xref: /linux/mm/swapfile.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/config.h>
9 #include <linux/mm.h>
10 #include <linux/hugetlb.h>
11 #include <linux/mman.h>
12 #include <linux/slab.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/swap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 #include <linux/shm.h>
19 #include <linux/blkdev.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 
32 #include <asm/pgtable.h>
33 #include <asm/tlbflush.h>
34 #include <linux/swapops.h>
35 
36 DEFINE_SPINLOCK(swap_lock);
37 unsigned int nr_swapfiles;
38 long total_swap_pages;
39 static int swap_overflow;
40 
41 static const char Bad_file[] = "Bad swap file entry ";
42 static const char Unused_file[] = "Unused swap file entry ";
43 static const char Bad_offset[] = "Bad swap offset entry ";
44 static const char Unused_offset[] = "Unused swap offset entry ";
45 
46 struct swap_list_t swap_list = {-1, -1};
47 
48 static struct swap_info_struct swap_info[MAX_SWAPFILES];
49 
50 static DEFINE_MUTEX(swapon_mutex);
51 
52 /*
53  * We need this because the bdev->unplug_fn can sleep and we cannot
54  * hold swap_lock while calling the unplug_fn. And swap_lock
55  * cannot be turned into a mutex.
56  */
57 static DECLARE_RWSEM(swap_unplug_sem);
58 
59 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
60 {
61 	swp_entry_t entry;
62 
63 	down_read(&swap_unplug_sem);
64 	entry.val = page_private(page);
65 	if (PageSwapCache(page)) {
66 		struct block_device *bdev = swap_info[swp_type(entry)].bdev;
67 		struct backing_dev_info *bdi;
68 
69 		/*
70 		 * If the page is removed from swapcache from under us (with a
71 		 * racy try_to_unuse/swapoff) we need an additional reference
72 		 * count to avoid reading garbage from page_private(page) above.
73 		 * If the WARN_ON triggers during a swapoff it maybe the race
74 		 * condition and it's harmless. However if it triggers without
75 		 * swapoff it signals a problem.
76 		 */
77 		WARN_ON(page_count(page) <= 1);
78 
79 		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
80 		blk_run_backing_dev(bdi, page);
81 	}
82 	up_read(&swap_unplug_sem);
83 }
84 
85 #define SWAPFILE_CLUSTER	256
86 #define LATENCY_LIMIT		256
87 
88 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
89 {
90 	unsigned long offset, last_in_cluster;
91 	int latency_ration = LATENCY_LIMIT;
92 
93 	/*
94 	 * We try to cluster swap pages by allocating them sequentially
95 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
96 	 * way, however, we resort to first-free allocation, starting
97 	 * a new cluster.  This prevents us from scattering swap pages
98 	 * all over the entire swap partition, so that we reduce
99 	 * overall disk seek times between swap pages.  -- sct
100 	 * But we do now try to find an empty cluster.  -Andrea
101 	 */
102 
103 	si->flags += SWP_SCANNING;
104 	if (unlikely(!si->cluster_nr)) {
105 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
106 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
107 			goto lowest;
108 		spin_unlock(&swap_lock);
109 
110 		offset = si->lowest_bit;
111 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
112 
113 		/* Locate the first empty (unaligned) cluster */
114 		for (; last_in_cluster <= si->highest_bit; offset++) {
115 			if (si->swap_map[offset])
116 				last_in_cluster = offset + SWAPFILE_CLUSTER;
117 			else if (offset == last_in_cluster) {
118 				spin_lock(&swap_lock);
119 				si->cluster_next = offset-SWAPFILE_CLUSTER+1;
120 				goto cluster;
121 			}
122 			if (unlikely(--latency_ration < 0)) {
123 				cond_resched();
124 				latency_ration = LATENCY_LIMIT;
125 			}
126 		}
127 		spin_lock(&swap_lock);
128 		goto lowest;
129 	}
130 
131 	si->cluster_nr--;
132 cluster:
133 	offset = si->cluster_next;
134 	if (offset > si->highest_bit)
135 lowest:		offset = si->lowest_bit;
136 checks:	if (!(si->flags & SWP_WRITEOK))
137 		goto no_page;
138 	if (!si->highest_bit)
139 		goto no_page;
140 	if (!si->swap_map[offset]) {
141 		if (offset == si->lowest_bit)
142 			si->lowest_bit++;
143 		if (offset == si->highest_bit)
144 			si->highest_bit--;
145 		si->inuse_pages++;
146 		if (si->inuse_pages == si->pages) {
147 			si->lowest_bit = si->max;
148 			si->highest_bit = 0;
149 		}
150 		si->swap_map[offset] = 1;
151 		si->cluster_next = offset + 1;
152 		si->flags -= SWP_SCANNING;
153 		return offset;
154 	}
155 
156 	spin_unlock(&swap_lock);
157 	while (++offset <= si->highest_bit) {
158 		if (!si->swap_map[offset]) {
159 			spin_lock(&swap_lock);
160 			goto checks;
161 		}
162 		if (unlikely(--latency_ration < 0)) {
163 			cond_resched();
164 			latency_ration = LATENCY_LIMIT;
165 		}
166 	}
167 	spin_lock(&swap_lock);
168 	goto lowest;
169 
170 no_page:
171 	si->flags -= SWP_SCANNING;
172 	return 0;
173 }
174 
175 swp_entry_t get_swap_page(void)
176 {
177 	struct swap_info_struct *si;
178 	pgoff_t offset;
179 	int type, next;
180 	int wrapped = 0;
181 
182 	spin_lock(&swap_lock);
183 	if (nr_swap_pages <= 0)
184 		goto noswap;
185 	nr_swap_pages--;
186 
187 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
188 		si = swap_info + type;
189 		next = si->next;
190 		if (next < 0 ||
191 		    (!wrapped && si->prio != swap_info[next].prio)) {
192 			next = swap_list.head;
193 			wrapped++;
194 		}
195 
196 		if (!si->highest_bit)
197 			continue;
198 		if (!(si->flags & SWP_WRITEOK))
199 			continue;
200 
201 		swap_list.next = next;
202 		offset = scan_swap_map(si);
203 		if (offset) {
204 			spin_unlock(&swap_lock);
205 			return swp_entry(type, offset);
206 		}
207 		next = swap_list.next;
208 	}
209 
210 	nr_swap_pages++;
211 noswap:
212 	spin_unlock(&swap_lock);
213 	return (swp_entry_t) {0};
214 }
215 
216 swp_entry_t get_swap_page_of_type(int type)
217 {
218 	struct swap_info_struct *si;
219 	pgoff_t offset;
220 
221 	spin_lock(&swap_lock);
222 	si = swap_info + type;
223 	if (si->flags & SWP_WRITEOK) {
224 		nr_swap_pages--;
225 		offset = scan_swap_map(si);
226 		if (offset) {
227 			spin_unlock(&swap_lock);
228 			return swp_entry(type, offset);
229 		}
230 		nr_swap_pages++;
231 	}
232 	spin_unlock(&swap_lock);
233 	return (swp_entry_t) {0};
234 }
235 
236 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
237 {
238 	struct swap_info_struct * p;
239 	unsigned long offset, type;
240 
241 	if (!entry.val)
242 		goto out;
243 	type = swp_type(entry);
244 	if (type >= nr_swapfiles)
245 		goto bad_nofile;
246 	p = & swap_info[type];
247 	if (!(p->flags & SWP_USED))
248 		goto bad_device;
249 	offset = swp_offset(entry);
250 	if (offset >= p->max)
251 		goto bad_offset;
252 	if (!p->swap_map[offset])
253 		goto bad_free;
254 	spin_lock(&swap_lock);
255 	return p;
256 
257 bad_free:
258 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
259 	goto out;
260 bad_offset:
261 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
262 	goto out;
263 bad_device:
264 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
265 	goto out;
266 bad_nofile:
267 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
268 out:
269 	return NULL;
270 }
271 
272 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
273 {
274 	int count = p->swap_map[offset];
275 
276 	if (count < SWAP_MAP_MAX) {
277 		count--;
278 		p->swap_map[offset] = count;
279 		if (!count) {
280 			if (offset < p->lowest_bit)
281 				p->lowest_bit = offset;
282 			if (offset > p->highest_bit)
283 				p->highest_bit = offset;
284 			if (p->prio > swap_info[swap_list.next].prio)
285 				swap_list.next = p - swap_info;
286 			nr_swap_pages++;
287 			p->inuse_pages--;
288 		}
289 	}
290 	return count;
291 }
292 
293 /*
294  * Caller has made sure that the swapdevice corresponding to entry
295  * is still around or has not been recycled.
296  */
297 void swap_free(swp_entry_t entry)
298 {
299 	struct swap_info_struct * p;
300 
301 	p = swap_info_get(entry);
302 	if (p) {
303 		swap_entry_free(p, swp_offset(entry));
304 		spin_unlock(&swap_lock);
305 	}
306 }
307 
308 /*
309  * How many references to page are currently swapped out?
310  */
311 static inline int page_swapcount(struct page *page)
312 {
313 	int count = 0;
314 	struct swap_info_struct *p;
315 	swp_entry_t entry;
316 
317 	entry.val = page_private(page);
318 	p = swap_info_get(entry);
319 	if (p) {
320 		/* Subtract the 1 for the swap cache itself */
321 		count = p->swap_map[swp_offset(entry)] - 1;
322 		spin_unlock(&swap_lock);
323 	}
324 	return count;
325 }
326 
327 /*
328  * We can use this swap cache entry directly
329  * if there are no other references to it.
330  */
331 int can_share_swap_page(struct page *page)
332 {
333 	int count;
334 
335 	BUG_ON(!PageLocked(page));
336 	count = page_mapcount(page);
337 	if (count <= 1 && PageSwapCache(page))
338 		count += page_swapcount(page);
339 	return count == 1;
340 }
341 
342 /*
343  * Work out if there are any other processes sharing this
344  * swap cache page. Free it if you can. Return success.
345  */
346 int remove_exclusive_swap_page(struct page *page)
347 {
348 	int retval;
349 	struct swap_info_struct * p;
350 	swp_entry_t entry;
351 
352 	BUG_ON(PagePrivate(page));
353 	BUG_ON(!PageLocked(page));
354 
355 	if (!PageSwapCache(page))
356 		return 0;
357 	if (PageWriteback(page))
358 		return 0;
359 	if (page_count(page) != 2) /* 2: us + cache */
360 		return 0;
361 
362 	entry.val = page_private(page);
363 	p = swap_info_get(entry);
364 	if (!p)
365 		return 0;
366 
367 	/* Is the only swap cache user the cache itself? */
368 	retval = 0;
369 	if (p->swap_map[swp_offset(entry)] == 1) {
370 		/* Recheck the page count with the swapcache lock held.. */
371 		write_lock_irq(&swapper_space.tree_lock);
372 		if ((page_count(page) == 2) && !PageWriteback(page)) {
373 			__delete_from_swap_cache(page);
374 			SetPageDirty(page);
375 			retval = 1;
376 		}
377 		write_unlock_irq(&swapper_space.tree_lock);
378 	}
379 	spin_unlock(&swap_lock);
380 
381 	if (retval) {
382 		swap_free(entry);
383 		page_cache_release(page);
384 	}
385 
386 	return retval;
387 }
388 
389 /*
390  * Free the swap entry like above, but also try to
391  * free the page cache entry if it is the last user.
392  */
393 void free_swap_and_cache(swp_entry_t entry)
394 {
395 	struct swap_info_struct * p;
396 	struct page *page = NULL;
397 
398 	p = swap_info_get(entry);
399 	if (p) {
400 		if (swap_entry_free(p, swp_offset(entry)) == 1) {
401 			page = find_get_page(&swapper_space, entry.val);
402 			if (page && unlikely(TestSetPageLocked(page))) {
403 				page_cache_release(page);
404 				page = NULL;
405 			}
406 		}
407 		spin_unlock(&swap_lock);
408 	}
409 	if (page) {
410 		int one_user;
411 
412 		BUG_ON(PagePrivate(page));
413 		one_user = (page_count(page) == 2);
414 		/* Only cache user (+us), or swap space full? Free it! */
415 		/* Also recheck PageSwapCache after page is locked (above) */
416 		if (PageSwapCache(page) && !PageWriteback(page) &&
417 					(one_user || vm_swap_full())) {
418 			delete_from_swap_cache(page);
419 			SetPageDirty(page);
420 		}
421 		unlock_page(page);
422 		page_cache_release(page);
423 	}
424 }
425 
426 #ifdef CONFIG_SOFTWARE_SUSPEND
427 /*
428  * Find the swap type that corresponds to given device (if any)
429  *
430  * This is needed for software suspend and is done in such a way that inode
431  * aliasing is allowed.
432  */
433 int swap_type_of(dev_t device)
434 {
435 	int i;
436 
437 	spin_lock(&swap_lock);
438 	for (i = 0; i < nr_swapfiles; i++) {
439 		struct inode *inode;
440 
441 		if (!(swap_info[i].flags & SWP_WRITEOK))
442 			continue;
443 		if (!device) {
444 			spin_unlock(&swap_lock);
445 			return i;
446 		}
447 		inode = swap_info->swap_file->f_dentry->d_inode;
448 		if (S_ISBLK(inode->i_mode) &&
449 		    device == MKDEV(imajor(inode), iminor(inode))) {
450 			spin_unlock(&swap_lock);
451 			return i;
452 		}
453 	}
454 	spin_unlock(&swap_lock);
455 	return -ENODEV;
456 }
457 
458 /*
459  * Return either the total number of swap pages of given type, or the number
460  * of free pages of that type (depending on @free)
461  *
462  * This is needed for software suspend
463  */
464 unsigned int count_swap_pages(int type, int free)
465 {
466 	unsigned int n = 0;
467 
468 	if (type < nr_swapfiles) {
469 		spin_lock(&swap_lock);
470 		if (swap_info[type].flags & SWP_WRITEOK) {
471 			n = swap_info[type].pages;
472 			if (free)
473 				n -= swap_info[type].inuse_pages;
474 		}
475 		spin_unlock(&swap_lock);
476 	}
477 	return n;
478 }
479 #endif
480 
481 /*
482  * No need to decide whether this PTE shares the swap entry with others,
483  * just let do_wp_page work it out if a write is requested later - to
484  * force COW, vm_page_prot omits write permission from any private vma.
485  */
486 static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
487 		unsigned long addr, swp_entry_t entry, struct page *page)
488 {
489 	inc_mm_counter(vma->vm_mm, anon_rss);
490 	get_page(page);
491 	set_pte_at(vma->vm_mm, addr, pte,
492 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
493 	page_add_anon_rmap(page, vma, addr);
494 	swap_free(entry);
495 	/*
496 	 * Move the page to the active list so it is not
497 	 * immediately swapped out again after swapon.
498 	 */
499 	activate_page(page);
500 }
501 
502 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
503 				unsigned long addr, unsigned long end,
504 				swp_entry_t entry, struct page *page)
505 {
506 	pte_t swp_pte = swp_entry_to_pte(entry);
507 	pte_t *pte;
508 	spinlock_t *ptl;
509 	int found = 0;
510 
511 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
512 	do {
513 		/*
514 		 * swapoff spends a _lot_ of time in this loop!
515 		 * Test inline before going to call unuse_pte.
516 		 */
517 		if (unlikely(pte_same(*pte, swp_pte))) {
518 			unuse_pte(vma, pte++, addr, entry, page);
519 			found = 1;
520 			break;
521 		}
522 	} while (pte++, addr += PAGE_SIZE, addr != end);
523 	pte_unmap_unlock(pte - 1, ptl);
524 	return found;
525 }
526 
527 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
528 				unsigned long addr, unsigned long end,
529 				swp_entry_t entry, struct page *page)
530 {
531 	pmd_t *pmd;
532 	unsigned long next;
533 
534 	pmd = pmd_offset(pud, addr);
535 	do {
536 		next = pmd_addr_end(addr, end);
537 		if (pmd_none_or_clear_bad(pmd))
538 			continue;
539 		if (unuse_pte_range(vma, pmd, addr, next, entry, page))
540 			return 1;
541 	} while (pmd++, addr = next, addr != end);
542 	return 0;
543 }
544 
545 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
546 				unsigned long addr, unsigned long end,
547 				swp_entry_t entry, struct page *page)
548 {
549 	pud_t *pud;
550 	unsigned long next;
551 
552 	pud = pud_offset(pgd, addr);
553 	do {
554 		next = pud_addr_end(addr, end);
555 		if (pud_none_or_clear_bad(pud))
556 			continue;
557 		if (unuse_pmd_range(vma, pud, addr, next, entry, page))
558 			return 1;
559 	} while (pud++, addr = next, addr != end);
560 	return 0;
561 }
562 
563 static int unuse_vma(struct vm_area_struct *vma,
564 				swp_entry_t entry, struct page *page)
565 {
566 	pgd_t *pgd;
567 	unsigned long addr, end, next;
568 
569 	if (page->mapping) {
570 		addr = page_address_in_vma(page, vma);
571 		if (addr == -EFAULT)
572 			return 0;
573 		else
574 			end = addr + PAGE_SIZE;
575 	} else {
576 		addr = vma->vm_start;
577 		end = vma->vm_end;
578 	}
579 
580 	pgd = pgd_offset(vma->vm_mm, addr);
581 	do {
582 		next = pgd_addr_end(addr, end);
583 		if (pgd_none_or_clear_bad(pgd))
584 			continue;
585 		if (unuse_pud_range(vma, pgd, addr, next, entry, page))
586 			return 1;
587 	} while (pgd++, addr = next, addr != end);
588 	return 0;
589 }
590 
591 static int unuse_mm(struct mm_struct *mm,
592 				swp_entry_t entry, struct page *page)
593 {
594 	struct vm_area_struct *vma;
595 
596 	if (!down_read_trylock(&mm->mmap_sem)) {
597 		/*
598 		 * Activate page so shrink_cache is unlikely to unmap its
599 		 * ptes while lock is dropped, so swapoff can make progress.
600 		 */
601 		activate_page(page);
602 		unlock_page(page);
603 		down_read(&mm->mmap_sem);
604 		lock_page(page);
605 	}
606 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
607 		if (vma->anon_vma && unuse_vma(vma, entry, page))
608 			break;
609 	}
610 	up_read(&mm->mmap_sem);
611 	/*
612 	 * Currently unuse_mm cannot fail, but leave error handling
613 	 * at call sites for now, since we change it from time to time.
614 	 */
615 	return 0;
616 }
617 
618 #ifdef CONFIG_MIGRATION
619 int remove_vma_swap(struct vm_area_struct *vma, struct page *page)
620 {
621 	swp_entry_t entry = { .val = page_private(page) };
622 
623 	return unuse_vma(vma, entry, page);
624 }
625 #endif
626 
627 /*
628  * Scan swap_map from current position to next entry still in use.
629  * Recycle to start on reaching the end, returning 0 when empty.
630  */
631 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
632 					unsigned int prev)
633 {
634 	unsigned int max = si->max;
635 	unsigned int i = prev;
636 	int count;
637 
638 	/*
639 	 * No need for swap_lock here: we're just looking
640 	 * for whether an entry is in use, not modifying it; false
641 	 * hits are okay, and sys_swapoff() has already prevented new
642 	 * allocations from this area (while holding swap_lock).
643 	 */
644 	for (;;) {
645 		if (++i >= max) {
646 			if (!prev) {
647 				i = 0;
648 				break;
649 			}
650 			/*
651 			 * No entries in use at top of swap_map,
652 			 * loop back to start and recheck there.
653 			 */
654 			max = prev + 1;
655 			prev = 0;
656 			i = 1;
657 		}
658 		count = si->swap_map[i];
659 		if (count && count != SWAP_MAP_BAD)
660 			break;
661 	}
662 	return i;
663 }
664 
665 /*
666  * We completely avoid races by reading each swap page in advance,
667  * and then search for the process using it.  All the necessary
668  * page table adjustments can then be made atomically.
669  */
670 static int try_to_unuse(unsigned int type)
671 {
672 	struct swap_info_struct * si = &swap_info[type];
673 	struct mm_struct *start_mm;
674 	unsigned short *swap_map;
675 	unsigned short swcount;
676 	struct page *page;
677 	swp_entry_t entry;
678 	unsigned int i = 0;
679 	int retval = 0;
680 	int reset_overflow = 0;
681 	int shmem;
682 
683 	/*
684 	 * When searching mms for an entry, a good strategy is to
685 	 * start at the first mm we freed the previous entry from
686 	 * (though actually we don't notice whether we or coincidence
687 	 * freed the entry).  Initialize this start_mm with a hold.
688 	 *
689 	 * A simpler strategy would be to start at the last mm we
690 	 * freed the previous entry from; but that would take less
691 	 * advantage of mmlist ordering, which clusters forked mms
692 	 * together, child after parent.  If we race with dup_mmap(), we
693 	 * prefer to resolve parent before child, lest we miss entries
694 	 * duplicated after we scanned child: using last mm would invert
695 	 * that.  Though it's only a serious concern when an overflowed
696 	 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
697 	 */
698 	start_mm = &init_mm;
699 	atomic_inc(&init_mm.mm_users);
700 
701 	/*
702 	 * Keep on scanning until all entries have gone.  Usually,
703 	 * one pass through swap_map is enough, but not necessarily:
704 	 * there are races when an instance of an entry might be missed.
705 	 */
706 	while ((i = find_next_to_unuse(si, i)) != 0) {
707 		if (signal_pending(current)) {
708 			retval = -EINTR;
709 			break;
710 		}
711 
712 		/*
713 		 * Get a page for the entry, using the existing swap
714 		 * cache page if there is one.  Otherwise, get a clean
715 		 * page and read the swap into it.
716 		 */
717 		swap_map = &si->swap_map[i];
718 		entry = swp_entry(type, i);
719 again:
720 		page = read_swap_cache_async(entry, NULL, 0);
721 		if (!page) {
722 			/*
723 			 * Either swap_duplicate() failed because entry
724 			 * has been freed independently, and will not be
725 			 * reused since sys_swapoff() already disabled
726 			 * allocation from here, or alloc_page() failed.
727 			 */
728 			if (!*swap_map)
729 				continue;
730 			retval = -ENOMEM;
731 			break;
732 		}
733 
734 		/*
735 		 * Don't hold on to start_mm if it looks like exiting.
736 		 */
737 		if (atomic_read(&start_mm->mm_users) == 1) {
738 			mmput(start_mm);
739 			start_mm = &init_mm;
740 			atomic_inc(&init_mm.mm_users);
741 		}
742 
743 		/*
744 		 * Wait for and lock page.  When do_swap_page races with
745 		 * try_to_unuse, do_swap_page can handle the fault much
746 		 * faster than try_to_unuse can locate the entry.  This
747 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
748 		 * defer to do_swap_page in such a case - in some tests,
749 		 * do_swap_page and try_to_unuse repeatedly compete.
750 		 */
751 		wait_on_page_locked(page);
752 		wait_on_page_writeback(page);
753 		lock_page(page);
754 		if (!PageSwapCache(page)) {
755 			/* Page migration has occured */
756 			unlock_page(page);
757 			page_cache_release(page);
758 			goto again;
759 		}
760 		wait_on_page_writeback(page);
761 
762 		/*
763 		 * Remove all references to entry.
764 		 * Whenever we reach init_mm, there's no address space
765 		 * to search, but use it as a reminder to search shmem.
766 		 */
767 		shmem = 0;
768 		swcount = *swap_map;
769 		if (swcount > 1) {
770 			if (start_mm == &init_mm)
771 				shmem = shmem_unuse(entry, page);
772 			else
773 				retval = unuse_mm(start_mm, entry, page);
774 		}
775 		if (*swap_map > 1) {
776 			int set_start_mm = (*swap_map >= swcount);
777 			struct list_head *p = &start_mm->mmlist;
778 			struct mm_struct *new_start_mm = start_mm;
779 			struct mm_struct *prev_mm = start_mm;
780 			struct mm_struct *mm;
781 
782 			atomic_inc(&new_start_mm->mm_users);
783 			atomic_inc(&prev_mm->mm_users);
784 			spin_lock(&mmlist_lock);
785 			while (*swap_map > 1 && !retval &&
786 					(p = p->next) != &start_mm->mmlist) {
787 				mm = list_entry(p, struct mm_struct, mmlist);
788 				if (atomic_inc_return(&mm->mm_users) == 1) {
789 					atomic_dec(&mm->mm_users);
790 					continue;
791 				}
792 				spin_unlock(&mmlist_lock);
793 				mmput(prev_mm);
794 				prev_mm = mm;
795 
796 				cond_resched();
797 
798 				swcount = *swap_map;
799 				if (swcount <= 1)
800 					;
801 				else if (mm == &init_mm) {
802 					set_start_mm = 1;
803 					shmem = shmem_unuse(entry, page);
804 				} else
805 					retval = unuse_mm(mm, entry, page);
806 				if (set_start_mm && *swap_map < swcount) {
807 					mmput(new_start_mm);
808 					atomic_inc(&mm->mm_users);
809 					new_start_mm = mm;
810 					set_start_mm = 0;
811 				}
812 				spin_lock(&mmlist_lock);
813 			}
814 			spin_unlock(&mmlist_lock);
815 			mmput(prev_mm);
816 			mmput(start_mm);
817 			start_mm = new_start_mm;
818 		}
819 		if (retval) {
820 			unlock_page(page);
821 			page_cache_release(page);
822 			break;
823 		}
824 
825 		/*
826 		 * How could swap count reach 0x7fff when the maximum
827 		 * pid is 0x7fff, and there's no way to repeat a swap
828 		 * page within an mm (except in shmem, where it's the
829 		 * shared object which takes the reference count)?
830 		 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
831 		 *
832 		 * If that's wrong, then we should worry more about
833 		 * exit_mmap() and do_munmap() cases described above:
834 		 * we might be resetting SWAP_MAP_MAX too early here.
835 		 * We know "Undead"s can happen, they're okay, so don't
836 		 * report them; but do report if we reset SWAP_MAP_MAX.
837 		 */
838 		if (*swap_map == SWAP_MAP_MAX) {
839 			spin_lock(&swap_lock);
840 			*swap_map = 1;
841 			spin_unlock(&swap_lock);
842 			reset_overflow = 1;
843 		}
844 
845 		/*
846 		 * If a reference remains (rare), we would like to leave
847 		 * the page in the swap cache; but try_to_unmap could
848 		 * then re-duplicate the entry once we drop page lock,
849 		 * so we might loop indefinitely; also, that page could
850 		 * not be swapped out to other storage meanwhile.  So:
851 		 * delete from cache even if there's another reference,
852 		 * after ensuring that the data has been saved to disk -
853 		 * since if the reference remains (rarer), it will be
854 		 * read from disk into another page.  Splitting into two
855 		 * pages would be incorrect if swap supported "shared
856 		 * private" pages, but they are handled by tmpfs files.
857 		 *
858 		 * Note shmem_unuse already deleted a swappage from
859 		 * the swap cache, unless the move to filepage failed:
860 		 * in which case it left swappage in cache, lowered its
861 		 * swap count to pass quickly through the loops above,
862 		 * and now we must reincrement count to try again later.
863 		 */
864 		if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
865 			struct writeback_control wbc = {
866 				.sync_mode = WB_SYNC_NONE,
867 			};
868 
869 			swap_writepage(page, &wbc);
870 			lock_page(page);
871 			wait_on_page_writeback(page);
872 		}
873 		if (PageSwapCache(page)) {
874 			if (shmem)
875 				swap_duplicate(entry);
876 			else
877 				delete_from_swap_cache(page);
878 		}
879 
880 		/*
881 		 * So we could skip searching mms once swap count went
882 		 * to 1, we did not mark any present ptes as dirty: must
883 		 * mark page dirty so shrink_list will preserve it.
884 		 */
885 		SetPageDirty(page);
886 		unlock_page(page);
887 		page_cache_release(page);
888 
889 		/*
890 		 * Make sure that we aren't completely killing
891 		 * interactive performance.
892 		 */
893 		cond_resched();
894 	}
895 
896 	mmput(start_mm);
897 	if (reset_overflow) {
898 		printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
899 		swap_overflow = 0;
900 	}
901 	return retval;
902 }
903 
904 /*
905  * After a successful try_to_unuse, if no swap is now in use, we know
906  * we can empty the mmlist.  swap_lock must be held on entry and exit.
907  * Note that mmlist_lock nests inside swap_lock, and an mm must be
908  * added to the mmlist just after page_duplicate - before would be racy.
909  */
910 static void drain_mmlist(void)
911 {
912 	struct list_head *p, *next;
913 	unsigned int i;
914 
915 	for (i = 0; i < nr_swapfiles; i++)
916 		if (swap_info[i].inuse_pages)
917 			return;
918 	spin_lock(&mmlist_lock);
919 	list_for_each_safe(p, next, &init_mm.mmlist)
920 		list_del_init(p);
921 	spin_unlock(&mmlist_lock);
922 }
923 
924 /*
925  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
926  * corresponds to page offset `offset'.
927  */
928 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
929 {
930 	struct swap_extent *se = sis->curr_swap_extent;
931 	struct swap_extent *start_se = se;
932 
933 	for ( ; ; ) {
934 		struct list_head *lh;
935 
936 		if (se->start_page <= offset &&
937 				offset < (se->start_page + se->nr_pages)) {
938 			return se->start_block + (offset - se->start_page);
939 		}
940 		lh = se->list.next;
941 		if (lh == &sis->extent_list)
942 			lh = lh->next;
943 		se = list_entry(lh, struct swap_extent, list);
944 		sis->curr_swap_extent = se;
945 		BUG_ON(se == start_se);		/* It *must* be present */
946 	}
947 }
948 
949 /*
950  * Free all of a swapdev's extent information
951  */
952 static void destroy_swap_extents(struct swap_info_struct *sis)
953 {
954 	while (!list_empty(&sis->extent_list)) {
955 		struct swap_extent *se;
956 
957 		se = list_entry(sis->extent_list.next,
958 				struct swap_extent, list);
959 		list_del(&se->list);
960 		kfree(se);
961 	}
962 }
963 
964 /*
965  * Add a block range (and the corresponding page range) into this swapdev's
966  * extent list.  The extent list is kept sorted in page order.
967  *
968  * This function rather assumes that it is called in ascending page order.
969  */
970 static int
971 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
972 		unsigned long nr_pages, sector_t start_block)
973 {
974 	struct swap_extent *se;
975 	struct swap_extent *new_se;
976 	struct list_head *lh;
977 
978 	lh = sis->extent_list.prev;	/* The highest page extent */
979 	if (lh != &sis->extent_list) {
980 		se = list_entry(lh, struct swap_extent, list);
981 		BUG_ON(se->start_page + se->nr_pages != start_page);
982 		if (se->start_block + se->nr_pages == start_block) {
983 			/* Merge it */
984 			se->nr_pages += nr_pages;
985 			return 0;
986 		}
987 	}
988 
989 	/*
990 	 * No merge.  Insert a new extent, preserving ordering.
991 	 */
992 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
993 	if (new_se == NULL)
994 		return -ENOMEM;
995 	new_se->start_page = start_page;
996 	new_se->nr_pages = nr_pages;
997 	new_se->start_block = start_block;
998 
999 	list_add_tail(&new_se->list, &sis->extent_list);
1000 	return 1;
1001 }
1002 
1003 /*
1004  * A `swap extent' is a simple thing which maps a contiguous range of pages
1005  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1006  * is built at swapon time and is then used at swap_writepage/swap_readpage
1007  * time for locating where on disk a page belongs.
1008  *
1009  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1010  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1011  * swap files identically.
1012  *
1013  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1014  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1015  * swapfiles are handled *identically* after swapon time.
1016  *
1017  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1018  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1019  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1020  * requirements, they are simply tossed out - we will never use those blocks
1021  * for swapping.
1022  *
1023  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1024  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1025  * which will scribble on the fs.
1026  *
1027  * The amount of disk space which a single swap extent represents varies.
1028  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1029  * extents in the list.  To avoid much list walking, we cache the previous
1030  * search location in `curr_swap_extent', and start new searches from there.
1031  * This is extremely effective.  The average number of iterations in
1032  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1033  */
1034 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1035 {
1036 	struct inode *inode;
1037 	unsigned blocks_per_page;
1038 	unsigned long page_no;
1039 	unsigned blkbits;
1040 	sector_t probe_block;
1041 	sector_t last_block;
1042 	sector_t lowest_block = -1;
1043 	sector_t highest_block = 0;
1044 	int nr_extents = 0;
1045 	int ret;
1046 
1047 	inode = sis->swap_file->f_mapping->host;
1048 	if (S_ISBLK(inode->i_mode)) {
1049 		ret = add_swap_extent(sis, 0, sis->max, 0);
1050 		*span = sis->pages;
1051 		goto done;
1052 	}
1053 
1054 	blkbits = inode->i_blkbits;
1055 	blocks_per_page = PAGE_SIZE >> blkbits;
1056 
1057 	/*
1058 	 * Map all the blocks into the extent list.  This code doesn't try
1059 	 * to be very smart.
1060 	 */
1061 	probe_block = 0;
1062 	page_no = 0;
1063 	last_block = i_size_read(inode) >> blkbits;
1064 	while ((probe_block + blocks_per_page) <= last_block &&
1065 			page_no < sis->max) {
1066 		unsigned block_in_page;
1067 		sector_t first_block;
1068 
1069 		first_block = bmap(inode, probe_block);
1070 		if (first_block == 0)
1071 			goto bad_bmap;
1072 
1073 		/*
1074 		 * It must be PAGE_SIZE aligned on-disk
1075 		 */
1076 		if (first_block & (blocks_per_page - 1)) {
1077 			probe_block++;
1078 			goto reprobe;
1079 		}
1080 
1081 		for (block_in_page = 1; block_in_page < blocks_per_page;
1082 					block_in_page++) {
1083 			sector_t block;
1084 
1085 			block = bmap(inode, probe_block + block_in_page);
1086 			if (block == 0)
1087 				goto bad_bmap;
1088 			if (block != first_block + block_in_page) {
1089 				/* Discontiguity */
1090 				probe_block++;
1091 				goto reprobe;
1092 			}
1093 		}
1094 
1095 		first_block >>= (PAGE_SHIFT - blkbits);
1096 		if (page_no) {	/* exclude the header page */
1097 			if (first_block < lowest_block)
1098 				lowest_block = first_block;
1099 			if (first_block > highest_block)
1100 				highest_block = first_block;
1101 		}
1102 
1103 		/*
1104 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1105 		 */
1106 		ret = add_swap_extent(sis, page_no, 1, first_block);
1107 		if (ret < 0)
1108 			goto out;
1109 		nr_extents += ret;
1110 		page_no++;
1111 		probe_block += blocks_per_page;
1112 reprobe:
1113 		continue;
1114 	}
1115 	ret = nr_extents;
1116 	*span = 1 + highest_block - lowest_block;
1117 	if (page_no == 0)
1118 		page_no = 1;	/* force Empty message */
1119 	sis->max = page_no;
1120 	sis->pages = page_no - 1;
1121 	sis->highest_bit = page_no - 1;
1122 done:
1123 	sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1124 					struct swap_extent, list);
1125 	goto out;
1126 bad_bmap:
1127 	printk(KERN_ERR "swapon: swapfile has holes\n");
1128 	ret = -EINVAL;
1129 out:
1130 	return ret;
1131 }
1132 
1133 #if 0	/* We don't need this yet */
1134 #include <linux/backing-dev.h>
1135 int page_queue_congested(struct page *page)
1136 {
1137 	struct backing_dev_info *bdi;
1138 
1139 	BUG_ON(!PageLocked(page));	/* It pins the swap_info_struct */
1140 
1141 	if (PageSwapCache(page)) {
1142 		swp_entry_t entry = { .val = page_private(page) };
1143 		struct swap_info_struct *sis;
1144 
1145 		sis = get_swap_info_struct(swp_type(entry));
1146 		bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1147 	} else
1148 		bdi = page->mapping->backing_dev_info;
1149 	return bdi_write_congested(bdi);
1150 }
1151 #endif
1152 
1153 asmlinkage long sys_swapoff(const char __user * specialfile)
1154 {
1155 	struct swap_info_struct * p = NULL;
1156 	unsigned short *swap_map;
1157 	struct file *swap_file, *victim;
1158 	struct address_space *mapping;
1159 	struct inode *inode;
1160 	char * pathname;
1161 	int i, type, prev;
1162 	int err;
1163 
1164 	if (!capable(CAP_SYS_ADMIN))
1165 		return -EPERM;
1166 
1167 	pathname = getname(specialfile);
1168 	err = PTR_ERR(pathname);
1169 	if (IS_ERR(pathname))
1170 		goto out;
1171 
1172 	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1173 	putname(pathname);
1174 	err = PTR_ERR(victim);
1175 	if (IS_ERR(victim))
1176 		goto out;
1177 
1178 	mapping = victim->f_mapping;
1179 	prev = -1;
1180 	spin_lock(&swap_lock);
1181 	for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1182 		p = swap_info + type;
1183 		if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1184 			if (p->swap_file->f_mapping == mapping)
1185 				break;
1186 		}
1187 		prev = type;
1188 	}
1189 	if (type < 0) {
1190 		err = -EINVAL;
1191 		spin_unlock(&swap_lock);
1192 		goto out_dput;
1193 	}
1194 	if (!security_vm_enough_memory(p->pages))
1195 		vm_unacct_memory(p->pages);
1196 	else {
1197 		err = -ENOMEM;
1198 		spin_unlock(&swap_lock);
1199 		goto out_dput;
1200 	}
1201 	if (prev < 0) {
1202 		swap_list.head = p->next;
1203 	} else {
1204 		swap_info[prev].next = p->next;
1205 	}
1206 	if (type == swap_list.next) {
1207 		/* just pick something that's safe... */
1208 		swap_list.next = swap_list.head;
1209 	}
1210 	nr_swap_pages -= p->pages;
1211 	total_swap_pages -= p->pages;
1212 	p->flags &= ~SWP_WRITEOK;
1213 	spin_unlock(&swap_lock);
1214 
1215 	current->flags |= PF_SWAPOFF;
1216 	err = try_to_unuse(type);
1217 	current->flags &= ~PF_SWAPOFF;
1218 
1219 	if (err) {
1220 		/* re-insert swap space back into swap_list */
1221 		spin_lock(&swap_lock);
1222 		for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1223 			if (p->prio >= swap_info[i].prio)
1224 				break;
1225 		p->next = i;
1226 		if (prev < 0)
1227 			swap_list.head = swap_list.next = p - swap_info;
1228 		else
1229 			swap_info[prev].next = p - swap_info;
1230 		nr_swap_pages += p->pages;
1231 		total_swap_pages += p->pages;
1232 		p->flags |= SWP_WRITEOK;
1233 		spin_unlock(&swap_lock);
1234 		goto out_dput;
1235 	}
1236 
1237 	/* wait for any unplug function to finish */
1238 	down_write(&swap_unplug_sem);
1239 	up_write(&swap_unplug_sem);
1240 
1241 	destroy_swap_extents(p);
1242 	mutex_lock(&swapon_mutex);
1243 	spin_lock(&swap_lock);
1244 	drain_mmlist();
1245 
1246 	/* wait for anyone still in scan_swap_map */
1247 	p->highest_bit = 0;		/* cuts scans short */
1248 	while (p->flags >= SWP_SCANNING) {
1249 		spin_unlock(&swap_lock);
1250 		schedule_timeout_uninterruptible(1);
1251 		spin_lock(&swap_lock);
1252 	}
1253 
1254 	swap_file = p->swap_file;
1255 	p->swap_file = NULL;
1256 	p->max = 0;
1257 	swap_map = p->swap_map;
1258 	p->swap_map = NULL;
1259 	p->flags = 0;
1260 	spin_unlock(&swap_lock);
1261 	mutex_unlock(&swapon_mutex);
1262 	vfree(swap_map);
1263 	inode = mapping->host;
1264 	if (S_ISBLK(inode->i_mode)) {
1265 		struct block_device *bdev = I_BDEV(inode);
1266 		set_blocksize(bdev, p->old_block_size);
1267 		bd_release(bdev);
1268 	} else {
1269 		mutex_lock(&inode->i_mutex);
1270 		inode->i_flags &= ~S_SWAPFILE;
1271 		mutex_unlock(&inode->i_mutex);
1272 	}
1273 	filp_close(swap_file, NULL);
1274 	err = 0;
1275 
1276 out_dput:
1277 	filp_close(victim, NULL);
1278 out:
1279 	return err;
1280 }
1281 
1282 #ifdef CONFIG_PROC_FS
1283 /* iterator */
1284 static void *swap_start(struct seq_file *swap, loff_t *pos)
1285 {
1286 	struct swap_info_struct *ptr = swap_info;
1287 	int i;
1288 	loff_t l = *pos;
1289 
1290 	mutex_lock(&swapon_mutex);
1291 
1292 	for (i = 0; i < nr_swapfiles; i++, ptr++) {
1293 		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1294 			continue;
1295 		if (!l--)
1296 			return ptr;
1297 	}
1298 
1299 	return NULL;
1300 }
1301 
1302 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1303 {
1304 	struct swap_info_struct *ptr = v;
1305 	struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1306 
1307 	for (++ptr; ptr < endptr; ptr++) {
1308 		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1309 			continue;
1310 		++*pos;
1311 		return ptr;
1312 	}
1313 
1314 	return NULL;
1315 }
1316 
1317 static void swap_stop(struct seq_file *swap, void *v)
1318 {
1319 	mutex_unlock(&swapon_mutex);
1320 }
1321 
1322 static int swap_show(struct seq_file *swap, void *v)
1323 {
1324 	struct swap_info_struct *ptr = v;
1325 	struct file *file;
1326 	int len;
1327 
1328 	if (v == swap_info)
1329 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1330 
1331 	file = ptr->swap_file;
1332 	len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
1333 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1334 		       len < 40 ? 40 - len : 1, " ",
1335 		       S_ISBLK(file->f_dentry->d_inode->i_mode) ?
1336 				"partition" : "file\t",
1337 		       ptr->pages << (PAGE_SHIFT - 10),
1338 		       ptr->inuse_pages << (PAGE_SHIFT - 10),
1339 		       ptr->prio);
1340 	return 0;
1341 }
1342 
1343 static struct seq_operations swaps_op = {
1344 	.start =	swap_start,
1345 	.next =		swap_next,
1346 	.stop =		swap_stop,
1347 	.show =		swap_show
1348 };
1349 
1350 static int swaps_open(struct inode *inode, struct file *file)
1351 {
1352 	return seq_open(file, &swaps_op);
1353 }
1354 
1355 static struct file_operations proc_swaps_operations = {
1356 	.open		= swaps_open,
1357 	.read		= seq_read,
1358 	.llseek		= seq_lseek,
1359 	.release	= seq_release,
1360 };
1361 
1362 static int __init procswaps_init(void)
1363 {
1364 	struct proc_dir_entry *entry;
1365 
1366 	entry = create_proc_entry("swaps", 0, NULL);
1367 	if (entry)
1368 		entry->proc_fops = &proc_swaps_operations;
1369 	return 0;
1370 }
1371 __initcall(procswaps_init);
1372 #endif /* CONFIG_PROC_FS */
1373 
1374 /*
1375  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1376  *
1377  * The swapon system call
1378  */
1379 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1380 {
1381 	struct swap_info_struct * p;
1382 	char *name = NULL;
1383 	struct block_device *bdev = NULL;
1384 	struct file *swap_file = NULL;
1385 	struct address_space *mapping;
1386 	unsigned int type;
1387 	int i, prev;
1388 	int error;
1389 	static int least_priority;
1390 	union swap_header *swap_header = NULL;
1391 	int swap_header_version;
1392 	unsigned int nr_good_pages = 0;
1393 	int nr_extents = 0;
1394 	sector_t span;
1395 	unsigned long maxpages = 1;
1396 	int swapfilesize;
1397 	unsigned short *swap_map;
1398 	struct page *page = NULL;
1399 	struct inode *inode = NULL;
1400 	int did_down = 0;
1401 
1402 	if (!capable(CAP_SYS_ADMIN))
1403 		return -EPERM;
1404 	spin_lock(&swap_lock);
1405 	p = swap_info;
1406 	for (type = 0 ; type < nr_swapfiles ; type++,p++)
1407 		if (!(p->flags & SWP_USED))
1408 			break;
1409 	error = -EPERM;
1410 	/*
1411 	 * Test if adding another swap device is possible. There are
1412 	 * two limiting factors: 1) the number of bits for the swap
1413 	 * type swp_entry_t definition and 2) the number of bits for
1414 	 * the swap type in the swap ptes as defined by the different
1415 	 * architectures. To honor both limitations a swap entry
1416 	 * with swap offset 0 and swap type ~0UL is created, encoded
1417 	 * to a swap pte, decoded to a swp_entry_t again and finally
1418 	 * the swap type part is extracted. This will mask all bits
1419 	 * from the initial ~0UL that can't be encoded in either the
1420 	 * swp_entry_t or the architecture definition of a swap pte.
1421 	 */
1422 	if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) {
1423 		spin_unlock(&swap_lock);
1424 		goto out;
1425 	}
1426 	if (type >= nr_swapfiles)
1427 		nr_swapfiles = type+1;
1428 	INIT_LIST_HEAD(&p->extent_list);
1429 	p->flags = SWP_USED;
1430 	p->swap_file = NULL;
1431 	p->old_block_size = 0;
1432 	p->swap_map = NULL;
1433 	p->lowest_bit = 0;
1434 	p->highest_bit = 0;
1435 	p->cluster_nr = 0;
1436 	p->inuse_pages = 0;
1437 	p->next = -1;
1438 	if (swap_flags & SWAP_FLAG_PREFER) {
1439 		p->prio =
1440 		  (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1441 	} else {
1442 		p->prio = --least_priority;
1443 	}
1444 	spin_unlock(&swap_lock);
1445 	name = getname(specialfile);
1446 	error = PTR_ERR(name);
1447 	if (IS_ERR(name)) {
1448 		name = NULL;
1449 		goto bad_swap_2;
1450 	}
1451 	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1452 	error = PTR_ERR(swap_file);
1453 	if (IS_ERR(swap_file)) {
1454 		swap_file = NULL;
1455 		goto bad_swap_2;
1456 	}
1457 
1458 	p->swap_file = swap_file;
1459 	mapping = swap_file->f_mapping;
1460 	inode = mapping->host;
1461 
1462 	error = -EBUSY;
1463 	for (i = 0; i < nr_swapfiles; i++) {
1464 		struct swap_info_struct *q = &swap_info[i];
1465 
1466 		if (i == type || !q->swap_file)
1467 			continue;
1468 		if (mapping == q->swap_file->f_mapping)
1469 			goto bad_swap;
1470 	}
1471 
1472 	error = -EINVAL;
1473 	if (S_ISBLK(inode->i_mode)) {
1474 		bdev = I_BDEV(inode);
1475 		error = bd_claim(bdev, sys_swapon);
1476 		if (error < 0) {
1477 			bdev = NULL;
1478 			error = -EINVAL;
1479 			goto bad_swap;
1480 		}
1481 		p->old_block_size = block_size(bdev);
1482 		error = set_blocksize(bdev, PAGE_SIZE);
1483 		if (error < 0)
1484 			goto bad_swap;
1485 		p->bdev = bdev;
1486 	} else if (S_ISREG(inode->i_mode)) {
1487 		p->bdev = inode->i_sb->s_bdev;
1488 		mutex_lock(&inode->i_mutex);
1489 		did_down = 1;
1490 		if (IS_SWAPFILE(inode)) {
1491 			error = -EBUSY;
1492 			goto bad_swap;
1493 		}
1494 	} else {
1495 		goto bad_swap;
1496 	}
1497 
1498 	swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1499 
1500 	/*
1501 	 * Read the swap header.
1502 	 */
1503 	if (!mapping->a_ops->readpage) {
1504 		error = -EINVAL;
1505 		goto bad_swap;
1506 	}
1507 	page = read_cache_page(mapping, 0,
1508 			(filler_t *)mapping->a_ops->readpage, swap_file);
1509 	if (IS_ERR(page)) {
1510 		error = PTR_ERR(page);
1511 		goto bad_swap;
1512 	}
1513 	wait_on_page_locked(page);
1514 	if (!PageUptodate(page))
1515 		goto bad_swap;
1516 	kmap(page);
1517 	swap_header = page_address(page);
1518 
1519 	if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1520 		swap_header_version = 1;
1521 	else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1522 		swap_header_version = 2;
1523 	else {
1524 		printk(KERN_ERR "Unable to find swap-space signature\n");
1525 		error = -EINVAL;
1526 		goto bad_swap;
1527 	}
1528 
1529 	switch (swap_header_version) {
1530 	case 1:
1531 		printk(KERN_ERR "version 0 swap is no longer supported. "
1532 			"Use mkswap -v1 %s\n", name);
1533 		error = -EINVAL;
1534 		goto bad_swap;
1535 	case 2:
1536 		/* Check the swap header's sub-version and the size of
1537                    the swap file and bad block lists */
1538 		if (swap_header->info.version != 1) {
1539 			printk(KERN_WARNING
1540 			       "Unable to handle swap header version %d\n",
1541 			       swap_header->info.version);
1542 			error = -EINVAL;
1543 			goto bad_swap;
1544 		}
1545 
1546 		p->lowest_bit  = 1;
1547 		p->cluster_next = 1;
1548 
1549 		/*
1550 		 * Find out how many pages are allowed for a single swap
1551 		 * device. There are two limiting factors: 1) the number of
1552 		 * bits for the swap offset in the swp_entry_t type and
1553 		 * 2) the number of bits in the a swap pte as defined by
1554 		 * the different architectures. In order to find the
1555 		 * largest possible bit mask a swap entry with swap type 0
1556 		 * and swap offset ~0UL is created, encoded to a swap pte,
1557 		 * decoded to a swp_entry_t again and finally the swap
1558 		 * offset is extracted. This will mask all the bits from
1559 		 * the initial ~0UL mask that can't be encoded in either
1560 		 * the swp_entry_t or the architecture definition of a
1561 		 * swap pte.
1562 		 */
1563 		maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1564 		if (maxpages > swap_header->info.last_page)
1565 			maxpages = swap_header->info.last_page;
1566 		p->highest_bit = maxpages - 1;
1567 
1568 		error = -EINVAL;
1569 		if (!maxpages)
1570 			goto bad_swap;
1571 		if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1572 			goto bad_swap;
1573 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1574 			goto bad_swap;
1575 
1576 		/* OK, set up the swap map and apply the bad block list */
1577 		if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1578 			error = -ENOMEM;
1579 			goto bad_swap;
1580 		}
1581 
1582 		error = 0;
1583 		memset(p->swap_map, 0, maxpages * sizeof(short));
1584 		for (i = 0; i < swap_header->info.nr_badpages; i++) {
1585 			int page_nr = swap_header->info.badpages[i];
1586 			if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1587 				error = -EINVAL;
1588 			else
1589 				p->swap_map[page_nr] = SWAP_MAP_BAD;
1590 		}
1591 		nr_good_pages = swap_header->info.last_page -
1592 				swap_header->info.nr_badpages -
1593 				1 /* header page */;
1594 		if (error)
1595 			goto bad_swap;
1596 	}
1597 
1598 	if (swapfilesize && maxpages > swapfilesize) {
1599 		printk(KERN_WARNING
1600 		       "Swap area shorter than signature indicates\n");
1601 		error = -EINVAL;
1602 		goto bad_swap;
1603 	}
1604 	if (nr_good_pages) {
1605 		p->swap_map[0] = SWAP_MAP_BAD;
1606 		p->max = maxpages;
1607 		p->pages = nr_good_pages;
1608 		nr_extents = setup_swap_extents(p, &span);
1609 		if (nr_extents < 0) {
1610 			error = nr_extents;
1611 			goto bad_swap;
1612 		}
1613 		nr_good_pages = p->pages;
1614 	}
1615 	if (!nr_good_pages) {
1616 		printk(KERN_WARNING "Empty swap-file\n");
1617 		error = -EINVAL;
1618 		goto bad_swap;
1619 	}
1620 
1621 	mutex_lock(&swapon_mutex);
1622 	spin_lock(&swap_lock);
1623 	p->flags = SWP_ACTIVE;
1624 	nr_swap_pages += nr_good_pages;
1625 	total_swap_pages += nr_good_pages;
1626 
1627 	printk(KERN_INFO "Adding %uk swap on %s.  "
1628 			"Priority:%d extents:%d across:%lluk\n",
1629 		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1630 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1631 
1632 	/* insert swap space into swap_list: */
1633 	prev = -1;
1634 	for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1635 		if (p->prio >= swap_info[i].prio) {
1636 			break;
1637 		}
1638 		prev = i;
1639 	}
1640 	p->next = i;
1641 	if (prev < 0) {
1642 		swap_list.head = swap_list.next = p - swap_info;
1643 	} else {
1644 		swap_info[prev].next = p - swap_info;
1645 	}
1646 	spin_unlock(&swap_lock);
1647 	mutex_unlock(&swapon_mutex);
1648 	error = 0;
1649 	goto out;
1650 bad_swap:
1651 	if (bdev) {
1652 		set_blocksize(bdev, p->old_block_size);
1653 		bd_release(bdev);
1654 	}
1655 	destroy_swap_extents(p);
1656 bad_swap_2:
1657 	spin_lock(&swap_lock);
1658 	swap_map = p->swap_map;
1659 	p->swap_file = NULL;
1660 	p->swap_map = NULL;
1661 	p->flags = 0;
1662 	if (!(swap_flags & SWAP_FLAG_PREFER))
1663 		++least_priority;
1664 	spin_unlock(&swap_lock);
1665 	vfree(swap_map);
1666 	if (swap_file)
1667 		filp_close(swap_file, NULL);
1668 out:
1669 	if (page && !IS_ERR(page)) {
1670 		kunmap(page);
1671 		page_cache_release(page);
1672 	}
1673 	if (name)
1674 		putname(name);
1675 	if (did_down) {
1676 		if (!error)
1677 			inode->i_flags |= S_SWAPFILE;
1678 		mutex_unlock(&inode->i_mutex);
1679 	}
1680 	return error;
1681 }
1682 
1683 void si_swapinfo(struct sysinfo *val)
1684 {
1685 	unsigned int i;
1686 	unsigned long nr_to_be_unused = 0;
1687 
1688 	spin_lock(&swap_lock);
1689 	for (i = 0; i < nr_swapfiles; i++) {
1690 		if (!(swap_info[i].flags & SWP_USED) ||
1691 		     (swap_info[i].flags & SWP_WRITEOK))
1692 			continue;
1693 		nr_to_be_unused += swap_info[i].inuse_pages;
1694 	}
1695 	val->freeswap = nr_swap_pages + nr_to_be_unused;
1696 	val->totalswap = total_swap_pages + nr_to_be_unused;
1697 	spin_unlock(&swap_lock);
1698 }
1699 
1700 /*
1701  * Verify that a swap entry is valid and increment its swap map count.
1702  *
1703  * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1704  * "permanent", but will be reclaimed by the next swapoff.
1705  */
1706 int swap_duplicate(swp_entry_t entry)
1707 {
1708 	struct swap_info_struct * p;
1709 	unsigned long offset, type;
1710 	int result = 0;
1711 
1712 	type = swp_type(entry);
1713 	if (type >= nr_swapfiles)
1714 		goto bad_file;
1715 	p = type + swap_info;
1716 	offset = swp_offset(entry);
1717 
1718 	spin_lock(&swap_lock);
1719 	if (offset < p->max && p->swap_map[offset]) {
1720 		if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1721 			p->swap_map[offset]++;
1722 			result = 1;
1723 		} else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1724 			if (swap_overflow++ < 5)
1725 				printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1726 			p->swap_map[offset] = SWAP_MAP_MAX;
1727 			result = 1;
1728 		}
1729 	}
1730 	spin_unlock(&swap_lock);
1731 out:
1732 	return result;
1733 
1734 bad_file:
1735 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1736 	goto out;
1737 }
1738 
1739 struct swap_info_struct *
1740 get_swap_info_struct(unsigned type)
1741 {
1742 	return &swap_info[type];
1743 }
1744 
1745 /*
1746  * swap_lock prevents swap_map being freed. Don't grab an extra
1747  * reference on the swaphandle, it doesn't matter if it becomes unused.
1748  */
1749 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1750 {
1751 	int ret = 0, i = 1 << page_cluster;
1752 	unsigned long toff;
1753 	struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1754 
1755 	if (!page_cluster)	/* no readahead */
1756 		return 0;
1757 	toff = (swp_offset(entry) >> page_cluster) << page_cluster;
1758 	if (!toff)		/* first page is swap header */
1759 		toff++, i--;
1760 	*offset = toff;
1761 
1762 	spin_lock(&swap_lock);
1763 	do {
1764 		/* Don't read-ahead past the end of the swap area */
1765 		if (toff >= swapdev->max)
1766 			break;
1767 		/* Don't read in free or bad pages */
1768 		if (!swapdev->swap_map[toff])
1769 			break;
1770 		if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1771 			break;
1772 		toff++;
1773 		ret++;
1774 	} while (--i);
1775 	spin_unlock(&swap_lock);
1776 	return ret;
1777 }
1778