1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/hugetlb.h> 10 #include <linux/mman.h> 11 #include <linux/slab.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/shm.h> 18 #include <linux/blkdev.h> 19 #include <linux/random.h> 20 #include <linux/writeback.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/init.h> 24 #include <linux/module.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/security.h> 28 #include <linux/backing-dev.h> 29 #include <linux/mutex.h> 30 #include <linux/capability.h> 31 #include <linux/syscalls.h> 32 #include <linux/memcontrol.h> 33 34 #include <asm/pgtable.h> 35 #include <asm/tlbflush.h> 36 #include <linux/swapops.h> 37 #include <linux/page_cgroup.h> 38 39 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 40 unsigned char); 41 static void free_swap_count_continuations(struct swap_info_struct *); 42 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 43 44 static DEFINE_SPINLOCK(swap_lock); 45 static unsigned int nr_swapfiles; 46 long nr_swap_pages; 47 long total_swap_pages; 48 static int least_priority; 49 50 static const char Bad_file[] = "Bad swap file entry "; 51 static const char Unused_file[] = "Unused swap file entry "; 52 static const char Bad_offset[] = "Bad swap offset entry "; 53 static const char Unused_offset[] = "Unused swap offset entry "; 54 55 static struct swap_list_t swap_list = {-1, -1}; 56 57 static struct swap_info_struct *swap_info[MAX_SWAPFILES]; 58 59 static DEFINE_MUTEX(swapon_mutex); 60 61 static inline unsigned char swap_count(unsigned char ent) 62 { 63 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */ 64 } 65 66 /* returns 1 if swap entry is freed */ 67 static int 68 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) 69 { 70 swp_entry_t entry = swp_entry(si->type, offset); 71 struct page *page; 72 int ret = 0; 73 74 page = find_get_page(&swapper_space, entry.val); 75 if (!page) 76 return 0; 77 /* 78 * This function is called from scan_swap_map() and it's called 79 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. 80 * We have to use trylock for avoiding deadlock. This is a special 81 * case and you should use try_to_free_swap() with explicit lock_page() 82 * in usual operations. 83 */ 84 if (trylock_page(page)) { 85 ret = try_to_free_swap(page); 86 unlock_page(page); 87 } 88 page_cache_release(page); 89 return ret; 90 } 91 92 /* 93 * We need this because the bdev->unplug_fn can sleep and we cannot 94 * hold swap_lock while calling the unplug_fn. And swap_lock 95 * cannot be turned into a mutex. 96 */ 97 static DECLARE_RWSEM(swap_unplug_sem); 98 99 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page) 100 { 101 swp_entry_t entry; 102 103 down_read(&swap_unplug_sem); 104 entry.val = page_private(page); 105 if (PageSwapCache(page)) { 106 struct block_device *bdev = swap_info[swp_type(entry)]->bdev; 107 struct backing_dev_info *bdi; 108 109 /* 110 * If the page is removed from swapcache from under us (with a 111 * racy try_to_unuse/swapoff) we need an additional reference 112 * count to avoid reading garbage from page_private(page) above. 113 * If the WARN_ON triggers during a swapoff it maybe the race 114 * condition and it's harmless. However if it triggers without 115 * swapoff it signals a problem. 116 */ 117 WARN_ON(page_count(page) <= 1); 118 119 bdi = bdev->bd_inode->i_mapping->backing_dev_info; 120 blk_run_backing_dev(bdi, page); 121 } 122 up_read(&swap_unplug_sem); 123 } 124 125 /* 126 * swapon tell device that all the old swap contents can be discarded, 127 * to allow the swap device to optimize its wear-levelling. 128 */ 129 static int discard_swap(struct swap_info_struct *si) 130 { 131 struct swap_extent *se; 132 sector_t start_block; 133 sector_t nr_blocks; 134 int err = 0; 135 136 /* Do not discard the swap header page! */ 137 se = &si->first_swap_extent; 138 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 139 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 140 if (nr_blocks) { 141 err = blkdev_issue_discard(si->bdev, start_block, 142 nr_blocks, GFP_KERNEL, 143 BLKDEV_IFL_WAIT | BLKDEV_IFL_BARRIER); 144 if (err) 145 return err; 146 cond_resched(); 147 } 148 149 list_for_each_entry(se, &si->first_swap_extent.list, list) { 150 start_block = se->start_block << (PAGE_SHIFT - 9); 151 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 152 153 err = blkdev_issue_discard(si->bdev, start_block, 154 nr_blocks, GFP_KERNEL, 155 BLKDEV_IFL_WAIT | BLKDEV_IFL_BARRIER); 156 if (err) 157 break; 158 159 cond_resched(); 160 } 161 return err; /* That will often be -EOPNOTSUPP */ 162 } 163 164 /* 165 * swap allocation tell device that a cluster of swap can now be discarded, 166 * to allow the swap device to optimize its wear-levelling. 167 */ 168 static void discard_swap_cluster(struct swap_info_struct *si, 169 pgoff_t start_page, pgoff_t nr_pages) 170 { 171 struct swap_extent *se = si->curr_swap_extent; 172 int found_extent = 0; 173 174 while (nr_pages) { 175 struct list_head *lh; 176 177 if (se->start_page <= start_page && 178 start_page < se->start_page + se->nr_pages) { 179 pgoff_t offset = start_page - se->start_page; 180 sector_t start_block = se->start_block + offset; 181 sector_t nr_blocks = se->nr_pages - offset; 182 183 if (nr_blocks > nr_pages) 184 nr_blocks = nr_pages; 185 start_page += nr_blocks; 186 nr_pages -= nr_blocks; 187 188 if (!found_extent++) 189 si->curr_swap_extent = se; 190 191 start_block <<= PAGE_SHIFT - 9; 192 nr_blocks <<= PAGE_SHIFT - 9; 193 if (blkdev_issue_discard(si->bdev, start_block, 194 nr_blocks, GFP_NOIO, BLKDEV_IFL_WAIT | 195 BLKDEV_IFL_BARRIER)) 196 break; 197 } 198 199 lh = se->list.next; 200 se = list_entry(lh, struct swap_extent, list); 201 } 202 } 203 204 static int wait_for_discard(void *word) 205 { 206 schedule(); 207 return 0; 208 } 209 210 #define SWAPFILE_CLUSTER 256 211 #define LATENCY_LIMIT 256 212 213 static inline unsigned long scan_swap_map(struct swap_info_struct *si, 214 unsigned char usage) 215 { 216 unsigned long offset; 217 unsigned long scan_base; 218 unsigned long last_in_cluster = 0; 219 int latency_ration = LATENCY_LIMIT; 220 int found_free_cluster = 0; 221 222 /* 223 * We try to cluster swap pages by allocating them sequentially 224 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 225 * way, however, we resort to first-free allocation, starting 226 * a new cluster. This prevents us from scattering swap pages 227 * all over the entire swap partition, so that we reduce 228 * overall disk seek times between swap pages. -- sct 229 * But we do now try to find an empty cluster. -Andrea 230 * And we let swap pages go all over an SSD partition. Hugh 231 */ 232 233 si->flags += SWP_SCANNING; 234 scan_base = offset = si->cluster_next; 235 236 if (unlikely(!si->cluster_nr--)) { 237 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 238 si->cluster_nr = SWAPFILE_CLUSTER - 1; 239 goto checks; 240 } 241 if (si->flags & SWP_DISCARDABLE) { 242 /* 243 * Start range check on racing allocations, in case 244 * they overlap the cluster we eventually decide on 245 * (we scan without swap_lock to allow preemption). 246 * It's hardly conceivable that cluster_nr could be 247 * wrapped during our scan, but don't depend on it. 248 */ 249 if (si->lowest_alloc) 250 goto checks; 251 si->lowest_alloc = si->max; 252 si->highest_alloc = 0; 253 } 254 spin_unlock(&swap_lock); 255 256 /* 257 * If seek is expensive, start searching for new cluster from 258 * start of partition, to minimize the span of allocated swap. 259 * But if seek is cheap, search from our current position, so 260 * that swap is allocated from all over the partition: if the 261 * Flash Translation Layer only remaps within limited zones, 262 * we don't want to wear out the first zone too quickly. 263 */ 264 if (!(si->flags & SWP_SOLIDSTATE)) 265 scan_base = offset = si->lowest_bit; 266 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 267 268 /* Locate the first empty (unaligned) cluster */ 269 for (; last_in_cluster <= si->highest_bit; offset++) { 270 if (si->swap_map[offset]) 271 last_in_cluster = offset + SWAPFILE_CLUSTER; 272 else if (offset == last_in_cluster) { 273 spin_lock(&swap_lock); 274 offset -= SWAPFILE_CLUSTER - 1; 275 si->cluster_next = offset; 276 si->cluster_nr = SWAPFILE_CLUSTER - 1; 277 found_free_cluster = 1; 278 goto checks; 279 } 280 if (unlikely(--latency_ration < 0)) { 281 cond_resched(); 282 latency_ration = LATENCY_LIMIT; 283 } 284 } 285 286 offset = si->lowest_bit; 287 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 288 289 /* Locate the first empty (unaligned) cluster */ 290 for (; last_in_cluster < scan_base; offset++) { 291 if (si->swap_map[offset]) 292 last_in_cluster = offset + SWAPFILE_CLUSTER; 293 else if (offset == last_in_cluster) { 294 spin_lock(&swap_lock); 295 offset -= SWAPFILE_CLUSTER - 1; 296 si->cluster_next = offset; 297 si->cluster_nr = SWAPFILE_CLUSTER - 1; 298 found_free_cluster = 1; 299 goto checks; 300 } 301 if (unlikely(--latency_ration < 0)) { 302 cond_resched(); 303 latency_ration = LATENCY_LIMIT; 304 } 305 } 306 307 offset = scan_base; 308 spin_lock(&swap_lock); 309 si->cluster_nr = SWAPFILE_CLUSTER - 1; 310 si->lowest_alloc = 0; 311 } 312 313 checks: 314 if (!(si->flags & SWP_WRITEOK)) 315 goto no_page; 316 if (!si->highest_bit) 317 goto no_page; 318 if (offset > si->highest_bit) 319 scan_base = offset = si->lowest_bit; 320 321 /* reuse swap entry of cache-only swap if not busy. */ 322 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 323 int swap_was_freed; 324 spin_unlock(&swap_lock); 325 swap_was_freed = __try_to_reclaim_swap(si, offset); 326 spin_lock(&swap_lock); 327 /* entry was freed successfully, try to use this again */ 328 if (swap_was_freed) 329 goto checks; 330 goto scan; /* check next one */ 331 } 332 333 if (si->swap_map[offset]) 334 goto scan; 335 336 if (offset == si->lowest_bit) 337 si->lowest_bit++; 338 if (offset == si->highest_bit) 339 si->highest_bit--; 340 si->inuse_pages++; 341 if (si->inuse_pages == si->pages) { 342 si->lowest_bit = si->max; 343 si->highest_bit = 0; 344 } 345 si->swap_map[offset] = usage; 346 si->cluster_next = offset + 1; 347 si->flags -= SWP_SCANNING; 348 349 if (si->lowest_alloc) { 350 /* 351 * Only set when SWP_DISCARDABLE, and there's a scan 352 * for a free cluster in progress or just completed. 353 */ 354 if (found_free_cluster) { 355 /* 356 * To optimize wear-levelling, discard the 357 * old data of the cluster, taking care not to 358 * discard any of its pages that have already 359 * been allocated by racing tasks (offset has 360 * already stepped over any at the beginning). 361 */ 362 if (offset < si->highest_alloc && 363 si->lowest_alloc <= last_in_cluster) 364 last_in_cluster = si->lowest_alloc - 1; 365 si->flags |= SWP_DISCARDING; 366 spin_unlock(&swap_lock); 367 368 if (offset < last_in_cluster) 369 discard_swap_cluster(si, offset, 370 last_in_cluster - offset + 1); 371 372 spin_lock(&swap_lock); 373 si->lowest_alloc = 0; 374 si->flags &= ~SWP_DISCARDING; 375 376 smp_mb(); /* wake_up_bit advises this */ 377 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING)); 378 379 } else if (si->flags & SWP_DISCARDING) { 380 /* 381 * Delay using pages allocated by racing tasks 382 * until the whole discard has been issued. We 383 * could defer that delay until swap_writepage, 384 * but it's easier to keep this self-contained. 385 */ 386 spin_unlock(&swap_lock); 387 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING), 388 wait_for_discard, TASK_UNINTERRUPTIBLE); 389 spin_lock(&swap_lock); 390 } else { 391 /* 392 * Note pages allocated by racing tasks while 393 * scan for a free cluster is in progress, so 394 * that its final discard can exclude them. 395 */ 396 if (offset < si->lowest_alloc) 397 si->lowest_alloc = offset; 398 if (offset > si->highest_alloc) 399 si->highest_alloc = offset; 400 } 401 } 402 return offset; 403 404 scan: 405 spin_unlock(&swap_lock); 406 while (++offset <= si->highest_bit) { 407 if (!si->swap_map[offset]) { 408 spin_lock(&swap_lock); 409 goto checks; 410 } 411 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 412 spin_lock(&swap_lock); 413 goto checks; 414 } 415 if (unlikely(--latency_ration < 0)) { 416 cond_resched(); 417 latency_ration = LATENCY_LIMIT; 418 } 419 } 420 offset = si->lowest_bit; 421 while (++offset < scan_base) { 422 if (!si->swap_map[offset]) { 423 spin_lock(&swap_lock); 424 goto checks; 425 } 426 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 427 spin_lock(&swap_lock); 428 goto checks; 429 } 430 if (unlikely(--latency_ration < 0)) { 431 cond_resched(); 432 latency_ration = LATENCY_LIMIT; 433 } 434 } 435 spin_lock(&swap_lock); 436 437 no_page: 438 si->flags -= SWP_SCANNING; 439 return 0; 440 } 441 442 swp_entry_t get_swap_page(void) 443 { 444 struct swap_info_struct *si; 445 pgoff_t offset; 446 int type, next; 447 int wrapped = 0; 448 449 spin_lock(&swap_lock); 450 if (nr_swap_pages <= 0) 451 goto noswap; 452 nr_swap_pages--; 453 454 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { 455 si = swap_info[type]; 456 next = si->next; 457 if (next < 0 || 458 (!wrapped && si->prio != swap_info[next]->prio)) { 459 next = swap_list.head; 460 wrapped++; 461 } 462 463 if (!si->highest_bit) 464 continue; 465 if (!(si->flags & SWP_WRITEOK)) 466 continue; 467 468 swap_list.next = next; 469 /* This is called for allocating swap entry for cache */ 470 offset = scan_swap_map(si, SWAP_HAS_CACHE); 471 if (offset) { 472 spin_unlock(&swap_lock); 473 return swp_entry(type, offset); 474 } 475 next = swap_list.next; 476 } 477 478 nr_swap_pages++; 479 noswap: 480 spin_unlock(&swap_lock); 481 return (swp_entry_t) {0}; 482 } 483 484 /* The only caller of this function is now susupend routine */ 485 swp_entry_t get_swap_page_of_type(int type) 486 { 487 struct swap_info_struct *si; 488 pgoff_t offset; 489 490 spin_lock(&swap_lock); 491 si = swap_info[type]; 492 if (si && (si->flags & SWP_WRITEOK)) { 493 nr_swap_pages--; 494 /* This is called for allocating swap entry, not cache */ 495 offset = scan_swap_map(si, 1); 496 if (offset) { 497 spin_unlock(&swap_lock); 498 return swp_entry(type, offset); 499 } 500 nr_swap_pages++; 501 } 502 spin_unlock(&swap_lock); 503 return (swp_entry_t) {0}; 504 } 505 506 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 507 { 508 struct swap_info_struct *p; 509 unsigned long offset, type; 510 511 if (!entry.val) 512 goto out; 513 type = swp_type(entry); 514 if (type >= nr_swapfiles) 515 goto bad_nofile; 516 p = swap_info[type]; 517 if (!(p->flags & SWP_USED)) 518 goto bad_device; 519 offset = swp_offset(entry); 520 if (offset >= p->max) 521 goto bad_offset; 522 if (!p->swap_map[offset]) 523 goto bad_free; 524 spin_lock(&swap_lock); 525 return p; 526 527 bad_free: 528 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); 529 goto out; 530 bad_offset: 531 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); 532 goto out; 533 bad_device: 534 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); 535 goto out; 536 bad_nofile: 537 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); 538 out: 539 return NULL; 540 } 541 542 static unsigned char swap_entry_free(struct swap_info_struct *p, 543 swp_entry_t entry, unsigned char usage) 544 { 545 unsigned long offset = swp_offset(entry); 546 unsigned char count; 547 unsigned char has_cache; 548 549 count = p->swap_map[offset]; 550 has_cache = count & SWAP_HAS_CACHE; 551 count &= ~SWAP_HAS_CACHE; 552 553 if (usage == SWAP_HAS_CACHE) { 554 VM_BUG_ON(!has_cache); 555 has_cache = 0; 556 } else if (count == SWAP_MAP_SHMEM) { 557 /* 558 * Or we could insist on shmem.c using a special 559 * swap_shmem_free() and free_shmem_swap_and_cache()... 560 */ 561 count = 0; 562 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 563 if (count == COUNT_CONTINUED) { 564 if (swap_count_continued(p, offset, count)) 565 count = SWAP_MAP_MAX | COUNT_CONTINUED; 566 else 567 count = SWAP_MAP_MAX; 568 } else 569 count--; 570 } 571 572 if (!count) 573 mem_cgroup_uncharge_swap(entry); 574 575 usage = count | has_cache; 576 p->swap_map[offset] = usage; 577 578 /* free if no reference */ 579 if (!usage) { 580 struct gendisk *disk = p->bdev->bd_disk; 581 if (offset < p->lowest_bit) 582 p->lowest_bit = offset; 583 if (offset > p->highest_bit) 584 p->highest_bit = offset; 585 if (swap_list.next >= 0 && 586 p->prio > swap_info[swap_list.next]->prio) 587 swap_list.next = p->type; 588 nr_swap_pages++; 589 p->inuse_pages--; 590 if ((p->flags & SWP_BLKDEV) && 591 disk->fops->swap_slot_free_notify) 592 disk->fops->swap_slot_free_notify(p->bdev, offset); 593 } 594 595 return usage; 596 } 597 598 /* 599 * Caller has made sure that the swapdevice corresponding to entry 600 * is still around or has not been recycled. 601 */ 602 void swap_free(swp_entry_t entry) 603 { 604 struct swap_info_struct *p; 605 606 p = swap_info_get(entry); 607 if (p) { 608 swap_entry_free(p, entry, 1); 609 spin_unlock(&swap_lock); 610 } 611 } 612 613 /* 614 * Called after dropping swapcache to decrease refcnt to swap entries. 615 */ 616 void swapcache_free(swp_entry_t entry, struct page *page) 617 { 618 struct swap_info_struct *p; 619 unsigned char count; 620 621 p = swap_info_get(entry); 622 if (p) { 623 count = swap_entry_free(p, entry, SWAP_HAS_CACHE); 624 if (page) 625 mem_cgroup_uncharge_swapcache(page, entry, count != 0); 626 spin_unlock(&swap_lock); 627 } 628 } 629 630 /* 631 * How many references to page are currently swapped out? 632 * This does not give an exact answer when swap count is continued, 633 * but does include the high COUNT_CONTINUED flag to allow for that. 634 */ 635 static inline int page_swapcount(struct page *page) 636 { 637 int count = 0; 638 struct swap_info_struct *p; 639 swp_entry_t entry; 640 641 entry.val = page_private(page); 642 p = swap_info_get(entry); 643 if (p) { 644 count = swap_count(p->swap_map[swp_offset(entry)]); 645 spin_unlock(&swap_lock); 646 } 647 return count; 648 } 649 650 /* 651 * We can write to an anon page without COW if there are no other references 652 * to it. And as a side-effect, free up its swap: because the old content 653 * on disk will never be read, and seeking back there to write new content 654 * later would only waste time away from clustering. 655 */ 656 int reuse_swap_page(struct page *page) 657 { 658 int count; 659 660 VM_BUG_ON(!PageLocked(page)); 661 if (unlikely(PageKsm(page))) 662 return 0; 663 count = page_mapcount(page); 664 if (count <= 1 && PageSwapCache(page)) { 665 count += page_swapcount(page); 666 if (count == 1 && !PageWriteback(page)) { 667 delete_from_swap_cache(page); 668 SetPageDirty(page); 669 } 670 } 671 return count <= 1; 672 } 673 674 /* 675 * If swap is getting full, or if there are no more mappings of this page, 676 * then try_to_free_swap is called to free its swap space. 677 */ 678 int try_to_free_swap(struct page *page) 679 { 680 VM_BUG_ON(!PageLocked(page)); 681 682 if (!PageSwapCache(page)) 683 return 0; 684 if (PageWriteback(page)) 685 return 0; 686 if (page_swapcount(page)) 687 return 0; 688 689 delete_from_swap_cache(page); 690 SetPageDirty(page); 691 return 1; 692 } 693 694 /* 695 * Free the swap entry like above, but also try to 696 * free the page cache entry if it is the last user. 697 */ 698 int free_swap_and_cache(swp_entry_t entry) 699 { 700 struct swap_info_struct *p; 701 struct page *page = NULL; 702 703 if (non_swap_entry(entry)) 704 return 1; 705 706 p = swap_info_get(entry); 707 if (p) { 708 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) { 709 page = find_get_page(&swapper_space, entry.val); 710 if (page && !trylock_page(page)) { 711 page_cache_release(page); 712 page = NULL; 713 } 714 } 715 spin_unlock(&swap_lock); 716 } 717 if (page) { 718 /* 719 * Not mapped elsewhere, or swap space full? Free it! 720 * Also recheck PageSwapCache now page is locked (above). 721 */ 722 if (PageSwapCache(page) && !PageWriteback(page) && 723 (!page_mapped(page) || vm_swap_full())) { 724 delete_from_swap_cache(page); 725 SetPageDirty(page); 726 } 727 unlock_page(page); 728 page_cache_release(page); 729 } 730 return p != NULL; 731 } 732 733 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 734 /** 735 * mem_cgroup_count_swap_user - count the user of a swap entry 736 * @ent: the swap entry to be checked 737 * @pagep: the pointer for the swap cache page of the entry to be stored 738 * 739 * Returns the number of the user of the swap entry. The number is valid only 740 * for swaps of anonymous pages. 741 * If the entry is found on swap cache, the page is stored to pagep with 742 * refcount of it being incremented. 743 */ 744 int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep) 745 { 746 struct page *page; 747 struct swap_info_struct *p; 748 int count = 0; 749 750 page = find_get_page(&swapper_space, ent.val); 751 if (page) 752 count += page_mapcount(page); 753 p = swap_info_get(ent); 754 if (p) { 755 count += swap_count(p->swap_map[swp_offset(ent)]); 756 spin_unlock(&swap_lock); 757 } 758 759 *pagep = page; 760 return count; 761 } 762 #endif 763 764 #ifdef CONFIG_HIBERNATION 765 /* 766 * Find the swap type that corresponds to given device (if any). 767 * 768 * @offset - number of the PAGE_SIZE-sized block of the device, starting 769 * from 0, in which the swap header is expected to be located. 770 * 771 * This is needed for the suspend to disk (aka swsusp). 772 */ 773 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 774 { 775 struct block_device *bdev = NULL; 776 int type; 777 778 if (device) 779 bdev = bdget(device); 780 781 spin_lock(&swap_lock); 782 for (type = 0; type < nr_swapfiles; type++) { 783 struct swap_info_struct *sis = swap_info[type]; 784 785 if (!(sis->flags & SWP_WRITEOK)) 786 continue; 787 788 if (!bdev) { 789 if (bdev_p) 790 *bdev_p = bdgrab(sis->bdev); 791 792 spin_unlock(&swap_lock); 793 return type; 794 } 795 if (bdev == sis->bdev) { 796 struct swap_extent *se = &sis->first_swap_extent; 797 798 if (se->start_block == offset) { 799 if (bdev_p) 800 *bdev_p = bdgrab(sis->bdev); 801 802 spin_unlock(&swap_lock); 803 bdput(bdev); 804 return type; 805 } 806 } 807 } 808 spin_unlock(&swap_lock); 809 if (bdev) 810 bdput(bdev); 811 812 return -ENODEV; 813 } 814 815 /* 816 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 817 * corresponding to given index in swap_info (swap type). 818 */ 819 sector_t swapdev_block(int type, pgoff_t offset) 820 { 821 struct block_device *bdev; 822 823 if ((unsigned int)type >= nr_swapfiles) 824 return 0; 825 if (!(swap_info[type]->flags & SWP_WRITEOK)) 826 return 0; 827 return map_swap_entry(swp_entry(type, offset), &bdev); 828 } 829 830 /* 831 * Return either the total number of swap pages of given type, or the number 832 * of free pages of that type (depending on @free) 833 * 834 * This is needed for software suspend 835 */ 836 unsigned int count_swap_pages(int type, int free) 837 { 838 unsigned int n = 0; 839 840 spin_lock(&swap_lock); 841 if ((unsigned int)type < nr_swapfiles) { 842 struct swap_info_struct *sis = swap_info[type]; 843 844 if (sis->flags & SWP_WRITEOK) { 845 n = sis->pages; 846 if (free) 847 n -= sis->inuse_pages; 848 } 849 } 850 spin_unlock(&swap_lock); 851 return n; 852 } 853 #endif /* CONFIG_HIBERNATION */ 854 855 /* 856 * No need to decide whether this PTE shares the swap entry with others, 857 * just let do_wp_page work it out if a write is requested later - to 858 * force COW, vm_page_prot omits write permission from any private vma. 859 */ 860 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 861 unsigned long addr, swp_entry_t entry, struct page *page) 862 { 863 struct mem_cgroup *ptr = NULL; 864 spinlock_t *ptl; 865 pte_t *pte; 866 int ret = 1; 867 868 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) { 869 ret = -ENOMEM; 870 goto out_nolock; 871 } 872 873 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 874 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) { 875 if (ret > 0) 876 mem_cgroup_cancel_charge_swapin(ptr); 877 ret = 0; 878 goto out; 879 } 880 881 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 882 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 883 get_page(page); 884 set_pte_at(vma->vm_mm, addr, pte, 885 pte_mkold(mk_pte(page, vma->vm_page_prot))); 886 page_add_anon_rmap(page, vma, addr); 887 mem_cgroup_commit_charge_swapin(page, ptr); 888 swap_free(entry); 889 /* 890 * Move the page to the active list so it is not 891 * immediately swapped out again after swapon. 892 */ 893 activate_page(page); 894 out: 895 pte_unmap_unlock(pte, ptl); 896 out_nolock: 897 return ret; 898 } 899 900 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 901 unsigned long addr, unsigned long end, 902 swp_entry_t entry, struct page *page) 903 { 904 pte_t swp_pte = swp_entry_to_pte(entry); 905 pte_t *pte; 906 int ret = 0; 907 908 /* 909 * We don't actually need pte lock while scanning for swp_pte: since 910 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 911 * page table while we're scanning; though it could get zapped, and on 912 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 913 * of unmatched parts which look like swp_pte, so unuse_pte must 914 * recheck under pte lock. Scanning without pte lock lets it be 915 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 916 */ 917 pte = pte_offset_map(pmd, addr); 918 do { 919 /* 920 * swapoff spends a _lot_ of time in this loop! 921 * Test inline before going to call unuse_pte. 922 */ 923 if (unlikely(pte_same(*pte, swp_pte))) { 924 pte_unmap(pte); 925 ret = unuse_pte(vma, pmd, addr, entry, page); 926 if (ret) 927 goto out; 928 pte = pte_offset_map(pmd, addr); 929 } 930 } while (pte++, addr += PAGE_SIZE, addr != end); 931 pte_unmap(pte - 1); 932 out: 933 return ret; 934 } 935 936 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 937 unsigned long addr, unsigned long end, 938 swp_entry_t entry, struct page *page) 939 { 940 pmd_t *pmd; 941 unsigned long next; 942 int ret; 943 944 pmd = pmd_offset(pud, addr); 945 do { 946 next = pmd_addr_end(addr, end); 947 if (pmd_none_or_clear_bad(pmd)) 948 continue; 949 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 950 if (ret) 951 return ret; 952 } while (pmd++, addr = next, addr != end); 953 return 0; 954 } 955 956 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 957 unsigned long addr, unsigned long end, 958 swp_entry_t entry, struct page *page) 959 { 960 pud_t *pud; 961 unsigned long next; 962 int ret; 963 964 pud = pud_offset(pgd, addr); 965 do { 966 next = pud_addr_end(addr, end); 967 if (pud_none_or_clear_bad(pud)) 968 continue; 969 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 970 if (ret) 971 return ret; 972 } while (pud++, addr = next, addr != end); 973 return 0; 974 } 975 976 static int unuse_vma(struct vm_area_struct *vma, 977 swp_entry_t entry, struct page *page) 978 { 979 pgd_t *pgd; 980 unsigned long addr, end, next; 981 int ret; 982 983 if (page_anon_vma(page)) { 984 addr = page_address_in_vma(page, vma); 985 if (addr == -EFAULT) 986 return 0; 987 else 988 end = addr + PAGE_SIZE; 989 } else { 990 addr = vma->vm_start; 991 end = vma->vm_end; 992 } 993 994 pgd = pgd_offset(vma->vm_mm, addr); 995 do { 996 next = pgd_addr_end(addr, end); 997 if (pgd_none_or_clear_bad(pgd)) 998 continue; 999 ret = unuse_pud_range(vma, pgd, addr, next, entry, page); 1000 if (ret) 1001 return ret; 1002 } while (pgd++, addr = next, addr != end); 1003 return 0; 1004 } 1005 1006 static int unuse_mm(struct mm_struct *mm, 1007 swp_entry_t entry, struct page *page) 1008 { 1009 struct vm_area_struct *vma; 1010 int ret = 0; 1011 1012 if (!down_read_trylock(&mm->mmap_sem)) { 1013 /* 1014 * Activate page so shrink_inactive_list is unlikely to unmap 1015 * its ptes while lock is dropped, so swapoff can make progress. 1016 */ 1017 activate_page(page); 1018 unlock_page(page); 1019 down_read(&mm->mmap_sem); 1020 lock_page(page); 1021 } 1022 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1023 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 1024 break; 1025 } 1026 up_read(&mm->mmap_sem); 1027 return (ret < 0)? ret: 0; 1028 } 1029 1030 /* 1031 * Scan swap_map from current position to next entry still in use. 1032 * Recycle to start on reaching the end, returning 0 when empty. 1033 */ 1034 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 1035 unsigned int prev) 1036 { 1037 unsigned int max = si->max; 1038 unsigned int i = prev; 1039 unsigned char count; 1040 1041 /* 1042 * No need for swap_lock here: we're just looking 1043 * for whether an entry is in use, not modifying it; false 1044 * hits are okay, and sys_swapoff() has already prevented new 1045 * allocations from this area (while holding swap_lock). 1046 */ 1047 for (;;) { 1048 if (++i >= max) { 1049 if (!prev) { 1050 i = 0; 1051 break; 1052 } 1053 /* 1054 * No entries in use at top of swap_map, 1055 * loop back to start and recheck there. 1056 */ 1057 max = prev + 1; 1058 prev = 0; 1059 i = 1; 1060 } 1061 count = si->swap_map[i]; 1062 if (count && swap_count(count) != SWAP_MAP_BAD) 1063 break; 1064 } 1065 return i; 1066 } 1067 1068 /* 1069 * We completely avoid races by reading each swap page in advance, 1070 * and then search for the process using it. All the necessary 1071 * page table adjustments can then be made atomically. 1072 */ 1073 static int try_to_unuse(unsigned int type) 1074 { 1075 struct swap_info_struct *si = swap_info[type]; 1076 struct mm_struct *start_mm; 1077 unsigned char *swap_map; 1078 unsigned char swcount; 1079 struct page *page; 1080 swp_entry_t entry; 1081 unsigned int i = 0; 1082 int retval = 0; 1083 1084 /* 1085 * When searching mms for an entry, a good strategy is to 1086 * start at the first mm we freed the previous entry from 1087 * (though actually we don't notice whether we or coincidence 1088 * freed the entry). Initialize this start_mm with a hold. 1089 * 1090 * A simpler strategy would be to start at the last mm we 1091 * freed the previous entry from; but that would take less 1092 * advantage of mmlist ordering, which clusters forked mms 1093 * together, child after parent. If we race with dup_mmap(), we 1094 * prefer to resolve parent before child, lest we miss entries 1095 * duplicated after we scanned child: using last mm would invert 1096 * that. 1097 */ 1098 start_mm = &init_mm; 1099 atomic_inc(&init_mm.mm_users); 1100 1101 /* 1102 * Keep on scanning until all entries have gone. Usually, 1103 * one pass through swap_map is enough, but not necessarily: 1104 * there are races when an instance of an entry might be missed. 1105 */ 1106 while ((i = find_next_to_unuse(si, i)) != 0) { 1107 if (signal_pending(current)) { 1108 retval = -EINTR; 1109 break; 1110 } 1111 1112 /* 1113 * Get a page for the entry, using the existing swap 1114 * cache page if there is one. Otherwise, get a clean 1115 * page and read the swap into it. 1116 */ 1117 swap_map = &si->swap_map[i]; 1118 entry = swp_entry(type, i); 1119 page = read_swap_cache_async(entry, 1120 GFP_HIGHUSER_MOVABLE, NULL, 0); 1121 if (!page) { 1122 /* 1123 * Either swap_duplicate() failed because entry 1124 * has been freed independently, and will not be 1125 * reused since sys_swapoff() already disabled 1126 * allocation from here, or alloc_page() failed. 1127 */ 1128 if (!*swap_map) 1129 continue; 1130 retval = -ENOMEM; 1131 break; 1132 } 1133 1134 /* 1135 * Don't hold on to start_mm if it looks like exiting. 1136 */ 1137 if (atomic_read(&start_mm->mm_users) == 1) { 1138 mmput(start_mm); 1139 start_mm = &init_mm; 1140 atomic_inc(&init_mm.mm_users); 1141 } 1142 1143 /* 1144 * Wait for and lock page. When do_swap_page races with 1145 * try_to_unuse, do_swap_page can handle the fault much 1146 * faster than try_to_unuse can locate the entry. This 1147 * apparently redundant "wait_on_page_locked" lets try_to_unuse 1148 * defer to do_swap_page in such a case - in some tests, 1149 * do_swap_page and try_to_unuse repeatedly compete. 1150 */ 1151 wait_on_page_locked(page); 1152 wait_on_page_writeback(page); 1153 lock_page(page); 1154 wait_on_page_writeback(page); 1155 1156 /* 1157 * Remove all references to entry. 1158 */ 1159 swcount = *swap_map; 1160 if (swap_count(swcount) == SWAP_MAP_SHMEM) { 1161 retval = shmem_unuse(entry, page); 1162 /* page has already been unlocked and released */ 1163 if (retval < 0) 1164 break; 1165 continue; 1166 } 1167 if (swap_count(swcount) && start_mm != &init_mm) 1168 retval = unuse_mm(start_mm, entry, page); 1169 1170 if (swap_count(*swap_map)) { 1171 int set_start_mm = (*swap_map >= swcount); 1172 struct list_head *p = &start_mm->mmlist; 1173 struct mm_struct *new_start_mm = start_mm; 1174 struct mm_struct *prev_mm = start_mm; 1175 struct mm_struct *mm; 1176 1177 atomic_inc(&new_start_mm->mm_users); 1178 atomic_inc(&prev_mm->mm_users); 1179 spin_lock(&mmlist_lock); 1180 while (swap_count(*swap_map) && !retval && 1181 (p = p->next) != &start_mm->mmlist) { 1182 mm = list_entry(p, struct mm_struct, mmlist); 1183 if (!atomic_inc_not_zero(&mm->mm_users)) 1184 continue; 1185 spin_unlock(&mmlist_lock); 1186 mmput(prev_mm); 1187 prev_mm = mm; 1188 1189 cond_resched(); 1190 1191 swcount = *swap_map; 1192 if (!swap_count(swcount)) /* any usage ? */ 1193 ; 1194 else if (mm == &init_mm) 1195 set_start_mm = 1; 1196 else 1197 retval = unuse_mm(mm, entry, page); 1198 1199 if (set_start_mm && *swap_map < swcount) { 1200 mmput(new_start_mm); 1201 atomic_inc(&mm->mm_users); 1202 new_start_mm = mm; 1203 set_start_mm = 0; 1204 } 1205 spin_lock(&mmlist_lock); 1206 } 1207 spin_unlock(&mmlist_lock); 1208 mmput(prev_mm); 1209 mmput(start_mm); 1210 start_mm = new_start_mm; 1211 } 1212 if (retval) { 1213 unlock_page(page); 1214 page_cache_release(page); 1215 break; 1216 } 1217 1218 /* 1219 * If a reference remains (rare), we would like to leave 1220 * the page in the swap cache; but try_to_unmap could 1221 * then re-duplicate the entry once we drop page lock, 1222 * so we might loop indefinitely; also, that page could 1223 * not be swapped out to other storage meanwhile. So: 1224 * delete from cache even if there's another reference, 1225 * after ensuring that the data has been saved to disk - 1226 * since if the reference remains (rarer), it will be 1227 * read from disk into another page. Splitting into two 1228 * pages would be incorrect if swap supported "shared 1229 * private" pages, but they are handled by tmpfs files. 1230 * 1231 * Given how unuse_vma() targets one particular offset 1232 * in an anon_vma, once the anon_vma has been determined, 1233 * this splitting happens to be just what is needed to 1234 * handle where KSM pages have been swapped out: re-reading 1235 * is unnecessarily slow, but we can fix that later on. 1236 */ 1237 if (swap_count(*swap_map) && 1238 PageDirty(page) && PageSwapCache(page)) { 1239 struct writeback_control wbc = { 1240 .sync_mode = WB_SYNC_NONE, 1241 }; 1242 1243 swap_writepage(page, &wbc); 1244 lock_page(page); 1245 wait_on_page_writeback(page); 1246 } 1247 1248 /* 1249 * It is conceivable that a racing task removed this page from 1250 * swap cache just before we acquired the page lock at the top, 1251 * or while we dropped it in unuse_mm(). The page might even 1252 * be back in swap cache on another swap area: that we must not 1253 * delete, since it may not have been written out to swap yet. 1254 */ 1255 if (PageSwapCache(page) && 1256 likely(page_private(page) == entry.val)) 1257 delete_from_swap_cache(page); 1258 1259 /* 1260 * So we could skip searching mms once swap count went 1261 * to 1, we did not mark any present ptes as dirty: must 1262 * mark page dirty so shrink_page_list will preserve it. 1263 */ 1264 SetPageDirty(page); 1265 unlock_page(page); 1266 page_cache_release(page); 1267 1268 /* 1269 * Make sure that we aren't completely killing 1270 * interactive performance. 1271 */ 1272 cond_resched(); 1273 } 1274 1275 mmput(start_mm); 1276 return retval; 1277 } 1278 1279 /* 1280 * After a successful try_to_unuse, if no swap is now in use, we know 1281 * we can empty the mmlist. swap_lock must be held on entry and exit. 1282 * Note that mmlist_lock nests inside swap_lock, and an mm must be 1283 * added to the mmlist just after page_duplicate - before would be racy. 1284 */ 1285 static void drain_mmlist(void) 1286 { 1287 struct list_head *p, *next; 1288 unsigned int type; 1289 1290 for (type = 0; type < nr_swapfiles; type++) 1291 if (swap_info[type]->inuse_pages) 1292 return; 1293 spin_lock(&mmlist_lock); 1294 list_for_each_safe(p, next, &init_mm.mmlist) 1295 list_del_init(p); 1296 spin_unlock(&mmlist_lock); 1297 } 1298 1299 /* 1300 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 1301 * corresponds to page offset for the specified swap entry. 1302 * Note that the type of this function is sector_t, but it returns page offset 1303 * into the bdev, not sector offset. 1304 */ 1305 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 1306 { 1307 struct swap_info_struct *sis; 1308 struct swap_extent *start_se; 1309 struct swap_extent *se; 1310 pgoff_t offset; 1311 1312 sis = swap_info[swp_type(entry)]; 1313 *bdev = sis->bdev; 1314 1315 offset = swp_offset(entry); 1316 start_se = sis->curr_swap_extent; 1317 se = start_se; 1318 1319 for ( ; ; ) { 1320 struct list_head *lh; 1321 1322 if (se->start_page <= offset && 1323 offset < (se->start_page + se->nr_pages)) { 1324 return se->start_block + (offset - se->start_page); 1325 } 1326 lh = se->list.next; 1327 se = list_entry(lh, struct swap_extent, list); 1328 sis->curr_swap_extent = se; 1329 BUG_ON(se == start_se); /* It *must* be present */ 1330 } 1331 } 1332 1333 /* 1334 * Returns the page offset into bdev for the specified page's swap entry. 1335 */ 1336 sector_t map_swap_page(struct page *page, struct block_device **bdev) 1337 { 1338 swp_entry_t entry; 1339 entry.val = page_private(page); 1340 return map_swap_entry(entry, bdev); 1341 } 1342 1343 /* 1344 * Free all of a swapdev's extent information 1345 */ 1346 static void destroy_swap_extents(struct swap_info_struct *sis) 1347 { 1348 while (!list_empty(&sis->first_swap_extent.list)) { 1349 struct swap_extent *se; 1350 1351 se = list_entry(sis->first_swap_extent.list.next, 1352 struct swap_extent, list); 1353 list_del(&se->list); 1354 kfree(se); 1355 } 1356 } 1357 1358 /* 1359 * Add a block range (and the corresponding page range) into this swapdev's 1360 * extent list. The extent list is kept sorted in page order. 1361 * 1362 * This function rather assumes that it is called in ascending page order. 1363 */ 1364 static int 1365 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 1366 unsigned long nr_pages, sector_t start_block) 1367 { 1368 struct swap_extent *se; 1369 struct swap_extent *new_se; 1370 struct list_head *lh; 1371 1372 if (start_page == 0) { 1373 se = &sis->first_swap_extent; 1374 sis->curr_swap_extent = se; 1375 se->start_page = 0; 1376 se->nr_pages = nr_pages; 1377 se->start_block = start_block; 1378 return 1; 1379 } else { 1380 lh = sis->first_swap_extent.list.prev; /* Highest extent */ 1381 se = list_entry(lh, struct swap_extent, list); 1382 BUG_ON(se->start_page + se->nr_pages != start_page); 1383 if (se->start_block + se->nr_pages == start_block) { 1384 /* Merge it */ 1385 se->nr_pages += nr_pages; 1386 return 0; 1387 } 1388 } 1389 1390 /* 1391 * No merge. Insert a new extent, preserving ordering. 1392 */ 1393 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 1394 if (new_se == NULL) 1395 return -ENOMEM; 1396 new_se->start_page = start_page; 1397 new_se->nr_pages = nr_pages; 1398 new_se->start_block = start_block; 1399 1400 list_add_tail(&new_se->list, &sis->first_swap_extent.list); 1401 return 1; 1402 } 1403 1404 /* 1405 * A `swap extent' is a simple thing which maps a contiguous range of pages 1406 * onto a contiguous range of disk blocks. An ordered list of swap extents 1407 * is built at swapon time and is then used at swap_writepage/swap_readpage 1408 * time for locating where on disk a page belongs. 1409 * 1410 * If the swapfile is an S_ISBLK block device, a single extent is installed. 1411 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 1412 * swap files identically. 1413 * 1414 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 1415 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 1416 * swapfiles are handled *identically* after swapon time. 1417 * 1418 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 1419 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 1420 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 1421 * requirements, they are simply tossed out - we will never use those blocks 1422 * for swapping. 1423 * 1424 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 1425 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 1426 * which will scribble on the fs. 1427 * 1428 * The amount of disk space which a single swap extent represents varies. 1429 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 1430 * extents in the list. To avoid much list walking, we cache the previous 1431 * search location in `curr_swap_extent', and start new searches from there. 1432 * This is extremely effective. The average number of iterations in 1433 * map_swap_page() has been measured at about 0.3 per page. - akpm. 1434 */ 1435 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 1436 { 1437 struct inode *inode; 1438 unsigned blocks_per_page; 1439 unsigned long page_no; 1440 unsigned blkbits; 1441 sector_t probe_block; 1442 sector_t last_block; 1443 sector_t lowest_block = -1; 1444 sector_t highest_block = 0; 1445 int nr_extents = 0; 1446 int ret; 1447 1448 inode = sis->swap_file->f_mapping->host; 1449 if (S_ISBLK(inode->i_mode)) { 1450 ret = add_swap_extent(sis, 0, sis->max, 0); 1451 *span = sis->pages; 1452 goto out; 1453 } 1454 1455 blkbits = inode->i_blkbits; 1456 blocks_per_page = PAGE_SIZE >> blkbits; 1457 1458 /* 1459 * Map all the blocks into the extent list. This code doesn't try 1460 * to be very smart. 1461 */ 1462 probe_block = 0; 1463 page_no = 0; 1464 last_block = i_size_read(inode) >> blkbits; 1465 while ((probe_block + blocks_per_page) <= last_block && 1466 page_no < sis->max) { 1467 unsigned block_in_page; 1468 sector_t first_block; 1469 1470 first_block = bmap(inode, probe_block); 1471 if (first_block == 0) 1472 goto bad_bmap; 1473 1474 /* 1475 * It must be PAGE_SIZE aligned on-disk 1476 */ 1477 if (first_block & (blocks_per_page - 1)) { 1478 probe_block++; 1479 goto reprobe; 1480 } 1481 1482 for (block_in_page = 1; block_in_page < blocks_per_page; 1483 block_in_page++) { 1484 sector_t block; 1485 1486 block = bmap(inode, probe_block + block_in_page); 1487 if (block == 0) 1488 goto bad_bmap; 1489 if (block != first_block + block_in_page) { 1490 /* Discontiguity */ 1491 probe_block++; 1492 goto reprobe; 1493 } 1494 } 1495 1496 first_block >>= (PAGE_SHIFT - blkbits); 1497 if (page_no) { /* exclude the header page */ 1498 if (first_block < lowest_block) 1499 lowest_block = first_block; 1500 if (first_block > highest_block) 1501 highest_block = first_block; 1502 } 1503 1504 /* 1505 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 1506 */ 1507 ret = add_swap_extent(sis, page_no, 1, first_block); 1508 if (ret < 0) 1509 goto out; 1510 nr_extents += ret; 1511 page_no++; 1512 probe_block += blocks_per_page; 1513 reprobe: 1514 continue; 1515 } 1516 ret = nr_extents; 1517 *span = 1 + highest_block - lowest_block; 1518 if (page_no == 0) 1519 page_no = 1; /* force Empty message */ 1520 sis->max = page_no; 1521 sis->pages = page_no - 1; 1522 sis->highest_bit = page_no - 1; 1523 out: 1524 return ret; 1525 bad_bmap: 1526 printk(KERN_ERR "swapon: swapfile has holes\n"); 1527 ret = -EINVAL; 1528 goto out; 1529 } 1530 1531 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 1532 { 1533 struct swap_info_struct *p = NULL; 1534 unsigned char *swap_map; 1535 struct file *swap_file, *victim; 1536 struct address_space *mapping; 1537 struct inode *inode; 1538 char *pathname; 1539 int i, type, prev; 1540 int err; 1541 1542 if (!capable(CAP_SYS_ADMIN)) 1543 return -EPERM; 1544 1545 pathname = getname(specialfile); 1546 err = PTR_ERR(pathname); 1547 if (IS_ERR(pathname)) 1548 goto out; 1549 1550 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0); 1551 putname(pathname); 1552 err = PTR_ERR(victim); 1553 if (IS_ERR(victim)) 1554 goto out; 1555 1556 mapping = victim->f_mapping; 1557 prev = -1; 1558 spin_lock(&swap_lock); 1559 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) { 1560 p = swap_info[type]; 1561 if (p->flags & SWP_WRITEOK) { 1562 if (p->swap_file->f_mapping == mapping) 1563 break; 1564 } 1565 prev = type; 1566 } 1567 if (type < 0) { 1568 err = -EINVAL; 1569 spin_unlock(&swap_lock); 1570 goto out_dput; 1571 } 1572 if (!security_vm_enough_memory(p->pages)) 1573 vm_unacct_memory(p->pages); 1574 else { 1575 err = -ENOMEM; 1576 spin_unlock(&swap_lock); 1577 goto out_dput; 1578 } 1579 if (prev < 0) 1580 swap_list.head = p->next; 1581 else 1582 swap_info[prev]->next = p->next; 1583 if (type == swap_list.next) { 1584 /* just pick something that's safe... */ 1585 swap_list.next = swap_list.head; 1586 } 1587 if (p->prio < 0) { 1588 for (i = p->next; i >= 0; i = swap_info[i]->next) 1589 swap_info[i]->prio = p->prio--; 1590 least_priority++; 1591 } 1592 nr_swap_pages -= p->pages; 1593 total_swap_pages -= p->pages; 1594 p->flags &= ~SWP_WRITEOK; 1595 spin_unlock(&swap_lock); 1596 1597 current->flags |= PF_OOM_ORIGIN; 1598 err = try_to_unuse(type); 1599 current->flags &= ~PF_OOM_ORIGIN; 1600 1601 if (err) { 1602 /* re-insert swap space back into swap_list */ 1603 spin_lock(&swap_lock); 1604 if (p->prio < 0) 1605 p->prio = --least_priority; 1606 prev = -1; 1607 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) { 1608 if (p->prio >= swap_info[i]->prio) 1609 break; 1610 prev = i; 1611 } 1612 p->next = i; 1613 if (prev < 0) 1614 swap_list.head = swap_list.next = type; 1615 else 1616 swap_info[prev]->next = type; 1617 nr_swap_pages += p->pages; 1618 total_swap_pages += p->pages; 1619 p->flags |= SWP_WRITEOK; 1620 spin_unlock(&swap_lock); 1621 goto out_dput; 1622 } 1623 1624 /* wait for any unplug function to finish */ 1625 down_write(&swap_unplug_sem); 1626 up_write(&swap_unplug_sem); 1627 1628 destroy_swap_extents(p); 1629 if (p->flags & SWP_CONTINUED) 1630 free_swap_count_continuations(p); 1631 1632 mutex_lock(&swapon_mutex); 1633 spin_lock(&swap_lock); 1634 drain_mmlist(); 1635 1636 /* wait for anyone still in scan_swap_map */ 1637 p->highest_bit = 0; /* cuts scans short */ 1638 while (p->flags >= SWP_SCANNING) { 1639 spin_unlock(&swap_lock); 1640 schedule_timeout_uninterruptible(1); 1641 spin_lock(&swap_lock); 1642 } 1643 1644 swap_file = p->swap_file; 1645 p->swap_file = NULL; 1646 p->max = 0; 1647 swap_map = p->swap_map; 1648 p->swap_map = NULL; 1649 p->flags = 0; 1650 spin_unlock(&swap_lock); 1651 mutex_unlock(&swapon_mutex); 1652 vfree(swap_map); 1653 /* Destroy swap account informatin */ 1654 swap_cgroup_swapoff(type); 1655 1656 inode = mapping->host; 1657 if (S_ISBLK(inode->i_mode)) { 1658 struct block_device *bdev = I_BDEV(inode); 1659 set_blocksize(bdev, p->old_block_size); 1660 bd_release(bdev); 1661 } else { 1662 mutex_lock(&inode->i_mutex); 1663 inode->i_flags &= ~S_SWAPFILE; 1664 mutex_unlock(&inode->i_mutex); 1665 } 1666 filp_close(swap_file, NULL); 1667 err = 0; 1668 1669 out_dput: 1670 filp_close(victim, NULL); 1671 out: 1672 return err; 1673 } 1674 1675 #ifdef CONFIG_PROC_FS 1676 /* iterator */ 1677 static void *swap_start(struct seq_file *swap, loff_t *pos) 1678 { 1679 struct swap_info_struct *si; 1680 int type; 1681 loff_t l = *pos; 1682 1683 mutex_lock(&swapon_mutex); 1684 1685 if (!l) 1686 return SEQ_START_TOKEN; 1687 1688 for (type = 0; type < nr_swapfiles; type++) { 1689 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 1690 si = swap_info[type]; 1691 if (!(si->flags & SWP_USED) || !si->swap_map) 1692 continue; 1693 if (!--l) 1694 return si; 1695 } 1696 1697 return NULL; 1698 } 1699 1700 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 1701 { 1702 struct swap_info_struct *si = v; 1703 int type; 1704 1705 if (v == SEQ_START_TOKEN) 1706 type = 0; 1707 else 1708 type = si->type + 1; 1709 1710 for (; type < nr_swapfiles; type++) { 1711 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 1712 si = swap_info[type]; 1713 if (!(si->flags & SWP_USED) || !si->swap_map) 1714 continue; 1715 ++*pos; 1716 return si; 1717 } 1718 1719 return NULL; 1720 } 1721 1722 static void swap_stop(struct seq_file *swap, void *v) 1723 { 1724 mutex_unlock(&swapon_mutex); 1725 } 1726 1727 static int swap_show(struct seq_file *swap, void *v) 1728 { 1729 struct swap_info_struct *si = v; 1730 struct file *file; 1731 int len; 1732 1733 if (si == SEQ_START_TOKEN) { 1734 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 1735 return 0; 1736 } 1737 1738 file = si->swap_file; 1739 len = seq_path(swap, &file->f_path, " \t\n\\"); 1740 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 1741 len < 40 ? 40 - len : 1, " ", 1742 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ? 1743 "partition" : "file\t", 1744 si->pages << (PAGE_SHIFT - 10), 1745 si->inuse_pages << (PAGE_SHIFT - 10), 1746 si->prio); 1747 return 0; 1748 } 1749 1750 static const struct seq_operations swaps_op = { 1751 .start = swap_start, 1752 .next = swap_next, 1753 .stop = swap_stop, 1754 .show = swap_show 1755 }; 1756 1757 static int swaps_open(struct inode *inode, struct file *file) 1758 { 1759 return seq_open(file, &swaps_op); 1760 } 1761 1762 static const struct file_operations proc_swaps_operations = { 1763 .open = swaps_open, 1764 .read = seq_read, 1765 .llseek = seq_lseek, 1766 .release = seq_release, 1767 }; 1768 1769 static int __init procswaps_init(void) 1770 { 1771 proc_create("swaps", 0, NULL, &proc_swaps_operations); 1772 return 0; 1773 } 1774 __initcall(procswaps_init); 1775 #endif /* CONFIG_PROC_FS */ 1776 1777 #ifdef MAX_SWAPFILES_CHECK 1778 static int __init max_swapfiles_check(void) 1779 { 1780 MAX_SWAPFILES_CHECK(); 1781 return 0; 1782 } 1783 late_initcall(max_swapfiles_check); 1784 #endif 1785 1786 /* 1787 * Written 01/25/92 by Simmule Turner, heavily changed by Linus. 1788 * 1789 * The swapon system call 1790 */ 1791 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 1792 { 1793 struct swap_info_struct *p; 1794 char *name = NULL; 1795 struct block_device *bdev = NULL; 1796 struct file *swap_file = NULL; 1797 struct address_space *mapping; 1798 unsigned int type; 1799 int i, prev; 1800 int error; 1801 union swap_header *swap_header; 1802 unsigned int nr_good_pages; 1803 int nr_extents = 0; 1804 sector_t span; 1805 unsigned long maxpages; 1806 unsigned long swapfilepages; 1807 unsigned char *swap_map = NULL; 1808 struct page *page = NULL; 1809 struct inode *inode = NULL; 1810 int did_down = 0; 1811 1812 if (!capable(CAP_SYS_ADMIN)) 1813 return -EPERM; 1814 1815 p = kzalloc(sizeof(*p), GFP_KERNEL); 1816 if (!p) 1817 return -ENOMEM; 1818 1819 spin_lock(&swap_lock); 1820 for (type = 0; type < nr_swapfiles; type++) { 1821 if (!(swap_info[type]->flags & SWP_USED)) 1822 break; 1823 } 1824 error = -EPERM; 1825 if (type >= MAX_SWAPFILES) { 1826 spin_unlock(&swap_lock); 1827 kfree(p); 1828 goto out; 1829 } 1830 if (type >= nr_swapfiles) { 1831 p->type = type; 1832 swap_info[type] = p; 1833 /* 1834 * Write swap_info[type] before nr_swapfiles, in case a 1835 * racing procfs swap_start() or swap_next() is reading them. 1836 * (We never shrink nr_swapfiles, we never free this entry.) 1837 */ 1838 smp_wmb(); 1839 nr_swapfiles++; 1840 } else { 1841 kfree(p); 1842 p = swap_info[type]; 1843 /* 1844 * Do not memset this entry: a racing procfs swap_next() 1845 * would be relying on p->type to remain valid. 1846 */ 1847 } 1848 INIT_LIST_HEAD(&p->first_swap_extent.list); 1849 p->flags = SWP_USED; 1850 p->next = -1; 1851 spin_unlock(&swap_lock); 1852 1853 name = getname(specialfile); 1854 error = PTR_ERR(name); 1855 if (IS_ERR(name)) { 1856 name = NULL; 1857 goto bad_swap_2; 1858 } 1859 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0); 1860 error = PTR_ERR(swap_file); 1861 if (IS_ERR(swap_file)) { 1862 swap_file = NULL; 1863 goto bad_swap_2; 1864 } 1865 1866 p->swap_file = swap_file; 1867 mapping = swap_file->f_mapping; 1868 inode = mapping->host; 1869 1870 error = -EBUSY; 1871 for (i = 0; i < nr_swapfiles; i++) { 1872 struct swap_info_struct *q = swap_info[i]; 1873 1874 if (i == type || !q->swap_file) 1875 continue; 1876 if (mapping == q->swap_file->f_mapping) 1877 goto bad_swap; 1878 } 1879 1880 error = -EINVAL; 1881 if (S_ISBLK(inode->i_mode)) { 1882 bdev = I_BDEV(inode); 1883 error = bd_claim(bdev, sys_swapon); 1884 if (error < 0) { 1885 bdev = NULL; 1886 error = -EINVAL; 1887 goto bad_swap; 1888 } 1889 p->old_block_size = block_size(bdev); 1890 error = set_blocksize(bdev, PAGE_SIZE); 1891 if (error < 0) 1892 goto bad_swap; 1893 p->bdev = bdev; 1894 p->flags |= SWP_BLKDEV; 1895 } else if (S_ISREG(inode->i_mode)) { 1896 p->bdev = inode->i_sb->s_bdev; 1897 mutex_lock(&inode->i_mutex); 1898 did_down = 1; 1899 if (IS_SWAPFILE(inode)) { 1900 error = -EBUSY; 1901 goto bad_swap; 1902 } 1903 } else { 1904 goto bad_swap; 1905 } 1906 1907 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 1908 1909 /* 1910 * Read the swap header. 1911 */ 1912 if (!mapping->a_ops->readpage) { 1913 error = -EINVAL; 1914 goto bad_swap; 1915 } 1916 page = read_mapping_page(mapping, 0, swap_file); 1917 if (IS_ERR(page)) { 1918 error = PTR_ERR(page); 1919 goto bad_swap; 1920 } 1921 swap_header = kmap(page); 1922 1923 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 1924 printk(KERN_ERR "Unable to find swap-space signature\n"); 1925 error = -EINVAL; 1926 goto bad_swap; 1927 } 1928 1929 /* swap partition endianess hack... */ 1930 if (swab32(swap_header->info.version) == 1) { 1931 swab32s(&swap_header->info.version); 1932 swab32s(&swap_header->info.last_page); 1933 swab32s(&swap_header->info.nr_badpages); 1934 for (i = 0; i < swap_header->info.nr_badpages; i++) 1935 swab32s(&swap_header->info.badpages[i]); 1936 } 1937 /* Check the swap header's sub-version */ 1938 if (swap_header->info.version != 1) { 1939 printk(KERN_WARNING 1940 "Unable to handle swap header version %d\n", 1941 swap_header->info.version); 1942 error = -EINVAL; 1943 goto bad_swap; 1944 } 1945 1946 p->lowest_bit = 1; 1947 p->cluster_next = 1; 1948 p->cluster_nr = 0; 1949 1950 /* 1951 * Find out how many pages are allowed for a single swap 1952 * device. There are two limiting factors: 1) the number of 1953 * bits for the swap offset in the swp_entry_t type and 1954 * 2) the number of bits in the a swap pte as defined by 1955 * the different architectures. In order to find the 1956 * largest possible bit mask a swap entry with swap type 0 1957 * and swap offset ~0UL is created, encoded to a swap pte, 1958 * decoded to a swp_entry_t again and finally the swap 1959 * offset is extracted. This will mask all the bits from 1960 * the initial ~0UL mask that can't be encoded in either 1961 * the swp_entry_t or the architecture definition of a 1962 * swap pte. 1963 */ 1964 maxpages = swp_offset(pte_to_swp_entry( 1965 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 1966 if (maxpages > swap_header->info.last_page) { 1967 maxpages = swap_header->info.last_page + 1; 1968 /* p->max is an unsigned int: don't overflow it */ 1969 if ((unsigned int)maxpages == 0) 1970 maxpages = UINT_MAX; 1971 } 1972 p->highest_bit = maxpages - 1; 1973 1974 error = -EINVAL; 1975 if (!maxpages) 1976 goto bad_swap; 1977 if (swapfilepages && maxpages > swapfilepages) { 1978 printk(KERN_WARNING 1979 "Swap area shorter than signature indicates\n"); 1980 goto bad_swap; 1981 } 1982 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 1983 goto bad_swap; 1984 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 1985 goto bad_swap; 1986 1987 /* OK, set up the swap map and apply the bad block list */ 1988 swap_map = vmalloc(maxpages); 1989 if (!swap_map) { 1990 error = -ENOMEM; 1991 goto bad_swap; 1992 } 1993 1994 memset(swap_map, 0, maxpages); 1995 nr_good_pages = maxpages - 1; /* omit header page */ 1996 1997 for (i = 0; i < swap_header->info.nr_badpages; i++) { 1998 unsigned int page_nr = swap_header->info.badpages[i]; 1999 if (page_nr == 0 || page_nr > swap_header->info.last_page) { 2000 error = -EINVAL; 2001 goto bad_swap; 2002 } 2003 if (page_nr < maxpages) { 2004 swap_map[page_nr] = SWAP_MAP_BAD; 2005 nr_good_pages--; 2006 } 2007 } 2008 2009 error = swap_cgroup_swapon(type, maxpages); 2010 if (error) 2011 goto bad_swap; 2012 2013 if (nr_good_pages) { 2014 swap_map[0] = SWAP_MAP_BAD; 2015 p->max = maxpages; 2016 p->pages = nr_good_pages; 2017 nr_extents = setup_swap_extents(p, &span); 2018 if (nr_extents < 0) { 2019 error = nr_extents; 2020 goto bad_swap; 2021 } 2022 nr_good_pages = p->pages; 2023 } 2024 if (!nr_good_pages) { 2025 printk(KERN_WARNING "Empty swap-file\n"); 2026 error = -EINVAL; 2027 goto bad_swap; 2028 } 2029 2030 if (p->bdev) { 2031 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) { 2032 p->flags |= SWP_SOLIDSTATE; 2033 p->cluster_next = 1 + (random32() % p->highest_bit); 2034 } 2035 if (discard_swap(p) == 0) 2036 p->flags |= SWP_DISCARDABLE; 2037 } 2038 2039 mutex_lock(&swapon_mutex); 2040 spin_lock(&swap_lock); 2041 if (swap_flags & SWAP_FLAG_PREFER) 2042 p->prio = 2043 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 2044 else 2045 p->prio = --least_priority; 2046 p->swap_map = swap_map; 2047 p->flags |= SWP_WRITEOK; 2048 nr_swap_pages += nr_good_pages; 2049 total_swap_pages += nr_good_pages; 2050 2051 printk(KERN_INFO "Adding %uk swap on %s. " 2052 "Priority:%d extents:%d across:%lluk %s%s\n", 2053 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio, 2054 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 2055 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 2056 (p->flags & SWP_DISCARDABLE) ? "D" : ""); 2057 2058 /* insert swap space into swap_list: */ 2059 prev = -1; 2060 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) { 2061 if (p->prio >= swap_info[i]->prio) 2062 break; 2063 prev = i; 2064 } 2065 p->next = i; 2066 if (prev < 0) 2067 swap_list.head = swap_list.next = type; 2068 else 2069 swap_info[prev]->next = type; 2070 spin_unlock(&swap_lock); 2071 mutex_unlock(&swapon_mutex); 2072 error = 0; 2073 goto out; 2074 bad_swap: 2075 if (bdev) { 2076 set_blocksize(bdev, p->old_block_size); 2077 bd_release(bdev); 2078 } 2079 destroy_swap_extents(p); 2080 swap_cgroup_swapoff(type); 2081 bad_swap_2: 2082 spin_lock(&swap_lock); 2083 p->swap_file = NULL; 2084 p->flags = 0; 2085 spin_unlock(&swap_lock); 2086 vfree(swap_map); 2087 if (swap_file) 2088 filp_close(swap_file, NULL); 2089 out: 2090 if (page && !IS_ERR(page)) { 2091 kunmap(page); 2092 page_cache_release(page); 2093 } 2094 if (name) 2095 putname(name); 2096 if (did_down) { 2097 if (!error) 2098 inode->i_flags |= S_SWAPFILE; 2099 mutex_unlock(&inode->i_mutex); 2100 } 2101 return error; 2102 } 2103 2104 void si_swapinfo(struct sysinfo *val) 2105 { 2106 unsigned int type; 2107 unsigned long nr_to_be_unused = 0; 2108 2109 spin_lock(&swap_lock); 2110 for (type = 0; type < nr_swapfiles; type++) { 2111 struct swap_info_struct *si = swap_info[type]; 2112 2113 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 2114 nr_to_be_unused += si->inuse_pages; 2115 } 2116 val->freeswap = nr_swap_pages + nr_to_be_unused; 2117 val->totalswap = total_swap_pages + nr_to_be_unused; 2118 spin_unlock(&swap_lock); 2119 } 2120 2121 /* 2122 * Verify that a swap entry is valid and increment its swap map count. 2123 * 2124 * Returns error code in following case. 2125 * - success -> 0 2126 * - swp_entry is invalid -> EINVAL 2127 * - swp_entry is migration entry -> EINVAL 2128 * - swap-cache reference is requested but there is already one. -> EEXIST 2129 * - swap-cache reference is requested but the entry is not used. -> ENOENT 2130 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 2131 */ 2132 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 2133 { 2134 struct swap_info_struct *p; 2135 unsigned long offset, type; 2136 unsigned char count; 2137 unsigned char has_cache; 2138 int err = -EINVAL; 2139 2140 if (non_swap_entry(entry)) 2141 goto out; 2142 2143 type = swp_type(entry); 2144 if (type >= nr_swapfiles) 2145 goto bad_file; 2146 p = swap_info[type]; 2147 offset = swp_offset(entry); 2148 2149 spin_lock(&swap_lock); 2150 if (unlikely(offset >= p->max)) 2151 goto unlock_out; 2152 2153 count = p->swap_map[offset]; 2154 has_cache = count & SWAP_HAS_CACHE; 2155 count &= ~SWAP_HAS_CACHE; 2156 err = 0; 2157 2158 if (usage == SWAP_HAS_CACHE) { 2159 2160 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 2161 if (!has_cache && count) 2162 has_cache = SWAP_HAS_CACHE; 2163 else if (has_cache) /* someone else added cache */ 2164 err = -EEXIST; 2165 else /* no users remaining */ 2166 err = -ENOENT; 2167 2168 } else if (count || has_cache) { 2169 2170 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 2171 count += usage; 2172 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 2173 err = -EINVAL; 2174 else if (swap_count_continued(p, offset, count)) 2175 count = COUNT_CONTINUED; 2176 else 2177 err = -ENOMEM; 2178 } else 2179 err = -ENOENT; /* unused swap entry */ 2180 2181 p->swap_map[offset] = count | has_cache; 2182 2183 unlock_out: 2184 spin_unlock(&swap_lock); 2185 out: 2186 return err; 2187 2188 bad_file: 2189 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); 2190 goto out; 2191 } 2192 2193 /* 2194 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 2195 * (in which case its reference count is never incremented). 2196 */ 2197 void swap_shmem_alloc(swp_entry_t entry) 2198 { 2199 __swap_duplicate(entry, SWAP_MAP_SHMEM); 2200 } 2201 2202 /* 2203 * Increase reference count of swap entry by 1. 2204 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 2205 * but could not be atomically allocated. Returns 0, just as if it succeeded, 2206 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 2207 * might occur if a page table entry has got corrupted. 2208 */ 2209 int swap_duplicate(swp_entry_t entry) 2210 { 2211 int err = 0; 2212 2213 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 2214 err = add_swap_count_continuation(entry, GFP_ATOMIC); 2215 return err; 2216 } 2217 2218 /* 2219 * @entry: swap entry for which we allocate swap cache. 2220 * 2221 * Called when allocating swap cache for existing swap entry, 2222 * This can return error codes. Returns 0 at success. 2223 * -EBUSY means there is a swap cache. 2224 * Note: return code is different from swap_duplicate(). 2225 */ 2226 int swapcache_prepare(swp_entry_t entry) 2227 { 2228 return __swap_duplicate(entry, SWAP_HAS_CACHE); 2229 } 2230 2231 /* 2232 * swap_lock prevents swap_map being freed. Don't grab an extra 2233 * reference on the swaphandle, it doesn't matter if it becomes unused. 2234 */ 2235 int valid_swaphandles(swp_entry_t entry, unsigned long *offset) 2236 { 2237 struct swap_info_struct *si; 2238 int our_page_cluster = page_cluster; 2239 pgoff_t target, toff; 2240 pgoff_t base, end; 2241 int nr_pages = 0; 2242 2243 if (!our_page_cluster) /* no readahead */ 2244 return 0; 2245 2246 si = swap_info[swp_type(entry)]; 2247 target = swp_offset(entry); 2248 base = (target >> our_page_cluster) << our_page_cluster; 2249 end = base + (1 << our_page_cluster); 2250 if (!base) /* first page is swap header */ 2251 base++; 2252 2253 spin_lock(&swap_lock); 2254 if (end > si->max) /* don't go beyond end of map */ 2255 end = si->max; 2256 2257 /* Count contiguous allocated slots above our target */ 2258 for (toff = target; ++toff < end; nr_pages++) { 2259 /* Don't read in free or bad pages */ 2260 if (!si->swap_map[toff]) 2261 break; 2262 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD) 2263 break; 2264 } 2265 /* Count contiguous allocated slots below our target */ 2266 for (toff = target; --toff >= base; nr_pages++) { 2267 /* Don't read in free or bad pages */ 2268 if (!si->swap_map[toff]) 2269 break; 2270 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD) 2271 break; 2272 } 2273 spin_unlock(&swap_lock); 2274 2275 /* 2276 * Indicate starting offset, and return number of pages to get: 2277 * if only 1, say 0, since there's then no readahead to be done. 2278 */ 2279 *offset = ++toff; 2280 return nr_pages? ++nr_pages: 0; 2281 } 2282 2283 /* 2284 * add_swap_count_continuation - called when a swap count is duplicated 2285 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 2286 * page of the original vmalloc'ed swap_map, to hold the continuation count 2287 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 2288 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 2289 * 2290 * These continuation pages are seldom referenced: the common paths all work 2291 * on the original swap_map, only referring to a continuation page when the 2292 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 2293 * 2294 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 2295 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 2296 * can be called after dropping locks. 2297 */ 2298 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 2299 { 2300 struct swap_info_struct *si; 2301 struct page *head; 2302 struct page *page; 2303 struct page *list_page; 2304 pgoff_t offset; 2305 unsigned char count; 2306 2307 /* 2308 * When debugging, it's easier to use __GFP_ZERO here; but it's better 2309 * for latency not to zero a page while GFP_ATOMIC and holding locks. 2310 */ 2311 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 2312 2313 si = swap_info_get(entry); 2314 if (!si) { 2315 /* 2316 * An acceptable race has occurred since the failing 2317 * __swap_duplicate(): the swap entry has been freed, 2318 * perhaps even the whole swap_map cleared for swapoff. 2319 */ 2320 goto outer; 2321 } 2322 2323 offset = swp_offset(entry); 2324 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 2325 2326 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 2327 /* 2328 * The higher the swap count, the more likely it is that tasks 2329 * will race to add swap count continuation: we need to avoid 2330 * over-provisioning. 2331 */ 2332 goto out; 2333 } 2334 2335 if (!page) { 2336 spin_unlock(&swap_lock); 2337 return -ENOMEM; 2338 } 2339 2340 /* 2341 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 2342 * no architecture is using highmem pages for kernel pagetables: so it 2343 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps. 2344 */ 2345 head = vmalloc_to_page(si->swap_map + offset); 2346 offset &= ~PAGE_MASK; 2347 2348 /* 2349 * Page allocation does not initialize the page's lru field, 2350 * but it does always reset its private field. 2351 */ 2352 if (!page_private(head)) { 2353 BUG_ON(count & COUNT_CONTINUED); 2354 INIT_LIST_HEAD(&head->lru); 2355 set_page_private(head, SWP_CONTINUED); 2356 si->flags |= SWP_CONTINUED; 2357 } 2358 2359 list_for_each_entry(list_page, &head->lru, lru) { 2360 unsigned char *map; 2361 2362 /* 2363 * If the previous map said no continuation, but we've found 2364 * a continuation page, free our allocation and use this one. 2365 */ 2366 if (!(count & COUNT_CONTINUED)) 2367 goto out; 2368 2369 map = kmap_atomic(list_page, KM_USER0) + offset; 2370 count = *map; 2371 kunmap_atomic(map, KM_USER0); 2372 2373 /* 2374 * If this continuation count now has some space in it, 2375 * free our allocation and use this one. 2376 */ 2377 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 2378 goto out; 2379 } 2380 2381 list_add_tail(&page->lru, &head->lru); 2382 page = NULL; /* now it's attached, don't free it */ 2383 out: 2384 spin_unlock(&swap_lock); 2385 outer: 2386 if (page) 2387 __free_page(page); 2388 return 0; 2389 } 2390 2391 /* 2392 * swap_count_continued - when the original swap_map count is incremented 2393 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 2394 * into, carry if so, or else fail until a new continuation page is allocated; 2395 * when the original swap_map count is decremented from 0 with continuation, 2396 * borrow from the continuation and report whether it still holds more. 2397 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock. 2398 */ 2399 static bool swap_count_continued(struct swap_info_struct *si, 2400 pgoff_t offset, unsigned char count) 2401 { 2402 struct page *head; 2403 struct page *page; 2404 unsigned char *map; 2405 2406 head = vmalloc_to_page(si->swap_map + offset); 2407 if (page_private(head) != SWP_CONTINUED) { 2408 BUG_ON(count & COUNT_CONTINUED); 2409 return false; /* need to add count continuation */ 2410 } 2411 2412 offset &= ~PAGE_MASK; 2413 page = list_entry(head->lru.next, struct page, lru); 2414 map = kmap_atomic(page, KM_USER0) + offset; 2415 2416 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 2417 goto init_map; /* jump over SWAP_CONT_MAX checks */ 2418 2419 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 2420 /* 2421 * Think of how you add 1 to 999 2422 */ 2423 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 2424 kunmap_atomic(map, KM_USER0); 2425 page = list_entry(page->lru.next, struct page, lru); 2426 BUG_ON(page == head); 2427 map = kmap_atomic(page, KM_USER0) + offset; 2428 } 2429 if (*map == SWAP_CONT_MAX) { 2430 kunmap_atomic(map, KM_USER0); 2431 page = list_entry(page->lru.next, struct page, lru); 2432 if (page == head) 2433 return false; /* add count continuation */ 2434 map = kmap_atomic(page, KM_USER0) + offset; 2435 init_map: *map = 0; /* we didn't zero the page */ 2436 } 2437 *map += 1; 2438 kunmap_atomic(map, KM_USER0); 2439 page = list_entry(page->lru.prev, struct page, lru); 2440 while (page != head) { 2441 map = kmap_atomic(page, KM_USER0) + offset; 2442 *map = COUNT_CONTINUED; 2443 kunmap_atomic(map, KM_USER0); 2444 page = list_entry(page->lru.prev, struct page, lru); 2445 } 2446 return true; /* incremented */ 2447 2448 } else { /* decrementing */ 2449 /* 2450 * Think of how you subtract 1 from 1000 2451 */ 2452 BUG_ON(count != COUNT_CONTINUED); 2453 while (*map == COUNT_CONTINUED) { 2454 kunmap_atomic(map, KM_USER0); 2455 page = list_entry(page->lru.next, struct page, lru); 2456 BUG_ON(page == head); 2457 map = kmap_atomic(page, KM_USER0) + offset; 2458 } 2459 BUG_ON(*map == 0); 2460 *map -= 1; 2461 if (*map == 0) 2462 count = 0; 2463 kunmap_atomic(map, KM_USER0); 2464 page = list_entry(page->lru.prev, struct page, lru); 2465 while (page != head) { 2466 map = kmap_atomic(page, KM_USER0) + offset; 2467 *map = SWAP_CONT_MAX | count; 2468 count = COUNT_CONTINUED; 2469 kunmap_atomic(map, KM_USER0); 2470 page = list_entry(page->lru.prev, struct page, lru); 2471 } 2472 return count == COUNT_CONTINUED; 2473 } 2474 } 2475 2476 /* 2477 * free_swap_count_continuations - swapoff free all the continuation pages 2478 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 2479 */ 2480 static void free_swap_count_continuations(struct swap_info_struct *si) 2481 { 2482 pgoff_t offset; 2483 2484 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 2485 struct page *head; 2486 head = vmalloc_to_page(si->swap_map + offset); 2487 if (page_private(head)) { 2488 struct list_head *this, *next; 2489 list_for_each_safe(this, next, &head->lru) { 2490 struct page *page; 2491 page = list_entry(this, struct page, lru); 2492 list_del(this); 2493 __free_page(page); 2494 } 2495 } 2496 } 2497 } 2498