1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/hugetlb.h> 10 #include <linux/mman.h> 11 #include <linux/slab.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/shm.h> 18 #include <linux/blkdev.h> 19 #include <linux/writeback.h> 20 #include <linux/proc_fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/init.h> 23 #include <linux/module.h> 24 #include <linux/rmap.h> 25 #include <linux/security.h> 26 #include <linux/backing-dev.h> 27 #include <linux/mutex.h> 28 #include <linux/capability.h> 29 #include <linux/syscalls.h> 30 31 #include <asm/pgtable.h> 32 #include <asm/tlbflush.h> 33 #include <linux/swapops.h> 34 35 DEFINE_SPINLOCK(swap_lock); 36 unsigned int nr_swapfiles; 37 long total_swap_pages; 38 static int swap_overflow; 39 40 static const char Bad_file[] = "Bad swap file entry "; 41 static const char Unused_file[] = "Unused swap file entry "; 42 static const char Bad_offset[] = "Bad swap offset entry "; 43 static const char Unused_offset[] = "Unused swap offset entry "; 44 45 struct swap_list_t swap_list = {-1, -1}; 46 47 static struct swap_info_struct swap_info[MAX_SWAPFILES]; 48 49 static DEFINE_MUTEX(swapon_mutex); 50 51 /* 52 * We need this because the bdev->unplug_fn can sleep and we cannot 53 * hold swap_lock while calling the unplug_fn. And swap_lock 54 * cannot be turned into a mutex. 55 */ 56 static DECLARE_RWSEM(swap_unplug_sem); 57 58 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page) 59 { 60 swp_entry_t entry; 61 62 down_read(&swap_unplug_sem); 63 entry.val = page_private(page); 64 if (PageSwapCache(page)) { 65 struct block_device *bdev = swap_info[swp_type(entry)].bdev; 66 struct backing_dev_info *bdi; 67 68 /* 69 * If the page is removed from swapcache from under us (with a 70 * racy try_to_unuse/swapoff) we need an additional reference 71 * count to avoid reading garbage from page_private(page) above. 72 * If the WARN_ON triggers during a swapoff it maybe the race 73 * condition and it's harmless. However if it triggers without 74 * swapoff it signals a problem. 75 */ 76 WARN_ON(page_count(page) <= 1); 77 78 bdi = bdev->bd_inode->i_mapping->backing_dev_info; 79 blk_run_backing_dev(bdi, page); 80 } 81 up_read(&swap_unplug_sem); 82 } 83 84 #define SWAPFILE_CLUSTER 256 85 #define LATENCY_LIMIT 256 86 87 static inline unsigned long scan_swap_map(struct swap_info_struct *si) 88 { 89 unsigned long offset, last_in_cluster; 90 int latency_ration = LATENCY_LIMIT; 91 92 /* 93 * We try to cluster swap pages by allocating them sequentially 94 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 95 * way, however, we resort to first-free allocation, starting 96 * a new cluster. This prevents us from scattering swap pages 97 * all over the entire swap partition, so that we reduce 98 * overall disk seek times between swap pages. -- sct 99 * But we do now try to find an empty cluster. -Andrea 100 */ 101 102 si->flags += SWP_SCANNING; 103 if (unlikely(!si->cluster_nr)) { 104 si->cluster_nr = SWAPFILE_CLUSTER - 1; 105 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) 106 goto lowest; 107 spin_unlock(&swap_lock); 108 109 offset = si->lowest_bit; 110 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 111 112 /* Locate the first empty (unaligned) cluster */ 113 for (; last_in_cluster <= si->highest_bit; offset++) { 114 if (si->swap_map[offset]) 115 last_in_cluster = offset + SWAPFILE_CLUSTER; 116 else if (offset == last_in_cluster) { 117 spin_lock(&swap_lock); 118 si->cluster_next = offset-SWAPFILE_CLUSTER+1; 119 goto cluster; 120 } 121 if (unlikely(--latency_ration < 0)) { 122 cond_resched(); 123 latency_ration = LATENCY_LIMIT; 124 } 125 } 126 spin_lock(&swap_lock); 127 goto lowest; 128 } 129 130 si->cluster_nr--; 131 cluster: 132 offset = si->cluster_next; 133 if (offset > si->highest_bit) 134 lowest: offset = si->lowest_bit; 135 checks: if (!(si->flags & SWP_WRITEOK)) 136 goto no_page; 137 if (!si->highest_bit) 138 goto no_page; 139 if (!si->swap_map[offset]) { 140 if (offset == si->lowest_bit) 141 si->lowest_bit++; 142 if (offset == si->highest_bit) 143 si->highest_bit--; 144 si->inuse_pages++; 145 if (si->inuse_pages == si->pages) { 146 si->lowest_bit = si->max; 147 si->highest_bit = 0; 148 } 149 si->swap_map[offset] = 1; 150 si->cluster_next = offset + 1; 151 si->flags -= SWP_SCANNING; 152 return offset; 153 } 154 155 spin_unlock(&swap_lock); 156 while (++offset <= si->highest_bit) { 157 if (!si->swap_map[offset]) { 158 spin_lock(&swap_lock); 159 goto checks; 160 } 161 if (unlikely(--latency_ration < 0)) { 162 cond_resched(); 163 latency_ration = LATENCY_LIMIT; 164 } 165 } 166 spin_lock(&swap_lock); 167 goto lowest; 168 169 no_page: 170 si->flags -= SWP_SCANNING; 171 return 0; 172 } 173 174 swp_entry_t get_swap_page(void) 175 { 176 struct swap_info_struct *si; 177 pgoff_t offset; 178 int type, next; 179 int wrapped = 0; 180 181 spin_lock(&swap_lock); 182 if (nr_swap_pages <= 0) 183 goto noswap; 184 nr_swap_pages--; 185 186 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { 187 si = swap_info + type; 188 next = si->next; 189 if (next < 0 || 190 (!wrapped && si->prio != swap_info[next].prio)) { 191 next = swap_list.head; 192 wrapped++; 193 } 194 195 if (!si->highest_bit) 196 continue; 197 if (!(si->flags & SWP_WRITEOK)) 198 continue; 199 200 swap_list.next = next; 201 offset = scan_swap_map(si); 202 if (offset) { 203 spin_unlock(&swap_lock); 204 return swp_entry(type, offset); 205 } 206 next = swap_list.next; 207 } 208 209 nr_swap_pages++; 210 noswap: 211 spin_unlock(&swap_lock); 212 return (swp_entry_t) {0}; 213 } 214 215 swp_entry_t get_swap_page_of_type(int type) 216 { 217 struct swap_info_struct *si; 218 pgoff_t offset; 219 220 spin_lock(&swap_lock); 221 si = swap_info + type; 222 if (si->flags & SWP_WRITEOK) { 223 nr_swap_pages--; 224 offset = scan_swap_map(si); 225 if (offset) { 226 spin_unlock(&swap_lock); 227 return swp_entry(type, offset); 228 } 229 nr_swap_pages++; 230 } 231 spin_unlock(&swap_lock); 232 return (swp_entry_t) {0}; 233 } 234 235 static struct swap_info_struct * swap_info_get(swp_entry_t entry) 236 { 237 struct swap_info_struct * p; 238 unsigned long offset, type; 239 240 if (!entry.val) 241 goto out; 242 type = swp_type(entry); 243 if (type >= nr_swapfiles) 244 goto bad_nofile; 245 p = & swap_info[type]; 246 if (!(p->flags & SWP_USED)) 247 goto bad_device; 248 offset = swp_offset(entry); 249 if (offset >= p->max) 250 goto bad_offset; 251 if (!p->swap_map[offset]) 252 goto bad_free; 253 spin_lock(&swap_lock); 254 return p; 255 256 bad_free: 257 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); 258 goto out; 259 bad_offset: 260 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); 261 goto out; 262 bad_device: 263 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); 264 goto out; 265 bad_nofile: 266 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); 267 out: 268 return NULL; 269 } 270 271 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset) 272 { 273 int count = p->swap_map[offset]; 274 275 if (count < SWAP_MAP_MAX) { 276 count--; 277 p->swap_map[offset] = count; 278 if (!count) { 279 if (offset < p->lowest_bit) 280 p->lowest_bit = offset; 281 if (offset > p->highest_bit) 282 p->highest_bit = offset; 283 if (p->prio > swap_info[swap_list.next].prio) 284 swap_list.next = p - swap_info; 285 nr_swap_pages++; 286 p->inuse_pages--; 287 } 288 } 289 return count; 290 } 291 292 /* 293 * Caller has made sure that the swapdevice corresponding to entry 294 * is still around or has not been recycled. 295 */ 296 void swap_free(swp_entry_t entry) 297 { 298 struct swap_info_struct * p; 299 300 p = swap_info_get(entry); 301 if (p) { 302 swap_entry_free(p, swp_offset(entry)); 303 spin_unlock(&swap_lock); 304 } 305 } 306 307 /* 308 * How many references to page are currently swapped out? 309 */ 310 static inline int page_swapcount(struct page *page) 311 { 312 int count = 0; 313 struct swap_info_struct *p; 314 swp_entry_t entry; 315 316 entry.val = page_private(page); 317 p = swap_info_get(entry); 318 if (p) { 319 /* Subtract the 1 for the swap cache itself */ 320 count = p->swap_map[swp_offset(entry)] - 1; 321 spin_unlock(&swap_lock); 322 } 323 return count; 324 } 325 326 /* 327 * We can use this swap cache entry directly 328 * if there are no other references to it. 329 */ 330 int can_share_swap_page(struct page *page) 331 { 332 int count; 333 334 BUG_ON(!PageLocked(page)); 335 count = page_mapcount(page); 336 if (count <= 1 && PageSwapCache(page)) 337 count += page_swapcount(page); 338 return count == 1; 339 } 340 341 /* 342 * Work out if there are any other processes sharing this 343 * swap cache page. Free it if you can. Return success. 344 */ 345 int remove_exclusive_swap_page(struct page *page) 346 { 347 int retval; 348 struct swap_info_struct * p; 349 swp_entry_t entry; 350 351 BUG_ON(PagePrivate(page)); 352 BUG_ON(!PageLocked(page)); 353 354 if (!PageSwapCache(page)) 355 return 0; 356 if (PageWriteback(page)) 357 return 0; 358 if (page_count(page) != 2) /* 2: us + cache */ 359 return 0; 360 361 entry.val = page_private(page); 362 p = swap_info_get(entry); 363 if (!p) 364 return 0; 365 366 /* Is the only swap cache user the cache itself? */ 367 retval = 0; 368 if (p->swap_map[swp_offset(entry)] == 1) { 369 /* Recheck the page count with the swapcache lock held.. */ 370 write_lock_irq(&swapper_space.tree_lock); 371 if ((page_count(page) == 2) && !PageWriteback(page)) { 372 __delete_from_swap_cache(page); 373 SetPageDirty(page); 374 retval = 1; 375 } 376 write_unlock_irq(&swapper_space.tree_lock); 377 } 378 spin_unlock(&swap_lock); 379 380 if (retval) { 381 swap_free(entry); 382 page_cache_release(page); 383 } 384 385 return retval; 386 } 387 388 /* 389 * Free the swap entry like above, but also try to 390 * free the page cache entry if it is the last user. 391 */ 392 void free_swap_and_cache(swp_entry_t entry) 393 { 394 struct swap_info_struct * p; 395 struct page *page = NULL; 396 397 if (is_migration_entry(entry)) 398 return; 399 400 p = swap_info_get(entry); 401 if (p) { 402 if (swap_entry_free(p, swp_offset(entry)) == 1) { 403 page = find_get_page(&swapper_space, entry.val); 404 if (page && unlikely(TestSetPageLocked(page))) { 405 page_cache_release(page); 406 page = NULL; 407 } 408 } 409 spin_unlock(&swap_lock); 410 } 411 if (page) { 412 int one_user; 413 414 BUG_ON(PagePrivate(page)); 415 one_user = (page_count(page) == 2); 416 /* Only cache user (+us), or swap space full? Free it! */ 417 /* Also recheck PageSwapCache after page is locked (above) */ 418 if (PageSwapCache(page) && !PageWriteback(page) && 419 (one_user || vm_swap_full())) { 420 delete_from_swap_cache(page); 421 SetPageDirty(page); 422 } 423 unlock_page(page); 424 page_cache_release(page); 425 } 426 } 427 428 #ifdef CONFIG_SOFTWARE_SUSPEND 429 /* 430 * Find the swap type that corresponds to given device (if any) 431 * 432 * This is needed for software suspend and is done in such a way that inode 433 * aliasing is allowed. 434 */ 435 int swap_type_of(dev_t device) 436 { 437 int i; 438 439 spin_lock(&swap_lock); 440 for (i = 0; i < nr_swapfiles; i++) { 441 struct inode *inode; 442 443 if (!(swap_info[i].flags & SWP_WRITEOK)) 444 continue; 445 446 if (!device) { 447 spin_unlock(&swap_lock); 448 return i; 449 } 450 inode = swap_info[i].swap_file->f_dentry->d_inode; 451 if (S_ISBLK(inode->i_mode) && 452 device == MKDEV(imajor(inode), iminor(inode))) { 453 spin_unlock(&swap_lock); 454 return i; 455 } 456 } 457 spin_unlock(&swap_lock); 458 return -ENODEV; 459 } 460 461 /* 462 * Return either the total number of swap pages of given type, or the number 463 * of free pages of that type (depending on @free) 464 * 465 * This is needed for software suspend 466 */ 467 unsigned int count_swap_pages(int type, int free) 468 { 469 unsigned int n = 0; 470 471 if (type < nr_swapfiles) { 472 spin_lock(&swap_lock); 473 if (swap_info[type].flags & SWP_WRITEOK) { 474 n = swap_info[type].pages; 475 if (free) 476 n -= swap_info[type].inuse_pages; 477 } 478 spin_unlock(&swap_lock); 479 } 480 return n; 481 } 482 #endif 483 484 /* 485 * No need to decide whether this PTE shares the swap entry with others, 486 * just let do_wp_page work it out if a write is requested later - to 487 * force COW, vm_page_prot omits write permission from any private vma. 488 */ 489 static void unuse_pte(struct vm_area_struct *vma, pte_t *pte, 490 unsigned long addr, swp_entry_t entry, struct page *page) 491 { 492 inc_mm_counter(vma->vm_mm, anon_rss); 493 get_page(page); 494 set_pte_at(vma->vm_mm, addr, pte, 495 pte_mkold(mk_pte(page, vma->vm_page_prot))); 496 page_add_anon_rmap(page, vma, addr); 497 swap_free(entry); 498 /* 499 * Move the page to the active list so it is not 500 * immediately swapped out again after swapon. 501 */ 502 activate_page(page); 503 } 504 505 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 506 unsigned long addr, unsigned long end, 507 swp_entry_t entry, struct page *page) 508 { 509 pte_t swp_pte = swp_entry_to_pte(entry); 510 pte_t *pte; 511 spinlock_t *ptl; 512 int found = 0; 513 514 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 515 do { 516 /* 517 * swapoff spends a _lot_ of time in this loop! 518 * Test inline before going to call unuse_pte. 519 */ 520 if (unlikely(pte_same(*pte, swp_pte))) { 521 unuse_pte(vma, pte++, addr, entry, page); 522 found = 1; 523 break; 524 } 525 } while (pte++, addr += PAGE_SIZE, addr != end); 526 pte_unmap_unlock(pte - 1, ptl); 527 return found; 528 } 529 530 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 531 unsigned long addr, unsigned long end, 532 swp_entry_t entry, struct page *page) 533 { 534 pmd_t *pmd; 535 unsigned long next; 536 537 pmd = pmd_offset(pud, addr); 538 do { 539 next = pmd_addr_end(addr, end); 540 if (pmd_none_or_clear_bad(pmd)) 541 continue; 542 if (unuse_pte_range(vma, pmd, addr, next, entry, page)) 543 return 1; 544 } while (pmd++, addr = next, addr != end); 545 return 0; 546 } 547 548 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 549 unsigned long addr, unsigned long end, 550 swp_entry_t entry, struct page *page) 551 { 552 pud_t *pud; 553 unsigned long next; 554 555 pud = pud_offset(pgd, addr); 556 do { 557 next = pud_addr_end(addr, end); 558 if (pud_none_or_clear_bad(pud)) 559 continue; 560 if (unuse_pmd_range(vma, pud, addr, next, entry, page)) 561 return 1; 562 } while (pud++, addr = next, addr != end); 563 return 0; 564 } 565 566 static int unuse_vma(struct vm_area_struct *vma, 567 swp_entry_t entry, struct page *page) 568 { 569 pgd_t *pgd; 570 unsigned long addr, end, next; 571 572 if (page->mapping) { 573 addr = page_address_in_vma(page, vma); 574 if (addr == -EFAULT) 575 return 0; 576 else 577 end = addr + PAGE_SIZE; 578 } else { 579 addr = vma->vm_start; 580 end = vma->vm_end; 581 } 582 583 pgd = pgd_offset(vma->vm_mm, addr); 584 do { 585 next = pgd_addr_end(addr, end); 586 if (pgd_none_or_clear_bad(pgd)) 587 continue; 588 if (unuse_pud_range(vma, pgd, addr, next, entry, page)) 589 return 1; 590 } while (pgd++, addr = next, addr != end); 591 return 0; 592 } 593 594 static int unuse_mm(struct mm_struct *mm, 595 swp_entry_t entry, struct page *page) 596 { 597 struct vm_area_struct *vma; 598 599 if (!down_read_trylock(&mm->mmap_sem)) { 600 /* 601 * Activate page so shrink_cache is unlikely to unmap its 602 * ptes while lock is dropped, so swapoff can make progress. 603 */ 604 activate_page(page); 605 unlock_page(page); 606 down_read(&mm->mmap_sem); 607 lock_page(page); 608 } 609 for (vma = mm->mmap; vma; vma = vma->vm_next) { 610 if (vma->anon_vma && unuse_vma(vma, entry, page)) 611 break; 612 } 613 up_read(&mm->mmap_sem); 614 /* 615 * Currently unuse_mm cannot fail, but leave error handling 616 * at call sites for now, since we change it from time to time. 617 */ 618 return 0; 619 } 620 621 /* 622 * Scan swap_map from current position to next entry still in use. 623 * Recycle to start on reaching the end, returning 0 when empty. 624 */ 625 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 626 unsigned int prev) 627 { 628 unsigned int max = si->max; 629 unsigned int i = prev; 630 int count; 631 632 /* 633 * No need for swap_lock here: we're just looking 634 * for whether an entry is in use, not modifying it; false 635 * hits are okay, and sys_swapoff() has already prevented new 636 * allocations from this area (while holding swap_lock). 637 */ 638 for (;;) { 639 if (++i >= max) { 640 if (!prev) { 641 i = 0; 642 break; 643 } 644 /* 645 * No entries in use at top of swap_map, 646 * loop back to start and recheck there. 647 */ 648 max = prev + 1; 649 prev = 0; 650 i = 1; 651 } 652 count = si->swap_map[i]; 653 if (count && count != SWAP_MAP_BAD) 654 break; 655 } 656 return i; 657 } 658 659 /* 660 * We completely avoid races by reading each swap page in advance, 661 * and then search for the process using it. All the necessary 662 * page table adjustments can then be made atomically. 663 */ 664 static int try_to_unuse(unsigned int type) 665 { 666 struct swap_info_struct * si = &swap_info[type]; 667 struct mm_struct *start_mm; 668 unsigned short *swap_map; 669 unsigned short swcount; 670 struct page *page; 671 swp_entry_t entry; 672 unsigned int i = 0; 673 int retval = 0; 674 int reset_overflow = 0; 675 int shmem; 676 677 /* 678 * When searching mms for an entry, a good strategy is to 679 * start at the first mm we freed the previous entry from 680 * (though actually we don't notice whether we or coincidence 681 * freed the entry). Initialize this start_mm with a hold. 682 * 683 * A simpler strategy would be to start at the last mm we 684 * freed the previous entry from; but that would take less 685 * advantage of mmlist ordering, which clusters forked mms 686 * together, child after parent. If we race with dup_mmap(), we 687 * prefer to resolve parent before child, lest we miss entries 688 * duplicated after we scanned child: using last mm would invert 689 * that. Though it's only a serious concern when an overflowed 690 * swap count is reset from SWAP_MAP_MAX, preventing a rescan. 691 */ 692 start_mm = &init_mm; 693 atomic_inc(&init_mm.mm_users); 694 695 /* 696 * Keep on scanning until all entries have gone. Usually, 697 * one pass through swap_map is enough, but not necessarily: 698 * there are races when an instance of an entry might be missed. 699 */ 700 while ((i = find_next_to_unuse(si, i)) != 0) { 701 if (signal_pending(current)) { 702 retval = -EINTR; 703 break; 704 } 705 706 /* 707 * Get a page for the entry, using the existing swap 708 * cache page if there is one. Otherwise, get a clean 709 * page and read the swap into it. 710 */ 711 swap_map = &si->swap_map[i]; 712 entry = swp_entry(type, i); 713 page = read_swap_cache_async(entry, NULL, 0); 714 if (!page) { 715 /* 716 * Either swap_duplicate() failed because entry 717 * has been freed independently, and will not be 718 * reused since sys_swapoff() already disabled 719 * allocation from here, or alloc_page() failed. 720 */ 721 if (!*swap_map) 722 continue; 723 retval = -ENOMEM; 724 break; 725 } 726 727 /* 728 * Don't hold on to start_mm if it looks like exiting. 729 */ 730 if (atomic_read(&start_mm->mm_users) == 1) { 731 mmput(start_mm); 732 start_mm = &init_mm; 733 atomic_inc(&init_mm.mm_users); 734 } 735 736 /* 737 * Wait for and lock page. When do_swap_page races with 738 * try_to_unuse, do_swap_page can handle the fault much 739 * faster than try_to_unuse can locate the entry. This 740 * apparently redundant "wait_on_page_locked" lets try_to_unuse 741 * defer to do_swap_page in such a case - in some tests, 742 * do_swap_page and try_to_unuse repeatedly compete. 743 */ 744 wait_on_page_locked(page); 745 wait_on_page_writeback(page); 746 lock_page(page); 747 wait_on_page_writeback(page); 748 749 /* 750 * Remove all references to entry. 751 * Whenever we reach init_mm, there's no address space 752 * to search, but use it as a reminder to search shmem. 753 */ 754 shmem = 0; 755 swcount = *swap_map; 756 if (swcount > 1) { 757 if (start_mm == &init_mm) 758 shmem = shmem_unuse(entry, page); 759 else 760 retval = unuse_mm(start_mm, entry, page); 761 } 762 if (*swap_map > 1) { 763 int set_start_mm = (*swap_map >= swcount); 764 struct list_head *p = &start_mm->mmlist; 765 struct mm_struct *new_start_mm = start_mm; 766 struct mm_struct *prev_mm = start_mm; 767 struct mm_struct *mm; 768 769 atomic_inc(&new_start_mm->mm_users); 770 atomic_inc(&prev_mm->mm_users); 771 spin_lock(&mmlist_lock); 772 while (*swap_map > 1 && !retval && 773 (p = p->next) != &start_mm->mmlist) { 774 mm = list_entry(p, struct mm_struct, mmlist); 775 if (!atomic_inc_not_zero(&mm->mm_users)) 776 continue; 777 spin_unlock(&mmlist_lock); 778 mmput(prev_mm); 779 prev_mm = mm; 780 781 cond_resched(); 782 783 swcount = *swap_map; 784 if (swcount <= 1) 785 ; 786 else if (mm == &init_mm) { 787 set_start_mm = 1; 788 shmem = shmem_unuse(entry, page); 789 } else 790 retval = unuse_mm(mm, entry, page); 791 if (set_start_mm && *swap_map < swcount) { 792 mmput(new_start_mm); 793 atomic_inc(&mm->mm_users); 794 new_start_mm = mm; 795 set_start_mm = 0; 796 } 797 spin_lock(&mmlist_lock); 798 } 799 spin_unlock(&mmlist_lock); 800 mmput(prev_mm); 801 mmput(start_mm); 802 start_mm = new_start_mm; 803 } 804 if (retval) { 805 unlock_page(page); 806 page_cache_release(page); 807 break; 808 } 809 810 /* 811 * How could swap count reach 0x7fff when the maximum 812 * pid is 0x7fff, and there's no way to repeat a swap 813 * page within an mm (except in shmem, where it's the 814 * shared object which takes the reference count)? 815 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4. 816 * 817 * If that's wrong, then we should worry more about 818 * exit_mmap() and do_munmap() cases described above: 819 * we might be resetting SWAP_MAP_MAX too early here. 820 * We know "Undead"s can happen, they're okay, so don't 821 * report them; but do report if we reset SWAP_MAP_MAX. 822 */ 823 if (*swap_map == SWAP_MAP_MAX) { 824 spin_lock(&swap_lock); 825 *swap_map = 1; 826 spin_unlock(&swap_lock); 827 reset_overflow = 1; 828 } 829 830 /* 831 * If a reference remains (rare), we would like to leave 832 * the page in the swap cache; but try_to_unmap could 833 * then re-duplicate the entry once we drop page lock, 834 * so we might loop indefinitely; also, that page could 835 * not be swapped out to other storage meanwhile. So: 836 * delete from cache even if there's another reference, 837 * after ensuring that the data has been saved to disk - 838 * since if the reference remains (rarer), it will be 839 * read from disk into another page. Splitting into two 840 * pages would be incorrect if swap supported "shared 841 * private" pages, but they are handled by tmpfs files. 842 * 843 * Note shmem_unuse already deleted a swappage from 844 * the swap cache, unless the move to filepage failed: 845 * in which case it left swappage in cache, lowered its 846 * swap count to pass quickly through the loops above, 847 * and now we must reincrement count to try again later. 848 */ 849 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) { 850 struct writeback_control wbc = { 851 .sync_mode = WB_SYNC_NONE, 852 }; 853 854 swap_writepage(page, &wbc); 855 lock_page(page); 856 wait_on_page_writeback(page); 857 } 858 if (PageSwapCache(page)) { 859 if (shmem) 860 swap_duplicate(entry); 861 else 862 delete_from_swap_cache(page); 863 } 864 865 /* 866 * So we could skip searching mms once swap count went 867 * to 1, we did not mark any present ptes as dirty: must 868 * mark page dirty so shrink_list will preserve it. 869 */ 870 SetPageDirty(page); 871 unlock_page(page); 872 page_cache_release(page); 873 874 /* 875 * Make sure that we aren't completely killing 876 * interactive performance. 877 */ 878 cond_resched(); 879 } 880 881 mmput(start_mm); 882 if (reset_overflow) { 883 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n"); 884 swap_overflow = 0; 885 } 886 return retval; 887 } 888 889 /* 890 * After a successful try_to_unuse, if no swap is now in use, we know 891 * we can empty the mmlist. swap_lock must be held on entry and exit. 892 * Note that mmlist_lock nests inside swap_lock, and an mm must be 893 * added to the mmlist just after page_duplicate - before would be racy. 894 */ 895 static void drain_mmlist(void) 896 { 897 struct list_head *p, *next; 898 unsigned int i; 899 900 for (i = 0; i < nr_swapfiles; i++) 901 if (swap_info[i].inuse_pages) 902 return; 903 spin_lock(&mmlist_lock); 904 list_for_each_safe(p, next, &init_mm.mmlist) 905 list_del_init(p); 906 spin_unlock(&mmlist_lock); 907 } 908 909 /* 910 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 911 * corresponds to page offset `offset'. 912 */ 913 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset) 914 { 915 struct swap_extent *se = sis->curr_swap_extent; 916 struct swap_extent *start_se = se; 917 918 for ( ; ; ) { 919 struct list_head *lh; 920 921 if (se->start_page <= offset && 922 offset < (se->start_page + se->nr_pages)) { 923 return se->start_block + (offset - se->start_page); 924 } 925 lh = se->list.next; 926 if (lh == &sis->extent_list) 927 lh = lh->next; 928 se = list_entry(lh, struct swap_extent, list); 929 sis->curr_swap_extent = se; 930 BUG_ON(se == start_se); /* It *must* be present */ 931 } 932 } 933 934 /* 935 * Free all of a swapdev's extent information 936 */ 937 static void destroy_swap_extents(struct swap_info_struct *sis) 938 { 939 while (!list_empty(&sis->extent_list)) { 940 struct swap_extent *se; 941 942 se = list_entry(sis->extent_list.next, 943 struct swap_extent, list); 944 list_del(&se->list); 945 kfree(se); 946 } 947 } 948 949 /* 950 * Add a block range (and the corresponding page range) into this swapdev's 951 * extent list. The extent list is kept sorted in page order. 952 * 953 * This function rather assumes that it is called in ascending page order. 954 */ 955 static int 956 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 957 unsigned long nr_pages, sector_t start_block) 958 { 959 struct swap_extent *se; 960 struct swap_extent *new_se; 961 struct list_head *lh; 962 963 lh = sis->extent_list.prev; /* The highest page extent */ 964 if (lh != &sis->extent_list) { 965 se = list_entry(lh, struct swap_extent, list); 966 BUG_ON(se->start_page + se->nr_pages != start_page); 967 if (se->start_block + se->nr_pages == start_block) { 968 /* Merge it */ 969 se->nr_pages += nr_pages; 970 return 0; 971 } 972 } 973 974 /* 975 * No merge. Insert a new extent, preserving ordering. 976 */ 977 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 978 if (new_se == NULL) 979 return -ENOMEM; 980 new_se->start_page = start_page; 981 new_se->nr_pages = nr_pages; 982 new_se->start_block = start_block; 983 984 list_add_tail(&new_se->list, &sis->extent_list); 985 return 1; 986 } 987 988 /* 989 * A `swap extent' is a simple thing which maps a contiguous range of pages 990 * onto a contiguous range of disk blocks. An ordered list of swap extents 991 * is built at swapon time and is then used at swap_writepage/swap_readpage 992 * time for locating where on disk a page belongs. 993 * 994 * If the swapfile is an S_ISBLK block device, a single extent is installed. 995 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 996 * swap files identically. 997 * 998 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 999 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 1000 * swapfiles are handled *identically* after swapon time. 1001 * 1002 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 1003 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 1004 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 1005 * requirements, they are simply tossed out - we will never use those blocks 1006 * for swapping. 1007 * 1008 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 1009 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 1010 * which will scribble on the fs. 1011 * 1012 * The amount of disk space which a single swap extent represents varies. 1013 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 1014 * extents in the list. To avoid much list walking, we cache the previous 1015 * search location in `curr_swap_extent', and start new searches from there. 1016 * This is extremely effective. The average number of iterations in 1017 * map_swap_page() has been measured at about 0.3 per page. - akpm. 1018 */ 1019 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 1020 { 1021 struct inode *inode; 1022 unsigned blocks_per_page; 1023 unsigned long page_no; 1024 unsigned blkbits; 1025 sector_t probe_block; 1026 sector_t last_block; 1027 sector_t lowest_block = -1; 1028 sector_t highest_block = 0; 1029 int nr_extents = 0; 1030 int ret; 1031 1032 inode = sis->swap_file->f_mapping->host; 1033 if (S_ISBLK(inode->i_mode)) { 1034 ret = add_swap_extent(sis, 0, sis->max, 0); 1035 *span = sis->pages; 1036 goto done; 1037 } 1038 1039 blkbits = inode->i_blkbits; 1040 blocks_per_page = PAGE_SIZE >> blkbits; 1041 1042 /* 1043 * Map all the blocks into the extent list. This code doesn't try 1044 * to be very smart. 1045 */ 1046 probe_block = 0; 1047 page_no = 0; 1048 last_block = i_size_read(inode) >> blkbits; 1049 while ((probe_block + blocks_per_page) <= last_block && 1050 page_no < sis->max) { 1051 unsigned block_in_page; 1052 sector_t first_block; 1053 1054 first_block = bmap(inode, probe_block); 1055 if (first_block == 0) 1056 goto bad_bmap; 1057 1058 /* 1059 * It must be PAGE_SIZE aligned on-disk 1060 */ 1061 if (first_block & (blocks_per_page - 1)) { 1062 probe_block++; 1063 goto reprobe; 1064 } 1065 1066 for (block_in_page = 1; block_in_page < blocks_per_page; 1067 block_in_page++) { 1068 sector_t block; 1069 1070 block = bmap(inode, probe_block + block_in_page); 1071 if (block == 0) 1072 goto bad_bmap; 1073 if (block != first_block + block_in_page) { 1074 /* Discontiguity */ 1075 probe_block++; 1076 goto reprobe; 1077 } 1078 } 1079 1080 first_block >>= (PAGE_SHIFT - blkbits); 1081 if (page_no) { /* exclude the header page */ 1082 if (first_block < lowest_block) 1083 lowest_block = first_block; 1084 if (first_block > highest_block) 1085 highest_block = first_block; 1086 } 1087 1088 /* 1089 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 1090 */ 1091 ret = add_swap_extent(sis, page_no, 1, first_block); 1092 if (ret < 0) 1093 goto out; 1094 nr_extents += ret; 1095 page_no++; 1096 probe_block += blocks_per_page; 1097 reprobe: 1098 continue; 1099 } 1100 ret = nr_extents; 1101 *span = 1 + highest_block - lowest_block; 1102 if (page_no == 0) 1103 page_no = 1; /* force Empty message */ 1104 sis->max = page_no; 1105 sis->pages = page_no - 1; 1106 sis->highest_bit = page_no - 1; 1107 done: 1108 sis->curr_swap_extent = list_entry(sis->extent_list.prev, 1109 struct swap_extent, list); 1110 goto out; 1111 bad_bmap: 1112 printk(KERN_ERR "swapon: swapfile has holes\n"); 1113 ret = -EINVAL; 1114 out: 1115 return ret; 1116 } 1117 1118 #if 0 /* We don't need this yet */ 1119 #include <linux/backing-dev.h> 1120 int page_queue_congested(struct page *page) 1121 { 1122 struct backing_dev_info *bdi; 1123 1124 BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */ 1125 1126 if (PageSwapCache(page)) { 1127 swp_entry_t entry = { .val = page_private(page) }; 1128 struct swap_info_struct *sis; 1129 1130 sis = get_swap_info_struct(swp_type(entry)); 1131 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info; 1132 } else 1133 bdi = page->mapping->backing_dev_info; 1134 return bdi_write_congested(bdi); 1135 } 1136 #endif 1137 1138 asmlinkage long sys_swapoff(const char __user * specialfile) 1139 { 1140 struct swap_info_struct * p = NULL; 1141 unsigned short *swap_map; 1142 struct file *swap_file, *victim; 1143 struct address_space *mapping; 1144 struct inode *inode; 1145 char * pathname; 1146 int i, type, prev; 1147 int err; 1148 1149 if (!capable(CAP_SYS_ADMIN)) 1150 return -EPERM; 1151 1152 pathname = getname(specialfile); 1153 err = PTR_ERR(pathname); 1154 if (IS_ERR(pathname)) 1155 goto out; 1156 1157 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0); 1158 putname(pathname); 1159 err = PTR_ERR(victim); 1160 if (IS_ERR(victim)) 1161 goto out; 1162 1163 mapping = victim->f_mapping; 1164 prev = -1; 1165 spin_lock(&swap_lock); 1166 for (type = swap_list.head; type >= 0; type = swap_info[type].next) { 1167 p = swap_info + type; 1168 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) { 1169 if (p->swap_file->f_mapping == mapping) 1170 break; 1171 } 1172 prev = type; 1173 } 1174 if (type < 0) { 1175 err = -EINVAL; 1176 spin_unlock(&swap_lock); 1177 goto out_dput; 1178 } 1179 if (!security_vm_enough_memory(p->pages)) 1180 vm_unacct_memory(p->pages); 1181 else { 1182 err = -ENOMEM; 1183 spin_unlock(&swap_lock); 1184 goto out_dput; 1185 } 1186 if (prev < 0) { 1187 swap_list.head = p->next; 1188 } else { 1189 swap_info[prev].next = p->next; 1190 } 1191 if (type == swap_list.next) { 1192 /* just pick something that's safe... */ 1193 swap_list.next = swap_list.head; 1194 } 1195 nr_swap_pages -= p->pages; 1196 total_swap_pages -= p->pages; 1197 p->flags &= ~SWP_WRITEOK; 1198 spin_unlock(&swap_lock); 1199 1200 current->flags |= PF_SWAPOFF; 1201 err = try_to_unuse(type); 1202 current->flags &= ~PF_SWAPOFF; 1203 1204 if (err) { 1205 /* re-insert swap space back into swap_list */ 1206 spin_lock(&swap_lock); 1207 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next) 1208 if (p->prio >= swap_info[i].prio) 1209 break; 1210 p->next = i; 1211 if (prev < 0) 1212 swap_list.head = swap_list.next = p - swap_info; 1213 else 1214 swap_info[prev].next = p - swap_info; 1215 nr_swap_pages += p->pages; 1216 total_swap_pages += p->pages; 1217 p->flags |= SWP_WRITEOK; 1218 spin_unlock(&swap_lock); 1219 goto out_dput; 1220 } 1221 1222 /* wait for any unplug function to finish */ 1223 down_write(&swap_unplug_sem); 1224 up_write(&swap_unplug_sem); 1225 1226 destroy_swap_extents(p); 1227 mutex_lock(&swapon_mutex); 1228 spin_lock(&swap_lock); 1229 drain_mmlist(); 1230 1231 /* wait for anyone still in scan_swap_map */ 1232 p->highest_bit = 0; /* cuts scans short */ 1233 while (p->flags >= SWP_SCANNING) { 1234 spin_unlock(&swap_lock); 1235 schedule_timeout_uninterruptible(1); 1236 spin_lock(&swap_lock); 1237 } 1238 1239 swap_file = p->swap_file; 1240 p->swap_file = NULL; 1241 p->max = 0; 1242 swap_map = p->swap_map; 1243 p->swap_map = NULL; 1244 p->flags = 0; 1245 spin_unlock(&swap_lock); 1246 mutex_unlock(&swapon_mutex); 1247 vfree(swap_map); 1248 inode = mapping->host; 1249 if (S_ISBLK(inode->i_mode)) { 1250 struct block_device *bdev = I_BDEV(inode); 1251 set_blocksize(bdev, p->old_block_size); 1252 bd_release(bdev); 1253 } else { 1254 mutex_lock(&inode->i_mutex); 1255 inode->i_flags &= ~S_SWAPFILE; 1256 mutex_unlock(&inode->i_mutex); 1257 } 1258 filp_close(swap_file, NULL); 1259 err = 0; 1260 1261 out_dput: 1262 filp_close(victim, NULL); 1263 out: 1264 return err; 1265 } 1266 1267 #ifdef CONFIG_PROC_FS 1268 /* iterator */ 1269 static void *swap_start(struct seq_file *swap, loff_t *pos) 1270 { 1271 struct swap_info_struct *ptr = swap_info; 1272 int i; 1273 loff_t l = *pos; 1274 1275 mutex_lock(&swapon_mutex); 1276 1277 for (i = 0; i < nr_swapfiles; i++, ptr++) { 1278 if (!(ptr->flags & SWP_USED) || !ptr->swap_map) 1279 continue; 1280 if (!l--) 1281 return ptr; 1282 } 1283 1284 return NULL; 1285 } 1286 1287 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 1288 { 1289 struct swap_info_struct *ptr = v; 1290 struct swap_info_struct *endptr = swap_info + nr_swapfiles; 1291 1292 for (++ptr; ptr < endptr; ptr++) { 1293 if (!(ptr->flags & SWP_USED) || !ptr->swap_map) 1294 continue; 1295 ++*pos; 1296 return ptr; 1297 } 1298 1299 return NULL; 1300 } 1301 1302 static void swap_stop(struct seq_file *swap, void *v) 1303 { 1304 mutex_unlock(&swapon_mutex); 1305 } 1306 1307 static int swap_show(struct seq_file *swap, void *v) 1308 { 1309 struct swap_info_struct *ptr = v; 1310 struct file *file; 1311 int len; 1312 1313 if (v == swap_info) 1314 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 1315 1316 file = ptr->swap_file; 1317 len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\"); 1318 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 1319 len < 40 ? 40 - len : 1, " ", 1320 S_ISBLK(file->f_dentry->d_inode->i_mode) ? 1321 "partition" : "file\t", 1322 ptr->pages << (PAGE_SHIFT - 10), 1323 ptr->inuse_pages << (PAGE_SHIFT - 10), 1324 ptr->prio); 1325 return 0; 1326 } 1327 1328 static struct seq_operations swaps_op = { 1329 .start = swap_start, 1330 .next = swap_next, 1331 .stop = swap_stop, 1332 .show = swap_show 1333 }; 1334 1335 static int swaps_open(struct inode *inode, struct file *file) 1336 { 1337 return seq_open(file, &swaps_op); 1338 } 1339 1340 static struct file_operations proc_swaps_operations = { 1341 .open = swaps_open, 1342 .read = seq_read, 1343 .llseek = seq_lseek, 1344 .release = seq_release, 1345 }; 1346 1347 static int __init procswaps_init(void) 1348 { 1349 struct proc_dir_entry *entry; 1350 1351 entry = create_proc_entry("swaps", 0, NULL); 1352 if (entry) 1353 entry->proc_fops = &proc_swaps_operations; 1354 return 0; 1355 } 1356 __initcall(procswaps_init); 1357 #endif /* CONFIG_PROC_FS */ 1358 1359 /* 1360 * Written 01/25/92 by Simmule Turner, heavily changed by Linus. 1361 * 1362 * The swapon system call 1363 */ 1364 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) 1365 { 1366 struct swap_info_struct * p; 1367 char *name = NULL; 1368 struct block_device *bdev = NULL; 1369 struct file *swap_file = NULL; 1370 struct address_space *mapping; 1371 unsigned int type; 1372 int i, prev; 1373 int error; 1374 static int least_priority; 1375 union swap_header *swap_header = NULL; 1376 int swap_header_version; 1377 unsigned int nr_good_pages = 0; 1378 int nr_extents = 0; 1379 sector_t span; 1380 unsigned long maxpages = 1; 1381 int swapfilesize; 1382 unsigned short *swap_map; 1383 struct page *page = NULL; 1384 struct inode *inode = NULL; 1385 int did_down = 0; 1386 1387 if (!capable(CAP_SYS_ADMIN)) 1388 return -EPERM; 1389 spin_lock(&swap_lock); 1390 p = swap_info; 1391 for (type = 0 ; type < nr_swapfiles ; type++,p++) 1392 if (!(p->flags & SWP_USED)) 1393 break; 1394 error = -EPERM; 1395 if (type >= MAX_SWAPFILES) { 1396 spin_unlock(&swap_lock); 1397 goto out; 1398 } 1399 if (type >= nr_swapfiles) 1400 nr_swapfiles = type+1; 1401 INIT_LIST_HEAD(&p->extent_list); 1402 p->flags = SWP_USED; 1403 p->swap_file = NULL; 1404 p->old_block_size = 0; 1405 p->swap_map = NULL; 1406 p->lowest_bit = 0; 1407 p->highest_bit = 0; 1408 p->cluster_nr = 0; 1409 p->inuse_pages = 0; 1410 p->next = -1; 1411 if (swap_flags & SWAP_FLAG_PREFER) { 1412 p->prio = 1413 (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT; 1414 } else { 1415 p->prio = --least_priority; 1416 } 1417 spin_unlock(&swap_lock); 1418 name = getname(specialfile); 1419 error = PTR_ERR(name); 1420 if (IS_ERR(name)) { 1421 name = NULL; 1422 goto bad_swap_2; 1423 } 1424 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0); 1425 error = PTR_ERR(swap_file); 1426 if (IS_ERR(swap_file)) { 1427 swap_file = NULL; 1428 goto bad_swap_2; 1429 } 1430 1431 p->swap_file = swap_file; 1432 mapping = swap_file->f_mapping; 1433 inode = mapping->host; 1434 1435 error = -EBUSY; 1436 for (i = 0; i < nr_swapfiles; i++) { 1437 struct swap_info_struct *q = &swap_info[i]; 1438 1439 if (i == type || !q->swap_file) 1440 continue; 1441 if (mapping == q->swap_file->f_mapping) 1442 goto bad_swap; 1443 } 1444 1445 error = -EINVAL; 1446 if (S_ISBLK(inode->i_mode)) { 1447 bdev = I_BDEV(inode); 1448 error = bd_claim(bdev, sys_swapon); 1449 if (error < 0) { 1450 bdev = NULL; 1451 error = -EINVAL; 1452 goto bad_swap; 1453 } 1454 p->old_block_size = block_size(bdev); 1455 error = set_blocksize(bdev, PAGE_SIZE); 1456 if (error < 0) 1457 goto bad_swap; 1458 p->bdev = bdev; 1459 } else if (S_ISREG(inode->i_mode)) { 1460 p->bdev = inode->i_sb->s_bdev; 1461 mutex_lock(&inode->i_mutex); 1462 did_down = 1; 1463 if (IS_SWAPFILE(inode)) { 1464 error = -EBUSY; 1465 goto bad_swap; 1466 } 1467 } else { 1468 goto bad_swap; 1469 } 1470 1471 swapfilesize = i_size_read(inode) >> PAGE_SHIFT; 1472 1473 /* 1474 * Read the swap header. 1475 */ 1476 if (!mapping->a_ops->readpage) { 1477 error = -EINVAL; 1478 goto bad_swap; 1479 } 1480 page = read_mapping_page(mapping, 0, swap_file); 1481 if (IS_ERR(page)) { 1482 error = PTR_ERR(page); 1483 goto bad_swap; 1484 } 1485 wait_on_page_locked(page); 1486 if (!PageUptodate(page)) 1487 goto bad_swap; 1488 kmap(page); 1489 swap_header = page_address(page); 1490 1491 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10)) 1492 swap_header_version = 1; 1493 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10)) 1494 swap_header_version = 2; 1495 else { 1496 printk(KERN_ERR "Unable to find swap-space signature\n"); 1497 error = -EINVAL; 1498 goto bad_swap; 1499 } 1500 1501 switch (swap_header_version) { 1502 case 1: 1503 printk(KERN_ERR "version 0 swap is no longer supported. " 1504 "Use mkswap -v1 %s\n", name); 1505 error = -EINVAL; 1506 goto bad_swap; 1507 case 2: 1508 /* Check the swap header's sub-version and the size of 1509 the swap file and bad block lists */ 1510 if (swap_header->info.version != 1) { 1511 printk(KERN_WARNING 1512 "Unable to handle swap header version %d\n", 1513 swap_header->info.version); 1514 error = -EINVAL; 1515 goto bad_swap; 1516 } 1517 1518 p->lowest_bit = 1; 1519 p->cluster_next = 1; 1520 1521 /* 1522 * Find out how many pages are allowed for a single swap 1523 * device. There are two limiting factors: 1) the number of 1524 * bits for the swap offset in the swp_entry_t type and 1525 * 2) the number of bits in the a swap pte as defined by 1526 * the different architectures. In order to find the 1527 * largest possible bit mask a swap entry with swap type 0 1528 * and swap offset ~0UL is created, encoded to a swap pte, 1529 * decoded to a swp_entry_t again and finally the swap 1530 * offset is extracted. This will mask all the bits from 1531 * the initial ~0UL mask that can't be encoded in either 1532 * the swp_entry_t or the architecture definition of a 1533 * swap pte. 1534 */ 1535 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1; 1536 if (maxpages > swap_header->info.last_page) 1537 maxpages = swap_header->info.last_page; 1538 p->highest_bit = maxpages - 1; 1539 1540 error = -EINVAL; 1541 if (!maxpages) 1542 goto bad_swap; 1543 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 1544 goto bad_swap; 1545 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 1546 goto bad_swap; 1547 1548 /* OK, set up the swap map and apply the bad block list */ 1549 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) { 1550 error = -ENOMEM; 1551 goto bad_swap; 1552 } 1553 1554 error = 0; 1555 memset(p->swap_map, 0, maxpages * sizeof(short)); 1556 for (i = 0; i < swap_header->info.nr_badpages; i++) { 1557 int page_nr = swap_header->info.badpages[i]; 1558 if (page_nr <= 0 || page_nr >= swap_header->info.last_page) 1559 error = -EINVAL; 1560 else 1561 p->swap_map[page_nr] = SWAP_MAP_BAD; 1562 } 1563 nr_good_pages = swap_header->info.last_page - 1564 swap_header->info.nr_badpages - 1565 1 /* header page */; 1566 if (error) 1567 goto bad_swap; 1568 } 1569 1570 if (swapfilesize && maxpages > swapfilesize) { 1571 printk(KERN_WARNING 1572 "Swap area shorter than signature indicates\n"); 1573 error = -EINVAL; 1574 goto bad_swap; 1575 } 1576 if (nr_good_pages) { 1577 p->swap_map[0] = SWAP_MAP_BAD; 1578 p->max = maxpages; 1579 p->pages = nr_good_pages; 1580 nr_extents = setup_swap_extents(p, &span); 1581 if (nr_extents < 0) { 1582 error = nr_extents; 1583 goto bad_swap; 1584 } 1585 nr_good_pages = p->pages; 1586 } 1587 if (!nr_good_pages) { 1588 printk(KERN_WARNING "Empty swap-file\n"); 1589 error = -EINVAL; 1590 goto bad_swap; 1591 } 1592 1593 mutex_lock(&swapon_mutex); 1594 spin_lock(&swap_lock); 1595 p->flags = SWP_ACTIVE; 1596 nr_swap_pages += nr_good_pages; 1597 total_swap_pages += nr_good_pages; 1598 1599 printk(KERN_INFO "Adding %uk swap on %s. " 1600 "Priority:%d extents:%d across:%lluk\n", 1601 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio, 1602 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10)); 1603 1604 /* insert swap space into swap_list: */ 1605 prev = -1; 1606 for (i = swap_list.head; i >= 0; i = swap_info[i].next) { 1607 if (p->prio >= swap_info[i].prio) { 1608 break; 1609 } 1610 prev = i; 1611 } 1612 p->next = i; 1613 if (prev < 0) { 1614 swap_list.head = swap_list.next = p - swap_info; 1615 } else { 1616 swap_info[prev].next = p - swap_info; 1617 } 1618 spin_unlock(&swap_lock); 1619 mutex_unlock(&swapon_mutex); 1620 error = 0; 1621 goto out; 1622 bad_swap: 1623 if (bdev) { 1624 set_blocksize(bdev, p->old_block_size); 1625 bd_release(bdev); 1626 } 1627 destroy_swap_extents(p); 1628 bad_swap_2: 1629 spin_lock(&swap_lock); 1630 swap_map = p->swap_map; 1631 p->swap_file = NULL; 1632 p->swap_map = NULL; 1633 p->flags = 0; 1634 if (!(swap_flags & SWAP_FLAG_PREFER)) 1635 ++least_priority; 1636 spin_unlock(&swap_lock); 1637 vfree(swap_map); 1638 if (swap_file) 1639 filp_close(swap_file, NULL); 1640 out: 1641 if (page && !IS_ERR(page)) { 1642 kunmap(page); 1643 page_cache_release(page); 1644 } 1645 if (name) 1646 putname(name); 1647 if (did_down) { 1648 if (!error) 1649 inode->i_flags |= S_SWAPFILE; 1650 mutex_unlock(&inode->i_mutex); 1651 } 1652 return error; 1653 } 1654 1655 void si_swapinfo(struct sysinfo *val) 1656 { 1657 unsigned int i; 1658 unsigned long nr_to_be_unused = 0; 1659 1660 spin_lock(&swap_lock); 1661 for (i = 0; i < nr_swapfiles; i++) { 1662 if (!(swap_info[i].flags & SWP_USED) || 1663 (swap_info[i].flags & SWP_WRITEOK)) 1664 continue; 1665 nr_to_be_unused += swap_info[i].inuse_pages; 1666 } 1667 val->freeswap = nr_swap_pages + nr_to_be_unused; 1668 val->totalswap = total_swap_pages + nr_to_be_unused; 1669 spin_unlock(&swap_lock); 1670 } 1671 1672 /* 1673 * Verify that a swap entry is valid and increment its swap map count. 1674 * 1675 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as 1676 * "permanent", but will be reclaimed by the next swapoff. 1677 */ 1678 int swap_duplicate(swp_entry_t entry) 1679 { 1680 struct swap_info_struct * p; 1681 unsigned long offset, type; 1682 int result = 0; 1683 1684 if (is_migration_entry(entry)) 1685 return 1; 1686 1687 type = swp_type(entry); 1688 if (type >= nr_swapfiles) 1689 goto bad_file; 1690 p = type + swap_info; 1691 offset = swp_offset(entry); 1692 1693 spin_lock(&swap_lock); 1694 if (offset < p->max && p->swap_map[offset]) { 1695 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) { 1696 p->swap_map[offset]++; 1697 result = 1; 1698 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) { 1699 if (swap_overflow++ < 5) 1700 printk(KERN_WARNING "swap_dup: swap entry overflow\n"); 1701 p->swap_map[offset] = SWAP_MAP_MAX; 1702 result = 1; 1703 } 1704 } 1705 spin_unlock(&swap_lock); 1706 out: 1707 return result; 1708 1709 bad_file: 1710 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); 1711 goto out; 1712 } 1713 1714 struct swap_info_struct * 1715 get_swap_info_struct(unsigned type) 1716 { 1717 return &swap_info[type]; 1718 } 1719 1720 /* 1721 * swap_lock prevents swap_map being freed. Don't grab an extra 1722 * reference on the swaphandle, it doesn't matter if it becomes unused. 1723 */ 1724 int valid_swaphandles(swp_entry_t entry, unsigned long *offset) 1725 { 1726 int ret = 0, i = 1 << page_cluster; 1727 unsigned long toff; 1728 struct swap_info_struct *swapdev = swp_type(entry) + swap_info; 1729 1730 if (!page_cluster) /* no readahead */ 1731 return 0; 1732 toff = (swp_offset(entry) >> page_cluster) << page_cluster; 1733 if (!toff) /* first page is swap header */ 1734 toff++, i--; 1735 *offset = toff; 1736 1737 spin_lock(&swap_lock); 1738 do { 1739 /* Don't read-ahead past the end of the swap area */ 1740 if (toff >= swapdev->max) 1741 break; 1742 /* Don't read in free or bad pages */ 1743 if (!swapdev->swap_map[toff]) 1744 break; 1745 if (swapdev->swap_map[toff] == SWAP_MAP_BAD) 1746 break; 1747 toff++; 1748 ret++; 1749 } while (--i); 1750 spin_unlock(&swap_lock); 1751 return ret; 1752 } 1753