1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/hugetlb.h> 10 #include <linux/mman.h> 11 #include <linux/slab.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/shmem_fs.h> 18 #include <linux/blkdev.h> 19 #include <linux/random.h> 20 #include <linux/writeback.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/init.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/security.h> 27 #include <linux/backing-dev.h> 28 #include <linux/mutex.h> 29 #include <linux/capability.h> 30 #include <linux/syscalls.h> 31 #include <linux/memcontrol.h> 32 #include <linux/poll.h> 33 #include <linux/oom.h> 34 #include <linux/frontswap.h> 35 #include <linux/swapfile.h> 36 #include <linux/export.h> 37 38 #include <asm/pgtable.h> 39 #include <asm/tlbflush.h> 40 #include <linux/swapops.h> 41 #include <linux/page_cgroup.h> 42 43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 44 unsigned char); 45 static void free_swap_count_continuations(struct swap_info_struct *); 46 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 47 48 DEFINE_SPINLOCK(swap_lock); 49 static unsigned int nr_swapfiles; 50 atomic_long_t nr_swap_pages; 51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 52 long total_swap_pages; 53 static int least_priority; 54 static atomic_t highest_priority_index = ATOMIC_INIT(-1); 55 56 static const char Bad_file[] = "Bad swap file entry "; 57 static const char Unused_file[] = "Unused swap file entry "; 58 static const char Bad_offset[] = "Bad swap offset entry "; 59 static const char Unused_offset[] = "Unused swap offset entry "; 60 61 struct swap_list_t swap_list = {-1, -1}; 62 63 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 64 65 static DEFINE_MUTEX(swapon_mutex); 66 67 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 68 /* Activity counter to indicate that a swapon or swapoff has occurred */ 69 static atomic_t proc_poll_event = ATOMIC_INIT(0); 70 71 static inline unsigned char swap_count(unsigned char ent) 72 { 73 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */ 74 } 75 76 /* returns 1 if swap entry is freed */ 77 static int 78 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) 79 { 80 swp_entry_t entry = swp_entry(si->type, offset); 81 struct page *page; 82 int ret = 0; 83 84 page = find_get_page(swap_address_space(entry), entry.val); 85 if (!page) 86 return 0; 87 /* 88 * This function is called from scan_swap_map() and it's called 89 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. 90 * We have to use trylock for avoiding deadlock. This is a special 91 * case and you should use try_to_free_swap() with explicit lock_page() 92 * in usual operations. 93 */ 94 if (trylock_page(page)) { 95 ret = try_to_free_swap(page); 96 unlock_page(page); 97 } 98 page_cache_release(page); 99 return ret; 100 } 101 102 /* 103 * swapon tell device that all the old swap contents can be discarded, 104 * to allow the swap device to optimize its wear-levelling. 105 */ 106 static int discard_swap(struct swap_info_struct *si) 107 { 108 struct swap_extent *se; 109 sector_t start_block; 110 sector_t nr_blocks; 111 int err = 0; 112 113 /* Do not discard the swap header page! */ 114 se = &si->first_swap_extent; 115 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 116 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 117 if (nr_blocks) { 118 err = blkdev_issue_discard(si->bdev, start_block, 119 nr_blocks, GFP_KERNEL, 0); 120 if (err) 121 return err; 122 cond_resched(); 123 } 124 125 list_for_each_entry(se, &si->first_swap_extent.list, list) { 126 start_block = se->start_block << (PAGE_SHIFT - 9); 127 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 128 129 err = blkdev_issue_discard(si->bdev, start_block, 130 nr_blocks, GFP_KERNEL, 0); 131 if (err) 132 break; 133 134 cond_resched(); 135 } 136 return err; /* That will often be -EOPNOTSUPP */ 137 } 138 139 /* 140 * swap allocation tell device that a cluster of swap can now be discarded, 141 * to allow the swap device to optimize its wear-levelling. 142 */ 143 static void discard_swap_cluster(struct swap_info_struct *si, 144 pgoff_t start_page, pgoff_t nr_pages) 145 { 146 struct swap_extent *se = si->curr_swap_extent; 147 int found_extent = 0; 148 149 while (nr_pages) { 150 struct list_head *lh; 151 152 if (se->start_page <= start_page && 153 start_page < se->start_page + se->nr_pages) { 154 pgoff_t offset = start_page - se->start_page; 155 sector_t start_block = se->start_block + offset; 156 sector_t nr_blocks = se->nr_pages - offset; 157 158 if (nr_blocks > nr_pages) 159 nr_blocks = nr_pages; 160 start_page += nr_blocks; 161 nr_pages -= nr_blocks; 162 163 if (!found_extent++) 164 si->curr_swap_extent = se; 165 166 start_block <<= PAGE_SHIFT - 9; 167 nr_blocks <<= PAGE_SHIFT - 9; 168 if (blkdev_issue_discard(si->bdev, start_block, 169 nr_blocks, GFP_NOIO, 0)) 170 break; 171 } 172 173 lh = se->list.next; 174 se = list_entry(lh, struct swap_extent, list); 175 } 176 } 177 178 static int wait_for_discard(void *word) 179 { 180 schedule(); 181 return 0; 182 } 183 184 #define SWAPFILE_CLUSTER 256 185 #define LATENCY_LIMIT 256 186 187 static unsigned long scan_swap_map(struct swap_info_struct *si, 188 unsigned char usage) 189 { 190 unsigned long offset; 191 unsigned long scan_base; 192 unsigned long last_in_cluster = 0; 193 int latency_ration = LATENCY_LIMIT; 194 int found_free_cluster = 0; 195 196 /* 197 * We try to cluster swap pages by allocating them sequentially 198 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 199 * way, however, we resort to first-free allocation, starting 200 * a new cluster. This prevents us from scattering swap pages 201 * all over the entire swap partition, so that we reduce 202 * overall disk seek times between swap pages. -- sct 203 * But we do now try to find an empty cluster. -Andrea 204 * And we let swap pages go all over an SSD partition. Hugh 205 */ 206 207 si->flags += SWP_SCANNING; 208 scan_base = offset = si->cluster_next; 209 210 if (unlikely(!si->cluster_nr--)) { 211 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 212 si->cluster_nr = SWAPFILE_CLUSTER - 1; 213 goto checks; 214 } 215 if (si->flags & SWP_DISCARDABLE) { 216 /* 217 * Start range check on racing allocations, in case 218 * they overlap the cluster we eventually decide on 219 * (we scan without swap_lock to allow preemption). 220 * It's hardly conceivable that cluster_nr could be 221 * wrapped during our scan, but don't depend on it. 222 */ 223 if (si->lowest_alloc) 224 goto checks; 225 si->lowest_alloc = si->max; 226 si->highest_alloc = 0; 227 } 228 spin_unlock(&si->lock); 229 230 /* 231 * If seek is expensive, start searching for new cluster from 232 * start of partition, to minimize the span of allocated swap. 233 * But if seek is cheap, search from our current position, so 234 * that swap is allocated from all over the partition: if the 235 * Flash Translation Layer only remaps within limited zones, 236 * we don't want to wear out the first zone too quickly. 237 */ 238 if (!(si->flags & SWP_SOLIDSTATE)) 239 scan_base = offset = si->lowest_bit; 240 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 241 242 /* Locate the first empty (unaligned) cluster */ 243 for (; last_in_cluster <= si->highest_bit; offset++) { 244 if (si->swap_map[offset]) 245 last_in_cluster = offset + SWAPFILE_CLUSTER; 246 else if (offset == last_in_cluster) { 247 spin_lock(&si->lock); 248 offset -= SWAPFILE_CLUSTER - 1; 249 si->cluster_next = offset; 250 si->cluster_nr = SWAPFILE_CLUSTER - 1; 251 found_free_cluster = 1; 252 goto checks; 253 } 254 if (unlikely(--latency_ration < 0)) { 255 cond_resched(); 256 latency_ration = LATENCY_LIMIT; 257 } 258 } 259 260 offset = si->lowest_bit; 261 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 262 263 /* Locate the first empty (unaligned) cluster */ 264 for (; last_in_cluster < scan_base; offset++) { 265 if (si->swap_map[offset]) 266 last_in_cluster = offset + SWAPFILE_CLUSTER; 267 else if (offset == last_in_cluster) { 268 spin_lock(&si->lock); 269 offset -= SWAPFILE_CLUSTER - 1; 270 si->cluster_next = offset; 271 si->cluster_nr = SWAPFILE_CLUSTER - 1; 272 found_free_cluster = 1; 273 goto checks; 274 } 275 if (unlikely(--latency_ration < 0)) { 276 cond_resched(); 277 latency_ration = LATENCY_LIMIT; 278 } 279 } 280 281 offset = scan_base; 282 spin_lock(&si->lock); 283 si->cluster_nr = SWAPFILE_CLUSTER - 1; 284 si->lowest_alloc = 0; 285 } 286 287 checks: 288 if (!(si->flags & SWP_WRITEOK)) 289 goto no_page; 290 if (!si->highest_bit) 291 goto no_page; 292 if (offset > si->highest_bit) 293 scan_base = offset = si->lowest_bit; 294 295 /* reuse swap entry of cache-only swap if not busy. */ 296 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 297 int swap_was_freed; 298 spin_unlock(&si->lock); 299 swap_was_freed = __try_to_reclaim_swap(si, offset); 300 spin_lock(&si->lock); 301 /* entry was freed successfully, try to use this again */ 302 if (swap_was_freed) 303 goto checks; 304 goto scan; /* check next one */ 305 } 306 307 if (si->swap_map[offset]) 308 goto scan; 309 310 if (offset == si->lowest_bit) 311 si->lowest_bit++; 312 if (offset == si->highest_bit) 313 si->highest_bit--; 314 si->inuse_pages++; 315 if (si->inuse_pages == si->pages) { 316 si->lowest_bit = si->max; 317 si->highest_bit = 0; 318 } 319 si->swap_map[offset] = usage; 320 si->cluster_next = offset + 1; 321 si->flags -= SWP_SCANNING; 322 323 if (si->lowest_alloc) { 324 /* 325 * Only set when SWP_DISCARDABLE, and there's a scan 326 * for a free cluster in progress or just completed. 327 */ 328 if (found_free_cluster) { 329 /* 330 * To optimize wear-levelling, discard the 331 * old data of the cluster, taking care not to 332 * discard any of its pages that have already 333 * been allocated by racing tasks (offset has 334 * already stepped over any at the beginning). 335 */ 336 if (offset < si->highest_alloc && 337 si->lowest_alloc <= last_in_cluster) 338 last_in_cluster = si->lowest_alloc - 1; 339 si->flags |= SWP_DISCARDING; 340 spin_unlock(&si->lock); 341 342 if (offset < last_in_cluster) 343 discard_swap_cluster(si, offset, 344 last_in_cluster - offset + 1); 345 346 spin_lock(&si->lock); 347 si->lowest_alloc = 0; 348 si->flags &= ~SWP_DISCARDING; 349 350 smp_mb(); /* wake_up_bit advises this */ 351 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING)); 352 353 } else if (si->flags & SWP_DISCARDING) { 354 /* 355 * Delay using pages allocated by racing tasks 356 * until the whole discard has been issued. We 357 * could defer that delay until swap_writepage, 358 * but it's easier to keep this self-contained. 359 */ 360 spin_unlock(&si->lock); 361 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING), 362 wait_for_discard, TASK_UNINTERRUPTIBLE); 363 spin_lock(&si->lock); 364 } else { 365 /* 366 * Note pages allocated by racing tasks while 367 * scan for a free cluster is in progress, so 368 * that its final discard can exclude them. 369 */ 370 if (offset < si->lowest_alloc) 371 si->lowest_alloc = offset; 372 if (offset > si->highest_alloc) 373 si->highest_alloc = offset; 374 } 375 } 376 return offset; 377 378 scan: 379 spin_unlock(&si->lock); 380 while (++offset <= si->highest_bit) { 381 if (!si->swap_map[offset]) { 382 spin_lock(&si->lock); 383 goto checks; 384 } 385 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 386 spin_lock(&si->lock); 387 goto checks; 388 } 389 if (unlikely(--latency_ration < 0)) { 390 cond_resched(); 391 latency_ration = LATENCY_LIMIT; 392 } 393 } 394 offset = si->lowest_bit; 395 while (++offset < scan_base) { 396 if (!si->swap_map[offset]) { 397 spin_lock(&si->lock); 398 goto checks; 399 } 400 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 401 spin_lock(&si->lock); 402 goto checks; 403 } 404 if (unlikely(--latency_ration < 0)) { 405 cond_resched(); 406 latency_ration = LATENCY_LIMIT; 407 } 408 } 409 spin_lock(&si->lock); 410 411 no_page: 412 si->flags -= SWP_SCANNING; 413 return 0; 414 } 415 416 swp_entry_t get_swap_page(void) 417 { 418 struct swap_info_struct *si; 419 pgoff_t offset; 420 int type, next; 421 int wrapped = 0; 422 int hp_index; 423 424 spin_lock(&swap_lock); 425 if (atomic_long_read(&nr_swap_pages) <= 0) 426 goto noswap; 427 atomic_long_dec(&nr_swap_pages); 428 429 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { 430 hp_index = atomic_xchg(&highest_priority_index, -1); 431 /* 432 * highest_priority_index records current highest priority swap 433 * type which just frees swap entries. If its priority is 434 * higher than that of swap_list.next swap type, we use it. It 435 * isn't protected by swap_lock, so it can be an invalid value 436 * if the corresponding swap type is swapoff. We double check 437 * the flags here. It's even possible the swap type is swapoff 438 * and swapon again and its priority is changed. In such rare 439 * case, low prority swap type might be used, but eventually 440 * high priority swap will be used after several rounds of 441 * swap. 442 */ 443 if (hp_index != -1 && hp_index != type && 444 swap_info[type]->prio < swap_info[hp_index]->prio && 445 (swap_info[hp_index]->flags & SWP_WRITEOK)) { 446 type = hp_index; 447 swap_list.next = type; 448 } 449 450 si = swap_info[type]; 451 next = si->next; 452 if (next < 0 || 453 (!wrapped && si->prio != swap_info[next]->prio)) { 454 next = swap_list.head; 455 wrapped++; 456 } 457 458 spin_lock(&si->lock); 459 if (!si->highest_bit) { 460 spin_unlock(&si->lock); 461 continue; 462 } 463 if (!(si->flags & SWP_WRITEOK)) { 464 spin_unlock(&si->lock); 465 continue; 466 } 467 468 swap_list.next = next; 469 470 spin_unlock(&swap_lock); 471 /* This is called for allocating swap entry for cache */ 472 offset = scan_swap_map(si, SWAP_HAS_CACHE); 473 spin_unlock(&si->lock); 474 if (offset) 475 return swp_entry(type, offset); 476 spin_lock(&swap_lock); 477 next = swap_list.next; 478 } 479 480 atomic_long_inc(&nr_swap_pages); 481 noswap: 482 spin_unlock(&swap_lock); 483 return (swp_entry_t) {0}; 484 } 485 486 /* The only caller of this function is now susupend routine */ 487 swp_entry_t get_swap_page_of_type(int type) 488 { 489 struct swap_info_struct *si; 490 pgoff_t offset; 491 492 si = swap_info[type]; 493 spin_lock(&si->lock); 494 if (si && (si->flags & SWP_WRITEOK)) { 495 atomic_long_dec(&nr_swap_pages); 496 /* This is called for allocating swap entry, not cache */ 497 offset = scan_swap_map(si, 1); 498 if (offset) { 499 spin_unlock(&si->lock); 500 return swp_entry(type, offset); 501 } 502 atomic_long_inc(&nr_swap_pages); 503 } 504 spin_unlock(&si->lock); 505 return (swp_entry_t) {0}; 506 } 507 508 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 509 { 510 struct swap_info_struct *p; 511 unsigned long offset, type; 512 513 if (!entry.val) 514 goto out; 515 type = swp_type(entry); 516 if (type >= nr_swapfiles) 517 goto bad_nofile; 518 p = swap_info[type]; 519 if (!(p->flags & SWP_USED)) 520 goto bad_device; 521 offset = swp_offset(entry); 522 if (offset >= p->max) 523 goto bad_offset; 524 if (!p->swap_map[offset]) 525 goto bad_free; 526 spin_lock(&p->lock); 527 return p; 528 529 bad_free: 530 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); 531 goto out; 532 bad_offset: 533 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); 534 goto out; 535 bad_device: 536 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); 537 goto out; 538 bad_nofile: 539 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); 540 out: 541 return NULL; 542 } 543 544 /* 545 * This swap type frees swap entry, check if it is the highest priority swap 546 * type which just frees swap entry. get_swap_page() uses 547 * highest_priority_index to search highest priority swap type. The 548 * swap_info_struct.lock can't protect us if there are multiple swap types 549 * active, so we use atomic_cmpxchg. 550 */ 551 static void set_highest_priority_index(int type) 552 { 553 int old_hp_index, new_hp_index; 554 555 do { 556 old_hp_index = atomic_read(&highest_priority_index); 557 if (old_hp_index != -1 && 558 swap_info[old_hp_index]->prio >= swap_info[type]->prio) 559 break; 560 new_hp_index = type; 561 } while (atomic_cmpxchg(&highest_priority_index, 562 old_hp_index, new_hp_index) != old_hp_index); 563 } 564 565 static unsigned char swap_entry_free(struct swap_info_struct *p, 566 swp_entry_t entry, unsigned char usage) 567 { 568 unsigned long offset = swp_offset(entry); 569 unsigned char count; 570 unsigned char has_cache; 571 572 count = p->swap_map[offset]; 573 has_cache = count & SWAP_HAS_CACHE; 574 count &= ~SWAP_HAS_CACHE; 575 576 if (usage == SWAP_HAS_CACHE) { 577 VM_BUG_ON(!has_cache); 578 has_cache = 0; 579 } else if (count == SWAP_MAP_SHMEM) { 580 /* 581 * Or we could insist on shmem.c using a special 582 * swap_shmem_free() and free_shmem_swap_and_cache()... 583 */ 584 count = 0; 585 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 586 if (count == COUNT_CONTINUED) { 587 if (swap_count_continued(p, offset, count)) 588 count = SWAP_MAP_MAX | COUNT_CONTINUED; 589 else 590 count = SWAP_MAP_MAX; 591 } else 592 count--; 593 } 594 595 if (!count) 596 mem_cgroup_uncharge_swap(entry); 597 598 usage = count | has_cache; 599 p->swap_map[offset] = usage; 600 601 /* free if no reference */ 602 if (!usage) { 603 if (offset < p->lowest_bit) 604 p->lowest_bit = offset; 605 if (offset > p->highest_bit) 606 p->highest_bit = offset; 607 set_highest_priority_index(p->type); 608 atomic_long_inc(&nr_swap_pages); 609 p->inuse_pages--; 610 frontswap_invalidate_page(p->type, offset); 611 if (p->flags & SWP_BLKDEV) { 612 struct gendisk *disk = p->bdev->bd_disk; 613 if (disk->fops->swap_slot_free_notify) 614 disk->fops->swap_slot_free_notify(p->bdev, 615 offset); 616 } 617 } 618 619 return usage; 620 } 621 622 /* 623 * Caller has made sure that the swapdevice corresponding to entry 624 * is still around or has not been recycled. 625 */ 626 void swap_free(swp_entry_t entry) 627 { 628 struct swap_info_struct *p; 629 630 p = swap_info_get(entry); 631 if (p) { 632 swap_entry_free(p, entry, 1); 633 spin_unlock(&p->lock); 634 } 635 } 636 637 /* 638 * Called after dropping swapcache to decrease refcnt to swap entries. 639 */ 640 void swapcache_free(swp_entry_t entry, struct page *page) 641 { 642 struct swap_info_struct *p; 643 unsigned char count; 644 645 p = swap_info_get(entry); 646 if (p) { 647 count = swap_entry_free(p, entry, SWAP_HAS_CACHE); 648 if (page) 649 mem_cgroup_uncharge_swapcache(page, entry, count != 0); 650 spin_unlock(&p->lock); 651 } 652 } 653 654 /* 655 * How many references to page are currently swapped out? 656 * This does not give an exact answer when swap count is continued, 657 * but does include the high COUNT_CONTINUED flag to allow for that. 658 */ 659 int page_swapcount(struct page *page) 660 { 661 int count = 0; 662 struct swap_info_struct *p; 663 swp_entry_t entry; 664 665 entry.val = page_private(page); 666 p = swap_info_get(entry); 667 if (p) { 668 count = swap_count(p->swap_map[swp_offset(entry)]); 669 spin_unlock(&p->lock); 670 } 671 return count; 672 } 673 674 /* 675 * We can write to an anon page without COW if there are no other references 676 * to it. And as a side-effect, free up its swap: because the old content 677 * on disk will never be read, and seeking back there to write new content 678 * later would only waste time away from clustering. 679 */ 680 int reuse_swap_page(struct page *page) 681 { 682 int count; 683 684 VM_BUG_ON(!PageLocked(page)); 685 if (unlikely(PageKsm(page))) 686 return 0; 687 count = page_mapcount(page); 688 if (count <= 1 && PageSwapCache(page)) { 689 count += page_swapcount(page); 690 if (count == 1 && !PageWriteback(page)) { 691 delete_from_swap_cache(page); 692 SetPageDirty(page); 693 } 694 } 695 return count <= 1; 696 } 697 698 /* 699 * If swap is getting full, or if there are no more mappings of this page, 700 * then try_to_free_swap is called to free its swap space. 701 */ 702 int try_to_free_swap(struct page *page) 703 { 704 VM_BUG_ON(!PageLocked(page)); 705 706 if (!PageSwapCache(page)) 707 return 0; 708 if (PageWriteback(page)) 709 return 0; 710 if (page_swapcount(page)) 711 return 0; 712 713 /* 714 * Once hibernation has begun to create its image of memory, 715 * there's a danger that one of the calls to try_to_free_swap() 716 * - most probably a call from __try_to_reclaim_swap() while 717 * hibernation is allocating its own swap pages for the image, 718 * but conceivably even a call from memory reclaim - will free 719 * the swap from a page which has already been recorded in the 720 * image as a clean swapcache page, and then reuse its swap for 721 * another page of the image. On waking from hibernation, the 722 * original page might be freed under memory pressure, then 723 * later read back in from swap, now with the wrong data. 724 * 725 * Hibration suspends storage while it is writing the image 726 * to disk so check that here. 727 */ 728 if (pm_suspended_storage()) 729 return 0; 730 731 delete_from_swap_cache(page); 732 SetPageDirty(page); 733 return 1; 734 } 735 736 /* 737 * Free the swap entry like above, but also try to 738 * free the page cache entry if it is the last user. 739 */ 740 int free_swap_and_cache(swp_entry_t entry) 741 { 742 struct swap_info_struct *p; 743 struct page *page = NULL; 744 745 if (non_swap_entry(entry)) 746 return 1; 747 748 p = swap_info_get(entry); 749 if (p) { 750 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) { 751 page = find_get_page(swap_address_space(entry), 752 entry.val); 753 if (page && !trylock_page(page)) { 754 page_cache_release(page); 755 page = NULL; 756 } 757 } 758 spin_unlock(&p->lock); 759 } 760 if (page) { 761 /* 762 * Not mapped elsewhere, or swap space full? Free it! 763 * Also recheck PageSwapCache now page is locked (above). 764 */ 765 if (PageSwapCache(page) && !PageWriteback(page) && 766 (!page_mapped(page) || vm_swap_full())) { 767 delete_from_swap_cache(page); 768 SetPageDirty(page); 769 } 770 unlock_page(page); 771 page_cache_release(page); 772 } 773 return p != NULL; 774 } 775 776 #ifdef CONFIG_HIBERNATION 777 /* 778 * Find the swap type that corresponds to given device (if any). 779 * 780 * @offset - number of the PAGE_SIZE-sized block of the device, starting 781 * from 0, in which the swap header is expected to be located. 782 * 783 * This is needed for the suspend to disk (aka swsusp). 784 */ 785 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 786 { 787 struct block_device *bdev = NULL; 788 int type; 789 790 if (device) 791 bdev = bdget(device); 792 793 spin_lock(&swap_lock); 794 for (type = 0; type < nr_swapfiles; type++) { 795 struct swap_info_struct *sis = swap_info[type]; 796 797 if (!(sis->flags & SWP_WRITEOK)) 798 continue; 799 800 if (!bdev) { 801 if (bdev_p) 802 *bdev_p = bdgrab(sis->bdev); 803 804 spin_unlock(&swap_lock); 805 return type; 806 } 807 if (bdev == sis->bdev) { 808 struct swap_extent *se = &sis->first_swap_extent; 809 810 if (se->start_block == offset) { 811 if (bdev_p) 812 *bdev_p = bdgrab(sis->bdev); 813 814 spin_unlock(&swap_lock); 815 bdput(bdev); 816 return type; 817 } 818 } 819 } 820 spin_unlock(&swap_lock); 821 if (bdev) 822 bdput(bdev); 823 824 return -ENODEV; 825 } 826 827 /* 828 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 829 * corresponding to given index in swap_info (swap type). 830 */ 831 sector_t swapdev_block(int type, pgoff_t offset) 832 { 833 struct block_device *bdev; 834 835 if ((unsigned int)type >= nr_swapfiles) 836 return 0; 837 if (!(swap_info[type]->flags & SWP_WRITEOK)) 838 return 0; 839 return map_swap_entry(swp_entry(type, offset), &bdev); 840 } 841 842 /* 843 * Return either the total number of swap pages of given type, or the number 844 * of free pages of that type (depending on @free) 845 * 846 * This is needed for software suspend 847 */ 848 unsigned int count_swap_pages(int type, int free) 849 { 850 unsigned int n = 0; 851 852 spin_lock(&swap_lock); 853 if ((unsigned int)type < nr_swapfiles) { 854 struct swap_info_struct *sis = swap_info[type]; 855 856 spin_lock(&sis->lock); 857 if (sis->flags & SWP_WRITEOK) { 858 n = sis->pages; 859 if (free) 860 n -= sis->inuse_pages; 861 } 862 spin_unlock(&sis->lock); 863 } 864 spin_unlock(&swap_lock); 865 return n; 866 } 867 #endif /* CONFIG_HIBERNATION */ 868 869 /* 870 * No need to decide whether this PTE shares the swap entry with others, 871 * just let do_wp_page work it out if a write is requested later - to 872 * force COW, vm_page_prot omits write permission from any private vma. 873 */ 874 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 875 unsigned long addr, swp_entry_t entry, struct page *page) 876 { 877 struct page *swapcache; 878 struct mem_cgroup *memcg; 879 spinlock_t *ptl; 880 pte_t *pte; 881 int ret = 1; 882 883 swapcache = page; 884 page = ksm_might_need_to_copy(page, vma, addr); 885 if (unlikely(!page)) 886 return -ENOMEM; 887 888 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, 889 GFP_KERNEL, &memcg)) { 890 ret = -ENOMEM; 891 goto out_nolock; 892 } 893 894 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 895 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) { 896 mem_cgroup_cancel_charge_swapin(memcg); 897 ret = 0; 898 goto out; 899 } 900 901 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 902 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 903 get_page(page); 904 set_pte_at(vma->vm_mm, addr, pte, 905 pte_mkold(mk_pte(page, vma->vm_page_prot))); 906 if (page == swapcache) 907 page_add_anon_rmap(page, vma, addr); 908 else /* ksm created a completely new copy */ 909 page_add_new_anon_rmap(page, vma, addr); 910 mem_cgroup_commit_charge_swapin(page, memcg); 911 swap_free(entry); 912 /* 913 * Move the page to the active list so it is not 914 * immediately swapped out again after swapon. 915 */ 916 activate_page(page); 917 out: 918 pte_unmap_unlock(pte, ptl); 919 out_nolock: 920 if (page != swapcache) { 921 unlock_page(page); 922 put_page(page); 923 } 924 return ret; 925 } 926 927 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 928 unsigned long addr, unsigned long end, 929 swp_entry_t entry, struct page *page) 930 { 931 pte_t swp_pte = swp_entry_to_pte(entry); 932 pte_t *pte; 933 int ret = 0; 934 935 /* 936 * We don't actually need pte lock while scanning for swp_pte: since 937 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 938 * page table while we're scanning; though it could get zapped, and on 939 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 940 * of unmatched parts which look like swp_pte, so unuse_pte must 941 * recheck under pte lock. Scanning without pte lock lets it be 942 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 943 */ 944 pte = pte_offset_map(pmd, addr); 945 do { 946 /* 947 * swapoff spends a _lot_ of time in this loop! 948 * Test inline before going to call unuse_pte. 949 */ 950 if (unlikely(pte_same(*pte, swp_pte))) { 951 pte_unmap(pte); 952 ret = unuse_pte(vma, pmd, addr, entry, page); 953 if (ret) 954 goto out; 955 pte = pte_offset_map(pmd, addr); 956 } 957 } while (pte++, addr += PAGE_SIZE, addr != end); 958 pte_unmap(pte - 1); 959 out: 960 return ret; 961 } 962 963 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 964 unsigned long addr, unsigned long end, 965 swp_entry_t entry, struct page *page) 966 { 967 pmd_t *pmd; 968 unsigned long next; 969 int ret; 970 971 pmd = pmd_offset(pud, addr); 972 do { 973 next = pmd_addr_end(addr, end); 974 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 975 continue; 976 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 977 if (ret) 978 return ret; 979 } while (pmd++, addr = next, addr != end); 980 return 0; 981 } 982 983 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 984 unsigned long addr, unsigned long end, 985 swp_entry_t entry, struct page *page) 986 { 987 pud_t *pud; 988 unsigned long next; 989 int ret; 990 991 pud = pud_offset(pgd, addr); 992 do { 993 next = pud_addr_end(addr, end); 994 if (pud_none_or_clear_bad(pud)) 995 continue; 996 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 997 if (ret) 998 return ret; 999 } while (pud++, addr = next, addr != end); 1000 return 0; 1001 } 1002 1003 static int unuse_vma(struct vm_area_struct *vma, 1004 swp_entry_t entry, struct page *page) 1005 { 1006 pgd_t *pgd; 1007 unsigned long addr, end, next; 1008 int ret; 1009 1010 if (page_anon_vma(page)) { 1011 addr = page_address_in_vma(page, vma); 1012 if (addr == -EFAULT) 1013 return 0; 1014 else 1015 end = addr + PAGE_SIZE; 1016 } else { 1017 addr = vma->vm_start; 1018 end = vma->vm_end; 1019 } 1020 1021 pgd = pgd_offset(vma->vm_mm, addr); 1022 do { 1023 next = pgd_addr_end(addr, end); 1024 if (pgd_none_or_clear_bad(pgd)) 1025 continue; 1026 ret = unuse_pud_range(vma, pgd, addr, next, entry, page); 1027 if (ret) 1028 return ret; 1029 } while (pgd++, addr = next, addr != end); 1030 return 0; 1031 } 1032 1033 static int unuse_mm(struct mm_struct *mm, 1034 swp_entry_t entry, struct page *page) 1035 { 1036 struct vm_area_struct *vma; 1037 int ret = 0; 1038 1039 if (!down_read_trylock(&mm->mmap_sem)) { 1040 /* 1041 * Activate page so shrink_inactive_list is unlikely to unmap 1042 * its ptes while lock is dropped, so swapoff can make progress. 1043 */ 1044 activate_page(page); 1045 unlock_page(page); 1046 down_read(&mm->mmap_sem); 1047 lock_page(page); 1048 } 1049 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1050 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 1051 break; 1052 } 1053 up_read(&mm->mmap_sem); 1054 return (ret < 0)? ret: 0; 1055 } 1056 1057 /* 1058 * Scan swap_map (or frontswap_map if frontswap parameter is true) 1059 * from current position to next entry still in use. 1060 * Recycle to start on reaching the end, returning 0 when empty. 1061 */ 1062 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 1063 unsigned int prev, bool frontswap) 1064 { 1065 unsigned int max = si->max; 1066 unsigned int i = prev; 1067 unsigned char count; 1068 1069 /* 1070 * No need for swap_lock here: we're just looking 1071 * for whether an entry is in use, not modifying it; false 1072 * hits are okay, and sys_swapoff() has already prevented new 1073 * allocations from this area (while holding swap_lock). 1074 */ 1075 for (;;) { 1076 if (++i >= max) { 1077 if (!prev) { 1078 i = 0; 1079 break; 1080 } 1081 /* 1082 * No entries in use at top of swap_map, 1083 * loop back to start and recheck there. 1084 */ 1085 max = prev + 1; 1086 prev = 0; 1087 i = 1; 1088 } 1089 if (frontswap) { 1090 if (frontswap_test(si, i)) 1091 break; 1092 else 1093 continue; 1094 } 1095 count = si->swap_map[i]; 1096 if (count && swap_count(count) != SWAP_MAP_BAD) 1097 break; 1098 } 1099 return i; 1100 } 1101 1102 /* 1103 * We completely avoid races by reading each swap page in advance, 1104 * and then search for the process using it. All the necessary 1105 * page table adjustments can then be made atomically. 1106 * 1107 * if the boolean frontswap is true, only unuse pages_to_unuse pages; 1108 * pages_to_unuse==0 means all pages; ignored if frontswap is false 1109 */ 1110 int try_to_unuse(unsigned int type, bool frontswap, 1111 unsigned long pages_to_unuse) 1112 { 1113 struct swap_info_struct *si = swap_info[type]; 1114 struct mm_struct *start_mm; 1115 unsigned char *swap_map; 1116 unsigned char swcount; 1117 struct page *page; 1118 swp_entry_t entry; 1119 unsigned int i = 0; 1120 int retval = 0; 1121 1122 /* 1123 * When searching mms for an entry, a good strategy is to 1124 * start at the first mm we freed the previous entry from 1125 * (though actually we don't notice whether we or coincidence 1126 * freed the entry). Initialize this start_mm with a hold. 1127 * 1128 * A simpler strategy would be to start at the last mm we 1129 * freed the previous entry from; but that would take less 1130 * advantage of mmlist ordering, which clusters forked mms 1131 * together, child after parent. If we race with dup_mmap(), we 1132 * prefer to resolve parent before child, lest we miss entries 1133 * duplicated after we scanned child: using last mm would invert 1134 * that. 1135 */ 1136 start_mm = &init_mm; 1137 atomic_inc(&init_mm.mm_users); 1138 1139 /* 1140 * Keep on scanning until all entries have gone. Usually, 1141 * one pass through swap_map is enough, but not necessarily: 1142 * there are races when an instance of an entry might be missed. 1143 */ 1144 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) { 1145 if (signal_pending(current)) { 1146 retval = -EINTR; 1147 break; 1148 } 1149 1150 /* 1151 * Get a page for the entry, using the existing swap 1152 * cache page if there is one. Otherwise, get a clean 1153 * page and read the swap into it. 1154 */ 1155 swap_map = &si->swap_map[i]; 1156 entry = swp_entry(type, i); 1157 page = read_swap_cache_async(entry, 1158 GFP_HIGHUSER_MOVABLE, NULL, 0); 1159 if (!page) { 1160 /* 1161 * Either swap_duplicate() failed because entry 1162 * has been freed independently, and will not be 1163 * reused since sys_swapoff() already disabled 1164 * allocation from here, or alloc_page() failed. 1165 */ 1166 if (!*swap_map) 1167 continue; 1168 retval = -ENOMEM; 1169 break; 1170 } 1171 1172 /* 1173 * Don't hold on to start_mm if it looks like exiting. 1174 */ 1175 if (atomic_read(&start_mm->mm_users) == 1) { 1176 mmput(start_mm); 1177 start_mm = &init_mm; 1178 atomic_inc(&init_mm.mm_users); 1179 } 1180 1181 /* 1182 * Wait for and lock page. When do_swap_page races with 1183 * try_to_unuse, do_swap_page can handle the fault much 1184 * faster than try_to_unuse can locate the entry. This 1185 * apparently redundant "wait_on_page_locked" lets try_to_unuse 1186 * defer to do_swap_page in such a case - in some tests, 1187 * do_swap_page and try_to_unuse repeatedly compete. 1188 */ 1189 wait_on_page_locked(page); 1190 wait_on_page_writeback(page); 1191 lock_page(page); 1192 wait_on_page_writeback(page); 1193 1194 /* 1195 * Remove all references to entry. 1196 */ 1197 swcount = *swap_map; 1198 if (swap_count(swcount) == SWAP_MAP_SHMEM) { 1199 retval = shmem_unuse(entry, page); 1200 /* page has already been unlocked and released */ 1201 if (retval < 0) 1202 break; 1203 continue; 1204 } 1205 if (swap_count(swcount) && start_mm != &init_mm) 1206 retval = unuse_mm(start_mm, entry, page); 1207 1208 if (swap_count(*swap_map)) { 1209 int set_start_mm = (*swap_map >= swcount); 1210 struct list_head *p = &start_mm->mmlist; 1211 struct mm_struct *new_start_mm = start_mm; 1212 struct mm_struct *prev_mm = start_mm; 1213 struct mm_struct *mm; 1214 1215 atomic_inc(&new_start_mm->mm_users); 1216 atomic_inc(&prev_mm->mm_users); 1217 spin_lock(&mmlist_lock); 1218 while (swap_count(*swap_map) && !retval && 1219 (p = p->next) != &start_mm->mmlist) { 1220 mm = list_entry(p, struct mm_struct, mmlist); 1221 if (!atomic_inc_not_zero(&mm->mm_users)) 1222 continue; 1223 spin_unlock(&mmlist_lock); 1224 mmput(prev_mm); 1225 prev_mm = mm; 1226 1227 cond_resched(); 1228 1229 swcount = *swap_map; 1230 if (!swap_count(swcount)) /* any usage ? */ 1231 ; 1232 else if (mm == &init_mm) 1233 set_start_mm = 1; 1234 else 1235 retval = unuse_mm(mm, entry, page); 1236 1237 if (set_start_mm && *swap_map < swcount) { 1238 mmput(new_start_mm); 1239 atomic_inc(&mm->mm_users); 1240 new_start_mm = mm; 1241 set_start_mm = 0; 1242 } 1243 spin_lock(&mmlist_lock); 1244 } 1245 spin_unlock(&mmlist_lock); 1246 mmput(prev_mm); 1247 mmput(start_mm); 1248 start_mm = new_start_mm; 1249 } 1250 if (retval) { 1251 unlock_page(page); 1252 page_cache_release(page); 1253 break; 1254 } 1255 1256 /* 1257 * If a reference remains (rare), we would like to leave 1258 * the page in the swap cache; but try_to_unmap could 1259 * then re-duplicate the entry once we drop page lock, 1260 * so we might loop indefinitely; also, that page could 1261 * not be swapped out to other storage meanwhile. So: 1262 * delete from cache even if there's another reference, 1263 * after ensuring that the data has been saved to disk - 1264 * since if the reference remains (rarer), it will be 1265 * read from disk into another page. Splitting into two 1266 * pages would be incorrect if swap supported "shared 1267 * private" pages, but they are handled by tmpfs files. 1268 * 1269 * Given how unuse_vma() targets one particular offset 1270 * in an anon_vma, once the anon_vma has been determined, 1271 * this splitting happens to be just what is needed to 1272 * handle where KSM pages have been swapped out: re-reading 1273 * is unnecessarily slow, but we can fix that later on. 1274 */ 1275 if (swap_count(*swap_map) && 1276 PageDirty(page) && PageSwapCache(page)) { 1277 struct writeback_control wbc = { 1278 .sync_mode = WB_SYNC_NONE, 1279 }; 1280 1281 swap_writepage(page, &wbc); 1282 lock_page(page); 1283 wait_on_page_writeback(page); 1284 } 1285 1286 /* 1287 * It is conceivable that a racing task removed this page from 1288 * swap cache just before we acquired the page lock at the top, 1289 * or while we dropped it in unuse_mm(). The page might even 1290 * be back in swap cache on another swap area: that we must not 1291 * delete, since it may not have been written out to swap yet. 1292 */ 1293 if (PageSwapCache(page) && 1294 likely(page_private(page) == entry.val)) 1295 delete_from_swap_cache(page); 1296 1297 /* 1298 * So we could skip searching mms once swap count went 1299 * to 1, we did not mark any present ptes as dirty: must 1300 * mark page dirty so shrink_page_list will preserve it. 1301 */ 1302 SetPageDirty(page); 1303 unlock_page(page); 1304 page_cache_release(page); 1305 1306 /* 1307 * Make sure that we aren't completely killing 1308 * interactive performance. 1309 */ 1310 cond_resched(); 1311 if (frontswap && pages_to_unuse > 0) { 1312 if (!--pages_to_unuse) 1313 break; 1314 } 1315 } 1316 1317 mmput(start_mm); 1318 return retval; 1319 } 1320 1321 /* 1322 * After a successful try_to_unuse, if no swap is now in use, we know 1323 * we can empty the mmlist. swap_lock must be held on entry and exit. 1324 * Note that mmlist_lock nests inside swap_lock, and an mm must be 1325 * added to the mmlist just after page_duplicate - before would be racy. 1326 */ 1327 static void drain_mmlist(void) 1328 { 1329 struct list_head *p, *next; 1330 unsigned int type; 1331 1332 for (type = 0; type < nr_swapfiles; type++) 1333 if (swap_info[type]->inuse_pages) 1334 return; 1335 spin_lock(&mmlist_lock); 1336 list_for_each_safe(p, next, &init_mm.mmlist) 1337 list_del_init(p); 1338 spin_unlock(&mmlist_lock); 1339 } 1340 1341 /* 1342 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 1343 * corresponds to page offset for the specified swap entry. 1344 * Note that the type of this function is sector_t, but it returns page offset 1345 * into the bdev, not sector offset. 1346 */ 1347 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 1348 { 1349 struct swap_info_struct *sis; 1350 struct swap_extent *start_se; 1351 struct swap_extent *se; 1352 pgoff_t offset; 1353 1354 sis = swap_info[swp_type(entry)]; 1355 *bdev = sis->bdev; 1356 1357 offset = swp_offset(entry); 1358 start_se = sis->curr_swap_extent; 1359 se = start_se; 1360 1361 for ( ; ; ) { 1362 struct list_head *lh; 1363 1364 if (se->start_page <= offset && 1365 offset < (se->start_page + se->nr_pages)) { 1366 return se->start_block + (offset - se->start_page); 1367 } 1368 lh = se->list.next; 1369 se = list_entry(lh, struct swap_extent, list); 1370 sis->curr_swap_extent = se; 1371 BUG_ON(se == start_se); /* It *must* be present */ 1372 } 1373 } 1374 1375 /* 1376 * Returns the page offset into bdev for the specified page's swap entry. 1377 */ 1378 sector_t map_swap_page(struct page *page, struct block_device **bdev) 1379 { 1380 swp_entry_t entry; 1381 entry.val = page_private(page); 1382 return map_swap_entry(entry, bdev); 1383 } 1384 1385 /* 1386 * Free all of a swapdev's extent information 1387 */ 1388 static void destroy_swap_extents(struct swap_info_struct *sis) 1389 { 1390 while (!list_empty(&sis->first_swap_extent.list)) { 1391 struct swap_extent *se; 1392 1393 se = list_entry(sis->first_swap_extent.list.next, 1394 struct swap_extent, list); 1395 list_del(&se->list); 1396 kfree(se); 1397 } 1398 1399 if (sis->flags & SWP_FILE) { 1400 struct file *swap_file = sis->swap_file; 1401 struct address_space *mapping = swap_file->f_mapping; 1402 1403 sis->flags &= ~SWP_FILE; 1404 mapping->a_ops->swap_deactivate(swap_file); 1405 } 1406 } 1407 1408 /* 1409 * Add a block range (and the corresponding page range) into this swapdev's 1410 * extent list. The extent list is kept sorted in page order. 1411 * 1412 * This function rather assumes that it is called in ascending page order. 1413 */ 1414 int 1415 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 1416 unsigned long nr_pages, sector_t start_block) 1417 { 1418 struct swap_extent *se; 1419 struct swap_extent *new_se; 1420 struct list_head *lh; 1421 1422 if (start_page == 0) { 1423 se = &sis->first_swap_extent; 1424 sis->curr_swap_extent = se; 1425 se->start_page = 0; 1426 se->nr_pages = nr_pages; 1427 se->start_block = start_block; 1428 return 1; 1429 } else { 1430 lh = sis->first_swap_extent.list.prev; /* Highest extent */ 1431 se = list_entry(lh, struct swap_extent, list); 1432 BUG_ON(se->start_page + se->nr_pages != start_page); 1433 if (se->start_block + se->nr_pages == start_block) { 1434 /* Merge it */ 1435 se->nr_pages += nr_pages; 1436 return 0; 1437 } 1438 } 1439 1440 /* 1441 * No merge. Insert a new extent, preserving ordering. 1442 */ 1443 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 1444 if (new_se == NULL) 1445 return -ENOMEM; 1446 new_se->start_page = start_page; 1447 new_se->nr_pages = nr_pages; 1448 new_se->start_block = start_block; 1449 1450 list_add_tail(&new_se->list, &sis->first_swap_extent.list); 1451 return 1; 1452 } 1453 1454 /* 1455 * A `swap extent' is a simple thing which maps a contiguous range of pages 1456 * onto a contiguous range of disk blocks. An ordered list of swap extents 1457 * is built at swapon time and is then used at swap_writepage/swap_readpage 1458 * time for locating where on disk a page belongs. 1459 * 1460 * If the swapfile is an S_ISBLK block device, a single extent is installed. 1461 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 1462 * swap files identically. 1463 * 1464 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 1465 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 1466 * swapfiles are handled *identically* after swapon time. 1467 * 1468 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 1469 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 1470 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 1471 * requirements, they are simply tossed out - we will never use those blocks 1472 * for swapping. 1473 * 1474 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 1475 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 1476 * which will scribble on the fs. 1477 * 1478 * The amount of disk space which a single swap extent represents varies. 1479 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 1480 * extents in the list. To avoid much list walking, we cache the previous 1481 * search location in `curr_swap_extent', and start new searches from there. 1482 * This is extremely effective. The average number of iterations in 1483 * map_swap_page() has been measured at about 0.3 per page. - akpm. 1484 */ 1485 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 1486 { 1487 struct file *swap_file = sis->swap_file; 1488 struct address_space *mapping = swap_file->f_mapping; 1489 struct inode *inode = mapping->host; 1490 int ret; 1491 1492 if (S_ISBLK(inode->i_mode)) { 1493 ret = add_swap_extent(sis, 0, sis->max, 0); 1494 *span = sis->pages; 1495 return ret; 1496 } 1497 1498 if (mapping->a_ops->swap_activate) { 1499 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 1500 if (!ret) { 1501 sis->flags |= SWP_FILE; 1502 ret = add_swap_extent(sis, 0, sis->max, 0); 1503 *span = sis->pages; 1504 } 1505 return ret; 1506 } 1507 1508 return generic_swapfile_activate(sis, swap_file, span); 1509 } 1510 1511 static void _enable_swap_info(struct swap_info_struct *p, int prio, 1512 unsigned char *swap_map) 1513 { 1514 int i, prev; 1515 1516 if (prio >= 0) 1517 p->prio = prio; 1518 else 1519 p->prio = --least_priority; 1520 p->swap_map = swap_map; 1521 p->flags |= SWP_WRITEOK; 1522 atomic_long_add(p->pages, &nr_swap_pages); 1523 total_swap_pages += p->pages; 1524 1525 /* insert swap space into swap_list: */ 1526 prev = -1; 1527 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) { 1528 if (p->prio >= swap_info[i]->prio) 1529 break; 1530 prev = i; 1531 } 1532 p->next = i; 1533 if (prev < 0) 1534 swap_list.head = swap_list.next = p->type; 1535 else 1536 swap_info[prev]->next = p->type; 1537 } 1538 1539 static void enable_swap_info(struct swap_info_struct *p, int prio, 1540 unsigned char *swap_map, 1541 unsigned long *frontswap_map) 1542 { 1543 frontswap_init(p->type, frontswap_map); 1544 spin_lock(&swap_lock); 1545 spin_lock(&p->lock); 1546 _enable_swap_info(p, prio, swap_map); 1547 spin_unlock(&p->lock); 1548 spin_unlock(&swap_lock); 1549 } 1550 1551 static void reinsert_swap_info(struct swap_info_struct *p) 1552 { 1553 spin_lock(&swap_lock); 1554 spin_lock(&p->lock); 1555 _enable_swap_info(p, p->prio, p->swap_map); 1556 spin_unlock(&p->lock); 1557 spin_unlock(&swap_lock); 1558 } 1559 1560 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 1561 { 1562 struct swap_info_struct *p = NULL; 1563 unsigned char *swap_map; 1564 unsigned long *frontswap_map; 1565 struct file *swap_file, *victim; 1566 struct address_space *mapping; 1567 struct inode *inode; 1568 struct filename *pathname; 1569 int i, type, prev; 1570 int err; 1571 1572 if (!capable(CAP_SYS_ADMIN)) 1573 return -EPERM; 1574 1575 BUG_ON(!current->mm); 1576 1577 pathname = getname(specialfile); 1578 if (IS_ERR(pathname)) 1579 return PTR_ERR(pathname); 1580 1581 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 1582 err = PTR_ERR(victim); 1583 if (IS_ERR(victim)) 1584 goto out; 1585 1586 mapping = victim->f_mapping; 1587 prev = -1; 1588 spin_lock(&swap_lock); 1589 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) { 1590 p = swap_info[type]; 1591 if (p->flags & SWP_WRITEOK) { 1592 if (p->swap_file->f_mapping == mapping) 1593 break; 1594 } 1595 prev = type; 1596 } 1597 if (type < 0) { 1598 err = -EINVAL; 1599 spin_unlock(&swap_lock); 1600 goto out_dput; 1601 } 1602 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 1603 vm_unacct_memory(p->pages); 1604 else { 1605 err = -ENOMEM; 1606 spin_unlock(&swap_lock); 1607 goto out_dput; 1608 } 1609 if (prev < 0) 1610 swap_list.head = p->next; 1611 else 1612 swap_info[prev]->next = p->next; 1613 if (type == swap_list.next) { 1614 /* just pick something that's safe... */ 1615 swap_list.next = swap_list.head; 1616 } 1617 spin_lock(&p->lock); 1618 if (p->prio < 0) { 1619 for (i = p->next; i >= 0; i = swap_info[i]->next) 1620 swap_info[i]->prio = p->prio--; 1621 least_priority++; 1622 } 1623 atomic_long_sub(p->pages, &nr_swap_pages); 1624 total_swap_pages -= p->pages; 1625 p->flags &= ~SWP_WRITEOK; 1626 spin_unlock(&p->lock); 1627 spin_unlock(&swap_lock); 1628 1629 set_current_oom_origin(); 1630 err = try_to_unuse(type, false, 0); /* force all pages to be unused */ 1631 clear_current_oom_origin(); 1632 1633 if (err) { 1634 /* re-insert swap space back into swap_list */ 1635 reinsert_swap_info(p); 1636 goto out_dput; 1637 } 1638 1639 destroy_swap_extents(p); 1640 if (p->flags & SWP_CONTINUED) 1641 free_swap_count_continuations(p); 1642 1643 mutex_lock(&swapon_mutex); 1644 spin_lock(&swap_lock); 1645 spin_lock(&p->lock); 1646 drain_mmlist(); 1647 1648 /* wait for anyone still in scan_swap_map */ 1649 p->highest_bit = 0; /* cuts scans short */ 1650 while (p->flags >= SWP_SCANNING) { 1651 spin_unlock(&p->lock); 1652 spin_unlock(&swap_lock); 1653 schedule_timeout_uninterruptible(1); 1654 spin_lock(&swap_lock); 1655 spin_lock(&p->lock); 1656 } 1657 1658 swap_file = p->swap_file; 1659 p->swap_file = NULL; 1660 p->max = 0; 1661 swap_map = p->swap_map; 1662 p->swap_map = NULL; 1663 p->flags = 0; 1664 frontswap_map = frontswap_map_get(p); 1665 frontswap_map_set(p, NULL); 1666 spin_unlock(&p->lock); 1667 spin_unlock(&swap_lock); 1668 frontswap_invalidate_area(type); 1669 mutex_unlock(&swapon_mutex); 1670 vfree(swap_map); 1671 vfree(frontswap_map); 1672 /* Destroy swap account informatin */ 1673 swap_cgroup_swapoff(type); 1674 1675 inode = mapping->host; 1676 if (S_ISBLK(inode->i_mode)) { 1677 struct block_device *bdev = I_BDEV(inode); 1678 set_blocksize(bdev, p->old_block_size); 1679 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 1680 } else { 1681 mutex_lock(&inode->i_mutex); 1682 inode->i_flags &= ~S_SWAPFILE; 1683 mutex_unlock(&inode->i_mutex); 1684 } 1685 filp_close(swap_file, NULL); 1686 err = 0; 1687 atomic_inc(&proc_poll_event); 1688 wake_up_interruptible(&proc_poll_wait); 1689 1690 out_dput: 1691 filp_close(victim, NULL); 1692 out: 1693 putname(pathname); 1694 return err; 1695 } 1696 1697 #ifdef CONFIG_PROC_FS 1698 static unsigned swaps_poll(struct file *file, poll_table *wait) 1699 { 1700 struct seq_file *seq = file->private_data; 1701 1702 poll_wait(file, &proc_poll_wait, wait); 1703 1704 if (seq->poll_event != atomic_read(&proc_poll_event)) { 1705 seq->poll_event = atomic_read(&proc_poll_event); 1706 return POLLIN | POLLRDNORM | POLLERR | POLLPRI; 1707 } 1708 1709 return POLLIN | POLLRDNORM; 1710 } 1711 1712 /* iterator */ 1713 static void *swap_start(struct seq_file *swap, loff_t *pos) 1714 { 1715 struct swap_info_struct *si; 1716 int type; 1717 loff_t l = *pos; 1718 1719 mutex_lock(&swapon_mutex); 1720 1721 if (!l) 1722 return SEQ_START_TOKEN; 1723 1724 for (type = 0; type < nr_swapfiles; type++) { 1725 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 1726 si = swap_info[type]; 1727 if (!(si->flags & SWP_USED) || !si->swap_map) 1728 continue; 1729 if (!--l) 1730 return si; 1731 } 1732 1733 return NULL; 1734 } 1735 1736 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 1737 { 1738 struct swap_info_struct *si = v; 1739 int type; 1740 1741 if (v == SEQ_START_TOKEN) 1742 type = 0; 1743 else 1744 type = si->type + 1; 1745 1746 for (; type < nr_swapfiles; type++) { 1747 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 1748 si = swap_info[type]; 1749 if (!(si->flags & SWP_USED) || !si->swap_map) 1750 continue; 1751 ++*pos; 1752 return si; 1753 } 1754 1755 return NULL; 1756 } 1757 1758 static void swap_stop(struct seq_file *swap, void *v) 1759 { 1760 mutex_unlock(&swapon_mutex); 1761 } 1762 1763 static int swap_show(struct seq_file *swap, void *v) 1764 { 1765 struct swap_info_struct *si = v; 1766 struct file *file; 1767 int len; 1768 1769 if (si == SEQ_START_TOKEN) { 1770 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 1771 return 0; 1772 } 1773 1774 file = si->swap_file; 1775 len = seq_path(swap, &file->f_path, " \t\n\\"); 1776 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 1777 len < 40 ? 40 - len : 1, " ", 1778 S_ISBLK(file_inode(file)->i_mode) ? 1779 "partition" : "file\t", 1780 si->pages << (PAGE_SHIFT - 10), 1781 si->inuse_pages << (PAGE_SHIFT - 10), 1782 si->prio); 1783 return 0; 1784 } 1785 1786 static const struct seq_operations swaps_op = { 1787 .start = swap_start, 1788 .next = swap_next, 1789 .stop = swap_stop, 1790 .show = swap_show 1791 }; 1792 1793 static int swaps_open(struct inode *inode, struct file *file) 1794 { 1795 struct seq_file *seq; 1796 int ret; 1797 1798 ret = seq_open(file, &swaps_op); 1799 if (ret) 1800 return ret; 1801 1802 seq = file->private_data; 1803 seq->poll_event = atomic_read(&proc_poll_event); 1804 return 0; 1805 } 1806 1807 static const struct file_operations proc_swaps_operations = { 1808 .open = swaps_open, 1809 .read = seq_read, 1810 .llseek = seq_lseek, 1811 .release = seq_release, 1812 .poll = swaps_poll, 1813 }; 1814 1815 static int __init procswaps_init(void) 1816 { 1817 proc_create("swaps", 0, NULL, &proc_swaps_operations); 1818 return 0; 1819 } 1820 __initcall(procswaps_init); 1821 #endif /* CONFIG_PROC_FS */ 1822 1823 #ifdef MAX_SWAPFILES_CHECK 1824 static int __init max_swapfiles_check(void) 1825 { 1826 MAX_SWAPFILES_CHECK(); 1827 return 0; 1828 } 1829 late_initcall(max_swapfiles_check); 1830 #endif 1831 1832 static struct swap_info_struct *alloc_swap_info(void) 1833 { 1834 struct swap_info_struct *p; 1835 unsigned int type; 1836 1837 p = kzalloc(sizeof(*p), GFP_KERNEL); 1838 if (!p) 1839 return ERR_PTR(-ENOMEM); 1840 1841 spin_lock(&swap_lock); 1842 for (type = 0; type < nr_swapfiles; type++) { 1843 if (!(swap_info[type]->flags & SWP_USED)) 1844 break; 1845 } 1846 if (type >= MAX_SWAPFILES) { 1847 spin_unlock(&swap_lock); 1848 kfree(p); 1849 return ERR_PTR(-EPERM); 1850 } 1851 if (type >= nr_swapfiles) { 1852 p->type = type; 1853 swap_info[type] = p; 1854 /* 1855 * Write swap_info[type] before nr_swapfiles, in case a 1856 * racing procfs swap_start() or swap_next() is reading them. 1857 * (We never shrink nr_swapfiles, we never free this entry.) 1858 */ 1859 smp_wmb(); 1860 nr_swapfiles++; 1861 } else { 1862 kfree(p); 1863 p = swap_info[type]; 1864 /* 1865 * Do not memset this entry: a racing procfs swap_next() 1866 * would be relying on p->type to remain valid. 1867 */ 1868 } 1869 INIT_LIST_HEAD(&p->first_swap_extent.list); 1870 p->flags = SWP_USED; 1871 p->next = -1; 1872 spin_unlock(&swap_lock); 1873 spin_lock_init(&p->lock); 1874 1875 return p; 1876 } 1877 1878 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 1879 { 1880 int error; 1881 1882 if (S_ISBLK(inode->i_mode)) { 1883 p->bdev = bdgrab(I_BDEV(inode)); 1884 error = blkdev_get(p->bdev, 1885 FMODE_READ | FMODE_WRITE | FMODE_EXCL, 1886 sys_swapon); 1887 if (error < 0) { 1888 p->bdev = NULL; 1889 return -EINVAL; 1890 } 1891 p->old_block_size = block_size(p->bdev); 1892 error = set_blocksize(p->bdev, PAGE_SIZE); 1893 if (error < 0) 1894 return error; 1895 p->flags |= SWP_BLKDEV; 1896 } else if (S_ISREG(inode->i_mode)) { 1897 p->bdev = inode->i_sb->s_bdev; 1898 mutex_lock(&inode->i_mutex); 1899 if (IS_SWAPFILE(inode)) 1900 return -EBUSY; 1901 } else 1902 return -EINVAL; 1903 1904 return 0; 1905 } 1906 1907 static unsigned long read_swap_header(struct swap_info_struct *p, 1908 union swap_header *swap_header, 1909 struct inode *inode) 1910 { 1911 int i; 1912 unsigned long maxpages; 1913 unsigned long swapfilepages; 1914 1915 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 1916 printk(KERN_ERR "Unable to find swap-space signature\n"); 1917 return 0; 1918 } 1919 1920 /* swap partition endianess hack... */ 1921 if (swab32(swap_header->info.version) == 1) { 1922 swab32s(&swap_header->info.version); 1923 swab32s(&swap_header->info.last_page); 1924 swab32s(&swap_header->info.nr_badpages); 1925 for (i = 0; i < swap_header->info.nr_badpages; i++) 1926 swab32s(&swap_header->info.badpages[i]); 1927 } 1928 /* Check the swap header's sub-version */ 1929 if (swap_header->info.version != 1) { 1930 printk(KERN_WARNING 1931 "Unable to handle swap header version %d\n", 1932 swap_header->info.version); 1933 return 0; 1934 } 1935 1936 p->lowest_bit = 1; 1937 p->cluster_next = 1; 1938 p->cluster_nr = 0; 1939 1940 /* 1941 * Find out how many pages are allowed for a single swap 1942 * device. There are two limiting factors: 1) the number 1943 * of bits for the swap offset in the swp_entry_t type, and 1944 * 2) the number of bits in the swap pte as defined by the 1945 * different architectures. In order to find the 1946 * largest possible bit mask, a swap entry with swap type 0 1947 * and swap offset ~0UL is created, encoded to a swap pte, 1948 * decoded to a swp_entry_t again, and finally the swap 1949 * offset is extracted. This will mask all the bits from 1950 * the initial ~0UL mask that can't be encoded in either 1951 * the swp_entry_t or the architecture definition of a 1952 * swap pte. 1953 */ 1954 maxpages = swp_offset(pte_to_swp_entry( 1955 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 1956 if (maxpages > swap_header->info.last_page) { 1957 maxpages = swap_header->info.last_page + 1; 1958 /* p->max is an unsigned int: don't overflow it */ 1959 if ((unsigned int)maxpages == 0) 1960 maxpages = UINT_MAX; 1961 } 1962 p->highest_bit = maxpages - 1; 1963 1964 if (!maxpages) 1965 return 0; 1966 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 1967 if (swapfilepages && maxpages > swapfilepages) { 1968 printk(KERN_WARNING 1969 "Swap area shorter than signature indicates\n"); 1970 return 0; 1971 } 1972 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 1973 return 0; 1974 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 1975 return 0; 1976 1977 return maxpages; 1978 } 1979 1980 static int setup_swap_map_and_extents(struct swap_info_struct *p, 1981 union swap_header *swap_header, 1982 unsigned char *swap_map, 1983 unsigned long maxpages, 1984 sector_t *span) 1985 { 1986 int i; 1987 unsigned int nr_good_pages; 1988 int nr_extents; 1989 1990 nr_good_pages = maxpages - 1; /* omit header page */ 1991 1992 for (i = 0; i < swap_header->info.nr_badpages; i++) { 1993 unsigned int page_nr = swap_header->info.badpages[i]; 1994 if (page_nr == 0 || page_nr > swap_header->info.last_page) 1995 return -EINVAL; 1996 if (page_nr < maxpages) { 1997 swap_map[page_nr] = SWAP_MAP_BAD; 1998 nr_good_pages--; 1999 } 2000 } 2001 2002 if (nr_good_pages) { 2003 swap_map[0] = SWAP_MAP_BAD; 2004 p->max = maxpages; 2005 p->pages = nr_good_pages; 2006 nr_extents = setup_swap_extents(p, span); 2007 if (nr_extents < 0) 2008 return nr_extents; 2009 nr_good_pages = p->pages; 2010 } 2011 if (!nr_good_pages) { 2012 printk(KERN_WARNING "Empty swap-file\n"); 2013 return -EINVAL; 2014 } 2015 2016 return nr_extents; 2017 } 2018 2019 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 2020 { 2021 struct swap_info_struct *p; 2022 struct filename *name; 2023 struct file *swap_file = NULL; 2024 struct address_space *mapping; 2025 int i; 2026 int prio; 2027 int error; 2028 union swap_header *swap_header; 2029 int nr_extents; 2030 sector_t span; 2031 unsigned long maxpages; 2032 unsigned char *swap_map = NULL; 2033 unsigned long *frontswap_map = NULL; 2034 struct page *page = NULL; 2035 struct inode *inode = NULL; 2036 2037 if (swap_flags & ~SWAP_FLAGS_VALID) 2038 return -EINVAL; 2039 2040 if (!capable(CAP_SYS_ADMIN)) 2041 return -EPERM; 2042 2043 p = alloc_swap_info(); 2044 if (IS_ERR(p)) 2045 return PTR_ERR(p); 2046 2047 name = getname(specialfile); 2048 if (IS_ERR(name)) { 2049 error = PTR_ERR(name); 2050 name = NULL; 2051 goto bad_swap; 2052 } 2053 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 2054 if (IS_ERR(swap_file)) { 2055 error = PTR_ERR(swap_file); 2056 swap_file = NULL; 2057 goto bad_swap; 2058 } 2059 2060 p->swap_file = swap_file; 2061 mapping = swap_file->f_mapping; 2062 2063 for (i = 0; i < nr_swapfiles; i++) { 2064 struct swap_info_struct *q = swap_info[i]; 2065 2066 if (q == p || !q->swap_file) 2067 continue; 2068 if (mapping == q->swap_file->f_mapping) { 2069 error = -EBUSY; 2070 goto bad_swap; 2071 } 2072 } 2073 2074 inode = mapping->host; 2075 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */ 2076 error = claim_swapfile(p, inode); 2077 if (unlikely(error)) 2078 goto bad_swap; 2079 2080 /* 2081 * Read the swap header. 2082 */ 2083 if (!mapping->a_ops->readpage) { 2084 error = -EINVAL; 2085 goto bad_swap; 2086 } 2087 page = read_mapping_page(mapping, 0, swap_file); 2088 if (IS_ERR(page)) { 2089 error = PTR_ERR(page); 2090 goto bad_swap; 2091 } 2092 swap_header = kmap(page); 2093 2094 maxpages = read_swap_header(p, swap_header, inode); 2095 if (unlikely(!maxpages)) { 2096 error = -EINVAL; 2097 goto bad_swap; 2098 } 2099 2100 /* OK, set up the swap map and apply the bad block list */ 2101 swap_map = vzalloc(maxpages); 2102 if (!swap_map) { 2103 error = -ENOMEM; 2104 goto bad_swap; 2105 } 2106 2107 error = swap_cgroup_swapon(p->type, maxpages); 2108 if (error) 2109 goto bad_swap; 2110 2111 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 2112 maxpages, &span); 2113 if (unlikely(nr_extents < 0)) { 2114 error = nr_extents; 2115 goto bad_swap; 2116 } 2117 /* frontswap enabled? set up bit-per-page map for frontswap */ 2118 if (frontswap_enabled) 2119 frontswap_map = vzalloc(maxpages / sizeof(long)); 2120 2121 if (p->bdev) { 2122 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) { 2123 p->flags |= SWP_SOLIDSTATE; 2124 p->cluster_next = 1 + (prandom_u32() % p->highest_bit); 2125 } 2126 if ((swap_flags & SWAP_FLAG_DISCARD) && discard_swap(p) == 0) 2127 p->flags |= SWP_DISCARDABLE; 2128 } 2129 2130 mutex_lock(&swapon_mutex); 2131 prio = -1; 2132 if (swap_flags & SWAP_FLAG_PREFER) 2133 prio = 2134 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 2135 enable_swap_info(p, prio, swap_map, frontswap_map); 2136 2137 printk(KERN_INFO "Adding %uk swap on %s. " 2138 "Priority:%d extents:%d across:%lluk %s%s%s\n", 2139 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 2140 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 2141 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 2142 (p->flags & SWP_DISCARDABLE) ? "D" : "", 2143 (frontswap_map) ? "FS" : ""); 2144 2145 mutex_unlock(&swapon_mutex); 2146 atomic_inc(&proc_poll_event); 2147 wake_up_interruptible(&proc_poll_wait); 2148 2149 if (S_ISREG(inode->i_mode)) 2150 inode->i_flags |= S_SWAPFILE; 2151 error = 0; 2152 goto out; 2153 bad_swap: 2154 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 2155 set_blocksize(p->bdev, p->old_block_size); 2156 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2157 } 2158 destroy_swap_extents(p); 2159 swap_cgroup_swapoff(p->type); 2160 spin_lock(&swap_lock); 2161 p->swap_file = NULL; 2162 p->flags = 0; 2163 spin_unlock(&swap_lock); 2164 vfree(swap_map); 2165 if (swap_file) { 2166 if (inode && S_ISREG(inode->i_mode)) { 2167 mutex_unlock(&inode->i_mutex); 2168 inode = NULL; 2169 } 2170 filp_close(swap_file, NULL); 2171 } 2172 out: 2173 if (page && !IS_ERR(page)) { 2174 kunmap(page); 2175 page_cache_release(page); 2176 } 2177 if (name) 2178 putname(name); 2179 if (inode && S_ISREG(inode->i_mode)) 2180 mutex_unlock(&inode->i_mutex); 2181 return error; 2182 } 2183 2184 void si_swapinfo(struct sysinfo *val) 2185 { 2186 unsigned int type; 2187 unsigned long nr_to_be_unused = 0; 2188 2189 spin_lock(&swap_lock); 2190 for (type = 0; type < nr_swapfiles; type++) { 2191 struct swap_info_struct *si = swap_info[type]; 2192 2193 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 2194 nr_to_be_unused += si->inuse_pages; 2195 } 2196 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 2197 val->totalswap = total_swap_pages + nr_to_be_unused; 2198 spin_unlock(&swap_lock); 2199 } 2200 2201 /* 2202 * Verify that a swap entry is valid and increment its swap map count. 2203 * 2204 * Returns error code in following case. 2205 * - success -> 0 2206 * - swp_entry is invalid -> EINVAL 2207 * - swp_entry is migration entry -> EINVAL 2208 * - swap-cache reference is requested but there is already one. -> EEXIST 2209 * - swap-cache reference is requested but the entry is not used. -> ENOENT 2210 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 2211 */ 2212 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 2213 { 2214 struct swap_info_struct *p; 2215 unsigned long offset, type; 2216 unsigned char count; 2217 unsigned char has_cache; 2218 int err = -EINVAL; 2219 2220 if (non_swap_entry(entry)) 2221 goto out; 2222 2223 type = swp_type(entry); 2224 if (type >= nr_swapfiles) 2225 goto bad_file; 2226 p = swap_info[type]; 2227 offset = swp_offset(entry); 2228 2229 spin_lock(&p->lock); 2230 if (unlikely(offset >= p->max)) 2231 goto unlock_out; 2232 2233 count = p->swap_map[offset]; 2234 has_cache = count & SWAP_HAS_CACHE; 2235 count &= ~SWAP_HAS_CACHE; 2236 err = 0; 2237 2238 if (usage == SWAP_HAS_CACHE) { 2239 2240 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 2241 if (!has_cache && count) 2242 has_cache = SWAP_HAS_CACHE; 2243 else if (has_cache) /* someone else added cache */ 2244 err = -EEXIST; 2245 else /* no users remaining */ 2246 err = -ENOENT; 2247 2248 } else if (count || has_cache) { 2249 2250 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 2251 count += usage; 2252 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 2253 err = -EINVAL; 2254 else if (swap_count_continued(p, offset, count)) 2255 count = COUNT_CONTINUED; 2256 else 2257 err = -ENOMEM; 2258 } else 2259 err = -ENOENT; /* unused swap entry */ 2260 2261 p->swap_map[offset] = count | has_cache; 2262 2263 unlock_out: 2264 spin_unlock(&p->lock); 2265 out: 2266 return err; 2267 2268 bad_file: 2269 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); 2270 goto out; 2271 } 2272 2273 /* 2274 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 2275 * (in which case its reference count is never incremented). 2276 */ 2277 void swap_shmem_alloc(swp_entry_t entry) 2278 { 2279 __swap_duplicate(entry, SWAP_MAP_SHMEM); 2280 } 2281 2282 /* 2283 * Increase reference count of swap entry by 1. 2284 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 2285 * but could not be atomically allocated. Returns 0, just as if it succeeded, 2286 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 2287 * might occur if a page table entry has got corrupted. 2288 */ 2289 int swap_duplicate(swp_entry_t entry) 2290 { 2291 int err = 0; 2292 2293 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 2294 err = add_swap_count_continuation(entry, GFP_ATOMIC); 2295 return err; 2296 } 2297 2298 /* 2299 * @entry: swap entry for which we allocate swap cache. 2300 * 2301 * Called when allocating swap cache for existing swap entry, 2302 * This can return error codes. Returns 0 at success. 2303 * -EBUSY means there is a swap cache. 2304 * Note: return code is different from swap_duplicate(). 2305 */ 2306 int swapcache_prepare(swp_entry_t entry) 2307 { 2308 return __swap_duplicate(entry, SWAP_HAS_CACHE); 2309 } 2310 2311 struct swap_info_struct *page_swap_info(struct page *page) 2312 { 2313 swp_entry_t swap = { .val = page_private(page) }; 2314 BUG_ON(!PageSwapCache(page)); 2315 return swap_info[swp_type(swap)]; 2316 } 2317 2318 /* 2319 * out-of-line __page_file_ methods to avoid include hell. 2320 */ 2321 struct address_space *__page_file_mapping(struct page *page) 2322 { 2323 VM_BUG_ON(!PageSwapCache(page)); 2324 return page_swap_info(page)->swap_file->f_mapping; 2325 } 2326 EXPORT_SYMBOL_GPL(__page_file_mapping); 2327 2328 pgoff_t __page_file_index(struct page *page) 2329 { 2330 swp_entry_t swap = { .val = page_private(page) }; 2331 VM_BUG_ON(!PageSwapCache(page)); 2332 return swp_offset(swap); 2333 } 2334 EXPORT_SYMBOL_GPL(__page_file_index); 2335 2336 /* 2337 * add_swap_count_continuation - called when a swap count is duplicated 2338 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 2339 * page of the original vmalloc'ed swap_map, to hold the continuation count 2340 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 2341 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 2342 * 2343 * These continuation pages are seldom referenced: the common paths all work 2344 * on the original swap_map, only referring to a continuation page when the 2345 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 2346 * 2347 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 2348 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 2349 * can be called after dropping locks. 2350 */ 2351 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 2352 { 2353 struct swap_info_struct *si; 2354 struct page *head; 2355 struct page *page; 2356 struct page *list_page; 2357 pgoff_t offset; 2358 unsigned char count; 2359 2360 /* 2361 * When debugging, it's easier to use __GFP_ZERO here; but it's better 2362 * for latency not to zero a page while GFP_ATOMIC and holding locks. 2363 */ 2364 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 2365 2366 si = swap_info_get(entry); 2367 if (!si) { 2368 /* 2369 * An acceptable race has occurred since the failing 2370 * __swap_duplicate(): the swap entry has been freed, 2371 * perhaps even the whole swap_map cleared for swapoff. 2372 */ 2373 goto outer; 2374 } 2375 2376 offset = swp_offset(entry); 2377 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 2378 2379 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 2380 /* 2381 * The higher the swap count, the more likely it is that tasks 2382 * will race to add swap count continuation: we need to avoid 2383 * over-provisioning. 2384 */ 2385 goto out; 2386 } 2387 2388 if (!page) { 2389 spin_unlock(&si->lock); 2390 return -ENOMEM; 2391 } 2392 2393 /* 2394 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 2395 * no architecture is using highmem pages for kernel pagetables: so it 2396 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps. 2397 */ 2398 head = vmalloc_to_page(si->swap_map + offset); 2399 offset &= ~PAGE_MASK; 2400 2401 /* 2402 * Page allocation does not initialize the page's lru field, 2403 * but it does always reset its private field. 2404 */ 2405 if (!page_private(head)) { 2406 BUG_ON(count & COUNT_CONTINUED); 2407 INIT_LIST_HEAD(&head->lru); 2408 set_page_private(head, SWP_CONTINUED); 2409 si->flags |= SWP_CONTINUED; 2410 } 2411 2412 list_for_each_entry(list_page, &head->lru, lru) { 2413 unsigned char *map; 2414 2415 /* 2416 * If the previous map said no continuation, but we've found 2417 * a continuation page, free our allocation and use this one. 2418 */ 2419 if (!(count & COUNT_CONTINUED)) 2420 goto out; 2421 2422 map = kmap_atomic(list_page) + offset; 2423 count = *map; 2424 kunmap_atomic(map); 2425 2426 /* 2427 * If this continuation count now has some space in it, 2428 * free our allocation and use this one. 2429 */ 2430 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 2431 goto out; 2432 } 2433 2434 list_add_tail(&page->lru, &head->lru); 2435 page = NULL; /* now it's attached, don't free it */ 2436 out: 2437 spin_unlock(&si->lock); 2438 outer: 2439 if (page) 2440 __free_page(page); 2441 return 0; 2442 } 2443 2444 /* 2445 * swap_count_continued - when the original swap_map count is incremented 2446 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 2447 * into, carry if so, or else fail until a new continuation page is allocated; 2448 * when the original swap_map count is decremented from 0 with continuation, 2449 * borrow from the continuation and report whether it still holds more. 2450 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock. 2451 */ 2452 static bool swap_count_continued(struct swap_info_struct *si, 2453 pgoff_t offset, unsigned char count) 2454 { 2455 struct page *head; 2456 struct page *page; 2457 unsigned char *map; 2458 2459 head = vmalloc_to_page(si->swap_map + offset); 2460 if (page_private(head) != SWP_CONTINUED) { 2461 BUG_ON(count & COUNT_CONTINUED); 2462 return false; /* need to add count continuation */ 2463 } 2464 2465 offset &= ~PAGE_MASK; 2466 page = list_entry(head->lru.next, struct page, lru); 2467 map = kmap_atomic(page) + offset; 2468 2469 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 2470 goto init_map; /* jump over SWAP_CONT_MAX checks */ 2471 2472 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 2473 /* 2474 * Think of how you add 1 to 999 2475 */ 2476 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 2477 kunmap_atomic(map); 2478 page = list_entry(page->lru.next, struct page, lru); 2479 BUG_ON(page == head); 2480 map = kmap_atomic(page) + offset; 2481 } 2482 if (*map == SWAP_CONT_MAX) { 2483 kunmap_atomic(map); 2484 page = list_entry(page->lru.next, struct page, lru); 2485 if (page == head) 2486 return false; /* add count continuation */ 2487 map = kmap_atomic(page) + offset; 2488 init_map: *map = 0; /* we didn't zero the page */ 2489 } 2490 *map += 1; 2491 kunmap_atomic(map); 2492 page = list_entry(page->lru.prev, struct page, lru); 2493 while (page != head) { 2494 map = kmap_atomic(page) + offset; 2495 *map = COUNT_CONTINUED; 2496 kunmap_atomic(map); 2497 page = list_entry(page->lru.prev, struct page, lru); 2498 } 2499 return true; /* incremented */ 2500 2501 } else { /* decrementing */ 2502 /* 2503 * Think of how you subtract 1 from 1000 2504 */ 2505 BUG_ON(count != COUNT_CONTINUED); 2506 while (*map == COUNT_CONTINUED) { 2507 kunmap_atomic(map); 2508 page = list_entry(page->lru.next, struct page, lru); 2509 BUG_ON(page == head); 2510 map = kmap_atomic(page) + offset; 2511 } 2512 BUG_ON(*map == 0); 2513 *map -= 1; 2514 if (*map == 0) 2515 count = 0; 2516 kunmap_atomic(map); 2517 page = list_entry(page->lru.prev, struct page, lru); 2518 while (page != head) { 2519 map = kmap_atomic(page) + offset; 2520 *map = SWAP_CONT_MAX | count; 2521 count = COUNT_CONTINUED; 2522 kunmap_atomic(map); 2523 page = list_entry(page->lru.prev, struct page, lru); 2524 } 2525 return count == COUNT_CONTINUED; 2526 } 2527 } 2528 2529 /* 2530 * free_swap_count_continuations - swapoff free all the continuation pages 2531 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 2532 */ 2533 static void free_swap_count_continuations(struct swap_info_struct *si) 2534 { 2535 pgoff_t offset; 2536 2537 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 2538 struct page *head; 2539 head = vmalloc_to_page(si->swap_map + offset); 2540 if (page_private(head)) { 2541 struct list_head *this, *next; 2542 list_for_each_safe(this, next, &head->lru) { 2543 struct page *page; 2544 page = list_entry(this, struct page, lru); 2545 list_del(this); 2546 __free_page(page); 2547 } 2548 } 2549 } 2550 } 2551