1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/config.h> 9 #include <linux/mm.h> 10 #include <linux/hugetlb.h> 11 #include <linux/mman.h> 12 #include <linux/slab.h> 13 #include <linux/kernel_stat.h> 14 #include <linux/swap.h> 15 #include <linux/vmalloc.h> 16 #include <linux/pagemap.h> 17 #include <linux/namei.h> 18 #include <linux/shm.h> 19 #include <linux/blkdev.h> 20 #include <linux/writeback.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/init.h> 24 #include <linux/module.h> 25 #include <linux/rmap.h> 26 #include <linux/security.h> 27 #include <linux/backing-dev.h> 28 #include <linux/mutex.h> 29 #include <linux/capability.h> 30 #include <linux/syscalls.h> 31 32 #include <asm/pgtable.h> 33 #include <asm/tlbflush.h> 34 #include <linux/swapops.h> 35 36 DEFINE_SPINLOCK(swap_lock); 37 unsigned int nr_swapfiles; 38 long total_swap_pages; 39 static int swap_overflow; 40 41 static const char Bad_file[] = "Bad swap file entry "; 42 static const char Unused_file[] = "Unused swap file entry "; 43 static const char Bad_offset[] = "Bad swap offset entry "; 44 static const char Unused_offset[] = "Unused swap offset entry "; 45 46 struct swap_list_t swap_list = {-1, -1}; 47 48 static struct swap_info_struct swap_info[MAX_SWAPFILES]; 49 50 static DEFINE_MUTEX(swapon_mutex); 51 52 /* 53 * We need this because the bdev->unplug_fn can sleep and we cannot 54 * hold swap_lock while calling the unplug_fn. And swap_lock 55 * cannot be turned into a mutex. 56 */ 57 static DECLARE_RWSEM(swap_unplug_sem); 58 59 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page) 60 { 61 swp_entry_t entry; 62 63 down_read(&swap_unplug_sem); 64 entry.val = page_private(page); 65 if (PageSwapCache(page)) { 66 struct block_device *bdev = swap_info[swp_type(entry)].bdev; 67 struct backing_dev_info *bdi; 68 69 /* 70 * If the page is removed from swapcache from under us (with a 71 * racy try_to_unuse/swapoff) we need an additional reference 72 * count to avoid reading garbage from page_private(page) above. 73 * If the WARN_ON triggers during a swapoff it maybe the race 74 * condition and it's harmless. However if it triggers without 75 * swapoff it signals a problem. 76 */ 77 WARN_ON(page_count(page) <= 1); 78 79 bdi = bdev->bd_inode->i_mapping->backing_dev_info; 80 blk_run_backing_dev(bdi, page); 81 } 82 up_read(&swap_unplug_sem); 83 } 84 85 #define SWAPFILE_CLUSTER 256 86 #define LATENCY_LIMIT 256 87 88 static inline unsigned long scan_swap_map(struct swap_info_struct *si) 89 { 90 unsigned long offset, last_in_cluster; 91 int latency_ration = LATENCY_LIMIT; 92 93 /* 94 * We try to cluster swap pages by allocating them sequentially 95 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 96 * way, however, we resort to first-free allocation, starting 97 * a new cluster. This prevents us from scattering swap pages 98 * all over the entire swap partition, so that we reduce 99 * overall disk seek times between swap pages. -- sct 100 * But we do now try to find an empty cluster. -Andrea 101 */ 102 103 si->flags += SWP_SCANNING; 104 if (unlikely(!si->cluster_nr)) { 105 si->cluster_nr = SWAPFILE_CLUSTER - 1; 106 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) 107 goto lowest; 108 spin_unlock(&swap_lock); 109 110 offset = si->lowest_bit; 111 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 112 113 /* Locate the first empty (unaligned) cluster */ 114 for (; last_in_cluster <= si->highest_bit; offset++) { 115 if (si->swap_map[offset]) 116 last_in_cluster = offset + SWAPFILE_CLUSTER; 117 else if (offset == last_in_cluster) { 118 spin_lock(&swap_lock); 119 si->cluster_next = offset-SWAPFILE_CLUSTER+1; 120 goto cluster; 121 } 122 if (unlikely(--latency_ration < 0)) { 123 cond_resched(); 124 latency_ration = LATENCY_LIMIT; 125 } 126 } 127 spin_lock(&swap_lock); 128 goto lowest; 129 } 130 131 si->cluster_nr--; 132 cluster: 133 offset = si->cluster_next; 134 if (offset > si->highest_bit) 135 lowest: offset = si->lowest_bit; 136 checks: if (!(si->flags & SWP_WRITEOK)) 137 goto no_page; 138 if (!si->highest_bit) 139 goto no_page; 140 if (!si->swap_map[offset]) { 141 if (offset == si->lowest_bit) 142 si->lowest_bit++; 143 if (offset == si->highest_bit) 144 si->highest_bit--; 145 si->inuse_pages++; 146 if (si->inuse_pages == si->pages) { 147 si->lowest_bit = si->max; 148 si->highest_bit = 0; 149 } 150 si->swap_map[offset] = 1; 151 si->cluster_next = offset + 1; 152 si->flags -= SWP_SCANNING; 153 return offset; 154 } 155 156 spin_unlock(&swap_lock); 157 while (++offset <= si->highest_bit) { 158 if (!si->swap_map[offset]) { 159 spin_lock(&swap_lock); 160 goto checks; 161 } 162 if (unlikely(--latency_ration < 0)) { 163 cond_resched(); 164 latency_ration = LATENCY_LIMIT; 165 } 166 } 167 spin_lock(&swap_lock); 168 goto lowest; 169 170 no_page: 171 si->flags -= SWP_SCANNING; 172 return 0; 173 } 174 175 swp_entry_t get_swap_page(void) 176 { 177 struct swap_info_struct *si; 178 pgoff_t offset; 179 int type, next; 180 int wrapped = 0; 181 182 spin_lock(&swap_lock); 183 if (nr_swap_pages <= 0) 184 goto noswap; 185 nr_swap_pages--; 186 187 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { 188 si = swap_info + type; 189 next = si->next; 190 if (next < 0 || 191 (!wrapped && si->prio != swap_info[next].prio)) { 192 next = swap_list.head; 193 wrapped++; 194 } 195 196 if (!si->highest_bit) 197 continue; 198 if (!(si->flags & SWP_WRITEOK)) 199 continue; 200 201 swap_list.next = next; 202 offset = scan_swap_map(si); 203 if (offset) { 204 spin_unlock(&swap_lock); 205 return swp_entry(type, offset); 206 } 207 next = swap_list.next; 208 } 209 210 nr_swap_pages++; 211 noswap: 212 spin_unlock(&swap_lock); 213 return (swp_entry_t) {0}; 214 } 215 216 swp_entry_t get_swap_page_of_type(int type) 217 { 218 struct swap_info_struct *si; 219 pgoff_t offset; 220 221 spin_lock(&swap_lock); 222 si = swap_info + type; 223 if (si->flags & SWP_WRITEOK) { 224 nr_swap_pages--; 225 offset = scan_swap_map(si); 226 if (offset) { 227 spin_unlock(&swap_lock); 228 return swp_entry(type, offset); 229 } 230 nr_swap_pages++; 231 } 232 spin_unlock(&swap_lock); 233 return (swp_entry_t) {0}; 234 } 235 236 static struct swap_info_struct * swap_info_get(swp_entry_t entry) 237 { 238 struct swap_info_struct * p; 239 unsigned long offset, type; 240 241 if (!entry.val) 242 goto out; 243 type = swp_type(entry); 244 if (type >= nr_swapfiles) 245 goto bad_nofile; 246 p = & swap_info[type]; 247 if (!(p->flags & SWP_USED)) 248 goto bad_device; 249 offset = swp_offset(entry); 250 if (offset >= p->max) 251 goto bad_offset; 252 if (!p->swap_map[offset]) 253 goto bad_free; 254 spin_lock(&swap_lock); 255 return p; 256 257 bad_free: 258 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); 259 goto out; 260 bad_offset: 261 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); 262 goto out; 263 bad_device: 264 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); 265 goto out; 266 bad_nofile: 267 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); 268 out: 269 return NULL; 270 } 271 272 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset) 273 { 274 int count = p->swap_map[offset]; 275 276 if (count < SWAP_MAP_MAX) { 277 count--; 278 p->swap_map[offset] = count; 279 if (!count) { 280 if (offset < p->lowest_bit) 281 p->lowest_bit = offset; 282 if (offset > p->highest_bit) 283 p->highest_bit = offset; 284 if (p->prio > swap_info[swap_list.next].prio) 285 swap_list.next = p - swap_info; 286 nr_swap_pages++; 287 p->inuse_pages--; 288 } 289 } 290 return count; 291 } 292 293 /* 294 * Caller has made sure that the swapdevice corresponding to entry 295 * is still around or has not been recycled. 296 */ 297 void swap_free(swp_entry_t entry) 298 { 299 struct swap_info_struct * p; 300 301 p = swap_info_get(entry); 302 if (p) { 303 swap_entry_free(p, swp_offset(entry)); 304 spin_unlock(&swap_lock); 305 } 306 } 307 308 /* 309 * How many references to page are currently swapped out? 310 */ 311 static inline int page_swapcount(struct page *page) 312 { 313 int count = 0; 314 struct swap_info_struct *p; 315 swp_entry_t entry; 316 317 entry.val = page_private(page); 318 p = swap_info_get(entry); 319 if (p) { 320 /* Subtract the 1 for the swap cache itself */ 321 count = p->swap_map[swp_offset(entry)] - 1; 322 spin_unlock(&swap_lock); 323 } 324 return count; 325 } 326 327 /* 328 * We can use this swap cache entry directly 329 * if there are no other references to it. 330 */ 331 int can_share_swap_page(struct page *page) 332 { 333 int count; 334 335 BUG_ON(!PageLocked(page)); 336 count = page_mapcount(page); 337 if (count <= 1 && PageSwapCache(page)) 338 count += page_swapcount(page); 339 return count == 1; 340 } 341 342 /* 343 * Work out if there are any other processes sharing this 344 * swap cache page. Free it if you can. Return success. 345 */ 346 int remove_exclusive_swap_page(struct page *page) 347 { 348 int retval; 349 struct swap_info_struct * p; 350 swp_entry_t entry; 351 352 BUG_ON(PagePrivate(page)); 353 BUG_ON(!PageLocked(page)); 354 355 if (!PageSwapCache(page)) 356 return 0; 357 if (PageWriteback(page)) 358 return 0; 359 if (page_count(page) != 2) /* 2: us + cache */ 360 return 0; 361 362 entry.val = page_private(page); 363 p = swap_info_get(entry); 364 if (!p) 365 return 0; 366 367 /* Is the only swap cache user the cache itself? */ 368 retval = 0; 369 if (p->swap_map[swp_offset(entry)] == 1) { 370 /* Recheck the page count with the swapcache lock held.. */ 371 write_lock_irq(&swapper_space.tree_lock); 372 if ((page_count(page) == 2) && !PageWriteback(page)) { 373 __delete_from_swap_cache(page); 374 SetPageDirty(page); 375 retval = 1; 376 } 377 write_unlock_irq(&swapper_space.tree_lock); 378 } 379 spin_unlock(&swap_lock); 380 381 if (retval) { 382 swap_free(entry); 383 page_cache_release(page); 384 } 385 386 return retval; 387 } 388 389 /* 390 * Free the swap entry like above, but also try to 391 * free the page cache entry if it is the last user. 392 */ 393 void free_swap_and_cache(swp_entry_t entry) 394 { 395 struct swap_info_struct * p; 396 struct page *page = NULL; 397 398 p = swap_info_get(entry); 399 if (p) { 400 if (swap_entry_free(p, swp_offset(entry)) == 1) { 401 page = find_get_page(&swapper_space, entry.val); 402 if (page && unlikely(TestSetPageLocked(page))) { 403 page_cache_release(page); 404 page = NULL; 405 } 406 } 407 spin_unlock(&swap_lock); 408 } 409 if (page) { 410 int one_user; 411 412 BUG_ON(PagePrivate(page)); 413 one_user = (page_count(page) == 2); 414 /* Only cache user (+us), or swap space full? Free it! */ 415 /* Also recheck PageSwapCache after page is locked (above) */ 416 if (PageSwapCache(page) && !PageWriteback(page) && 417 (one_user || vm_swap_full())) { 418 delete_from_swap_cache(page); 419 SetPageDirty(page); 420 } 421 unlock_page(page); 422 page_cache_release(page); 423 } 424 } 425 426 #ifdef CONFIG_SOFTWARE_SUSPEND 427 /* 428 * Find the swap type that corresponds to given device (if any) 429 * 430 * This is needed for software suspend and is done in such a way that inode 431 * aliasing is allowed. 432 */ 433 int swap_type_of(dev_t device) 434 { 435 int i; 436 437 spin_lock(&swap_lock); 438 for (i = 0; i < nr_swapfiles; i++) { 439 struct inode *inode; 440 441 if (!(swap_info[i].flags & SWP_WRITEOK)) 442 continue; 443 if (!device) { 444 spin_unlock(&swap_lock); 445 return i; 446 } 447 inode = swap_info->swap_file->f_dentry->d_inode; 448 if (S_ISBLK(inode->i_mode) && 449 device == MKDEV(imajor(inode), iminor(inode))) { 450 spin_unlock(&swap_lock); 451 return i; 452 } 453 } 454 spin_unlock(&swap_lock); 455 return -ENODEV; 456 } 457 458 /* 459 * Return either the total number of swap pages of given type, or the number 460 * of free pages of that type (depending on @free) 461 * 462 * This is needed for software suspend 463 */ 464 unsigned int count_swap_pages(int type, int free) 465 { 466 unsigned int n = 0; 467 468 if (type < nr_swapfiles) { 469 spin_lock(&swap_lock); 470 if (swap_info[type].flags & SWP_WRITEOK) { 471 n = swap_info[type].pages; 472 if (free) 473 n -= swap_info[type].inuse_pages; 474 } 475 spin_unlock(&swap_lock); 476 } 477 return n; 478 } 479 #endif 480 481 /* 482 * No need to decide whether this PTE shares the swap entry with others, 483 * just let do_wp_page work it out if a write is requested later - to 484 * force COW, vm_page_prot omits write permission from any private vma. 485 */ 486 static void unuse_pte(struct vm_area_struct *vma, pte_t *pte, 487 unsigned long addr, swp_entry_t entry, struct page *page) 488 { 489 inc_mm_counter(vma->vm_mm, anon_rss); 490 get_page(page); 491 set_pte_at(vma->vm_mm, addr, pte, 492 pte_mkold(mk_pte(page, vma->vm_page_prot))); 493 page_add_anon_rmap(page, vma, addr); 494 swap_free(entry); 495 /* 496 * Move the page to the active list so it is not 497 * immediately swapped out again after swapon. 498 */ 499 activate_page(page); 500 } 501 502 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 503 unsigned long addr, unsigned long end, 504 swp_entry_t entry, struct page *page) 505 { 506 pte_t swp_pte = swp_entry_to_pte(entry); 507 pte_t *pte; 508 spinlock_t *ptl; 509 int found = 0; 510 511 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 512 do { 513 /* 514 * swapoff spends a _lot_ of time in this loop! 515 * Test inline before going to call unuse_pte. 516 */ 517 if (unlikely(pte_same(*pte, swp_pte))) { 518 unuse_pte(vma, pte++, addr, entry, page); 519 found = 1; 520 break; 521 } 522 } while (pte++, addr += PAGE_SIZE, addr != end); 523 pte_unmap_unlock(pte - 1, ptl); 524 return found; 525 } 526 527 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 528 unsigned long addr, unsigned long end, 529 swp_entry_t entry, struct page *page) 530 { 531 pmd_t *pmd; 532 unsigned long next; 533 534 pmd = pmd_offset(pud, addr); 535 do { 536 next = pmd_addr_end(addr, end); 537 if (pmd_none_or_clear_bad(pmd)) 538 continue; 539 if (unuse_pte_range(vma, pmd, addr, next, entry, page)) 540 return 1; 541 } while (pmd++, addr = next, addr != end); 542 return 0; 543 } 544 545 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 546 unsigned long addr, unsigned long end, 547 swp_entry_t entry, struct page *page) 548 { 549 pud_t *pud; 550 unsigned long next; 551 552 pud = pud_offset(pgd, addr); 553 do { 554 next = pud_addr_end(addr, end); 555 if (pud_none_or_clear_bad(pud)) 556 continue; 557 if (unuse_pmd_range(vma, pud, addr, next, entry, page)) 558 return 1; 559 } while (pud++, addr = next, addr != end); 560 return 0; 561 } 562 563 static int unuse_vma(struct vm_area_struct *vma, 564 swp_entry_t entry, struct page *page) 565 { 566 pgd_t *pgd; 567 unsigned long addr, end, next; 568 569 if (page->mapping) { 570 addr = page_address_in_vma(page, vma); 571 if (addr == -EFAULT) 572 return 0; 573 else 574 end = addr + PAGE_SIZE; 575 } else { 576 addr = vma->vm_start; 577 end = vma->vm_end; 578 } 579 580 pgd = pgd_offset(vma->vm_mm, addr); 581 do { 582 next = pgd_addr_end(addr, end); 583 if (pgd_none_or_clear_bad(pgd)) 584 continue; 585 if (unuse_pud_range(vma, pgd, addr, next, entry, page)) 586 return 1; 587 } while (pgd++, addr = next, addr != end); 588 return 0; 589 } 590 591 static int unuse_mm(struct mm_struct *mm, 592 swp_entry_t entry, struct page *page) 593 { 594 struct vm_area_struct *vma; 595 596 if (!down_read_trylock(&mm->mmap_sem)) { 597 /* 598 * Activate page so shrink_cache is unlikely to unmap its 599 * ptes while lock is dropped, so swapoff can make progress. 600 */ 601 activate_page(page); 602 unlock_page(page); 603 down_read(&mm->mmap_sem); 604 lock_page(page); 605 } 606 for (vma = mm->mmap; vma; vma = vma->vm_next) { 607 if (vma->anon_vma && unuse_vma(vma, entry, page)) 608 break; 609 } 610 up_read(&mm->mmap_sem); 611 /* 612 * Currently unuse_mm cannot fail, but leave error handling 613 * at call sites for now, since we change it from time to time. 614 */ 615 return 0; 616 } 617 618 #ifdef CONFIG_MIGRATION 619 int remove_vma_swap(struct vm_area_struct *vma, struct page *page) 620 { 621 swp_entry_t entry = { .val = page_private(page) }; 622 623 return unuse_vma(vma, entry, page); 624 } 625 #endif 626 627 /* 628 * Scan swap_map from current position to next entry still in use. 629 * Recycle to start on reaching the end, returning 0 when empty. 630 */ 631 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 632 unsigned int prev) 633 { 634 unsigned int max = si->max; 635 unsigned int i = prev; 636 int count; 637 638 /* 639 * No need for swap_lock here: we're just looking 640 * for whether an entry is in use, not modifying it; false 641 * hits are okay, and sys_swapoff() has already prevented new 642 * allocations from this area (while holding swap_lock). 643 */ 644 for (;;) { 645 if (++i >= max) { 646 if (!prev) { 647 i = 0; 648 break; 649 } 650 /* 651 * No entries in use at top of swap_map, 652 * loop back to start and recheck there. 653 */ 654 max = prev + 1; 655 prev = 0; 656 i = 1; 657 } 658 count = si->swap_map[i]; 659 if (count && count != SWAP_MAP_BAD) 660 break; 661 } 662 return i; 663 } 664 665 /* 666 * We completely avoid races by reading each swap page in advance, 667 * and then search for the process using it. All the necessary 668 * page table adjustments can then be made atomically. 669 */ 670 static int try_to_unuse(unsigned int type) 671 { 672 struct swap_info_struct * si = &swap_info[type]; 673 struct mm_struct *start_mm; 674 unsigned short *swap_map; 675 unsigned short swcount; 676 struct page *page; 677 swp_entry_t entry; 678 unsigned int i = 0; 679 int retval = 0; 680 int reset_overflow = 0; 681 int shmem; 682 683 /* 684 * When searching mms for an entry, a good strategy is to 685 * start at the first mm we freed the previous entry from 686 * (though actually we don't notice whether we or coincidence 687 * freed the entry). Initialize this start_mm with a hold. 688 * 689 * A simpler strategy would be to start at the last mm we 690 * freed the previous entry from; but that would take less 691 * advantage of mmlist ordering, which clusters forked mms 692 * together, child after parent. If we race with dup_mmap(), we 693 * prefer to resolve parent before child, lest we miss entries 694 * duplicated after we scanned child: using last mm would invert 695 * that. Though it's only a serious concern when an overflowed 696 * swap count is reset from SWAP_MAP_MAX, preventing a rescan. 697 */ 698 start_mm = &init_mm; 699 atomic_inc(&init_mm.mm_users); 700 701 /* 702 * Keep on scanning until all entries have gone. Usually, 703 * one pass through swap_map is enough, but not necessarily: 704 * there are races when an instance of an entry might be missed. 705 */ 706 while ((i = find_next_to_unuse(si, i)) != 0) { 707 if (signal_pending(current)) { 708 retval = -EINTR; 709 break; 710 } 711 712 /* 713 * Get a page for the entry, using the existing swap 714 * cache page if there is one. Otherwise, get a clean 715 * page and read the swap into it. 716 */ 717 swap_map = &si->swap_map[i]; 718 entry = swp_entry(type, i); 719 again: 720 page = read_swap_cache_async(entry, NULL, 0); 721 if (!page) { 722 /* 723 * Either swap_duplicate() failed because entry 724 * has been freed independently, and will not be 725 * reused since sys_swapoff() already disabled 726 * allocation from here, or alloc_page() failed. 727 */ 728 if (!*swap_map) 729 continue; 730 retval = -ENOMEM; 731 break; 732 } 733 734 /* 735 * Don't hold on to start_mm if it looks like exiting. 736 */ 737 if (atomic_read(&start_mm->mm_users) == 1) { 738 mmput(start_mm); 739 start_mm = &init_mm; 740 atomic_inc(&init_mm.mm_users); 741 } 742 743 /* 744 * Wait for and lock page. When do_swap_page races with 745 * try_to_unuse, do_swap_page can handle the fault much 746 * faster than try_to_unuse can locate the entry. This 747 * apparently redundant "wait_on_page_locked" lets try_to_unuse 748 * defer to do_swap_page in such a case - in some tests, 749 * do_swap_page and try_to_unuse repeatedly compete. 750 */ 751 wait_on_page_locked(page); 752 wait_on_page_writeback(page); 753 lock_page(page); 754 if (!PageSwapCache(page)) { 755 /* Page migration has occured */ 756 unlock_page(page); 757 page_cache_release(page); 758 goto again; 759 } 760 wait_on_page_writeback(page); 761 762 /* 763 * Remove all references to entry. 764 * Whenever we reach init_mm, there's no address space 765 * to search, but use it as a reminder to search shmem. 766 */ 767 shmem = 0; 768 swcount = *swap_map; 769 if (swcount > 1) { 770 if (start_mm == &init_mm) 771 shmem = shmem_unuse(entry, page); 772 else 773 retval = unuse_mm(start_mm, entry, page); 774 } 775 if (*swap_map > 1) { 776 int set_start_mm = (*swap_map >= swcount); 777 struct list_head *p = &start_mm->mmlist; 778 struct mm_struct *new_start_mm = start_mm; 779 struct mm_struct *prev_mm = start_mm; 780 struct mm_struct *mm; 781 782 atomic_inc(&new_start_mm->mm_users); 783 atomic_inc(&prev_mm->mm_users); 784 spin_lock(&mmlist_lock); 785 while (*swap_map > 1 && !retval && 786 (p = p->next) != &start_mm->mmlist) { 787 mm = list_entry(p, struct mm_struct, mmlist); 788 if (atomic_inc_return(&mm->mm_users) == 1) { 789 atomic_dec(&mm->mm_users); 790 continue; 791 } 792 spin_unlock(&mmlist_lock); 793 mmput(prev_mm); 794 prev_mm = mm; 795 796 cond_resched(); 797 798 swcount = *swap_map; 799 if (swcount <= 1) 800 ; 801 else if (mm == &init_mm) { 802 set_start_mm = 1; 803 shmem = shmem_unuse(entry, page); 804 } else 805 retval = unuse_mm(mm, entry, page); 806 if (set_start_mm && *swap_map < swcount) { 807 mmput(new_start_mm); 808 atomic_inc(&mm->mm_users); 809 new_start_mm = mm; 810 set_start_mm = 0; 811 } 812 spin_lock(&mmlist_lock); 813 } 814 spin_unlock(&mmlist_lock); 815 mmput(prev_mm); 816 mmput(start_mm); 817 start_mm = new_start_mm; 818 } 819 if (retval) { 820 unlock_page(page); 821 page_cache_release(page); 822 break; 823 } 824 825 /* 826 * How could swap count reach 0x7fff when the maximum 827 * pid is 0x7fff, and there's no way to repeat a swap 828 * page within an mm (except in shmem, where it's the 829 * shared object which takes the reference count)? 830 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4. 831 * 832 * If that's wrong, then we should worry more about 833 * exit_mmap() and do_munmap() cases described above: 834 * we might be resetting SWAP_MAP_MAX too early here. 835 * We know "Undead"s can happen, they're okay, so don't 836 * report them; but do report if we reset SWAP_MAP_MAX. 837 */ 838 if (*swap_map == SWAP_MAP_MAX) { 839 spin_lock(&swap_lock); 840 *swap_map = 1; 841 spin_unlock(&swap_lock); 842 reset_overflow = 1; 843 } 844 845 /* 846 * If a reference remains (rare), we would like to leave 847 * the page in the swap cache; but try_to_unmap could 848 * then re-duplicate the entry once we drop page lock, 849 * so we might loop indefinitely; also, that page could 850 * not be swapped out to other storage meanwhile. So: 851 * delete from cache even if there's another reference, 852 * after ensuring that the data has been saved to disk - 853 * since if the reference remains (rarer), it will be 854 * read from disk into another page. Splitting into two 855 * pages would be incorrect if swap supported "shared 856 * private" pages, but they are handled by tmpfs files. 857 * 858 * Note shmem_unuse already deleted a swappage from 859 * the swap cache, unless the move to filepage failed: 860 * in which case it left swappage in cache, lowered its 861 * swap count to pass quickly through the loops above, 862 * and now we must reincrement count to try again later. 863 */ 864 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) { 865 struct writeback_control wbc = { 866 .sync_mode = WB_SYNC_NONE, 867 }; 868 869 swap_writepage(page, &wbc); 870 lock_page(page); 871 wait_on_page_writeback(page); 872 } 873 if (PageSwapCache(page)) { 874 if (shmem) 875 swap_duplicate(entry); 876 else 877 delete_from_swap_cache(page); 878 } 879 880 /* 881 * So we could skip searching mms once swap count went 882 * to 1, we did not mark any present ptes as dirty: must 883 * mark page dirty so shrink_list will preserve it. 884 */ 885 SetPageDirty(page); 886 unlock_page(page); 887 page_cache_release(page); 888 889 /* 890 * Make sure that we aren't completely killing 891 * interactive performance. 892 */ 893 cond_resched(); 894 } 895 896 mmput(start_mm); 897 if (reset_overflow) { 898 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n"); 899 swap_overflow = 0; 900 } 901 return retval; 902 } 903 904 /* 905 * After a successful try_to_unuse, if no swap is now in use, we know 906 * we can empty the mmlist. swap_lock must be held on entry and exit. 907 * Note that mmlist_lock nests inside swap_lock, and an mm must be 908 * added to the mmlist just after page_duplicate - before would be racy. 909 */ 910 static void drain_mmlist(void) 911 { 912 struct list_head *p, *next; 913 unsigned int i; 914 915 for (i = 0; i < nr_swapfiles; i++) 916 if (swap_info[i].inuse_pages) 917 return; 918 spin_lock(&mmlist_lock); 919 list_for_each_safe(p, next, &init_mm.mmlist) 920 list_del_init(p); 921 spin_unlock(&mmlist_lock); 922 } 923 924 /* 925 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 926 * corresponds to page offset `offset'. 927 */ 928 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset) 929 { 930 struct swap_extent *se = sis->curr_swap_extent; 931 struct swap_extent *start_se = se; 932 933 for ( ; ; ) { 934 struct list_head *lh; 935 936 if (se->start_page <= offset && 937 offset < (se->start_page + se->nr_pages)) { 938 return se->start_block + (offset - se->start_page); 939 } 940 lh = se->list.next; 941 if (lh == &sis->extent_list) 942 lh = lh->next; 943 se = list_entry(lh, struct swap_extent, list); 944 sis->curr_swap_extent = se; 945 BUG_ON(se == start_se); /* It *must* be present */ 946 } 947 } 948 949 /* 950 * Free all of a swapdev's extent information 951 */ 952 static void destroy_swap_extents(struct swap_info_struct *sis) 953 { 954 while (!list_empty(&sis->extent_list)) { 955 struct swap_extent *se; 956 957 se = list_entry(sis->extent_list.next, 958 struct swap_extent, list); 959 list_del(&se->list); 960 kfree(se); 961 } 962 } 963 964 /* 965 * Add a block range (and the corresponding page range) into this swapdev's 966 * extent list. The extent list is kept sorted in page order. 967 * 968 * This function rather assumes that it is called in ascending page order. 969 */ 970 static int 971 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 972 unsigned long nr_pages, sector_t start_block) 973 { 974 struct swap_extent *se; 975 struct swap_extent *new_se; 976 struct list_head *lh; 977 978 lh = sis->extent_list.prev; /* The highest page extent */ 979 if (lh != &sis->extent_list) { 980 se = list_entry(lh, struct swap_extent, list); 981 BUG_ON(se->start_page + se->nr_pages != start_page); 982 if (se->start_block + se->nr_pages == start_block) { 983 /* Merge it */ 984 se->nr_pages += nr_pages; 985 return 0; 986 } 987 } 988 989 /* 990 * No merge. Insert a new extent, preserving ordering. 991 */ 992 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 993 if (new_se == NULL) 994 return -ENOMEM; 995 new_se->start_page = start_page; 996 new_se->nr_pages = nr_pages; 997 new_se->start_block = start_block; 998 999 list_add_tail(&new_se->list, &sis->extent_list); 1000 return 1; 1001 } 1002 1003 /* 1004 * A `swap extent' is a simple thing which maps a contiguous range of pages 1005 * onto a contiguous range of disk blocks. An ordered list of swap extents 1006 * is built at swapon time and is then used at swap_writepage/swap_readpage 1007 * time for locating where on disk a page belongs. 1008 * 1009 * If the swapfile is an S_ISBLK block device, a single extent is installed. 1010 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 1011 * swap files identically. 1012 * 1013 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 1014 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 1015 * swapfiles are handled *identically* after swapon time. 1016 * 1017 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 1018 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 1019 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 1020 * requirements, they are simply tossed out - we will never use those blocks 1021 * for swapping. 1022 * 1023 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 1024 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 1025 * which will scribble on the fs. 1026 * 1027 * The amount of disk space which a single swap extent represents varies. 1028 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 1029 * extents in the list. To avoid much list walking, we cache the previous 1030 * search location in `curr_swap_extent', and start new searches from there. 1031 * This is extremely effective. The average number of iterations in 1032 * map_swap_page() has been measured at about 0.3 per page. - akpm. 1033 */ 1034 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 1035 { 1036 struct inode *inode; 1037 unsigned blocks_per_page; 1038 unsigned long page_no; 1039 unsigned blkbits; 1040 sector_t probe_block; 1041 sector_t last_block; 1042 sector_t lowest_block = -1; 1043 sector_t highest_block = 0; 1044 int nr_extents = 0; 1045 int ret; 1046 1047 inode = sis->swap_file->f_mapping->host; 1048 if (S_ISBLK(inode->i_mode)) { 1049 ret = add_swap_extent(sis, 0, sis->max, 0); 1050 *span = sis->pages; 1051 goto done; 1052 } 1053 1054 blkbits = inode->i_blkbits; 1055 blocks_per_page = PAGE_SIZE >> blkbits; 1056 1057 /* 1058 * Map all the blocks into the extent list. This code doesn't try 1059 * to be very smart. 1060 */ 1061 probe_block = 0; 1062 page_no = 0; 1063 last_block = i_size_read(inode) >> blkbits; 1064 while ((probe_block + blocks_per_page) <= last_block && 1065 page_no < sis->max) { 1066 unsigned block_in_page; 1067 sector_t first_block; 1068 1069 first_block = bmap(inode, probe_block); 1070 if (first_block == 0) 1071 goto bad_bmap; 1072 1073 /* 1074 * It must be PAGE_SIZE aligned on-disk 1075 */ 1076 if (first_block & (blocks_per_page - 1)) { 1077 probe_block++; 1078 goto reprobe; 1079 } 1080 1081 for (block_in_page = 1; block_in_page < blocks_per_page; 1082 block_in_page++) { 1083 sector_t block; 1084 1085 block = bmap(inode, probe_block + block_in_page); 1086 if (block == 0) 1087 goto bad_bmap; 1088 if (block != first_block + block_in_page) { 1089 /* Discontiguity */ 1090 probe_block++; 1091 goto reprobe; 1092 } 1093 } 1094 1095 first_block >>= (PAGE_SHIFT - blkbits); 1096 if (page_no) { /* exclude the header page */ 1097 if (first_block < lowest_block) 1098 lowest_block = first_block; 1099 if (first_block > highest_block) 1100 highest_block = first_block; 1101 } 1102 1103 /* 1104 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 1105 */ 1106 ret = add_swap_extent(sis, page_no, 1, first_block); 1107 if (ret < 0) 1108 goto out; 1109 nr_extents += ret; 1110 page_no++; 1111 probe_block += blocks_per_page; 1112 reprobe: 1113 continue; 1114 } 1115 ret = nr_extents; 1116 *span = 1 + highest_block - lowest_block; 1117 if (page_no == 0) 1118 page_no = 1; /* force Empty message */ 1119 sis->max = page_no; 1120 sis->pages = page_no - 1; 1121 sis->highest_bit = page_no - 1; 1122 done: 1123 sis->curr_swap_extent = list_entry(sis->extent_list.prev, 1124 struct swap_extent, list); 1125 goto out; 1126 bad_bmap: 1127 printk(KERN_ERR "swapon: swapfile has holes\n"); 1128 ret = -EINVAL; 1129 out: 1130 return ret; 1131 } 1132 1133 #if 0 /* We don't need this yet */ 1134 #include <linux/backing-dev.h> 1135 int page_queue_congested(struct page *page) 1136 { 1137 struct backing_dev_info *bdi; 1138 1139 BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */ 1140 1141 if (PageSwapCache(page)) { 1142 swp_entry_t entry = { .val = page_private(page) }; 1143 struct swap_info_struct *sis; 1144 1145 sis = get_swap_info_struct(swp_type(entry)); 1146 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info; 1147 } else 1148 bdi = page->mapping->backing_dev_info; 1149 return bdi_write_congested(bdi); 1150 } 1151 #endif 1152 1153 asmlinkage long sys_swapoff(const char __user * specialfile) 1154 { 1155 struct swap_info_struct * p = NULL; 1156 unsigned short *swap_map; 1157 struct file *swap_file, *victim; 1158 struct address_space *mapping; 1159 struct inode *inode; 1160 char * pathname; 1161 int i, type, prev; 1162 int err; 1163 1164 if (!capable(CAP_SYS_ADMIN)) 1165 return -EPERM; 1166 1167 pathname = getname(specialfile); 1168 err = PTR_ERR(pathname); 1169 if (IS_ERR(pathname)) 1170 goto out; 1171 1172 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0); 1173 putname(pathname); 1174 err = PTR_ERR(victim); 1175 if (IS_ERR(victim)) 1176 goto out; 1177 1178 mapping = victim->f_mapping; 1179 prev = -1; 1180 spin_lock(&swap_lock); 1181 for (type = swap_list.head; type >= 0; type = swap_info[type].next) { 1182 p = swap_info + type; 1183 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) { 1184 if (p->swap_file->f_mapping == mapping) 1185 break; 1186 } 1187 prev = type; 1188 } 1189 if (type < 0) { 1190 err = -EINVAL; 1191 spin_unlock(&swap_lock); 1192 goto out_dput; 1193 } 1194 if (!security_vm_enough_memory(p->pages)) 1195 vm_unacct_memory(p->pages); 1196 else { 1197 err = -ENOMEM; 1198 spin_unlock(&swap_lock); 1199 goto out_dput; 1200 } 1201 if (prev < 0) { 1202 swap_list.head = p->next; 1203 } else { 1204 swap_info[prev].next = p->next; 1205 } 1206 if (type == swap_list.next) { 1207 /* just pick something that's safe... */ 1208 swap_list.next = swap_list.head; 1209 } 1210 nr_swap_pages -= p->pages; 1211 total_swap_pages -= p->pages; 1212 p->flags &= ~SWP_WRITEOK; 1213 spin_unlock(&swap_lock); 1214 1215 current->flags |= PF_SWAPOFF; 1216 err = try_to_unuse(type); 1217 current->flags &= ~PF_SWAPOFF; 1218 1219 if (err) { 1220 /* re-insert swap space back into swap_list */ 1221 spin_lock(&swap_lock); 1222 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next) 1223 if (p->prio >= swap_info[i].prio) 1224 break; 1225 p->next = i; 1226 if (prev < 0) 1227 swap_list.head = swap_list.next = p - swap_info; 1228 else 1229 swap_info[prev].next = p - swap_info; 1230 nr_swap_pages += p->pages; 1231 total_swap_pages += p->pages; 1232 p->flags |= SWP_WRITEOK; 1233 spin_unlock(&swap_lock); 1234 goto out_dput; 1235 } 1236 1237 /* wait for any unplug function to finish */ 1238 down_write(&swap_unplug_sem); 1239 up_write(&swap_unplug_sem); 1240 1241 destroy_swap_extents(p); 1242 mutex_lock(&swapon_mutex); 1243 spin_lock(&swap_lock); 1244 drain_mmlist(); 1245 1246 /* wait for anyone still in scan_swap_map */ 1247 p->highest_bit = 0; /* cuts scans short */ 1248 while (p->flags >= SWP_SCANNING) { 1249 spin_unlock(&swap_lock); 1250 schedule_timeout_uninterruptible(1); 1251 spin_lock(&swap_lock); 1252 } 1253 1254 swap_file = p->swap_file; 1255 p->swap_file = NULL; 1256 p->max = 0; 1257 swap_map = p->swap_map; 1258 p->swap_map = NULL; 1259 p->flags = 0; 1260 spin_unlock(&swap_lock); 1261 mutex_unlock(&swapon_mutex); 1262 vfree(swap_map); 1263 inode = mapping->host; 1264 if (S_ISBLK(inode->i_mode)) { 1265 struct block_device *bdev = I_BDEV(inode); 1266 set_blocksize(bdev, p->old_block_size); 1267 bd_release(bdev); 1268 } else { 1269 mutex_lock(&inode->i_mutex); 1270 inode->i_flags &= ~S_SWAPFILE; 1271 mutex_unlock(&inode->i_mutex); 1272 } 1273 filp_close(swap_file, NULL); 1274 err = 0; 1275 1276 out_dput: 1277 filp_close(victim, NULL); 1278 out: 1279 return err; 1280 } 1281 1282 #ifdef CONFIG_PROC_FS 1283 /* iterator */ 1284 static void *swap_start(struct seq_file *swap, loff_t *pos) 1285 { 1286 struct swap_info_struct *ptr = swap_info; 1287 int i; 1288 loff_t l = *pos; 1289 1290 mutex_lock(&swapon_mutex); 1291 1292 for (i = 0; i < nr_swapfiles; i++, ptr++) { 1293 if (!(ptr->flags & SWP_USED) || !ptr->swap_map) 1294 continue; 1295 if (!l--) 1296 return ptr; 1297 } 1298 1299 return NULL; 1300 } 1301 1302 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 1303 { 1304 struct swap_info_struct *ptr = v; 1305 struct swap_info_struct *endptr = swap_info + nr_swapfiles; 1306 1307 for (++ptr; ptr < endptr; ptr++) { 1308 if (!(ptr->flags & SWP_USED) || !ptr->swap_map) 1309 continue; 1310 ++*pos; 1311 return ptr; 1312 } 1313 1314 return NULL; 1315 } 1316 1317 static void swap_stop(struct seq_file *swap, void *v) 1318 { 1319 mutex_unlock(&swapon_mutex); 1320 } 1321 1322 static int swap_show(struct seq_file *swap, void *v) 1323 { 1324 struct swap_info_struct *ptr = v; 1325 struct file *file; 1326 int len; 1327 1328 if (v == swap_info) 1329 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 1330 1331 file = ptr->swap_file; 1332 len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\"); 1333 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 1334 len < 40 ? 40 - len : 1, " ", 1335 S_ISBLK(file->f_dentry->d_inode->i_mode) ? 1336 "partition" : "file\t", 1337 ptr->pages << (PAGE_SHIFT - 10), 1338 ptr->inuse_pages << (PAGE_SHIFT - 10), 1339 ptr->prio); 1340 return 0; 1341 } 1342 1343 static struct seq_operations swaps_op = { 1344 .start = swap_start, 1345 .next = swap_next, 1346 .stop = swap_stop, 1347 .show = swap_show 1348 }; 1349 1350 static int swaps_open(struct inode *inode, struct file *file) 1351 { 1352 return seq_open(file, &swaps_op); 1353 } 1354 1355 static struct file_operations proc_swaps_operations = { 1356 .open = swaps_open, 1357 .read = seq_read, 1358 .llseek = seq_lseek, 1359 .release = seq_release, 1360 }; 1361 1362 static int __init procswaps_init(void) 1363 { 1364 struct proc_dir_entry *entry; 1365 1366 entry = create_proc_entry("swaps", 0, NULL); 1367 if (entry) 1368 entry->proc_fops = &proc_swaps_operations; 1369 return 0; 1370 } 1371 __initcall(procswaps_init); 1372 #endif /* CONFIG_PROC_FS */ 1373 1374 /* 1375 * Written 01/25/92 by Simmule Turner, heavily changed by Linus. 1376 * 1377 * The swapon system call 1378 */ 1379 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) 1380 { 1381 struct swap_info_struct * p; 1382 char *name = NULL; 1383 struct block_device *bdev = NULL; 1384 struct file *swap_file = NULL; 1385 struct address_space *mapping; 1386 unsigned int type; 1387 int i, prev; 1388 int error; 1389 static int least_priority; 1390 union swap_header *swap_header = NULL; 1391 int swap_header_version; 1392 unsigned int nr_good_pages = 0; 1393 int nr_extents = 0; 1394 sector_t span; 1395 unsigned long maxpages = 1; 1396 int swapfilesize; 1397 unsigned short *swap_map; 1398 struct page *page = NULL; 1399 struct inode *inode = NULL; 1400 int did_down = 0; 1401 1402 if (!capable(CAP_SYS_ADMIN)) 1403 return -EPERM; 1404 spin_lock(&swap_lock); 1405 p = swap_info; 1406 for (type = 0 ; type < nr_swapfiles ; type++,p++) 1407 if (!(p->flags & SWP_USED)) 1408 break; 1409 error = -EPERM; 1410 /* 1411 * Test if adding another swap device is possible. There are 1412 * two limiting factors: 1) the number of bits for the swap 1413 * type swp_entry_t definition and 2) the number of bits for 1414 * the swap type in the swap ptes as defined by the different 1415 * architectures. To honor both limitations a swap entry 1416 * with swap offset 0 and swap type ~0UL is created, encoded 1417 * to a swap pte, decoded to a swp_entry_t again and finally 1418 * the swap type part is extracted. This will mask all bits 1419 * from the initial ~0UL that can't be encoded in either the 1420 * swp_entry_t or the architecture definition of a swap pte. 1421 */ 1422 if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) { 1423 spin_unlock(&swap_lock); 1424 goto out; 1425 } 1426 if (type >= nr_swapfiles) 1427 nr_swapfiles = type+1; 1428 INIT_LIST_HEAD(&p->extent_list); 1429 p->flags = SWP_USED; 1430 p->swap_file = NULL; 1431 p->old_block_size = 0; 1432 p->swap_map = NULL; 1433 p->lowest_bit = 0; 1434 p->highest_bit = 0; 1435 p->cluster_nr = 0; 1436 p->inuse_pages = 0; 1437 p->next = -1; 1438 if (swap_flags & SWAP_FLAG_PREFER) { 1439 p->prio = 1440 (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT; 1441 } else { 1442 p->prio = --least_priority; 1443 } 1444 spin_unlock(&swap_lock); 1445 name = getname(specialfile); 1446 error = PTR_ERR(name); 1447 if (IS_ERR(name)) { 1448 name = NULL; 1449 goto bad_swap_2; 1450 } 1451 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0); 1452 error = PTR_ERR(swap_file); 1453 if (IS_ERR(swap_file)) { 1454 swap_file = NULL; 1455 goto bad_swap_2; 1456 } 1457 1458 p->swap_file = swap_file; 1459 mapping = swap_file->f_mapping; 1460 inode = mapping->host; 1461 1462 error = -EBUSY; 1463 for (i = 0; i < nr_swapfiles; i++) { 1464 struct swap_info_struct *q = &swap_info[i]; 1465 1466 if (i == type || !q->swap_file) 1467 continue; 1468 if (mapping == q->swap_file->f_mapping) 1469 goto bad_swap; 1470 } 1471 1472 error = -EINVAL; 1473 if (S_ISBLK(inode->i_mode)) { 1474 bdev = I_BDEV(inode); 1475 error = bd_claim(bdev, sys_swapon); 1476 if (error < 0) { 1477 bdev = NULL; 1478 error = -EINVAL; 1479 goto bad_swap; 1480 } 1481 p->old_block_size = block_size(bdev); 1482 error = set_blocksize(bdev, PAGE_SIZE); 1483 if (error < 0) 1484 goto bad_swap; 1485 p->bdev = bdev; 1486 } else if (S_ISREG(inode->i_mode)) { 1487 p->bdev = inode->i_sb->s_bdev; 1488 mutex_lock(&inode->i_mutex); 1489 did_down = 1; 1490 if (IS_SWAPFILE(inode)) { 1491 error = -EBUSY; 1492 goto bad_swap; 1493 } 1494 } else { 1495 goto bad_swap; 1496 } 1497 1498 swapfilesize = i_size_read(inode) >> PAGE_SHIFT; 1499 1500 /* 1501 * Read the swap header. 1502 */ 1503 if (!mapping->a_ops->readpage) { 1504 error = -EINVAL; 1505 goto bad_swap; 1506 } 1507 page = read_cache_page(mapping, 0, 1508 (filler_t *)mapping->a_ops->readpage, swap_file); 1509 if (IS_ERR(page)) { 1510 error = PTR_ERR(page); 1511 goto bad_swap; 1512 } 1513 wait_on_page_locked(page); 1514 if (!PageUptodate(page)) 1515 goto bad_swap; 1516 kmap(page); 1517 swap_header = page_address(page); 1518 1519 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10)) 1520 swap_header_version = 1; 1521 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10)) 1522 swap_header_version = 2; 1523 else { 1524 printk(KERN_ERR "Unable to find swap-space signature\n"); 1525 error = -EINVAL; 1526 goto bad_swap; 1527 } 1528 1529 switch (swap_header_version) { 1530 case 1: 1531 printk(KERN_ERR "version 0 swap is no longer supported. " 1532 "Use mkswap -v1 %s\n", name); 1533 error = -EINVAL; 1534 goto bad_swap; 1535 case 2: 1536 /* Check the swap header's sub-version and the size of 1537 the swap file and bad block lists */ 1538 if (swap_header->info.version != 1) { 1539 printk(KERN_WARNING 1540 "Unable to handle swap header version %d\n", 1541 swap_header->info.version); 1542 error = -EINVAL; 1543 goto bad_swap; 1544 } 1545 1546 p->lowest_bit = 1; 1547 p->cluster_next = 1; 1548 1549 /* 1550 * Find out how many pages are allowed for a single swap 1551 * device. There are two limiting factors: 1) the number of 1552 * bits for the swap offset in the swp_entry_t type and 1553 * 2) the number of bits in the a swap pte as defined by 1554 * the different architectures. In order to find the 1555 * largest possible bit mask a swap entry with swap type 0 1556 * and swap offset ~0UL is created, encoded to a swap pte, 1557 * decoded to a swp_entry_t again and finally the swap 1558 * offset is extracted. This will mask all the bits from 1559 * the initial ~0UL mask that can't be encoded in either 1560 * the swp_entry_t or the architecture definition of a 1561 * swap pte. 1562 */ 1563 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1; 1564 if (maxpages > swap_header->info.last_page) 1565 maxpages = swap_header->info.last_page; 1566 p->highest_bit = maxpages - 1; 1567 1568 error = -EINVAL; 1569 if (!maxpages) 1570 goto bad_swap; 1571 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 1572 goto bad_swap; 1573 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 1574 goto bad_swap; 1575 1576 /* OK, set up the swap map and apply the bad block list */ 1577 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) { 1578 error = -ENOMEM; 1579 goto bad_swap; 1580 } 1581 1582 error = 0; 1583 memset(p->swap_map, 0, maxpages * sizeof(short)); 1584 for (i = 0; i < swap_header->info.nr_badpages; i++) { 1585 int page_nr = swap_header->info.badpages[i]; 1586 if (page_nr <= 0 || page_nr >= swap_header->info.last_page) 1587 error = -EINVAL; 1588 else 1589 p->swap_map[page_nr] = SWAP_MAP_BAD; 1590 } 1591 nr_good_pages = swap_header->info.last_page - 1592 swap_header->info.nr_badpages - 1593 1 /* header page */; 1594 if (error) 1595 goto bad_swap; 1596 } 1597 1598 if (swapfilesize && maxpages > swapfilesize) { 1599 printk(KERN_WARNING 1600 "Swap area shorter than signature indicates\n"); 1601 error = -EINVAL; 1602 goto bad_swap; 1603 } 1604 if (nr_good_pages) { 1605 p->swap_map[0] = SWAP_MAP_BAD; 1606 p->max = maxpages; 1607 p->pages = nr_good_pages; 1608 nr_extents = setup_swap_extents(p, &span); 1609 if (nr_extents < 0) { 1610 error = nr_extents; 1611 goto bad_swap; 1612 } 1613 nr_good_pages = p->pages; 1614 } 1615 if (!nr_good_pages) { 1616 printk(KERN_WARNING "Empty swap-file\n"); 1617 error = -EINVAL; 1618 goto bad_swap; 1619 } 1620 1621 mutex_lock(&swapon_mutex); 1622 spin_lock(&swap_lock); 1623 p->flags = SWP_ACTIVE; 1624 nr_swap_pages += nr_good_pages; 1625 total_swap_pages += nr_good_pages; 1626 1627 printk(KERN_INFO "Adding %uk swap on %s. " 1628 "Priority:%d extents:%d across:%lluk\n", 1629 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio, 1630 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10)); 1631 1632 /* insert swap space into swap_list: */ 1633 prev = -1; 1634 for (i = swap_list.head; i >= 0; i = swap_info[i].next) { 1635 if (p->prio >= swap_info[i].prio) { 1636 break; 1637 } 1638 prev = i; 1639 } 1640 p->next = i; 1641 if (prev < 0) { 1642 swap_list.head = swap_list.next = p - swap_info; 1643 } else { 1644 swap_info[prev].next = p - swap_info; 1645 } 1646 spin_unlock(&swap_lock); 1647 mutex_unlock(&swapon_mutex); 1648 error = 0; 1649 goto out; 1650 bad_swap: 1651 if (bdev) { 1652 set_blocksize(bdev, p->old_block_size); 1653 bd_release(bdev); 1654 } 1655 destroy_swap_extents(p); 1656 bad_swap_2: 1657 spin_lock(&swap_lock); 1658 swap_map = p->swap_map; 1659 p->swap_file = NULL; 1660 p->swap_map = NULL; 1661 p->flags = 0; 1662 if (!(swap_flags & SWAP_FLAG_PREFER)) 1663 ++least_priority; 1664 spin_unlock(&swap_lock); 1665 vfree(swap_map); 1666 if (swap_file) 1667 filp_close(swap_file, NULL); 1668 out: 1669 if (page && !IS_ERR(page)) { 1670 kunmap(page); 1671 page_cache_release(page); 1672 } 1673 if (name) 1674 putname(name); 1675 if (did_down) { 1676 if (!error) 1677 inode->i_flags |= S_SWAPFILE; 1678 mutex_unlock(&inode->i_mutex); 1679 } 1680 return error; 1681 } 1682 1683 void si_swapinfo(struct sysinfo *val) 1684 { 1685 unsigned int i; 1686 unsigned long nr_to_be_unused = 0; 1687 1688 spin_lock(&swap_lock); 1689 for (i = 0; i < nr_swapfiles; i++) { 1690 if (!(swap_info[i].flags & SWP_USED) || 1691 (swap_info[i].flags & SWP_WRITEOK)) 1692 continue; 1693 nr_to_be_unused += swap_info[i].inuse_pages; 1694 } 1695 val->freeswap = nr_swap_pages + nr_to_be_unused; 1696 val->totalswap = total_swap_pages + nr_to_be_unused; 1697 spin_unlock(&swap_lock); 1698 } 1699 1700 /* 1701 * Verify that a swap entry is valid and increment its swap map count. 1702 * 1703 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as 1704 * "permanent", but will be reclaimed by the next swapoff. 1705 */ 1706 int swap_duplicate(swp_entry_t entry) 1707 { 1708 struct swap_info_struct * p; 1709 unsigned long offset, type; 1710 int result = 0; 1711 1712 type = swp_type(entry); 1713 if (type >= nr_swapfiles) 1714 goto bad_file; 1715 p = type + swap_info; 1716 offset = swp_offset(entry); 1717 1718 spin_lock(&swap_lock); 1719 if (offset < p->max && p->swap_map[offset]) { 1720 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) { 1721 p->swap_map[offset]++; 1722 result = 1; 1723 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) { 1724 if (swap_overflow++ < 5) 1725 printk(KERN_WARNING "swap_dup: swap entry overflow\n"); 1726 p->swap_map[offset] = SWAP_MAP_MAX; 1727 result = 1; 1728 } 1729 } 1730 spin_unlock(&swap_lock); 1731 out: 1732 return result; 1733 1734 bad_file: 1735 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); 1736 goto out; 1737 } 1738 1739 struct swap_info_struct * 1740 get_swap_info_struct(unsigned type) 1741 { 1742 return &swap_info[type]; 1743 } 1744 1745 /* 1746 * swap_lock prevents swap_map being freed. Don't grab an extra 1747 * reference on the swaphandle, it doesn't matter if it becomes unused. 1748 */ 1749 int valid_swaphandles(swp_entry_t entry, unsigned long *offset) 1750 { 1751 int ret = 0, i = 1 << page_cluster; 1752 unsigned long toff; 1753 struct swap_info_struct *swapdev = swp_type(entry) + swap_info; 1754 1755 if (!page_cluster) /* no readahead */ 1756 return 0; 1757 toff = (swp_offset(entry) >> page_cluster) << page_cluster; 1758 if (!toff) /* first page is swap header */ 1759 toff++, i--; 1760 *offset = toff; 1761 1762 spin_lock(&swap_lock); 1763 do { 1764 /* Don't read-ahead past the end of the swap area */ 1765 if (toff >= swapdev->max) 1766 break; 1767 /* Don't read in free or bad pages */ 1768 if (!swapdev->swap_map[toff]) 1769 break; 1770 if (swapdev->swap_map[toff] == SWAP_MAP_BAD) 1771 break; 1772 toff++; 1773 ret++; 1774 } while (--i); 1775 spin_unlock(&swap_lock); 1776 return ret; 1777 } 1778