xref: /linux/mm/swapfile.c (revision f24e9f586b377749dff37554696cf3a105540c94)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/writeback.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/rmap.h>
25 #include <linux/security.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mutex.h>
28 #include <linux/capability.h>
29 #include <linux/syscalls.h>
30 
31 #include <asm/pgtable.h>
32 #include <asm/tlbflush.h>
33 #include <linux/swapops.h>
34 
35 DEFINE_SPINLOCK(swap_lock);
36 unsigned int nr_swapfiles;
37 long total_swap_pages;
38 static int swap_overflow;
39 
40 static const char Bad_file[] = "Bad swap file entry ";
41 static const char Unused_file[] = "Unused swap file entry ";
42 static const char Bad_offset[] = "Bad swap offset entry ";
43 static const char Unused_offset[] = "Unused swap offset entry ";
44 
45 struct swap_list_t swap_list = {-1, -1};
46 
47 static struct swap_info_struct swap_info[MAX_SWAPFILES];
48 
49 static DEFINE_MUTEX(swapon_mutex);
50 
51 /*
52  * We need this because the bdev->unplug_fn can sleep and we cannot
53  * hold swap_lock while calling the unplug_fn. And swap_lock
54  * cannot be turned into a mutex.
55  */
56 static DECLARE_RWSEM(swap_unplug_sem);
57 
58 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
59 {
60 	swp_entry_t entry;
61 
62 	down_read(&swap_unplug_sem);
63 	entry.val = page_private(page);
64 	if (PageSwapCache(page)) {
65 		struct block_device *bdev = swap_info[swp_type(entry)].bdev;
66 		struct backing_dev_info *bdi;
67 
68 		/*
69 		 * If the page is removed from swapcache from under us (with a
70 		 * racy try_to_unuse/swapoff) we need an additional reference
71 		 * count to avoid reading garbage from page_private(page) above.
72 		 * If the WARN_ON triggers during a swapoff it maybe the race
73 		 * condition and it's harmless. However if it triggers without
74 		 * swapoff it signals a problem.
75 		 */
76 		WARN_ON(page_count(page) <= 1);
77 
78 		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
79 		blk_run_backing_dev(bdi, page);
80 	}
81 	up_read(&swap_unplug_sem);
82 }
83 
84 #define SWAPFILE_CLUSTER	256
85 #define LATENCY_LIMIT		256
86 
87 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
88 {
89 	unsigned long offset, last_in_cluster;
90 	int latency_ration = LATENCY_LIMIT;
91 
92 	/*
93 	 * We try to cluster swap pages by allocating them sequentially
94 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
95 	 * way, however, we resort to first-free allocation, starting
96 	 * a new cluster.  This prevents us from scattering swap pages
97 	 * all over the entire swap partition, so that we reduce
98 	 * overall disk seek times between swap pages.  -- sct
99 	 * But we do now try to find an empty cluster.  -Andrea
100 	 */
101 
102 	si->flags += SWP_SCANNING;
103 	if (unlikely(!si->cluster_nr)) {
104 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
105 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
106 			goto lowest;
107 		spin_unlock(&swap_lock);
108 
109 		offset = si->lowest_bit;
110 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
111 
112 		/* Locate the first empty (unaligned) cluster */
113 		for (; last_in_cluster <= si->highest_bit; offset++) {
114 			if (si->swap_map[offset])
115 				last_in_cluster = offset + SWAPFILE_CLUSTER;
116 			else if (offset == last_in_cluster) {
117 				spin_lock(&swap_lock);
118 				si->cluster_next = offset-SWAPFILE_CLUSTER+1;
119 				goto cluster;
120 			}
121 			if (unlikely(--latency_ration < 0)) {
122 				cond_resched();
123 				latency_ration = LATENCY_LIMIT;
124 			}
125 		}
126 		spin_lock(&swap_lock);
127 		goto lowest;
128 	}
129 
130 	si->cluster_nr--;
131 cluster:
132 	offset = si->cluster_next;
133 	if (offset > si->highest_bit)
134 lowest:		offset = si->lowest_bit;
135 checks:	if (!(si->flags & SWP_WRITEOK))
136 		goto no_page;
137 	if (!si->highest_bit)
138 		goto no_page;
139 	if (!si->swap_map[offset]) {
140 		if (offset == si->lowest_bit)
141 			si->lowest_bit++;
142 		if (offset == si->highest_bit)
143 			si->highest_bit--;
144 		si->inuse_pages++;
145 		if (si->inuse_pages == si->pages) {
146 			si->lowest_bit = si->max;
147 			si->highest_bit = 0;
148 		}
149 		si->swap_map[offset] = 1;
150 		si->cluster_next = offset + 1;
151 		si->flags -= SWP_SCANNING;
152 		return offset;
153 	}
154 
155 	spin_unlock(&swap_lock);
156 	while (++offset <= si->highest_bit) {
157 		if (!si->swap_map[offset]) {
158 			spin_lock(&swap_lock);
159 			goto checks;
160 		}
161 		if (unlikely(--latency_ration < 0)) {
162 			cond_resched();
163 			latency_ration = LATENCY_LIMIT;
164 		}
165 	}
166 	spin_lock(&swap_lock);
167 	goto lowest;
168 
169 no_page:
170 	si->flags -= SWP_SCANNING;
171 	return 0;
172 }
173 
174 swp_entry_t get_swap_page(void)
175 {
176 	struct swap_info_struct *si;
177 	pgoff_t offset;
178 	int type, next;
179 	int wrapped = 0;
180 
181 	spin_lock(&swap_lock);
182 	if (nr_swap_pages <= 0)
183 		goto noswap;
184 	nr_swap_pages--;
185 
186 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
187 		si = swap_info + type;
188 		next = si->next;
189 		if (next < 0 ||
190 		    (!wrapped && si->prio != swap_info[next].prio)) {
191 			next = swap_list.head;
192 			wrapped++;
193 		}
194 
195 		if (!si->highest_bit)
196 			continue;
197 		if (!(si->flags & SWP_WRITEOK))
198 			continue;
199 
200 		swap_list.next = next;
201 		offset = scan_swap_map(si);
202 		if (offset) {
203 			spin_unlock(&swap_lock);
204 			return swp_entry(type, offset);
205 		}
206 		next = swap_list.next;
207 	}
208 
209 	nr_swap_pages++;
210 noswap:
211 	spin_unlock(&swap_lock);
212 	return (swp_entry_t) {0};
213 }
214 
215 swp_entry_t get_swap_page_of_type(int type)
216 {
217 	struct swap_info_struct *si;
218 	pgoff_t offset;
219 
220 	spin_lock(&swap_lock);
221 	si = swap_info + type;
222 	if (si->flags & SWP_WRITEOK) {
223 		nr_swap_pages--;
224 		offset = scan_swap_map(si);
225 		if (offset) {
226 			spin_unlock(&swap_lock);
227 			return swp_entry(type, offset);
228 		}
229 		nr_swap_pages++;
230 	}
231 	spin_unlock(&swap_lock);
232 	return (swp_entry_t) {0};
233 }
234 
235 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
236 {
237 	struct swap_info_struct * p;
238 	unsigned long offset, type;
239 
240 	if (!entry.val)
241 		goto out;
242 	type = swp_type(entry);
243 	if (type >= nr_swapfiles)
244 		goto bad_nofile;
245 	p = & swap_info[type];
246 	if (!(p->flags & SWP_USED))
247 		goto bad_device;
248 	offset = swp_offset(entry);
249 	if (offset >= p->max)
250 		goto bad_offset;
251 	if (!p->swap_map[offset])
252 		goto bad_free;
253 	spin_lock(&swap_lock);
254 	return p;
255 
256 bad_free:
257 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
258 	goto out;
259 bad_offset:
260 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
261 	goto out;
262 bad_device:
263 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
264 	goto out;
265 bad_nofile:
266 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
267 out:
268 	return NULL;
269 }
270 
271 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
272 {
273 	int count = p->swap_map[offset];
274 
275 	if (count < SWAP_MAP_MAX) {
276 		count--;
277 		p->swap_map[offset] = count;
278 		if (!count) {
279 			if (offset < p->lowest_bit)
280 				p->lowest_bit = offset;
281 			if (offset > p->highest_bit)
282 				p->highest_bit = offset;
283 			if (p->prio > swap_info[swap_list.next].prio)
284 				swap_list.next = p - swap_info;
285 			nr_swap_pages++;
286 			p->inuse_pages--;
287 		}
288 	}
289 	return count;
290 }
291 
292 /*
293  * Caller has made sure that the swapdevice corresponding to entry
294  * is still around or has not been recycled.
295  */
296 void swap_free(swp_entry_t entry)
297 {
298 	struct swap_info_struct * p;
299 
300 	p = swap_info_get(entry);
301 	if (p) {
302 		swap_entry_free(p, swp_offset(entry));
303 		spin_unlock(&swap_lock);
304 	}
305 }
306 
307 /*
308  * How many references to page are currently swapped out?
309  */
310 static inline int page_swapcount(struct page *page)
311 {
312 	int count = 0;
313 	struct swap_info_struct *p;
314 	swp_entry_t entry;
315 
316 	entry.val = page_private(page);
317 	p = swap_info_get(entry);
318 	if (p) {
319 		/* Subtract the 1 for the swap cache itself */
320 		count = p->swap_map[swp_offset(entry)] - 1;
321 		spin_unlock(&swap_lock);
322 	}
323 	return count;
324 }
325 
326 /*
327  * We can use this swap cache entry directly
328  * if there are no other references to it.
329  */
330 int can_share_swap_page(struct page *page)
331 {
332 	int count;
333 
334 	BUG_ON(!PageLocked(page));
335 	count = page_mapcount(page);
336 	if (count <= 1 && PageSwapCache(page))
337 		count += page_swapcount(page);
338 	return count == 1;
339 }
340 
341 /*
342  * Work out if there are any other processes sharing this
343  * swap cache page. Free it if you can. Return success.
344  */
345 int remove_exclusive_swap_page(struct page *page)
346 {
347 	int retval;
348 	struct swap_info_struct * p;
349 	swp_entry_t entry;
350 
351 	BUG_ON(PagePrivate(page));
352 	BUG_ON(!PageLocked(page));
353 
354 	if (!PageSwapCache(page))
355 		return 0;
356 	if (PageWriteback(page))
357 		return 0;
358 	if (page_count(page) != 2) /* 2: us + cache */
359 		return 0;
360 
361 	entry.val = page_private(page);
362 	p = swap_info_get(entry);
363 	if (!p)
364 		return 0;
365 
366 	/* Is the only swap cache user the cache itself? */
367 	retval = 0;
368 	if (p->swap_map[swp_offset(entry)] == 1) {
369 		/* Recheck the page count with the swapcache lock held.. */
370 		write_lock_irq(&swapper_space.tree_lock);
371 		if ((page_count(page) == 2) && !PageWriteback(page)) {
372 			__delete_from_swap_cache(page);
373 			SetPageDirty(page);
374 			retval = 1;
375 		}
376 		write_unlock_irq(&swapper_space.tree_lock);
377 	}
378 	spin_unlock(&swap_lock);
379 
380 	if (retval) {
381 		swap_free(entry);
382 		page_cache_release(page);
383 	}
384 
385 	return retval;
386 }
387 
388 /*
389  * Free the swap entry like above, but also try to
390  * free the page cache entry if it is the last user.
391  */
392 void free_swap_and_cache(swp_entry_t entry)
393 {
394 	struct swap_info_struct * p;
395 	struct page *page = NULL;
396 
397 	if (is_migration_entry(entry))
398 		return;
399 
400 	p = swap_info_get(entry);
401 	if (p) {
402 		if (swap_entry_free(p, swp_offset(entry)) == 1) {
403 			page = find_get_page(&swapper_space, entry.val);
404 			if (page && unlikely(TestSetPageLocked(page))) {
405 				page_cache_release(page);
406 				page = NULL;
407 			}
408 		}
409 		spin_unlock(&swap_lock);
410 	}
411 	if (page) {
412 		int one_user;
413 
414 		BUG_ON(PagePrivate(page));
415 		one_user = (page_count(page) == 2);
416 		/* Only cache user (+us), or swap space full? Free it! */
417 		/* Also recheck PageSwapCache after page is locked (above) */
418 		if (PageSwapCache(page) && !PageWriteback(page) &&
419 					(one_user || vm_swap_full())) {
420 			delete_from_swap_cache(page);
421 			SetPageDirty(page);
422 		}
423 		unlock_page(page);
424 		page_cache_release(page);
425 	}
426 }
427 
428 #ifdef CONFIG_SOFTWARE_SUSPEND
429 /*
430  * Find the swap type that corresponds to given device (if any)
431  *
432  * This is needed for software suspend and is done in such a way that inode
433  * aliasing is allowed.
434  */
435 int swap_type_of(dev_t device)
436 {
437 	int i;
438 
439 	spin_lock(&swap_lock);
440 	for (i = 0; i < nr_swapfiles; i++) {
441 		struct inode *inode;
442 
443 		if (!(swap_info[i].flags & SWP_WRITEOK))
444 			continue;
445 
446 		if (!device) {
447 			spin_unlock(&swap_lock);
448 			return i;
449 		}
450 		inode = swap_info[i].swap_file->f_dentry->d_inode;
451 		if (S_ISBLK(inode->i_mode) &&
452 		    device == MKDEV(imajor(inode), iminor(inode))) {
453 			spin_unlock(&swap_lock);
454 			return i;
455 		}
456 	}
457 	spin_unlock(&swap_lock);
458 	return -ENODEV;
459 }
460 
461 /*
462  * Return either the total number of swap pages of given type, or the number
463  * of free pages of that type (depending on @free)
464  *
465  * This is needed for software suspend
466  */
467 unsigned int count_swap_pages(int type, int free)
468 {
469 	unsigned int n = 0;
470 
471 	if (type < nr_swapfiles) {
472 		spin_lock(&swap_lock);
473 		if (swap_info[type].flags & SWP_WRITEOK) {
474 			n = swap_info[type].pages;
475 			if (free)
476 				n -= swap_info[type].inuse_pages;
477 		}
478 		spin_unlock(&swap_lock);
479 	}
480 	return n;
481 }
482 #endif
483 
484 /*
485  * No need to decide whether this PTE shares the swap entry with others,
486  * just let do_wp_page work it out if a write is requested later - to
487  * force COW, vm_page_prot omits write permission from any private vma.
488  */
489 static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
490 		unsigned long addr, swp_entry_t entry, struct page *page)
491 {
492 	inc_mm_counter(vma->vm_mm, anon_rss);
493 	get_page(page);
494 	set_pte_at(vma->vm_mm, addr, pte,
495 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
496 	page_add_anon_rmap(page, vma, addr);
497 	swap_free(entry);
498 	/*
499 	 * Move the page to the active list so it is not
500 	 * immediately swapped out again after swapon.
501 	 */
502 	activate_page(page);
503 }
504 
505 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
506 				unsigned long addr, unsigned long end,
507 				swp_entry_t entry, struct page *page)
508 {
509 	pte_t swp_pte = swp_entry_to_pte(entry);
510 	pte_t *pte;
511 	spinlock_t *ptl;
512 	int found = 0;
513 
514 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
515 	do {
516 		/*
517 		 * swapoff spends a _lot_ of time in this loop!
518 		 * Test inline before going to call unuse_pte.
519 		 */
520 		if (unlikely(pte_same(*pte, swp_pte))) {
521 			unuse_pte(vma, pte++, addr, entry, page);
522 			found = 1;
523 			break;
524 		}
525 	} while (pte++, addr += PAGE_SIZE, addr != end);
526 	pte_unmap_unlock(pte - 1, ptl);
527 	return found;
528 }
529 
530 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
531 				unsigned long addr, unsigned long end,
532 				swp_entry_t entry, struct page *page)
533 {
534 	pmd_t *pmd;
535 	unsigned long next;
536 
537 	pmd = pmd_offset(pud, addr);
538 	do {
539 		next = pmd_addr_end(addr, end);
540 		if (pmd_none_or_clear_bad(pmd))
541 			continue;
542 		if (unuse_pte_range(vma, pmd, addr, next, entry, page))
543 			return 1;
544 	} while (pmd++, addr = next, addr != end);
545 	return 0;
546 }
547 
548 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
549 				unsigned long addr, unsigned long end,
550 				swp_entry_t entry, struct page *page)
551 {
552 	pud_t *pud;
553 	unsigned long next;
554 
555 	pud = pud_offset(pgd, addr);
556 	do {
557 		next = pud_addr_end(addr, end);
558 		if (pud_none_or_clear_bad(pud))
559 			continue;
560 		if (unuse_pmd_range(vma, pud, addr, next, entry, page))
561 			return 1;
562 	} while (pud++, addr = next, addr != end);
563 	return 0;
564 }
565 
566 static int unuse_vma(struct vm_area_struct *vma,
567 				swp_entry_t entry, struct page *page)
568 {
569 	pgd_t *pgd;
570 	unsigned long addr, end, next;
571 
572 	if (page->mapping) {
573 		addr = page_address_in_vma(page, vma);
574 		if (addr == -EFAULT)
575 			return 0;
576 		else
577 			end = addr + PAGE_SIZE;
578 	} else {
579 		addr = vma->vm_start;
580 		end = vma->vm_end;
581 	}
582 
583 	pgd = pgd_offset(vma->vm_mm, addr);
584 	do {
585 		next = pgd_addr_end(addr, end);
586 		if (pgd_none_or_clear_bad(pgd))
587 			continue;
588 		if (unuse_pud_range(vma, pgd, addr, next, entry, page))
589 			return 1;
590 	} while (pgd++, addr = next, addr != end);
591 	return 0;
592 }
593 
594 static int unuse_mm(struct mm_struct *mm,
595 				swp_entry_t entry, struct page *page)
596 {
597 	struct vm_area_struct *vma;
598 
599 	if (!down_read_trylock(&mm->mmap_sem)) {
600 		/*
601 		 * Activate page so shrink_cache is unlikely to unmap its
602 		 * ptes while lock is dropped, so swapoff can make progress.
603 		 */
604 		activate_page(page);
605 		unlock_page(page);
606 		down_read(&mm->mmap_sem);
607 		lock_page(page);
608 	}
609 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
610 		if (vma->anon_vma && unuse_vma(vma, entry, page))
611 			break;
612 	}
613 	up_read(&mm->mmap_sem);
614 	/*
615 	 * Currently unuse_mm cannot fail, but leave error handling
616 	 * at call sites for now, since we change it from time to time.
617 	 */
618 	return 0;
619 }
620 
621 /*
622  * Scan swap_map from current position to next entry still in use.
623  * Recycle to start on reaching the end, returning 0 when empty.
624  */
625 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
626 					unsigned int prev)
627 {
628 	unsigned int max = si->max;
629 	unsigned int i = prev;
630 	int count;
631 
632 	/*
633 	 * No need for swap_lock here: we're just looking
634 	 * for whether an entry is in use, not modifying it; false
635 	 * hits are okay, and sys_swapoff() has already prevented new
636 	 * allocations from this area (while holding swap_lock).
637 	 */
638 	for (;;) {
639 		if (++i >= max) {
640 			if (!prev) {
641 				i = 0;
642 				break;
643 			}
644 			/*
645 			 * No entries in use at top of swap_map,
646 			 * loop back to start and recheck there.
647 			 */
648 			max = prev + 1;
649 			prev = 0;
650 			i = 1;
651 		}
652 		count = si->swap_map[i];
653 		if (count && count != SWAP_MAP_BAD)
654 			break;
655 	}
656 	return i;
657 }
658 
659 /*
660  * We completely avoid races by reading each swap page in advance,
661  * and then search for the process using it.  All the necessary
662  * page table adjustments can then be made atomically.
663  */
664 static int try_to_unuse(unsigned int type)
665 {
666 	struct swap_info_struct * si = &swap_info[type];
667 	struct mm_struct *start_mm;
668 	unsigned short *swap_map;
669 	unsigned short swcount;
670 	struct page *page;
671 	swp_entry_t entry;
672 	unsigned int i = 0;
673 	int retval = 0;
674 	int reset_overflow = 0;
675 	int shmem;
676 
677 	/*
678 	 * When searching mms for an entry, a good strategy is to
679 	 * start at the first mm we freed the previous entry from
680 	 * (though actually we don't notice whether we or coincidence
681 	 * freed the entry).  Initialize this start_mm with a hold.
682 	 *
683 	 * A simpler strategy would be to start at the last mm we
684 	 * freed the previous entry from; but that would take less
685 	 * advantage of mmlist ordering, which clusters forked mms
686 	 * together, child after parent.  If we race with dup_mmap(), we
687 	 * prefer to resolve parent before child, lest we miss entries
688 	 * duplicated after we scanned child: using last mm would invert
689 	 * that.  Though it's only a serious concern when an overflowed
690 	 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
691 	 */
692 	start_mm = &init_mm;
693 	atomic_inc(&init_mm.mm_users);
694 
695 	/*
696 	 * Keep on scanning until all entries have gone.  Usually,
697 	 * one pass through swap_map is enough, but not necessarily:
698 	 * there are races when an instance of an entry might be missed.
699 	 */
700 	while ((i = find_next_to_unuse(si, i)) != 0) {
701 		if (signal_pending(current)) {
702 			retval = -EINTR;
703 			break;
704 		}
705 
706 		/*
707 		 * Get a page for the entry, using the existing swap
708 		 * cache page if there is one.  Otherwise, get a clean
709 		 * page and read the swap into it.
710 		 */
711 		swap_map = &si->swap_map[i];
712 		entry = swp_entry(type, i);
713 		page = read_swap_cache_async(entry, NULL, 0);
714 		if (!page) {
715 			/*
716 			 * Either swap_duplicate() failed because entry
717 			 * has been freed independently, and will not be
718 			 * reused since sys_swapoff() already disabled
719 			 * allocation from here, or alloc_page() failed.
720 			 */
721 			if (!*swap_map)
722 				continue;
723 			retval = -ENOMEM;
724 			break;
725 		}
726 
727 		/*
728 		 * Don't hold on to start_mm if it looks like exiting.
729 		 */
730 		if (atomic_read(&start_mm->mm_users) == 1) {
731 			mmput(start_mm);
732 			start_mm = &init_mm;
733 			atomic_inc(&init_mm.mm_users);
734 		}
735 
736 		/*
737 		 * Wait for and lock page.  When do_swap_page races with
738 		 * try_to_unuse, do_swap_page can handle the fault much
739 		 * faster than try_to_unuse can locate the entry.  This
740 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
741 		 * defer to do_swap_page in such a case - in some tests,
742 		 * do_swap_page and try_to_unuse repeatedly compete.
743 		 */
744 		wait_on_page_locked(page);
745 		wait_on_page_writeback(page);
746 		lock_page(page);
747 		wait_on_page_writeback(page);
748 
749 		/*
750 		 * Remove all references to entry.
751 		 * Whenever we reach init_mm, there's no address space
752 		 * to search, but use it as a reminder to search shmem.
753 		 */
754 		shmem = 0;
755 		swcount = *swap_map;
756 		if (swcount > 1) {
757 			if (start_mm == &init_mm)
758 				shmem = shmem_unuse(entry, page);
759 			else
760 				retval = unuse_mm(start_mm, entry, page);
761 		}
762 		if (*swap_map > 1) {
763 			int set_start_mm = (*swap_map >= swcount);
764 			struct list_head *p = &start_mm->mmlist;
765 			struct mm_struct *new_start_mm = start_mm;
766 			struct mm_struct *prev_mm = start_mm;
767 			struct mm_struct *mm;
768 
769 			atomic_inc(&new_start_mm->mm_users);
770 			atomic_inc(&prev_mm->mm_users);
771 			spin_lock(&mmlist_lock);
772 			while (*swap_map > 1 && !retval &&
773 					(p = p->next) != &start_mm->mmlist) {
774 				mm = list_entry(p, struct mm_struct, mmlist);
775 				if (!atomic_inc_not_zero(&mm->mm_users))
776 					continue;
777 				spin_unlock(&mmlist_lock);
778 				mmput(prev_mm);
779 				prev_mm = mm;
780 
781 				cond_resched();
782 
783 				swcount = *swap_map;
784 				if (swcount <= 1)
785 					;
786 				else if (mm == &init_mm) {
787 					set_start_mm = 1;
788 					shmem = shmem_unuse(entry, page);
789 				} else
790 					retval = unuse_mm(mm, entry, page);
791 				if (set_start_mm && *swap_map < swcount) {
792 					mmput(new_start_mm);
793 					atomic_inc(&mm->mm_users);
794 					new_start_mm = mm;
795 					set_start_mm = 0;
796 				}
797 				spin_lock(&mmlist_lock);
798 			}
799 			spin_unlock(&mmlist_lock);
800 			mmput(prev_mm);
801 			mmput(start_mm);
802 			start_mm = new_start_mm;
803 		}
804 		if (retval) {
805 			unlock_page(page);
806 			page_cache_release(page);
807 			break;
808 		}
809 
810 		/*
811 		 * How could swap count reach 0x7fff when the maximum
812 		 * pid is 0x7fff, and there's no way to repeat a swap
813 		 * page within an mm (except in shmem, where it's the
814 		 * shared object which takes the reference count)?
815 		 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
816 		 *
817 		 * If that's wrong, then we should worry more about
818 		 * exit_mmap() and do_munmap() cases described above:
819 		 * we might be resetting SWAP_MAP_MAX too early here.
820 		 * We know "Undead"s can happen, they're okay, so don't
821 		 * report them; but do report if we reset SWAP_MAP_MAX.
822 		 */
823 		if (*swap_map == SWAP_MAP_MAX) {
824 			spin_lock(&swap_lock);
825 			*swap_map = 1;
826 			spin_unlock(&swap_lock);
827 			reset_overflow = 1;
828 		}
829 
830 		/*
831 		 * If a reference remains (rare), we would like to leave
832 		 * the page in the swap cache; but try_to_unmap could
833 		 * then re-duplicate the entry once we drop page lock,
834 		 * so we might loop indefinitely; also, that page could
835 		 * not be swapped out to other storage meanwhile.  So:
836 		 * delete from cache even if there's another reference,
837 		 * after ensuring that the data has been saved to disk -
838 		 * since if the reference remains (rarer), it will be
839 		 * read from disk into another page.  Splitting into two
840 		 * pages would be incorrect if swap supported "shared
841 		 * private" pages, but they are handled by tmpfs files.
842 		 *
843 		 * Note shmem_unuse already deleted a swappage from
844 		 * the swap cache, unless the move to filepage failed:
845 		 * in which case it left swappage in cache, lowered its
846 		 * swap count to pass quickly through the loops above,
847 		 * and now we must reincrement count to try again later.
848 		 */
849 		if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
850 			struct writeback_control wbc = {
851 				.sync_mode = WB_SYNC_NONE,
852 			};
853 
854 			swap_writepage(page, &wbc);
855 			lock_page(page);
856 			wait_on_page_writeback(page);
857 		}
858 		if (PageSwapCache(page)) {
859 			if (shmem)
860 				swap_duplicate(entry);
861 			else
862 				delete_from_swap_cache(page);
863 		}
864 
865 		/*
866 		 * So we could skip searching mms once swap count went
867 		 * to 1, we did not mark any present ptes as dirty: must
868 		 * mark page dirty so shrink_list will preserve it.
869 		 */
870 		SetPageDirty(page);
871 		unlock_page(page);
872 		page_cache_release(page);
873 
874 		/*
875 		 * Make sure that we aren't completely killing
876 		 * interactive performance.
877 		 */
878 		cond_resched();
879 	}
880 
881 	mmput(start_mm);
882 	if (reset_overflow) {
883 		printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
884 		swap_overflow = 0;
885 	}
886 	return retval;
887 }
888 
889 /*
890  * After a successful try_to_unuse, if no swap is now in use, we know
891  * we can empty the mmlist.  swap_lock must be held on entry and exit.
892  * Note that mmlist_lock nests inside swap_lock, and an mm must be
893  * added to the mmlist just after page_duplicate - before would be racy.
894  */
895 static void drain_mmlist(void)
896 {
897 	struct list_head *p, *next;
898 	unsigned int i;
899 
900 	for (i = 0; i < nr_swapfiles; i++)
901 		if (swap_info[i].inuse_pages)
902 			return;
903 	spin_lock(&mmlist_lock);
904 	list_for_each_safe(p, next, &init_mm.mmlist)
905 		list_del_init(p);
906 	spin_unlock(&mmlist_lock);
907 }
908 
909 /*
910  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
911  * corresponds to page offset `offset'.
912  */
913 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
914 {
915 	struct swap_extent *se = sis->curr_swap_extent;
916 	struct swap_extent *start_se = se;
917 
918 	for ( ; ; ) {
919 		struct list_head *lh;
920 
921 		if (se->start_page <= offset &&
922 				offset < (se->start_page + se->nr_pages)) {
923 			return se->start_block + (offset - se->start_page);
924 		}
925 		lh = se->list.next;
926 		if (lh == &sis->extent_list)
927 			lh = lh->next;
928 		se = list_entry(lh, struct swap_extent, list);
929 		sis->curr_swap_extent = se;
930 		BUG_ON(se == start_se);		/* It *must* be present */
931 	}
932 }
933 
934 /*
935  * Free all of a swapdev's extent information
936  */
937 static void destroy_swap_extents(struct swap_info_struct *sis)
938 {
939 	while (!list_empty(&sis->extent_list)) {
940 		struct swap_extent *se;
941 
942 		se = list_entry(sis->extent_list.next,
943 				struct swap_extent, list);
944 		list_del(&se->list);
945 		kfree(se);
946 	}
947 }
948 
949 /*
950  * Add a block range (and the corresponding page range) into this swapdev's
951  * extent list.  The extent list is kept sorted in page order.
952  *
953  * This function rather assumes that it is called in ascending page order.
954  */
955 static int
956 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
957 		unsigned long nr_pages, sector_t start_block)
958 {
959 	struct swap_extent *se;
960 	struct swap_extent *new_se;
961 	struct list_head *lh;
962 
963 	lh = sis->extent_list.prev;	/* The highest page extent */
964 	if (lh != &sis->extent_list) {
965 		se = list_entry(lh, struct swap_extent, list);
966 		BUG_ON(se->start_page + se->nr_pages != start_page);
967 		if (se->start_block + se->nr_pages == start_block) {
968 			/* Merge it */
969 			se->nr_pages += nr_pages;
970 			return 0;
971 		}
972 	}
973 
974 	/*
975 	 * No merge.  Insert a new extent, preserving ordering.
976 	 */
977 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
978 	if (new_se == NULL)
979 		return -ENOMEM;
980 	new_se->start_page = start_page;
981 	new_se->nr_pages = nr_pages;
982 	new_se->start_block = start_block;
983 
984 	list_add_tail(&new_se->list, &sis->extent_list);
985 	return 1;
986 }
987 
988 /*
989  * A `swap extent' is a simple thing which maps a contiguous range of pages
990  * onto a contiguous range of disk blocks.  An ordered list of swap extents
991  * is built at swapon time and is then used at swap_writepage/swap_readpage
992  * time for locating where on disk a page belongs.
993  *
994  * If the swapfile is an S_ISBLK block device, a single extent is installed.
995  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
996  * swap files identically.
997  *
998  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
999  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1000  * swapfiles are handled *identically* after swapon time.
1001  *
1002  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1003  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1004  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1005  * requirements, they are simply tossed out - we will never use those blocks
1006  * for swapping.
1007  *
1008  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1009  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1010  * which will scribble on the fs.
1011  *
1012  * The amount of disk space which a single swap extent represents varies.
1013  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1014  * extents in the list.  To avoid much list walking, we cache the previous
1015  * search location in `curr_swap_extent', and start new searches from there.
1016  * This is extremely effective.  The average number of iterations in
1017  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1018  */
1019 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1020 {
1021 	struct inode *inode;
1022 	unsigned blocks_per_page;
1023 	unsigned long page_no;
1024 	unsigned blkbits;
1025 	sector_t probe_block;
1026 	sector_t last_block;
1027 	sector_t lowest_block = -1;
1028 	sector_t highest_block = 0;
1029 	int nr_extents = 0;
1030 	int ret;
1031 
1032 	inode = sis->swap_file->f_mapping->host;
1033 	if (S_ISBLK(inode->i_mode)) {
1034 		ret = add_swap_extent(sis, 0, sis->max, 0);
1035 		*span = sis->pages;
1036 		goto done;
1037 	}
1038 
1039 	blkbits = inode->i_blkbits;
1040 	blocks_per_page = PAGE_SIZE >> blkbits;
1041 
1042 	/*
1043 	 * Map all the blocks into the extent list.  This code doesn't try
1044 	 * to be very smart.
1045 	 */
1046 	probe_block = 0;
1047 	page_no = 0;
1048 	last_block = i_size_read(inode) >> blkbits;
1049 	while ((probe_block + blocks_per_page) <= last_block &&
1050 			page_no < sis->max) {
1051 		unsigned block_in_page;
1052 		sector_t first_block;
1053 
1054 		first_block = bmap(inode, probe_block);
1055 		if (first_block == 0)
1056 			goto bad_bmap;
1057 
1058 		/*
1059 		 * It must be PAGE_SIZE aligned on-disk
1060 		 */
1061 		if (first_block & (blocks_per_page - 1)) {
1062 			probe_block++;
1063 			goto reprobe;
1064 		}
1065 
1066 		for (block_in_page = 1; block_in_page < blocks_per_page;
1067 					block_in_page++) {
1068 			sector_t block;
1069 
1070 			block = bmap(inode, probe_block + block_in_page);
1071 			if (block == 0)
1072 				goto bad_bmap;
1073 			if (block != first_block + block_in_page) {
1074 				/* Discontiguity */
1075 				probe_block++;
1076 				goto reprobe;
1077 			}
1078 		}
1079 
1080 		first_block >>= (PAGE_SHIFT - blkbits);
1081 		if (page_no) {	/* exclude the header page */
1082 			if (first_block < lowest_block)
1083 				lowest_block = first_block;
1084 			if (first_block > highest_block)
1085 				highest_block = first_block;
1086 		}
1087 
1088 		/*
1089 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1090 		 */
1091 		ret = add_swap_extent(sis, page_no, 1, first_block);
1092 		if (ret < 0)
1093 			goto out;
1094 		nr_extents += ret;
1095 		page_no++;
1096 		probe_block += blocks_per_page;
1097 reprobe:
1098 		continue;
1099 	}
1100 	ret = nr_extents;
1101 	*span = 1 + highest_block - lowest_block;
1102 	if (page_no == 0)
1103 		page_no = 1;	/* force Empty message */
1104 	sis->max = page_no;
1105 	sis->pages = page_no - 1;
1106 	sis->highest_bit = page_no - 1;
1107 done:
1108 	sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1109 					struct swap_extent, list);
1110 	goto out;
1111 bad_bmap:
1112 	printk(KERN_ERR "swapon: swapfile has holes\n");
1113 	ret = -EINVAL;
1114 out:
1115 	return ret;
1116 }
1117 
1118 #if 0	/* We don't need this yet */
1119 #include <linux/backing-dev.h>
1120 int page_queue_congested(struct page *page)
1121 {
1122 	struct backing_dev_info *bdi;
1123 
1124 	BUG_ON(!PageLocked(page));	/* It pins the swap_info_struct */
1125 
1126 	if (PageSwapCache(page)) {
1127 		swp_entry_t entry = { .val = page_private(page) };
1128 		struct swap_info_struct *sis;
1129 
1130 		sis = get_swap_info_struct(swp_type(entry));
1131 		bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1132 	} else
1133 		bdi = page->mapping->backing_dev_info;
1134 	return bdi_write_congested(bdi);
1135 }
1136 #endif
1137 
1138 asmlinkage long sys_swapoff(const char __user * specialfile)
1139 {
1140 	struct swap_info_struct * p = NULL;
1141 	unsigned short *swap_map;
1142 	struct file *swap_file, *victim;
1143 	struct address_space *mapping;
1144 	struct inode *inode;
1145 	char * pathname;
1146 	int i, type, prev;
1147 	int err;
1148 
1149 	if (!capable(CAP_SYS_ADMIN))
1150 		return -EPERM;
1151 
1152 	pathname = getname(specialfile);
1153 	err = PTR_ERR(pathname);
1154 	if (IS_ERR(pathname))
1155 		goto out;
1156 
1157 	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1158 	putname(pathname);
1159 	err = PTR_ERR(victim);
1160 	if (IS_ERR(victim))
1161 		goto out;
1162 
1163 	mapping = victim->f_mapping;
1164 	prev = -1;
1165 	spin_lock(&swap_lock);
1166 	for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1167 		p = swap_info + type;
1168 		if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1169 			if (p->swap_file->f_mapping == mapping)
1170 				break;
1171 		}
1172 		prev = type;
1173 	}
1174 	if (type < 0) {
1175 		err = -EINVAL;
1176 		spin_unlock(&swap_lock);
1177 		goto out_dput;
1178 	}
1179 	if (!security_vm_enough_memory(p->pages))
1180 		vm_unacct_memory(p->pages);
1181 	else {
1182 		err = -ENOMEM;
1183 		spin_unlock(&swap_lock);
1184 		goto out_dput;
1185 	}
1186 	if (prev < 0) {
1187 		swap_list.head = p->next;
1188 	} else {
1189 		swap_info[prev].next = p->next;
1190 	}
1191 	if (type == swap_list.next) {
1192 		/* just pick something that's safe... */
1193 		swap_list.next = swap_list.head;
1194 	}
1195 	nr_swap_pages -= p->pages;
1196 	total_swap_pages -= p->pages;
1197 	p->flags &= ~SWP_WRITEOK;
1198 	spin_unlock(&swap_lock);
1199 
1200 	current->flags |= PF_SWAPOFF;
1201 	err = try_to_unuse(type);
1202 	current->flags &= ~PF_SWAPOFF;
1203 
1204 	if (err) {
1205 		/* re-insert swap space back into swap_list */
1206 		spin_lock(&swap_lock);
1207 		for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1208 			if (p->prio >= swap_info[i].prio)
1209 				break;
1210 		p->next = i;
1211 		if (prev < 0)
1212 			swap_list.head = swap_list.next = p - swap_info;
1213 		else
1214 			swap_info[prev].next = p - swap_info;
1215 		nr_swap_pages += p->pages;
1216 		total_swap_pages += p->pages;
1217 		p->flags |= SWP_WRITEOK;
1218 		spin_unlock(&swap_lock);
1219 		goto out_dput;
1220 	}
1221 
1222 	/* wait for any unplug function to finish */
1223 	down_write(&swap_unplug_sem);
1224 	up_write(&swap_unplug_sem);
1225 
1226 	destroy_swap_extents(p);
1227 	mutex_lock(&swapon_mutex);
1228 	spin_lock(&swap_lock);
1229 	drain_mmlist();
1230 
1231 	/* wait for anyone still in scan_swap_map */
1232 	p->highest_bit = 0;		/* cuts scans short */
1233 	while (p->flags >= SWP_SCANNING) {
1234 		spin_unlock(&swap_lock);
1235 		schedule_timeout_uninterruptible(1);
1236 		spin_lock(&swap_lock);
1237 	}
1238 
1239 	swap_file = p->swap_file;
1240 	p->swap_file = NULL;
1241 	p->max = 0;
1242 	swap_map = p->swap_map;
1243 	p->swap_map = NULL;
1244 	p->flags = 0;
1245 	spin_unlock(&swap_lock);
1246 	mutex_unlock(&swapon_mutex);
1247 	vfree(swap_map);
1248 	inode = mapping->host;
1249 	if (S_ISBLK(inode->i_mode)) {
1250 		struct block_device *bdev = I_BDEV(inode);
1251 		set_blocksize(bdev, p->old_block_size);
1252 		bd_release(bdev);
1253 	} else {
1254 		mutex_lock(&inode->i_mutex);
1255 		inode->i_flags &= ~S_SWAPFILE;
1256 		mutex_unlock(&inode->i_mutex);
1257 	}
1258 	filp_close(swap_file, NULL);
1259 	err = 0;
1260 
1261 out_dput:
1262 	filp_close(victim, NULL);
1263 out:
1264 	return err;
1265 }
1266 
1267 #ifdef CONFIG_PROC_FS
1268 /* iterator */
1269 static void *swap_start(struct seq_file *swap, loff_t *pos)
1270 {
1271 	struct swap_info_struct *ptr = swap_info;
1272 	int i;
1273 	loff_t l = *pos;
1274 
1275 	mutex_lock(&swapon_mutex);
1276 
1277 	for (i = 0; i < nr_swapfiles; i++, ptr++) {
1278 		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1279 			continue;
1280 		if (!l--)
1281 			return ptr;
1282 	}
1283 
1284 	return NULL;
1285 }
1286 
1287 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1288 {
1289 	struct swap_info_struct *ptr = v;
1290 	struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1291 
1292 	for (++ptr; ptr < endptr; ptr++) {
1293 		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1294 			continue;
1295 		++*pos;
1296 		return ptr;
1297 	}
1298 
1299 	return NULL;
1300 }
1301 
1302 static void swap_stop(struct seq_file *swap, void *v)
1303 {
1304 	mutex_unlock(&swapon_mutex);
1305 }
1306 
1307 static int swap_show(struct seq_file *swap, void *v)
1308 {
1309 	struct swap_info_struct *ptr = v;
1310 	struct file *file;
1311 	int len;
1312 
1313 	if (v == swap_info)
1314 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1315 
1316 	file = ptr->swap_file;
1317 	len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
1318 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1319 		       len < 40 ? 40 - len : 1, " ",
1320 		       S_ISBLK(file->f_dentry->d_inode->i_mode) ?
1321 				"partition" : "file\t",
1322 		       ptr->pages << (PAGE_SHIFT - 10),
1323 		       ptr->inuse_pages << (PAGE_SHIFT - 10),
1324 		       ptr->prio);
1325 	return 0;
1326 }
1327 
1328 static struct seq_operations swaps_op = {
1329 	.start =	swap_start,
1330 	.next =		swap_next,
1331 	.stop =		swap_stop,
1332 	.show =		swap_show
1333 };
1334 
1335 static int swaps_open(struct inode *inode, struct file *file)
1336 {
1337 	return seq_open(file, &swaps_op);
1338 }
1339 
1340 static struct file_operations proc_swaps_operations = {
1341 	.open		= swaps_open,
1342 	.read		= seq_read,
1343 	.llseek		= seq_lseek,
1344 	.release	= seq_release,
1345 };
1346 
1347 static int __init procswaps_init(void)
1348 {
1349 	struct proc_dir_entry *entry;
1350 
1351 	entry = create_proc_entry("swaps", 0, NULL);
1352 	if (entry)
1353 		entry->proc_fops = &proc_swaps_operations;
1354 	return 0;
1355 }
1356 __initcall(procswaps_init);
1357 #endif /* CONFIG_PROC_FS */
1358 
1359 /*
1360  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1361  *
1362  * The swapon system call
1363  */
1364 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1365 {
1366 	struct swap_info_struct * p;
1367 	char *name = NULL;
1368 	struct block_device *bdev = NULL;
1369 	struct file *swap_file = NULL;
1370 	struct address_space *mapping;
1371 	unsigned int type;
1372 	int i, prev;
1373 	int error;
1374 	static int least_priority;
1375 	union swap_header *swap_header = NULL;
1376 	int swap_header_version;
1377 	unsigned int nr_good_pages = 0;
1378 	int nr_extents = 0;
1379 	sector_t span;
1380 	unsigned long maxpages = 1;
1381 	int swapfilesize;
1382 	unsigned short *swap_map;
1383 	struct page *page = NULL;
1384 	struct inode *inode = NULL;
1385 	int did_down = 0;
1386 
1387 	if (!capable(CAP_SYS_ADMIN))
1388 		return -EPERM;
1389 	spin_lock(&swap_lock);
1390 	p = swap_info;
1391 	for (type = 0 ; type < nr_swapfiles ; type++,p++)
1392 		if (!(p->flags & SWP_USED))
1393 			break;
1394 	error = -EPERM;
1395 	if (type >= MAX_SWAPFILES) {
1396 		spin_unlock(&swap_lock);
1397 		goto out;
1398 	}
1399 	if (type >= nr_swapfiles)
1400 		nr_swapfiles = type+1;
1401 	INIT_LIST_HEAD(&p->extent_list);
1402 	p->flags = SWP_USED;
1403 	p->swap_file = NULL;
1404 	p->old_block_size = 0;
1405 	p->swap_map = NULL;
1406 	p->lowest_bit = 0;
1407 	p->highest_bit = 0;
1408 	p->cluster_nr = 0;
1409 	p->inuse_pages = 0;
1410 	p->next = -1;
1411 	if (swap_flags & SWAP_FLAG_PREFER) {
1412 		p->prio =
1413 		  (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1414 	} else {
1415 		p->prio = --least_priority;
1416 	}
1417 	spin_unlock(&swap_lock);
1418 	name = getname(specialfile);
1419 	error = PTR_ERR(name);
1420 	if (IS_ERR(name)) {
1421 		name = NULL;
1422 		goto bad_swap_2;
1423 	}
1424 	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1425 	error = PTR_ERR(swap_file);
1426 	if (IS_ERR(swap_file)) {
1427 		swap_file = NULL;
1428 		goto bad_swap_2;
1429 	}
1430 
1431 	p->swap_file = swap_file;
1432 	mapping = swap_file->f_mapping;
1433 	inode = mapping->host;
1434 
1435 	error = -EBUSY;
1436 	for (i = 0; i < nr_swapfiles; i++) {
1437 		struct swap_info_struct *q = &swap_info[i];
1438 
1439 		if (i == type || !q->swap_file)
1440 			continue;
1441 		if (mapping == q->swap_file->f_mapping)
1442 			goto bad_swap;
1443 	}
1444 
1445 	error = -EINVAL;
1446 	if (S_ISBLK(inode->i_mode)) {
1447 		bdev = I_BDEV(inode);
1448 		error = bd_claim(bdev, sys_swapon);
1449 		if (error < 0) {
1450 			bdev = NULL;
1451 			error = -EINVAL;
1452 			goto bad_swap;
1453 		}
1454 		p->old_block_size = block_size(bdev);
1455 		error = set_blocksize(bdev, PAGE_SIZE);
1456 		if (error < 0)
1457 			goto bad_swap;
1458 		p->bdev = bdev;
1459 	} else if (S_ISREG(inode->i_mode)) {
1460 		p->bdev = inode->i_sb->s_bdev;
1461 		mutex_lock(&inode->i_mutex);
1462 		did_down = 1;
1463 		if (IS_SWAPFILE(inode)) {
1464 			error = -EBUSY;
1465 			goto bad_swap;
1466 		}
1467 	} else {
1468 		goto bad_swap;
1469 	}
1470 
1471 	swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1472 
1473 	/*
1474 	 * Read the swap header.
1475 	 */
1476 	if (!mapping->a_ops->readpage) {
1477 		error = -EINVAL;
1478 		goto bad_swap;
1479 	}
1480 	page = read_mapping_page(mapping, 0, swap_file);
1481 	if (IS_ERR(page)) {
1482 		error = PTR_ERR(page);
1483 		goto bad_swap;
1484 	}
1485 	wait_on_page_locked(page);
1486 	if (!PageUptodate(page))
1487 		goto bad_swap;
1488 	kmap(page);
1489 	swap_header = page_address(page);
1490 
1491 	if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1492 		swap_header_version = 1;
1493 	else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1494 		swap_header_version = 2;
1495 	else {
1496 		printk(KERN_ERR "Unable to find swap-space signature\n");
1497 		error = -EINVAL;
1498 		goto bad_swap;
1499 	}
1500 
1501 	switch (swap_header_version) {
1502 	case 1:
1503 		printk(KERN_ERR "version 0 swap is no longer supported. "
1504 			"Use mkswap -v1 %s\n", name);
1505 		error = -EINVAL;
1506 		goto bad_swap;
1507 	case 2:
1508 		/* Check the swap header's sub-version and the size of
1509                    the swap file and bad block lists */
1510 		if (swap_header->info.version != 1) {
1511 			printk(KERN_WARNING
1512 			       "Unable to handle swap header version %d\n",
1513 			       swap_header->info.version);
1514 			error = -EINVAL;
1515 			goto bad_swap;
1516 		}
1517 
1518 		p->lowest_bit  = 1;
1519 		p->cluster_next = 1;
1520 
1521 		/*
1522 		 * Find out how many pages are allowed for a single swap
1523 		 * device. There are two limiting factors: 1) the number of
1524 		 * bits for the swap offset in the swp_entry_t type and
1525 		 * 2) the number of bits in the a swap pte as defined by
1526 		 * the different architectures. In order to find the
1527 		 * largest possible bit mask a swap entry with swap type 0
1528 		 * and swap offset ~0UL is created, encoded to a swap pte,
1529 		 * decoded to a swp_entry_t again and finally the swap
1530 		 * offset is extracted. This will mask all the bits from
1531 		 * the initial ~0UL mask that can't be encoded in either
1532 		 * the swp_entry_t or the architecture definition of a
1533 		 * swap pte.
1534 		 */
1535 		maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1536 		if (maxpages > swap_header->info.last_page)
1537 			maxpages = swap_header->info.last_page;
1538 		p->highest_bit = maxpages - 1;
1539 
1540 		error = -EINVAL;
1541 		if (!maxpages)
1542 			goto bad_swap;
1543 		if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1544 			goto bad_swap;
1545 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1546 			goto bad_swap;
1547 
1548 		/* OK, set up the swap map and apply the bad block list */
1549 		if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1550 			error = -ENOMEM;
1551 			goto bad_swap;
1552 		}
1553 
1554 		error = 0;
1555 		memset(p->swap_map, 0, maxpages * sizeof(short));
1556 		for (i = 0; i < swap_header->info.nr_badpages; i++) {
1557 			int page_nr = swap_header->info.badpages[i];
1558 			if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1559 				error = -EINVAL;
1560 			else
1561 				p->swap_map[page_nr] = SWAP_MAP_BAD;
1562 		}
1563 		nr_good_pages = swap_header->info.last_page -
1564 				swap_header->info.nr_badpages -
1565 				1 /* header page */;
1566 		if (error)
1567 			goto bad_swap;
1568 	}
1569 
1570 	if (swapfilesize && maxpages > swapfilesize) {
1571 		printk(KERN_WARNING
1572 		       "Swap area shorter than signature indicates\n");
1573 		error = -EINVAL;
1574 		goto bad_swap;
1575 	}
1576 	if (nr_good_pages) {
1577 		p->swap_map[0] = SWAP_MAP_BAD;
1578 		p->max = maxpages;
1579 		p->pages = nr_good_pages;
1580 		nr_extents = setup_swap_extents(p, &span);
1581 		if (nr_extents < 0) {
1582 			error = nr_extents;
1583 			goto bad_swap;
1584 		}
1585 		nr_good_pages = p->pages;
1586 	}
1587 	if (!nr_good_pages) {
1588 		printk(KERN_WARNING "Empty swap-file\n");
1589 		error = -EINVAL;
1590 		goto bad_swap;
1591 	}
1592 
1593 	mutex_lock(&swapon_mutex);
1594 	spin_lock(&swap_lock);
1595 	p->flags = SWP_ACTIVE;
1596 	nr_swap_pages += nr_good_pages;
1597 	total_swap_pages += nr_good_pages;
1598 
1599 	printk(KERN_INFO "Adding %uk swap on %s.  "
1600 			"Priority:%d extents:%d across:%lluk\n",
1601 		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1602 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1603 
1604 	/* insert swap space into swap_list: */
1605 	prev = -1;
1606 	for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1607 		if (p->prio >= swap_info[i].prio) {
1608 			break;
1609 		}
1610 		prev = i;
1611 	}
1612 	p->next = i;
1613 	if (prev < 0) {
1614 		swap_list.head = swap_list.next = p - swap_info;
1615 	} else {
1616 		swap_info[prev].next = p - swap_info;
1617 	}
1618 	spin_unlock(&swap_lock);
1619 	mutex_unlock(&swapon_mutex);
1620 	error = 0;
1621 	goto out;
1622 bad_swap:
1623 	if (bdev) {
1624 		set_blocksize(bdev, p->old_block_size);
1625 		bd_release(bdev);
1626 	}
1627 	destroy_swap_extents(p);
1628 bad_swap_2:
1629 	spin_lock(&swap_lock);
1630 	swap_map = p->swap_map;
1631 	p->swap_file = NULL;
1632 	p->swap_map = NULL;
1633 	p->flags = 0;
1634 	if (!(swap_flags & SWAP_FLAG_PREFER))
1635 		++least_priority;
1636 	spin_unlock(&swap_lock);
1637 	vfree(swap_map);
1638 	if (swap_file)
1639 		filp_close(swap_file, NULL);
1640 out:
1641 	if (page && !IS_ERR(page)) {
1642 		kunmap(page);
1643 		page_cache_release(page);
1644 	}
1645 	if (name)
1646 		putname(name);
1647 	if (did_down) {
1648 		if (!error)
1649 			inode->i_flags |= S_SWAPFILE;
1650 		mutex_unlock(&inode->i_mutex);
1651 	}
1652 	return error;
1653 }
1654 
1655 void si_swapinfo(struct sysinfo *val)
1656 {
1657 	unsigned int i;
1658 	unsigned long nr_to_be_unused = 0;
1659 
1660 	spin_lock(&swap_lock);
1661 	for (i = 0; i < nr_swapfiles; i++) {
1662 		if (!(swap_info[i].flags & SWP_USED) ||
1663 		     (swap_info[i].flags & SWP_WRITEOK))
1664 			continue;
1665 		nr_to_be_unused += swap_info[i].inuse_pages;
1666 	}
1667 	val->freeswap = nr_swap_pages + nr_to_be_unused;
1668 	val->totalswap = total_swap_pages + nr_to_be_unused;
1669 	spin_unlock(&swap_lock);
1670 }
1671 
1672 /*
1673  * Verify that a swap entry is valid and increment its swap map count.
1674  *
1675  * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1676  * "permanent", but will be reclaimed by the next swapoff.
1677  */
1678 int swap_duplicate(swp_entry_t entry)
1679 {
1680 	struct swap_info_struct * p;
1681 	unsigned long offset, type;
1682 	int result = 0;
1683 
1684 	if (is_migration_entry(entry))
1685 		return 1;
1686 
1687 	type = swp_type(entry);
1688 	if (type >= nr_swapfiles)
1689 		goto bad_file;
1690 	p = type + swap_info;
1691 	offset = swp_offset(entry);
1692 
1693 	spin_lock(&swap_lock);
1694 	if (offset < p->max && p->swap_map[offset]) {
1695 		if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1696 			p->swap_map[offset]++;
1697 			result = 1;
1698 		} else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1699 			if (swap_overflow++ < 5)
1700 				printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1701 			p->swap_map[offset] = SWAP_MAP_MAX;
1702 			result = 1;
1703 		}
1704 	}
1705 	spin_unlock(&swap_lock);
1706 out:
1707 	return result;
1708 
1709 bad_file:
1710 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1711 	goto out;
1712 }
1713 
1714 struct swap_info_struct *
1715 get_swap_info_struct(unsigned type)
1716 {
1717 	return &swap_info[type];
1718 }
1719 
1720 /*
1721  * swap_lock prevents swap_map being freed. Don't grab an extra
1722  * reference on the swaphandle, it doesn't matter if it becomes unused.
1723  */
1724 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1725 {
1726 	int ret = 0, i = 1 << page_cluster;
1727 	unsigned long toff;
1728 	struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1729 
1730 	if (!page_cluster)	/* no readahead */
1731 		return 0;
1732 	toff = (swp_offset(entry) >> page_cluster) << page_cluster;
1733 	if (!toff)		/* first page is swap header */
1734 		toff++, i--;
1735 	*offset = toff;
1736 
1737 	spin_lock(&swap_lock);
1738 	do {
1739 		/* Don't read-ahead past the end of the swap area */
1740 		if (toff >= swapdev->max)
1741 			break;
1742 		/* Don't read in free or bad pages */
1743 		if (!swapdev->swap_map[toff])
1744 			break;
1745 		if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1746 			break;
1747 		toff++;
1748 		ret++;
1749 	} while (--i);
1750 	spin_unlock(&swap_lock);
1751 	return ret;
1752 }
1753