xref: /linux/mm/swapfile.c (revision f8324e20f8289dffc646d64366332e05eaacab25)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/security.h>
28 #include <linux/backing-dev.h>
29 #include <linux/mutex.h>
30 #include <linux/capability.h>
31 #include <linux/syscalls.h>
32 #include <linux/memcontrol.h>
33 
34 #include <asm/pgtable.h>
35 #include <asm/tlbflush.h>
36 #include <linux/swapops.h>
37 #include <linux/page_cgroup.h>
38 
39 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
40 				 unsigned char);
41 static void free_swap_count_continuations(struct swap_info_struct *);
42 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
43 
44 static DEFINE_SPINLOCK(swap_lock);
45 static unsigned int nr_swapfiles;
46 long nr_swap_pages;
47 long total_swap_pages;
48 static int least_priority;
49 
50 static const char Bad_file[] = "Bad swap file entry ";
51 static const char Unused_file[] = "Unused swap file entry ";
52 static const char Bad_offset[] = "Bad swap offset entry ";
53 static const char Unused_offset[] = "Unused swap offset entry ";
54 
55 static struct swap_list_t swap_list = {-1, -1};
56 
57 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
58 
59 static DEFINE_MUTEX(swapon_mutex);
60 
61 static inline unsigned char swap_count(unsigned char ent)
62 {
63 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
64 }
65 
66 /* returns 1 if swap entry is freed */
67 static int
68 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
69 {
70 	swp_entry_t entry = swp_entry(si->type, offset);
71 	struct page *page;
72 	int ret = 0;
73 
74 	page = find_get_page(&swapper_space, entry.val);
75 	if (!page)
76 		return 0;
77 	/*
78 	 * This function is called from scan_swap_map() and it's called
79 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
80 	 * We have to use trylock for avoiding deadlock. This is a special
81 	 * case and you should use try_to_free_swap() with explicit lock_page()
82 	 * in usual operations.
83 	 */
84 	if (trylock_page(page)) {
85 		ret = try_to_free_swap(page);
86 		unlock_page(page);
87 	}
88 	page_cache_release(page);
89 	return ret;
90 }
91 
92 /*
93  * We need this because the bdev->unplug_fn can sleep and we cannot
94  * hold swap_lock while calling the unplug_fn. And swap_lock
95  * cannot be turned into a mutex.
96  */
97 static DECLARE_RWSEM(swap_unplug_sem);
98 
99 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
100 {
101 	swp_entry_t entry;
102 
103 	down_read(&swap_unplug_sem);
104 	entry.val = page_private(page);
105 	if (PageSwapCache(page)) {
106 		struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
107 		struct backing_dev_info *bdi;
108 
109 		/*
110 		 * If the page is removed from swapcache from under us (with a
111 		 * racy try_to_unuse/swapoff) we need an additional reference
112 		 * count to avoid reading garbage from page_private(page) above.
113 		 * If the WARN_ON triggers during a swapoff it maybe the race
114 		 * condition and it's harmless. However if it triggers without
115 		 * swapoff it signals a problem.
116 		 */
117 		WARN_ON(page_count(page) <= 1);
118 
119 		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
120 		blk_run_backing_dev(bdi, page);
121 	}
122 	up_read(&swap_unplug_sem);
123 }
124 
125 /*
126  * swapon tell device that all the old swap contents can be discarded,
127  * to allow the swap device to optimize its wear-levelling.
128  */
129 static int discard_swap(struct swap_info_struct *si)
130 {
131 	struct swap_extent *se;
132 	sector_t start_block;
133 	sector_t nr_blocks;
134 	int err = 0;
135 
136 	/* Do not discard the swap header page! */
137 	se = &si->first_swap_extent;
138 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
139 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
140 	if (nr_blocks) {
141 		err = blkdev_issue_discard(si->bdev, start_block,
142 				nr_blocks, GFP_KERNEL,
143 				BLKDEV_IFL_WAIT | BLKDEV_IFL_BARRIER);
144 		if (err)
145 			return err;
146 		cond_resched();
147 	}
148 
149 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
150 		start_block = se->start_block << (PAGE_SHIFT - 9);
151 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
152 
153 		err = blkdev_issue_discard(si->bdev, start_block,
154 				nr_blocks, GFP_KERNEL,
155 				BLKDEV_IFL_WAIT | BLKDEV_IFL_BARRIER);
156 		if (err)
157 			break;
158 
159 		cond_resched();
160 	}
161 	return err;		/* That will often be -EOPNOTSUPP */
162 }
163 
164 /*
165  * swap allocation tell device that a cluster of swap can now be discarded,
166  * to allow the swap device to optimize its wear-levelling.
167  */
168 static void discard_swap_cluster(struct swap_info_struct *si,
169 				 pgoff_t start_page, pgoff_t nr_pages)
170 {
171 	struct swap_extent *se = si->curr_swap_extent;
172 	int found_extent = 0;
173 
174 	while (nr_pages) {
175 		struct list_head *lh;
176 
177 		if (se->start_page <= start_page &&
178 		    start_page < se->start_page + se->nr_pages) {
179 			pgoff_t offset = start_page - se->start_page;
180 			sector_t start_block = se->start_block + offset;
181 			sector_t nr_blocks = se->nr_pages - offset;
182 
183 			if (nr_blocks > nr_pages)
184 				nr_blocks = nr_pages;
185 			start_page += nr_blocks;
186 			nr_pages -= nr_blocks;
187 
188 			if (!found_extent++)
189 				si->curr_swap_extent = se;
190 
191 			start_block <<= PAGE_SHIFT - 9;
192 			nr_blocks <<= PAGE_SHIFT - 9;
193 			if (blkdev_issue_discard(si->bdev, start_block,
194 				    nr_blocks, GFP_NOIO, BLKDEV_IFL_WAIT |
195 							BLKDEV_IFL_BARRIER))
196 				break;
197 		}
198 
199 		lh = se->list.next;
200 		se = list_entry(lh, struct swap_extent, list);
201 	}
202 }
203 
204 static int wait_for_discard(void *word)
205 {
206 	schedule();
207 	return 0;
208 }
209 
210 #define SWAPFILE_CLUSTER	256
211 #define LATENCY_LIMIT		256
212 
213 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
214 					  unsigned char usage)
215 {
216 	unsigned long offset;
217 	unsigned long scan_base;
218 	unsigned long last_in_cluster = 0;
219 	int latency_ration = LATENCY_LIMIT;
220 	int found_free_cluster = 0;
221 
222 	/*
223 	 * We try to cluster swap pages by allocating them sequentially
224 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
225 	 * way, however, we resort to first-free allocation, starting
226 	 * a new cluster.  This prevents us from scattering swap pages
227 	 * all over the entire swap partition, so that we reduce
228 	 * overall disk seek times between swap pages.  -- sct
229 	 * But we do now try to find an empty cluster.  -Andrea
230 	 * And we let swap pages go all over an SSD partition.  Hugh
231 	 */
232 
233 	si->flags += SWP_SCANNING;
234 	scan_base = offset = si->cluster_next;
235 
236 	if (unlikely(!si->cluster_nr--)) {
237 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
238 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
239 			goto checks;
240 		}
241 		if (si->flags & SWP_DISCARDABLE) {
242 			/*
243 			 * Start range check on racing allocations, in case
244 			 * they overlap the cluster we eventually decide on
245 			 * (we scan without swap_lock to allow preemption).
246 			 * It's hardly conceivable that cluster_nr could be
247 			 * wrapped during our scan, but don't depend on it.
248 			 */
249 			if (si->lowest_alloc)
250 				goto checks;
251 			si->lowest_alloc = si->max;
252 			si->highest_alloc = 0;
253 		}
254 		spin_unlock(&swap_lock);
255 
256 		/*
257 		 * If seek is expensive, start searching for new cluster from
258 		 * start of partition, to minimize the span of allocated swap.
259 		 * But if seek is cheap, search from our current position, so
260 		 * that swap is allocated from all over the partition: if the
261 		 * Flash Translation Layer only remaps within limited zones,
262 		 * we don't want to wear out the first zone too quickly.
263 		 */
264 		if (!(si->flags & SWP_SOLIDSTATE))
265 			scan_base = offset = si->lowest_bit;
266 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
267 
268 		/* Locate the first empty (unaligned) cluster */
269 		for (; last_in_cluster <= si->highest_bit; offset++) {
270 			if (si->swap_map[offset])
271 				last_in_cluster = offset + SWAPFILE_CLUSTER;
272 			else if (offset == last_in_cluster) {
273 				spin_lock(&swap_lock);
274 				offset -= SWAPFILE_CLUSTER - 1;
275 				si->cluster_next = offset;
276 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
277 				found_free_cluster = 1;
278 				goto checks;
279 			}
280 			if (unlikely(--latency_ration < 0)) {
281 				cond_resched();
282 				latency_ration = LATENCY_LIMIT;
283 			}
284 		}
285 
286 		offset = si->lowest_bit;
287 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
288 
289 		/* Locate the first empty (unaligned) cluster */
290 		for (; last_in_cluster < scan_base; offset++) {
291 			if (si->swap_map[offset])
292 				last_in_cluster = offset + SWAPFILE_CLUSTER;
293 			else if (offset == last_in_cluster) {
294 				spin_lock(&swap_lock);
295 				offset -= SWAPFILE_CLUSTER - 1;
296 				si->cluster_next = offset;
297 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
298 				found_free_cluster = 1;
299 				goto checks;
300 			}
301 			if (unlikely(--latency_ration < 0)) {
302 				cond_resched();
303 				latency_ration = LATENCY_LIMIT;
304 			}
305 		}
306 
307 		offset = scan_base;
308 		spin_lock(&swap_lock);
309 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
310 		si->lowest_alloc = 0;
311 	}
312 
313 checks:
314 	if (!(si->flags & SWP_WRITEOK))
315 		goto no_page;
316 	if (!si->highest_bit)
317 		goto no_page;
318 	if (offset > si->highest_bit)
319 		scan_base = offset = si->lowest_bit;
320 
321 	/* reuse swap entry of cache-only swap if not busy. */
322 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
323 		int swap_was_freed;
324 		spin_unlock(&swap_lock);
325 		swap_was_freed = __try_to_reclaim_swap(si, offset);
326 		spin_lock(&swap_lock);
327 		/* entry was freed successfully, try to use this again */
328 		if (swap_was_freed)
329 			goto checks;
330 		goto scan; /* check next one */
331 	}
332 
333 	if (si->swap_map[offset])
334 		goto scan;
335 
336 	if (offset == si->lowest_bit)
337 		si->lowest_bit++;
338 	if (offset == si->highest_bit)
339 		si->highest_bit--;
340 	si->inuse_pages++;
341 	if (si->inuse_pages == si->pages) {
342 		si->lowest_bit = si->max;
343 		si->highest_bit = 0;
344 	}
345 	si->swap_map[offset] = usage;
346 	si->cluster_next = offset + 1;
347 	si->flags -= SWP_SCANNING;
348 
349 	if (si->lowest_alloc) {
350 		/*
351 		 * Only set when SWP_DISCARDABLE, and there's a scan
352 		 * for a free cluster in progress or just completed.
353 		 */
354 		if (found_free_cluster) {
355 			/*
356 			 * To optimize wear-levelling, discard the
357 			 * old data of the cluster, taking care not to
358 			 * discard any of its pages that have already
359 			 * been allocated by racing tasks (offset has
360 			 * already stepped over any at the beginning).
361 			 */
362 			if (offset < si->highest_alloc &&
363 			    si->lowest_alloc <= last_in_cluster)
364 				last_in_cluster = si->lowest_alloc - 1;
365 			si->flags |= SWP_DISCARDING;
366 			spin_unlock(&swap_lock);
367 
368 			if (offset < last_in_cluster)
369 				discard_swap_cluster(si, offset,
370 					last_in_cluster - offset + 1);
371 
372 			spin_lock(&swap_lock);
373 			si->lowest_alloc = 0;
374 			si->flags &= ~SWP_DISCARDING;
375 
376 			smp_mb();	/* wake_up_bit advises this */
377 			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
378 
379 		} else if (si->flags & SWP_DISCARDING) {
380 			/*
381 			 * Delay using pages allocated by racing tasks
382 			 * until the whole discard has been issued. We
383 			 * could defer that delay until swap_writepage,
384 			 * but it's easier to keep this self-contained.
385 			 */
386 			spin_unlock(&swap_lock);
387 			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
388 				wait_for_discard, TASK_UNINTERRUPTIBLE);
389 			spin_lock(&swap_lock);
390 		} else {
391 			/*
392 			 * Note pages allocated by racing tasks while
393 			 * scan for a free cluster is in progress, so
394 			 * that its final discard can exclude them.
395 			 */
396 			if (offset < si->lowest_alloc)
397 				si->lowest_alloc = offset;
398 			if (offset > si->highest_alloc)
399 				si->highest_alloc = offset;
400 		}
401 	}
402 	return offset;
403 
404 scan:
405 	spin_unlock(&swap_lock);
406 	while (++offset <= si->highest_bit) {
407 		if (!si->swap_map[offset]) {
408 			spin_lock(&swap_lock);
409 			goto checks;
410 		}
411 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
412 			spin_lock(&swap_lock);
413 			goto checks;
414 		}
415 		if (unlikely(--latency_ration < 0)) {
416 			cond_resched();
417 			latency_ration = LATENCY_LIMIT;
418 		}
419 	}
420 	offset = si->lowest_bit;
421 	while (++offset < scan_base) {
422 		if (!si->swap_map[offset]) {
423 			spin_lock(&swap_lock);
424 			goto checks;
425 		}
426 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
427 			spin_lock(&swap_lock);
428 			goto checks;
429 		}
430 		if (unlikely(--latency_ration < 0)) {
431 			cond_resched();
432 			latency_ration = LATENCY_LIMIT;
433 		}
434 	}
435 	spin_lock(&swap_lock);
436 
437 no_page:
438 	si->flags -= SWP_SCANNING;
439 	return 0;
440 }
441 
442 swp_entry_t get_swap_page(void)
443 {
444 	struct swap_info_struct *si;
445 	pgoff_t offset;
446 	int type, next;
447 	int wrapped = 0;
448 
449 	spin_lock(&swap_lock);
450 	if (nr_swap_pages <= 0)
451 		goto noswap;
452 	nr_swap_pages--;
453 
454 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
455 		si = swap_info[type];
456 		next = si->next;
457 		if (next < 0 ||
458 		    (!wrapped && si->prio != swap_info[next]->prio)) {
459 			next = swap_list.head;
460 			wrapped++;
461 		}
462 
463 		if (!si->highest_bit)
464 			continue;
465 		if (!(si->flags & SWP_WRITEOK))
466 			continue;
467 
468 		swap_list.next = next;
469 		/* This is called for allocating swap entry for cache */
470 		offset = scan_swap_map(si, SWAP_HAS_CACHE);
471 		if (offset) {
472 			spin_unlock(&swap_lock);
473 			return swp_entry(type, offset);
474 		}
475 		next = swap_list.next;
476 	}
477 
478 	nr_swap_pages++;
479 noswap:
480 	spin_unlock(&swap_lock);
481 	return (swp_entry_t) {0};
482 }
483 
484 /* The only caller of this function is now susupend routine */
485 swp_entry_t get_swap_page_of_type(int type)
486 {
487 	struct swap_info_struct *si;
488 	pgoff_t offset;
489 
490 	spin_lock(&swap_lock);
491 	si = swap_info[type];
492 	if (si && (si->flags & SWP_WRITEOK)) {
493 		nr_swap_pages--;
494 		/* This is called for allocating swap entry, not cache */
495 		offset = scan_swap_map(si, 1);
496 		if (offset) {
497 			spin_unlock(&swap_lock);
498 			return swp_entry(type, offset);
499 		}
500 		nr_swap_pages++;
501 	}
502 	spin_unlock(&swap_lock);
503 	return (swp_entry_t) {0};
504 }
505 
506 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
507 {
508 	struct swap_info_struct *p;
509 	unsigned long offset, type;
510 
511 	if (!entry.val)
512 		goto out;
513 	type = swp_type(entry);
514 	if (type >= nr_swapfiles)
515 		goto bad_nofile;
516 	p = swap_info[type];
517 	if (!(p->flags & SWP_USED))
518 		goto bad_device;
519 	offset = swp_offset(entry);
520 	if (offset >= p->max)
521 		goto bad_offset;
522 	if (!p->swap_map[offset])
523 		goto bad_free;
524 	spin_lock(&swap_lock);
525 	return p;
526 
527 bad_free:
528 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
529 	goto out;
530 bad_offset:
531 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
532 	goto out;
533 bad_device:
534 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
535 	goto out;
536 bad_nofile:
537 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
538 out:
539 	return NULL;
540 }
541 
542 static unsigned char swap_entry_free(struct swap_info_struct *p,
543 				     swp_entry_t entry, unsigned char usage)
544 {
545 	unsigned long offset = swp_offset(entry);
546 	unsigned char count;
547 	unsigned char has_cache;
548 
549 	count = p->swap_map[offset];
550 	has_cache = count & SWAP_HAS_CACHE;
551 	count &= ~SWAP_HAS_CACHE;
552 
553 	if (usage == SWAP_HAS_CACHE) {
554 		VM_BUG_ON(!has_cache);
555 		has_cache = 0;
556 	} else if (count == SWAP_MAP_SHMEM) {
557 		/*
558 		 * Or we could insist on shmem.c using a special
559 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
560 		 */
561 		count = 0;
562 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
563 		if (count == COUNT_CONTINUED) {
564 			if (swap_count_continued(p, offset, count))
565 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
566 			else
567 				count = SWAP_MAP_MAX;
568 		} else
569 			count--;
570 	}
571 
572 	if (!count)
573 		mem_cgroup_uncharge_swap(entry);
574 
575 	usage = count | has_cache;
576 	p->swap_map[offset] = usage;
577 
578 	/* free if no reference */
579 	if (!usage) {
580 		struct gendisk *disk = p->bdev->bd_disk;
581 		if (offset < p->lowest_bit)
582 			p->lowest_bit = offset;
583 		if (offset > p->highest_bit)
584 			p->highest_bit = offset;
585 		if (swap_list.next >= 0 &&
586 		    p->prio > swap_info[swap_list.next]->prio)
587 			swap_list.next = p->type;
588 		nr_swap_pages++;
589 		p->inuse_pages--;
590 		if ((p->flags & SWP_BLKDEV) &&
591 				disk->fops->swap_slot_free_notify)
592 			disk->fops->swap_slot_free_notify(p->bdev, offset);
593 	}
594 
595 	return usage;
596 }
597 
598 /*
599  * Caller has made sure that the swapdevice corresponding to entry
600  * is still around or has not been recycled.
601  */
602 void swap_free(swp_entry_t entry)
603 {
604 	struct swap_info_struct *p;
605 
606 	p = swap_info_get(entry);
607 	if (p) {
608 		swap_entry_free(p, entry, 1);
609 		spin_unlock(&swap_lock);
610 	}
611 }
612 
613 /*
614  * Called after dropping swapcache to decrease refcnt to swap entries.
615  */
616 void swapcache_free(swp_entry_t entry, struct page *page)
617 {
618 	struct swap_info_struct *p;
619 	unsigned char count;
620 
621 	p = swap_info_get(entry);
622 	if (p) {
623 		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
624 		if (page)
625 			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
626 		spin_unlock(&swap_lock);
627 	}
628 }
629 
630 /*
631  * How many references to page are currently swapped out?
632  * This does not give an exact answer when swap count is continued,
633  * but does include the high COUNT_CONTINUED flag to allow for that.
634  */
635 static inline int page_swapcount(struct page *page)
636 {
637 	int count = 0;
638 	struct swap_info_struct *p;
639 	swp_entry_t entry;
640 
641 	entry.val = page_private(page);
642 	p = swap_info_get(entry);
643 	if (p) {
644 		count = swap_count(p->swap_map[swp_offset(entry)]);
645 		spin_unlock(&swap_lock);
646 	}
647 	return count;
648 }
649 
650 /*
651  * We can write to an anon page without COW if there are no other references
652  * to it.  And as a side-effect, free up its swap: because the old content
653  * on disk will never be read, and seeking back there to write new content
654  * later would only waste time away from clustering.
655  */
656 int reuse_swap_page(struct page *page)
657 {
658 	int count;
659 
660 	VM_BUG_ON(!PageLocked(page));
661 	if (unlikely(PageKsm(page)))
662 		return 0;
663 	count = page_mapcount(page);
664 	if (count <= 1 && PageSwapCache(page)) {
665 		count += page_swapcount(page);
666 		if (count == 1 && !PageWriteback(page)) {
667 			delete_from_swap_cache(page);
668 			SetPageDirty(page);
669 		}
670 	}
671 	return count <= 1;
672 }
673 
674 /*
675  * If swap is getting full, or if there are no more mappings of this page,
676  * then try_to_free_swap is called to free its swap space.
677  */
678 int try_to_free_swap(struct page *page)
679 {
680 	VM_BUG_ON(!PageLocked(page));
681 
682 	if (!PageSwapCache(page))
683 		return 0;
684 	if (PageWriteback(page))
685 		return 0;
686 	if (page_swapcount(page))
687 		return 0;
688 
689 	delete_from_swap_cache(page);
690 	SetPageDirty(page);
691 	return 1;
692 }
693 
694 /*
695  * Free the swap entry like above, but also try to
696  * free the page cache entry if it is the last user.
697  */
698 int free_swap_and_cache(swp_entry_t entry)
699 {
700 	struct swap_info_struct *p;
701 	struct page *page = NULL;
702 
703 	if (non_swap_entry(entry))
704 		return 1;
705 
706 	p = swap_info_get(entry);
707 	if (p) {
708 		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
709 			page = find_get_page(&swapper_space, entry.val);
710 			if (page && !trylock_page(page)) {
711 				page_cache_release(page);
712 				page = NULL;
713 			}
714 		}
715 		spin_unlock(&swap_lock);
716 	}
717 	if (page) {
718 		/*
719 		 * Not mapped elsewhere, or swap space full? Free it!
720 		 * Also recheck PageSwapCache now page is locked (above).
721 		 */
722 		if (PageSwapCache(page) && !PageWriteback(page) &&
723 				(!page_mapped(page) || vm_swap_full())) {
724 			delete_from_swap_cache(page);
725 			SetPageDirty(page);
726 		}
727 		unlock_page(page);
728 		page_cache_release(page);
729 	}
730 	return p != NULL;
731 }
732 
733 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
734 /**
735  * mem_cgroup_count_swap_user - count the user of a swap entry
736  * @ent: the swap entry to be checked
737  * @pagep: the pointer for the swap cache page of the entry to be stored
738  *
739  * Returns the number of the user of the swap entry. The number is valid only
740  * for swaps of anonymous pages.
741  * If the entry is found on swap cache, the page is stored to pagep with
742  * refcount of it being incremented.
743  */
744 int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
745 {
746 	struct page *page;
747 	struct swap_info_struct *p;
748 	int count = 0;
749 
750 	page = find_get_page(&swapper_space, ent.val);
751 	if (page)
752 		count += page_mapcount(page);
753 	p = swap_info_get(ent);
754 	if (p) {
755 		count += swap_count(p->swap_map[swp_offset(ent)]);
756 		spin_unlock(&swap_lock);
757 	}
758 
759 	*pagep = page;
760 	return count;
761 }
762 #endif
763 
764 #ifdef CONFIG_HIBERNATION
765 /*
766  * Find the swap type that corresponds to given device (if any).
767  *
768  * @offset - number of the PAGE_SIZE-sized block of the device, starting
769  * from 0, in which the swap header is expected to be located.
770  *
771  * This is needed for the suspend to disk (aka swsusp).
772  */
773 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
774 {
775 	struct block_device *bdev = NULL;
776 	int type;
777 
778 	if (device)
779 		bdev = bdget(device);
780 
781 	spin_lock(&swap_lock);
782 	for (type = 0; type < nr_swapfiles; type++) {
783 		struct swap_info_struct *sis = swap_info[type];
784 
785 		if (!(sis->flags & SWP_WRITEOK))
786 			continue;
787 
788 		if (!bdev) {
789 			if (bdev_p)
790 				*bdev_p = bdgrab(sis->bdev);
791 
792 			spin_unlock(&swap_lock);
793 			return type;
794 		}
795 		if (bdev == sis->bdev) {
796 			struct swap_extent *se = &sis->first_swap_extent;
797 
798 			if (se->start_block == offset) {
799 				if (bdev_p)
800 					*bdev_p = bdgrab(sis->bdev);
801 
802 				spin_unlock(&swap_lock);
803 				bdput(bdev);
804 				return type;
805 			}
806 		}
807 	}
808 	spin_unlock(&swap_lock);
809 	if (bdev)
810 		bdput(bdev);
811 
812 	return -ENODEV;
813 }
814 
815 /*
816  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
817  * corresponding to given index in swap_info (swap type).
818  */
819 sector_t swapdev_block(int type, pgoff_t offset)
820 {
821 	struct block_device *bdev;
822 
823 	if ((unsigned int)type >= nr_swapfiles)
824 		return 0;
825 	if (!(swap_info[type]->flags & SWP_WRITEOK))
826 		return 0;
827 	return map_swap_entry(swp_entry(type, offset), &bdev);
828 }
829 
830 /*
831  * Return either the total number of swap pages of given type, or the number
832  * of free pages of that type (depending on @free)
833  *
834  * This is needed for software suspend
835  */
836 unsigned int count_swap_pages(int type, int free)
837 {
838 	unsigned int n = 0;
839 
840 	spin_lock(&swap_lock);
841 	if ((unsigned int)type < nr_swapfiles) {
842 		struct swap_info_struct *sis = swap_info[type];
843 
844 		if (sis->flags & SWP_WRITEOK) {
845 			n = sis->pages;
846 			if (free)
847 				n -= sis->inuse_pages;
848 		}
849 	}
850 	spin_unlock(&swap_lock);
851 	return n;
852 }
853 #endif /* CONFIG_HIBERNATION */
854 
855 /*
856  * No need to decide whether this PTE shares the swap entry with others,
857  * just let do_wp_page work it out if a write is requested later - to
858  * force COW, vm_page_prot omits write permission from any private vma.
859  */
860 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
861 		unsigned long addr, swp_entry_t entry, struct page *page)
862 {
863 	struct mem_cgroup *ptr = NULL;
864 	spinlock_t *ptl;
865 	pte_t *pte;
866 	int ret = 1;
867 
868 	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
869 		ret = -ENOMEM;
870 		goto out_nolock;
871 	}
872 
873 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
874 	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
875 		if (ret > 0)
876 			mem_cgroup_cancel_charge_swapin(ptr);
877 		ret = 0;
878 		goto out;
879 	}
880 
881 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
882 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
883 	get_page(page);
884 	set_pte_at(vma->vm_mm, addr, pte,
885 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
886 	page_add_anon_rmap(page, vma, addr);
887 	mem_cgroup_commit_charge_swapin(page, ptr);
888 	swap_free(entry);
889 	/*
890 	 * Move the page to the active list so it is not
891 	 * immediately swapped out again after swapon.
892 	 */
893 	activate_page(page);
894 out:
895 	pte_unmap_unlock(pte, ptl);
896 out_nolock:
897 	return ret;
898 }
899 
900 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
901 				unsigned long addr, unsigned long end,
902 				swp_entry_t entry, struct page *page)
903 {
904 	pte_t swp_pte = swp_entry_to_pte(entry);
905 	pte_t *pte;
906 	int ret = 0;
907 
908 	/*
909 	 * We don't actually need pte lock while scanning for swp_pte: since
910 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
911 	 * page table while we're scanning; though it could get zapped, and on
912 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
913 	 * of unmatched parts which look like swp_pte, so unuse_pte must
914 	 * recheck under pte lock.  Scanning without pte lock lets it be
915 	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
916 	 */
917 	pte = pte_offset_map(pmd, addr);
918 	do {
919 		/*
920 		 * swapoff spends a _lot_ of time in this loop!
921 		 * Test inline before going to call unuse_pte.
922 		 */
923 		if (unlikely(pte_same(*pte, swp_pte))) {
924 			pte_unmap(pte);
925 			ret = unuse_pte(vma, pmd, addr, entry, page);
926 			if (ret)
927 				goto out;
928 			pte = pte_offset_map(pmd, addr);
929 		}
930 	} while (pte++, addr += PAGE_SIZE, addr != end);
931 	pte_unmap(pte - 1);
932 out:
933 	return ret;
934 }
935 
936 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
937 				unsigned long addr, unsigned long end,
938 				swp_entry_t entry, struct page *page)
939 {
940 	pmd_t *pmd;
941 	unsigned long next;
942 	int ret;
943 
944 	pmd = pmd_offset(pud, addr);
945 	do {
946 		next = pmd_addr_end(addr, end);
947 		if (pmd_none_or_clear_bad(pmd))
948 			continue;
949 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
950 		if (ret)
951 			return ret;
952 	} while (pmd++, addr = next, addr != end);
953 	return 0;
954 }
955 
956 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
957 				unsigned long addr, unsigned long end,
958 				swp_entry_t entry, struct page *page)
959 {
960 	pud_t *pud;
961 	unsigned long next;
962 	int ret;
963 
964 	pud = pud_offset(pgd, addr);
965 	do {
966 		next = pud_addr_end(addr, end);
967 		if (pud_none_or_clear_bad(pud))
968 			continue;
969 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
970 		if (ret)
971 			return ret;
972 	} while (pud++, addr = next, addr != end);
973 	return 0;
974 }
975 
976 static int unuse_vma(struct vm_area_struct *vma,
977 				swp_entry_t entry, struct page *page)
978 {
979 	pgd_t *pgd;
980 	unsigned long addr, end, next;
981 	int ret;
982 
983 	if (page_anon_vma(page)) {
984 		addr = page_address_in_vma(page, vma);
985 		if (addr == -EFAULT)
986 			return 0;
987 		else
988 			end = addr + PAGE_SIZE;
989 	} else {
990 		addr = vma->vm_start;
991 		end = vma->vm_end;
992 	}
993 
994 	pgd = pgd_offset(vma->vm_mm, addr);
995 	do {
996 		next = pgd_addr_end(addr, end);
997 		if (pgd_none_or_clear_bad(pgd))
998 			continue;
999 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1000 		if (ret)
1001 			return ret;
1002 	} while (pgd++, addr = next, addr != end);
1003 	return 0;
1004 }
1005 
1006 static int unuse_mm(struct mm_struct *mm,
1007 				swp_entry_t entry, struct page *page)
1008 {
1009 	struct vm_area_struct *vma;
1010 	int ret = 0;
1011 
1012 	if (!down_read_trylock(&mm->mmap_sem)) {
1013 		/*
1014 		 * Activate page so shrink_inactive_list is unlikely to unmap
1015 		 * its ptes while lock is dropped, so swapoff can make progress.
1016 		 */
1017 		activate_page(page);
1018 		unlock_page(page);
1019 		down_read(&mm->mmap_sem);
1020 		lock_page(page);
1021 	}
1022 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1023 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1024 			break;
1025 	}
1026 	up_read(&mm->mmap_sem);
1027 	return (ret < 0)? ret: 0;
1028 }
1029 
1030 /*
1031  * Scan swap_map from current position to next entry still in use.
1032  * Recycle to start on reaching the end, returning 0 when empty.
1033  */
1034 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1035 					unsigned int prev)
1036 {
1037 	unsigned int max = si->max;
1038 	unsigned int i = prev;
1039 	unsigned char count;
1040 
1041 	/*
1042 	 * No need for swap_lock here: we're just looking
1043 	 * for whether an entry is in use, not modifying it; false
1044 	 * hits are okay, and sys_swapoff() has already prevented new
1045 	 * allocations from this area (while holding swap_lock).
1046 	 */
1047 	for (;;) {
1048 		if (++i >= max) {
1049 			if (!prev) {
1050 				i = 0;
1051 				break;
1052 			}
1053 			/*
1054 			 * No entries in use at top of swap_map,
1055 			 * loop back to start and recheck there.
1056 			 */
1057 			max = prev + 1;
1058 			prev = 0;
1059 			i = 1;
1060 		}
1061 		count = si->swap_map[i];
1062 		if (count && swap_count(count) != SWAP_MAP_BAD)
1063 			break;
1064 	}
1065 	return i;
1066 }
1067 
1068 /*
1069  * We completely avoid races by reading each swap page in advance,
1070  * and then search for the process using it.  All the necessary
1071  * page table adjustments can then be made atomically.
1072  */
1073 static int try_to_unuse(unsigned int type)
1074 {
1075 	struct swap_info_struct *si = swap_info[type];
1076 	struct mm_struct *start_mm;
1077 	unsigned char *swap_map;
1078 	unsigned char swcount;
1079 	struct page *page;
1080 	swp_entry_t entry;
1081 	unsigned int i = 0;
1082 	int retval = 0;
1083 
1084 	/*
1085 	 * When searching mms for an entry, a good strategy is to
1086 	 * start at the first mm we freed the previous entry from
1087 	 * (though actually we don't notice whether we or coincidence
1088 	 * freed the entry).  Initialize this start_mm with a hold.
1089 	 *
1090 	 * A simpler strategy would be to start at the last mm we
1091 	 * freed the previous entry from; but that would take less
1092 	 * advantage of mmlist ordering, which clusters forked mms
1093 	 * together, child after parent.  If we race with dup_mmap(), we
1094 	 * prefer to resolve parent before child, lest we miss entries
1095 	 * duplicated after we scanned child: using last mm would invert
1096 	 * that.
1097 	 */
1098 	start_mm = &init_mm;
1099 	atomic_inc(&init_mm.mm_users);
1100 
1101 	/*
1102 	 * Keep on scanning until all entries have gone.  Usually,
1103 	 * one pass through swap_map is enough, but not necessarily:
1104 	 * there are races when an instance of an entry might be missed.
1105 	 */
1106 	while ((i = find_next_to_unuse(si, i)) != 0) {
1107 		if (signal_pending(current)) {
1108 			retval = -EINTR;
1109 			break;
1110 		}
1111 
1112 		/*
1113 		 * Get a page for the entry, using the existing swap
1114 		 * cache page if there is one.  Otherwise, get a clean
1115 		 * page and read the swap into it.
1116 		 */
1117 		swap_map = &si->swap_map[i];
1118 		entry = swp_entry(type, i);
1119 		page = read_swap_cache_async(entry,
1120 					GFP_HIGHUSER_MOVABLE, NULL, 0);
1121 		if (!page) {
1122 			/*
1123 			 * Either swap_duplicate() failed because entry
1124 			 * has been freed independently, and will not be
1125 			 * reused since sys_swapoff() already disabled
1126 			 * allocation from here, or alloc_page() failed.
1127 			 */
1128 			if (!*swap_map)
1129 				continue;
1130 			retval = -ENOMEM;
1131 			break;
1132 		}
1133 
1134 		/*
1135 		 * Don't hold on to start_mm if it looks like exiting.
1136 		 */
1137 		if (atomic_read(&start_mm->mm_users) == 1) {
1138 			mmput(start_mm);
1139 			start_mm = &init_mm;
1140 			atomic_inc(&init_mm.mm_users);
1141 		}
1142 
1143 		/*
1144 		 * Wait for and lock page.  When do_swap_page races with
1145 		 * try_to_unuse, do_swap_page can handle the fault much
1146 		 * faster than try_to_unuse can locate the entry.  This
1147 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1148 		 * defer to do_swap_page in such a case - in some tests,
1149 		 * do_swap_page and try_to_unuse repeatedly compete.
1150 		 */
1151 		wait_on_page_locked(page);
1152 		wait_on_page_writeback(page);
1153 		lock_page(page);
1154 		wait_on_page_writeback(page);
1155 
1156 		/*
1157 		 * Remove all references to entry.
1158 		 */
1159 		swcount = *swap_map;
1160 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1161 			retval = shmem_unuse(entry, page);
1162 			/* page has already been unlocked and released */
1163 			if (retval < 0)
1164 				break;
1165 			continue;
1166 		}
1167 		if (swap_count(swcount) && start_mm != &init_mm)
1168 			retval = unuse_mm(start_mm, entry, page);
1169 
1170 		if (swap_count(*swap_map)) {
1171 			int set_start_mm = (*swap_map >= swcount);
1172 			struct list_head *p = &start_mm->mmlist;
1173 			struct mm_struct *new_start_mm = start_mm;
1174 			struct mm_struct *prev_mm = start_mm;
1175 			struct mm_struct *mm;
1176 
1177 			atomic_inc(&new_start_mm->mm_users);
1178 			atomic_inc(&prev_mm->mm_users);
1179 			spin_lock(&mmlist_lock);
1180 			while (swap_count(*swap_map) && !retval &&
1181 					(p = p->next) != &start_mm->mmlist) {
1182 				mm = list_entry(p, struct mm_struct, mmlist);
1183 				if (!atomic_inc_not_zero(&mm->mm_users))
1184 					continue;
1185 				spin_unlock(&mmlist_lock);
1186 				mmput(prev_mm);
1187 				prev_mm = mm;
1188 
1189 				cond_resched();
1190 
1191 				swcount = *swap_map;
1192 				if (!swap_count(swcount)) /* any usage ? */
1193 					;
1194 				else if (mm == &init_mm)
1195 					set_start_mm = 1;
1196 				else
1197 					retval = unuse_mm(mm, entry, page);
1198 
1199 				if (set_start_mm && *swap_map < swcount) {
1200 					mmput(new_start_mm);
1201 					atomic_inc(&mm->mm_users);
1202 					new_start_mm = mm;
1203 					set_start_mm = 0;
1204 				}
1205 				spin_lock(&mmlist_lock);
1206 			}
1207 			spin_unlock(&mmlist_lock);
1208 			mmput(prev_mm);
1209 			mmput(start_mm);
1210 			start_mm = new_start_mm;
1211 		}
1212 		if (retval) {
1213 			unlock_page(page);
1214 			page_cache_release(page);
1215 			break;
1216 		}
1217 
1218 		/*
1219 		 * If a reference remains (rare), we would like to leave
1220 		 * the page in the swap cache; but try_to_unmap could
1221 		 * then re-duplicate the entry once we drop page lock,
1222 		 * so we might loop indefinitely; also, that page could
1223 		 * not be swapped out to other storage meanwhile.  So:
1224 		 * delete from cache even if there's another reference,
1225 		 * after ensuring that the data has been saved to disk -
1226 		 * since if the reference remains (rarer), it will be
1227 		 * read from disk into another page.  Splitting into two
1228 		 * pages would be incorrect if swap supported "shared
1229 		 * private" pages, but they are handled by tmpfs files.
1230 		 *
1231 		 * Given how unuse_vma() targets one particular offset
1232 		 * in an anon_vma, once the anon_vma has been determined,
1233 		 * this splitting happens to be just what is needed to
1234 		 * handle where KSM pages have been swapped out: re-reading
1235 		 * is unnecessarily slow, but we can fix that later on.
1236 		 */
1237 		if (swap_count(*swap_map) &&
1238 		     PageDirty(page) && PageSwapCache(page)) {
1239 			struct writeback_control wbc = {
1240 				.sync_mode = WB_SYNC_NONE,
1241 			};
1242 
1243 			swap_writepage(page, &wbc);
1244 			lock_page(page);
1245 			wait_on_page_writeback(page);
1246 		}
1247 
1248 		/*
1249 		 * It is conceivable that a racing task removed this page from
1250 		 * swap cache just before we acquired the page lock at the top,
1251 		 * or while we dropped it in unuse_mm().  The page might even
1252 		 * be back in swap cache on another swap area: that we must not
1253 		 * delete, since it may not have been written out to swap yet.
1254 		 */
1255 		if (PageSwapCache(page) &&
1256 		    likely(page_private(page) == entry.val))
1257 			delete_from_swap_cache(page);
1258 
1259 		/*
1260 		 * So we could skip searching mms once swap count went
1261 		 * to 1, we did not mark any present ptes as dirty: must
1262 		 * mark page dirty so shrink_page_list will preserve it.
1263 		 */
1264 		SetPageDirty(page);
1265 		unlock_page(page);
1266 		page_cache_release(page);
1267 
1268 		/*
1269 		 * Make sure that we aren't completely killing
1270 		 * interactive performance.
1271 		 */
1272 		cond_resched();
1273 	}
1274 
1275 	mmput(start_mm);
1276 	return retval;
1277 }
1278 
1279 /*
1280  * After a successful try_to_unuse, if no swap is now in use, we know
1281  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1282  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1283  * added to the mmlist just after page_duplicate - before would be racy.
1284  */
1285 static void drain_mmlist(void)
1286 {
1287 	struct list_head *p, *next;
1288 	unsigned int type;
1289 
1290 	for (type = 0; type < nr_swapfiles; type++)
1291 		if (swap_info[type]->inuse_pages)
1292 			return;
1293 	spin_lock(&mmlist_lock);
1294 	list_for_each_safe(p, next, &init_mm.mmlist)
1295 		list_del_init(p);
1296 	spin_unlock(&mmlist_lock);
1297 }
1298 
1299 /*
1300  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1301  * corresponds to page offset for the specified swap entry.
1302  * Note that the type of this function is sector_t, but it returns page offset
1303  * into the bdev, not sector offset.
1304  */
1305 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1306 {
1307 	struct swap_info_struct *sis;
1308 	struct swap_extent *start_se;
1309 	struct swap_extent *se;
1310 	pgoff_t offset;
1311 
1312 	sis = swap_info[swp_type(entry)];
1313 	*bdev = sis->bdev;
1314 
1315 	offset = swp_offset(entry);
1316 	start_se = sis->curr_swap_extent;
1317 	se = start_se;
1318 
1319 	for ( ; ; ) {
1320 		struct list_head *lh;
1321 
1322 		if (se->start_page <= offset &&
1323 				offset < (se->start_page + se->nr_pages)) {
1324 			return se->start_block + (offset - se->start_page);
1325 		}
1326 		lh = se->list.next;
1327 		se = list_entry(lh, struct swap_extent, list);
1328 		sis->curr_swap_extent = se;
1329 		BUG_ON(se == start_se);		/* It *must* be present */
1330 	}
1331 }
1332 
1333 /*
1334  * Returns the page offset into bdev for the specified page's swap entry.
1335  */
1336 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1337 {
1338 	swp_entry_t entry;
1339 	entry.val = page_private(page);
1340 	return map_swap_entry(entry, bdev);
1341 }
1342 
1343 /*
1344  * Free all of a swapdev's extent information
1345  */
1346 static void destroy_swap_extents(struct swap_info_struct *sis)
1347 {
1348 	while (!list_empty(&sis->first_swap_extent.list)) {
1349 		struct swap_extent *se;
1350 
1351 		se = list_entry(sis->first_swap_extent.list.next,
1352 				struct swap_extent, list);
1353 		list_del(&se->list);
1354 		kfree(se);
1355 	}
1356 }
1357 
1358 /*
1359  * Add a block range (and the corresponding page range) into this swapdev's
1360  * extent list.  The extent list is kept sorted in page order.
1361  *
1362  * This function rather assumes that it is called in ascending page order.
1363  */
1364 static int
1365 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1366 		unsigned long nr_pages, sector_t start_block)
1367 {
1368 	struct swap_extent *se;
1369 	struct swap_extent *new_se;
1370 	struct list_head *lh;
1371 
1372 	if (start_page == 0) {
1373 		se = &sis->first_swap_extent;
1374 		sis->curr_swap_extent = se;
1375 		se->start_page = 0;
1376 		se->nr_pages = nr_pages;
1377 		se->start_block = start_block;
1378 		return 1;
1379 	} else {
1380 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1381 		se = list_entry(lh, struct swap_extent, list);
1382 		BUG_ON(se->start_page + se->nr_pages != start_page);
1383 		if (se->start_block + se->nr_pages == start_block) {
1384 			/* Merge it */
1385 			se->nr_pages += nr_pages;
1386 			return 0;
1387 		}
1388 	}
1389 
1390 	/*
1391 	 * No merge.  Insert a new extent, preserving ordering.
1392 	 */
1393 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1394 	if (new_se == NULL)
1395 		return -ENOMEM;
1396 	new_se->start_page = start_page;
1397 	new_se->nr_pages = nr_pages;
1398 	new_se->start_block = start_block;
1399 
1400 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1401 	return 1;
1402 }
1403 
1404 /*
1405  * A `swap extent' is a simple thing which maps a contiguous range of pages
1406  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1407  * is built at swapon time and is then used at swap_writepage/swap_readpage
1408  * time for locating where on disk a page belongs.
1409  *
1410  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1411  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1412  * swap files identically.
1413  *
1414  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1415  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1416  * swapfiles are handled *identically* after swapon time.
1417  *
1418  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1419  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1420  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1421  * requirements, they are simply tossed out - we will never use those blocks
1422  * for swapping.
1423  *
1424  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1425  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1426  * which will scribble on the fs.
1427  *
1428  * The amount of disk space which a single swap extent represents varies.
1429  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1430  * extents in the list.  To avoid much list walking, we cache the previous
1431  * search location in `curr_swap_extent', and start new searches from there.
1432  * This is extremely effective.  The average number of iterations in
1433  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1434  */
1435 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1436 {
1437 	struct inode *inode;
1438 	unsigned blocks_per_page;
1439 	unsigned long page_no;
1440 	unsigned blkbits;
1441 	sector_t probe_block;
1442 	sector_t last_block;
1443 	sector_t lowest_block = -1;
1444 	sector_t highest_block = 0;
1445 	int nr_extents = 0;
1446 	int ret;
1447 
1448 	inode = sis->swap_file->f_mapping->host;
1449 	if (S_ISBLK(inode->i_mode)) {
1450 		ret = add_swap_extent(sis, 0, sis->max, 0);
1451 		*span = sis->pages;
1452 		goto out;
1453 	}
1454 
1455 	blkbits = inode->i_blkbits;
1456 	blocks_per_page = PAGE_SIZE >> blkbits;
1457 
1458 	/*
1459 	 * Map all the blocks into the extent list.  This code doesn't try
1460 	 * to be very smart.
1461 	 */
1462 	probe_block = 0;
1463 	page_no = 0;
1464 	last_block = i_size_read(inode) >> blkbits;
1465 	while ((probe_block + blocks_per_page) <= last_block &&
1466 			page_no < sis->max) {
1467 		unsigned block_in_page;
1468 		sector_t first_block;
1469 
1470 		first_block = bmap(inode, probe_block);
1471 		if (first_block == 0)
1472 			goto bad_bmap;
1473 
1474 		/*
1475 		 * It must be PAGE_SIZE aligned on-disk
1476 		 */
1477 		if (first_block & (blocks_per_page - 1)) {
1478 			probe_block++;
1479 			goto reprobe;
1480 		}
1481 
1482 		for (block_in_page = 1; block_in_page < blocks_per_page;
1483 					block_in_page++) {
1484 			sector_t block;
1485 
1486 			block = bmap(inode, probe_block + block_in_page);
1487 			if (block == 0)
1488 				goto bad_bmap;
1489 			if (block != first_block + block_in_page) {
1490 				/* Discontiguity */
1491 				probe_block++;
1492 				goto reprobe;
1493 			}
1494 		}
1495 
1496 		first_block >>= (PAGE_SHIFT - blkbits);
1497 		if (page_no) {	/* exclude the header page */
1498 			if (first_block < lowest_block)
1499 				lowest_block = first_block;
1500 			if (first_block > highest_block)
1501 				highest_block = first_block;
1502 		}
1503 
1504 		/*
1505 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1506 		 */
1507 		ret = add_swap_extent(sis, page_no, 1, first_block);
1508 		if (ret < 0)
1509 			goto out;
1510 		nr_extents += ret;
1511 		page_no++;
1512 		probe_block += blocks_per_page;
1513 reprobe:
1514 		continue;
1515 	}
1516 	ret = nr_extents;
1517 	*span = 1 + highest_block - lowest_block;
1518 	if (page_no == 0)
1519 		page_no = 1;	/* force Empty message */
1520 	sis->max = page_no;
1521 	sis->pages = page_no - 1;
1522 	sis->highest_bit = page_no - 1;
1523 out:
1524 	return ret;
1525 bad_bmap:
1526 	printk(KERN_ERR "swapon: swapfile has holes\n");
1527 	ret = -EINVAL;
1528 	goto out;
1529 }
1530 
1531 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1532 {
1533 	struct swap_info_struct *p = NULL;
1534 	unsigned char *swap_map;
1535 	struct file *swap_file, *victim;
1536 	struct address_space *mapping;
1537 	struct inode *inode;
1538 	char *pathname;
1539 	int i, type, prev;
1540 	int err;
1541 
1542 	if (!capable(CAP_SYS_ADMIN))
1543 		return -EPERM;
1544 
1545 	pathname = getname(specialfile);
1546 	err = PTR_ERR(pathname);
1547 	if (IS_ERR(pathname))
1548 		goto out;
1549 
1550 	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1551 	putname(pathname);
1552 	err = PTR_ERR(victim);
1553 	if (IS_ERR(victim))
1554 		goto out;
1555 
1556 	mapping = victim->f_mapping;
1557 	prev = -1;
1558 	spin_lock(&swap_lock);
1559 	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1560 		p = swap_info[type];
1561 		if (p->flags & SWP_WRITEOK) {
1562 			if (p->swap_file->f_mapping == mapping)
1563 				break;
1564 		}
1565 		prev = type;
1566 	}
1567 	if (type < 0) {
1568 		err = -EINVAL;
1569 		spin_unlock(&swap_lock);
1570 		goto out_dput;
1571 	}
1572 	if (!security_vm_enough_memory(p->pages))
1573 		vm_unacct_memory(p->pages);
1574 	else {
1575 		err = -ENOMEM;
1576 		spin_unlock(&swap_lock);
1577 		goto out_dput;
1578 	}
1579 	if (prev < 0)
1580 		swap_list.head = p->next;
1581 	else
1582 		swap_info[prev]->next = p->next;
1583 	if (type == swap_list.next) {
1584 		/* just pick something that's safe... */
1585 		swap_list.next = swap_list.head;
1586 	}
1587 	if (p->prio < 0) {
1588 		for (i = p->next; i >= 0; i = swap_info[i]->next)
1589 			swap_info[i]->prio = p->prio--;
1590 		least_priority++;
1591 	}
1592 	nr_swap_pages -= p->pages;
1593 	total_swap_pages -= p->pages;
1594 	p->flags &= ~SWP_WRITEOK;
1595 	spin_unlock(&swap_lock);
1596 
1597 	current->flags |= PF_OOM_ORIGIN;
1598 	err = try_to_unuse(type);
1599 	current->flags &= ~PF_OOM_ORIGIN;
1600 
1601 	if (err) {
1602 		/* re-insert swap space back into swap_list */
1603 		spin_lock(&swap_lock);
1604 		if (p->prio < 0)
1605 			p->prio = --least_priority;
1606 		prev = -1;
1607 		for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1608 			if (p->prio >= swap_info[i]->prio)
1609 				break;
1610 			prev = i;
1611 		}
1612 		p->next = i;
1613 		if (prev < 0)
1614 			swap_list.head = swap_list.next = type;
1615 		else
1616 			swap_info[prev]->next = type;
1617 		nr_swap_pages += p->pages;
1618 		total_swap_pages += p->pages;
1619 		p->flags |= SWP_WRITEOK;
1620 		spin_unlock(&swap_lock);
1621 		goto out_dput;
1622 	}
1623 
1624 	/* wait for any unplug function to finish */
1625 	down_write(&swap_unplug_sem);
1626 	up_write(&swap_unplug_sem);
1627 
1628 	destroy_swap_extents(p);
1629 	if (p->flags & SWP_CONTINUED)
1630 		free_swap_count_continuations(p);
1631 
1632 	mutex_lock(&swapon_mutex);
1633 	spin_lock(&swap_lock);
1634 	drain_mmlist();
1635 
1636 	/* wait for anyone still in scan_swap_map */
1637 	p->highest_bit = 0;		/* cuts scans short */
1638 	while (p->flags >= SWP_SCANNING) {
1639 		spin_unlock(&swap_lock);
1640 		schedule_timeout_uninterruptible(1);
1641 		spin_lock(&swap_lock);
1642 	}
1643 
1644 	swap_file = p->swap_file;
1645 	p->swap_file = NULL;
1646 	p->max = 0;
1647 	swap_map = p->swap_map;
1648 	p->swap_map = NULL;
1649 	p->flags = 0;
1650 	spin_unlock(&swap_lock);
1651 	mutex_unlock(&swapon_mutex);
1652 	vfree(swap_map);
1653 	/* Destroy swap account informatin */
1654 	swap_cgroup_swapoff(type);
1655 
1656 	inode = mapping->host;
1657 	if (S_ISBLK(inode->i_mode)) {
1658 		struct block_device *bdev = I_BDEV(inode);
1659 		set_blocksize(bdev, p->old_block_size);
1660 		bd_release(bdev);
1661 	} else {
1662 		mutex_lock(&inode->i_mutex);
1663 		inode->i_flags &= ~S_SWAPFILE;
1664 		mutex_unlock(&inode->i_mutex);
1665 	}
1666 	filp_close(swap_file, NULL);
1667 	err = 0;
1668 
1669 out_dput:
1670 	filp_close(victim, NULL);
1671 out:
1672 	return err;
1673 }
1674 
1675 #ifdef CONFIG_PROC_FS
1676 /* iterator */
1677 static void *swap_start(struct seq_file *swap, loff_t *pos)
1678 {
1679 	struct swap_info_struct *si;
1680 	int type;
1681 	loff_t l = *pos;
1682 
1683 	mutex_lock(&swapon_mutex);
1684 
1685 	if (!l)
1686 		return SEQ_START_TOKEN;
1687 
1688 	for (type = 0; type < nr_swapfiles; type++) {
1689 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1690 		si = swap_info[type];
1691 		if (!(si->flags & SWP_USED) || !si->swap_map)
1692 			continue;
1693 		if (!--l)
1694 			return si;
1695 	}
1696 
1697 	return NULL;
1698 }
1699 
1700 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1701 {
1702 	struct swap_info_struct *si = v;
1703 	int type;
1704 
1705 	if (v == SEQ_START_TOKEN)
1706 		type = 0;
1707 	else
1708 		type = si->type + 1;
1709 
1710 	for (; type < nr_swapfiles; type++) {
1711 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1712 		si = swap_info[type];
1713 		if (!(si->flags & SWP_USED) || !si->swap_map)
1714 			continue;
1715 		++*pos;
1716 		return si;
1717 	}
1718 
1719 	return NULL;
1720 }
1721 
1722 static void swap_stop(struct seq_file *swap, void *v)
1723 {
1724 	mutex_unlock(&swapon_mutex);
1725 }
1726 
1727 static int swap_show(struct seq_file *swap, void *v)
1728 {
1729 	struct swap_info_struct *si = v;
1730 	struct file *file;
1731 	int len;
1732 
1733 	if (si == SEQ_START_TOKEN) {
1734 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1735 		return 0;
1736 	}
1737 
1738 	file = si->swap_file;
1739 	len = seq_path(swap, &file->f_path, " \t\n\\");
1740 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1741 			len < 40 ? 40 - len : 1, " ",
1742 			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1743 				"partition" : "file\t",
1744 			si->pages << (PAGE_SHIFT - 10),
1745 			si->inuse_pages << (PAGE_SHIFT - 10),
1746 			si->prio);
1747 	return 0;
1748 }
1749 
1750 static const struct seq_operations swaps_op = {
1751 	.start =	swap_start,
1752 	.next =		swap_next,
1753 	.stop =		swap_stop,
1754 	.show =		swap_show
1755 };
1756 
1757 static int swaps_open(struct inode *inode, struct file *file)
1758 {
1759 	return seq_open(file, &swaps_op);
1760 }
1761 
1762 static const struct file_operations proc_swaps_operations = {
1763 	.open		= swaps_open,
1764 	.read		= seq_read,
1765 	.llseek		= seq_lseek,
1766 	.release	= seq_release,
1767 };
1768 
1769 static int __init procswaps_init(void)
1770 {
1771 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1772 	return 0;
1773 }
1774 __initcall(procswaps_init);
1775 #endif /* CONFIG_PROC_FS */
1776 
1777 #ifdef MAX_SWAPFILES_CHECK
1778 static int __init max_swapfiles_check(void)
1779 {
1780 	MAX_SWAPFILES_CHECK();
1781 	return 0;
1782 }
1783 late_initcall(max_swapfiles_check);
1784 #endif
1785 
1786 /*
1787  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1788  *
1789  * The swapon system call
1790  */
1791 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1792 {
1793 	struct swap_info_struct *p;
1794 	char *name = NULL;
1795 	struct block_device *bdev = NULL;
1796 	struct file *swap_file = NULL;
1797 	struct address_space *mapping;
1798 	unsigned int type;
1799 	int i, prev;
1800 	int error;
1801 	union swap_header *swap_header;
1802 	unsigned int nr_good_pages;
1803 	int nr_extents = 0;
1804 	sector_t span;
1805 	unsigned long maxpages;
1806 	unsigned long swapfilepages;
1807 	unsigned char *swap_map = NULL;
1808 	struct page *page = NULL;
1809 	struct inode *inode = NULL;
1810 	int did_down = 0;
1811 
1812 	if (!capable(CAP_SYS_ADMIN))
1813 		return -EPERM;
1814 
1815 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1816 	if (!p)
1817 		return -ENOMEM;
1818 
1819 	spin_lock(&swap_lock);
1820 	for (type = 0; type < nr_swapfiles; type++) {
1821 		if (!(swap_info[type]->flags & SWP_USED))
1822 			break;
1823 	}
1824 	error = -EPERM;
1825 	if (type >= MAX_SWAPFILES) {
1826 		spin_unlock(&swap_lock);
1827 		kfree(p);
1828 		goto out;
1829 	}
1830 	if (type >= nr_swapfiles) {
1831 		p->type = type;
1832 		swap_info[type] = p;
1833 		/*
1834 		 * Write swap_info[type] before nr_swapfiles, in case a
1835 		 * racing procfs swap_start() or swap_next() is reading them.
1836 		 * (We never shrink nr_swapfiles, we never free this entry.)
1837 		 */
1838 		smp_wmb();
1839 		nr_swapfiles++;
1840 	} else {
1841 		kfree(p);
1842 		p = swap_info[type];
1843 		/*
1844 		 * Do not memset this entry: a racing procfs swap_next()
1845 		 * would be relying on p->type to remain valid.
1846 		 */
1847 	}
1848 	INIT_LIST_HEAD(&p->first_swap_extent.list);
1849 	p->flags = SWP_USED;
1850 	p->next = -1;
1851 	spin_unlock(&swap_lock);
1852 
1853 	name = getname(specialfile);
1854 	error = PTR_ERR(name);
1855 	if (IS_ERR(name)) {
1856 		name = NULL;
1857 		goto bad_swap_2;
1858 	}
1859 	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1860 	error = PTR_ERR(swap_file);
1861 	if (IS_ERR(swap_file)) {
1862 		swap_file = NULL;
1863 		goto bad_swap_2;
1864 	}
1865 
1866 	p->swap_file = swap_file;
1867 	mapping = swap_file->f_mapping;
1868 	inode = mapping->host;
1869 
1870 	error = -EBUSY;
1871 	for (i = 0; i < nr_swapfiles; i++) {
1872 		struct swap_info_struct *q = swap_info[i];
1873 
1874 		if (i == type || !q->swap_file)
1875 			continue;
1876 		if (mapping == q->swap_file->f_mapping)
1877 			goto bad_swap;
1878 	}
1879 
1880 	error = -EINVAL;
1881 	if (S_ISBLK(inode->i_mode)) {
1882 		bdev = I_BDEV(inode);
1883 		error = bd_claim(bdev, sys_swapon);
1884 		if (error < 0) {
1885 			bdev = NULL;
1886 			error = -EINVAL;
1887 			goto bad_swap;
1888 		}
1889 		p->old_block_size = block_size(bdev);
1890 		error = set_blocksize(bdev, PAGE_SIZE);
1891 		if (error < 0)
1892 			goto bad_swap;
1893 		p->bdev = bdev;
1894 		p->flags |= SWP_BLKDEV;
1895 	} else if (S_ISREG(inode->i_mode)) {
1896 		p->bdev = inode->i_sb->s_bdev;
1897 		mutex_lock(&inode->i_mutex);
1898 		did_down = 1;
1899 		if (IS_SWAPFILE(inode)) {
1900 			error = -EBUSY;
1901 			goto bad_swap;
1902 		}
1903 	} else {
1904 		goto bad_swap;
1905 	}
1906 
1907 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1908 
1909 	/*
1910 	 * Read the swap header.
1911 	 */
1912 	if (!mapping->a_ops->readpage) {
1913 		error = -EINVAL;
1914 		goto bad_swap;
1915 	}
1916 	page = read_mapping_page(mapping, 0, swap_file);
1917 	if (IS_ERR(page)) {
1918 		error = PTR_ERR(page);
1919 		goto bad_swap;
1920 	}
1921 	swap_header = kmap(page);
1922 
1923 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1924 		printk(KERN_ERR "Unable to find swap-space signature\n");
1925 		error = -EINVAL;
1926 		goto bad_swap;
1927 	}
1928 
1929 	/* swap partition endianess hack... */
1930 	if (swab32(swap_header->info.version) == 1) {
1931 		swab32s(&swap_header->info.version);
1932 		swab32s(&swap_header->info.last_page);
1933 		swab32s(&swap_header->info.nr_badpages);
1934 		for (i = 0; i < swap_header->info.nr_badpages; i++)
1935 			swab32s(&swap_header->info.badpages[i]);
1936 	}
1937 	/* Check the swap header's sub-version */
1938 	if (swap_header->info.version != 1) {
1939 		printk(KERN_WARNING
1940 		       "Unable to handle swap header version %d\n",
1941 		       swap_header->info.version);
1942 		error = -EINVAL;
1943 		goto bad_swap;
1944 	}
1945 
1946 	p->lowest_bit  = 1;
1947 	p->cluster_next = 1;
1948 	p->cluster_nr = 0;
1949 
1950 	/*
1951 	 * Find out how many pages are allowed for a single swap
1952 	 * device. There are two limiting factors: 1) the number of
1953 	 * bits for the swap offset in the swp_entry_t type and
1954 	 * 2) the number of bits in the a swap pte as defined by
1955 	 * the different architectures. In order to find the
1956 	 * largest possible bit mask a swap entry with swap type 0
1957 	 * and swap offset ~0UL is created, encoded to a swap pte,
1958 	 * decoded to a swp_entry_t again and finally the swap
1959 	 * offset is extracted. This will mask all the bits from
1960 	 * the initial ~0UL mask that can't be encoded in either
1961 	 * the swp_entry_t or the architecture definition of a
1962 	 * swap pte.
1963 	 */
1964 	maxpages = swp_offset(pte_to_swp_entry(
1965 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1966 	if (maxpages > swap_header->info.last_page) {
1967 		maxpages = swap_header->info.last_page + 1;
1968 		/* p->max is an unsigned int: don't overflow it */
1969 		if ((unsigned int)maxpages == 0)
1970 			maxpages = UINT_MAX;
1971 	}
1972 	p->highest_bit = maxpages - 1;
1973 
1974 	error = -EINVAL;
1975 	if (!maxpages)
1976 		goto bad_swap;
1977 	if (swapfilepages && maxpages > swapfilepages) {
1978 		printk(KERN_WARNING
1979 		       "Swap area shorter than signature indicates\n");
1980 		goto bad_swap;
1981 	}
1982 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1983 		goto bad_swap;
1984 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1985 		goto bad_swap;
1986 
1987 	/* OK, set up the swap map and apply the bad block list */
1988 	swap_map = vmalloc(maxpages);
1989 	if (!swap_map) {
1990 		error = -ENOMEM;
1991 		goto bad_swap;
1992 	}
1993 
1994 	memset(swap_map, 0, maxpages);
1995 	nr_good_pages = maxpages - 1;	/* omit header page */
1996 
1997 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
1998 		unsigned int page_nr = swap_header->info.badpages[i];
1999 		if (page_nr == 0 || page_nr > swap_header->info.last_page) {
2000 			error = -EINVAL;
2001 			goto bad_swap;
2002 		}
2003 		if (page_nr < maxpages) {
2004 			swap_map[page_nr] = SWAP_MAP_BAD;
2005 			nr_good_pages--;
2006 		}
2007 	}
2008 
2009 	error = swap_cgroup_swapon(type, maxpages);
2010 	if (error)
2011 		goto bad_swap;
2012 
2013 	if (nr_good_pages) {
2014 		swap_map[0] = SWAP_MAP_BAD;
2015 		p->max = maxpages;
2016 		p->pages = nr_good_pages;
2017 		nr_extents = setup_swap_extents(p, &span);
2018 		if (nr_extents < 0) {
2019 			error = nr_extents;
2020 			goto bad_swap;
2021 		}
2022 		nr_good_pages = p->pages;
2023 	}
2024 	if (!nr_good_pages) {
2025 		printk(KERN_WARNING "Empty swap-file\n");
2026 		error = -EINVAL;
2027 		goto bad_swap;
2028 	}
2029 
2030 	if (p->bdev) {
2031 		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2032 			p->flags |= SWP_SOLIDSTATE;
2033 			p->cluster_next = 1 + (random32() % p->highest_bit);
2034 		}
2035 		if (discard_swap(p) == 0)
2036 			p->flags |= SWP_DISCARDABLE;
2037 	}
2038 
2039 	mutex_lock(&swapon_mutex);
2040 	spin_lock(&swap_lock);
2041 	if (swap_flags & SWAP_FLAG_PREFER)
2042 		p->prio =
2043 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2044 	else
2045 		p->prio = --least_priority;
2046 	p->swap_map = swap_map;
2047 	p->flags |= SWP_WRITEOK;
2048 	nr_swap_pages += nr_good_pages;
2049 	total_swap_pages += nr_good_pages;
2050 
2051 	printk(KERN_INFO "Adding %uk swap on %s.  "
2052 			"Priority:%d extents:%d across:%lluk %s%s\n",
2053 		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2054 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2055 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2056 		(p->flags & SWP_DISCARDABLE) ? "D" : "");
2057 
2058 	/* insert swap space into swap_list: */
2059 	prev = -1;
2060 	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2061 		if (p->prio >= swap_info[i]->prio)
2062 			break;
2063 		prev = i;
2064 	}
2065 	p->next = i;
2066 	if (prev < 0)
2067 		swap_list.head = swap_list.next = type;
2068 	else
2069 		swap_info[prev]->next = type;
2070 	spin_unlock(&swap_lock);
2071 	mutex_unlock(&swapon_mutex);
2072 	error = 0;
2073 	goto out;
2074 bad_swap:
2075 	if (bdev) {
2076 		set_blocksize(bdev, p->old_block_size);
2077 		bd_release(bdev);
2078 	}
2079 	destroy_swap_extents(p);
2080 	swap_cgroup_swapoff(type);
2081 bad_swap_2:
2082 	spin_lock(&swap_lock);
2083 	p->swap_file = NULL;
2084 	p->flags = 0;
2085 	spin_unlock(&swap_lock);
2086 	vfree(swap_map);
2087 	if (swap_file)
2088 		filp_close(swap_file, NULL);
2089 out:
2090 	if (page && !IS_ERR(page)) {
2091 		kunmap(page);
2092 		page_cache_release(page);
2093 	}
2094 	if (name)
2095 		putname(name);
2096 	if (did_down) {
2097 		if (!error)
2098 			inode->i_flags |= S_SWAPFILE;
2099 		mutex_unlock(&inode->i_mutex);
2100 	}
2101 	return error;
2102 }
2103 
2104 void si_swapinfo(struct sysinfo *val)
2105 {
2106 	unsigned int type;
2107 	unsigned long nr_to_be_unused = 0;
2108 
2109 	spin_lock(&swap_lock);
2110 	for (type = 0; type < nr_swapfiles; type++) {
2111 		struct swap_info_struct *si = swap_info[type];
2112 
2113 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2114 			nr_to_be_unused += si->inuse_pages;
2115 	}
2116 	val->freeswap = nr_swap_pages + nr_to_be_unused;
2117 	val->totalswap = total_swap_pages + nr_to_be_unused;
2118 	spin_unlock(&swap_lock);
2119 }
2120 
2121 /*
2122  * Verify that a swap entry is valid and increment its swap map count.
2123  *
2124  * Returns error code in following case.
2125  * - success -> 0
2126  * - swp_entry is invalid -> EINVAL
2127  * - swp_entry is migration entry -> EINVAL
2128  * - swap-cache reference is requested but there is already one. -> EEXIST
2129  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2130  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2131  */
2132 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2133 {
2134 	struct swap_info_struct *p;
2135 	unsigned long offset, type;
2136 	unsigned char count;
2137 	unsigned char has_cache;
2138 	int err = -EINVAL;
2139 
2140 	if (non_swap_entry(entry))
2141 		goto out;
2142 
2143 	type = swp_type(entry);
2144 	if (type >= nr_swapfiles)
2145 		goto bad_file;
2146 	p = swap_info[type];
2147 	offset = swp_offset(entry);
2148 
2149 	spin_lock(&swap_lock);
2150 	if (unlikely(offset >= p->max))
2151 		goto unlock_out;
2152 
2153 	count = p->swap_map[offset];
2154 	has_cache = count & SWAP_HAS_CACHE;
2155 	count &= ~SWAP_HAS_CACHE;
2156 	err = 0;
2157 
2158 	if (usage == SWAP_HAS_CACHE) {
2159 
2160 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2161 		if (!has_cache && count)
2162 			has_cache = SWAP_HAS_CACHE;
2163 		else if (has_cache)		/* someone else added cache */
2164 			err = -EEXIST;
2165 		else				/* no users remaining */
2166 			err = -ENOENT;
2167 
2168 	} else if (count || has_cache) {
2169 
2170 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2171 			count += usage;
2172 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2173 			err = -EINVAL;
2174 		else if (swap_count_continued(p, offset, count))
2175 			count = COUNT_CONTINUED;
2176 		else
2177 			err = -ENOMEM;
2178 	} else
2179 		err = -ENOENT;			/* unused swap entry */
2180 
2181 	p->swap_map[offset] = count | has_cache;
2182 
2183 unlock_out:
2184 	spin_unlock(&swap_lock);
2185 out:
2186 	return err;
2187 
2188 bad_file:
2189 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2190 	goto out;
2191 }
2192 
2193 /*
2194  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2195  * (in which case its reference count is never incremented).
2196  */
2197 void swap_shmem_alloc(swp_entry_t entry)
2198 {
2199 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2200 }
2201 
2202 /*
2203  * Increase reference count of swap entry by 1.
2204  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2205  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2206  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2207  * might occur if a page table entry has got corrupted.
2208  */
2209 int swap_duplicate(swp_entry_t entry)
2210 {
2211 	int err = 0;
2212 
2213 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2214 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2215 	return err;
2216 }
2217 
2218 /*
2219  * @entry: swap entry for which we allocate swap cache.
2220  *
2221  * Called when allocating swap cache for existing swap entry,
2222  * This can return error codes. Returns 0 at success.
2223  * -EBUSY means there is a swap cache.
2224  * Note: return code is different from swap_duplicate().
2225  */
2226 int swapcache_prepare(swp_entry_t entry)
2227 {
2228 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2229 }
2230 
2231 /*
2232  * swap_lock prevents swap_map being freed. Don't grab an extra
2233  * reference on the swaphandle, it doesn't matter if it becomes unused.
2234  */
2235 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2236 {
2237 	struct swap_info_struct *si;
2238 	int our_page_cluster = page_cluster;
2239 	pgoff_t target, toff;
2240 	pgoff_t base, end;
2241 	int nr_pages = 0;
2242 
2243 	if (!our_page_cluster)	/* no readahead */
2244 		return 0;
2245 
2246 	si = swap_info[swp_type(entry)];
2247 	target = swp_offset(entry);
2248 	base = (target >> our_page_cluster) << our_page_cluster;
2249 	end = base + (1 << our_page_cluster);
2250 	if (!base)		/* first page is swap header */
2251 		base++;
2252 
2253 	spin_lock(&swap_lock);
2254 	if (end > si->max)	/* don't go beyond end of map */
2255 		end = si->max;
2256 
2257 	/* Count contiguous allocated slots above our target */
2258 	for (toff = target; ++toff < end; nr_pages++) {
2259 		/* Don't read in free or bad pages */
2260 		if (!si->swap_map[toff])
2261 			break;
2262 		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2263 			break;
2264 	}
2265 	/* Count contiguous allocated slots below our target */
2266 	for (toff = target; --toff >= base; nr_pages++) {
2267 		/* Don't read in free or bad pages */
2268 		if (!si->swap_map[toff])
2269 			break;
2270 		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2271 			break;
2272 	}
2273 	spin_unlock(&swap_lock);
2274 
2275 	/*
2276 	 * Indicate starting offset, and return number of pages to get:
2277 	 * if only 1, say 0, since there's then no readahead to be done.
2278 	 */
2279 	*offset = ++toff;
2280 	return nr_pages? ++nr_pages: 0;
2281 }
2282 
2283 /*
2284  * add_swap_count_continuation - called when a swap count is duplicated
2285  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2286  * page of the original vmalloc'ed swap_map, to hold the continuation count
2287  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2288  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2289  *
2290  * These continuation pages are seldom referenced: the common paths all work
2291  * on the original swap_map, only referring to a continuation page when the
2292  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2293  *
2294  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2295  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2296  * can be called after dropping locks.
2297  */
2298 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2299 {
2300 	struct swap_info_struct *si;
2301 	struct page *head;
2302 	struct page *page;
2303 	struct page *list_page;
2304 	pgoff_t offset;
2305 	unsigned char count;
2306 
2307 	/*
2308 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2309 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2310 	 */
2311 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2312 
2313 	si = swap_info_get(entry);
2314 	if (!si) {
2315 		/*
2316 		 * An acceptable race has occurred since the failing
2317 		 * __swap_duplicate(): the swap entry has been freed,
2318 		 * perhaps even the whole swap_map cleared for swapoff.
2319 		 */
2320 		goto outer;
2321 	}
2322 
2323 	offset = swp_offset(entry);
2324 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2325 
2326 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2327 		/*
2328 		 * The higher the swap count, the more likely it is that tasks
2329 		 * will race to add swap count continuation: we need to avoid
2330 		 * over-provisioning.
2331 		 */
2332 		goto out;
2333 	}
2334 
2335 	if (!page) {
2336 		spin_unlock(&swap_lock);
2337 		return -ENOMEM;
2338 	}
2339 
2340 	/*
2341 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2342 	 * no architecture is using highmem pages for kernel pagetables: so it
2343 	 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2344 	 */
2345 	head = vmalloc_to_page(si->swap_map + offset);
2346 	offset &= ~PAGE_MASK;
2347 
2348 	/*
2349 	 * Page allocation does not initialize the page's lru field,
2350 	 * but it does always reset its private field.
2351 	 */
2352 	if (!page_private(head)) {
2353 		BUG_ON(count & COUNT_CONTINUED);
2354 		INIT_LIST_HEAD(&head->lru);
2355 		set_page_private(head, SWP_CONTINUED);
2356 		si->flags |= SWP_CONTINUED;
2357 	}
2358 
2359 	list_for_each_entry(list_page, &head->lru, lru) {
2360 		unsigned char *map;
2361 
2362 		/*
2363 		 * If the previous map said no continuation, but we've found
2364 		 * a continuation page, free our allocation and use this one.
2365 		 */
2366 		if (!(count & COUNT_CONTINUED))
2367 			goto out;
2368 
2369 		map = kmap_atomic(list_page, KM_USER0) + offset;
2370 		count = *map;
2371 		kunmap_atomic(map, KM_USER0);
2372 
2373 		/*
2374 		 * If this continuation count now has some space in it,
2375 		 * free our allocation and use this one.
2376 		 */
2377 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2378 			goto out;
2379 	}
2380 
2381 	list_add_tail(&page->lru, &head->lru);
2382 	page = NULL;			/* now it's attached, don't free it */
2383 out:
2384 	spin_unlock(&swap_lock);
2385 outer:
2386 	if (page)
2387 		__free_page(page);
2388 	return 0;
2389 }
2390 
2391 /*
2392  * swap_count_continued - when the original swap_map count is incremented
2393  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2394  * into, carry if so, or else fail until a new continuation page is allocated;
2395  * when the original swap_map count is decremented from 0 with continuation,
2396  * borrow from the continuation and report whether it still holds more.
2397  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2398  */
2399 static bool swap_count_continued(struct swap_info_struct *si,
2400 				 pgoff_t offset, unsigned char count)
2401 {
2402 	struct page *head;
2403 	struct page *page;
2404 	unsigned char *map;
2405 
2406 	head = vmalloc_to_page(si->swap_map + offset);
2407 	if (page_private(head) != SWP_CONTINUED) {
2408 		BUG_ON(count & COUNT_CONTINUED);
2409 		return false;		/* need to add count continuation */
2410 	}
2411 
2412 	offset &= ~PAGE_MASK;
2413 	page = list_entry(head->lru.next, struct page, lru);
2414 	map = kmap_atomic(page, KM_USER0) + offset;
2415 
2416 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2417 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2418 
2419 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2420 		/*
2421 		 * Think of how you add 1 to 999
2422 		 */
2423 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2424 			kunmap_atomic(map, KM_USER0);
2425 			page = list_entry(page->lru.next, struct page, lru);
2426 			BUG_ON(page == head);
2427 			map = kmap_atomic(page, KM_USER0) + offset;
2428 		}
2429 		if (*map == SWAP_CONT_MAX) {
2430 			kunmap_atomic(map, KM_USER0);
2431 			page = list_entry(page->lru.next, struct page, lru);
2432 			if (page == head)
2433 				return false;	/* add count continuation */
2434 			map = kmap_atomic(page, KM_USER0) + offset;
2435 init_map:		*map = 0;		/* we didn't zero the page */
2436 		}
2437 		*map += 1;
2438 		kunmap_atomic(map, KM_USER0);
2439 		page = list_entry(page->lru.prev, struct page, lru);
2440 		while (page != head) {
2441 			map = kmap_atomic(page, KM_USER0) + offset;
2442 			*map = COUNT_CONTINUED;
2443 			kunmap_atomic(map, KM_USER0);
2444 			page = list_entry(page->lru.prev, struct page, lru);
2445 		}
2446 		return true;			/* incremented */
2447 
2448 	} else {				/* decrementing */
2449 		/*
2450 		 * Think of how you subtract 1 from 1000
2451 		 */
2452 		BUG_ON(count != COUNT_CONTINUED);
2453 		while (*map == COUNT_CONTINUED) {
2454 			kunmap_atomic(map, KM_USER0);
2455 			page = list_entry(page->lru.next, struct page, lru);
2456 			BUG_ON(page == head);
2457 			map = kmap_atomic(page, KM_USER0) + offset;
2458 		}
2459 		BUG_ON(*map == 0);
2460 		*map -= 1;
2461 		if (*map == 0)
2462 			count = 0;
2463 		kunmap_atomic(map, KM_USER0);
2464 		page = list_entry(page->lru.prev, struct page, lru);
2465 		while (page != head) {
2466 			map = kmap_atomic(page, KM_USER0) + offset;
2467 			*map = SWAP_CONT_MAX | count;
2468 			count = COUNT_CONTINUED;
2469 			kunmap_atomic(map, KM_USER0);
2470 			page = list_entry(page->lru.prev, struct page, lru);
2471 		}
2472 		return count == COUNT_CONTINUED;
2473 	}
2474 }
2475 
2476 /*
2477  * free_swap_count_continuations - swapoff free all the continuation pages
2478  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2479  */
2480 static void free_swap_count_continuations(struct swap_info_struct *si)
2481 {
2482 	pgoff_t offset;
2483 
2484 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2485 		struct page *head;
2486 		head = vmalloc_to_page(si->swap_map + offset);
2487 		if (page_private(head)) {
2488 			struct list_head *this, *next;
2489 			list_for_each_safe(this, next, &head->lru) {
2490 				struct page *page;
2491 				page = list_entry(this, struct page, lru);
2492 				list_del(this);
2493 				__free_page(page);
2494 			}
2495 		}
2496 	}
2497 }
2498