1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/blkdev.h> 10 #include <linux/mm.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/task.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mman.h> 15 #include <linux/slab.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/swap.h> 18 #include <linux/vmalloc.h> 19 #include <linux/pagemap.h> 20 #include <linux/namei.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/blk-cgroup.h> 23 #include <linux/random.h> 24 #include <linux/writeback.h> 25 #include <linux/proc_fs.h> 26 #include <linux/seq_file.h> 27 #include <linux/init.h> 28 #include <linux/ksm.h> 29 #include <linux/rmap.h> 30 #include <linux/security.h> 31 #include <linux/backing-dev.h> 32 #include <linux/mutex.h> 33 #include <linux/capability.h> 34 #include <linux/syscalls.h> 35 #include <linux/memcontrol.h> 36 #include <linux/poll.h> 37 #include <linux/oom.h> 38 #include <linux/swapfile.h> 39 #include <linux/export.h> 40 #include <linux/swap_slots.h> 41 #include <linux/sort.h> 42 #include <linux/completion.h> 43 #include <linux/suspend.h> 44 #include <linux/zswap.h> 45 46 #include <asm/tlbflush.h> 47 #include <linux/swapops.h> 48 #include <linux/swap_cgroup.h> 49 #include "internal.h" 50 #include "swap.h" 51 52 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 53 unsigned char); 54 static void free_swap_count_continuations(struct swap_info_struct *); 55 56 static DEFINE_SPINLOCK(swap_lock); 57 static unsigned int nr_swapfiles; 58 atomic_long_t nr_swap_pages; 59 /* 60 * Some modules use swappable objects and may try to swap them out under 61 * memory pressure (via the shrinker). Before doing so, they may wish to 62 * check to see if any swap space is available. 63 */ 64 EXPORT_SYMBOL_GPL(nr_swap_pages); 65 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 66 long total_swap_pages; 67 static int least_priority = -1; 68 unsigned long swapfile_maximum_size; 69 #ifdef CONFIG_MIGRATION 70 bool swap_migration_ad_supported; 71 #endif /* CONFIG_MIGRATION */ 72 73 static const char Bad_file[] = "Bad swap file entry "; 74 static const char Unused_file[] = "Unused swap file entry "; 75 static const char Bad_offset[] = "Bad swap offset entry "; 76 static const char Unused_offset[] = "Unused swap offset entry "; 77 78 /* 79 * all active swap_info_structs 80 * protected with swap_lock, and ordered by priority. 81 */ 82 static PLIST_HEAD(swap_active_head); 83 84 /* 85 * all available (active, not full) swap_info_structs 86 * protected with swap_avail_lock, ordered by priority. 87 * This is used by folio_alloc_swap() instead of swap_active_head 88 * because swap_active_head includes all swap_info_structs, 89 * but folio_alloc_swap() doesn't need to look at full ones. 90 * This uses its own lock instead of swap_lock because when a 91 * swap_info_struct changes between not-full/full, it needs to 92 * add/remove itself to/from this list, but the swap_info_struct->lock 93 * is held and the locking order requires swap_lock to be taken 94 * before any swap_info_struct->lock. 95 */ 96 static struct plist_head *swap_avail_heads; 97 static DEFINE_SPINLOCK(swap_avail_lock); 98 99 static struct swap_info_struct *swap_info[MAX_SWAPFILES]; 100 101 static DEFINE_MUTEX(swapon_mutex); 102 103 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 104 /* Activity counter to indicate that a swapon or swapoff has occurred */ 105 static atomic_t proc_poll_event = ATOMIC_INIT(0); 106 107 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 108 109 static struct swap_info_struct *swap_type_to_swap_info(int type) 110 { 111 if (type >= MAX_SWAPFILES) 112 return NULL; 113 114 return READ_ONCE(swap_info[type]); /* rcu_dereference() */ 115 } 116 117 static inline unsigned char swap_count(unsigned char ent) 118 { 119 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 120 } 121 122 /* Reclaim the swap entry anyway if possible */ 123 #define TTRS_ANYWAY 0x1 124 /* 125 * Reclaim the swap entry if there are no more mappings of the 126 * corresponding page 127 */ 128 #define TTRS_UNMAPPED 0x2 129 /* Reclaim the swap entry if swap is getting full*/ 130 #define TTRS_FULL 0x4 131 132 /* returns 1 if swap entry is freed */ 133 static int __try_to_reclaim_swap(struct swap_info_struct *si, 134 unsigned long offset, unsigned long flags) 135 { 136 swp_entry_t entry = swp_entry(si->type, offset); 137 struct folio *folio; 138 int ret = 0; 139 140 folio = filemap_get_folio(swap_address_space(entry), offset); 141 if (IS_ERR(folio)) 142 return 0; 143 /* 144 * When this function is called from scan_swap_map_slots() and it's 145 * called by vmscan.c at reclaiming folios. So we hold a folio lock 146 * here. We have to use trylock for avoiding deadlock. This is a special 147 * case and you should use folio_free_swap() with explicit folio_lock() 148 * in usual operations. 149 */ 150 if (folio_trylock(folio)) { 151 if ((flags & TTRS_ANYWAY) || 152 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) || 153 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio))) 154 ret = folio_free_swap(folio); 155 folio_unlock(folio); 156 } 157 folio_put(folio); 158 return ret; 159 } 160 161 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 162 { 163 struct rb_node *rb = rb_first(&sis->swap_extent_root); 164 return rb_entry(rb, struct swap_extent, rb_node); 165 } 166 167 static inline struct swap_extent *next_se(struct swap_extent *se) 168 { 169 struct rb_node *rb = rb_next(&se->rb_node); 170 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 171 } 172 173 /* 174 * swapon tell device that all the old swap contents can be discarded, 175 * to allow the swap device to optimize its wear-levelling. 176 */ 177 static int discard_swap(struct swap_info_struct *si) 178 { 179 struct swap_extent *se; 180 sector_t start_block; 181 sector_t nr_blocks; 182 int err = 0; 183 184 /* Do not discard the swap header page! */ 185 se = first_se(si); 186 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 187 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 188 if (nr_blocks) { 189 err = blkdev_issue_discard(si->bdev, start_block, 190 nr_blocks, GFP_KERNEL); 191 if (err) 192 return err; 193 cond_resched(); 194 } 195 196 for (se = next_se(se); se; se = next_se(se)) { 197 start_block = se->start_block << (PAGE_SHIFT - 9); 198 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 199 200 err = blkdev_issue_discard(si->bdev, start_block, 201 nr_blocks, GFP_KERNEL); 202 if (err) 203 break; 204 205 cond_resched(); 206 } 207 return err; /* That will often be -EOPNOTSUPP */ 208 } 209 210 static struct swap_extent * 211 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 212 { 213 struct swap_extent *se; 214 struct rb_node *rb; 215 216 rb = sis->swap_extent_root.rb_node; 217 while (rb) { 218 se = rb_entry(rb, struct swap_extent, rb_node); 219 if (offset < se->start_page) 220 rb = rb->rb_left; 221 else if (offset >= se->start_page + se->nr_pages) 222 rb = rb->rb_right; 223 else 224 return se; 225 } 226 /* It *must* be present */ 227 BUG(); 228 } 229 230 sector_t swap_page_sector(struct page *page) 231 { 232 struct swap_info_struct *sis = page_swap_info(page); 233 struct swap_extent *se; 234 sector_t sector; 235 pgoff_t offset; 236 237 offset = __page_file_index(page); 238 se = offset_to_swap_extent(sis, offset); 239 sector = se->start_block + (offset - se->start_page); 240 return sector << (PAGE_SHIFT - 9); 241 } 242 243 /* 244 * swap allocation tell device that a cluster of swap can now be discarded, 245 * to allow the swap device to optimize its wear-levelling. 246 */ 247 static void discard_swap_cluster(struct swap_info_struct *si, 248 pgoff_t start_page, pgoff_t nr_pages) 249 { 250 struct swap_extent *se = offset_to_swap_extent(si, start_page); 251 252 while (nr_pages) { 253 pgoff_t offset = start_page - se->start_page; 254 sector_t start_block = se->start_block + offset; 255 sector_t nr_blocks = se->nr_pages - offset; 256 257 if (nr_blocks > nr_pages) 258 nr_blocks = nr_pages; 259 start_page += nr_blocks; 260 nr_pages -= nr_blocks; 261 262 start_block <<= PAGE_SHIFT - 9; 263 nr_blocks <<= PAGE_SHIFT - 9; 264 if (blkdev_issue_discard(si->bdev, start_block, 265 nr_blocks, GFP_NOIO)) 266 break; 267 268 se = next_se(se); 269 } 270 } 271 272 #ifdef CONFIG_THP_SWAP 273 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 274 275 #define swap_entry_size(size) (size) 276 #else 277 #define SWAPFILE_CLUSTER 256 278 279 /* 280 * Define swap_entry_size() as constant to let compiler to optimize 281 * out some code if !CONFIG_THP_SWAP 282 */ 283 #define swap_entry_size(size) 1 284 #endif 285 #define LATENCY_LIMIT 256 286 287 static inline void cluster_set_flag(struct swap_cluster_info *info, 288 unsigned int flag) 289 { 290 info->flags = flag; 291 } 292 293 static inline unsigned int cluster_count(struct swap_cluster_info *info) 294 { 295 return info->data; 296 } 297 298 static inline void cluster_set_count(struct swap_cluster_info *info, 299 unsigned int c) 300 { 301 info->data = c; 302 } 303 304 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 305 unsigned int c, unsigned int f) 306 { 307 info->flags = f; 308 info->data = c; 309 } 310 311 static inline unsigned int cluster_next(struct swap_cluster_info *info) 312 { 313 return info->data; 314 } 315 316 static inline void cluster_set_next(struct swap_cluster_info *info, 317 unsigned int n) 318 { 319 info->data = n; 320 } 321 322 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 323 unsigned int n, unsigned int f) 324 { 325 info->flags = f; 326 info->data = n; 327 } 328 329 static inline bool cluster_is_free(struct swap_cluster_info *info) 330 { 331 return info->flags & CLUSTER_FLAG_FREE; 332 } 333 334 static inline bool cluster_is_null(struct swap_cluster_info *info) 335 { 336 return info->flags & CLUSTER_FLAG_NEXT_NULL; 337 } 338 339 static inline void cluster_set_null(struct swap_cluster_info *info) 340 { 341 info->flags = CLUSTER_FLAG_NEXT_NULL; 342 info->data = 0; 343 } 344 345 static inline bool cluster_is_huge(struct swap_cluster_info *info) 346 { 347 if (IS_ENABLED(CONFIG_THP_SWAP)) 348 return info->flags & CLUSTER_FLAG_HUGE; 349 return false; 350 } 351 352 static inline void cluster_clear_huge(struct swap_cluster_info *info) 353 { 354 info->flags &= ~CLUSTER_FLAG_HUGE; 355 } 356 357 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 358 unsigned long offset) 359 { 360 struct swap_cluster_info *ci; 361 362 ci = si->cluster_info; 363 if (ci) { 364 ci += offset / SWAPFILE_CLUSTER; 365 spin_lock(&ci->lock); 366 } 367 return ci; 368 } 369 370 static inline void unlock_cluster(struct swap_cluster_info *ci) 371 { 372 if (ci) 373 spin_unlock(&ci->lock); 374 } 375 376 /* 377 * Determine the locking method in use for this device. Return 378 * swap_cluster_info if SSD-style cluster-based locking is in place. 379 */ 380 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 381 struct swap_info_struct *si, unsigned long offset) 382 { 383 struct swap_cluster_info *ci; 384 385 /* Try to use fine-grained SSD-style locking if available: */ 386 ci = lock_cluster(si, offset); 387 /* Otherwise, fall back to traditional, coarse locking: */ 388 if (!ci) 389 spin_lock(&si->lock); 390 391 return ci; 392 } 393 394 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 395 struct swap_cluster_info *ci) 396 { 397 if (ci) 398 unlock_cluster(ci); 399 else 400 spin_unlock(&si->lock); 401 } 402 403 static inline bool cluster_list_empty(struct swap_cluster_list *list) 404 { 405 return cluster_is_null(&list->head); 406 } 407 408 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 409 { 410 return cluster_next(&list->head); 411 } 412 413 static void cluster_list_init(struct swap_cluster_list *list) 414 { 415 cluster_set_null(&list->head); 416 cluster_set_null(&list->tail); 417 } 418 419 static void cluster_list_add_tail(struct swap_cluster_list *list, 420 struct swap_cluster_info *ci, 421 unsigned int idx) 422 { 423 if (cluster_list_empty(list)) { 424 cluster_set_next_flag(&list->head, idx, 0); 425 cluster_set_next_flag(&list->tail, idx, 0); 426 } else { 427 struct swap_cluster_info *ci_tail; 428 unsigned int tail = cluster_next(&list->tail); 429 430 /* 431 * Nested cluster lock, but both cluster locks are 432 * only acquired when we held swap_info_struct->lock 433 */ 434 ci_tail = ci + tail; 435 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 436 cluster_set_next(ci_tail, idx); 437 spin_unlock(&ci_tail->lock); 438 cluster_set_next_flag(&list->tail, idx, 0); 439 } 440 } 441 442 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 443 struct swap_cluster_info *ci) 444 { 445 unsigned int idx; 446 447 idx = cluster_next(&list->head); 448 if (cluster_next(&list->tail) == idx) { 449 cluster_set_null(&list->head); 450 cluster_set_null(&list->tail); 451 } else 452 cluster_set_next_flag(&list->head, 453 cluster_next(&ci[idx]), 0); 454 455 return idx; 456 } 457 458 /* Add a cluster to discard list and schedule it to do discard */ 459 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 460 unsigned int idx) 461 { 462 /* 463 * If scan_swap_map_slots() can't find a free cluster, it will check 464 * si->swap_map directly. To make sure the discarding cluster isn't 465 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied). 466 * It will be cleared after discard 467 */ 468 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 469 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 470 471 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 472 473 schedule_work(&si->discard_work); 474 } 475 476 static void __free_cluster(struct swap_info_struct *si, unsigned long idx) 477 { 478 struct swap_cluster_info *ci = si->cluster_info; 479 480 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); 481 cluster_list_add_tail(&si->free_clusters, ci, idx); 482 } 483 484 /* 485 * Doing discard actually. After a cluster discard is finished, the cluster 486 * will be added to free cluster list. caller should hold si->lock. 487 */ 488 static void swap_do_scheduled_discard(struct swap_info_struct *si) 489 { 490 struct swap_cluster_info *info, *ci; 491 unsigned int idx; 492 493 info = si->cluster_info; 494 495 while (!cluster_list_empty(&si->discard_clusters)) { 496 idx = cluster_list_del_first(&si->discard_clusters, info); 497 spin_unlock(&si->lock); 498 499 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 500 SWAPFILE_CLUSTER); 501 502 spin_lock(&si->lock); 503 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 504 __free_cluster(si, idx); 505 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 506 0, SWAPFILE_CLUSTER); 507 unlock_cluster(ci); 508 } 509 } 510 511 static void swap_discard_work(struct work_struct *work) 512 { 513 struct swap_info_struct *si; 514 515 si = container_of(work, struct swap_info_struct, discard_work); 516 517 spin_lock(&si->lock); 518 swap_do_scheduled_discard(si); 519 spin_unlock(&si->lock); 520 } 521 522 static void swap_users_ref_free(struct percpu_ref *ref) 523 { 524 struct swap_info_struct *si; 525 526 si = container_of(ref, struct swap_info_struct, users); 527 complete(&si->comp); 528 } 529 530 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) 531 { 532 struct swap_cluster_info *ci = si->cluster_info; 533 534 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); 535 cluster_list_del_first(&si->free_clusters, ci); 536 cluster_set_count_flag(ci + idx, 0, 0); 537 } 538 539 static void free_cluster(struct swap_info_struct *si, unsigned long idx) 540 { 541 struct swap_cluster_info *ci = si->cluster_info + idx; 542 543 VM_BUG_ON(cluster_count(ci) != 0); 544 /* 545 * If the swap is discardable, prepare discard the cluster 546 * instead of free it immediately. The cluster will be freed 547 * after discard. 548 */ 549 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 550 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 551 swap_cluster_schedule_discard(si, idx); 552 return; 553 } 554 555 __free_cluster(si, idx); 556 } 557 558 /* 559 * The cluster corresponding to page_nr will be used. The cluster will be 560 * removed from free cluster list and its usage counter will be increased. 561 */ 562 static void inc_cluster_info_page(struct swap_info_struct *p, 563 struct swap_cluster_info *cluster_info, unsigned long page_nr) 564 { 565 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 566 567 if (!cluster_info) 568 return; 569 if (cluster_is_free(&cluster_info[idx])) 570 alloc_cluster(p, idx); 571 572 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 573 cluster_set_count(&cluster_info[idx], 574 cluster_count(&cluster_info[idx]) + 1); 575 } 576 577 /* 578 * The cluster corresponding to page_nr decreases one usage. If the usage 579 * counter becomes 0, which means no page in the cluster is in using, we can 580 * optionally discard the cluster and add it to free cluster list. 581 */ 582 static void dec_cluster_info_page(struct swap_info_struct *p, 583 struct swap_cluster_info *cluster_info, unsigned long page_nr) 584 { 585 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 586 587 if (!cluster_info) 588 return; 589 590 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 591 cluster_set_count(&cluster_info[idx], 592 cluster_count(&cluster_info[idx]) - 1); 593 594 if (cluster_count(&cluster_info[idx]) == 0) 595 free_cluster(p, idx); 596 } 597 598 /* 599 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free 600 * cluster list. Avoiding such abuse to avoid list corruption. 601 */ 602 static bool 603 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 604 unsigned long offset) 605 { 606 struct percpu_cluster *percpu_cluster; 607 bool conflict; 608 609 offset /= SWAPFILE_CLUSTER; 610 conflict = !cluster_list_empty(&si->free_clusters) && 611 offset != cluster_list_first(&si->free_clusters) && 612 cluster_is_free(&si->cluster_info[offset]); 613 614 if (!conflict) 615 return false; 616 617 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 618 cluster_set_null(&percpu_cluster->index); 619 return true; 620 } 621 622 /* 623 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 624 * might involve allocating a new cluster for current CPU too. 625 */ 626 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 627 unsigned long *offset, unsigned long *scan_base) 628 { 629 struct percpu_cluster *cluster; 630 struct swap_cluster_info *ci; 631 unsigned long tmp, max; 632 633 new_cluster: 634 cluster = this_cpu_ptr(si->percpu_cluster); 635 if (cluster_is_null(&cluster->index)) { 636 if (!cluster_list_empty(&si->free_clusters)) { 637 cluster->index = si->free_clusters.head; 638 cluster->next = cluster_next(&cluster->index) * 639 SWAPFILE_CLUSTER; 640 } else if (!cluster_list_empty(&si->discard_clusters)) { 641 /* 642 * we don't have free cluster but have some clusters in 643 * discarding, do discard now and reclaim them, then 644 * reread cluster_next_cpu since we dropped si->lock 645 */ 646 swap_do_scheduled_discard(si); 647 *scan_base = this_cpu_read(*si->cluster_next_cpu); 648 *offset = *scan_base; 649 goto new_cluster; 650 } else 651 return false; 652 } 653 654 /* 655 * Other CPUs can use our cluster if they can't find a free cluster, 656 * check if there is still free entry in the cluster 657 */ 658 tmp = cluster->next; 659 max = min_t(unsigned long, si->max, 660 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); 661 if (tmp < max) { 662 ci = lock_cluster(si, tmp); 663 while (tmp < max) { 664 if (!si->swap_map[tmp]) 665 break; 666 tmp++; 667 } 668 unlock_cluster(ci); 669 } 670 if (tmp >= max) { 671 cluster_set_null(&cluster->index); 672 goto new_cluster; 673 } 674 cluster->next = tmp + 1; 675 *offset = tmp; 676 *scan_base = tmp; 677 return true; 678 } 679 680 static void __del_from_avail_list(struct swap_info_struct *p) 681 { 682 int nid; 683 684 assert_spin_locked(&p->lock); 685 for_each_node(nid) 686 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); 687 } 688 689 static void del_from_avail_list(struct swap_info_struct *p) 690 { 691 spin_lock(&swap_avail_lock); 692 __del_from_avail_list(p); 693 spin_unlock(&swap_avail_lock); 694 } 695 696 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 697 unsigned int nr_entries) 698 { 699 unsigned int end = offset + nr_entries - 1; 700 701 if (offset == si->lowest_bit) 702 si->lowest_bit += nr_entries; 703 if (end == si->highest_bit) 704 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries); 705 WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries); 706 if (si->inuse_pages == si->pages) { 707 si->lowest_bit = si->max; 708 si->highest_bit = 0; 709 del_from_avail_list(si); 710 } 711 } 712 713 static void add_to_avail_list(struct swap_info_struct *p) 714 { 715 int nid; 716 717 spin_lock(&swap_avail_lock); 718 for_each_node(nid) 719 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); 720 spin_unlock(&swap_avail_lock); 721 } 722 723 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 724 unsigned int nr_entries) 725 { 726 unsigned long begin = offset; 727 unsigned long end = offset + nr_entries - 1; 728 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 729 730 if (offset < si->lowest_bit) 731 si->lowest_bit = offset; 732 if (end > si->highest_bit) { 733 bool was_full = !si->highest_bit; 734 735 WRITE_ONCE(si->highest_bit, end); 736 if (was_full && (si->flags & SWP_WRITEOK)) 737 add_to_avail_list(si); 738 } 739 atomic_long_add(nr_entries, &nr_swap_pages); 740 WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries); 741 if (si->flags & SWP_BLKDEV) 742 swap_slot_free_notify = 743 si->bdev->bd_disk->fops->swap_slot_free_notify; 744 else 745 swap_slot_free_notify = NULL; 746 while (offset <= end) { 747 arch_swap_invalidate_page(si->type, offset); 748 zswap_invalidate(si->type, offset); 749 if (swap_slot_free_notify) 750 swap_slot_free_notify(si->bdev, offset); 751 offset++; 752 } 753 clear_shadow_from_swap_cache(si->type, begin, end); 754 } 755 756 static void set_cluster_next(struct swap_info_struct *si, unsigned long next) 757 { 758 unsigned long prev; 759 760 if (!(si->flags & SWP_SOLIDSTATE)) { 761 si->cluster_next = next; 762 return; 763 } 764 765 prev = this_cpu_read(*si->cluster_next_cpu); 766 /* 767 * Cross the swap address space size aligned trunk, choose 768 * another trunk randomly to avoid lock contention on swap 769 * address space if possible. 770 */ 771 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) != 772 (next >> SWAP_ADDRESS_SPACE_SHIFT)) { 773 /* No free swap slots available */ 774 if (si->highest_bit <= si->lowest_bit) 775 return; 776 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit); 777 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES); 778 next = max_t(unsigned int, next, si->lowest_bit); 779 } 780 this_cpu_write(*si->cluster_next_cpu, next); 781 } 782 783 static bool swap_offset_available_and_locked(struct swap_info_struct *si, 784 unsigned long offset) 785 { 786 if (data_race(!si->swap_map[offset])) { 787 spin_lock(&si->lock); 788 return true; 789 } 790 791 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 792 spin_lock(&si->lock); 793 return true; 794 } 795 796 return false; 797 } 798 799 static int scan_swap_map_slots(struct swap_info_struct *si, 800 unsigned char usage, int nr, 801 swp_entry_t slots[]) 802 { 803 struct swap_cluster_info *ci; 804 unsigned long offset; 805 unsigned long scan_base; 806 unsigned long last_in_cluster = 0; 807 int latency_ration = LATENCY_LIMIT; 808 int n_ret = 0; 809 bool scanned_many = false; 810 811 /* 812 * We try to cluster swap pages by allocating them sequentially 813 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 814 * way, however, we resort to first-free allocation, starting 815 * a new cluster. This prevents us from scattering swap pages 816 * all over the entire swap partition, so that we reduce 817 * overall disk seek times between swap pages. -- sct 818 * But we do now try to find an empty cluster. -Andrea 819 * And we let swap pages go all over an SSD partition. Hugh 820 */ 821 822 si->flags += SWP_SCANNING; 823 /* 824 * Use percpu scan base for SSD to reduce lock contention on 825 * cluster and swap cache. For HDD, sequential access is more 826 * important. 827 */ 828 if (si->flags & SWP_SOLIDSTATE) 829 scan_base = this_cpu_read(*si->cluster_next_cpu); 830 else 831 scan_base = si->cluster_next; 832 offset = scan_base; 833 834 /* SSD algorithm */ 835 if (si->cluster_info) { 836 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 837 goto scan; 838 } else if (unlikely(!si->cluster_nr--)) { 839 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 840 si->cluster_nr = SWAPFILE_CLUSTER - 1; 841 goto checks; 842 } 843 844 spin_unlock(&si->lock); 845 846 /* 847 * If seek is expensive, start searching for new cluster from 848 * start of partition, to minimize the span of allocated swap. 849 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 850 * case, just handled by scan_swap_map_try_ssd_cluster() above. 851 */ 852 scan_base = offset = si->lowest_bit; 853 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 854 855 /* Locate the first empty (unaligned) cluster */ 856 for (; last_in_cluster <= si->highest_bit; offset++) { 857 if (si->swap_map[offset]) 858 last_in_cluster = offset + SWAPFILE_CLUSTER; 859 else if (offset == last_in_cluster) { 860 spin_lock(&si->lock); 861 offset -= SWAPFILE_CLUSTER - 1; 862 si->cluster_next = offset; 863 si->cluster_nr = SWAPFILE_CLUSTER - 1; 864 goto checks; 865 } 866 if (unlikely(--latency_ration < 0)) { 867 cond_resched(); 868 latency_ration = LATENCY_LIMIT; 869 } 870 } 871 872 offset = scan_base; 873 spin_lock(&si->lock); 874 si->cluster_nr = SWAPFILE_CLUSTER - 1; 875 } 876 877 checks: 878 if (si->cluster_info) { 879 while (scan_swap_map_ssd_cluster_conflict(si, offset)) { 880 /* take a break if we already got some slots */ 881 if (n_ret) 882 goto done; 883 if (!scan_swap_map_try_ssd_cluster(si, &offset, 884 &scan_base)) 885 goto scan; 886 } 887 } 888 if (!(si->flags & SWP_WRITEOK)) 889 goto no_page; 890 if (!si->highest_bit) 891 goto no_page; 892 if (offset > si->highest_bit) 893 scan_base = offset = si->lowest_bit; 894 895 ci = lock_cluster(si, offset); 896 /* reuse swap entry of cache-only swap if not busy. */ 897 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 898 int swap_was_freed; 899 unlock_cluster(ci); 900 spin_unlock(&si->lock); 901 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 902 spin_lock(&si->lock); 903 /* entry was freed successfully, try to use this again */ 904 if (swap_was_freed) 905 goto checks; 906 goto scan; /* check next one */ 907 } 908 909 if (si->swap_map[offset]) { 910 unlock_cluster(ci); 911 if (!n_ret) 912 goto scan; 913 else 914 goto done; 915 } 916 WRITE_ONCE(si->swap_map[offset], usage); 917 inc_cluster_info_page(si, si->cluster_info, offset); 918 unlock_cluster(ci); 919 920 swap_range_alloc(si, offset, 1); 921 slots[n_ret++] = swp_entry(si->type, offset); 922 923 /* got enough slots or reach max slots? */ 924 if ((n_ret == nr) || (offset >= si->highest_bit)) 925 goto done; 926 927 /* search for next available slot */ 928 929 /* time to take a break? */ 930 if (unlikely(--latency_ration < 0)) { 931 if (n_ret) 932 goto done; 933 spin_unlock(&si->lock); 934 cond_resched(); 935 spin_lock(&si->lock); 936 latency_ration = LATENCY_LIMIT; 937 } 938 939 /* try to get more slots in cluster */ 940 if (si->cluster_info) { 941 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 942 goto checks; 943 } else if (si->cluster_nr && !si->swap_map[++offset]) { 944 /* non-ssd case, still more slots in cluster? */ 945 --si->cluster_nr; 946 goto checks; 947 } 948 949 /* 950 * Even if there's no free clusters available (fragmented), 951 * try to scan a little more quickly with lock held unless we 952 * have scanned too many slots already. 953 */ 954 if (!scanned_many) { 955 unsigned long scan_limit; 956 957 if (offset < scan_base) 958 scan_limit = scan_base; 959 else 960 scan_limit = si->highest_bit; 961 for (; offset <= scan_limit && --latency_ration > 0; 962 offset++) { 963 if (!si->swap_map[offset]) 964 goto checks; 965 } 966 } 967 968 done: 969 set_cluster_next(si, offset + 1); 970 si->flags -= SWP_SCANNING; 971 return n_ret; 972 973 scan: 974 spin_unlock(&si->lock); 975 while (++offset <= READ_ONCE(si->highest_bit)) { 976 if (unlikely(--latency_ration < 0)) { 977 cond_resched(); 978 latency_ration = LATENCY_LIMIT; 979 scanned_many = true; 980 } 981 if (swap_offset_available_and_locked(si, offset)) 982 goto checks; 983 } 984 offset = si->lowest_bit; 985 while (offset < scan_base) { 986 if (unlikely(--latency_ration < 0)) { 987 cond_resched(); 988 latency_ration = LATENCY_LIMIT; 989 scanned_many = true; 990 } 991 if (swap_offset_available_and_locked(si, offset)) 992 goto checks; 993 offset++; 994 } 995 spin_lock(&si->lock); 996 997 no_page: 998 si->flags -= SWP_SCANNING; 999 return n_ret; 1000 } 1001 1002 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) 1003 { 1004 unsigned long idx; 1005 struct swap_cluster_info *ci; 1006 unsigned long offset; 1007 1008 /* 1009 * Should not even be attempting cluster allocations when huge 1010 * page swap is disabled. Warn and fail the allocation. 1011 */ 1012 if (!IS_ENABLED(CONFIG_THP_SWAP)) { 1013 VM_WARN_ON_ONCE(1); 1014 return 0; 1015 } 1016 1017 if (cluster_list_empty(&si->free_clusters)) 1018 return 0; 1019 1020 idx = cluster_list_first(&si->free_clusters); 1021 offset = idx * SWAPFILE_CLUSTER; 1022 ci = lock_cluster(si, offset); 1023 alloc_cluster(si, idx); 1024 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); 1025 1026 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER); 1027 unlock_cluster(ci); 1028 swap_range_alloc(si, offset, SWAPFILE_CLUSTER); 1029 *slot = swp_entry(si->type, offset); 1030 1031 return 1; 1032 } 1033 1034 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) 1035 { 1036 unsigned long offset = idx * SWAPFILE_CLUSTER; 1037 struct swap_cluster_info *ci; 1038 1039 ci = lock_cluster(si, offset); 1040 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER); 1041 cluster_set_count_flag(ci, 0, 0); 1042 free_cluster(si, idx); 1043 unlock_cluster(ci); 1044 swap_range_free(si, offset, SWAPFILE_CLUSTER); 1045 } 1046 1047 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size) 1048 { 1049 unsigned long size = swap_entry_size(entry_size); 1050 struct swap_info_struct *si, *next; 1051 long avail_pgs; 1052 int n_ret = 0; 1053 int node; 1054 1055 /* Only single cluster request supported */ 1056 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER); 1057 1058 spin_lock(&swap_avail_lock); 1059 1060 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 1061 if (avail_pgs <= 0) { 1062 spin_unlock(&swap_avail_lock); 1063 goto noswap; 1064 } 1065 1066 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs); 1067 1068 atomic_long_sub(n_goal * size, &nr_swap_pages); 1069 1070 start_over: 1071 node = numa_node_id(); 1072 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1073 /* requeue si to after same-priority siblings */ 1074 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1075 spin_unlock(&swap_avail_lock); 1076 spin_lock(&si->lock); 1077 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 1078 spin_lock(&swap_avail_lock); 1079 if (plist_node_empty(&si->avail_lists[node])) { 1080 spin_unlock(&si->lock); 1081 goto nextsi; 1082 } 1083 WARN(!si->highest_bit, 1084 "swap_info %d in list but !highest_bit\n", 1085 si->type); 1086 WARN(!(si->flags & SWP_WRITEOK), 1087 "swap_info %d in list but !SWP_WRITEOK\n", 1088 si->type); 1089 __del_from_avail_list(si); 1090 spin_unlock(&si->lock); 1091 goto nextsi; 1092 } 1093 if (size == SWAPFILE_CLUSTER) { 1094 if (si->flags & SWP_BLKDEV) 1095 n_ret = swap_alloc_cluster(si, swp_entries); 1096 } else 1097 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 1098 n_goal, swp_entries); 1099 spin_unlock(&si->lock); 1100 if (n_ret || size == SWAPFILE_CLUSTER) 1101 goto check_out; 1102 cond_resched(); 1103 1104 spin_lock(&swap_avail_lock); 1105 nextsi: 1106 /* 1107 * if we got here, it's likely that si was almost full before, 1108 * and since scan_swap_map_slots() can drop the si->lock, 1109 * multiple callers probably all tried to get a page from the 1110 * same si and it filled up before we could get one; or, the si 1111 * filled up between us dropping swap_avail_lock and taking 1112 * si->lock. Since we dropped the swap_avail_lock, the 1113 * swap_avail_head list may have been modified; so if next is 1114 * still in the swap_avail_head list then try it, otherwise 1115 * start over if we have not gotten any slots. 1116 */ 1117 if (plist_node_empty(&next->avail_lists[node])) 1118 goto start_over; 1119 } 1120 1121 spin_unlock(&swap_avail_lock); 1122 1123 check_out: 1124 if (n_ret < n_goal) 1125 atomic_long_add((long)(n_goal - n_ret) * size, 1126 &nr_swap_pages); 1127 noswap: 1128 return n_ret; 1129 } 1130 1131 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1132 { 1133 struct swap_info_struct *p; 1134 unsigned long offset; 1135 1136 if (!entry.val) 1137 goto out; 1138 p = swp_swap_info(entry); 1139 if (!p) 1140 goto bad_nofile; 1141 if (data_race(!(p->flags & SWP_USED))) 1142 goto bad_device; 1143 offset = swp_offset(entry); 1144 if (offset >= p->max) 1145 goto bad_offset; 1146 if (data_race(!p->swap_map[swp_offset(entry)])) 1147 goto bad_free; 1148 return p; 1149 1150 bad_free: 1151 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); 1152 goto out; 1153 bad_offset: 1154 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1155 goto out; 1156 bad_device: 1157 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); 1158 goto out; 1159 bad_nofile: 1160 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1161 out: 1162 return NULL; 1163 } 1164 1165 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1166 struct swap_info_struct *q) 1167 { 1168 struct swap_info_struct *p; 1169 1170 p = _swap_info_get(entry); 1171 1172 if (p != q) { 1173 if (q != NULL) 1174 spin_unlock(&q->lock); 1175 if (p != NULL) 1176 spin_lock(&p->lock); 1177 } 1178 return p; 1179 } 1180 1181 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, 1182 unsigned long offset, 1183 unsigned char usage) 1184 { 1185 unsigned char count; 1186 unsigned char has_cache; 1187 1188 count = p->swap_map[offset]; 1189 1190 has_cache = count & SWAP_HAS_CACHE; 1191 count &= ~SWAP_HAS_CACHE; 1192 1193 if (usage == SWAP_HAS_CACHE) { 1194 VM_BUG_ON(!has_cache); 1195 has_cache = 0; 1196 } else if (count == SWAP_MAP_SHMEM) { 1197 /* 1198 * Or we could insist on shmem.c using a special 1199 * swap_shmem_free() and free_shmem_swap_and_cache()... 1200 */ 1201 count = 0; 1202 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1203 if (count == COUNT_CONTINUED) { 1204 if (swap_count_continued(p, offset, count)) 1205 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1206 else 1207 count = SWAP_MAP_MAX; 1208 } else 1209 count--; 1210 } 1211 1212 usage = count | has_cache; 1213 if (usage) 1214 WRITE_ONCE(p->swap_map[offset], usage); 1215 else 1216 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE); 1217 1218 return usage; 1219 } 1220 1221 /* 1222 * When we get a swap entry, if there aren't some other ways to 1223 * prevent swapoff, such as the folio in swap cache is locked, page 1224 * table lock is held, etc., the swap entry may become invalid because 1225 * of swapoff. Then, we need to enclose all swap related functions 1226 * with get_swap_device() and put_swap_device(), unless the swap 1227 * functions call get/put_swap_device() by themselves. 1228 * 1229 * Check whether swap entry is valid in the swap device. If so, 1230 * return pointer to swap_info_struct, and keep the swap entry valid 1231 * via preventing the swap device from being swapoff, until 1232 * put_swap_device() is called. Otherwise return NULL. 1233 * 1234 * Notice that swapoff or swapoff+swapon can still happen before the 1235 * percpu_ref_tryget_live() in get_swap_device() or after the 1236 * percpu_ref_put() in put_swap_device() if there isn't any other way 1237 * to prevent swapoff. The caller must be prepared for that. For 1238 * example, the following situation is possible. 1239 * 1240 * CPU1 CPU2 1241 * do_swap_page() 1242 * ... swapoff+swapon 1243 * __read_swap_cache_async() 1244 * swapcache_prepare() 1245 * __swap_duplicate() 1246 * // check swap_map 1247 * // verify PTE not changed 1248 * 1249 * In __swap_duplicate(), the swap_map need to be checked before 1250 * changing partly because the specified swap entry may be for another 1251 * swap device which has been swapoff. And in do_swap_page(), after 1252 * the page is read from the swap device, the PTE is verified not 1253 * changed with the page table locked to check whether the swap device 1254 * has been swapoff or swapoff+swapon. 1255 */ 1256 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1257 { 1258 struct swap_info_struct *si; 1259 unsigned long offset; 1260 1261 if (!entry.val) 1262 goto out; 1263 si = swp_swap_info(entry); 1264 if (!si) 1265 goto bad_nofile; 1266 if (!percpu_ref_tryget_live(&si->users)) 1267 goto out; 1268 /* 1269 * Guarantee the si->users are checked before accessing other 1270 * fields of swap_info_struct. 1271 * 1272 * Paired with the spin_unlock() after setup_swap_info() in 1273 * enable_swap_info(). 1274 */ 1275 smp_rmb(); 1276 offset = swp_offset(entry); 1277 if (offset >= si->max) 1278 goto put_out; 1279 1280 return si; 1281 bad_nofile: 1282 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1283 out: 1284 return NULL; 1285 put_out: 1286 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1287 percpu_ref_put(&si->users); 1288 return NULL; 1289 } 1290 1291 static unsigned char __swap_entry_free(struct swap_info_struct *p, 1292 swp_entry_t entry) 1293 { 1294 struct swap_cluster_info *ci; 1295 unsigned long offset = swp_offset(entry); 1296 unsigned char usage; 1297 1298 ci = lock_cluster_or_swap_info(p, offset); 1299 usage = __swap_entry_free_locked(p, offset, 1); 1300 unlock_cluster_or_swap_info(p, ci); 1301 if (!usage) 1302 free_swap_slot(entry); 1303 1304 return usage; 1305 } 1306 1307 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 1308 { 1309 struct swap_cluster_info *ci; 1310 unsigned long offset = swp_offset(entry); 1311 unsigned char count; 1312 1313 ci = lock_cluster(p, offset); 1314 count = p->swap_map[offset]; 1315 VM_BUG_ON(count != SWAP_HAS_CACHE); 1316 p->swap_map[offset] = 0; 1317 dec_cluster_info_page(p, p->cluster_info, offset); 1318 unlock_cluster(ci); 1319 1320 mem_cgroup_uncharge_swap(entry, 1); 1321 swap_range_free(p, offset, 1); 1322 } 1323 1324 /* 1325 * Caller has made sure that the swap device corresponding to entry 1326 * is still around or has not been recycled. 1327 */ 1328 void swap_free(swp_entry_t entry) 1329 { 1330 struct swap_info_struct *p; 1331 1332 p = _swap_info_get(entry); 1333 if (p) 1334 __swap_entry_free(p, entry); 1335 } 1336 1337 /* 1338 * Called after dropping swapcache to decrease refcnt to swap entries. 1339 */ 1340 void put_swap_folio(struct folio *folio, swp_entry_t entry) 1341 { 1342 unsigned long offset = swp_offset(entry); 1343 unsigned long idx = offset / SWAPFILE_CLUSTER; 1344 struct swap_cluster_info *ci; 1345 struct swap_info_struct *si; 1346 unsigned char *map; 1347 unsigned int i, free_entries = 0; 1348 unsigned char val; 1349 int size = swap_entry_size(folio_nr_pages(folio)); 1350 1351 si = _swap_info_get(entry); 1352 if (!si) 1353 return; 1354 1355 ci = lock_cluster_or_swap_info(si, offset); 1356 if (size == SWAPFILE_CLUSTER) { 1357 VM_BUG_ON(!cluster_is_huge(ci)); 1358 map = si->swap_map + offset; 1359 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1360 val = map[i]; 1361 VM_BUG_ON(!(val & SWAP_HAS_CACHE)); 1362 if (val == SWAP_HAS_CACHE) 1363 free_entries++; 1364 } 1365 cluster_clear_huge(ci); 1366 if (free_entries == SWAPFILE_CLUSTER) { 1367 unlock_cluster_or_swap_info(si, ci); 1368 spin_lock(&si->lock); 1369 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); 1370 swap_free_cluster(si, idx); 1371 spin_unlock(&si->lock); 1372 return; 1373 } 1374 } 1375 for (i = 0; i < size; i++, entry.val++) { 1376 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { 1377 unlock_cluster_or_swap_info(si, ci); 1378 free_swap_slot(entry); 1379 if (i == size - 1) 1380 return; 1381 lock_cluster_or_swap_info(si, offset); 1382 } 1383 } 1384 unlock_cluster_or_swap_info(si, ci); 1385 } 1386 1387 #ifdef CONFIG_THP_SWAP 1388 int split_swap_cluster(swp_entry_t entry) 1389 { 1390 struct swap_info_struct *si; 1391 struct swap_cluster_info *ci; 1392 unsigned long offset = swp_offset(entry); 1393 1394 si = _swap_info_get(entry); 1395 if (!si) 1396 return -EBUSY; 1397 ci = lock_cluster(si, offset); 1398 cluster_clear_huge(ci); 1399 unlock_cluster(ci); 1400 return 0; 1401 } 1402 #endif 1403 1404 static int swp_entry_cmp(const void *ent1, const void *ent2) 1405 { 1406 const swp_entry_t *e1 = ent1, *e2 = ent2; 1407 1408 return (int)swp_type(*e1) - (int)swp_type(*e2); 1409 } 1410 1411 void swapcache_free_entries(swp_entry_t *entries, int n) 1412 { 1413 struct swap_info_struct *p, *prev; 1414 int i; 1415 1416 if (n <= 0) 1417 return; 1418 1419 prev = NULL; 1420 p = NULL; 1421 1422 /* 1423 * Sort swap entries by swap device, so each lock is only taken once. 1424 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1425 * so low that it isn't necessary to optimize further. 1426 */ 1427 if (nr_swapfiles > 1) 1428 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1429 for (i = 0; i < n; ++i) { 1430 p = swap_info_get_cont(entries[i], prev); 1431 if (p) 1432 swap_entry_free(p, entries[i]); 1433 prev = p; 1434 } 1435 if (p) 1436 spin_unlock(&p->lock); 1437 } 1438 1439 int __swap_count(swp_entry_t entry) 1440 { 1441 struct swap_info_struct *si = swp_swap_info(entry); 1442 pgoff_t offset = swp_offset(entry); 1443 1444 return swap_count(si->swap_map[offset]); 1445 } 1446 1447 /* 1448 * How many references to @entry are currently swapped out? 1449 * This does not give an exact answer when swap count is continued, 1450 * but does include the high COUNT_CONTINUED flag to allow for that. 1451 */ 1452 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1453 { 1454 pgoff_t offset = swp_offset(entry); 1455 struct swap_cluster_info *ci; 1456 int count; 1457 1458 ci = lock_cluster_or_swap_info(si, offset); 1459 count = swap_count(si->swap_map[offset]); 1460 unlock_cluster_or_swap_info(si, ci); 1461 return count; 1462 } 1463 1464 /* 1465 * How many references to @entry are currently swapped out? 1466 * This considers COUNT_CONTINUED so it returns exact answer. 1467 */ 1468 int swp_swapcount(swp_entry_t entry) 1469 { 1470 int count, tmp_count, n; 1471 struct swap_info_struct *p; 1472 struct swap_cluster_info *ci; 1473 struct page *page; 1474 pgoff_t offset; 1475 unsigned char *map; 1476 1477 p = _swap_info_get(entry); 1478 if (!p) 1479 return 0; 1480 1481 offset = swp_offset(entry); 1482 1483 ci = lock_cluster_or_swap_info(p, offset); 1484 1485 count = swap_count(p->swap_map[offset]); 1486 if (!(count & COUNT_CONTINUED)) 1487 goto out; 1488 1489 count &= ~COUNT_CONTINUED; 1490 n = SWAP_MAP_MAX + 1; 1491 1492 page = vmalloc_to_page(p->swap_map + offset); 1493 offset &= ~PAGE_MASK; 1494 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1495 1496 do { 1497 page = list_next_entry(page, lru); 1498 map = kmap_atomic(page); 1499 tmp_count = map[offset]; 1500 kunmap_atomic(map); 1501 1502 count += (tmp_count & ~COUNT_CONTINUED) * n; 1503 n *= (SWAP_CONT_MAX + 1); 1504 } while (tmp_count & COUNT_CONTINUED); 1505 out: 1506 unlock_cluster_or_swap_info(p, ci); 1507 return count; 1508 } 1509 1510 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1511 swp_entry_t entry) 1512 { 1513 struct swap_cluster_info *ci; 1514 unsigned char *map = si->swap_map; 1515 unsigned long roffset = swp_offset(entry); 1516 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); 1517 int i; 1518 bool ret = false; 1519 1520 ci = lock_cluster_or_swap_info(si, offset); 1521 if (!ci || !cluster_is_huge(ci)) { 1522 if (swap_count(map[roffset])) 1523 ret = true; 1524 goto unlock_out; 1525 } 1526 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1527 if (swap_count(map[offset + i])) { 1528 ret = true; 1529 break; 1530 } 1531 } 1532 unlock_out: 1533 unlock_cluster_or_swap_info(si, ci); 1534 return ret; 1535 } 1536 1537 static bool folio_swapped(struct folio *folio) 1538 { 1539 swp_entry_t entry = folio->swap; 1540 struct swap_info_struct *si = _swap_info_get(entry); 1541 1542 if (!si) 1543 return false; 1544 1545 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio))) 1546 return swap_swapcount(si, entry) != 0; 1547 1548 return swap_page_trans_huge_swapped(si, entry); 1549 } 1550 1551 /** 1552 * folio_free_swap() - Free the swap space used for this folio. 1553 * @folio: The folio to remove. 1554 * 1555 * If swap is getting full, or if there are no more mappings of this folio, 1556 * then call folio_free_swap to free its swap space. 1557 * 1558 * Return: true if we were able to release the swap space. 1559 */ 1560 bool folio_free_swap(struct folio *folio) 1561 { 1562 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1563 1564 if (!folio_test_swapcache(folio)) 1565 return false; 1566 if (folio_test_writeback(folio)) 1567 return false; 1568 if (folio_swapped(folio)) 1569 return false; 1570 1571 /* 1572 * Once hibernation has begun to create its image of memory, 1573 * there's a danger that one of the calls to folio_free_swap() 1574 * - most probably a call from __try_to_reclaim_swap() while 1575 * hibernation is allocating its own swap pages for the image, 1576 * but conceivably even a call from memory reclaim - will free 1577 * the swap from a folio which has already been recorded in the 1578 * image as a clean swapcache folio, and then reuse its swap for 1579 * another page of the image. On waking from hibernation, the 1580 * original folio might be freed under memory pressure, then 1581 * later read back in from swap, now with the wrong data. 1582 * 1583 * Hibernation suspends storage while it is writing the image 1584 * to disk so check that here. 1585 */ 1586 if (pm_suspended_storage()) 1587 return false; 1588 1589 delete_from_swap_cache(folio); 1590 folio_set_dirty(folio); 1591 return true; 1592 } 1593 1594 /* 1595 * Free the swap entry like above, but also try to 1596 * free the page cache entry if it is the last user. 1597 */ 1598 int free_swap_and_cache(swp_entry_t entry) 1599 { 1600 struct swap_info_struct *p; 1601 unsigned char count; 1602 1603 if (non_swap_entry(entry)) 1604 return 1; 1605 1606 p = _swap_info_get(entry); 1607 if (p) { 1608 count = __swap_entry_free(p, entry); 1609 if (count == SWAP_HAS_CACHE && 1610 !swap_page_trans_huge_swapped(p, entry)) 1611 __try_to_reclaim_swap(p, swp_offset(entry), 1612 TTRS_UNMAPPED | TTRS_FULL); 1613 } 1614 return p != NULL; 1615 } 1616 1617 #ifdef CONFIG_HIBERNATION 1618 1619 swp_entry_t get_swap_page_of_type(int type) 1620 { 1621 struct swap_info_struct *si = swap_type_to_swap_info(type); 1622 swp_entry_t entry = {0}; 1623 1624 if (!si) 1625 goto fail; 1626 1627 /* This is called for allocating swap entry, not cache */ 1628 spin_lock(&si->lock); 1629 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry)) 1630 atomic_long_dec(&nr_swap_pages); 1631 spin_unlock(&si->lock); 1632 fail: 1633 return entry; 1634 } 1635 1636 /* 1637 * Find the swap type that corresponds to given device (if any). 1638 * 1639 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1640 * from 0, in which the swap header is expected to be located. 1641 * 1642 * This is needed for the suspend to disk (aka swsusp). 1643 */ 1644 int swap_type_of(dev_t device, sector_t offset) 1645 { 1646 int type; 1647 1648 if (!device) 1649 return -1; 1650 1651 spin_lock(&swap_lock); 1652 for (type = 0; type < nr_swapfiles; type++) { 1653 struct swap_info_struct *sis = swap_info[type]; 1654 1655 if (!(sis->flags & SWP_WRITEOK)) 1656 continue; 1657 1658 if (device == sis->bdev->bd_dev) { 1659 struct swap_extent *se = first_se(sis); 1660 1661 if (se->start_block == offset) { 1662 spin_unlock(&swap_lock); 1663 return type; 1664 } 1665 } 1666 } 1667 spin_unlock(&swap_lock); 1668 return -ENODEV; 1669 } 1670 1671 int find_first_swap(dev_t *device) 1672 { 1673 int type; 1674 1675 spin_lock(&swap_lock); 1676 for (type = 0; type < nr_swapfiles; type++) { 1677 struct swap_info_struct *sis = swap_info[type]; 1678 1679 if (!(sis->flags & SWP_WRITEOK)) 1680 continue; 1681 *device = sis->bdev->bd_dev; 1682 spin_unlock(&swap_lock); 1683 return type; 1684 } 1685 spin_unlock(&swap_lock); 1686 return -ENODEV; 1687 } 1688 1689 /* 1690 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1691 * corresponding to given index in swap_info (swap type). 1692 */ 1693 sector_t swapdev_block(int type, pgoff_t offset) 1694 { 1695 struct swap_info_struct *si = swap_type_to_swap_info(type); 1696 struct swap_extent *se; 1697 1698 if (!si || !(si->flags & SWP_WRITEOK)) 1699 return 0; 1700 se = offset_to_swap_extent(si, offset); 1701 return se->start_block + (offset - se->start_page); 1702 } 1703 1704 /* 1705 * Return either the total number of swap pages of given type, or the number 1706 * of free pages of that type (depending on @free) 1707 * 1708 * This is needed for software suspend 1709 */ 1710 unsigned int count_swap_pages(int type, int free) 1711 { 1712 unsigned int n = 0; 1713 1714 spin_lock(&swap_lock); 1715 if ((unsigned int)type < nr_swapfiles) { 1716 struct swap_info_struct *sis = swap_info[type]; 1717 1718 spin_lock(&sis->lock); 1719 if (sis->flags & SWP_WRITEOK) { 1720 n = sis->pages; 1721 if (free) 1722 n -= sis->inuse_pages; 1723 } 1724 spin_unlock(&sis->lock); 1725 } 1726 spin_unlock(&swap_lock); 1727 return n; 1728 } 1729 #endif /* CONFIG_HIBERNATION */ 1730 1731 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1732 { 1733 return pte_same(pte_swp_clear_flags(pte), swp_pte); 1734 } 1735 1736 /* 1737 * No need to decide whether this PTE shares the swap entry with others, 1738 * just let do_wp_page work it out if a write is requested later - to 1739 * force COW, vm_page_prot omits write permission from any private vma. 1740 */ 1741 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1742 unsigned long addr, swp_entry_t entry, struct folio *folio) 1743 { 1744 struct page *page = folio_file_page(folio, swp_offset(entry)); 1745 struct page *swapcache; 1746 spinlock_t *ptl; 1747 pte_t *pte, new_pte, old_pte; 1748 bool hwpoisoned = PageHWPoison(page); 1749 int ret = 1; 1750 1751 swapcache = page; 1752 page = ksm_might_need_to_copy(page, vma, addr); 1753 if (unlikely(!page)) 1754 return -ENOMEM; 1755 else if (unlikely(PTR_ERR(page) == -EHWPOISON)) 1756 hwpoisoned = true; 1757 1758 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1759 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte), 1760 swp_entry_to_pte(entry)))) { 1761 ret = 0; 1762 goto out; 1763 } 1764 1765 old_pte = ptep_get(pte); 1766 1767 if (unlikely(hwpoisoned || !PageUptodate(page))) { 1768 swp_entry_t swp_entry; 1769 1770 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1771 if (hwpoisoned) { 1772 swp_entry = make_hwpoison_entry(swapcache); 1773 page = swapcache; 1774 } else { 1775 swp_entry = make_poisoned_swp_entry(); 1776 } 1777 new_pte = swp_entry_to_pte(swp_entry); 1778 ret = 0; 1779 goto setpte; 1780 } 1781 1782 /* 1783 * Some architectures may have to restore extra metadata to the page 1784 * when reading from swap. This metadata may be indexed by swap entry 1785 * so this must be called before swap_free(). 1786 */ 1787 arch_swap_restore(entry, page_folio(page)); 1788 1789 /* See do_swap_page() */ 1790 BUG_ON(!PageAnon(page) && PageMappedToDisk(page)); 1791 BUG_ON(PageAnon(page) && PageAnonExclusive(page)); 1792 1793 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1794 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1795 get_page(page); 1796 if (page == swapcache) { 1797 rmap_t rmap_flags = RMAP_NONE; 1798 1799 /* 1800 * See do_swap_page(): PageWriteback() would be problematic. 1801 * However, we do a wait_on_page_writeback() just before this 1802 * call and have the page locked. 1803 */ 1804 VM_BUG_ON_PAGE(PageWriteback(page), page); 1805 if (pte_swp_exclusive(old_pte)) 1806 rmap_flags |= RMAP_EXCLUSIVE; 1807 1808 page_add_anon_rmap(page, vma, addr, rmap_flags); 1809 } else { /* ksm created a completely new copy */ 1810 page_add_new_anon_rmap(page, vma, addr); 1811 lru_cache_add_inactive_or_unevictable(page, vma); 1812 } 1813 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot)); 1814 if (pte_swp_soft_dirty(old_pte)) 1815 new_pte = pte_mksoft_dirty(new_pte); 1816 if (pte_swp_uffd_wp(old_pte)) 1817 new_pte = pte_mkuffd_wp(new_pte); 1818 setpte: 1819 set_pte_at(vma->vm_mm, addr, pte, new_pte); 1820 swap_free(entry); 1821 out: 1822 if (pte) 1823 pte_unmap_unlock(pte, ptl); 1824 if (page != swapcache) { 1825 unlock_page(page); 1826 put_page(page); 1827 } 1828 return ret; 1829 } 1830 1831 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1832 unsigned long addr, unsigned long end, 1833 unsigned int type) 1834 { 1835 pte_t *pte = NULL; 1836 struct swap_info_struct *si; 1837 1838 si = swap_info[type]; 1839 do { 1840 struct folio *folio; 1841 unsigned long offset; 1842 unsigned char swp_count; 1843 swp_entry_t entry; 1844 int ret; 1845 pte_t ptent; 1846 1847 if (!pte++) { 1848 pte = pte_offset_map(pmd, addr); 1849 if (!pte) 1850 break; 1851 } 1852 1853 ptent = ptep_get_lockless(pte); 1854 1855 if (!is_swap_pte(ptent)) 1856 continue; 1857 1858 entry = pte_to_swp_entry(ptent); 1859 if (swp_type(entry) != type) 1860 continue; 1861 1862 offset = swp_offset(entry); 1863 pte_unmap(pte); 1864 pte = NULL; 1865 1866 folio = swap_cache_get_folio(entry, vma, addr); 1867 if (!folio) { 1868 struct page *page; 1869 struct vm_fault vmf = { 1870 .vma = vma, 1871 .address = addr, 1872 .real_address = addr, 1873 .pmd = pmd, 1874 }; 1875 1876 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 1877 &vmf); 1878 if (page) 1879 folio = page_folio(page); 1880 } 1881 if (!folio) { 1882 swp_count = READ_ONCE(si->swap_map[offset]); 1883 if (swp_count == 0 || swp_count == SWAP_MAP_BAD) 1884 continue; 1885 return -ENOMEM; 1886 } 1887 1888 folio_lock(folio); 1889 folio_wait_writeback(folio); 1890 ret = unuse_pte(vma, pmd, addr, entry, folio); 1891 if (ret < 0) { 1892 folio_unlock(folio); 1893 folio_put(folio); 1894 return ret; 1895 } 1896 1897 folio_free_swap(folio); 1898 folio_unlock(folio); 1899 folio_put(folio); 1900 } while (addr += PAGE_SIZE, addr != end); 1901 1902 if (pte) 1903 pte_unmap(pte); 1904 return 0; 1905 } 1906 1907 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1908 unsigned long addr, unsigned long end, 1909 unsigned int type) 1910 { 1911 pmd_t *pmd; 1912 unsigned long next; 1913 int ret; 1914 1915 pmd = pmd_offset(pud, addr); 1916 do { 1917 cond_resched(); 1918 next = pmd_addr_end(addr, end); 1919 ret = unuse_pte_range(vma, pmd, addr, next, type); 1920 if (ret) 1921 return ret; 1922 } while (pmd++, addr = next, addr != end); 1923 return 0; 1924 } 1925 1926 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 1927 unsigned long addr, unsigned long end, 1928 unsigned int type) 1929 { 1930 pud_t *pud; 1931 unsigned long next; 1932 int ret; 1933 1934 pud = pud_offset(p4d, addr); 1935 do { 1936 next = pud_addr_end(addr, end); 1937 if (pud_none_or_clear_bad(pud)) 1938 continue; 1939 ret = unuse_pmd_range(vma, pud, addr, next, type); 1940 if (ret) 1941 return ret; 1942 } while (pud++, addr = next, addr != end); 1943 return 0; 1944 } 1945 1946 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 1947 unsigned long addr, unsigned long end, 1948 unsigned int type) 1949 { 1950 p4d_t *p4d; 1951 unsigned long next; 1952 int ret; 1953 1954 p4d = p4d_offset(pgd, addr); 1955 do { 1956 next = p4d_addr_end(addr, end); 1957 if (p4d_none_or_clear_bad(p4d)) 1958 continue; 1959 ret = unuse_pud_range(vma, p4d, addr, next, type); 1960 if (ret) 1961 return ret; 1962 } while (p4d++, addr = next, addr != end); 1963 return 0; 1964 } 1965 1966 static int unuse_vma(struct vm_area_struct *vma, unsigned int type) 1967 { 1968 pgd_t *pgd; 1969 unsigned long addr, end, next; 1970 int ret; 1971 1972 addr = vma->vm_start; 1973 end = vma->vm_end; 1974 1975 pgd = pgd_offset(vma->vm_mm, addr); 1976 do { 1977 next = pgd_addr_end(addr, end); 1978 if (pgd_none_or_clear_bad(pgd)) 1979 continue; 1980 ret = unuse_p4d_range(vma, pgd, addr, next, type); 1981 if (ret) 1982 return ret; 1983 } while (pgd++, addr = next, addr != end); 1984 return 0; 1985 } 1986 1987 static int unuse_mm(struct mm_struct *mm, unsigned int type) 1988 { 1989 struct vm_area_struct *vma; 1990 int ret = 0; 1991 VMA_ITERATOR(vmi, mm, 0); 1992 1993 mmap_read_lock(mm); 1994 for_each_vma(vmi, vma) { 1995 if (vma->anon_vma) { 1996 ret = unuse_vma(vma, type); 1997 if (ret) 1998 break; 1999 } 2000 2001 cond_resched(); 2002 } 2003 mmap_read_unlock(mm); 2004 return ret; 2005 } 2006 2007 /* 2008 * Scan swap_map from current position to next entry still in use. 2009 * Return 0 if there are no inuse entries after prev till end of 2010 * the map. 2011 */ 2012 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 2013 unsigned int prev) 2014 { 2015 unsigned int i; 2016 unsigned char count; 2017 2018 /* 2019 * No need for swap_lock here: we're just looking 2020 * for whether an entry is in use, not modifying it; false 2021 * hits are okay, and sys_swapoff() has already prevented new 2022 * allocations from this area (while holding swap_lock). 2023 */ 2024 for (i = prev + 1; i < si->max; i++) { 2025 count = READ_ONCE(si->swap_map[i]); 2026 if (count && swap_count(count) != SWAP_MAP_BAD) 2027 break; 2028 if ((i % LATENCY_LIMIT) == 0) 2029 cond_resched(); 2030 } 2031 2032 if (i == si->max) 2033 i = 0; 2034 2035 return i; 2036 } 2037 2038 static int try_to_unuse(unsigned int type) 2039 { 2040 struct mm_struct *prev_mm; 2041 struct mm_struct *mm; 2042 struct list_head *p; 2043 int retval = 0; 2044 struct swap_info_struct *si = swap_info[type]; 2045 struct folio *folio; 2046 swp_entry_t entry; 2047 unsigned int i; 2048 2049 if (!READ_ONCE(si->inuse_pages)) 2050 return 0; 2051 2052 retry: 2053 retval = shmem_unuse(type); 2054 if (retval) 2055 return retval; 2056 2057 prev_mm = &init_mm; 2058 mmget(prev_mm); 2059 2060 spin_lock(&mmlist_lock); 2061 p = &init_mm.mmlist; 2062 while (READ_ONCE(si->inuse_pages) && 2063 !signal_pending(current) && 2064 (p = p->next) != &init_mm.mmlist) { 2065 2066 mm = list_entry(p, struct mm_struct, mmlist); 2067 if (!mmget_not_zero(mm)) 2068 continue; 2069 spin_unlock(&mmlist_lock); 2070 mmput(prev_mm); 2071 prev_mm = mm; 2072 retval = unuse_mm(mm, type); 2073 if (retval) { 2074 mmput(prev_mm); 2075 return retval; 2076 } 2077 2078 /* 2079 * Make sure that we aren't completely killing 2080 * interactive performance. 2081 */ 2082 cond_resched(); 2083 spin_lock(&mmlist_lock); 2084 } 2085 spin_unlock(&mmlist_lock); 2086 2087 mmput(prev_mm); 2088 2089 i = 0; 2090 while (READ_ONCE(si->inuse_pages) && 2091 !signal_pending(current) && 2092 (i = find_next_to_unuse(si, i)) != 0) { 2093 2094 entry = swp_entry(type, i); 2095 folio = filemap_get_folio(swap_address_space(entry), i); 2096 if (IS_ERR(folio)) 2097 continue; 2098 2099 /* 2100 * It is conceivable that a racing task removed this folio from 2101 * swap cache just before we acquired the page lock. The folio 2102 * might even be back in swap cache on another swap area. But 2103 * that is okay, folio_free_swap() only removes stale folios. 2104 */ 2105 folio_lock(folio); 2106 folio_wait_writeback(folio); 2107 folio_free_swap(folio); 2108 folio_unlock(folio); 2109 folio_put(folio); 2110 } 2111 2112 /* 2113 * Lets check again to see if there are still swap entries in the map. 2114 * If yes, we would need to do retry the unuse logic again. 2115 * Under global memory pressure, swap entries can be reinserted back 2116 * into process space after the mmlist loop above passes over them. 2117 * 2118 * Limit the number of retries? No: when mmget_not_zero() 2119 * above fails, that mm is likely to be freeing swap from 2120 * exit_mmap(), which proceeds at its own independent pace; 2121 * and even shmem_writepage() could have been preempted after 2122 * folio_alloc_swap(), temporarily hiding that swap. It's easy 2123 * and robust (though cpu-intensive) just to keep retrying. 2124 */ 2125 if (READ_ONCE(si->inuse_pages)) { 2126 if (!signal_pending(current)) 2127 goto retry; 2128 return -EINTR; 2129 } 2130 2131 return 0; 2132 } 2133 2134 /* 2135 * After a successful try_to_unuse, if no swap is now in use, we know 2136 * we can empty the mmlist. swap_lock must be held on entry and exit. 2137 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2138 * added to the mmlist just after page_duplicate - before would be racy. 2139 */ 2140 static void drain_mmlist(void) 2141 { 2142 struct list_head *p, *next; 2143 unsigned int type; 2144 2145 for (type = 0; type < nr_swapfiles; type++) 2146 if (swap_info[type]->inuse_pages) 2147 return; 2148 spin_lock(&mmlist_lock); 2149 list_for_each_safe(p, next, &init_mm.mmlist) 2150 list_del_init(p); 2151 spin_unlock(&mmlist_lock); 2152 } 2153 2154 /* 2155 * Free all of a swapdev's extent information 2156 */ 2157 static void destroy_swap_extents(struct swap_info_struct *sis) 2158 { 2159 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2160 struct rb_node *rb = sis->swap_extent_root.rb_node; 2161 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2162 2163 rb_erase(rb, &sis->swap_extent_root); 2164 kfree(se); 2165 } 2166 2167 if (sis->flags & SWP_ACTIVATED) { 2168 struct file *swap_file = sis->swap_file; 2169 struct address_space *mapping = swap_file->f_mapping; 2170 2171 sis->flags &= ~SWP_ACTIVATED; 2172 if (mapping->a_ops->swap_deactivate) 2173 mapping->a_ops->swap_deactivate(swap_file); 2174 } 2175 } 2176 2177 /* 2178 * Add a block range (and the corresponding page range) into this swapdev's 2179 * extent tree. 2180 * 2181 * This function rather assumes that it is called in ascending page order. 2182 */ 2183 int 2184 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2185 unsigned long nr_pages, sector_t start_block) 2186 { 2187 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2188 struct swap_extent *se; 2189 struct swap_extent *new_se; 2190 2191 /* 2192 * place the new node at the right most since the 2193 * function is called in ascending page order. 2194 */ 2195 while (*link) { 2196 parent = *link; 2197 link = &parent->rb_right; 2198 } 2199 2200 if (parent) { 2201 se = rb_entry(parent, struct swap_extent, rb_node); 2202 BUG_ON(se->start_page + se->nr_pages != start_page); 2203 if (se->start_block + se->nr_pages == start_block) { 2204 /* Merge it */ 2205 se->nr_pages += nr_pages; 2206 return 0; 2207 } 2208 } 2209 2210 /* No merge, insert a new extent. */ 2211 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2212 if (new_se == NULL) 2213 return -ENOMEM; 2214 new_se->start_page = start_page; 2215 new_se->nr_pages = nr_pages; 2216 new_se->start_block = start_block; 2217 2218 rb_link_node(&new_se->rb_node, parent, link); 2219 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2220 return 1; 2221 } 2222 EXPORT_SYMBOL_GPL(add_swap_extent); 2223 2224 /* 2225 * A `swap extent' is a simple thing which maps a contiguous range of pages 2226 * onto a contiguous range of disk blocks. A rbtree of swap extents is 2227 * built at swapon time and is then used at swap_writepage/swap_readpage 2228 * time for locating where on disk a page belongs. 2229 * 2230 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2231 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2232 * swap files identically. 2233 * 2234 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2235 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2236 * swapfiles are handled *identically* after swapon time. 2237 * 2238 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2239 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray 2240 * blocks are found which do not fall within the PAGE_SIZE alignment 2241 * requirements, they are simply tossed out - we will never use those blocks 2242 * for swapping. 2243 * 2244 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2245 * prevents users from writing to the swap device, which will corrupt memory. 2246 * 2247 * The amount of disk space which a single swap extent represents varies. 2248 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2249 * extents in the rbtree. - akpm. 2250 */ 2251 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2252 { 2253 struct file *swap_file = sis->swap_file; 2254 struct address_space *mapping = swap_file->f_mapping; 2255 struct inode *inode = mapping->host; 2256 int ret; 2257 2258 if (S_ISBLK(inode->i_mode)) { 2259 ret = add_swap_extent(sis, 0, sis->max, 0); 2260 *span = sis->pages; 2261 return ret; 2262 } 2263 2264 if (mapping->a_ops->swap_activate) { 2265 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2266 if (ret < 0) 2267 return ret; 2268 sis->flags |= SWP_ACTIVATED; 2269 if ((sis->flags & SWP_FS_OPS) && 2270 sio_pool_init() != 0) { 2271 destroy_swap_extents(sis); 2272 return -ENOMEM; 2273 } 2274 return ret; 2275 } 2276 2277 return generic_swapfile_activate(sis, swap_file, span); 2278 } 2279 2280 static int swap_node(struct swap_info_struct *p) 2281 { 2282 struct block_device *bdev; 2283 2284 if (p->bdev) 2285 bdev = p->bdev; 2286 else 2287 bdev = p->swap_file->f_inode->i_sb->s_bdev; 2288 2289 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2290 } 2291 2292 static void setup_swap_info(struct swap_info_struct *p, int prio, 2293 unsigned char *swap_map, 2294 struct swap_cluster_info *cluster_info) 2295 { 2296 int i; 2297 2298 if (prio >= 0) 2299 p->prio = prio; 2300 else 2301 p->prio = --least_priority; 2302 /* 2303 * the plist prio is negated because plist ordering is 2304 * low-to-high, while swap ordering is high-to-low 2305 */ 2306 p->list.prio = -p->prio; 2307 for_each_node(i) { 2308 if (p->prio >= 0) 2309 p->avail_lists[i].prio = -p->prio; 2310 else { 2311 if (swap_node(p) == i) 2312 p->avail_lists[i].prio = 1; 2313 else 2314 p->avail_lists[i].prio = -p->prio; 2315 } 2316 } 2317 p->swap_map = swap_map; 2318 p->cluster_info = cluster_info; 2319 } 2320 2321 static void _enable_swap_info(struct swap_info_struct *p) 2322 { 2323 p->flags |= SWP_WRITEOK; 2324 atomic_long_add(p->pages, &nr_swap_pages); 2325 total_swap_pages += p->pages; 2326 2327 assert_spin_locked(&swap_lock); 2328 /* 2329 * both lists are plists, and thus priority ordered. 2330 * swap_active_head needs to be priority ordered for swapoff(), 2331 * which on removal of any swap_info_struct with an auto-assigned 2332 * (i.e. negative) priority increments the auto-assigned priority 2333 * of any lower-priority swap_info_structs. 2334 * swap_avail_head needs to be priority ordered for folio_alloc_swap(), 2335 * which allocates swap pages from the highest available priority 2336 * swap_info_struct. 2337 */ 2338 plist_add(&p->list, &swap_active_head); 2339 2340 /* add to available list iff swap device is not full */ 2341 if (p->highest_bit) 2342 add_to_avail_list(p); 2343 } 2344 2345 static void enable_swap_info(struct swap_info_struct *p, int prio, 2346 unsigned char *swap_map, 2347 struct swap_cluster_info *cluster_info) 2348 { 2349 zswap_swapon(p->type); 2350 2351 spin_lock(&swap_lock); 2352 spin_lock(&p->lock); 2353 setup_swap_info(p, prio, swap_map, cluster_info); 2354 spin_unlock(&p->lock); 2355 spin_unlock(&swap_lock); 2356 /* 2357 * Finished initializing swap device, now it's safe to reference it. 2358 */ 2359 percpu_ref_resurrect(&p->users); 2360 spin_lock(&swap_lock); 2361 spin_lock(&p->lock); 2362 _enable_swap_info(p); 2363 spin_unlock(&p->lock); 2364 spin_unlock(&swap_lock); 2365 } 2366 2367 static void reinsert_swap_info(struct swap_info_struct *p) 2368 { 2369 spin_lock(&swap_lock); 2370 spin_lock(&p->lock); 2371 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2372 _enable_swap_info(p); 2373 spin_unlock(&p->lock); 2374 spin_unlock(&swap_lock); 2375 } 2376 2377 bool has_usable_swap(void) 2378 { 2379 bool ret = true; 2380 2381 spin_lock(&swap_lock); 2382 if (plist_head_empty(&swap_active_head)) 2383 ret = false; 2384 spin_unlock(&swap_lock); 2385 return ret; 2386 } 2387 2388 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2389 { 2390 struct swap_info_struct *p = NULL; 2391 unsigned char *swap_map; 2392 struct swap_cluster_info *cluster_info; 2393 struct file *swap_file, *victim; 2394 struct address_space *mapping; 2395 struct inode *inode; 2396 struct filename *pathname; 2397 int err, found = 0; 2398 unsigned int old_block_size; 2399 2400 if (!capable(CAP_SYS_ADMIN)) 2401 return -EPERM; 2402 2403 BUG_ON(!current->mm); 2404 2405 pathname = getname(specialfile); 2406 if (IS_ERR(pathname)) 2407 return PTR_ERR(pathname); 2408 2409 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2410 err = PTR_ERR(victim); 2411 if (IS_ERR(victim)) 2412 goto out; 2413 2414 mapping = victim->f_mapping; 2415 spin_lock(&swap_lock); 2416 plist_for_each_entry(p, &swap_active_head, list) { 2417 if (p->flags & SWP_WRITEOK) { 2418 if (p->swap_file->f_mapping == mapping) { 2419 found = 1; 2420 break; 2421 } 2422 } 2423 } 2424 if (!found) { 2425 err = -EINVAL; 2426 spin_unlock(&swap_lock); 2427 goto out_dput; 2428 } 2429 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2430 vm_unacct_memory(p->pages); 2431 else { 2432 err = -ENOMEM; 2433 spin_unlock(&swap_lock); 2434 goto out_dput; 2435 } 2436 spin_lock(&p->lock); 2437 del_from_avail_list(p); 2438 if (p->prio < 0) { 2439 struct swap_info_struct *si = p; 2440 int nid; 2441 2442 plist_for_each_entry_continue(si, &swap_active_head, list) { 2443 si->prio++; 2444 si->list.prio--; 2445 for_each_node(nid) { 2446 if (si->avail_lists[nid].prio != 1) 2447 si->avail_lists[nid].prio--; 2448 } 2449 } 2450 least_priority++; 2451 } 2452 plist_del(&p->list, &swap_active_head); 2453 atomic_long_sub(p->pages, &nr_swap_pages); 2454 total_swap_pages -= p->pages; 2455 p->flags &= ~SWP_WRITEOK; 2456 spin_unlock(&p->lock); 2457 spin_unlock(&swap_lock); 2458 2459 disable_swap_slots_cache_lock(); 2460 2461 set_current_oom_origin(); 2462 err = try_to_unuse(p->type); 2463 clear_current_oom_origin(); 2464 2465 if (err) { 2466 /* re-insert swap space back into swap_list */ 2467 reinsert_swap_info(p); 2468 reenable_swap_slots_cache_unlock(); 2469 goto out_dput; 2470 } 2471 2472 reenable_swap_slots_cache_unlock(); 2473 2474 /* 2475 * Wait for swap operations protected by get/put_swap_device() 2476 * to complete. 2477 * 2478 * We need synchronize_rcu() here to protect the accessing to 2479 * the swap cache data structure. 2480 */ 2481 percpu_ref_kill(&p->users); 2482 synchronize_rcu(); 2483 wait_for_completion(&p->comp); 2484 2485 flush_work(&p->discard_work); 2486 2487 destroy_swap_extents(p); 2488 if (p->flags & SWP_CONTINUED) 2489 free_swap_count_continuations(p); 2490 2491 if (!p->bdev || !bdev_nonrot(p->bdev)) 2492 atomic_dec(&nr_rotate_swap); 2493 2494 mutex_lock(&swapon_mutex); 2495 spin_lock(&swap_lock); 2496 spin_lock(&p->lock); 2497 drain_mmlist(); 2498 2499 /* wait for anyone still in scan_swap_map_slots */ 2500 p->highest_bit = 0; /* cuts scans short */ 2501 while (p->flags >= SWP_SCANNING) { 2502 spin_unlock(&p->lock); 2503 spin_unlock(&swap_lock); 2504 schedule_timeout_uninterruptible(1); 2505 spin_lock(&swap_lock); 2506 spin_lock(&p->lock); 2507 } 2508 2509 swap_file = p->swap_file; 2510 old_block_size = p->old_block_size; 2511 p->swap_file = NULL; 2512 p->max = 0; 2513 swap_map = p->swap_map; 2514 p->swap_map = NULL; 2515 cluster_info = p->cluster_info; 2516 p->cluster_info = NULL; 2517 spin_unlock(&p->lock); 2518 spin_unlock(&swap_lock); 2519 arch_swap_invalidate_area(p->type); 2520 zswap_swapoff(p->type); 2521 mutex_unlock(&swapon_mutex); 2522 free_percpu(p->percpu_cluster); 2523 p->percpu_cluster = NULL; 2524 free_percpu(p->cluster_next_cpu); 2525 p->cluster_next_cpu = NULL; 2526 vfree(swap_map); 2527 kvfree(cluster_info); 2528 /* Destroy swap account information */ 2529 swap_cgroup_swapoff(p->type); 2530 exit_swap_address_space(p->type); 2531 2532 inode = mapping->host; 2533 if (S_ISBLK(inode->i_mode)) { 2534 struct block_device *bdev = I_BDEV(inode); 2535 2536 set_blocksize(bdev, old_block_size); 2537 blkdev_put(bdev, p); 2538 } 2539 2540 inode_lock(inode); 2541 inode->i_flags &= ~S_SWAPFILE; 2542 inode_unlock(inode); 2543 filp_close(swap_file, NULL); 2544 2545 /* 2546 * Clear the SWP_USED flag after all resources are freed so that swapon 2547 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2548 * not hold p->lock after we cleared its SWP_WRITEOK. 2549 */ 2550 spin_lock(&swap_lock); 2551 p->flags = 0; 2552 spin_unlock(&swap_lock); 2553 2554 err = 0; 2555 atomic_inc(&proc_poll_event); 2556 wake_up_interruptible(&proc_poll_wait); 2557 2558 out_dput: 2559 filp_close(victim, NULL); 2560 out: 2561 putname(pathname); 2562 return err; 2563 } 2564 2565 #ifdef CONFIG_PROC_FS 2566 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2567 { 2568 struct seq_file *seq = file->private_data; 2569 2570 poll_wait(file, &proc_poll_wait, wait); 2571 2572 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2573 seq->poll_event = atomic_read(&proc_poll_event); 2574 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2575 } 2576 2577 return EPOLLIN | EPOLLRDNORM; 2578 } 2579 2580 /* iterator */ 2581 static void *swap_start(struct seq_file *swap, loff_t *pos) 2582 { 2583 struct swap_info_struct *si; 2584 int type; 2585 loff_t l = *pos; 2586 2587 mutex_lock(&swapon_mutex); 2588 2589 if (!l) 2590 return SEQ_START_TOKEN; 2591 2592 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2593 if (!(si->flags & SWP_USED) || !si->swap_map) 2594 continue; 2595 if (!--l) 2596 return si; 2597 } 2598 2599 return NULL; 2600 } 2601 2602 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2603 { 2604 struct swap_info_struct *si = v; 2605 int type; 2606 2607 if (v == SEQ_START_TOKEN) 2608 type = 0; 2609 else 2610 type = si->type + 1; 2611 2612 ++(*pos); 2613 for (; (si = swap_type_to_swap_info(type)); type++) { 2614 if (!(si->flags & SWP_USED) || !si->swap_map) 2615 continue; 2616 return si; 2617 } 2618 2619 return NULL; 2620 } 2621 2622 static void swap_stop(struct seq_file *swap, void *v) 2623 { 2624 mutex_unlock(&swapon_mutex); 2625 } 2626 2627 static int swap_show(struct seq_file *swap, void *v) 2628 { 2629 struct swap_info_struct *si = v; 2630 struct file *file; 2631 int len; 2632 unsigned long bytes, inuse; 2633 2634 if (si == SEQ_START_TOKEN) { 2635 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 2636 return 0; 2637 } 2638 2639 bytes = K(si->pages); 2640 inuse = K(READ_ONCE(si->inuse_pages)); 2641 2642 file = si->swap_file; 2643 len = seq_file_path(swap, file, " \t\n\\"); 2644 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n", 2645 len < 40 ? 40 - len : 1, " ", 2646 S_ISBLK(file_inode(file)->i_mode) ? 2647 "partition" : "file\t", 2648 bytes, bytes < 10000000 ? "\t" : "", 2649 inuse, inuse < 10000000 ? "\t" : "", 2650 si->prio); 2651 return 0; 2652 } 2653 2654 static const struct seq_operations swaps_op = { 2655 .start = swap_start, 2656 .next = swap_next, 2657 .stop = swap_stop, 2658 .show = swap_show 2659 }; 2660 2661 static int swaps_open(struct inode *inode, struct file *file) 2662 { 2663 struct seq_file *seq; 2664 int ret; 2665 2666 ret = seq_open(file, &swaps_op); 2667 if (ret) 2668 return ret; 2669 2670 seq = file->private_data; 2671 seq->poll_event = atomic_read(&proc_poll_event); 2672 return 0; 2673 } 2674 2675 static const struct proc_ops swaps_proc_ops = { 2676 .proc_flags = PROC_ENTRY_PERMANENT, 2677 .proc_open = swaps_open, 2678 .proc_read = seq_read, 2679 .proc_lseek = seq_lseek, 2680 .proc_release = seq_release, 2681 .proc_poll = swaps_poll, 2682 }; 2683 2684 static int __init procswaps_init(void) 2685 { 2686 proc_create("swaps", 0, NULL, &swaps_proc_ops); 2687 return 0; 2688 } 2689 __initcall(procswaps_init); 2690 #endif /* CONFIG_PROC_FS */ 2691 2692 #ifdef MAX_SWAPFILES_CHECK 2693 static int __init max_swapfiles_check(void) 2694 { 2695 MAX_SWAPFILES_CHECK(); 2696 return 0; 2697 } 2698 late_initcall(max_swapfiles_check); 2699 #endif 2700 2701 static struct swap_info_struct *alloc_swap_info(void) 2702 { 2703 struct swap_info_struct *p; 2704 struct swap_info_struct *defer = NULL; 2705 unsigned int type; 2706 int i; 2707 2708 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2709 if (!p) 2710 return ERR_PTR(-ENOMEM); 2711 2712 if (percpu_ref_init(&p->users, swap_users_ref_free, 2713 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { 2714 kvfree(p); 2715 return ERR_PTR(-ENOMEM); 2716 } 2717 2718 spin_lock(&swap_lock); 2719 for (type = 0; type < nr_swapfiles; type++) { 2720 if (!(swap_info[type]->flags & SWP_USED)) 2721 break; 2722 } 2723 if (type >= MAX_SWAPFILES) { 2724 spin_unlock(&swap_lock); 2725 percpu_ref_exit(&p->users); 2726 kvfree(p); 2727 return ERR_PTR(-EPERM); 2728 } 2729 if (type >= nr_swapfiles) { 2730 p->type = type; 2731 /* 2732 * Publish the swap_info_struct after initializing it. 2733 * Note that kvzalloc() above zeroes all its fields. 2734 */ 2735 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ 2736 nr_swapfiles++; 2737 } else { 2738 defer = p; 2739 p = swap_info[type]; 2740 /* 2741 * Do not memset this entry: a racing procfs swap_next() 2742 * would be relying on p->type to remain valid. 2743 */ 2744 } 2745 p->swap_extent_root = RB_ROOT; 2746 plist_node_init(&p->list, 0); 2747 for_each_node(i) 2748 plist_node_init(&p->avail_lists[i], 0); 2749 p->flags = SWP_USED; 2750 spin_unlock(&swap_lock); 2751 if (defer) { 2752 percpu_ref_exit(&defer->users); 2753 kvfree(defer); 2754 } 2755 spin_lock_init(&p->lock); 2756 spin_lock_init(&p->cont_lock); 2757 init_completion(&p->comp); 2758 2759 return p; 2760 } 2761 2762 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2763 { 2764 int error; 2765 2766 if (S_ISBLK(inode->i_mode)) { 2767 p->bdev = blkdev_get_by_dev(inode->i_rdev, 2768 BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL); 2769 if (IS_ERR(p->bdev)) { 2770 error = PTR_ERR(p->bdev); 2771 p->bdev = NULL; 2772 return error; 2773 } 2774 p->old_block_size = block_size(p->bdev); 2775 error = set_blocksize(p->bdev, PAGE_SIZE); 2776 if (error < 0) 2777 return error; 2778 /* 2779 * Zoned block devices contain zones that have a sequential 2780 * write only restriction. Hence zoned block devices are not 2781 * suitable for swapping. Disallow them here. 2782 */ 2783 if (bdev_is_zoned(p->bdev)) 2784 return -EINVAL; 2785 p->flags |= SWP_BLKDEV; 2786 } else if (S_ISREG(inode->i_mode)) { 2787 p->bdev = inode->i_sb->s_bdev; 2788 } 2789 2790 return 0; 2791 } 2792 2793 2794 /* 2795 * Find out how many pages are allowed for a single swap device. There 2796 * are two limiting factors: 2797 * 1) the number of bits for the swap offset in the swp_entry_t type, and 2798 * 2) the number of bits in the swap pte, as defined by the different 2799 * architectures. 2800 * 2801 * In order to find the largest possible bit mask, a swap entry with 2802 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 2803 * decoded to a swp_entry_t again, and finally the swap offset is 2804 * extracted. 2805 * 2806 * This will mask all the bits from the initial ~0UL mask that can't 2807 * be encoded in either the swp_entry_t or the architecture definition 2808 * of a swap pte. 2809 */ 2810 unsigned long generic_max_swapfile_size(void) 2811 { 2812 return swp_offset(pte_to_swp_entry( 2813 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2814 } 2815 2816 /* Can be overridden by an architecture for additional checks. */ 2817 __weak unsigned long arch_max_swapfile_size(void) 2818 { 2819 return generic_max_swapfile_size(); 2820 } 2821 2822 static unsigned long read_swap_header(struct swap_info_struct *p, 2823 union swap_header *swap_header, 2824 struct inode *inode) 2825 { 2826 int i; 2827 unsigned long maxpages; 2828 unsigned long swapfilepages; 2829 unsigned long last_page; 2830 2831 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2832 pr_err("Unable to find swap-space signature\n"); 2833 return 0; 2834 } 2835 2836 /* swap partition endianness hack... */ 2837 if (swab32(swap_header->info.version) == 1) { 2838 swab32s(&swap_header->info.version); 2839 swab32s(&swap_header->info.last_page); 2840 swab32s(&swap_header->info.nr_badpages); 2841 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2842 return 0; 2843 for (i = 0; i < swap_header->info.nr_badpages; i++) 2844 swab32s(&swap_header->info.badpages[i]); 2845 } 2846 /* Check the swap header's sub-version */ 2847 if (swap_header->info.version != 1) { 2848 pr_warn("Unable to handle swap header version %d\n", 2849 swap_header->info.version); 2850 return 0; 2851 } 2852 2853 p->lowest_bit = 1; 2854 p->cluster_next = 1; 2855 p->cluster_nr = 0; 2856 2857 maxpages = swapfile_maximum_size; 2858 last_page = swap_header->info.last_page; 2859 if (!last_page) { 2860 pr_warn("Empty swap-file\n"); 2861 return 0; 2862 } 2863 if (last_page > maxpages) { 2864 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2865 K(maxpages), K(last_page)); 2866 } 2867 if (maxpages > last_page) { 2868 maxpages = last_page + 1; 2869 /* p->max is an unsigned int: don't overflow it */ 2870 if ((unsigned int)maxpages == 0) 2871 maxpages = UINT_MAX; 2872 } 2873 p->highest_bit = maxpages - 1; 2874 2875 if (!maxpages) 2876 return 0; 2877 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2878 if (swapfilepages && maxpages > swapfilepages) { 2879 pr_warn("Swap area shorter than signature indicates\n"); 2880 return 0; 2881 } 2882 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2883 return 0; 2884 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2885 return 0; 2886 2887 return maxpages; 2888 } 2889 2890 #define SWAP_CLUSTER_INFO_COLS \ 2891 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 2892 #define SWAP_CLUSTER_SPACE_COLS \ 2893 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 2894 #define SWAP_CLUSTER_COLS \ 2895 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 2896 2897 static int setup_swap_map_and_extents(struct swap_info_struct *p, 2898 union swap_header *swap_header, 2899 unsigned char *swap_map, 2900 struct swap_cluster_info *cluster_info, 2901 unsigned long maxpages, 2902 sector_t *span) 2903 { 2904 unsigned int j, k; 2905 unsigned int nr_good_pages; 2906 int nr_extents; 2907 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2908 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 2909 unsigned long i, idx; 2910 2911 nr_good_pages = maxpages - 1; /* omit header page */ 2912 2913 cluster_list_init(&p->free_clusters); 2914 cluster_list_init(&p->discard_clusters); 2915 2916 for (i = 0; i < swap_header->info.nr_badpages; i++) { 2917 unsigned int page_nr = swap_header->info.badpages[i]; 2918 if (page_nr == 0 || page_nr > swap_header->info.last_page) 2919 return -EINVAL; 2920 if (page_nr < maxpages) { 2921 swap_map[page_nr] = SWAP_MAP_BAD; 2922 nr_good_pages--; 2923 /* 2924 * Haven't marked the cluster free yet, no list 2925 * operation involved 2926 */ 2927 inc_cluster_info_page(p, cluster_info, page_nr); 2928 } 2929 } 2930 2931 /* Haven't marked the cluster free yet, no list operation involved */ 2932 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 2933 inc_cluster_info_page(p, cluster_info, i); 2934 2935 if (nr_good_pages) { 2936 swap_map[0] = SWAP_MAP_BAD; 2937 /* 2938 * Not mark the cluster free yet, no list 2939 * operation involved 2940 */ 2941 inc_cluster_info_page(p, cluster_info, 0); 2942 p->max = maxpages; 2943 p->pages = nr_good_pages; 2944 nr_extents = setup_swap_extents(p, span); 2945 if (nr_extents < 0) 2946 return nr_extents; 2947 nr_good_pages = p->pages; 2948 } 2949 if (!nr_good_pages) { 2950 pr_warn("Empty swap-file\n"); 2951 return -EINVAL; 2952 } 2953 2954 if (!cluster_info) 2955 return nr_extents; 2956 2957 2958 /* 2959 * Reduce false cache line sharing between cluster_info and 2960 * sharing same address space. 2961 */ 2962 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 2963 j = (k + col) % SWAP_CLUSTER_COLS; 2964 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 2965 idx = i * SWAP_CLUSTER_COLS + j; 2966 if (idx >= nr_clusters) 2967 continue; 2968 if (cluster_count(&cluster_info[idx])) 2969 continue; 2970 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 2971 cluster_list_add_tail(&p->free_clusters, cluster_info, 2972 idx); 2973 } 2974 } 2975 return nr_extents; 2976 } 2977 2978 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 2979 { 2980 struct swap_info_struct *p; 2981 struct filename *name; 2982 struct file *swap_file = NULL; 2983 struct address_space *mapping; 2984 struct dentry *dentry; 2985 int prio; 2986 int error; 2987 union swap_header *swap_header; 2988 int nr_extents; 2989 sector_t span; 2990 unsigned long maxpages; 2991 unsigned char *swap_map = NULL; 2992 struct swap_cluster_info *cluster_info = NULL; 2993 struct page *page = NULL; 2994 struct inode *inode = NULL; 2995 bool inced_nr_rotate_swap = false; 2996 2997 if (swap_flags & ~SWAP_FLAGS_VALID) 2998 return -EINVAL; 2999 3000 if (!capable(CAP_SYS_ADMIN)) 3001 return -EPERM; 3002 3003 if (!swap_avail_heads) 3004 return -ENOMEM; 3005 3006 p = alloc_swap_info(); 3007 if (IS_ERR(p)) 3008 return PTR_ERR(p); 3009 3010 INIT_WORK(&p->discard_work, swap_discard_work); 3011 3012 name = getname(specialfile); 3013 if (IS_ERR(name)) { 3014 error = PTR_ERR(name); 3015 name = NULL; 3016 goto bad_swap; 3017 } 3018 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 3019 if (IS_ERR(swap_file)) { 3020 error = PTR_ERR(swap_file); 3021 swap_file = NULL; 3022 goto bad_swap; 3023 } 3024 3025 p->swap_file = swap_file; 3026 mapping = swap_file->f_mapping; 3027 dentry = swap_file->f_path.dentry; 3028 inode = mapping->host; 3029 3030 error = claim_swapfile(p, inode); 3031 if (unlikely(error)) 3032 goto bad_swap; 3033 3034 inode_lock(inode); 3035 if (d_unlinked(dentry) || cant_mount(dentry)) { 3036 error = -ENOENT; 3037 goto bad_swap_unlock_inode; 3038 } 3039 if (IS_SWAPFILE(inode)) { 3040 error = -EBUSY; 3041 goto bad_swap_unlock_inode; 3042 } 3043 3044 /* 3045 * Read the swap header. 3046 */ 3047 if (!mapping->a_ops->read_folio) { 3048 error = -EINVAL; 3049 goto bad_swap_unlock_inode; 3050 } 3051 page = read_mapping_page(mapping, 0, swap_file); 3052 if (IS_ERR(page)) { 3053 error = PTR_ERR(page); 3054 goto bad_swap_unlock_inode; 3055 } 3056 swap_header = kmap(page); 3057 3058 maxpages = read_swap_header(p, swap_header, inode); 3059 if (unlikely(!maxpages)) { 3060 error = -EINVAL; 3061 goto bad_swap_unlock_inode; 3062 } 3063 3064 /* OK, set up the swap map and apply the bad block list */ 3065 swap_map = vzalloc(maxpages); 3066 if (!swap_map) { 3067 error = -ENOMEM; 3068 goto bad_swap_unlock_inode; 3069 } 3070 3071 if (p->bdev && bdev_stable_writes(p->bdev)) 3072 p->flags |= SWP_STABLE_WRITES; 3073 3074 if (p->bdev && bdev_synchronous(p->bdev)) 3075 p->flags |= SWP_SYNCHRONOUS_IO; 3076 3077 if (p->bdev && bdev_nonrot(p->bdev)) { 3078 int cpu; 3079 unsigned long ci, nr_cluster; 3080 3081 p->flags |= SWP_SOLIDSTATE; 3082 p->cluster_next_cpu = alloc_percpu(unsigned int); 3083 if (!p->cluster_next_cpu) { 3084 error = -ENOMEM; 3085 goto bad_swap_unlock_inode; 3086 } 3087 /* 3088 * select a random position to start with to help wear leveling 3089 * SSD 3090 */ 3091 for_each_possible_cpu(cpu) { 3092 per_cpu(*p->cluster_next_cpu, cpu) = 3093 get_random_u32_inclusive(1, p->highest_bit); 3094 } 3095 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3096 3097 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), 3098 GFP_KERNEL); 3099 if (!cluster_info) { 3100 error = -ENOMEM; 3101 goto bad_swap_unlock_inode; 3102 } 3103 3104 for (ci = 0; ci < nr_cluster; ci++) 3105 spin_lock_init(&((cluster_info + ci)->lock)); 3106 3107 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 3108 if (!p->percpu_cluster) { 3109 error = -ENOMEM; 3110 goto bad_swap_unlock_inode; 3111 } 3112 for_each_possible_cpu(cpu) { 3113 struct percpu_cluster *cluster; 3114 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 3115 cluster_set_null(&cluster->index); 3116 } 3117 } else { 3118 atomic_inc(&nr_rotate_swap); 3119 inced_nr_rotate_swap = true; 3120 } 3121 3122 error = swap_cgroup_swapon(p->type, maxpages); 3123 if (error) 3124 goto bad_swap_unlock_inode; 3125 3126 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 3127 cluster_info, maxpages, &span); 3128 if (unlikely(nr_extents < 0)) { 3129 error = nr_extents; 3130 goto bad_swap_unlock_inode; 3131 } 3132 3133 if ((swap_flags & SWAP_FLAG_DISCARD) && 3134 p->bdev && bdev_max_discard_sectors(p->bdev)) { 3135 /* 3136 * When discard is enabled for swap with no particular 3137 * policy flagged, we set all swap discard flags here in 3138 * order to sustain backward compatibility with older 3139 * swapon(8) releases. 3140 */ 3141 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3142 SWP_PAGE_DISCARD); 3143 3144 /* 3145 * By flagging sys_swapon, a sysadmin can tell us to 3146 * either do single-time area discards only, or to just 3147 * perform discards for released swap page-clusters. 3148 * Now it's time to adjust the p->flags accordingly. 3149 */ 3150 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3151 p->flags &= ~SWP_PAGE_DISCARD; 3152 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3153 p->flags &= ~SWP_AREA_DISCARD; 3154 3155 /* issue a swapon-time discard if it's still required */ 3156 if (p->flags & SWP_AREA_DISCARD) { 3157 int err = discard_swap(p); 3158 if (unlikely(err)) 3159 pr_err("swapon: discard_swap(%p): %d\n", 3160 p, err); 3161 } 3162 } 3163 3164 error = init_swap_address_space(p->type, maxpages); 3165 if (error) 3166 goto bad_swap_unlock_inode; 3167 3168 /* 3169 * Flush any pending IO and dirty mappings before we start using this 3170 * swap device. 3171 */ 3172 inode->i_flags |= S_SWAPFILE; 3173 error = inode_drain_writes(inode); 3174 if (error) { 3175 inode->i_flags &= ~S_SWAPFILE; 3176 goto free_swap_address_space; 3177 } 3178 3179 mutex_lock(&swapon_mutex); 3180 prio = -1; 3181 if (swap_flags & SWAP_FLAG_PREFER) 3182 prio = 3183 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3184 enable_swap_info(p, prio, swap_map, cluster_info); 3185 3186 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n", 3187 K(p->pages), name->name, p->prio, nr_extents, 3188 K((unsigned long long)span), 3189 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 3190 (p->flags & SWP_DISCARDABLE) ? "D" : "", 3191 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 3192 (p->flags & SWP_PAGE_DISCARD) ? "c" : ""); 3193 3194 mutex_unlock(&swapon_mutex); 3195 atomic_inc(&proc_poll_event); 3196 wake_up_interruptible(&proc_poll_wait); 3197 3198 error = 0; 3199 goto out; 3200 free_swap_address_space: 3201 exit_swap_address_space(p->type); 3202 bad_swap_unlock_inode: 3203 inode_unlock(inode); 3204 bad_swap: 3205 free_percpu(p->percpu_cluster); 3206 p->percpu_cluster = NULL; 3207 free_percpu(p->cluster_next_cpu); 3208 p->cluster_next_cpu = NULL; 3209 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 3210 set_blocksize(p->bdev, p->old_block_size); 3211 blkdev_put(p->bdev, p); 3212 } 3213 inode = NULL; 3214 destroy_swap_extents(p); 3215 swap_cgroup_swapoff(p->type); 3216 spin_lock(&swap_lock); 3217 p->swap_file = NULL; 3218 p->flags = 0; 3219 spin_unlock(&swap_lock); 3220 vfree(swap_map); 3221 kvfree(cluster_info); 3222 if (inced_nr_rotate_swap) 3223 atomic_dec(&nr_rotate_swap); 3224 if (swap_file) 3225 filp_close(swap_file, NULL); 3226 out: 3227 if (page && !IS_ERR(page)) { 3228 kunmap(page); 3229 put_page(page); 3230 } 3231 if (name) 3232 putname(name); 3233 if (inode) 3234 inode_unlock(inode); 3235 if (!error) 3236 enable_swap_slots_cache(); 3237 return error; 3238 } 3239 3240 void si_swapinfo(struct sysinfo *val) 3241 { 3242 unsigned int type; 3243 unsigned long nr_to_be_unused = 0; 3244 3245 spin_lock(&swap_lock); 3246 for (type = 0; type < nr_swapfiles; type++) { 3247 struct swap_info_struct *si = swap_info[type]; 3248 3249 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3250 nr_to_be_unused += READ_ONCE(si->inuse_pages); 3251 } 3252 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3253 val->totalswap = total_swap_pages + nr_to_be_unused; 3254 spin_unlock(&swap_lock); 3255 } 3256 3257 /* 3258 * Verify that a swap entry is valid and increment its swap map count. 3259 * 3260 * Returns error code in following case. 3261 * - success -> 0 3262 * - swp_entry is invalid -> EINVAL 3263 * - swp_entry is migration entry -> EINVAL 3264 * - swap-cache reference is requested but there is already one. -> EEXIST 3265 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3266 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3267 */ 3268 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 3269 { 3270 struct swap_info_struct *p; 3271 struct swap_cluster_info *ci; 3272 unsigned long offset; 3273 unsigned char count; 3274 unsigned char has_cache; 3275 int err; 3276 3277 p = swp_swap_info(entry); 3278 3279 offset = swp_offset(entry); 3280 ci = lock_cluster_or_swap_info(p, offset); 3281 3282 count = p->swap_map[offset]; 3283 3284 /* 3285 * swapin_readahead() doesn't check if a swap entry is valid, so the 3286 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3287 */ 3288 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3289 err = -ENOENT; 3290 goto unlock_out; 3291 } 3292 3293 has_cache = count & SWAP_HAS_CACHE; 3294 count &= ~SWAP_HAS_CACHE; 3295 err = 0; 3296 3297 if (usage == SWAP_HAS_CACHE) { 3298 3299 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 3300 if (!has_cache && count) 3301 has_cache = SWAP_HAS_CACHE; 3302 else if (has_cache) /* someone else added cache */ 3303 err = -EEXIST; 3304 else /* no users remaining */ 3305 err = -ENOENT; 3306 3307 } else if (count || has_cache) { 3308 3309 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3310 count += usage; 3311 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3312 err = -EINVAL; 3313 else if (swap_count_continued(p, offset, count)) 3314 count = COUNT_CONTINUED; 3315 else 3316 err = -ENOMEM; 3317 } else 3318 err = -ENOENT; /* unused swap entry */ 3319 3320 WRITE_ONCE(p->swap_map[offset], count | has_cache); 3321 3322 unlock_out: 3323 unlock_cluster_or_swap_info(p, ci); 3324 return err; 3325 } 3326 3327 /* 3328 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3329 * (in which case its reference count is never incremented). 3330 */ 3331 void swap_shmem_alloc(swp_entry_t entry) 3332 { 3333 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3334 } 3335 3336 /* 3337 * Increase reference count of swap entry by 1. 3338 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3339 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3340 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3341 * might occur if a page table entry has got corrupted. 3342 */ 3343 int swap_duplicate(swp_entry_t entry) 3344 { 3345 int err = 0; 3346 3347 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3348 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3349 return err; 3350 } 3351 3352 /* 3353 * @entry: swap entry for which we allocate swap cache. 3354 * 3355 * Called when allocating swap cache for existing swap entry, 3356 * This can return error codes. Returns 0 at success. 3357 * -EEXIST means there is a swap cache. 3358 * Note: return code is different from swap_duplicate(). 3359 */ 3360 int swapcache_prepare(swp_entry_t entry) 3361 { 3362 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3363 } 3364 3365 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3366 { 3367 return swap_type_to_swap_info(swp_type(entry)); 3368 } 3369 3370 struct swap_info_struct *page_swap_info(struct page *page) 3371 { 3372 swp_entry_t entry = page_swap_entry(page); 3373 return swp_swap_info(entry); 3374 } 3375 3376 /* 3377 * out-of-line methods to avoid include hell. 3378 */ 3379 struct address_space *swapcache_mapping(struct folio *folio) 3380 { 3381 return page_swap_info(&folio->page)->swap_file->f_mapping; 3382 } 3383 EXPORT_SYMBOL_GPL(swapcache_mapping); 3384 3385 pgoff_t __page_file_index(struct page *page) 3386 { 3387 swp_entry_t swap = page_swap_entry(page); 3388 return swp_offset(swap); 3389 } 3390 EXPORT_SYMBOL_GPL(__page_file_index); 3391 3392 /* 3393 * add_swap_count_continuation - called when a swap count is duplicated 3394 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3395 * page of the original vmalloc'ed swap_map, to hold the continuation count 3396 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3397 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3398 * 3399 * These continuation pages are seldom referenced: the common paths all work 3400 * on the original swap_map, only referring to a continuation page when the 3401 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3402 * 3403 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3404 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3405 * can be called after dropping locks. 3406 */ 3407 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3408 { 3409 struct swap_info_struct *si; 3410 struct swap_cluster_info *ci; 3411 struct page *head; 3412 struct page *page; 3413 struct page *list_page; 3414 pgoff_t offset; 3415 unsigned char count; 3416 int ret = 0; 3417 3418 /* 3419 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3420 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3421 */ 3422 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3423 3424 si = get_swap_device(entry); 3425 if (!si) { 3426 /* 3427 * An acceptable race has occurred since the failing 3428 * __swap_duplicate(): the swap device may be swapoff 3429 */ 3430 goto outer; 3431 } 3432 spin_lock(&si->lock); 3433 3434 offset = swp_offset(entry); 3435 3436 ci = lock_cluster(si, offset); 3437 3438 count = swap_count(si->swap_map[offset]); 3439 3440 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3441 /* 3442 * The higher the swap count, the more likely it is that tasks 3443 * will race to add swap count continuation: we need to avoid 3444 * over-provisioning. 3445 */ 3446 goto out; 3447 } 3448 3449 if (!page) { 3450 ret = -ENOMEM; 3451 goto out; 3452 } 3453 3454 head = vmalloc_to_page(si->swap_map + offset); 3455 offset &= ~PAGE_MASK; 3456 3457 spin_lock(&si->cont_lock); 3458 /* 3459 * Page allocation does not initialize the page's lru field, 3460 * but it does always reset its private field. 3461 */ 3462 if (!page_private(head)) { 3463 BUG_ON(count & COUNT_CONTINUED); 3464 INIT_LIST_HEAD(&head->lru); 3465 set_page_private(head, SWP_CONTINUED); 3466 si->flags |= SWP_CONTINUED; 3467 } 3468 3469 list_for_each_entry(list_page, &head->lru, lru) { 3470 unsigned char *map; 3471 3472 /* 3473 * If the previous map said no continuation, but we've found 3474 * a continuation page, free our allocation and use this one. 3475 */ 3476 if (!(count & COUNT_CONTINUED)) 3477 goto out_unlock_cont; 3478 3479 map = kmap_atomic(list_page) + offset; 3480 count = *map; 3481 kunmap_atomic(map); 3482 3483 /* 3484 * If this continuation count now has some space in it, 3485 * free our allocation and use this one. 3486 */ 3487 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3488 goto out_unlock_cont; 3489 } 3490 3491 list_add_tail(&page->lru, &head->lru); 3492 page = NULL; /* now it's attached, don't free it */ 3493 out_unlock_cont: 3494 spin_unlock(&si->cont_lock); 3495 out: 3496 unlock_cluster(ci); 3497 spin_unlock(&si->lock); 3498 put_swap_device(si); 3499 outer: 3500 if (page) 3501 __free_page(page); 3502 return ret; 3503 } 3504 3505 /* 3506 * swap_count_continued - when the original swap_map count is incremented 3507 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3508 * into, carry if so, or else fail until a new continuation page is allocated; 3509 * when the original swap_map count is decremented from 0 with continuation, 3510 * borrow from the continuation and report whether it still holds more. 3511 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3512 * lock. 3513 */ 3514 static bool swap_count_continued(struct swap_info_struct *si, 3515 pgoff_t offset, unsigned char count) 3516 { 3517 struct page *head; 3518 struct page *page; 3519 unsigned char *map; 3520 bool ret; 3521 3522 head = vmalloc_to_page(si->swap_map + offset); 3523 if (page_private(head) != SWP_CONTINUED) { 3524 BUG_ON(count & COUNT_CONTINUED); 3525 return false; /* need to add count continuation */ 3526 } 3527 3528 spin_lock(&si->cont_lock); 3529 offset &= ~PAGE_MASK; 3530 page = list_next_entry(head, lru); 3531 map = kmap_atomic(page) + offset; 3532 3533 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3534 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3535 3536 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3537 /* 3538 * Think of how you add 1 to 999 3539 */ 3540 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3541 kunmap_atomic(map); 3542 page = list_next_entry(page, lru); 3543 BUG_ON(page == head); 3544 map = kmap_atomic(page) + offset; 3545 } 3546 if (*map == SWAP_CONT_MAX) { 3547 kunmap_atomic(map); 3548 page = list_next_entry(page, lru); 3549 if (page == head) { 3550 ret = false; /* add count continuation */ 3551 goto out; 3552 } 3553 map = kmap_atomic(page) + offset; 3554 init_map: *map = 0; /* we didn't zero the page */ 3555 } 3556 *map += 1; 3557 kunmap_atomic(map); 3558 while ((page = list_prev_entry(page, lru)) != head) { 3559 map = kmap_atomic(page) + offset; 3560 *map = COUNT_CONTINUED; 3561 kunmap_atomic(map); 3562 } 3563 ret = true; /* incremented */ 3564 3565 } else { /* decrementing */ 3566 /* 3567 * Think of how you subtract 1 from 1000 3568 */ 3569 BUG_ON(count != COUNT_CONTINUED); 3570 while (*map == COUNT_CONTINUED) { 3571 kunmap_atomic(map); 3572 page = list_next_entry(page, lru); 3573 BUG_ON(page == head); 3574 map = kmap_atomic(page) + offset; 3575 } 3576 BUG_ON(*map == 0); 3577 *map -= 1; 3578 if (*map == 0) 3579 count = 0; 3580 kunmap_atomic(map); 3581 while ((page = list_prev_entry(page, lru)) != head) { 3582 map = kmap_atomic(page) + offset; 3583 *map = SWAP_CONT_MAX | count; 3584 count = COUNT_CONTINUED; 3585 kunmap_atomic(map); 3586 } 3587 ret = count == COUNT_CONTINUED; 3588 } 3589 out: 3590 spin_unlock(&si->cont_lock); 3591 return ret; 3592 } 3593 3594 /* 3595 * free_swap_count_continuations - swapoff free all the continuation pages 3596 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3597 */ 3598 static void free_swap_count_continuations(struct swap_info_struct *si) 3599 { 3600 pgoff_t offset; 3601 3602 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3603 struct page *head; 3604 head = vmalloc_to_page(si->swap_map + offset); 3605 if (page_private(head)) { 3606 struct page *page, *next; 3607 3608 list_for_each_entry_safe(page, next, &head->lru, lru) { 3609 list_del(&page->lru); 3610 __free_page(page); 3611 } 3612 } 3613 } 3614 } 3615 3616 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3617 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp) 3618 { 3619 struct swap_info_struct *si, *next; 3620 int nid = folio_nid(folio); 3621 3622 if (!(gfp & __GFP_IO)) 3623 return; 3624 3625 if (!blk_cgroup_congested()) 3626 return; 3627 3628 /* 3629 * We've already scheduled a throttle, avoid taking the global swap 3630 * lock. 3631 */ 3632 if (current->throttle_disk) 3633 return; 3634 3635 spin_lock(&swap_avail_lock); 3636 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], 3637 avail_lists[nid]) { 3638 if (si->bdev) { 3639 blkcg_schedule_throttle(si->bdev->bd_disk, true); 3640 break; 3641 } 3642 } 3643 spin_unlock(&swap_avail_lock); 3644 } 3645 #endif 3646 3647 static int __init swapfile_init(void) 3648 { 3649 int nid; 3650 3651 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3652 GFP_KERNEL); 3653 if (!swap_avail_heads) { 3654 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3655 return -ENOMEM; 3656 } 3657 3658 for_each_node(nid) 3659 plist_head_init(&swap_avail_heads[nid]); 3660 3661 swapfile_maximum_size = arch_max_swapfile_size(); 3662 3663 #ifdef CONFIG_MIGRATION 3664 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS)) 3665 swap_migration_ad_supported = true; 3666 #endif /* CONFIG_MIGRATION */ 3667 3668 return 0; 3669 } 3670 subsys_initcall(swapfile_init); 3671