swap_info(struct swap_info_struct *p, int prio,
1540 				unsigned char *swap_map,
1541 				unsigned long *frontswap_map)
1542 {
1543 	frontswap_init(p->type, frontswap_map);
1544 	spin_lock(&swap_lock);
1545 	spin_lock(&p->lock);
1546 	 _enable_swap_info(p, prio, swap_map);
1547 	spin_unlock(&p->lock);
1548 	spin_unlock(&swap_lock);
1549 }
1550 
1551 static void reinsert_swap_info(struct swap_info_struct *p)
1552 {
1553 	spin_lock(&swap_lock);
1554 	spin_lock(&p->lock);
1555 	_enable_swap_info(p, p->prio, p->swap_map);
1556 	spin_unlock(&p->lock);
1557 	spin_unlock(&swap_lock);
1558 }
1559 
1560 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1561 {
1562 	struct swap_info_struct *p = NULL;
1563 	unsigned char *swap_map;
1564 	unsigned long *frontswap_map;
1565 	struct file *swap_file, *victim;
1566 	struct address_space *mapping;
1567 	struct inode *inode;
1568 	struct filename *pathname;
1569 	int i, type, prev;
1570 	int err;
1571 
1572 	if (!capable(CAP_SYS_ADMIN))
1573 		return -EPERM;
1574 
1575 	BUG_ON(!current->mm);
1576 
1577 	pathname = getname(specialfile);
1578 	if (IS_ERR(pathname))
1579 		return PTR_ERR(pathname);
1580 
1581 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1582 	err = PTR_ERR(victim);
1583 	if (IS_ERR(victim))
1584 		goto out;
1585 
1586 	mapping = victim->f_mapping;
1587 	prev = -1;
1588 	spin_lock(&swap_lock);
1589 	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1590 		p = swap_info[type];
1591 		if (p->flags & SWP_WRITEOK) {
1592 			if (p->swap_file->f_mapping == mapping)
1593 				break;
1594 		}
1595 		prev = type;
1596 	}
1597 	if (type < 0) {
1598 		err = -EINVAL;
1599 		spin_unlock(&swap_lock);
1600 		goto out_dput;
1601 	}
1602 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
1603 		vm_unacct_memory(p->pages);
1604 	else {
1605 		err = -ENOMEM;
1606 		spin_unlock(&swap_lock);
1607 		goto out_dput;
1608 	}
1609 	if (prev < 0)
1610 		swap_list.head = p->next;
1611 	else
1612 		swap_info[prev]->next = p->next;
1613 	if (type == swap_list.next) {
1614 		/* just pick something that's safe... */
1615 		swap_list.next = swap_list.head;
1616 	}
1617 	spin_lock(&p->lock);
1618 	if (p->prio < 0) {
1619 		for (i = p->next; i >= 0; i = swap_info[i]->next)
1620 			swap_info[i]->prio = p->prio--;
1621 		least_priority++;
1622 	}
1623 	atomic_long_sub(p->pages, &nr_swap_pages);
1624 	total_swap_pages -= p->pages;
1625 	p->flags &= ~SWP_WRITEOK;
1626 	spin_unlock(&p->lock);
1627 	spin_unlock(&swap_lock);
1628 
1629 	set_current_oom_origin();
1630 	err = try_to_unuse(type, false, 0); /* force all pages to be unused */
1631 	clear_current_oom_origin();
1632 
1633 	if (err) {
1634 		/* re-insert swap space back into swap_list */
1635 		reinsert_swap_info(p);
1636 		goto out_dput;
1637 	}
1638 
1639 	destroy_swap_extents(p);
1640 	if (p->flags & SWP_CONTINUED)
1641 		free_swap_count_continuations(p);
1642 
1643 	mutex_lock(&swapon_mutex);
1644 	spin_lock(&swap_lock);
1645 	spin_lock(&p->lock);
1646 	drain_mmlist();
1647 
1648 	/* wait for anyone still in scan_swap_map */
1649 	p->highest_bit = 0;		/* cuts scans short */
1650 	while (p->flags >= SWP_SCANNING) {
1651 		spin_unlock(&p->lock);
1652 		spin_unlock(&swap_lock);
1653 		schedule_timeout_uninterruptible(1);
1654 		spin_lock(&swap_lock);
1655 		spin_lock(&p->lock);
1656 	}
1657 
1658 	swap_file = p->swap_file;
1659 	p->swap_file = NULL;
1660 	p->max = 0;
1661 	swap_map = p->swap_map;
1662 	p->swap_map = NULL;
1663 	p->flags = 0;
1664 	frontswap_map = frontswap_map_get(p);
1665 	frontswap_map_set(p, NULL);
1666 	spin_unlock(&p->lock);
1667 	spin_unlock(&swap_lock);
1668 	frontswap_invalidate_area(type);
1669 	mutex_unlock(&swapon_mutex);
1670 	vfree(swap_map);
1671 	vfree(frontswap_map);
1672 	/* Destroy swap account informatin */
1673 	swap_cgroup_swapoff(type);
1674 
1675 	inode = mapping->host;
1676 	if (S_ISBLK(inode->i_mode)) {
1677 		struct block_device *bdev = I_BDEV(inode);
1678 		set_blocksize(bdev, p->old_block_size);
1679 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1680 	} else {
1681 		mutex_lock(&inode->i_mutex);
1682 		inode->i_flags &= ~S_SWAPFILE;
1683 		mutex_unlock(&inode->i_mutex);
1684 	}
1685 	filp_close(swap_file, NULL);
1686 	err = 0;
1687 	atomic_inc(&proc_poll_event);
1688 	wake_up_interruptible(&proc_poll_wait);
1689 
1690 out_dput:
1691 	filp_close(victim, NULL);
1692 out:
1693 	putname(pathname);
1694 	return err;
1695 }
1696 
1697 #ifdef CONFIG_PROC_FS
1698 static unsigned swaps_poll(struct file *file, poll_table *wait)
1699 {
1700 	struct seq_file *seq = file->private_data;
1701 
1702 	poll_wait(file, &proc_poll_wait, wait);
1703 
1704 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
1705 		seq->poll_event = atomic_read(&proc_poll_event);
1706 		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1707 	}
1708 
1709 	return POLLIN | POLLRDNORM;
1710 }
1711 
1712 /* iterator */
1713 static void *swap_start(struct seq_file *swap, loff_t *pos)
1714 {
1715 	struct swap_info_struct *si;
1716 	int type;
1717 	loff_t l = *pos;
1718 
1719 	mutex_lock(&swapon_mutex);
1720 
1721 	if (!l)
1722 		return SEQ_START_TOKEN;
1723 
1724 	for (type = 0; type < nr_swapfiles; type++) {
1725 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1726 		si = swap_info[type];
1727 		if (!(si->flags & SWP_USED) || !si->swap_map)
1728 			continue;
1729 		if (!--l)
1730 			return si;
1731 	}
1732 
1733 	return NULL;
1734 }
1735 
1736 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1737 {
1738 	struct swap_info_struct *si = v;
1739 	int type;
1740 
1741 	if (v == SEQ_START_TOKEN)
1742 		type = 0;
1743 	else
1744 		type = si->type + 1;
1745 
1746 	for (; type < nr_swapfiles; type++) {
1747 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1748 		si = swap_info[type];
1749 		if (!(si->flags & SWP_USED) || !si->swap_map)
1750 			continue;
1751 		++*pos;
1752 		return si;
1753 	}
1754 
1755 	return NULL;
1756 }
1757 
1758 static void swap_stop(struct seq_file *swap, void *v)
1759 {
1760 	mutex_unlock(&swapon_mutex);
1761 }
1762 
1763 static int swap_show(struct seq_file *swap, void *v)
1764 {
1765 	struct swap_info_struct *si = v;
1766 	struct file *file;
1767 	int len;
1768 
1769 	if (si == SEQ_START_TOKEN) {
1770 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1771 		return 0;
1772 	}
1773 
1774 	file = si->swap_file;
1775 	len = seq_path(swap, &file->f_path, " \t\n\\");
1776 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1777 			len < 40 ? 40 - len : 1, " ",
1778 			S_ISBLK(file_inode(file)->i_mode) ?
1779 				"partition" : "file\t",
1780 			si->pages << (PAGE_SHIFT - 10),
1781 			si->inuse_pages << (PAGE_SHIFT - 10),
1782 			si->prio);
1783 	return 0;
1784 }
1785 
1786 static const struct seq_operations swaps_op = {
1787 	.start =	swap_start,
1788 	.next =		swap_next,
1789 	.stop =		swap_stop,
1790 	.show =		swap_show
1791 };
1792 
1793 static int swaps_open(struct inode *inode, struct file *file)
1794 {
1795 	struct seq_file *seq;
1796 	int ret;
1797 
1798 	ret = seq_open(file, &swaps_op);
1799 	if (ret)
1800 		return ret;
1801 
1802 	seq = file->private_data;
1803 	seq->poll_event = atomic_read(&proc_poll_event);
1804 	return 0;
1805 }
1806 
1807 static const struct file_operations proc_swaps_operations = {
1808 	.open		= swaps_open,
1809 	.read		= seq_read,
1810 	.llseek		= seq_lseek,
1811 	.release	= seq_release,
1812 	.poll		= swaps_poll,
1813 };
1814 
1815 static int __init procswaps_init(void)
1816 {
1817 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1818 	return 0;
1819 }
1820 __initcall(procswaps_init);
1821 #endif /* CONFIG_PROC_FS */
1822 
1823 #ifdef MAX_SWAPFILES_CHECK
1824 static int __init max_swapfiles_check(void)
1825 {
1826 	MAX_SWAPFILES_CHECK();
1827 	return 0;
1828 }
1829 late_initcall(max_swapfiles_check);
1830 #endif
1831 
1832 static struct swap_info_struct *alloc_swap_info(void)
1833 {
1834 	struct swap_info_struct *p;
1835 	unsigned int type;
1836 
1837 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1838 	if (!p)
1839 		return ERR_PTR(-ENOMEM);
1840 
1841 	spin_lock(&swap_lock);
1842 	for (type = 0; type < nr_swapfiles; type++) {
1843 		if (!(swap_info[type]->flags & SWP_USED))
1844 			break;
1845 	}
1846 	if (type >= MAX_SWAPFILES) {
1847 		spin_unlock(&swap_lock);
1848 		kfree(p);
1849 		return ERR_PTR(-EPERM);
1850 	}
1851 	if (type >= nr_swapfiles) {
1852 		p->type = type;
1853 		swap_info[type] = p;
1854 		/*
1855 		 * Write swap_info[type] before nr_swapfiles, in case a
1856 		 * racing procfs swap_start() or swap_next() is reading them.
1857 		 * (We never shrink nr_swapfiles, we never free this entry.)
1858 		 */
1859 		smp_wmb();
1860 		nr_swapfiles++;
1861 	} else {
1862 		kfree(p);
1863 		p = swap_info[type];
1864 		/*
1865 		 * Do not memset this entry: a racing procfs swap_next()
1866 		 * would be relying on p->type to remain valid.
1867 		 */
1868 	}
1869 	INIT_LIST_HEAD(&p->first_swap_extent.list);
1870 	p->flags = SWP_USED;
1871 	p->next = -1;
1872 	spin_unlock(&swap_lock);
1873 	spin_lock_init(&p->lock);
1874 
1875 	return p;
1876 }
1877 
1878 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
1879 {
1880 	int error;
1881 
1882 	if (S_ISBLK(inode->i_mode)) {
1883 		p->bdev = bdgrab(I_BDEV(inode));
1884 		error = blkdev_get(p->bdev,
1885 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1886 				   sys_swapon);
1887 		if (error < 0) {
1888 			p->bdev = NULL;
1889 			return -EINVAL;
1890 		}
1891 		p->old_block_size = block_size(p->bdev);
1892 		error = set_blocksize(p->bdev, PAGE_SIZE);
1893 		if (error < 0)
1894 			return error;
1895 		p->flags |= SWP_BLKDEV;
1896 	} else if (S_ISREG(inode->i_mode)) {
1897 		p->bdev = inode->i_sb->s_bdev;
1898 		mutex_lock(&inode->i_mutex);
1899 		if (IS_SWAPFILE(inode))
1900 			return -EBUSY;
1901 	} else
1902 		return -EINVAL;
1903 
1904 	return 0;
1905 }
1906 
1907 static unsigned long read_swap_header(struct swap_info_struct *p,
1908 					union swap_header *swap_header,
1909 					struct inode *inode)
1910 {
1911 	int i;
1912 	unsigned long maxpages;
1913 	unsigned long swapfilepages;
1914 
1915 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1916 		printk(KERN_ERR "Unable to find swap-space signature\n");
1917 		return 0;
1918 	}
1919 
1920 	/* swap partition endianess hack... */
1921 	if (swab32(swap_header->info.version) == 1) {
1922 		swab32s(&swap_header->info.version);
1923 		swab32s(&swap_header->info.last_page);
1924 		swab32s(&swap_header->info.nr_badpages);
1925 		for (i = 0; i < swap_header->info.nr_badpages; i++)
1926 			swab32s(&swap_header->info.badpages[i]);
1927 	}
1928 	/* Check the swap header's sub-version */
1929 	if (swap_header->info.version != 1) {
1930 		printk(KERN_WARNING
1931 		       "Unable to handle swap header version %d\n",
1932 		       swap_header->info.version);
1933 		return 0;
1934 	}
1935 
1936 	p->lowest_bit  = 1;
1937 	p->cluster_next = 1;
1938 	p->cluster_nr = 0;
1939 
1940 	/*
1941 	 * Find out how many pages are allowed for a single swap
1942 	 * device. There are two limiting factors: 1) the number
1943 	 * of bits for the swap offset in the swp_entry_t type, and
1944 	 * 2) the number of bits in the swap pte as defined by the
1945 	 * different architectures. In order to find the
1946 	 * largest possible bit mask, a swap entry with swap type 0
1947 	 * and swap offset ~0UL is created, encoded to a swap pte,
1948 	 * decoded to a swp_entry_t again, and finally the swap
1949 	 * offset is extracted. This will mask all the bits from
1950 	 * the initial ~0UL mask that can't be encoded in either
1951 	 * the swp_entry_t or the architecture definition of a
1952 	 * swap pte.
1953 	 */
1954 	maxpages = swp_offset(pte_to_swp_entry(
1955 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1956 	if (maxpages > swap_header->info.last_page) {
1957 		maxpages = swap_header->info.last_page + 1;
1958 		/* p->max is an unsigned int: don't overflow it */
1959 		if ((unsigned int)maxpages == 0)
1960 			maxpages = UINT_MAX;
1961 	}
1962 	p->highest_bit = maxpages - 1;
1963 
1964 	if (!maxpages)
1965 		return 0;
1966 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1967 	if (swapfilepages && maxpages > swapfilepages) {
1968 		printk(KERN_WARNING
1969 		       "Swap area shorter than signature indicates\n");
1970 		return 0;
1971 	}
1972 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1973 		return 0;
1974 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1975 		return 0;
1976 
1977 	return maxpages;
1978 }
1979 
1980 static int setup_swap_map_and_extents(struct swap_info_struct *p,
1981 					union swap_header *swap_header,
1982 					unsigned char *swap_map,
1983 					unsigned long maxpages,
1984 					sector_t *span)
1985 {
1986 	int i;
1987 	unsigned int nr_good_pages;
1988 	int nr_extents;
1989 
1990 	nr_good_pages = maxpages - 1;	/* omit header page */
1991 
1992 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
1993 		unsigned int page_nr = swap_header->info.badpages[i];
1994 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
1995 			return -EINVAL;
1996 		if (page_nr < maxpages) {
1997 			swap_map[page_nr] = SWAP_MAP_BAD;
1998 			nr_good_pages--;
1999 		}
2000 	}
2001 
2002 	if (nr_good_pages) {
2003 		swap_map[0] = SWAP_MAP_BAD;
2004 		p->max = maxpages;
2005 		p->pages = nr_good_pages;
2006 		nr_extents = setup_swap_extents(p, span);
2007 		if (nr_extents < 0)
2008 			return nr_extents;
2009 		nr_good_pages = p->pages;
2010 	}
2011 	if (!nr_good_pages) {
2012 		printk(KERN_WARNING "Empty swap-file\n");
2013 		return -EINVAL;
2014 	}
2015 
2016 	return nr_extents;
2017 }
2018 
2019 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2020 {
2021 	struct swap_info_struct *p;
2022 	struct filename *name;
2023 	struct file *swap_file = NULL;
2024 	struct address_space *mapping;
2025 	int i;
2026 	int prio;
2027 	int error;
2028 	union swap_header *swap_header;
2029 	int nr_extents;
2030 	sector_t span;
2031 	unsigned long maxpages;
2032 	unsigned char *swap_map = NULL;
2033 	unsigned long *frontswap_map = NULL;
2034 	struct page *page = NULL;
2035 	struct inode *inode = NULL;
2036 
2037 	if (swap_flags & ~SWAP_FLAGS_VALID)
2038 		return -EINVAL;
2039 
2040 	if (!capable(CAP_SYS_ADMIN))
2041 		return -EPERM;
2042 
2043 	p = alloc_swap_info();
2044 	if (IS_ERR(p))
2045 		return PTR_ERR(p);
2046 
2047 	name = getname(specialfile);
2048 	if (IS_ERR(name)) {
2049 		error = PTR_ERR(name);
2050 		name = NULL;
2051 		goto bad_swap;
2052 	}
2053 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2054 	if (IS_ERR(swap_file)) {
2055 		error = PTR_ERR(swap_file);
2056 		swap_file = NULL;
2057 		goto bad_swap;
2058 	}
2059 
2060 	p->swap_file = swap_file;
2061 	mapping = swap_file->f_mapping;
2062 
2063 	for (i = 0; i < nr_swapfiles; i++) {
2064 		struct swap_info_struct *q = swap_info[i];
2065 
2066 		if (q == p || !q->swap_file)
2067 			continue;
2068 		if (mapping == q->swap_file->f_mapping) {
2069 			error = -EBUSY;
2070 			goto bad_swap;
2071 		}
2072 	}
2073 
2074 	inode = mapping->host;
2075 	/* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2076 	error = claim_swapfile(p, inode);
2077 	if (unlikely(error))
2078 		goto bad_swap;
2079 
2080 	/*
2081 	 * Read the swap header.
2082 	 */
2083 	if (!mapping->a_ops->readpage) {
2084 		error = -EINVAL;
2085 		goto bad_swap;
2086 	}
2087 	page = read_mapping_page(mapping, 0, swap_file);
2088 	if (IS_ERR(page)) {
2089 		error = PTR_ERR(page);
2090 		goto bad_swap;
2091 	}
2092 	swap_header = kmap(page);
2093 
2094 	maxpages = read_swap_header(p, swap_header, inode);
2095 	if (unlikely(!maxpages)) {
2096 		error = -EINVAL;
2097 		goto bad_swap;
2098 	}
2099 
2100 	/* OK, set up the swap map and apply the bad block list */
2101 	swap_map = vzalloc(maxpages);
2102 	if (!swap_map) {
2103 		error = -ENOMEM;
2104 		goto bad_swap;
2105 	}
2106 
2107 	error = swap_cgroup_swapon(p->type, maxpages);
2108 	if (error)
2109 		goto bad_swap;
2110 
2111 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2112 		maxpages, &span);
2113 	if (unlikely(nr_extents < 0)) {
2114 		error = nr_extents;
2115 		goto bad_swap;
2116 	}
2117 	/* frontswap enabled? set up bit-per-page map for frontswap */
2118 	if (frontswap_enabled)
2119 		frontswap_map = vzalloc(maxpages / sizeof(long));
2120 
2121 	if (p->bdev) {
2122 		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2123 			p->flags |= SWP_SOLIDSTATE;
2124 			p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2125 		}
2126 		if ((swap_flags & SWAP_FLAG_DISCARD) && discard_swap(p) == 0)
2127 			p->flags |= SWP_DISCARDABLE;
2128 	}
2129 
2130 	mutex_lock(&swapon_mutex);
2131 	prio = -1;
2132 	if (swap_flags & SWAP_FLAG_PREFER)
2133 		prio =
2134 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2135 	enable_swap_info(p, prio, swap_map, frontswap_map);
2136 
2137 	printk(KERN_INFO "Adding %uk swap on %s.  "
2138 			"Priority:%d extents:%d across:%lluk %s%s%s\n",
2139 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2140 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2141 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2142 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
2143 		(frontswap_map) ? "FS" : "");
2144 
2145 	mutex_unlock(&swapon_mutex);
2146 	atomic_inc(&proc_poll_event);
2147 	wake_up_interruptible(&proc_poll_wait);
2148 
2149 	if (S_ISREG(inode->i_mode))
2150 		inode->i_flags |= S_SWAPFILE;
2151 	error = 0;
2152 	goto out;
2153 bad_swap:
2154 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2155 		set_blocksize(p->bdev, p->old_block_size);
2156 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2157 	}
2158 	destroy_swap_extents(p);
2159 	swap_cgroup_swapoff(p->type);
2160 	spin_lock(&swap_lock);
2161 	p->swap_file = NULL;
2162 	p->flags = 0;
2163 	spin_unlock(&swap_lock);
2164 	vfree(swap_map);
2165 	if (swap_file) {
2166 		if (inode && S_ISREG(inode->i_mode)) {
2167 			mutex_unlock(&inode->i_mutex);
2168 			inode = NULL;
2169 		}
2170 		filp_close(swap_file, NULL);
2171 	}
2172 out:
2173 	if (page && !IS_ERR(page)) {
2174 		kunmap(page);
2175 		page_cache_release(page);
2176 	}
2177 	if (name)
2178 		putname(name);
2179 	if (inode && S_ISREG(inode->i_mode))
2180 		mutex_unlock(&inode->i_mutex);
2181 	return error;
2182 }
2183 
2184 void si_swapinfo(struct sysinfo *val)
2185 {
2186 	unsigned int type;
2187 	unsigned long nr_to_be_unused = 0;
2188 
2189 	spin_lock(&swap_lock);
2190 	for (type = 0; type < nr_swapfiles; type++) {
2191 		struct swap_info_struct *si = swap_info[type];
2192 
2193 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2194 			nr_to_be_unused += si->inuse_pages;
2195 	}
2196 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2197 	val->totalswap = total_swap_pages + nr_to_be_unused;
2198 	spin_unlock(&swap_lock);
2199 }
2200 
2201 /*
2202  * Verify that a swap entry is valid and increment its swap map count.
2203  *
2204  * Returns error code in following case.
2205  * - success -> 0
2206  * - swp_entry is invalid -> EINVAL
2207  * - swp_entry is migration entry -> EINVAL
2208  * - swap-cache reference is requested but there is already one. -> EEXIST
2209  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2210  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2211  */
2212 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2213 {
2214 	struct swap_info_struct *p;
2215 	unsigned long offset, type;
2216 	unsigned char count;
2217 	unsigned char has_cache;
2218 	int err = -EINVAL;
2219 
2220 	if (non_swap_entry(entry))
2221 		goto out;
2222 
2223 	type = swp_type(entry);
2224 	if (type >= nr_swapfiles)
2225 		goto bad_file;
2226 	p = swap_info[type];
2227 	offset = swp_offset(entry);
2228 
2229 	spin_lock(&p->lock);
2230 	if (unlikely(offset >= p->max))
2231 		goto unlock_out;
2232 
2233 	count = p->swap_map[offset];
2234 	has_cache = count & SWAP_HAS_CACHE;
2235 	count &= ~SWAP_HAS_CACHE;
2236 	err = 0;
2237 
2238 	if (usage == SWAP_HAS_CACHE) {
2239 
2240 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2241 		if (!has_cache && count)
2242 			has_cache = SWAP_HAS_CACHE;
2243 		else if (has_cache)		/* someone else added cache */
2244 			err = -EEXIST;
2245 		else				/* no users remaining */
2246 			err = -ENOENT;
2247 
2248 	} else if (count || has_cache) {
2249 
2250 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2251 			count += usage;
2252 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2253 			err = -EINVAL;
2254 		else if (swap_count_continued(p, offset, count))
2255 			count = COUNT_CONTINUED;
2256 		else
2257 			err = -ENOMEM;
2258 	} else
2259 		err = -ENOENT;			/* unused swap entry */
2260 
2261 	p->swap_map[offset] = count | has_cache;
2262 
2263 unlock_out:
2264 	spin_unlock(&p->lock);
2265 out:
2266 	return err;
2267 
2268 bad_file:
2269 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2270 	goto out;
2271 }
2272 
2273 /*
2274  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2275  * (in which case its reference count is never incremented).
2276  */
2277 void swap_shmem_alloc(swp_entry_t entry)
2278 {
2279 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2280 }
2281 
2282 /*
2283  * Increase reference count of swap entry by 1.
2284  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2285  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2286  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2287  * might occur if a page table entry has got corrupted.
2288  */
2289 int swap_duplicate(swp_entry_t entry)
2290 {
2291 	int err = 0;
2292 
2293 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2294 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2295 	return err;
2296 }
2297 
2298 /*
2299  * @entry: swap entry for which we allocate swap cache.
2300  *
2301  * Called when allocating swap cache for existing swap entry,
2302  * This can return error codes. Returns 0 at success.
2303  * -EBUSY means there is a swap cache.
2304  * Note: return code is different from swap_duplicate().
2305  */
2306 int swapcache_prepare(swp_entry_t entry)
2307 {
2308 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2309 }
2310 
2311 struct swap_info_struct *page_swap_info(struct page *page)
2312 {
2313 	swp_entry_t swap = { .val = page_private(page) };
2314 	BUG_ON(!PageSwapCache(page));
2315 	return swap_info[swp_type(swap)];
2316 }
2317 
2318 /*
2319  * out-of-line __page_file_ methods to avoid include hell.
2320  */
2321 struct address_space *__page_file_mapping(struct page *page)
2322 {
2323 	VM_BUG_ON(!PageSwapCache(page));
2324 	return page_swap_info(page)->swap_file->f_mapping;
2325 }
2326 EXPORT_SYMBOL_GPL(__page_file_mapping);
2327 
2328 pgoff_t __page_file_index(struct page *page)
2329 {
2330 	swp_entry_t swap = { .val = page_private(page) };
2331 	VM_BUG_ON(!PageSwapCache(page));
2332 	return swp_offset(swap);
2333 }
2334 EXPORT_SYMBOL_GPL(__page_file_index);
2335 
2336 /*
2337  * add_swap_count_continuation - called when a swap count is duplicated
2338  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2339  * page of the original vmalloc'ed swap_map, to hold the continuation count
2340  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2341  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2342  *
2343  * These continuation pages are seldom referenced: the common paths all work
2344  * on the original swap_map, only referring to a continuation page when the
2345  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2346  *
2347  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2348  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2349  * can be called after dropping locks.
2350  */
2351 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2352 {
2353 	struct swap_info_struct *si;
2354 	struct page *head;
2355 	struct page *page;
2356 	struct page *list_page;
2357 	pgoff_t offset;
2358 	unsigned char count;
2359 
2360 	/*
2361 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2362 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2363 	 */
2364 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2365 
2366 	si = swap_info_get(entry);
2367 	if (!si) {
2368 		/*
2369 		 * An acceptable race has occurred since the failing
2370 		 * __swap_duplicate(): the swap entry has been freed,
2371 		 * perhaps even the whole swap_map cleared for swapoff.
2372 		 */
2373 		goto outer;
2374 	}
2375 
2376 	offset = swp_offset(entry);
2377 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2378 
2379 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2380 		/*
2381 		 * The higher the swap count, the more likely it is that tasks
2382 		 * will race to add swap count continuation: we need to avoid
2383 		 * over-provisioning.
2384 		 */
2385 		goto out;
2386 	}
2387 
2388 	if (!page) {
2389 		spin_unlock(&si->lock);
2390 		return -ENOMEM;
2391 	}
2392 
2393 	/*
2394 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2395 	 * no architecture is using highmem pages for kernel pagetables: so it
2396 	 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2397 	 */
2398 	head = vmalloc_to_page(si->swap_map + offset);
2399 	offset &= ~PAGE_MASK;
2400 
2401 	/*
2402 	 * Page allocation does not initialize the page's lru field,
2403 	 * but it does always reset its private field.
2404 	 */
2405 	if (!page_private(head)) {
2406 		BUG_ON(count & COUNT_CONTINUED);
2407 		INIT_LIST_HEAD(&head->lru);
2408 		set_page_private(head, SWP_CONTINUED);
2409 		si->flags |= SWP_CONTINUED;
2410 	}
2411 
2412 	list_for_each_entry(list_page, &head->lru, lru) {
2413 		unsigned char *map;
2414 
2415 		/*
2416 		 * If the previous map said no continuation, but we've found
2417 		 * a continuation page, free our allocation and use this one.
2418 		 */
2419 		if (!(count & COUNT_CONTINUED))
2420 			goto out;
2421 
2422 		map = kmap_atomic(list_page) + offset;
2423 		count = *map;
2424 		kunmap_atomic(map);
2425 
2426 		/*
2427 		 * If this continuation count now has some space in it,
2428 		 * free our allocation and use this one.
2429 		 */
2430 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2431 			goto out;
2432 	}
2433 
2434 	list_add_tail(&page->lru, &head->lru);
2435 	page = NULL;			/* now it's attached, don't free it */
2436 out:
2437 	spin_unlock(&si->lock);
2438 outer:
2439 	if (page)
2440 		__free_page(page);
2441 	return 0;
2442 }
2443 
2444 /*
2445  * swap_count_continued - when the original swap_map count is incremented
2446  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2447  * into, carry if so, or else fail until a new continuation page is allocated;
2448  * when the original swap_map count is decremented from 0 with continuation,
2449  * borrow from the continuation and report whether it still holds more.
2450  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2451  */
2452 static bool swap_count_continued(struct swap_info_struct *si,
2453 				 pgoff_t offset, unsigned char count)
2454 {
2455 	struct page *head;
2456 	struct page *page;
2457 	unsigned char *map;
2458 
2459 	head = vmalloc_to_page(si->swap_map + offset);
2460 	if (page_private(head) != SWP_CONTINUED) {
2461 		BUG_ON(count & COUNT_CONTINUED);
2462 		return false;		/* need to add count continuation */
2463 	}
2464 
2465 	offset &= ~PAGE_MASK;
2466 	page = list_entry(head->lru.next, struct page, lru);
2467 	map = kmap_atomic(page) + offset;
2468 
2469 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2470 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2471 
2472 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2473 		/*
2474 		 * Think of how you add 1 to 999
2475 		 */
2476 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2477 			kunmap_atomic(map);
2478 			page = list_entry(page->lru.next, struct page, lru);
2479 			BUG_ON(page == head);
2480 			map = kmap_atomic(page) + offset;
2481 		}
2482 		if (*map == SWAP_CONT_MAX) {
2483 			kunmap_atomic(map);
2484 			page = list_entry(page->lru.next, struct page, lru);
2485 			if (page == head)
2486 				return false;	/* add count continuation */
2487 			map = kmap_atomic(page) + offset;
2488 init_map:		*map = 0;		/* we didn't zero the page */
2489 		}
2490 		*map += 1;
2491 		kunmap_atomic(map);
2492 		page = list_entry(page->lru.prev, struct page, lru);
2493 		while (page != head) {
2494 			map = kmap_atomic(page) + offset;
2495 			*map = COUNT_CONTINUED;
2496 			kunmap_atomic(map);
2497 			page = list_entry(page->lru.prev, struct page, lru);
2498 		}
2499 		return true;			/* incremented */
2500 
2501 	} else {				/* decrementing */
2502 		/*
2503 		 * Think of how you subtract 1 from 1000
2504 		 */
2505 		BUG_ON(count != COUNT_CONTINUED);
2506 		while (*map == COUNT_CONTINUED) {
2507 			kunmap_atomic(map);
2508 			page = list_entry(page->lru.next, struct page, lru);
2509 			BUG_ON(page == head);
2510 			map = kmap_atomic(page) + offset;
2511 		}
2512 		BUG_ON(*map == 0);
2513 		*map -= 1;
2514 		if (*map == 0)
2515 			count = 0;
2516 		kunmap_atomic(map);
2517 		page = list_entry(page->lru.prev, struct page, lru);
2518 		while (page != head) {
2519 			map = kmap_atomic(page) + offset;
2520 			*map = SWAP_CONT_MAX | count;
2521 			count = COUNT_CONTINUED;
2522 			kunmap_atomic(map);
2523 			page = list_entry(page->lru.prev, struct page, lru);
2524 		}
2525 		return count == COUNT_CONTINUED;
2526 	}
2527 }
2528 
2529 /*
2530  * free_swap_count_continuations - swapoff free all the continuation pages
2531  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2532  */
2533 static void free_swap_count_continuations(struct swap_info_struct *si)
2534 {
2535 	pgoff_t offset;
2536 
2537 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2538 		struct page *head;
2539 		head = vmalloc_to_page(si->swap_map + offset);
2540 		if (page_private(head)) {
2541 			struct list_head *this, *next;
2542 			list_for_each_safe(this, next, &head->lru) {
2543 				struct page *page;
2544 				page = list_entry(this, struct page, lru);
2545 				list_del(this);
2546 				__free_page(page);
2547 			}
2548 		}
2549 	}
2550 }
2551