1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/hugetlb.h> 10 #include <linux/mman.h> 11 #include <linux/slab.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/shmem_fs.h> 18 #include <linux/blkdev.h> 19 #include <linux/random.h> 20 #include <linux/writeback.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/init.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/security.h> 27 #include <linux/backing-dev.h> 28 #include <linux/mutex.h> 29 #include <linux/capability.h> 30 #include <linux/syscalls.h> 31 #include <linux/memcontrol.h> 32 #include <linux/poll.h> 33 #include <linux/oom.h> 34 35 #include <asm/pgtable.h> 36 #include <asm/tlbflush.h> 37 #include <linux/swapops.h> 38 #include <linux/page_cgroup.h> 39 40 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 41 unsigned char); 42 static void free_swap_count_continuations(struct swap_info_struct *); 43 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 44 45 static DEFINE_SPINLOCK(swap_lock); 46 static unsigned int nr_swapfiles; 47 long nr_swap_pages; 48 long total_swap_pages; 49 static int least_priority; 50 51 static const char Bad_file[] = "Bad swap file entry "; 52 static const char Unused_file[] = "Unused swap file entry "; 53 static const char Bad_offset[] = "Bad swap offset entry "; 54 static const char Unused_offset[] = "Unused swap offset entry "; 55 56 static struct swap_list_t swap_list = {-1, -1}; 57 58 static struct swap_info_struct *swap_info[MAX_SWAPFILES]; 59 60 static DEFINE_MUTEX(swapon_mutex); 61 62 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 63 /* Activity counter to indicate that a swapon or swapoff has occurred */ 64 static atomic_t proc_poll_event = ATOMIC_INIT(0); 65 66 static inline unsigned char swap_count(unsigned char ent) 67 { 68 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */ 69 } 70 71 /* returns 1 if swap entry is freed */ 72 static int 73 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) 74 { 75 swp_entry_t entry = swp_entry(si->type, offset); 76 struct page *page; 77 int ret = 0; 78 79 page = find_get_page(&swapper_space, entry.val); 80 if (!page) 81 return 0; 82 /* 83 * This function is called from scan_swap_map() and it's called 84 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. 85 * We have to use trylock for avoiding deadlock. This is a special 86 * case and you should use try_to_free_swap() with explicit lock_page() 87 * in usual operations. 88 */ 89 if (trylock_page(page)) { 90 ret = try_to_free_swap(page); 91 unlock_page(page); 92 } 93 page_cache_release(page); 94 return ret; 95 } 96 97 /* 98 * swapon tell device that all the old swap contents can be discarded, 99 * to allow the swap device to optimize its wear-levelling. 100 */ 101 static int discard_swap(struct swap_info_struct *si) 102 { 103 struct swap_extent *se; 104 sector_t start_block; 105 sector_t nr_blocks; 106 int err = 0; 107 108 /* Do not discard the swap header page! */ 109 se = &si->first_swap_extent; 110 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 111 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 112 if (nr_blocks) { 113 err = blkdev_issue_discard(si->bdev, start_block, 114 nr_blocks, GFP_KERNEL, 0); 115 if (err) 116 return err; 117 cond_resched(); 118 } 119 120 list_for_each_entry(se, &si->first_swap_extent.list, list) { 121 start_block = se->start_block << (PAGE_SHIFT - 9); 122 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 123 124 err = blkdev_issue_discard(si->bdev, start_block, 125 nr_blocks, GFP_KERNEL, 0); 126 if (err) 127 break; 128 129 cond_resched(); 130 } 131 return err; /* That will often be -EOPNOTSUPP */ 132 } 133 134 /* 135 * swap allocation tell device that a cluster of swap can now be discarded, 136 * to allow the swap device to optimize its wear-levelling. 137 */ 138 static void discard_swap_cluster(struct swap_info_struct *si, 139 pgoff_t start_page, pgoff_t nr_pages) 140 { 141 struct swap_extent *se = si->curr_swap_extent; 142 int found_extent = 0; 143 144 while (nr_pages) { 145 struct list_head *lh; 146 147 if (se->start_page <= start_page && 148 start_page < se->start_page + se->nr_pages) { 149 pgoff_t offset = start_page - se->start_page; 150 sector_t start_block = se->start_block + offset; 151 sector_t nr_blocks = se->nr_pages - offset; 152 153 if (nr_blocks > nr_pages) 154 nr_blocks = nr_pages; 155 start_page += nr_blocks; 156 nr_pages -= nr_blocks; 157 158 if (!found_extent++) 159 si->curr_swap_extent = se; 160 161 start_block <<= PAGE_SHIFT - 9; 162 nr_blocks <<= PAGE_SHIFT - 9; 163 if (blkdev_issue_discard(si->bdev, start_block, 164 nr_blocks, GFP_NOIO, 0)) 165 break; 166 } 167 168 lh = se->list.next; 169 se = list_entry(lh, struct swap_extent, list); 170 } 171 } 172 173 static int wait_for_discard(void *word) 174 { 175 schedule(); 176 return 0; 177 } 178 179 #define SWAPFILE_CLUSTER 256 180 #define LATENCY_LIMIT 256 181 182 static unsigned long scan_swap_map(struct swap_info_struct *si, 183 unsigned char usage) 184 { 185 unsigned long offset; 186 unsigned long scan_base; 187 unsigned long last_in_cluster = 0; 188 int latency_ration = LATENCY_LIMIT; 189 int found_free_cluster = 0; 190 191 /* 192 * We try to cluster swap pages by allocating them sequentially 193 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 194 * way, however, we resort to first-free allocation, starting 195 * a new cluster. This prevents us from scattering swap pages 196 * all over the entire swap partition, so that we reduce 197 * overall disk seek times between swap pages. -- sct 198 * But we do now try to find an empty cluster. -Andrea 199 * And we let swap pages go all over an SSD partition. Hugh 200 */ 201 202 si->flags += SWP_SCANNING; 203 scan_base = offset = si->cluster_next; 204 205 if (unlikely(!si->cluster_nr--)) { 206 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 207 si->cluster_nr = SWAPFILE_CLUSTER - 1; 208 goto checks; 209 } 210 if (si->flags & SWP_DISCARDABLE) { 211 /* 212 * Start range check on racing allocations, in case 213 * they overlap the cluster we eventually decide on 214 * (we scan without swap_lock to allow preemption). 215 * It's hardly conceivable that cluster_nr could be 216 * wrapped during our scan, but don't depend on it. 217 */ 218 if (si->lowest_alloc) 219 goto checks; 220 si->lowest_alloc = si->max; 221 si->highest_alloc = 0; 222 } 223 spin_unlock(&swap_lock); 224 225 /* 226 * If seek is expensive, start searching for new cluster from 227 * start of partition, to minimize the span of allocated swap. 228 * But if seek is cheap, search from our current position, so 229 * that swap is allocated from all over the partition: if the 230 * Flash Translation Layer only remaps within limited zones, 231 * we don't want to wear out the first zone too quickly. 232 */ 233 if (!(si->flags & SWP_SOLIDSTATE)) 234 scan_base = offset = si->lowest_bit; 235 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 236 237 /* Locate the first empty (unaligned) cluster */ 238 for (; last_in_cluster <= si->highest_bit; offset++) { 239 if (si->swap_map[offset]) 240 last_in_cluster = offset + SWAPFILE_CLUSTER; 241 else if (offset == last_in_cluster) { 242 spin_lock(&swap_lock); 243 offset -= SWAPFILE_CLUSTER - 1; 244 si->cluster_next = offset; 245 si->cluster_nr = SWAPFILE_CLUSTER - 1; 246 found_free_cluster = 1; 247 goto checks; 248 } 249 if (unlikely(--latency_ration < 0)) { 250 cond_resched(); 251 latency_ration = LATENCY_LIMIT; 252 } 253 } 254 255 offset = si->lowest_bit; 256 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 257 258 /* Locate the first empty (unaligned) cluster */ 259 for (; last_in_cluster < scan_base; offset++) { 260 if (si->swap_map[offset]) 261 last_in_cluster = offset + SWAPFILE_CLUSTER; 262 else if (offset == last_in_cluster) { 263 spin_lock(&swap_lock); 264 offset -= SWAPFILE_CLUSTER - 1; 265 si->cluster_next = offset; 266 si->cluster_nr = SWAPFILE_CLUSTER - 1; 267 found_free_cluster = 1; 268 goto checks; 269 } 270 if (unlikely(--latency_ration < 0)) { 271 cond_resched(); 272 latency_ration = LATENCY_LIMIT; 273 } 274 } 275 276 offset = scan_base; 277 spin_lock(&swap_lock); 278 si->cluster_nr = SWAPFILE_CLUSTER - 1; 279 si->lowest_alloc = 0; 280 } 281 282 checks: 283 if (!(si->flags & SWP_WRITEOK)) 284 goto no_page; 285 if (!si->highest_bit) 286 goto no_page; 287 if (offset > si->highest_bit) 288 scan_base = offset = si->lowest_bit; 289 290 /* reuse swap entry of cache-only swap if not busy. */ 291 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 292 int swap_was_freed; 293 spin_unlock(&swap_lock); 294 swap_was_freed = __try_to_reclaim_swap(si, offset); 295 spin_lock(&swap_lock); 296 /* entry was freed successfully, try to use this again */ 297 if (swap_was_freed) 298 goto checks; 299 goto scan; /* check next one */ 300 } 301 302 if (si->swap_map[offset]) 303 goto scan; 304 305 if (offset == si->lowest_bit) 306 si->lowest_bit++; 307 if (offset == si->highest_bit) 308 si->highest_bit--; 309 si->inuse_pages++; 310 if (si->inuse_pages == si->pages) { 311 si->lowest_bit = si->max; 312 si->highest_bit = 0; 313 } 314 si->swap_map[offset] = usage; 315 si->cluster_next = offset + 1; 316 si->flags -= SWP_SCANNING; 317 318 if (si->lowest_alloc) { 319 /* 320 * Only set when SWP_DISCARDABLE, and there's a scan 321 * for a free cluster in progress or just completed. 322 */ 323 if (found_free_cluster) { 324 /* 325 * To optimize wear-levelling, discard the 326 * old data of the cluster, taking care not to 327 * discard any of its pages that have already 328 * been allocated by racing tasks (offset has 329 * already stepped over any at the beginning). 330 */ 331 if (offset < si->highest_alloc && 332 si->lowest_alloc <= last_in_cluster) 333 last_in_cluster = si->lowest_alloc - 1; 334 si->flags |= SWP_DISCARDING; 335 spin_unlock(&swap_lock); 336 337 if (offset < last_in_cluster) 338 discard_swap_cluster(si, offset, 339 last_in_cluster - offset + 1); 340 341 spin_lock(&swap_lock); 342 si->lowest_alloc = 0; 343 si->flags &= ~SWP_DISCARDING; 344 345 smp_mb(); /* wake_up_bit advises this */ 346 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING)); 347 348 } else if (si->flags & SWP_DISCARDING) { 349 /* 350 * Delay using pages allocated by racing tasks 351 * until the whole discard has been issued. We 352 * could defer that delay until swap_writepage, 353 * but it's easier to keep this self-contained. 354 */ 355 spin_unlock(&swap_lock); 356 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING), 357 wait_for_discard, TASK_UNINTERRUPTIBLE); 358 spin_lock(&swap_lock); 359 } else { 360 /* 361 * Note pages allocated by racing tasks while 362 * scan for a free cluster is in progress, so 363 * that its final discard can exclude them. 364 */ 365 if (offset < si->lowest_alloc) 366 si->lowest_alloc = offset; 367 if (offset > si->highest_alloc) 368 si->highest_alloc = offset; 369 } 370 } 371 return offset; 372 373 scan: 374 spin_unlock(&swap_lock); 375 while (++offset <= si->highest_bit) { 376 if (!si->swap_map[offset]) { 377 spin_lock(&swap_lock); 378 goto checks; 379 } 380 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 381 spin_lock(&swap_lock); 382 goto checks; 383 } 384 if (unlikely(--latency_ration < 0)) { 385 cond_resched(); 386 latency_ration = LATENCY_LIMIT; 387 } 388 } 389 offset = si->lowest_bit; 390 while (++offset < scan_base) { 391 if (!si->swap_map[offset]) { 392 spin_lock(&swap_lock); 393 goto checks; 394 } 395 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 396 spin_lock(&swap_lock); 397 goto checks; 398 } 399 if (unlikely(--latency_ration < 0)) { 400 cond_resched(); 401 latency_ration = LATENCY_LIMIT; 402 } 403 } 404 spin_lock(&swap_lock); 405 406 no_page: 407 si->flags -= SWP_SCANNING; 408 return 0; 409 } 410 411 swp_entry_t get_swap_page(void) 412 { 413 struct swap_info_struct *si; 414 pgoff_t offset; 415 int type, next; 416 int wrapped = 0; 417 418 spin_lock(&swap_lock); 419 if (nr_swap_pages <= 0) 420 goto noswap; 421 nr_swap_pages--; 422 423 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { 424 si = swap_info[type]; 425 next = si->next; 426 if (next < 0 || 427 (!wrapped && si->prio != swap_info[next]->prio)) { 428 next = swap_list.head; 429 wrapped++; 430 } 431 432 if (!si->highest_bit) 433 continue; 434 if (!(si->flags & SWP_WRITEOK)) 435 continue; 436 437 swap_list.next = next; 438 /* This is called for allocating swap entry for cache */ 439 offset = scan_swap_map(si, SWAP_HAS_CACHE); 440 if (offset) { 441 spin_unlock(&swap_lock); 442 return swp_entry(type, offset); 443 } 444 next = swap_list.next; 445 } 446 447 nr_swap_pages++; 448 noswap: 449 spin_unlock(&swap_lock); 450 return (swp_entry_t) {0}; 451 } 452 453 /* The only caller of this function is now susupend routine */ 454 swp_entry_t get_swap_page_of_type(int type) 455 { 456 struct swap_info_struct *si; 457 pgoff_t offset; 458 459 spin_lock(&swap_lock); 460 si = swap_info[type]; 461 if (si && (si->flags & SWP_WRITEOK)) { 462 nr_swap_pages--; 463 /* This is called for allocating swap entry, not cache */ 464 offset = scan_swap_map(si, 1); 465 if (offset) { 466 spin_unlock(&swap_lock); 467 return swp_entry(type, offset); 468 } 469 nr_swap_pages++; 470 } 471 spin_unlock(&swap_lock); 472 return (swp_entry_t) {0}; 473 } 474 475 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 476 { 477 struct swap_info_struct *p; 478 unsigned long offset, type; 479 480 if (!entry.val) 481 goto out; 482 type = swp_type(entry); 483 if (type >= nr_swapfiles) 484 goto bad_nofile; 485 p = swap_info[type]; 486 if (!(p->flags & SWP_USED)) 487 goto bad_device; 488 offset = swp_offset(entry); 489 if (offset >= p->max) 490 goto bad_offset; 491 if (!p->swap_map[offset]) 492 goto bad_free; 493 spin_lock(&swap_lock); 494 return p; 495 496 bad_free: 497 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); 498 goto out; 499 bad_offset: 500 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); 501 goto out; 502 bad_device: 503 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); 504 goto out; 505 bad_nofile: 506 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); 507 out: 508 return NULL; 509 } 510 511 static unsigned char swap_entry_free(struct swap_info_struct *p, 512 swp_entry_t entry, unsigned char usage) 513 { 514 unsigned long offset = swp_offset(entry); 515 unsigned char count; 516 unsigned char has_cache; 517 518 count = p->swap_map[offset]; 519 has_cache = count & SWAP_HAS_CACHE; 520 count &= ~SWAP_HAS_CACHE; 521 522 if (usage == SWAP_HAS_CACHE) { 523 VM_BUG_ON(!has_cache); 524 has_cache = 0; 525 } else if (count == SWAP_MAP_SHMEM) { 526 /* 527 * Or we could insist on shmem.c using a special 528 * swap_shmem_free() and free_shmem_swap_and_cache()... 529 */ 530 count = 0; 531 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 532 if (count == COUNT_CONTINUED) { 533 if (swap_count_continued(p, offset, count)) 534 count = SWAP_MAP_MAX | COUNT_CONTINUED; 535 else 536 count = SWAP_MAP_MAX; 537 } else 538 count--; 539 } 540 541 if (!count) 542 mem_cgroup_uncharge_swap(entry); 543 544 usage = count | has_cache; 545 p->swap_map[offset] = usage; 546 547 /* free if no reference */ 548 if (!usage) { 549 struct gendisk *disk = p->bdev->bd_disk; 550 if (offset < p->lowest_bit) 551 p->lowest_bit = offset; 552 if (offset > p->highest_bit) 553 p->highest_bit = offset; 554 if (swap_list.next >= 0 && 555 p->prio > swap_info[swap_list.next]->prio) 556 swap_list.next = p->type; 557 nr_swap_pages++; 558 p->inuse_pages--; 559 if ((p->flags & SWP_BLKDEV) && 560 disk->fops->swap_slot_free_notify) 561 disk->fops->swap_slot_free_notify(p->bdev, offset); 562 } 563 564 return usage; 565 } 566 567 /* 568 * Caller has made sure that the swapdevice corresponding to entry 569 * is still around or has not been recycled. 570 */ 571 void swap_free(swp_entry_t entry) 572 { 573 struct swap_info_struct *p; 574 575 p = swap_info_get(entry); 576 if (p) { 577 swap_entry_free(p, entry, 1); 578 spin_unlock(&swap_lock); 579 } 580 } 581 582 /* 583 * Called after dropping swapcache to decrease refcnt to swap entries. 584 */ 585 void swapcache_free(swp_entry_t entry, struct page *page) 586 { 587 struct swap_info_struct *p; 588 unsigned char count; 589 590 p = swap_info_get(entry); 591 if (p) { 592 count = swap_entry_free(p, entry, SWAP_HAS_CACHE); 593 if (page) 594 mem_cgroup_uncharge_swapcache(page, entry, count != 0); 595 spin_unlock(&swap_lock); 596 } 597 } 598 599 /* 600 * How many references to page are currently swapped out? 601 * This does not give an exact answer when swap count is continued, 602 * but does include the high COUNT_CONTINUED flag to allow for that. 603 */ 604 static inline int page_swapcount(struct page *page) 605 { 606 int count = 0; 607 struct swap_info_struct *p; 608 swp_entry_t entry; 609 610 entry.val = page_private(page); 611 p = swap_info_get(entry); 612 if (p) { 613 count = swap_count(p->swap_map[swp_offset(entry)]); 614 spin_unlock(&swap_lock); 615 } 616 return count; 617 } 618 619 /* 620 * We can write to an anon page without COW if there are no other references 621 * to it. And as a side-effect, free up its swap: because the old content 622 * on disk will never be read, and seeking back there to write new content 623 * later would only waste time away from clustering. 624 */ 625 int reuse_swap_page(struct page *page) 626 { 627 int count; 628 629 VM_BUG_ON(!PageLocked(page)); 630 if (unlikely(PageKsm(page))) 631 return 0; 632 count = page_mapcount(page); 633 if (count <= 1 && PageSwapCache(page)) { 634 count += page_swapcount(page); 635 if (count == 1 && !PageWriteback(page)) { 636 delete_from_swap_cache(page); 637 SetPageDirty(page); 638 } 639 } 640 return count <= 1; 641 } 642 643 /* 644 * If swap is getting full, or if there are no more mappings of this page, 645 * then try_to_free_swap is called to free its swap space. 646 */ 647 int try_to_free_swap(struct page *page) 648 { 649 VM_BUG_ON(!PageLocked(page)); 650 651 if (!PageSwapCache(page)) 652 return 0; 653 if (PageWriteback(page)) 654 return 0; 655 if (page_swapcount(page)) 656 return 0; 657 658 /* 659 * Once hibernation has begun to create its image of memory, 660 * there's a danger that one of the calls to try_to_free_swap() 661 * - most probably a call from __try_to_reclaim_swap() while 662 * hibernation is allocating its own swap pages for the image, 663 * but conceivably even a call from memory reclaim - will free 664 * the swap from a page which has already been recorded in the 665 * image as a clean swapcache page, and then reuse its swap for 666 * another page of the image. On waking from hibernation, the 667 * original page might be freed under memory pressure, then 668 * later read back in from swap, now with the wrong data. 669 * 670 * Hibernation clears bits from gfp_allowed_mask to prevent 671 * memory reclaim from writing to disk, so check that here. 672 */ 673 if (!(gfp_allowed_mask & __GFP_IO)) 674 return 0; 675 676 delete_from_swap_cache(page); 677 SetPageDirty(page); 678 return 1; 679 } 680 681 /* 682 * Free the swap entry like above, but also try to 683 * free the page cache entry if it is the last user. 684 */ 685 int free_swap_and_cache(swp_entry_t entry) 686 { 687 struct swap_info_struct *p; 688 struct page *page = NULL; 689 690 if (non_swap_entry(entry)) 691 return 1; 692 693 p = swap_info_get(entry); 694 if (p) { 695 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) { 696 page = find_get_page(&swapper_space, entry.val); 697 if (page && !trylock_page(page)) { 698 page_cache_release(page); 699 page = NULL; 700 } 701 } 702 spin_unlock(&swap_lock); 703 } 704 if (page) { 705 /* 706 * Not mapped elsewhere, or swap space full? Free it! 707 * Also recheck PageSwapCache now page is locked (above). 708 */ 709 if (PageSwapCache(page) && !PageWriteback(page) && 710 (!page_mapped(page) || vm_swap_full())) { 711 delete_from_swap_cache(page); 712 SetPageDirty(page); 713 } 714 unlock_page(page); 715 page_cache_release(page); 716 } 717 return p != NULL; 718 } 719 720 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 721 /** 722 * mem_cgroup_count_swap_user - count the user of a swap entry 723 * @ent: the swap entry to be checked 724 * @pagep: the pointer for the swap cache page of the entry to be stored 725 * 726 * Returns the number of the user of the swap entry. The number is valid only 727 * for swaps of anonymous pages. 728 * If the entry is found on swap cache, the page is stored to pagep with 729 * refcount of it being incremented. 730 */ 731 int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep) 732 { 733 struct page *page; 734 struct swap_info_struct *p; 735 int count = 0; 736 737 page = find_get_page(&swapper_space, ent.val); 738 if (page) 739 count += page_mapcount(page); 740 p = swap_info_get(ent); 741 if (p) { 742 count += swap_count(p->swap_map[swp_offset(ent)]); 743 spin_unlock(&swap_lock); 744 } 745 746 *pagep = page; 747 return count; 748 } 749 #endif 750 751 #ifdef CONFIG_HIBERNATION 752 /* 753 * Find the swap type that corresponds to given device (if any). 754 * 755 * @offset - number of the PAGE_SIZE-sized block of the device, starting 756 * from 0, in which the swap header is expected to be located. 757 * 758 * This is needed for the suspend to disk (aka swsusp). 759 */ 760 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 761 { 762 struct block_device *bdev = NULL; 763 int type; 764 765 if (device) 766 bdev = bdget(device); 767 768 spin_lock(&swap_lock); 769 for (type = 0; type < nr_swapfiles; type++) { 770 struct swap_info_struct *sis = swap_info[type]; 771 772 if (!(sis->flags & SWP_WRITEOK)) 773 continue; 774 775 if (!bdev) { 776 if (bdev_p) 777 *bdev_p = bdgrab(sis->bdev); 778 779 spin_unlock(&swap_lock); 780 return type; 781 } 782 if (bdev == sis->bdev) { 783 struct swap_extent *se = &sis->first_swap_extent; 784 785 if (se->start_block == offset) { 786 if (bdev_p) 787 *bdev_p = bdgrab(sis->bdev); 788 789 spin_unlock(&swap_lock); 790 bdput(bdev); 791 return type; 792 } 793 } 794 } 795 spin_unlock(&swap_lock); 796 if (bdev) 797 bdput(bdev); 798 799 return -ENODEV; 800 } 801 802 /* 803 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 804 * corresponding to given index in swap_info (swap type). 805 */ 806 sector_t swapdev_block(int type, pgoff_t offset) 807 { 808 struct block_device *bdev; 809 810 if ((unsigned int)type >= nr_swapfiles) 811 return 0; 812 if (!(swap_info[type]->flags & SWP_WRITEOK)) 813 return 0; 814 return map_swap_entry(swp_entry(type, offset), &bdev); 815 } 816 817 /* 818 * Return either the total number of swap pages of given type, or the number 819 * of free pages of that type (depending on @free) 820 * 821 * This is needed for software suspend 822 */ 823 unsigned int count_swap_pages(int type, int free) 824 { 825 unsigned int n = 0; 826 827 spin_lock(&swap_lock); 828 if ((unsigned int)type < nr_swapfiles) { 829 struct swap_info_struct *sis = swap_info[type]; 830 831 if (sis->flags & SWP_WRITEOK) { 832 n = sis->pages; 833 if (free) 834 n -= sis->inuse_pages; 835 } 836 } 837 spin_unlock(&swap_lock); 838 return n; 839 } 840 #endif /* CONFIG_HIBERNATION */ 841 842 /* 843 * No need to decide whether this PTE shares the swap entry with others, 844 * just let do_wp_page work it out if a write is requested later - to 845 * force COW, vm_page_prot omits write permission from any private vma. 846 */ 847 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 848 unsigned long addr, swp_entry_t entry, struct page *page) 849 { 850 struct mem_cgroup *ptr; 851 spinlock_t *ptl; 852 pte_t *pte; 853 int ret = 1; 854 855 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) { 856 ret = -ENOMEM; 857 goto out_nolock; 858 } 859 860 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 861 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) { 862 if (ret > 0) 863 mem_cgroup_cancel_charge_swapin(ptr); 864 ret = 0; 865 goto out; 866 } 867 868 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 869 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 870 get_page(page); 871 set_pte_at(vma->vm_mm, addr, pte, 872 pte_mkold(mk_pte(page, vma->vm_page_prot))); 873 page_add_anon_rmap(page, vma, addr); 874 mem_cgroup_commit_charge_swapin(page, ptr); 875 swap_free(entry); 876 /* 877 * Move the page to the active list so it is not 878 * immediately swapped out again after swapon. 879 */ 880 activate_page(page); 881 out: 882 pte_unmap_unlock(pte, ptl); 883 out_nolock: 884 return ret; 885 } 886 887 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 888 unsigned long addr, unsigned long end, 889 swp_entry_t entry, struct page *page) 890 { 891 pte_t swp_pte = swp_entry_to_pte(entry); 892 pte_t *pte; 893 int ret = 0; 894 895 /* 896 * We don't actually need pte lock while scanning for swp_pte: since 897 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 898 * page table while we're scanning; though it could get zapped, and on 899 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 900 * of unmatched parts which look like swp_pte, so unuse_pte must 901 * recheck under pte lock. Scanning without pte lock lets it be 902 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 903 */ 904 pte = pte_offset_map(pmd, addr); 905 do { 906 /* 907 * swapoff spends a _lot_ of time in this loop! 908 * Test inline before going to call unuse_pte. 909 */ 910 if (unlikely(pte_same(*pte, swp_pte))) { 911 pte_unmap(pte); 912 ret = unuse_pte(vma, pmd, addr, entry, page); 913 if (ret) 914 goto out; 915 pte = pte_offset_map(pmd, addr); 916 } 917 } while (pte++, addr += PAGE_SIZE, addr != end); 918 pte_unmap(pte - 1); 919 out: 920 return ret; 921 } 922 923 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 924 unsigned long addr, unsigned long end, 925 swp_entry_t entry, struct page *page) 926 { 927 pmd_t *pmd; 928 unsigned long next; 929 int ret; 930 931 pmd = pmd_offset(pud, addr); 932 do { 933 next = pmd_addr_end(addr, end); 934 if (unlikely(pmd_trans_huge(*pmd))) 935 continue; 936 if (pmd_none_or_clear_bad(pmd)) 937 continue; 938 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 939 if (ret) 940 return ret; 941 } while (pmd++, addr = next, addr != end); 942 return 0; 943 } 944 945 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 946 unsigned long addr, unsigned long end, 947 swp_entry_t entry, struct page *page) 948 { 949 pud_t *pud; 950 unsigned long next; 951 int ret; 952 953 pud = pud_offset(pgd, addr); 954 do { 955 next = pud_addr_end(addr, end); 956 if (pud_none_or_clear_bad(pud)) 957 continue; 958 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 959 if (ret) 960 return ret; 961 } while (pud++, addr = next, addr != end); 962 return 0; 963 } 964 965 static int unuse_vma(struct vm_area_struct *vma, 966 swp_entry_t entry, struct page *page) 967 { 968 pgd_t *pgd; 969 unsigned long addr, end, next; 970 int ret; 971 972 if (page_anon_vma(page)) { 973 addr = page_address_in_vma(page, vma); 974 if (addr == -EFAULT) 975 return 0; 976 else 977 end = addr + PAGE_SIZE; 978 } else { 979 addr = vma->vm_start; 980 end = vma->vm_end; 981 } 982 983 pgd = pgd_offset(vma->vm_mm, addr); 984 do { 985 next = pgd_addr_end(addr, end); 986 if (pgd_none_or_clear_bad(pgd)) 987 continue; 988 ret = unuse_pud_range(vma, pgd, addr, next, entry, page); 989 if (ret) 990 return ret; 991 } while (pgd++, addr = next, addr != end); 992 return 0; 993 } 994 995 static int unuse_mm(struct mm_struct *mm, 996 swp_entry_t entry, struct page *page) 997 { 998 struct vm_area_struct *vma; 999 int ret = 0; 1000 1001 if (!down_read_trylock(&mm->mmap_sem)) { 1002 /* 1003 * Activate page so shrink_inactive_list is unlikely to unmap 1004 * its ptes while lock is dropped, so swapoff can make progress. 1005 */ 1006 activate_page(page); 1007 unlock_page(page); 1008 down_read(&mm->mmap_sem); 1009 lock_page(page); 1010 } 1011 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1012 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 1013 break; 1014 } 1015 up_read(&mm->mmap_sem); 1016 return (ret < 0)? ret: 0; 1017 } 1018 1019 /* 1020 * Scan swap_map from current position to next entry still in use. 1021 * Recycle to start on reaching the end, returning 0 when empty. 1022 */ 1023 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 1024 unsigned int prev) 1025 { 1026 unsigned int max = si->max; 1027 unsigned int i = prev; 1028 unsigned char count; 1029 1030 /* 1031 * No need for swap_lock here: we're just looking 1032 * for whether an entry is in use, not modifying it; false 1033 * hits are okay, and sys_swapoff() has already prevented new 1034 * allocations from this area (while holding swap_lock). 1035 */ 1036 for (;;) { 1037 if (++i >= max) { 1038 if (!prev) { 1039 i = 0; 1040 break; 1041 } 1042 /* 1043 * No entries in use at top of swap_map, 1044 * loop back to start and recheck there. 1045 */ 1046 max = prev + 1; 1047 prev = 0; 1048 i = 1; 1049 } 1050 count = si->swap_map[i]; 1051 if (count && swap_count(count) != SWAP_MAP_BAD) 1052 break; 1053 } 1054 return i; 1055 } 1056 1057 /* 1058 * We completely avoid races by reading each swap page in advance, 1059 * and then search for the process using it. All the necessary 1060 * page table adjustments can then be made atomically. 1061 */ 1062 static int try_to_unuse(unsigned int type) 1063 { 1064 struct swap_info_struct *si = swap_info[type]; 1065 struct mm_struct *start_mm; 1066 unsigned char *swap_map; 1067 unsigned char swcount; 1068 struct page *page; 1069 swp_entry_t entry; 1070 unsigned int i = 0; 1071 int retval = 0; 1072 1073 /* 1074 * When searching mms for an entry, a good strategy is to 1075 * start at the first mm we freed the previous entry from 1076 * (though actually we don't notice whether we or coincidence 1077 * freed the entry). Initialize this start_mm with a hold. 1078 * 1079 * A simpler strategy would be to start at the last mm we 1080 * freed the previous entry from; but that would take less 1081 * advantage of mmlist ordering, which clusters forked mms 1082 * together, child after parent. If we race with dup_mmap(), we 1083 * prefer to resolve parent before child, lest we miss entries 1084 * duplicated after we scanned child: using last mm would invert 1085 * that. 1086 */ 1087 start_mm = &init_mm; 1088 atomic_inc(&init_mm.mm_users); 1089 1090 /* 1091 * Keep on scanning until all entries have gone. Usually, 1092 * one pass through swap_map is enough, but not necessarily: 1093 * there are races when an instance of an entry might be missed. 1094 */ 1095 while ((i = find_next_to_unuse(si, i)) != 0) { 1096 if (signal_pending(current)) { 1097 retval = -EINTR; 1098 break; 1099 } 1100 1101 /* 1102 * Get a page for the entry, using the existing swap 1103 * cache page if there is one. Otherwise, get a clean 1104 * page and read the swap into it. 1105 */ 1106 swap_map = &si->swap_map[i]; 1107 entry = swp_entry(type, i); 1108 page = read_swap_cache_async(entry, 1109 GFP_HIGHUSER_MOVABLE, NULL, 0); 1110 if (!page) { 1111 /* 1112 * Either swap_duplicate() failed because entry 1113 * has been freed independently, and will not be 1114 * reused since sys_swapoff() already disabled 1115 * allocation from here, or alloc_page() failed. 1116 */ 1117 if (!*swap_map) 1118 continue; 1119 retval = -ENOMEM; 1120 break; 1121 } 1122 1123 /* 1124 * Don't hold on to start_mm if it looks like exiting. 1125 */ 1126 if (atomic_read(&start_mm->mm_users) == 1) { 1127 mmput(start_mm); 1128 start_mm = &init_mm; 1129 atomic_inc(&init_mm.mm_users); 1130 } 1131 1132 /* 1133 * Wait for and lock page. When do_swap_page races with 1134 * try_to_unuse, do_swap_page can handle the fault much 1135 * faster than try_to_unuse can locate the entry. This 1136 * apparently redundant "wait_on_page_locked" lets try_to_unuse 1137 * defer to do_swap_page in such a case - in some tests, 1138 * do_swap_page and try_to_unuse repeatedly compete. 1139 */ 1140 wait_on_page_locked(page); 1141 wait_on_page_writeback(page); 1142 lock_page(page); 1143 wait_on_page_writeback(page); 1144 1145 /* 1146 * Remove all references to entry. 1147 */ 1148 swcount = *swap_map; 1149 if (swap_count(swcount) == SWAP_MAP_SHMEM) { 1150 retval = shmem_unuse(entry, page); 1151 /* page has already been unlocked and released */ 1152 if (retval < 0) 1153 break; 1154 continue; 1155 } 1156 if (swap_count(swcount) && start_mm != &init_mm) 1157 retval = unuse_mm(start_mm, entry, page); 1158 1159 if (swap_count(*swap_map)) { 1160 int set_start_mm = (*swap_map >= swcount); 1161 struct list_head *p = &start_mm->mmlist; 1162 struct mm_struct *new_start_mm = start_mm; 1163 struct mm_struct *prev_mm = start_mm; 1164 struct mm_struct *mm; 1165 1166 atomic_inc(&new_start_mm->mm_users); 1167 atomic_inc(&prev_mm->mm_users); 1168 spin_lock(&mmlist_lock); 1169 while (swap_count(*swap_map) && !retval && 1170 (p = p->next) != &start_mm->mmlist) { 1171 mm = list_entry(p, struct mm_struct, mmlist); 1172 if (!atomic_inc_not_zero(&mm->mm_users)) 1173 continue; 1174 spin_unlock(&mmlist_lock); 1175 mmput(prev_mm); 1176 prev_mm = mm; 1177 1178 cond_resched(); 1179 1180 swcount = *swap_map; 1181 if (!swap_count(swcount)) /* any usage ? */ 1182 ; 1183 else if (mm == &init_mm) 1184 set_start_mm = 1; 1185 else 1186 retval = unuse_mm(mm, entry, page); 1187 1188 if (set_start_mm && *swap_map < swcount) { 1189 mmput(new_start_mm); 1190 atomic_inc(&mm->mm_users); 1191 new_start_mm = mm; 1192 set_start_mm = 0; 1193 } 1194 spin_lock(&mmlist_lock); 1195 } 1196 spin_unlock(&mmlist_lock); 1197 mmput(prev_mm); 1198 mmput(start_mm); 1199 start_mm = new_start_mm; 1200 } 1201 if (retval) { 1202 unlock_page(page); 1203 page_cache_release(page); 1204 break; 1205 } 1206 1207 /* 1208 * If a reference remains (rare), we would like to leave 1209 * the page in the swap cache; but try_to_unmap could 1210 * then re-duplicate the entry once we drop page lock, 1211 * so we might loop indefinitely; also, that page could 1212 * not be swapped out to other storage meanwhile. So: 1213 * delete from cache even if there's another reference, 1214 * after ensuring that the data has been saved to disk - 1215 * since if the reference remains (rarer), it will be 1216 * read from disk into another page. Splitting into two 1217 * pages would be incorrect if swap supported "shared 1218 * private" pages, but they are handled by tmpfs files. 1219 * 1220 * Given how unuse_vma() targets one particular offset 1221 * in an anon_vma, once the anon_vma has been determined, 1222 * this splitting happens to be just what is needed to 1223 * handle where KSM pages have been swapped out: re-reading 1224 * is unnecessarily slow, but we can fix that later on. 1225 */ 1226 if (swap_count(*swap_map) && 1227 PageDirty(page) && PageSwapCache(page)) { 1228 struct writeback_control wbc = { 1229 .sync_mode = WB_SYNC_NONE, 1230 }; 1231 1232 swap_writepage(page, &wbc); 1233 lock_page(page); 1234 wait_on_page_writeback(page); 1235 } 1236 1237 /* 1238 * It is conceivable that a racing task removed this page from 1239 * swap cache just before we acquired the page lock at the top, 1240 * or while we dropped it in unuse_mm(). The page might even 1241 * be back in swap cache on another swap area: that we must not 1242 * delete, since it may not have been written out to swap yet. 1243 */ 1244 if (PageSwapCache(page) && 1245 likely(page_private(page) == entry.val)) 1246 delete_from_swap_cache(page); 1247 1248 /* 1249 * So we could skip searching mms once swap count went 1250 * to 1, we did not mark any present ptes as dirty: must 1251 * mark page dirty so shrink_page_list will preserve it. 1252 */ 1253 SetPageDirty(page); 1254 unlock_page(page); 1255 page_cache_release(page); 1256 1257 /* 1258 * Make sure that we aren't completely killing 1259 * interactive performance. 1260 */ 1261 cond_resched(); 1262 } 1263 1264 mmput(start_mm); 1265 return retval; 1266 } 1267 1268 /* 1269 * After a successful try_to_unuse, if no swap is now in use, we know 1270 * we can empty the mmlist. swap_lock must be held on entry and exit. 1271 * Note that mmlist_lock nests inside swap_lock, and an mm must be 1272 * added to the mmlist just after page_duplicate - before would be racy. 1273 */ 1274 static void drain_mmlist(void) 1275 { 1276 struct list_head *p, *next; 1277 unsigned int type; 1278 1279 for (type = 0; type < nr_swapfiles; type++) 1280 if (swap_info[type]->inuse_pages) 1281 return; 1282 spin_lock(&mmlist_lock); 1283 list_for_each_safe(p, next, &init_mm.mmlist) 1284 list_del_init(p); 1285 spin_unlock(&mmlist_lock); 1286 } 1287 1288 /* 1289 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 1290 * corresponds to page offset for the specified swap entry. 1291 * Note that the type of this function is sector_t, but it returns page offset 1292 * into the bdev, not sector offset. 1293 */ 1294 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 1295 { 1296 struct swap_info_struct *sis; 1297 struct swap_extent *start_se; 1298 struct swap_extent *se; 1299 pgoff_t offset; 1300 1301 sis = swap_info[swp_type(entry)]; 1302 *bdev = sis->bdev; 1303 1304 offset = swp_offset(entry); 1305 start_se = sis->curr_swap_extent; 1306 se = start_se; 1307 1308 for ( ; ; ) { 1309 struct list_head *lh; 1310 1311 if (se->start_page <= offset && 1312 offset < (se->start_page + se->nr_pages)) { 1313 return se->start_block + (offset - se->start_page); 1314 } 1315 lh = se->list.next; 1316 se = list_entry(lh, struct swap_extent, list); 1317 sis->curr_swap_extent = se; 1318 BUG_ON(se == start_se); /* It *must* be present */ 1319 } 1320 } 1321 1322 /* 1323 * Returns the page offset into bdev for the specified page's swap entry. 1324 */ 1325 sector_t map_swap_page(struct page *page, struct block_device **bdev) 1326 { 1327 swp_entry_t entry; 1328 entry.val = page_private(page); 1329 return map_swap_entry(entry, bdev); 1330 } 1331 1332 /* 1333 * Free all of a swapdev's extent information 1334 */ 1335 static void destroy_swap_extents(struct swap_info_struct *sis) 1336 { 1337 while (!list_empty(&sis->first_swap_extent.list)) { 1338 struct swap_extent *se; 1339 1340 se = list_entry(sis->first_swap_extent.list.next, 1341 struct swap_extent, list); 1342 list_del(&se->list); 1343 kfree(se); 1344 } 1345 } 1346 1347 /* 1348 * Add a block range (and the corresponding page range) into this swapdev's 1349 * extent list. The extent list is kept sorted in page order. 1350 * 1351 * This function rather assumes that it is called in ascending page order. 1352 */ 1353 static int 1354 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 1355 unsigned long nr_pages, sector_t start_block) 1356 { 1357 struct swap_extent *se; 1358 struct swap_extent *new_se; 1359 struct list_head *lh; 1360 1361 if (start_page == 0) { 1362 se = &sis->first_swap_extent; 1363 sis->curr_swap_extent = se; 1364 se->start_page = 0; 1365 se->nr_pages = nr_pages; 1366 se->start_block = start_block; 1367 return 1; 1368 } else { 1369 lh = sis->first_swap_extent.list.prev; /* Highest extent */ 1370 se = list_entry(lh, struct swap_extent, list); 1371 BUG_ON(se->start_page + se->nr_pages != start_page); 1372 if (se->start_block + se->nr_pages == start_block) { 1373 /* Merge it */ 1374 se->nr_pages += nr_pages; 1375 return 0; 1376 } 1377 } 1378 1379 /* 1380 * No merge. Insert a new extent, preserving ordering. 1381 */ 1382 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 1383 if (new_se == NULL) 1384 return -ENOMEM; 1385 new_se->start_page = start_page; 1386 new_se->nr_pages = nr_pages; 1387 new_se->start_block = start_block; 1388 1389 list_add_tail(&new_se->list, &sis->first_swap_extent.list); 1390 return 1; 1391 } 1392 1393 /* 1394 * A `swap extent' is a simple thing which maps a contiguous range of pages 1395 * onto a contiguous range of disk blocks. An ordered list of swap extents 1396 * is built at swapon time and is then used at swap_writepage/swap_readpage 1397 * time for locating where on disk a page belongs. 1398 * 1399 * If the swapfile is an S_ISBLK block device, a single extent is installed. 1400 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 1401 * swap files identically. 1402 * 1403 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 1404 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 1405 * swapfiles are handled *identically* after swapon time. 1406 * 1407 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 1408 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 1409 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 1410 * requirements, they are simply tossed out - we will never use those blocks 1411 * for swapping. 1412 * 1413 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 1414 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 1415 * which will scribble on the fs. 1416 * 1417 * The amount of disk space which a single swap extent represents varies. 1418 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 1419 * extents in the list. To avoid much list walking, we cache the previous 1420 * search location in `curr_swap_extent', and start new searches from there. 1421 * This is extremely effective. The average number of iterations in 1422 * map_swap_page() has been measured at about 0.3 per page. - akpm. 1423 */ 1424 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 1425 { 1426 struct inode *inode; 1427 unsigned blocks_per_page; 1428 unsigned long page_no; 1429 unsigned blkbits; 1430 sector_t probe_block; 1431 sector_t last_block; 1432 sector_t lowest_block = -1; 1433 sector_t highest_block = 0; 1434 int nr_extents = 0; 1435 int ret; 1436 1437 inode = sis->swap_file->f_mapping->host; 1438 if (S_ISBLK(inode->i_mode)) { 1439 ret = add_swap_extent(sis, 0, sis->max, 0); 1440 *span = sis->pages; 1441 goto out; 1442 } 1443 1444 blkbits = inode->i_blkbits; 1445 blocks_per_page = PAGE_SIZE >> blkbits; 1446 1447 /* 1448 * Map all the blocks into the extent list. This code doesn't try 1449 * to be very smart. 1450 */ 1451 probe_block = 0; 1452 page_no = 0; 1453 last_block = i_size_read(inode) >> blkbits; 1454 while ((probe_block + blocks_per_page) <= last_block && 1455 page_no < sis->max) { 1456 unsigned block_in_page; 1457 sector_t first_block; 1458 1459 first_block = bmap(inode, probe_block); 1460 if (first_block == 0) 1461 goto bad_bmap; 1462 1463 /* 1464 * It must be PAGE_SIZE aligned on-disk 1465 */ 1466 if (first_block & (blocks_per_page - 1)) { 1467 probe_block++; 1468 goto reprobe; 1469 } 1470 1471 for (block_in_page = 1; block_in_page < blocks_per_page; 1472 block_in_page++) { 1473 sector_t block; 1474 1475 block = bmap(inode, probe_block + block_in_page); 1476 if (block == 0) 1477 goto bad_bmap; 1478 if (block != first_block + block_in_page) { 1479 /* Discontiguity */ 1480 probe_block++; 1481 goto reprobe; 1482 } 1483 } 1484 1485 first_block >>= (PAGE_SHIFT - blkbits); 1486 if (page_no) { /* exclude the header page */ 1487 if (first_block < lowest_block) 1488 lowest_block = first_block; 1489 if (first_block > highest_block) 1490 highest_block = first_block; 1491 } 1492 1493 /* 1494 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 1495 */ 1496 ret = add_swap_extent(sis, page_no, 1, first_block); 1497 if (ret < 0) 1498 goto out; 1499 nr_extents += ret; 1500 page_no++; 1501 probe_block += blocks_per_page; 1502 reprobe: 1503 continue; 1504 } 1505 ret = nr_extents; 1506 *span = 1 + highest_block - lowest_block; 1507 if (page_no == 0) 1508 page_no = 1; /* force Empty message */ 1509 sis->max = page_no; 1510 sis->pages = page_no - 1; 1511 sis->highest_bit = page_no - 1; 1512 out: 1513 return ret; 1514 bad_bmap: 1515 printk(KERN_ERR "swapon: swapfile has holes\n"); 1516 ret = -EINVAL; 1517 goto out; 1518 } 1519 1520 static void enable_swap_info(struct swap_info_struct *p, int prio, 1521 unsigned char *swap_map) 1522 { 1523 int i, prev; 1524 1525 spin_lock(&swap_lock); 1526 if (prio >= 0) 1527 p->prio = prio; 1528 else 1529 p->prio = --least_priority; 1530 p->swap_map = swap_map; 1531 p->flags |= SWP_WRITEOK; 1532 nr_swap_pages += p->pages; 1533 total_swap_pages += p->pages; 1534 1535 /* insert swap space into swap_list: */ 1536 prev = -1; 1537 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) { 1538 if (p->prio >= swap_info[i]->prio) 1539 break; 1540 prev = i; 1541 } 1542 p->next = i; 1543 if (prev < 0) 1544 swap_list.head = swap_list.next = p->type; 1545 else 1546 swap_info[prev]->next = p->type; 1547 spin_unlock(&swap_lock); 1548 } 1549 1550 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 1551 { 1552 struct swap_info_struct *p = NULL; 1553 unsigned char *swap_map; 1554 struct file *swap_file, *victim; 1555 struct address_space *mapping; 1556 struct inode *inode; 1557 char *pathname; 1558 int oom_score_adj; 1559 int i, type, prev; 1560 int err; 1561 1562 if (!capable(CAP_SYS_ADMIN)) 1563 return -EPERM; 1564 1565 pathname = getname(specialfile); 1566 err = PTR_ERR(pathname); 1567 if (IS_ERR(pathname)) 1568 goto out; 1569 1570 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0); 1571 putname(pathname); 1572 err = PTR_ERR(victim); 1573 if (IS_ERR(victim)) 1574 goto out; 1575 1576 mapping = victim->f_mapping; 1577 prev = -1; 1578 spin_lock(&swap_lock); 1579 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) { 1580 p = swap_info[type]; 1581 if (p->flags & SWP_WRITEOK) { 1582 if (p->swap_file->f_mapping == mapping) 1583 break; 1584 } 1585 prev = type; 1586 } 1587 if (type < 0) { 1588 err = -EINVAL; 1589 spin_unlock(&swap_lock); 1590 goto out_dput; 1591 } 1592 if (!security_vm_enough_memory(p->pages)) 1593 vm_unacct_memory(p->pages); 1594 else { 1595 err = -ENOMEM; 1596 spin_unlock(&swap_lock); 1597 goto out_dput; 1598 } 1599 if (prev < 0) 1600 swap_list.head = p->next; 1601 else 1602 swap_info[prev]->next = p->next; 1603 if (type == swap_list.next) { 1604 /* just pick something that's safe... */ 1605 swap_list.next = swap_list.head; 1606 } 1607 if (p->prio < 0) { 1608 for (i = p->next; i >= 0; i = swap_info[i]->next) 1609 swap_info[i]->prio = p->prio--; 1610 least_priority++; 1611 } 1612 nr_swap_pages -= p->pages; 1613 total_swap_pages -= p->pages; 1614 p->flags &= ~SWP_WRITEOK; 1615 spin_unlock(&swap_lock); 1616 1617 oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX); 1618 err = try_to_unuse(type); 1619 compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX, oom_score_adj); 1620 1621 if (err) { 1622 /* 1623 * reading p->prio and p->swap_map outside the lock is 1624 * safe here because only sys_swapon and sys_swapoff 1625 * change them, and there can be no other sys_swapon or 1626 * sys_swapoff for this swap_info_struct at this point. 1627 */ 1628 /* re-insert swap space back into swap_list */ 1629 enable_swap_info(p, p->prio, p->swap_map); 1630 goto out_dput; 1631 } 1632 1633 destroy_swap_extents(p); 1634 if (p->flags & SWP_CONTINUED) 1635 free_swap_count_continuations(p); 1636 1637 mutex_lock(&swapon_mutex); 1638 spin_lock(&swap_lock); 1639 drain_mmlist(); 1640 1641 /* wait for anyone still in scan_swap_map */ 1642 p->highest_bit = 0; /* cuts scans short */ 1643 while (p->flags >= SWP_SCANNING) { 1644 spin_unlock(&swap_lock); 1645 schedule_timeout_uninterruptible(1); 1646 spin_lock(&swap_lock); 1647 } 1648 1649 swap_file = p->swap_file; 1650 p->swap_file = NULL; 1651 p->max = 0; 1652 swap_map = p->swap_map; 1653 p->swap_map = NULL; 1654 p->flags = 0; 1655 spin_unlock(&swap_lock); 1656 mutex_unlock(&swapon_mutex); 1657 vfree(swap_map); 1658 /* Destroy swap account informatin */ 1659 swap_cgroup_swapoff(type); 1660 1661 inode = mapping->host; 1662 if (S_ISBLK(inode->i_mode)) { 1663 struct block_device *bdev = I_BDEV(inode); 1664 set_blocksize(bdev, p->old_block_size); 1665 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 1666 } else { 1667 mutex_lock(&inode->i_mutex); 1668 inode->i_flags &= ~S_SWAPFILE; 1669 mutex_unlock(&inode->i_mutex); 1670 } 1671 filp_close(swap_file, NULL); 1672 err = 0; 1673 atomic_inc(&proc_poll_event); 1674 wake_up_interruptible(&proc_poll_wait); 1675 1676 out_dput: 1677 filp_close(victim, NULL); 1678 out: 1679 return err; 1680 } 1681 1682 #ifdef CONFIG_PROC_FS 1683 static unsigned swaps_poll(struct file *file, poll_table *wait) 1684 { 1685 struct seq_file *seq = file->private_data; 1686 1687 poll_wait(file, &proc_poll_wait, wait); 1688 1689 if (seq->poll_event != atomic_read(&proc_poll_event)) { 1690 seq->poll_event = atomic_read(&proc_poll_event); 1691 return POLLIN | POLLRDNORM | POLLERR | POLLPRI; 1692 } 1693 1694 return POLLIN | POLLRDNORM; 1695 } 1696 1697 /* iterator */ 1698 static void *swap_start(struct seq_file *swap, loff_t *pos) 1699 { 1700 struct swap_info_struct *si; 1701 int type; 1702 loff_t l = *pos; 1703 1704 mutex_lock(&swapon_mutex); 1705 1706 if (!l) 1707 return SEQ_START_TOKEN; 1708 1709 for (type = 0; type < nr_swapfiles; type++) { 1710 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 1711 si = swap_info[type]; 1712 if (!(si->flags & SWP_USED) || !si->swap_map) 1713 continue; 1714 if (!--l) 1715 return si; 1716 } 1717 1718 return NULL; 1719 } 1720 1721 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 1722 { 1723 struct swap_info_struct *si = v; 1724 int type; 1725 1726 if (v == SEQ_START_TOKEN) 1727 type = 0; 1728 else 1729 type = si->type + 1; 1730 1731 for (; type < nr_swapfiles; type++) { 1732 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 1733 si = swap_info[type]; 1734 if (!(si->flags & SWP_USED) || !si->swap_map) 1735 continue; 1736 ++*pos; 1737 return si; 1738 } 1739 1740 return NULL; 1741 } 1742 1743 static void swap_stop(struct seq_file *swap, void *v) 1744 { 1745 mutex_unlock(&swapon_mutex); 1746 } 1747 1748 static int swap_show(struct seq_file *swap, void *v) 1749 { 1750 struct swap_info_struct *si = v; 1751 struct file *file; 1752 int len; 1753 1754 if (si == SEQ_START_TOKEN) { 1755 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 1756 return 0; 1757 } 1758 1759 file = si->swap_file; 1760 len = seq_path(swap, &file->f_path, " \t\n\\"); 1761 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 1762 len < 40 ? 40 - len : 1, " ", 1763 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ? 1764 "partition" : "file\t", 1765 si->pages << (PAGE_SHIFT - 10), 1766 si->inuse_pages << (PAGE_SHIFT - 10), 1767 si->prio); 1768 return 0; 1769 } 1770 1771 static const struct seq_operations swaps_op = { 1772 .start = swap_start, 1773 .next = swap_next, 1774 .stop = swap_stop, 1775 .show = swap_show 1776 }; 1777 1778 static int swaps_open(struct inode *inode, struct file *file) 1779 { 1780 struct seq_file *seq; 1781 int ret; 1782 1783 ret = seq_open(file, &swaps_op); 1784 if (ret) 1785 return ret; 1786 1787 seq = file->private_data; 1788 seq->poll_event = atomic_read(&proc_poll_event); 1789 return 0; 1790 } 1791 1792 static const struct file_operations proc_swaps_operations = { 1793 .open = swaps_open, 1794 .read = seq_read, 1795 .llseek = seq_lseek, 1796 .release = seq_release, 1797 .poll = swaps_poll, 1798 }; 1799 1800 static int __init procswaps_init(void) 1801 { 1802 proc_create("swaps", 0, NULL, &proc_swaps_operations); 1803 return 0; 1804 } 1805 __initcall(procswaps_init); 1806 #endif /* CONFIG_PROC_FS */ 1807 1808 #ifdef MAX_SWAPFILES_CHECK 1809 static int __init max_swapfiles_check(void) 1810 { 1811 MAX_SWAPFILES_CHECK(); 1812 return 0; 1813 } 1814 late_initcall(max_swapfiles_check); 1815 #endif 1816 1817 static struct swap_info_struct *alloc_swap_info(void) 1818 { 1819 struct swap_info_struct *p; 1820 unsigned int type; 1821 1822 p = kzalloc(sizeof(*p), GFP_KERNEL); 1823 if (!p) 1824 return ERR_PTR(-ENOMEM); 1825 1826 spin_lock(&swap_lock); 1827 for (type = 0; type < nr_swapfiles; type++) { 1828 if (!(swap_info[type]->flags & SWP_USED)) 1829 break; 1830 } 1831 if (type >= MAX_SWAPFILES) { 1832 spin_unlock(&swap_lock); 1833 kfree(p); 1834 return ERR_PTR(-EPERM); 1835 } 1836 if (type >= nr_swapfiles) { 1837 p->type = type; 1838 swap_info[type] = p; 1839 /* 1840 * Write swap_info[type] before nr_swapfiles, in case a 1841 * racing procfs swap_start() or swap_next() is reading them. 1842 * (We never shrink nr_swapfiles, we never free this entry.) 1843 */ 1844 smp_wmb(); 1845 nr_swapfiles++; 1846 } else { 1847 kfree(p); 1848 p = swap_info[type]; 1849 /* 1850 * Do not memset this entry: a racing procfs swap_next() 1851 * would be relying on p->type to remain valid. 1852 */ 1853 } 1854 INIT_LIST_HEAD(&p->first_swap_extent.list); 1855 p->flags = SWP_USED; 1856 p->next = -1; 1857 spin_unlock(&swap_lock); 1858 1859 return p; 1860 } 1861 1862 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 1863 { 1864 int error; 1865 1866 if (S_ISBLK(inode->i_mode)) { 1867 p->bdev = bdgrab(I_BDEV(inode)); 1868 error = blkdev_get(p->bdev, 1869 FMODE_READ | FMODE_WRITE | FMODE_EXCL, 1870 sys_swapon); 1871 if (error < 0) { 1872 p->bdev = NULL; 1873 return -EINVAL; 1874 } 1875 p->old_block_size = block_size(p->bdev); 1876 error = set_blocksize(p->bdev, PAGE_SIZE); 1877 if (error < 0) 1878 return error; 1879 p->flags |= SWP_BLKDEV; 1880 } else if (S_ISREG(inode->i_mode)) { 1881 p->bdev = inode->i_sb->s_bdev; 1882 mutex_lock(&inode->i_mutex); 1883 if (IS_SWAPFILE(inode)) 1884 return -EBUSY; 1885 } else 1886 return -EINVAL; 1887 1888 return 0; 1889 } 1890 1891 static unsigned long read_swap_header(struct swap_info_struct *p, 1892 union swap_header *swap_header, 1893 struct inode *inode) 1894 { 1895 int i; 1896 unsigned long maxpages; 1897 unsigned long swapfilepages; 1898 1899 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 1900 printk(KERN_ERR "Unable to find swap-space signature\n"); 1901 return 0; 1902 } 1903 1904 /* swap partition endianess hack... */ 1905 if (swab32(swap_header->info.version) == 1) { 1906 swab32s(&swap_header->info.version); 1907 swab32s(&swap_header->info.last_page); 1908 swab32s(&swap_header->info.nr_badpages); 1909 for (i = 0; i < swap_header->info.nr_badpages; i++) 1910 swab32s(&swap_header->info.badpages[i]); 1911 } 1912 /* Check the swap header's sub-version */ 1913 if (swap_header->info.version != 1) { 1914 printk(KERN_WARNING 1915 "Unable to handle swap header version %d\n", 1916 swap_header->info.version); 1917 return 0; 1918 } 1919 1920 p->lowest_bit = 1; 1921 p->cluster_next = 1; 1922 p->cluster_nr = 0; 1923 1924 /* 1925 * Find out how many pages are allowed for a single swap 1926 * device. There are three limiting factors: 1) the number 1927 * of bits for the swap offset in the swp_entry_t type, and 1928 * 2) the number of bits in the swap pte as defined by the 1929 * the different architectures, and 3) the number of free bits 1930 * in an exceptional radix_tree entry. In order to find the 1931 * largest possible bit mask, a swap entry with swap type 0 1932 * and swap offset ~0UL is created, encoded to a swap pte, 1933 * decoded to a swp_entry_t again, and finally the swap 1934 * offset is extracted. This will mask all the bits from 1935 * the initial ~0UL mask that can't be encoded in either 1936 * the swp_entry_t or the architecture definition of a 1937 * swap pte. Then the same is done for a radix_tree entry. 1938 */ 1939 maxpages = swp_offset(pte_to_swp_entry( 1940 swp_entry_to_pte(swp_entry(0, ~0UL)))); 1941 maxpages = swp_offset(radix_to_swp_entry( 1942 swp_to_radix_entry(swp_entry(0, maxpages)))) + 1; 1943 1944 if (maxpages > swap_header->info.last_page) { 1945 maxpages = swap_header->info.last_page + 1; 1946 /* p->max is an unsigned int: don't overflow it */ 1947 if ((unsigned int)maxpages == 0) 1948 maxpages = UINT_MAX; 1949 } 1950 p->highest_bit = maxpages - 1; 1951 1952 if (!maxpages) 1953 return 0; 1954 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 1955 if (swapfilepages && maxpages > swapfilepages) { 1956 printk(KERN_WARNING 1957 "Swap area shorter than signature indicates\n"); 1958 return 0; 1959 } 1960 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 1961 return 0; 1962 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 1963 return 0; 1964 1965 return maxpages; 1966 } 1967 1968 static int setup_swap_map_and_extents(struct swap_info_struct *p, 1969 union swap_header *swap_header, 1970 unsigned char *swap_map, 1971 unsigned long maxpages, 1972 sector_t *span) 1973 { 1974 int i; 1975 unsigned int nr_good_pages; 1976 int nr_extents; 1977 1978 nr_good_pages = maxpages - 1; /* omit header page */ 1979 1980 for (i = 0; i < swap_header->info.nr_badpages; i++) { 1981 unsigned int page_nr = swap_header->info.badpages[i]; 1982 if (page_nr == 0 || page_nr > swap_header->info.last_page) 1983 return -EINVAL; 1984 if (page_nr < maxpages) { 1985 swap_map[page_nr] = SWAP_MAP_BAD; 1986 nr_good_pages--; 1987 } 1988 } 1989 1990 if (nr_good_pages) { 1991 swap_map[0] = SWAP_MAP_BAD; 1992 p->max = maxpages; 1993 p->pages = nr_good_pages; 1994 nr_extents = setup_swap_extents(p, span); 1995 if (nr_extents < 0) 1996 return nr_extents; 1997 nr_good_pages = p->pages; 1998 } 1999 if (!nr_good_pages) { 2000 printk(KERN_WARNING "Empty swap-file\n"); 2001 return -EINVAL; 2002 } 2003 2004 return nr_extents; 2005 } 2006 2007 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 2008 { 2009 struct swap_info_struct *p; 2010 char *name; 2011 struct file *swap_file = NULL; 2012 struct address_space *mapping; 2013 int i; 2014 int prio; 2015 int error; 2016 union swap_header *swap_header; 2017 int nr_extents; 2018 sector_t span; 2019 unsigned long maxpages; 2020 unsigned char *swap_map = NULL; 2021 struct page *page = NULL; 2022 struct inode *inode = NULL; 2023 2024 if (!capable(CAP_SYS_ADMIN)) 2025 return -EPERM; 2026 2027 p = alloc_swap_info(); 2028 if (IS_ERR(p)) 2029 return PTR_ERR(p); 2030 2031 name = getname(specialfile); 2032 if (IS_ERR(name)) { 2033 error = PTR_ERR(name); 2034 name = NULL; 2035 goto bad_swap; 2036 } 2037 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0); 2038 if (IS_ERR(swap_file)) { 2039 error = PTR_ERR(swap_file); 2040 swap_file = NULL; 2041 goto bad_swap; 2042 } 2043 2044 p->swap_file = swap_file; 2045 mapping = swap_file->f_mapping; 2046 2047 for (i = 0; i < nr_swapfiles; i++) { 2048 struct swap_info_struct *q = swap_info[i]; 2049 2050 if (q == p || !q->swap_file) 2051 continue; 2052 if (mapping == q->swap_file->f_mapping) { 2053 error = -EBUSY; 2054 goto bad_swap; 2055 } 2056 } 2057 2058 inode = mapping->host; 2059 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */ 2060 error = claim_swapfile(p, inode); 2061 if (unlikely(error)) 2062 goto bad_swap; 2063 2064 /* 2065 * Read the swap header. 2066 */ 2067 if (!mapping->a_ops->readpage) { 2068 error = -EINVAL; 2069 goto bad_swap; 2070 } 2071 page = read_mapping_page(mapping, 0, swap_file); 2072 if (IS_ERR(page)) { 2073 error = PTR_ERR(page); 2074 goto bad_swap; 2075 } 2076 swap_header = kmap(page); 2077 2078 maxpages = read_swap_header(p, swap_header, inode); 2079 if (unlikely(!maxpages)) { 2080 error = -EINVAL; 2081 goto bad_swap; 2082 } 2083 2084 /* OK, set up the swap map and apply the bad block list */ 2085 swap_map = vzalloc(maxpages); 2086 if (!swap_map) { 2087 error = -ENOMEM; 2088 goto bad_swap; 2089 } 2090 2091 error = swap_cgroup_swapon(p->type, maxpages); 2092 if (error) 2093 goto bad_swap; 2094 2095 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 2096 maxpages, &span); 2097 if (unlikely(nr_extents < 0)) { 2098 error = nr_extents; 2099 goto bad_swap; 2100 } 2101 2102 if (p->bdev) { 2103 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) { 2104 p->flags |= SWP_SOLIDSTATE; 2105 p->cluster_next = 1 + (random32() % p->highest_bit); 2106 } 2107 if (discard_swap(p) == 0 && (swap_flags & SWAP_FLAG_DISCARD)) 2108 p->flags |= SWP_DISCARDABLE; 2109 } 2110 2111 mutex_lock(&swapon_mutex); 2112 prio = -1; 2113 if (swap_flags & SWAP_FLAG_PREFER) 2114 prio = 2115 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 2116 enable_swap_info(p, prio, swap_map); 2117 2118 printk(KERN_INFO "Adding %uk swap on %s. " 2119 "Priority:%d extents:%d across:%lluk %s%s\n", 2120 p->pages<<(PAGE_SHIFT-10), name, p->prio, 2121 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 2122 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 2123 (p->flags & SWP_DISCARDABLE) ? "D" : ""); 2124 2125 mutex_unlock(&swapon_mutex); 2126 atomic_inc(&proc_poll_event); 2127 wake_up_interruptible(&proc_poll_wait); 2128 2129 if (S_ISREG(inode->i_mode)) 2130 inode->i_flags |= S_SWAPFILE; 2131 error = 0; 2132 goto out; 2133 bad_swap: 2134 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 2135 set_blocksize(p->bdev, p->old_block_size); 2136 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2137 } 2138 destroy_swap_extents(p); 2139 swap_cgroup_swapoff(p->type); 2140 spin_lock(&swap_lock); 2141 p->swap_file = NULL; 2142 p->flags = 0; 2143 spin_unlock(&swap_lock); 2144 vfree(swap_map); 2145 if (swap_file) { 2146 if (inode && S_ISREG(inode->i_mode)) { 2147 mutex_unlock(&inode->i_mutex); 2148 inode = NULL; 2149 } 2150 filp_close(swap_file, NULL); 2151 } 2152 out: 2153 if (page && !IS_ERR(page)) { 2154 kunmap(page); 2155 page_cache_release(page); 2156 } 2157 if (name) 2158 putname(name); 2159 if (inode && S_ISREG(inode->i_mode)) 2160 mutex_unlock(&inode->i_mutex); 2161 return error; 2162 } 2163 2164 void si_swapinfo(struct sysinfo *val) 2165 { 2166 unsigned int type; 2167 unsigned long nr_to_be_unused = 0; 2168 2169 spin_lock(&swap_lock); 2170 for (type = 0; type < nr_swapfiles; type++) { 2171 struct swap_info_struct *si = swap_info[type]; 2172 2173 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 2174 nr_to_be_unused += si->inuse_pages; 2175 } 2176 val->freeswap = nr_swap_pages + nr_to_be_unused; 2177 val->totalswap = total_swap_pages + nr_to_be_unused; 2178 spin_unlock(&swap_lock); 2179 } 2180 2181 /* 2182 * Verify that a swap entry is valid and increment its swap map count. 2183 * 2184 * Returns error code in following case. 2185 * - success -> 0 2186 * - swp_entry is invalid -> EINVAL 2187 * - swp_entry is migration entry -> EINVAL 2188 * - swap-cache reference is requested but there is already one. -> EEXIST 2189 * - swap-cache reference is requested but the entry is not used. -> ENOENT 2190 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 2191 */ 2192 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 2193 { 2194 struct swap_info_struct *p; 2195 unsigned long offset, type; 2196 unsigned char count; 2197 unsigned char has_cache; 2198 int err = -EINVAL; 2199 2200 if (non_swap_entry(entry)) 2201 goto out; 2202 2203 type = swp_type(entry); 2204 if (type >= nr_swapfiles) 2205 goto bad_file; 2206 p = swap_info[type]; 2207 offset = swp_offset(entry); 2208 2209 spin_lock(&swap_lock); 2210 if (unlikely(offset >= p->max)) 2211 goto unlock_out; 2212 2213 count = p->swap_map[offset]; 2214 has_cache = count & SWAP_HAS_CACHE; 2215 count &= ~SWAP_HAS_CACHE; 2216 err = 0; 2217 2218 if (usage == SWAP_HAS_CACHE) { 2219 2220 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 2221 if (!has_cache && count) 2222 has_cache = SWAP_HAS_CACHE; 2223 else if (has_cache) /* someone else added cache */ 2224 err = -EEXIST; 2225 else /* no users remaining */ 2226 err = -ENOENT; 2227 2228 } else if (count || has_cache) { 2229 2230 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 2231 count += usage; 2232 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 2233 err = -EINVAL; 2234 else if (swap_count_continued(p, offset, count)) 2235 count = COUNT_CONTINUED; 2236 else 2237 err = -ENOMEM; 2238 } else 2239 err = -ENOENT; /* unused swap entry */ 2240 2241 p->swap_map[offset] = count | has_cache; 2242 2243 unlock_out: 2244 spin_unlock(&swap_lock); 2245 out: 2246 return err; 2247 2248 bad_file: 2249 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); 2250 goto out; 2251 } 2252 2253 /* 2254 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 2255 * (in which case its reference count is never incremented). 2256 */ 2257 void swap_shmem_alloc(swp_entry_t entry) 2258 { 2259 __swap_duplicate(entry, SWAP_MAP_SHMEM); 2260 } 2261 2262 /* 2263 * Increase reference count of swap entry by 1. 2264 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 2265 * but could not be atomically allocated. Returns 0, just as if it succeeded, 2266 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 2267 * might occur if a page table entry has got corrupted. 2268 */ 2269 int swap_duplicate(swp_entry_t entry) 2270 { 2271 int err = 0; 2272 2273 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 2274 err = add_swap_count_continuation(entry, GFP_ATOMIC); 2275 return err; 2276 } 2277 2278 /* 2279 * @entry: swap entry for which we allocate swap cache. 2280 * 2281 * Called when allocating swap cache for existing swap entry, 2282 * This can return error codes. Returns 0 at success. 2283 * -EBUSY means there is a swap cache. 2284 * Note: return code is different from swap_duplicate(). 2285 */ 2286 int swapcache_prepare(swp_entry_t entry) 2287 { 2288 return __swap_duplicate(entry, SWAP_HAS_CACHE); 2289 } 2290 2291 /* 2292 * swap_lock prevents swap_map being freed. Don't grab an extra 2293 * reference on the swaphandle, it doesn't matter if it becomes unused. 2294 */ 2295 int valid_swaphandles(swp_entry_t entry, unsigned long *offset) 2296 { 2297 struct swap_info_struct *si; 2298 int our_page_cluster = page_cluster; 2299 pgoff_t target, toff; 2300 pgoff_t base, end; 2301 int nr_pages = 0; 2302 2303 if (!our_page_cluster) /* no readahead */ 2304 return 0; 2305 2306 si = swap_info[swp_type(entry)]; 2307 target = swp_offset(entry); 2308 base = (target >> our_page_cluster) << our_page_cluster; 2309 end = base + (1 << our_page_cluster); 2310 if (!base) /* first page is swap header */ 2311 base++; 2312 2313 spin_lock(&swap_lock); 2314 if (end > si->max) /* don't go beyond end of map */ 2315 end = si->max; 2316 2317 /* Count contiguous allocated slots above our target */ 2318 for (toff = target; ++toff < end; nr_pages++) { 2319 /* Don't read in free or bad pages */ 2320 if (!si->swap_map[toff]) 2321 break; 2322 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD) 2323 break; 2324 } 2325 /* Count contiguous allocated slots below our target */ 2326 for (toff = target; --toff >= base; nr_pages++) { 2327 /* Don't read in free or bad pages */ 2328 if (!si->swap_map[toff]) 2329 break; 2330 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD) 2331 break; 2332 } 2333 spin_unlock(&swap_lock); 2334 2335 /* 2336 * Indicate starting offset, and return number of pages to get: 2337 * if only 1, say 0, since there's then no readahead to be done. 2338 */ 2339 *offset = ++toff; 2340 return nr_pages? ++nr_pages: 0; 2341 } 2342 2343 /* 2344 * add_swap_count_continuation - called when a swap count is duplicated 2345 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 2346 * page of the original vmalloc'ed swap_map, to hold the continuation count 2347 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 2348 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 2349 * 2350 * These continuation pages are seldom referenced: the common paths all work 2351 * on the original swap_map, only referring to a continuation page when the 2352 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 2353 * 2354 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 2355 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 2356 * can be called after dropping locks. 2357 */ 2358 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 2359 { 2360 struct swap_info_struct *si; 2361 struct page *head; 2362 struct page *page; 2363 struct page *list_page; 2364 pgoff_t offset; 2365 unsigned char count; 2366 2367 /* 2368 * When debugging, it's easier to use __GFP_ZERO here; but it's better 2369 * for latency not to zero a page while GFP_ATOMIC and holding locks. 2370 */ 2371 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 2372 2373 si = swap_info_get(entry); 2374 if (!si) { 2375 /* 2376 * An acceptable race has occurred since the failing 2377 * __swap_duplicate(): the swap entry has been freed, 2378 * perhaps even the whole swap_map cleared for swapoff. 2379 */ 2380 goto outer; 2381 } 2382 2383 offset = swp_offset(entry); 2384 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 2385 2386 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 2387 /* 2388 * The higher the swap count, the more likely it is that tasks 2389 * will race to add swap count continuation: we need to avoid 2390 * over-provisioning. 2391 */ 2392 goto out; 2393 } 2394 2395 if (!page) { 2396 spin_unlock(&swap_lock); 2397 return -ENOMEM; 2398 } 2399 2400 /* 2401 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 2402 * no architecture is using highmem pages for kernel pagetables: so it 2403 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps. 2404 */ 2405 head = vmalloc_to_page(si->swap_map + offset); 2406 offset &= ~PAGE_MASK; 2407 2408 /* 2409 * Page allocation does not initialize the page's lru field, 2410 * but it does always reset its private field. 2411 */ 2412 if (!page_private(head)) { 2413 BUG_ON(count & COUNT_CONTINUED); 2414 INIT_LIST_HEAD(&head->lru); 2415 set_page_private(head, SWP_CONTINUED); 2416 si->flags |= SWP_CONTINUED; 2417 } 2418 2419 list_for_each_entry(list_page, &head->lru, lru) { 2420 unsigned char *map; 2421 2422 /* 2423 * If the previous map said no continuation, but we've found 2424 * a continuation page, free our allocation and use this one. 2425 */ 2426 if (!(count & COUNT_CONTINUED)) 2427 goto out; 2428 2429 map = kmap_atomic(list_page, KM_USER0) + offset; 2430 count = *map; 2431 kunmap_atomic(map, KM_USER0); 2432 2433 /* 2434 * If this continuation count now has some space in it, 2435 * free our allocation and use this one. 2436 */ 2437 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 2438 goto out; 2439 } 2440 2441 list_add_tail(&page->lru, &head->lru); 2442 page = NULL; /* now it's attached, don't free it */ 2443 out: 2444 spin_unlock(&swap_lock); 2445 outer: 2446 if (page) 2447 __free_page(page); 2448 return 0; 2449 } 2450 2451 /* 2452 * swap_count_continued - when the original swap_map count is incremented 2453 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 2454 * into, carry if so, or else fail until a new continuation page is allocated; 2455 * when the original swap_map count is decremented from 0 with continuation, 2456 * borrow from the continuation and report whether it still holds more. 2457 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock. 2458 */ 2459 static bool swap_count_continued(struct swap_info_struct *si, 2460 pgoff_t offset, unsigned char count) 2461 { 2462 struct page *head; 2463 struct page *page; 2464 unsigned char *map; 2465 2466 head = vmalloc_to_page(si->swap_map + offset); 2467 if (page_private(head) != SWP_CONTINUED) { 2468 BUG_ON(count & COUNT_CONTINUED); 2469 return false; /* need to add count continuation */ 2470 } 2471 2472 offset &= ~PAGE_MASK; 2473 page = list_entry(head->lru.next, struct page, lru); 2474 map = kmap_atomic(page, KM_USER0) + offset; 2475 2476 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 2477 goto init_map; /* jump over SWAP_CONT_MAX checks */ 2478 2479 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 2480 /* 2481 * Think of how you add 1 to 999 2482 */ 2483 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 2484 kunmap_atomic(map, KM_USER0); 2485 page = list_entry(page->lru.next, struct page, lru); 2486 BUG_ON(page == head); 2487 map = kmap_atomic(page, KM_USER0) + offset; 2488 } 2489 if (*map == SWAP_CONT_MAX) { 2490 kunmap_atomic(map, KM_USER0); 2491 page = list_entry(page->lru.next, struct page, lru); 2492 if (page == head) 2493 return false; /* add count continuation */ 2494 map = kmap_atomic(page, KM_USER0) + offset; 2495 init_map: *map = 0; /* we didn't zero the page */ 2496 } 2497 *map += 1; 2498 kunmap_atomic(map, KM_USER0); 2499 page = list_entry(page->lru.prev, struct page, lru); 2500 while (page != head) { 2501 map = kmap_atomic(page, KM_USER0) + offset; 2502 *map = COUNT_CONTINUED; 2503 kunmap_atomic(map, KM_USER0); 2504 page = list_entry(page->lru.prev, struct page, lru); 2505 } 2506 return true; /* incremented */ 2507 2508 } else { /* decrementing */ 2509 /* 2510 * Think of how you subtract 1 from 1000 2511 */ 2512 BUG_ON(count != COUNT_CONTINUED); 2513 while (*map == COUNT_CONTINUED) { 2514 kunmap_atomic(map, KM_USER0); 2515 page = list_entry(page->lru.next, struct page, lru); 2516 BUG_ON(page == head); 2517 map = kmap_atomic(page, KM_USER0) + offset; 2518 } 2519 BUG_ON(*map == 0); 2520 *map -= 1; 2521 if (*map == 0) 2522 count = 0; 2523 kunmap_atomic(map, KM_USER0); 2524 page = list_entry(page->lru.prev, struct page, lru); 2525 while (page != head) { 2526 map = kmap_atomic(page, KM_USER0) + offset; 2527 *map = SWAP_CONT_MAX | count; 2528 count = COUNT_CONTINUED; 2529 kunmap_atomic(map, KM_USER0); 2530 page = list_entry(page->lru.prev, struct page, lru); 2531 } 2532 return count == COUNT_CONTINUED; 2533 } 2534 } 2535 2536 /* 2537 * free_swap_count_continuations - swapoff free all the continuation pages 2538 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 2539 */ 2540 static void free_swap_count_continuations(struct swap_info_struct *si) 2541 { 2542 pgoff_t offset; 2543 2544 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 2545 struct page *head; 2546 head = vmalloc_to_page(si->swap_map + offset); 2547 if (page_private(head)) { 2548 struct list_head *this, *next; 2549 list_for_each_safe(this, next, &head->lru) { 2550 struct page *page; 2551 page = list_entry(this, struct page, lru); 2552 list_del(this); 2553 __free_page(page); 2554 } 2555 } 2556 } 2557 } 2558