xref: /linux/mm/swapfile.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 
35 #include <asm/pgtable.h>
36 #include <asm/tlbflush.h>
37 #include <linux/swapops.h>
38 #include <linux/page_cgroup.h>
39 
40 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
41 				 unsigned char);
42 static void free_swap_count_continuations(struct swap_info_struct *);
43 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
44 
45 static DEFINE_SPINLOCK(swap_lock);
46 static unsigned int nr_swapfiles;
47 long nr_swap_pages;
48 long total_swap_pages;
49 static int least_priority;
50 
51 static const char Bad_file[] = "Bad swap file entry ";
52 static const char Unused_file[] = "Unused swap file entry ";
53 static const char Bad_offset[] = "Bad swap offset entry ";
54 static const char Unused_offset[] = "Unused swap offset entry ";
55 
56 static struct swap_list_t swap_list = {-1, -1};
57 
58 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
59 
60 static DEFINE_MUTEX(swapon_mutex);
61 
62 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
63 /* Activity counter to indicate that a swapon or swapoff has occurred */
64 static atomic_t proc_poll_event = ATOMIC_INIT(0);
65 
66 static inline unsigned char swap_count(unsigned char ent)
67 {
68 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
69 }
70 
71 /* returns 1 if swap entry is freed */
72 static int
73 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
74 {
75 	swp_entry_t entry = swp_entry(si->type, offset);
76 	struct page *page;
77 	int ret = 0;
78 
79 	page = find_get_page(&swapper_space, entry.val);
80 	if (!page)
81 		return 0;
82 	/*
83 	 * This function is called from scan_swap_map() and it's called
84 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
85 	 * We have to use trylock for avoiding deadlock. This is a special
86 	 * case and you should use try_to_free_swap() with explicit lock_page()
87 	 * in usual operations.
88 	 */
89 	if (trylock_page(page)) {
90 		ret = try_to_free_swap(page);
91 		unlock_page(page);
92 	}
93 	page_cache_release(page);
94 	return ret;
95 }
96 
97 /*
98  * swapon tell device that all the old swap contents can be discarded,
99  * to allow the swap device to optimize its wear-levelling.
100  */
101 static int discard_swap(struct swap_info_struct *si)
102 {
103 	struct swap_extent *se;
104 	sector_t start_block;
105 	sector_t nr_blocks;
106 	int err = 0;
107 
108 	/* Do not discard the swap header page! */
109 	se = &si->first_swap_extent;
110 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
111 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
112 	if (nr_blocks) {
113 		err = blkdev_issue_discard(si->bdev, start_block,
114 				nr_blocks, GFP_KERNEL, 0);
115 		if (err)
116 			return err;
117 		cond_resched();
118 	}
119 
120 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
121 		start_block = se->start_block << (PAGE_SHIFT - 9);
122 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
123 
124 		err = blkdev_issue_discard(si->bdev, start_block,
125 				nr_blocks, GFP_KERNEL, 0);
126 		if (err)
127 			break;
128 
129 		cond_resched();
130 	}
131 	return err;		/* That will often be -EOPNOTSUPP */
132 }
133 
134 /*
135  * swap allocation tell device that a cluster of swap can now be discarded,
136  * to allow the swap device to optimize its wear-levelling.
137  */
138 static void discard_swap_cluster(struct swap_info_struct *si,
139 				 pgoff_t start_page, pgoff_t nr_pages)
140 {
141 	struct swap_extent *se = si->curr_swap_extent;
142 	int found_extent = 0;
143 
144 	while (nr_pages) {
145 		struct list_head *lh;
146 
147 		if (se->start_page <= start_page &&
148 		    start_page < se->start_page + se->nr_pages) {
149 			pgoff_t offset = start_page - se->start_page;
150 			sector_t start_block = se->start_block + offset;
151 			sector_t nr_blocks = se->nr_pages - offset;
152 
153 			if (nr_blocks > nr_pages)
154 				nr_blocks = nr_pages;
155 			start_page += nr_blocks;
156 			nr_pages -= nr_blocks;
157 
158 			if (!found_extent++)
159 				si->curr_swap_extent = se;
160 
161 			start_block <<= PAGE_SHIFT - 9;
162 			nr_blocks <<= PAGE_SHIFT - 9;
163 			if (blkdev_issue_discard(si->bdev, start_block,
164 				    nr_blocks, GFP_NOIO, 0))
165 				break;
166 		}
167 
168 		lh = se->list.next;
169 		se = list_entry(lh, struct swap_extent, list);
170 	}
171 }
172 
173 static int wait_for_discard(void *word)
174 {
175 	schedule();
176 	return 0;
177 }
178 
179 #define SWAPFILE_CLUSTER	256
180 #define LATENCY_LIMIT		256
181 
182 static unsigned long scan_swap_map(struct swap_info_struct *si,
183 				   unsigned char usage)
184 {
185 	unsigned long offset;
186 	unsigned long scan_base;
187 	unsigned long last_in_cluster = 0;
188 	int latency_ration = LATENCY_LIMIT;
189 	int found_free_cluster = 0;
190 
191 	/*
192 	 * We try to cluster swap pages by allocating them sequentially
193 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
194 	 * way, however, we resort to first-free allocation, starting
195 	 * a new cluster.  This prevents us from scattering swap pages
196 	 * all over the entire swap partition, so that we reduce
197 	 * overall disk seek times between swap pages.  -- sct
198 	 * But we do now try to find an empty cluster.  -Andrea
199 	 * And we let swap pages go all over an SSD partition.  Hugh
200 	 */
201 
202 	si->flags += SWP_SCANNING;
203 	scan_base = offset = si->cluster_next;
204 
205 	if (unlikely(!si->cluster_nr--)) {
206 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
207 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
208 			goto checks;
209 		}
210 		if (si->flags & SWP_DISCARDABLE) {
211 			/*
212 			 * Start range check on racing allocations, in case
213 			 * they overlap the cluster we eventually decide on
214 			 * (we scan without swap_lock to allow preemption).
215 			 * It's hardly conceivable that cluster_nr could be
216 			 * wrapped during our scan, but don't depend on it.
217 			 */
218 			if (si->lowest_alloc)
219 				goto checks;
220 			si->lowest_alloc = si->max;
221 			si->highest_alloc = 0;
222 		}
223 		spin_unlock(&swap_lock);
224 
225 		/*
226 		 * If seek is expensive, start searching for new cluster from
227 		 * start of partition, to minimize the span of allocated swap.
228 		 * But if seek is cheap, search from our current position, so
229 		 * that swap is allocated from all over the partition: if the
230 		 * Flash Translation Layer only remaps within limited zones,
231 		 * we don't want to wear out the first zone too quickly.
232 		 */
233 		if (!(si->flags & SWP_SOLIDSTATE))
234 			scan_base = offset = si->lowest_bit;
235 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
236 
237 		/* Locate the first empty (unaligned) cluster */
238 		for (; last_in_cluster <= si->highest_bit; offset++) {
239 			if (si->swap_map[offset])
240 				last_in_cluster = offset + SWAPFILE_CLUSTER;
241 			else if (offset == last_in_cluster) {
242 				spin_lock(&swap_lock);
243 				offset -= SWAPFILE_CLUSTER - 1;
244 				si->cluster_next = offset;
245 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
246 				found_free_cluster = 1;
247 				goto checks;
248 			}
249 			if (unlikely(--latency_ration < 0)) {
250 				cond_resched();
251 				latency_ration = LATENCY_LIMIT;
252 			}
253 		}
254 
255 		offset = si->lowest_bit;
256 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
257 
258 		/* Locate the first empty (unaligned) cluster */
259 		for (; last_in_cluster < scan_base; offset++) {
260 			if (si->swap_map[offset])
261 				last_in_cluster = offset + SWAPFILE_CLUSTER;
262 			else if (offset == last_in_cluster) {
263 				spin_lock(&swap_lock);
264 				offset -= SWAPFILE_CLUSTER - 1;
265 				si->cluster_next = offset;
266 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
267 				found_free_cluster = 1;
268 				goto checks;
269 			}
270 			if (unlikely(--latency_ration < 0)) {
271 				cond_resched();
272 				latency_ration = LATENCY_LIMIT;
273 			}
274 		}
275 
276 		offset = scan_base;
277 		spin_lock(&swap_lock);
278 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
279 		si->lowest_alloc = 0;
280 	}
281 
282 checks:
283 	if (!(si->flags & SWP_WRITEOK))
284 		goto no_page;
285 	if (!si->highest_bit)
286 		goto no_page;
287 	if (offset > si->highest_bit)
288 		scan_base = offset = si->lowest_bit;
289 
290 	/* reuse swap entry of cache-only swap if not busy. */
291 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
292 		int swap_was_freed;
293 		spin_unlock(&swap_lock);
294 		swap_was_freed = __try_to_reclaim_swap(si, offset);
295 		spin_lock(&swap_lock);
296 		/* entry was freed successfully, try to use this again */
297 		if (swap_was_freed)
298 			goto checks;
299 		goto scan; /* check next one */
300 	}
301 
302 	if (si->swap_map[offset])
303 		goto scan;
304 
305 	if (offset == si->lowest_bit)
306 		si->lowest_bit++;
307 	if (offset == si->highest_bit)
308 		si->highest_bit--;
309 	si->inuse_pages++;
310 	if (si->inuse_pages == si->pages) {
311 		si->lowest_bit = si->max;
312 		si->highest_bit = 0;
313 	}
314 	si->swap_map[offset] = usage;
315 	si->cluster_next = offset + 1;
316 	si->flags -= SWP_SCANNING;
317 
318 	if (si->lowest_alloc) {
319 		/*
320 		 * Only set when SWP_DISCARDABLE, and there's a scan
321 		 * for a free cluster in progress or just completed.
322 		 */
323 		if (found_free_cluster) {
324 			/*
325 			 * To optimize wear-levelling, discard the
326 			 * old data of the cluster, taking care not to
327 			 * discard any of its pages that have already
328 			 * been allocated by racing tasks (offset has
329 			 * already stepped over any at the beginning).
330 			 */
331 			if (offset < si->highest_alloc &&
332 			    si->lowest_alloc <= last_in_cluster)
333 				last_in_cluster = si->lowest_alloc - 1;
334 			si->flags |= SWP_DISCARDING;
335 			spin_unlock(&swap_lock);
336 
337 			if (offset < last_in_cluster)
338 				discard_swap_cluster(si, offset,
339 					last_in_cluster - offset + 1);
340 
341 			spin_lock(&swap_lock);
342 			si->lowest_alloc = 0;
343 			si->flags &= ~SWP_DISCARDING;
344 
345 			smp_mb();	/* wake_up_bit advises this */
346 			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
347 
348 		} else if (si->flags & SWP_DISCARDING) {
349 			/*
350 			 * Delay using pages allocated by racing tasks
351 			 * until the whole discard has been issued. We
352 			 * could defer that delay until swap_writepage,
353 			 * but it's easier to keep this self-contained.
354 			 */
355 			spin_unlock(&swap_lock);
356 			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
357 				wait_for_discard, TASK_UNINTERRUPTIBLE);
358 			spin_lock(&swap_lock);
359 		} else {
360 			/*
361 			 * Note pages allocated by racing tasks while
362 			 * scan for a free cluster is in progress, so
363 			 * that its final discard can exclude them.
364 			 */
365 			if (offset < si->lowest_alloc)
366 				si->lowest_alloc = offset;
367 			if (offset > si->highest_alloc)
368 				si->highest_alloc = offset;
369 		}
370 	}
371 	return offset;
372 
373 scan:
374 	spin_unlock(&swap_lock);
375 	while (++offset <= si->highest_bit) {
376 		if (!si->swap_map[offset]) {
377 			spin_lock(&swap_lock);
378 			goto checks;
379 		}
380 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
381 			spin_lock(&swap_lock);
382 			goto checks;
383 		}
384 		if (unlikely(--latency_ration < 0)) {
385 			cond_resched();
386 			latency_ration = LATENCY_LIMIT;
387 		}
388 	}
389 	offset = si->lowest_bit;
390 	while (++offset < scan_base) {
391 		if (!si->swap_map[offset]) {
392 			spin_lock(&swap_lock);
393 			goto checks;
394 		}
395 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
396 			spin_lock(&swap_lock);
397 			goto checks;
398 		}
399 		if (unlikely(--latency_ration < 0)) {
400 			cond_resched();
401 			latency_ration = LATENCY_LIMIT;
402 		}
403 	}
404 	spin_lock(&swap_lock);
405 
406 no_page:
407 	si->flags -= SWP_SCANNING;
408 	return 0;
409 }
410 
411 swp_entry_t get_swap_page(void)
412 {
413 	struct swap_info_struct *si;
414 	pgoff_t offset;
415 	int type, next;
416 	int wrapped = 0;
417 
418 	spin_lock(&swap_lock);
419 	if (nr_swap_pages <= 0)
420 		goto noswap;
421 	nr_swap_pages--;
422 
423 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
424 		si = swap_info[type];
425 		next = si->next;
426 		if (next < 0 ||
427 		    (!wrapped && si->prio != swap_info[next]->prio)) {
428 			next = swap_list.head;
429 			wrapped++;
430 		}
431 
432 		if (!si->highest_bit)
433 			continue;
434 		if (!(si->flags & SWP_WRITEOK))
435 			continue;
436 
437 		swap_list.next = next;
438 		/* This is called for allocating swap entry for cache */
439 		offset = scan_swap_map(si, SWAP_HAS_CACHE);
440 		if (offset) {
441 			spin_unlock(&swap_lock);
442 			return swp_entry(type, offset);
443 		}
444 		next = swap_list.next;
445 	}
446 
447 	nr_swap_pages++;
448 noswap:
449 	spin_unlock(&swap_lock);
450 	return (swp_entry_t) {0};
451 }
452 
453 /* The only caller of this function is now susupend routine */
454 swp_entry_t get_swap_page_of_type(int type)
455 {
456 	struct swap_info_struct *si;
457 	pgoff_t offset;
458 
459 	spin_lock(&swap_lock);
460 	si = swap_info[type];
461 	if (si && (si->flags & SWP_WRITEOK)) {
462 		nr_swap_pages--;
463 		/* This is called for allocating swap entry, not cache */
464 		offset = scan_swap_map(si, 1);
465 		if (offset) {
466 			spin_unlock(&swap_lock);
467 			return swp_entry(type, offset);
468 		}
469 		nr_swap_pages++;
470 	}
471 	spin_unlock(&swap_lock);
472 	return (swp_entry_t) {0};
473 }
474 
475 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
476 {
477 	struct swap_info_struct *p;
478 	unsigned long offset, type;
479 
480 	if (!entry.val)
481 		goto out;
482 	type = swp_type(entry);
483 	if (type >= nr_swapfiles)
484 		goto bad_nofile;
485 	p = swap_info[type];
486 	if (!(p->flags & SWP_USED))
487 		goto bad_device;
488 	offset = swp_offset(entry);
489 	if (offset >= p->max)
490 		goto bad_offset;
491 	if (!p->swap_map[offset])
492 		goto bad_free;
493 	spin_lock(&swap_lock);
494 	return p;
495 
496 bad_free:
497 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
498 	goto out;
499 bad_offset:
500 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
501 	goto out;
502 bad_device:
503 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
504 	goto out;
505 bad_nofile:
506 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
507 out:
508 	return NULL;
509 }
510 
511 static unsigned char swap_entry_free(struct swap_info_struct *p,
512 				     swp_entry_t entry, unsigned char usage)
513 {
514 	unsigned long offset = swp_offset(entry);
515 	unsigned char count;
516 	unsigned char has_cache;
517 
518 	count = p->swap_map[offset];
519 	has_cache = count & SWAP_HAS_CACHE;
520 	count &= ~SWAP_HAS_CACHE;
521 
522 	if (usage == SWAP_HAS_CACHE) {
523 		VM_BUG_ON(!has_cache);
524 		has_cache = 0;
525 	} else if (count == SWAP_MAP_SHMEM) {
526 		/*
527 		 * Or we could insist on shmem.c using a special
528 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
529 		 */
530 		count = 0;
531 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
532 		if (count == COUNT_CONTINUED) {
533 			if (swap_count_continued(p, offset, count))
534 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
535 			else
536 				count = SWAP_MAP_MAX;
537 		} else
538 			count--;
539 	}
540 
541 	if (!count)
542 		mem_cgroup_uncharge_swap(entry);
543 
544 	usage = count | has_cache;
545 	p->swap_map[offset] = usage;
546 
547 	/* free if no reference */
548 	if (!usage) {
549 		struct gendisk *disk = p->bdev->bd_disk;
550 		if (offset < p->lowest_bit)
551 			p->lowest_bit = offset;
552 		if (offset > p->highest_bit)
553 			p->highest_bit = offset;
554 		if (swap_list.next >= 0 &&
555 		    p->prio > swap_info[swap_list.next]->prio)
556 			swap_list.next = p->type;
557 		nr_swap_pages++;
558 		p->inuse_pages--;
559 		if ((p->flags & SWP_BLKDEV) &&
560 				disk->fops->swap_slot_free_notify)
561 			disk->fops->swap_slot_free_notify(p->bdev, offset);
562 	}
563 
564 	return usage;
565 }
566 
567 /*
568  * Caller has made sure that the swapdevice corresponding to entry
569  * is still around or has not been recycled.
570  */
571 void swap_free(swp_entry_t entry)
572 {
573 	struct swap_info_struct *p;
574 
575 	p = swap_info_get(entry);
576 	if (p) {
577 		swap_entry_free(p, entry, 1);
578 		spin_unlock(&swap_lock);
579 	}
580 }
581 
582 /*
583  * Called after dropping swapcache to decrease refcnt to swap entries.
584  */
585 void swapcache_free(swp_entry_t entry, struct page *page)
586 {
587 	struct swap_info_struct *p;
588 	unsigned char count;
589 
590 	p = swap_info_get(entry);
591 	if (p) {
592 		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
593 		if (page)
594 			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
595 		spin_unlock(&swap_lock);
596 	}
597 }
598 
599 /*
600  * How many references to page are currently swapped out?
601  * This does not give an exact answer when swap count is continued,
602  * but does include the high COUNT_CONTINUED flag to allow for that.
603  */
604 static inline int page_swapcount(struct page *page)
605 {
606 	int count = 0;
607 	struct swap_info_struct *p;
608 	swp_entry_t entry;
609 
610 	entry.val = page_private(page);
611 	p = swap_info_get(entry);
612 	if (p) {
613 		count = swap_count(p->swap_map[swp_offset(entry)]);
614 		spin_unlock(&swap_lock);
615 	}
616 	return count;
617 }
618 
619 /*
620  * We can write to an anon page without COW if there are no other references
621  * to it.  And as a side-effect, free up its swap: because the old content
622  * on disk will never be read, and seeking back there to write new content
623  * later would only waste time away from clustering.
624  */
625 int reuse_swap_page(struct page *page)
626 {
627 	int count;
628 
629 	VM_BUG_ON(!PageLocked(page));
630 	if (unlikely(PageKsm(page)))
631 		return 0;
632 	count = page_mapcount(page);
633 	if (count <= 1 && PageSwapCache(page)) {
634 		count += page_swapcount(page);
635 		if (count == 1 && !PageWriteback(page)) {
636 			delete_from_swap_cache(page);
637 			SetPageDirty(page);
638 		}
639 	}
640 	return count <= 1;
641 }
642 
643 /*
644  * If swap is getting full, or if there are no more mappings of this page,
645  * then try_to_free_swap is called to free its swap space.
646  */
647 int try_to_free_swap(struct page *page)
648 {
649 	VM_BUG_ON(!PageLocked(page));
650 
651 	if (!PageSwapCache(page))
652 		return 0;
653 	if (PageWriteback(page))
654 		return 0;
655 	if (page_swapcount(page))
656 		return 0;
657 
658 	/*
659 	 * Once hibernation has begun to create its image of memory,
660 	 * there's a danger that one of the calls to try_to_free_swap()
661 	 * - most probably a call from __try_to_reclaim_swap() while
662 	 * hibernation is allocating its own swap pages for the image,
663 	 * but conceivably even a call from memory reclaim - will free
664 	 * the swap from a page which has already been recorded in the
665 	 * image as a clean swapcache page, and then reuse its swap for
666 	 * another page of the image.  On waking from hibernation, the
667 	 * original page might be freed under memory pressure, then
668 	 * later read back in from swap, now with the wrong data.
669 	 *
670 	 * Hibernation clears bits from gfp_allowed_mask to prevent
671 	 * memory reclaim from writing to disk, so check that here.
672 	 */
673 	if (!(gfp_allowed_mask & __GFP_IO))
674 		return 0;
675 
676 	delete_from_swap_cache(page);
677 	SetPageDirty(page);
678 	return 1;
679 }
680 
681 /*
682  * Free the swap entry like above, but also try to
683  * free the page cache entry if it is the last user.
684  */
685 int free_swap_and_cache(swp_entry_t entry)
686 {
687 	struct swap_info_struct *p;
688 	struct page *page = NULL;
689 
690 	if (non_swap_entry(entry))
691 		return 1;
692 
693 	p = swap_info_get(entry);
694 	if (p) {
695 		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
696 			page = find_get_page(&swapper_space, entry.val);
697 			if (page && !trylock_page(page)) {
698 				page_cache_release(page);
699 				page = NULL;
700 			}
701 		}
702 		spin_unlock(&swap_lock);
703 	}
704 	if (page) {
705 		/*
706 		 * Not mapped elsewhere, or swap space full? Free it!
707 		 * Also recheck PageSwapCache now page is locked (above).
708 		 */
709 		if (PageSwapCache(page) && !PageWriteback(page) &&
710 				(!page_mapped(page) || vm_swap_full())) {
711 			delete_from_swap_cache(page);
712 			SetPageDirty(page);
713 		}
714 		unlock_page(page);
715 		page_cache_release(page);
716 	}
717 	return p != NULL;
718 }
719 
720 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
721 /**
722  * mem_cgroup_count_swap_user - count the user of a swap entry
723  * @ent: the swap entry to be checked
724  * @pagep: the pointer for the swap cache page of the entry to be stored
725  *
726  * Returns the number of the user of the swap entry. The number is valid only
727  * for swaps of anonymous pages.
728  * If the entry is found on swap cache, the page is stored to pagep with
729  * refcount of it being incremented.
730  */
731 int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
732 {
733 	struct page *page;
734 	struct swap_info_struct *p;
735 	int count = 0;
736 
737 	page = find_get_page(&swapper_space, ent.val);
738 	if (page)
739 		count += page_mapcount(page);
740 	p = swap_info_get(ent);
741 	if (p) {
742 		count += swap_count(p->swap_map[swp_offset(ent)]);
743 		spin_unlock(&swap_lock);
744 	}
745 
746 	*pagep = page;
747 	return count;
748 }
749 #endif
750 
751 #ifdef CONFIG_HIBERNATION
752 /*
753  * Find the swap type that corresponds to given device (if any).
754  *
755  * @offset - number of the PAGE_SIZE-sized block of the device, starting
756  * from 0, in which the swap header is expected to be located.
757  *
758  * This is needed for the suspend to disk (aka swsusp).
759  */
760 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
761 {
762 	struct block_device *bdev = NULL;
763 	int type;
764 
765 	if (device)
766 		bdev = bdget(device);
767 
768 	spin_lock(&swap_lock);
769 	for (type = 0; type < nr_swapfiles; type++) {
770 		struct swap_info_struct *sis = swap_info[type];
771 
772 		if (!(sis->flags & SWP_WRITEOK))
773 			continue;
774 
775 		if (!bdev) {
776 			if (bdev_p)
777 				*bdev_p = bdgrab(sis->bdev);
778 
779 			spin_unlock(&swap_lock);
780 			return type;
781 		}
782 		if (bdev == sis->bdev) {
783 			struct swap_extent *se = &sis->first_swap_extent;
784 
785 			if (se->start_block == offset) {
786 				if (bdev_p)
787 					*bdev_p = bdgrab(sis->bdev);
788 
789 				spin_unlock(&swap_lock);
790 				bdput(bdev);
791 				return type;
792 			}
793 		}
794 	}
795 	spin_unlock(&swap_lock);
796 	if (bdev)
797 		bdput(bdev);
798 
799 	return -ENODEV;
800 }
801 
802 /*
803  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
804  * corresponding to given index in swap_info (swap type).
805  */
806 sector_t swapdev_block(int type, pgoff_t offset)
807 {
808 	struct block_device *bdev;
809 
810 	if ((unsigned int)type >= nr_swapfiles)
811 		return 0;
812 	if (!(swap_info[type]->flags & SWP_WRITEOK))
813 		return 0;
814 	return map_swap_entry(swp_entry(type, offset), &bdev);
815 }
816 
817 /*
818  * Return either the total number of swap pages of given type, or the number
819  * of free pages of that type (depending on @free)
820  *
821  * This is needed for software suspend
822  */
823 unsigned int count_swap_pages(int type, int free)
824 {
825 	unsigned int n = 0;
826 
827 	spin_lock(&swap_lock);
828 	if ((unsigned int)type < nr_swapfiles) {
829 		struct swap_info_struct *sis = swap_info[type];
830 
831 		if (sis->flags & SWP_WRITEOK) {
832 			n = sis->pages;
833 			if (free)
834 				n -= sis->inuse_pages;
835 		}
836 	}
837 	spin_unlock(&swap_lock);
838 	return n;
839 }
840 #endif /* CONFIG_HIBERNATION */
841 
842 /*
843  * No need to decide whether this PTE shares the swap entry with others,
844  * just let do_wp_page work it out if a write is requested later - to
845  * force COW, vm_page_prot omits write permission from any private vma.
846  */
847 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
848 		unsigned long addr, swp_entry_t entry, struct page *page)
849 {
850 	struct mem_cgroup *ptr;
851 	spinlock_t *ptl;
852 	pte_t *pte;
853 	int ret = 1;
854 
855 	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
856 		ret = -ENOMEM;
857 		goto out_nolock;
858 	}
859 
860 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
861 	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
862 		if (ret > 0)
863 			mem_cgroup_cancel_charge_swapin(ptr);
864 		ret = 0;
865 		goto out;
866 	}
867 
868 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
869 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
870 	get_page(page);
871 	set_pte_at(vma->vm_mm, addr, pte,
872 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
873 	page_add_anon_rmap(page, vma, addr);
874 	mem_cgroup_commit_charge_swapin(page, ptr);
875 	swap_free(entry);
876 	/*
877 	 * Move the page to the active list so it is not
878 	 * immediately swapped out again after swapon.
879 	 */
880 	activate_page(page);
881 out:
882 	pte_unmap_unlock(pte, ptl);
883 out_nolock:
884 	return ret;
885 }
886 
887 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
888 				unsigned long addr, unsigned long end,
889 				swp_entry_t entry, struct page *page)
890 {
891 	pte_t swp_pte = swp_entry_to_pte(entry);
892 	pte_t *pte;
893 	int ret = 0;
894 
895 	/*
896 	 * We don't actually need pte lock while scanning for swp_pte: since
897 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
898 	 * page table while we're scanning; though it could get zapped, and on
899 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
900 	 * of unmatched parts which look like swp_pte, so unuse_pte must
901 	 * recheck under pte lock.  Scanning without pte lock lets it be
902 	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
903 	 */
904 	pte = pte_offset_map(pmd, addr);
905 	do {
906 		/*
907 		 * swapoff spends a _lot_ of time in this loop!
908 		 * Test inline before going to call unuse_pte.
909 		 */
910 		if (unlikely(pte_same(*pte, swp_pte))) {
911 			pte_unmap(pte);
912 			ret = unuse_pte(vma, pmd, addr, entry, page);
913 			if (ret)
914 				goto out;
915 			pte = pte_offset_map(pmd, addr);
916 		}
917 	} while (pte++, addr += PAGE_SIZE, addr != end);
918 	pte_unmap(pte - 1);
919 out:
920 	return ret;
921 }
922 
923 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
924 				unsigned long addr, unsigned long end,
925 				swp_entry_t entry, struct page *page)
926 {
927 	pmd_t *pmd;
928 	unsigned long next;
929 	int ret;
930 
931 	pmd = pmd_offset(pud, addr);
932 	do {
933 		next = pmd_addr_end(addr, end);
934 		if (unlikely(pmd_trans_huge(*pmd)))
935 			continue;
936 		if (pmd_none_or_clear_bad(pmd))
937 			continue;
938 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
939 		if (ret)
940 			return ret;
941 	} while (pmd++, addr = next, addr != end);
942 	return 0;
943 }
944 
945 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
946 				unsigned long addr, unsigned long end,
947 				swp_entry_t entry, struct page *page)
948 {
949 	pud_t *pud;
950 	unsigned long next;
951 	int ret;
952 
953 	pud = pud_offset(pgd, addr);
954 	do {
955 		next = pud_addr_end(addr, end);
956 		if (pud_none_or_clear_bad(pud))
957 			continue;
958 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
959 		if (ret)
960 			return ret;
961 	} while (pud++, addr = next, addr != end);
962 	return 0;
963 }
964 
965 static int unuse_vma(struct vm_area_struct *vma,
966 				swp_entry_t entry, struct page *page)
967 {
968 	pgd_t *pgd;
969 	unsigned long addr, end, next;
970 	int ret;
971 
972 	if (page_anon_vma(page)) {
973 		addr = page_address_in_vma(page, vma);
974 		if (addr == -EFAULT)
975 			return 0;
976 		else
977 			end = addr + PAGE_SIZE;
978 	} else {
979 		addr = vma->vm_start;
980 		end = vma->vm_end;
981 	}
982 
983 	pgd = pgd_offset(vma->vm_mm, addr);
984 	do {
985 		next = pgd_addr_end(addr, end);
986 		if (pgd_none_or_clear_bad(pgd))
987 			continue;
988 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
989 		if (ret)
990 			return ret;
991 	} while (pgd++, addr = next, addr != end);
992 	return 0;
993 }
994 
995 static int unuse_mm(struct mm_struct *mm,
996 				swp_entry_t entry, struct page *page)
997 {
998 	struct vm_area_struct *vma;
999 	int ret = 0;
1000 
1001 	if (!down_read_trylock(&mm->mmap_sem)) {
1002 		/*
1003 		 * Activate page so shrink_inactive_list is unlikely to unmap
1004 		 * its ptes while lock is dropped, so swapoff can make progress.
1005 		 */
1006 		activate_page(page);
1007 		unlock_page(page);
1008 		down_read(&mm->mmap_sem);
1009 		lock_page(page);
1010 	}
1011 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1012 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1013 			break;
1014 	}
1015 	up_read(&mm->mmap_sem);
1016 	return (ret < 0)? ret: 0;
1017 }
1018 
1019 /*
1020  * Scan swap_map from current position to next entry still in use.
1021  * Recycle to start on reaching the end, returning 0 when empty.
1022  */
1023 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1024 					unsigned int prev)
1025 {
1026 	unsigned int max = si->max;
1027 	unsigned int i = prev;
1028 	unsigned char count;
1029 
1030 	/*
1031 	 * No need for swap_lock here: we're just looking
1032 	 * for whether an entry is in use, not modifying it; false
1033 	 * hits are okay, and sys_swapoff() has already prevented new
1034 	 * allocations from this area (while holding swap_lock).
1035 	 */
1036 	for (;;) {
1037 		if (++i >= max) {
1038 			if (!prev) {
1039 				i = 0;
1040 				break;
1041 			}
1042 			/*
1043 			 * No entries in use at top of swap_map,
1044 			 * loop back to start and recheck there.
1045 			 */
1046 			max = prev + 1;
1047 			prev = 0;
1048 			i = 1;
1049 		}
1050 		count = si->swap_map[i];
1051 		if (count && swap_count(count) != SWAP_MAP_BAD)
1052 			break;
1053 	}
1054 	return i;
1055 }
1056 
1057 /*
1058  * We completely avoid races by reading each swap page in advance,
1059  * and then search for the process using it.  All the necessary
1060  * page table adjustments can then be made atomically.
1061  */
1062 static int try_to_unuse(unsigned int type)
1063 {
1064 	struct swap_info_struct *si = swap_info[type];
1065 	struct mm_struct *start_mm;
1066 	unsigned char *swap_map;
1067 	unsigned char swcount;
1068 	struct page *page;
1069 	swp_entry_t entry;
1070 	unsigned int i = 0;
1071 	int retval = 0;
1072 
1073 	/*
1074 	 * When searching mms for an entry, a good strategy is to
1075 	 * start at the first mm we freed the previous entry from
1076 	 * (though actually we don't notice whether we or coincidence
1077 	 * freed the entry).  Initialize this start_mm with a hold.
1078 	 *
1079 	 * A simpler strategy would be to start at the last mm we
1080 	 * freed the previous entry from; but that would take less
1081 	 * advantage of mmlist ordering, which clusters forked mms
1082 	 * together, child after parent.  If we race with dup_mmap(), we
1083 	 * prefer to resolve parent before child, lest we miss entries
1084 	 * duplicated after we scanned child: using last mm would invert
1085 	 * that.
1086 	 */
1087 	start_mm = &init_mm;
1088 	atomic_inc(&init_mm.mm_users);
1089 
1090 	/*
1091 	 * Keep on scanning until all entries have gone.  Usually,
1092 	 * one pass through swap_map is enough, but not necessarily:
1093 	 * there are races when an instance of an entry might be missed.
1094 	 */
1095 	while ((i = find_next_to_unuse(si, i)) != 0) {
1096 		if (signal_pending(current)) {
1097 			retval = -EINTR;
1098 			break;
1099 		}
1100 
1101 		/*
1102 		 * Get a page for the entry, using the existing swap
1103 		 * cache page if there is one.  Otherwise, get a clean
1104 		 * page and read the swap into it.
1105 		 */
1106 		swap_map = &si->swap_map[i];
1107 		entry = swp_entry(type, i);
1108 		page = read_swap_cache_async(entry,
1109 					GFP_HIGHUSER_MOVABLE, NULL, 0);
1110 		if (!page) {
1111 			/*
1112 			 * Either swap_duplicate() failed because entry
1113 			 * has been freed independently, and will not be
1114 			 * reused since sys_swapoff() already disabled
1115 			 * allocation from here, or alloc_page() failed.
1116 			 */
1117 			if (!*swap_map)
1118 				continue;
1119 			retval = -ENOMEM;
1120 			break;
1121 		}
1122 
1123 		/*
1124 		 * Don't hold on to start_mm if it looks like exiting.
1125 		 */
1126 		if (atomic_read(&start_mm->mm_users) == 1) {
1127 			mmput(start_mm);
1128 			start_mm = &init_mm;
1129 			atomic_inc(&init_mm.mm_users);
1130 		}
1131 
1132 		/*
1133 		 * Wait for and lock page.  When do_swap_page races with
1134 		 * try_to_unuse, do_swap_page can handle the fault much
1135 		 * faster than try_to_unuse can locate the entry.  This
1136 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1137 		 * defer to do_swap_page in such a case - in some tests,
1138 		 * do_swap_page and try_to_unuse repeatedly compete.
1139 		 */
1140 		wait_on_page_locked(page);
1141 		wait_on_page_writeback(page);
1142 		lock_page(page);
1143 		wait_on_page_writeback(page);
1144 
1145 		/*
1146 		 * Remove all references to entry.
1147 		 */
1148 		swcount = *swap_map;
1149 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1150 			retval = shmem_unuse(entry, page);
1151 			/* page has already been unlocked and released */
1152 			if (retval < 0)
1153 				break;
1154 			continue;
1155 		}
1156 		if (swap_count(swcount) && start_mm != &init_mm)
1157 			retval = unuse_mm(start_mm, entry, page);
1158 
1159 		if (swap_count(*swap_map)) {
1160 			int set_start_mm = (*swap_map >= swcount);
1161 			struct list_head *p = &start_mm->mmlist;
1162 			struct mm_struct *new_start_mm = start_mm;
1163 			struct mm_struct *prev_mm = start_mm;
1164 			struct mm_struct *mm;
1165 
1166 			atomic_inc(&new_start_mm->mm_users);
1167 			atomic_inc(&prev_mm->mm_users);
1168 			spin_lock(&mmlist_lock);
1169 			while (swap_count(*swap_map) && !retval &&
1170 					(p = p->next) != &start_mm->mmlist) {
1171 				mm = list_entry(p, struct mm_struct, mmlist);
1172 				if (!atomic_inc_not_zero(&mm->mm_users))
1173 					continue;
1174 				spin_unlock(&mmlist_lock);
1175 				mmput(prev_mm);
1176 				prev_mm = mm;
1177 
1178 				cond_resched();
1179 
1180 				swcount = *swap_map;
1181 				if (!swap_count(swcount)) /* any usage ? */
1182 					;
1183 				else if (mm == &init_mm)
1184 					set_start_mm = 1;
1185 				else
1186 					retval = unuse_mm(mm, entry, page);
1187 
1188 				if (set_start_mm && *swap_map < swcount) {
1189 					mmput(new_start_mm);
1190 					atomic_inc(&mm->mm_users);
1191 					new_start_mm = mm;
1192 					set_start_mm = 0;
1193 				}
1194 				spin_lock(&mmlist_lock);
1195 			}
1196 			spin_unlock(&mmlist_lock);
1197 			mmput(prev_mm);
1198 			mmput(start_mm);
1199 			start_mm = new_start_mm;
1200 		}
1201 		if (retval) {
1202 			unlock_page(page);
1203 			page_cache_release(page);
1204 			break;
1205 		}
1206 
1207 		/*
1208 		 * If a reference remains (rare), we would like to leave
1209 		 * the page in the swap cache; but try_to_unmap could
1210 		 * then re-duplicate the entry once we drop page lock,
1211 		 * so we might loop indefinitely; also, that page could
1212 		 * not be swapped out to other storage meanwhile.  So:
1213 		 * delete from cache even if there's another reference,
1214 		 * after ensuring that the data has been saved to disk -
1215 		 * since if the reference remains (rarer), it will be
1216 		 * read from disk into another page.  Splitting into two
1217 		 * pages would be incorrect if swap supported "shared
1218 		 * private" pages, but they are handled by tmpfs files.
1219 		 *
1220 		 * Given how unuse_vma() targets one particular offset
1221 		 * in an anon_vma, once the anon_vma has been determined,
1222 		 * this splitting happens to be just what is needed to
1223 		 * handle where KSM pages have been swapped out: re-reading
1224 		 * is unnecessarily slow, but we can fix that later on.
1225 		 */
1226 		if (swap_count(*swap_map) &&
1227 		     PageDirty(page) && PageSwapCache(page)) {
1228 			struct writeback_control wbc = {
1229 				.sync_mode = WB_SYNC_NONE,
1230 			};
1231 
1232 			swap_writepage(page, &wbc);
1233 			lock_page(page);
1234 			wait_on_page_writeback(page);
1235 		}
1236 
1237 		/*
1238 		 * It is conceivable that a racing task removed this page from
1239 		 * swap cache just before we acquired the page lock at the top,
1240 		 * or while we dropped it in unuse_mm().  The page might even
1241 		 * be back in swap cache on another swap area: that we must not
1242 		 * delete, since it may not have been written out to swap yet.
1243 		 */
1244 		if (PageSwapCache(page) &&
1245 		    likely(page_private(page) == entry.val))
1246 			delete_from_swap_cache(page);
1247 
1248 		/*
1249 		 * So we could skip searching mms once swap count went
1250 		 * to 1, we did not mark any present ptes as dirty: must
1251 		 * mark page dirty so shrink_page_list will preserve it.
1252 		 */
1253 		SetPageDirty(page);
1254 		unlock_page(page);
1255 		page_cache_release(page);
1256 
1257 		/*
1258 		 * Make sure that we aren't completely killing
1259 		 * interactive performance.
1260 		 */
1261 		cond_resched();
1262 	}
1263 
1264 	mmput(start_mm);
1265 	return retval;
1266 }
1267 
1268 /*
1269  * After a successful try_to_unuse, if no swap is now in use, we know
1270  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1271  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1272  * added to the mmlist just after page_duplicate - before would be racy.
1273  */
1274 static void drain_mmlist(void)
1275 {
1276 	struct list_head *p, *next;
1277 	unsigned int type;
1278 
1279 	for (type = 0; type < nr_swapfiles; type++)
1280 		if (swap_info[type]->inuse_pages)
1281 			return;
1282 	spin_lock(&mmlist_lock);
1283 	list_for_each_safe(p, next, &init_mm.mmlist)
1284 		list_del_init(p);
1285 	spin_unlock(&mmlist_lock);
1286 }
1287 
1288 /*
1289  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1290  * corresponds to page offset for the specified swap entry.
1291  * Note that the type of this function is sector_t, but it returns page offset
1292  * into the bdev, not sector offset.
1293  */
1294 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1295 {
1296 	struct swap_info_struct *sis;
1297 	struct swap_extent *start_se;
1298 	struct swap_extent *se;
1299 	pgoff_t offset;
1300 
1301 	sis = swap_info[swp_type(entry)];
1302 	*bdev = sis->bdev;
1303 
1304 	offset = swp_offset(entry);
1305 	start_se = sis->curr_swap_extent;
1306 	se = start_se;
1307 
1308 	for ( ; ; ) {
1309 		struct list_head *lh;
1310 
1311 		if (se->start_page <= offset &&
1312 				offset < (se->start_page + se->nr_pages)) {
1313 			return se->start_block + (offset - se->start_page);
1314 		}
1315 		lh = se->list.next;
1316 		se = list_entry(lh, struct swap_extent, list);
1317 		sis->curr_swap_extent = se;
1318 		BUG_ON(se == start_se);		/* It *must* be present */
1319 	}
1320 }
1321 
1322 /*
1323  * Returns the page offset into bdev for the specified page's swap entry.
1324  */
1325 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1326 {
1327 	swp_entry_t entry;
1328 	entry.val = page_private(page);
1329 	return map_swap_entry(entry, bdev);
1330 }
1331 
1332 /*
1333  * Free all of a swapdev's extent information
1334  */
1335 static void destroy_swap_extents(struct swap_info_struct *sis)
1336 {
1337 	while (!list_empty(&sis->first_swap_extent.list)) {
1338 		struct swap_extent *se;
1339 
1340 		se = list_entry(sis->first_swap_extent.list.next,
1341 				struct swap_extent, list);
1342 		list_del(&se->list);
1343 		kfree(se);
1344 	}
1345 }
1346 
1347 /*
1348  * Add a block range (and the corresponding page range) into this swapdev's
1349  * extent list.  The extent list is kept sorted in page order.
1350  *
1351  * This function rather assumes that it is called in ascending page order.
1352  */
1353 static int
1354 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1355 		unsigned long nr_pages, sector_t start_block)
1356 {
1357 	struct swap_extent *se;
1358 	struct swap_extent *new_se;
1359 	struct list_head *lh;
1360 
1361 	if (start_page == 0) {
1362 		se = &sis->first_swap_extent;
1363 		sis->curr_swap_extent = se;
1364 		se->start_page = 0;
1365 		se->nr_pages = nr_pages;
1366 		se->start_block = start_block;
1367 		return 1;
1368 	} else {
1369 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1370 		se = list_entry(lh, struct swap_extent, list);
1371 		BUG_ON(se->start_page + se->nr_pages != start_page);
1372 		if (se->start_block + se->nr_pages == start_block) {
1373 			/* Merge it */
1374 			se->nr_pages += nr_pages;
1375 			return 0;
1376 		}
1377 	}
1378 
1379 	/*
1380 	 * No merge.  Insert a new extent, preserving ordering.
1381 	 */
1382 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1383 	if (new_se == NULL)
1384 		return -ENOMEM;
1385 	new_se->start_page = start_page;
1386 	new_se->nr_pages = nr_pages;
1387 	new_se->start_block = start_block;
1388 
1389 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1390 	return 1;
1391 }
1392 
1393 /*
1394  * A `swap extent' is a simple thing which maps a contiguous range of pages
1395  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1396  * is built at swapon time and is then used at swap_writepage/swap_readpage
1397  * time for locating where on disk a page belongs.
1398  *
1399  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1400  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1401  * swap files identically.
1402  *
1403  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1404  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1405  * swapfiles are handled *identically* after swapon time.
1406  *
1407  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1408  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1409  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1410  * requirements, they are simply tossed out - we will never use those blocks
1411  * for swapping.
1412  *
1413  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1414  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1415  * which will scribble on the fs.
1416  *
1417  * The amount of disk space which a single swap extent represents varies.
1418  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1419  * extents in the list.  To avoid much list walking, we cache the previous
1420  * search location in `curr_swap_extent', and start new searches from there.
1421  * This is extremely effective.  The average number of iterations in
1422  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1423  */
1424 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1425 {
1426 	struct inode *inode;
1427 	unsigned blocks_per_page;
1428 	unsigned long page_no;
1429 	unsigned blkbits;
1430 	sector_t probe_block;
1431 	sector_t last_block;
1432 	sector_t lowest_block = -1;
1433 	sector_t highest_block = 0;
1434 	int nr_extents = 0;
1435 	int ret;
1436 
1437 	inode = sis->swap_file->f_mapping->host;
1438 	if (S_ISBLK(inode->i_mode)) {
1439 		ret = add_swap_extent(sis, 0, sis->max, 0);
1440 		*span = sis->pages;
1441 		goto out;
1442 	}
1443 
1444 	blkbits = inode->i_blkbits;
1445 	blocks_per_page = PAGE_SIZE >> blkbits;
1446 
1447 	/*
1448 	 * Map all the blocks into the extent list.  This code doesn't try
1449 	 * to be very smart.
1450 	 */
1451 	probe_block = 0;
1452 	page_no = 0;
1453 	last_block = i_size_read(inode) >> blkbits;
1454 	while ((probe_block + blocks_per_page) <= last_block &&
1455 			page_no < sis->max) {
1456 		unsigned block_in_page;
1457 		sector_t first_block;
1458 
1459 		first_block = bmap(inode, probe_block);
1460 		if (first_block == 0)
1461 			goto bad_bmap;
1462 
1463 		/*
1464 		 * It must be PAGE_SIZE aligned on-disk
1465 		 */
1466 		if (first_block & (blocks_per_page - 1)) {
1467 			probe_block++;
1468 			goto reprobe;
1469 		}
1470 
1471 		for (block_in_page = 1; block_in_page < blocks_per_page;
1472 					block_in_page++) {
1473 			sector_t block;
1474 
1475 			block = bmap(inode, probe_block + block_in_page);
1476 			if (block == 0)
1477 				goto bad_bmap;
1478 			if (block != first_block + block_in_page) {
1479 				/* Discontiguity */
1480 				probe_block++;
1481 				goto reprobe;
1482 			}
1483 		}
1484 
1485 		first_block >>= (PAGE_SHIFT - blkbits);
1486 		if (page_no) {	/* exclude the header page */
1487 			if (first_block < lowest_block)
1488 				lowest_block = first_block;
1489 			if (first_block > highest_block)
1490 				highest_block = first_block;
1491 		}
1492 
1493 		/*
1494 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1495 		 */
1496 		ret = add_swap_extent(sis, page_no, 1, first_block);
1497 		if (ret < 0)
1498 			goto out;
1499 		nr_extents += ret;
1500 		page_no++;
1501 		probe_block += blocks_per_page;
1502 reprobe:
1503 		continue;
1504 	}
1505 	ret = nr_extents;
1506 	*span = 1 + highest_block - lowest_block;
1507 	if (page_no == 0)
1508 		page_no = 1;	/* force Empty message */
1509 	sis->max = page_no;
1510 	sis->pages = page_no - 1;
1511 	sis->highest_bit = page_no - 1;
1512 out:
1513 	return ret;
1514 bad_bmap:
1515 	printk(KERN_ERR "swapon: swapfile has holes\n");
1516 	ret = -EINVAL;
1517 	goto out;
1518 }
1519 
1520 static void enable_swap_info(struct swap_info_struct *p, int prio,
1521 				unsigned char *swap_map)
1522 {
1523 	int i, prev;
1524 
1525 	spin_lock(&swap_lock);
1526 	if (prio >= 0)
1527 		p->prio = prio;
1528 	else
1529 		p->prio = --least_priority;
1530 	p->swap_map = swap_map;
1531 	p->flags |= SWP_WRITEOK;
1532 	nr_swap_pages += p->pages;
1533 	total_swap_pages += p->pages;
1534 
1535 	/* insert swap space into swap_list: */
1536 	prev = -1;
1537 	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1538 		if (p->prio >= swap_info[i]->prio)
1539 			break;
1540 		prev = i;
1541 	}
1542 	p->next = i;
1543 	if (prev < 0)
1544 		swap_list.head = swap_list.next = p->type;
1545 	else
1546 		swap_info[prev]->next = p->type;
1547 	spin_unlock(&swap_lock);
1548 }
1549 
1550 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1551 {
1552 	struct swap_info_struct *p = NULL;
1553 	unsigned char *swap_map;
1554 	struct file *swap_file, *victim;
1555 	struct address_space *mapping;
1556 	struct inode *inode;
1557 	char *pathname;
1558 	int oom_score_adj;
1559 	int i, type, prev;
1560 	int err;
1561 
1562 	if (!capable(CAP_SYS_ADMIN))
1563 		return -EPERM;
1564 
1565 	pathname = getname(specialfile);
1566 	err = PTR_ERR(pathname);
1567 	if (IS_ERR(pathname))
1568 		goto out;
1569 
1570 	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1571 	putname(pathname);
1572 	err = PTR_ERR(victim);
1573 	if (IS_ERR(victim))
1574 		goto out;
1575 
1576 	mapping = victim->f_mapping;
1577 	prev = -1;
1578 	spin_lock(&swap_lock);
1579 	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1580 		p = swap_info[type];
1581 		if (p->flags & SWP_WRITEOK) {
1582 			if (p->swap_file->f_mapping == mapping)
1583 				break;
1584 		}
1585 		prev = type;
1586 	}
1587 	if (type < 0) {
1588 		err = -EINVAL;
1589 		spin_unlock(&swap_lock);
1590 		goto out_dput;
1591 	}
1592 	if (!security_vm_enough_memory(p->pages))
1593 		vm_unacct_memory(p->pages);
1594 	else {
1595 		err = -ENOMEM;
1596 		spin_unlock(&swap_lock);
1597 		goto out_dput;
1598 	}
1599 	if (prev < 0)
1600 		swap_list.head = p->next;
1601 	else
1602 		swap_info[prev]->next = p->next;
1603 	if (type == swap_list.next) {
1604 		/* just pick something that's safe... */
1605 		swap_list.next = swap_list.head;
1606 	}
1607 	if (p->prio < 0) {
1608 		for (i = p->next; i >= 0; i = swap_info[i]->next)
1609 			swap_info[i]->prio = p->prio--;
1610 		least_priority++;
1611 	}
1612 	nr_swap_pages -= p->pages;
1613 	total_swap_pages -= p->pages;
1614 	p->flags &= ~SWP_WRITEOK;
1615 	spin_unlock(&swap_lock);
1616 
1617 	oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX);
1618 	err = try_to_unuse(type);
1619 	compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX, oom_score_adj);
1620 
1621 	if (err) {
1622 		/*
1623 		 * reading p->prio and p->swap_map outside the lock is
1624 		 * safe here because only sys_swapon and sys_swapoff
1625 		 * change them, and there can be no other sys_swapon or
1626 		 * sys_swapoff for this swap_info_struct at this point.
1627 		 */
1628 		/* re-insert swap space back into swap_list */
1629 		enable_swap_info(p, p->prio, p->swap_map);
1630 		goto out_dput;
1631 	}
1632 
1633 	destroy_swap_extents(p);
1634 	if (p->flags & SWP_CONTINUED)
1635 		free_swap_count_continuations(p);
1636 
1637 	mutex_lock(&swapon_mutex);
1638 	spin_lock(&swap_lock);
1639 	drain_mmlist();
1640 
1641 	/* wait for anyone still in scan_swap_map */
1642 	p->highest_bit = 0;		/* cuts scans short */
1643 	while (p->flags >= SWP_SCANNING) {
1644 		spin_unlock(&swap_lock);
1645 		schedule_timeout_uninterruptible(1);
1646 		spin_lock(&swap_lock);
1647 	}
1648 
1649 	swap_file = p->swap_file;
1650 	p->swap_file = NULL;
1651 	p->max = 0;
1652 	swap_map = p->swap_map;
1653 	p->swap_map = NULL;
1654 	p->flags = 0;
1655 	spin_unlock(&swap_lock);
1656 	mutex_unlock(&swapon_mutex);
1657 	vfree(swap_map);
1658 	/* Destroy swap account informatin */
1659 	swap_cgroup_swapoff(type);
1660 
1661 	inode = mapping->host;
1662 	if (S_ISBLK(inode->i_mode)) {
1663 		struct block_device *bdev = I_BDEV(inode);
1664 		set_blocksize(bdev, p->old_block_size);
1665 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1666 	} else {
1667 		mutex_lock(&inode->i_mutex);
1668 		inode->i_flags &= ~S_SWAPFILE;
1669 		mutex_unlock(&inode->i_mutex);
1670 	}
1671 	filp_close(swap_file, NULL);
1672 	err = 0;
1673 	atomic_inc(&proc_poll_event);
1674 	wake_up_interruptible(&proc_poll_wait);
1675 
1676 out_dput:
1677 	filp_close(victim, NULL);
1678 out:
1679 	return err;
1680 }
1681 
1682 #ifdef CONFIG_PROC_FS
1683 static unsigned swaps_poll(struct file *file, poll_table *wait)
1684 {
1685 	struct seq_file *seq = file->private_data;
1686 
1687 	poll_wait(file, &proc_poll_wait, wait);
1688 
1689 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
1690 		seq->poll_event = atomic_read(&proc_poll_event);
1691 		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1692 	}
1693 
1694 	return POLLIN | POLLRDNORM;
1695 }
1696 
1697 /* iterator */
1698 static void *swap_start(struct seq_file *swap, loff_t *pos)
1699 {
1700 	struct swap_info_struct *si;
1701 	int type;
1702 	loff_t l = *pos;
1703 
1704 	mutex_lock(&swapon_mutex);
1705 
1706 	if (!l)
1707 		return SEQ_START_TOKEN;
1708 
1709 	for (type = 0; type < nr_swapfiles; type++) {
1710 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1711 		si = swap_info[type];
1712 		if (!(si->flags & SWP_USED) || !si->swap_map)
1713 			continue;
1714 		if (!--l)
1715 			return si;
1716 	}
1717 
1718 	return NULL;
1719 }
1720 
1721 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1722 {
1723 	struct swap_info_struct *si = v;
1724 	int type;
1725 
1726 	if (v == SEQ_START_TOKEN)
1727 		type = 0;
1728 	else
1729 		type = si->type + 1;
1730 
1731 	for (; type < nr_swapfiles; type++) {
1732 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1733 		si = swap_info[type];
1734 		if (!(si->flags & SWP_USED) || !si->swap_map)
1735 			continue;
1736 		++*pos;
1737 		return si;
1738 	}
1739 
1740 	return NULL;
1741 }
1742 
1743 static void swap_stop(struct seq_file *swap, void *v)
1744 {
1745 	mutex_unlock(&swapon_mutex);
1746 }
1747 
1748 static int swap_show(struct seq_file *swap, void *v)
1749 {
1750 	struct swap_info_struct *si = v;
1751 	struct file *file;
1752 	int len;
1753 
1754 	if (si == SEQ_START_TOKEN) {
1755 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1756 		return 0;
1757 	}
1758 
1759 	file = si->swap_file;
1760 	len = seq_path(swap, &file->f_path, " \t\n\\");
1761 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1762 			len < 40 ? 40 - len : 1, " ",
1763 			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1764 				"partition" : "file\t",
1765 			si->pages << (PAGE_SHIFT - 10),
1766 			si->inuse_pages << (PAGE_SHIFT - 10),
1767 			si->prio);
1768 	return 0;
1769 }
1770 
1771 static const struct seq_operations swaps_op = {
1772 	.start =	swap_start,
1773 	.next =		swap_next,
1774 	.stop =		swap_stop,
1775 	.show =		swap_show
1776 };
1777 
1778 static int swaps_open(struct inode *inode, struct file *file)
1779 {
1780 	struct seq_file *seq;
1781 	int ret;
1782 
1783 	ret = seq_open(file, &swaps_op);
1784 	if (ret)
1785 		return ret;
1786 
1787 	seq = file->private_data;
1788 	seq->poll_event = atomic_read(&proc_poll_event);
1789 	return 0;
1790 }
1791 
1792 static const struct file_operations proc_swaps_operations = {
1793 	.open		= swaps_open,
1794 	.read		= seq_read,
1795 	.llseek		= seq_lseek,
1796 	.release	= seq_release,
1797 	.poll		= swaps_poll,
1798 };
1799 
1800 static int __init procswaps_init(void)
1801 {
1802 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1803 	return 0;
1804 }
1805 __initcall(procswaps_init);
1806 #endif /* CONFIG_PROC_FS */
1807 
1808 #ifdef MAX_SWAPFILES_CHECK
1809 static int __init max_swapfiles_check(void)
1810 {
1811 	MAX_SWAPFILES_CHECK();
1812 	return 0;
1813 }
1814 late_initcall(max_swapfiles_check);
1815 #endif
1816 
1817 static struct swap_info_struct *alloc_swap_info(void)
1818 {
1819 	struct swap_info_struct *p;
1820 	unsigned int type;
1821 
1822 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1823 	if (!p)
1824 		return ERR_PTR(-ENOMEM);
1825 
1826 	spin_lock(&swap_lock);
1827 	for (type = 0; type < nr_swapfiles; type++) {
1828 		if (!(swap_info[type]->flags & SWP_USED))
1829 			break;
1830 	}
1831 	if (type >= MAX_SWAPFILES) {
1832 		spin_unlock(&swap_lock);
1833 		kfree(p);
1834 		return ERR_PTR(-EPERM);
1835 	}
1836 	if (type >= nr_swapfiles) {
1837 		p->type = type;
1838 		swap_info[type] = p;
1839 		/*
1840 		 * Write swap_info[type] before nr_swapfiles, in case a
1841 		 * racing procfs swap_start() or swap_next() is reading them.
1842 		 * (We never shrink nr_swapfiles, we never free this entry.)
1843 		 */
1844 		smp_wmb();
1845 		nr_swapfiles++;
1846 	} else {
1847 		kfree(p);
1848 		p = swap_info[type];
1849 		/*
1850 		 * Do not memset this entry: a racing procfs swap_next()
1851 		 * would be relying on p->type to remain valid.
1852 		 */
1853 	}
1854 	INIT_LIST_HEAD(&p->first_swap_extent.list);
1855 	p->flags = SWP_USED;
1856 	p->next = -1;
1857 	spin_unlock(&swap_lock);
1858 
1859 	return p;
1860 }
1861 
1862 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
1863 {
1864 	int error;
1865 
1866 	if (S_ISBLK(inode->i_mode)) {
1867 		p->bdev = bdgrab(I_BDEV(inode));
1868 		error = blkdev_get(p->bdev,
1869 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1870 				   sys_swapon);
1871 		if (error < 0) {
1872 			p->bdev = NULL;
1873 			return -EINVAL;
1874 		}
1875 		p->old_block_size = block_size(p->bdev);
1876 		error = set_blocksize(p->bdev, PAGE_SIZE);
1877 		if (error < 0)
1878 			return error;
1879 		p->flags |= SWP_BLKDEV;
1880 	} else if (S_ISREG(inode->i_mode)) {
1881 		p->bdev = inode->i_sb->s_bdev;
1882 		mutex_lock(&inode->i_mutex);
1883 		if (IS_SWAPFILE(inode))
1884 			return -EBUSY;
1885 	} else
1886 		return -EINVAL;
1887 
1888 	return 0;
1889 }
1890 
1891 static unsigned long read_swap_header(struct swap_info_struct *p,
1892 					union swap_header *swap_header,
1893 					struct inode *inode)
1894 {
1895 	int i;
1896 	unsigned long maxpages;
1897 	unsigned long swapfilepages;
1898 
1899 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1900 		printk(KERN_ERR "Unable to find swap-space signature\n");
1901 		return 0;
1902 	}
1903 
1904 	/* swap partition endianess hack... */
1905 	if (swab32(swap_header->info.version) == 1) {
1906 		swab32s(&swap_header->info.version);
1907 		swab32s(&swap_header->info.last_page);
1908 		swab32s(&swap_header->info.nr_badpages);
1909 		for (i = 0; i < swap_header->info.nr_badpages; i++)
1910 			swab32s(&swap_header->info.badpages[i]);
1911 	}
1912 	/* Check the swap header's sub-version */
1913 	if (swap_header->info.version != 1) {
1914 		printk(KERN_WARNING
1915 		       "Unable to handle swap header version %d\n",
1916 		       swap_header->info.version);
1917 		return 0;
1918 	}
1919 
1920 	p->lowest_bit  = 1;
1921 	p->cluster_next = 1;
1922 	p->cluster_nr = 0;
1923 
1924 	/*
1925 	 * Find out how many pages are allowed for a single swap
1926 	 * device. There are three limiting factors: 1) the number
1927 	 * of bits for the swap offset in the swp_entry_t type, and
1928 	 * 2) the number of bits in the swap pte as defined by the
1929 	 * the different architectures, and 3) the number of free bits
1930 	 * in an exceptional radix_tree entry. In order to find the
1931 	 * largest possible bit mask, a swap entry with swap type 0
1932 	 * and swap offset ~0UL is created, encoded to a swap pte,
1933 	 * decoded to a swp_entry_t again, and finally the swap
1934 	 * offset is extracted. This will mask all the bits from
1935 	 * the initial ~0UL mask that can't be encoded in either
1936 	 * the swp_entry_t or the architecture definition of a
1937 	 * swap pte.  Then the same is done for a radix_tree entry.
1938 	 */
1939 	maxpages = swp_offset(pte_to_swp_entry(
1940 			swp_entry_to_pte(swp_entry(0, ~0UL))));
1941 	maxpages = swp_offset(radix_to_swp_entry(
1942 			swp_to_radix_entry(swp_entry(0, maxpages)))) + 1;
1943 
1944 	if (maxpages > swap_header->info.last_page) {
1945 		maxpages = swap_header->info.last_page + 1;
1946 		/* p->max is an unsigned int: don't overflow it */
1947 		if ((unsigned int)maxpages == 0)
1948 			maxpages = UINT_MAX;
1949 	}
1950 	p->highest_bit = maxpages - 1;
1951 
1952 	if (!maxpages)
1953 		return 0;
1954 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1955 	if (swapfilepages && maxpages > swapfilepages) {
1956 		printk(KERN_WARNING
1957 		       "Swap area shorter than signature indicates\n");
1958 		return 0;
1959 	}
1960 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1961 		return 0;
1962 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1963 		return 0;
1964 
1965 	return maxpages;
1966 }
1967 
1968 static int setup_swap_map_and_extents(struct swap_info_struct *p,
1969 					union swap_header *swap_header,
1970 					unsigned char *swap_map,
1971 					unsigned long maxpages,
1972 					sector_t *span)
1973 {
1974 	int i;
1975 	unsigned int nr_good_pages;
1976 	int nr_extents;
1977 
1978 	nr_good_pages = maxpages - 1;	/* omit header page */
1979 
1980 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
1981 		unsigned int page_nr = swap_header->info.badpages[i];
1982 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
1983 			return -EINVAL;
1984 		if (page_nr < maxpages) {
1985 			swap_map[page_nr] = SWAP_MAP_BAD;
1986 			nr_good_pages--;
1987 		}
1988 	}
1989 
1990 	if (nr_good_pages) {
1991 		swap_map[0] = SWAP_MAP_BAD;
1992 		p->max = maxpages;
1993 		p->pages = nr_good_pages;
1994 		nr_extents = setup_swap_extents(p, span);
1995 		if (nr_extents < 0)
1996 			return nr_extents;
1997 		nr_good_pages = p->pages;
1998 	}
1999 	if (!nr_good_pages) {
2000 		printk(KERN_WARNING "Empty swap-file\n");
2001 		return -EINVAL;
2002 	}
2003 
2004 	return nr_extents;
2005 }
2006 
2007 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2008 {
2009 	struct swap_info_struct *p;
2010 	char *name;
2011 	struct file *swap_file = NULL;
2012 	struct address_space *mapping;
2013 	int i;
2014 	int prio;
2015 	int error;
2016 	union swap_header *swap_header;
2017 	int nr_extents;
2018 	sector_t span;
2019 	unsigned long maxpages;
2020 	unsigned char *swap_map = NULL;
2021 	struct page *page = NULL;
2022 	struct inode *inode = NULL;
2023 
2024 	if (!capable(CAP_SYS_ADMIN))
2025 		return -EPERM;
2026 
2027 	p = alloc_swap_info();
2028 	if (IS_ERR(p))
2029 		return PTR_ERR(p);
2030 
2031 	name = getname(specialfile);
2032 	if (IS_ERR(name)) {
2033 		error = PTR_ERR(name);
2034 		name = NULL;
2035 		goto bad_swap;
2036 	}
2037 	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
2038 	if (IS_ERR(swap_file)) {
2039 		error = PTR_ERR(swap_file);
2040 		swap_file = NULL;
2041 		goto bad_swap;
2042 	}
2043 
2044 	p->swap_file = swap_file;
2045 	mapping = swap_file->f_mapping;
2046 
2047 	for (i = 0; i < nr_swapfiles; i++) {
2048 		struct swap_info_struct *q = swap_info[i];
2049 
2050 		if (q == p || !q->swap_file)
2051 			continue;
2052 		if (mapping == q->swap_file->f_mapping) {
2053 			error = -EBUSY;
2054 			goto bad_swap;
2055 		}
2056 	}
2057 
2058 	inode = mapping->host;
2059 	/* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2060 	error = claim_swapfile(p, inode);
2061 	if (unlikely(error))
2062 		goto bad_swap;
2063 
2064 	/*
2065 	 * Read the swap header.
2066 	 */
2067 	if (!mapping->a_ops->readpage) {
2068 		error = -EINVAL;
2069 		goto bad_swap;
2070 	}
2071 	page = read_mapping_page(mapping, 0, swap_file);
2072 	if (IS_ERR(page)) {
2073 		error = PTR_ERR(page);
2074 		goto bad_swap;
2075 	}
2076 	swap_header = kmap(page);
2077 
2078 	maxpages = read_swap_header(p, swap_header, inode);
2079 	if (unlikely(!maxpages)) {
2080 		error = -EINVAL;
2081 		goto bad_swap;
2082 	}
2083 
2084 	/* OK, set up the swap map and apply the bad block list */
2085 	swap_map = vzalloc(maxpages);
2086 	if (!swap_map) {
2087 		error = -ENOMEM;
2088 		goto bad_swap;
2089 	}
2090 
2091 	error = swap_cgroup_swapon(p->type, maxpages);
2092 	if (error)
2093 		goto bad_swap;
2094 
2095 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2096 		maxpages, &span);
2097 	if (unlikely(nr_extents < 0)) {
2098 		error = nr_extents;
2099 		goto bad_swap;
2100 	}
2101 
2102 	if (p->bdev) {
2103 		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2104 			p->flags |= SWP_SOLIDSTATE;
2105 			p->cluster_next = 1 + (random32() % p->highest_bit);
2106 		}
2107 		if (discard_swap(p) == 0 && (swap_flags & SWAP_FLAG_DISCARD))
2108 			p->flags |= SWP_DISCARDABLE;
2109 	}
2110 
2111 	mutex_lock(&swapon_mutex);
2112 	prio = -1;
2113 	if (swap_flags & SWAP_FLAG_PREFER)
2114 		prio =
2115 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2116 	enable_swap_info(p, prio, swap_map);
2117 
2118 	printk(KERN_INFO "Adding %uk swap on %s.  "
2119 			"Priority:%d extents:%d across:%lluk %s%s\n",
2120 		p->pages<<(PAGE_SHIFT-10), name, p->prio,
2121 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2122 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2123 		(p->flags & SWP_DISCARDABLE) ? "D" : "");
2124 
2125 	mutex_unlock(&swapon_mutex);
2126 	atomic_inc(&proc_poll_event);
2127 	wake_up_interruptible(&proc_poll_wait);
2128 
2129 	if (S_ISREG(inode->i_mode))
2130 		inode->i_flags |= S_SWAPFILE;
2131 	error = 0;
2132 	goto out;
2133 bad_swap:
2134 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2135 		set_blocksize(p->bdev, p->old_block_size);
2136 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2137 	}
2138 	destroy_swap_extents(p);
2139 	swap_cgroup_swapoff(p->type);
2140 	spin_lock(&swap_lock);
2141 	p->swap_file = NULL;
2142 	p->flags = 0;
2143 	spin_unlock(&swap_lock);
2144 	vfree(swap_map);
2145 	if (swap_file) {
2146 		if (inode && S_ISREG(inode->i_mode)) {
2147 			mutex_unlock(&inode->i_mutex);
2148 			inode = NULL;
2149 		}
2150 		filp_close(swap_file, NULL);
2151 	}
2152 out:
2153 	if (page && !IS_ERR(page)) {
2154 		kunmap(page);
2155 		page_cache_release(page);
2156 	}
2157 	if (name)
2158 		putname(name);
2159 	if (inode && S_ISREG(inode->i_mode))
2160 		mutex_unlock(&inode->i_mutex);
2161 	return error;
2162 }
2163 
2164 void si_swapinfo(struct sysinfo *val)
2165 {
2166 	unsigned int type;
2167 	unsigned long nr_to_be_unused = 0;
2168 
2169 	spin_lock(&swap_lock);
2170 	for (type = 0; type < nr_swapfiles; type++) {
2171 		struct swap_info_struct *si = swap_info[type];
2172 
2173 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2174 			nr_to_be_unused += si->inuse_pages;
2175 	}
2176 	val->freeswap = nr_swap_pages + nr_to_be_unused;
2177 	val->totalswap = total_swap_pages + nr_to_be_unused;
2178 	spin_unlock(&swap_lock);
2179 }
2180 
2181 /*
2182  * Verify that a swap entry is valid and increment its swap map count.
2183  *
2184  * Returns error code in following case.
2185  * - success -> 0
2186  * - swp_entry is invalid -> EINVAL
2187  * - swp_entry is migration entry -> EINVAL
2188  * - swap-cache reference is requested but there is already one. -> EEXIST
2189  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2190  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2191  */
2192 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2193 {
2194 	struct swap_info_struct *p;
2195 	unsigned long offset, type;
2196 	unsigned char count;
2197 	unsigned char has_cache;
2198 	int err = -EINVAL;
2199 
2200 	if (non_swap_entry(entry))
2201 		goto out;
2202 
2203 	type = swp_type(entry);
2204 	if (type >= nr_swapfiles)
2205 		goto bad_file;
2206 	p = swap_info[type];
2207 	offset = swp_offset(entry);
2208 
2209 	spin_lock(&swap_lock);
2210 	if (unlikely(offset >= p->max))
2211 		goto unlock_out;
2212 
2213 	count = p->swap_map[offset];
2214 	has_cache = count & SWAP_HAS_CACHE;
2215 	count &= ~SWAP_HAS_CACHE;
2216 	err = 0;
2217 
2218 	if (usage == SWAP_HAS_CACHE) {
2219 
2220 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2221 		if (!has_cache && count)
2222 			has_cache = SWAP_HAS_CACHE;
2223 		else if (has_cache)		/* someone else added cache */
2224 			err = -EEXIST;
2225 		else				/* no users remaining */
2226 			err = -ENOENT;
2227 
2228 	} else if (count || has_cache) {
2229 
2230 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2231 			count += usage;
2232 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2233 			err = -EINVAL;
2234 		else if (swap_count_continued(p, offset, count))
2235 			count = COUNT_CONTINUED;
2236 		else
2237 			err = -ENOMEM;
2238 	} else
2239 		err = -ENOENT;			/* unused swap entry */
2240 
2241 	p->swap_map[offset] = count | has_cache;
2242 
2243 unlock_out:
2244 	spin_unlock(&swap_lock);
2245 out:
2246 	return err;
2247 
2248 bad_file:
2249 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2250 	goto out;
2251 }
2252 
2253 /*
2254  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2255  * (in which case its reference count is never incremented).
2256  */
2257 void swap_shmem_alloc(swp_entry_t entry)
2258 {
2259 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2260 }
2261 
2262 /*
2263  * Increase reference count of swap entry by 1.
2264  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2265  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2266  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2267  * might occur if a page table entry has got corrupted.
2268  */
2269 int swap_duplicate(swp_entry_t entry)
2270 {
2271 	int err = 0;
2272 
2273 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2274 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2275 	return err;
2276 }
2277 
2278 /*
2279  * @entry: swap entry for which we allocate swap cache.
2280  *
2281  * Called when allocating swap cache for existing swap entry,
2282  * This can return error codes. Returns 0 at success.
2283  * -EBUSY means there is a swap cache.
2284  * Note: return code is different from swap_duplicate().
2285  */
2286 int swapcache_prepare(swp_entry_t entry)
2287 {
2288 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2289 }
2290 
2291 /*
2292  * swap_lock prevents swap_map being freed. Don't grab an extra
2293  * reference on the swaphandle, it doesn't matter if it becomes unused.
2294  */
2295 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2296 {
2297 	struct swap_info_struct *si;
2298 	int our_page_cluster = page_cluster;
2299 	pgoff_t target, toff;
2300 	pgoff_t base, end;
2301 	int nr_pages = 0;
2302 
2303 	if (!our_page_cluster)	/* no readahead */
2304 		return 0;
2305 
2306 	si = swap_info[swp_type(entry)];
2307 	target = swp_offset(entry);
2308 	base = (target >> our_page_cluster) << our_page_cluster;
2309 	end = base + (1 << our_page_cluster);
2310 	if (!base)		/* first page is swap header */
2311 		base++;
2312 
2313 	spin_lock(&swap_lock);
2314 	if (end > si->max)	/* don't go beyond end of map */
2315 		end = si->max;
2316 
2317 	/* Count contiguous allocated slots above our target */
2318 	for (toff = target; ++toff < end; nr_pages++) {
2319 		/* Don't read in free or bad pages */
2320 		if (!si->swap_map[toff])
2321 			break;
2322 		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2323 			break;
2324 	}
2325 	/* Count contiguous allocated slots below our target */
2326 	for (toff = target; --toff >= base; nr_pages++) {
2327 		/* Don't read in free or bad pages */
2328 		if (!si->swap_map[toff])
2329 			break;
2330 		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2331 			break;
2332 	}
2333 	spin_unlock(&swap_lock);
2334 
2335 	/*
2336 	 * Indicate starting offset, and return number of pages to get:
2337 	 * if only 1, say 0, since there's then no readahead to be done.
2338 	 */
2339 	*offset = ++toff;
2340 	return nr_pages? ++nr_pages: 0;
2341 }
2342 
2343 /*
2344  * add_swap_count_continuation - called when a swap count is duplicated
2345  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2346  * page of the original vmalloc'ed swap_map, to hold the continuation count
2347  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2348  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2349  *
2350  * These continuation pages are seldom referenced: the common paths all work
2351  * on the original swap_map, only referring to a continuation page when the
2352  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2353  *
2354  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2355  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2356  * can be called after dropping locks.
2357  */
2358 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2359 {
2360 	struct swap_info_struct *si;
2361 	struct page *head;
2362 	struct page *page;
2363 	struct page *list_page;
2364 	pgoff_t offset;
2365 	unsigned char count;
2366 
2367 	/*
2368 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2369 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2370 	 */
2371 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2372 
2373 	si = swap_info_get(entry);
2374 	if (!si) {
2375 		/*
2376 		 * An acceptable race has occurred since the failing
2377 		 * __swap_duplicate(): the swap entry has been freed,
2378 		 * perhaps even the whole swap_map cleared for swapoff.
2379 		 */
2380 		goto outer;
2381 	}
2382 
2383 	offset = swp_offset(entry);
2384 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2385 
2386 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2387 		/*
2388 		 * The higher the swap count, the more likely it is that tasks
2389 		 * will race to add swap count continuation: we need to avoid
2390 		 * over-provisioning.
2391 		 */
2392 		goto out;
2393 	}
2394 
2395 	if (!page) {
2396 		spin_unlock(&swap_lock);
2397 		return -ENOMEM;
2398 	}
2399 
2400 	/*
2401 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2402 	 * no architecture is using highmem pages for kernel pagetables: so it
2403 	 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2404 	 */
2405 	head = vmalloc_to_page(si->swap_map + offset);
2406 	offset &= ~PAGE_MASK;
2407 
2408 	/*
2409 	 * Page allocation does not initialize the page's lru field,
2410 	 * but it does always reset its private field.
2411 	 */
2412 	if (!page_private(head)) {
2413 		BUG_ON(count & COUNT_CONTINUED);
2414 		INIT_LIST_HEAD(&head->lru);
2415 		set_page_private(head, SWP_CONTINUED);
2416 		si->flags |= SWP_CONTINUED;
2417 	}
2418 
2419 	list_for_each_entry(list_page, &head->lru, lru) {
2420 		unsigned char *map;
2421 
2422 		/*
2423 		 * If the previous map said no continuation, but we've found
2424 		 * a continuation page, free our allocation and use this one.
2425 		 */
2426 		if (!(count & COUNT_CONTINUED))
2427 			goto out;
2428 
2429 		map = kmap_atomic(list_page, KM_USER0) + offset;
2430 		count = *map;
2431 		kunmap_atomic(map, KM_USER0);
2432 
2433 		/*
2434 		 * If this continuation count now has some space in it,
2435 		 * free our allocation and use this one.
2436 		 */
2437 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2438 			goto out;
2439 	}
2440 
2441 	list_add_tail(&page->lru, &head->lru);
2442 	page = NULL;			/* now it's attached, don't free it */
2443 out:
2444 	spin_unlock(&swap_lock);
2445 outer:
2446 	if (page)
2447 		__free_page(page);
2448 	return 0;
2449 }
2450 
2451 /*
2452  * swap_count_continued - when the original swap_map count is incremented
2453  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2454  * into, carry if so, or else fail until a new continuation page is allocated;
2455  * when the original swap_map count is decremented from 0 with continuation,
2456  * borrow from the continuation and report whether it still holds more.
2457  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2458  */
2459 static bool swap_count_continued(struct swap_info_struct *si,
2460 				 pgoff_t offset, unsigned char count)
2461 {
2462 	struct page *head;
2463 	struct page *page;
2464 	unsigned char *map;
2465 
2466 	head = vmalloc_to_page(si->swap_map + offset);
2467 	if (page_private(head) != SWP_CONTINUED) {
2468 		BUG_ON(count & COUNT_CONTINUED);
2469 		return false;		/* need to add count continuation */
2470 	}
2471 
2472 	offset &= ~PAGE_MASK;
2473 	page = list_entry(head->lru.next, struct page, lru);
2474 	map = kmap_atomic(page, KM_USER0) + offset;
2475 
2476 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2477 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2478 
2479 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2480 		/*
2481 		 * Think of how you add 1 to 999
2482 		 */
2483 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2484 			kunmap_atomic(map, KM_USER0);
2485 			page = list_entry(page->lru.next, struct page, lru);
2486 			BUG_ON(page == head);
2487 			map = kmap_atomic(page, KM_USER0) + offset;
2488 		}
2489 		if (*map == SWAP_CONT_MAX) {
2490 			kunmap_atomic(map, KM_USER0);
2491 			page = list_entry(page->lru.next, struct page, lru);
2492 			if (page == head)
2493 				return false;	/* add count continuation */
2494 			map = kmap_atomic(page, KM_USER0) + offset;
2495 init_map:		*map = 0;		/* we didn't zero the page */
2496 		}
2497 		*map += 1;
2498 		kunmap_atomic(map, KM_USER0);
2499 		page = list_entry(page->lru.prev, struct page, lru);
2500 		while (page != head) {
2501 			map = kmap_atomic(page, KM_USER0) + offset;
2502 			*map = COUNT_CONTINUED;
2503 			kunmap_atomic(map, KM_USER0);
2504 			page = list_entry(page->lru.prev, struct page, lru);
2505 		}
2506 		return true;			/* incremented */
2507 
2508 	} else {				/* decrementing */
2509 		/*
2510 		 * Think of how you subtract 1 from 1000
2511 		 */
2512 		BUG_ON(count != COUNT_CONTINUED);
2513 		while (*map == COUNT_CONTINUED) {
2514 			kunmap_atomic(map, KM_USER0);
2515 			page = list_entry(page->lru.next, struct page, lru);
2516 			BUG_ON(page == head);
2517 			map = kmap_atomic(page, KM_USER0) + offset;
2518 		}
2519 		BUG_ON(*map == 0);
2520 		*map -= 1;
2521 		if (*map == 0)
2522 			count = 0;
2523 		kunmap_atomic(map, KM_USER0);
2524 		page = list_entry(page->lru.prev, struct page, lru);
2525 		while (page != head) {
2526 			map = kmap_atomic(page, KM_USER0) + offset;
2527 			*map = SWAP_CONT_MAX | count;
2528 			count = COUNT_CONTINUED;
2529 			kunmap_atomic(map, KM_USER0);
2530 			page = list_entry(page->lru.prev, struct page, lru);
2531 		}
2532 		return count == COUNT_CONTINUED;
2533 	}
2534 }
2535 
2536 /*
2537  * free_swap_count_continuations - swapoff free all the continuation pages
2538  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2539  */
2540 static void free_swap_count_continuations(struct swap_info_struct *si)
2541 {
2542 	pgoff_t offset;
2543 
2544 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2545 		struct page *head;
2546 		head = vmalloc_to_page(si->swap_map + offset);
2547 		if (page_private(head)) {
2548 			struct list_head *this, *next;
2549 			list_for_each_safe(this, next, &head->lru) {
2550 				struct page *page;
2551 				page = list_entry(this, struct page, lru);
2552 				list_del(this);
2553 				__free_page(page);
2554 			}
2555 		}
2556 	}
2557 }
2558