xref: /linux/mm/swapfile.c (revision ecba1060583635ab55092072441ff903b5e9a659)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <linux/swapops.h>
36 #include <linux/page_cgroup.h>
37 
38 static DEFINE_SPINLOCK(swap_lock);
39 static unsigned int nr_swapfiles;
40 long nr_swap_pages;
41 long total_swap_pages;
42 static int swap_overflow;
43 static int least_priority;
44 
45 static const char Bad_file[] = "Bad swap file entry ";
46 static const char Unused_file[] = "Unused swap file entry ";
47 static const char Bad_offset[] = "Bad swap offset entry ";
48 static const char Unused_offset[] = "Unused swap offset entry ";
49 
50 static struct swap_list_t swap_list = {-1, -1};
51 
52 static struct swap_info_struct swap_info[MAX_SWAPFILES];
53 
54 static DEFINE_MUTEX(swapon_mutex);
55 
56 /* For reference count accounting in swap_map */
57 /* enum for swap_map[] handling. internal use only */
58 enum {
59 	SWAP_MAP = 0,	/* ops for reference from swap users */
60 	SWAP_CACHE,	/* ops for reference from swap cache */
61 };
62 
63 static inline int swap_count(unsigned short ent)
64 {
65 	return ent & SWAP_COUNT_MASK;
66 }
67 
68 static inline bool swap_has_cache(unsigned short ent)
69 {
70 	return !!(ent & SWAP_HAS_CACHE);
71 }
72 
73 static inline unsigned short encode_swapmap(int count, bool has_cache)
74 {
75 	unsigned short ret = count;
76 
77 	if (has_cache)
78 		return SWAP_HAS_CACHE | ret;
79 	return ret;
80 }
81 
82 /* returnes 1 if swap entry is freed */
83 static int
84 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
85 {
86 	int type = si - swap_info;
87 	swp_entry_t entry = swp_entry(type, offset);
88 	struct page *page;
89 	int ret = 0;
90 
91 	page = find_get_page(&swapper_space, entry.val);
92 	if (!page)
93 		return 0;
94 	/*
95 	 * This function is called from scan_swap_map() and it's called
96 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
97 	 * We have to use trylock for avoiding deadlock. This is a special
98 	 * case and you should use try_to_free_swap() with explicit lock_page()
99 	 * in usual operations.
100 	 */
101 	if (trylock_page(page)) {
102 		ret = try_to_free_swap(page);
103 		unlock_page(page);
104 	}
105 	page_cache_release(page);
106 	return ret;
107 }
108 
109 /*
110  * We need this because the bdev->unplug_fn can sleep and we cannot
111  * hold swap_lock while calling the unplug_fn. And swap_lock
112  * cannot be turned into a mutex.
113  */
114 static DECLARE_RWSEM(swap_unplug_sem);
115 
116 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
117 {
118 	swp_entry_t entry;
119 
120 	down_read(&swap_unplug_sem);
121 	entry.val = page_private(page);
122 	if (PageSwapCache(page)) {
123 		struct block_device *bdev = swap_info[swp_type(entry)].bdev;
124 		struct backing_dev_info *bdi;
125 
126 		/*
127 		 * If the page is removed from swapcache from under us (with a
128 		 * racy try_to_unuse/swapoff) we need an additional reference
129 		 * count to avoid reading garbage from page_private(page) above.
130 		 * If the WARN_ON triggers during a swapoff it maybe the race
131 		 * condition and it's harmless. However if it triggers without
132 		 * swapoff it signals a problem.
133 		 */
134 		WARN_ON(page_count(page) <= 1);
135 
136 		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
137 		blk_run_backing_dev(bdi, page);
138 	}
139 	up_read(&swap_unplug_sem);
140 }
141 
142 /*
143  * swapon tell device that all the old swap contents can be discarded,
144  * to allow the swap device to optimize its wear-levelling.
145  */
146 static int discard_swap(struct swap_info_struct *si)
147 {
148 	struct swap_extent *se;
149 	int err = 0;
150 
151 	list_for_each_entry(se, &si->extent_list, list) {
152 		sector_t start_block = se->start_block << (PAGE_SHIFT - 9);
153 		sector_t nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
154 
155 		if (se->start_page == 0) {
156 			/* Do not discard the swap header page! */
157 			start_block += 1 << (PAGE_SHIFT - 9);
158 			nr_blocks -= 1 << (PAGE_SHIFT - 9);
159 			if (!nr_blocks)
160 				continue;
161 		}
162 
163 		err = blkdev_issue_discard(si->bdev, start_block,
164 						nr_blocks, GFP_KERNEL);
165 		if (err)
166 			break;
167 
168 		cond_resched();
169 	}
170 	return err;		/* That will often be -EOPNOTSUPP */
171 }
172 
173 /*
174  * swap allocation tell device that a cluster of swap can now be discarded,
175  * to allow the swap device to optimize its wear-levelling.
176  */
177 static void discard_swap_cluster(struct swap_info_struct *si,
178 				 pgoff_t start_page, pgoff_t nr_pages)
179 {
180 	struct swap_extent *se = si->curr_swap_extent;
181 	int found_extent = 0;
182 
183 	while (nr_pages) {
184 		struct list_head *lh;
185 
186 		if (se->start_page <= start_page &&
187 		    start_page < se->start_page + se->nr_pages) {
188 			pgoff_t offset = start_page - se->start_page;
189 			sector_t start_block = se->start_block + offset;
190 			sector_t nr_blocks = se->nr_pages - offset;
191 
192 			if (nr_blocks > nr_pages)
193 				nr_blocks = nr_pages;
194 			start_page += nr_blocks;
195 			nr_pages -= nr_blocks;
196 
197 			if (!found_extent++)
198 				si->curr_swap_extent = se;
199 
200 			start_block <<= PAGE_SHIFT - 9;
201 			nr_blocks <<= PAGE_SHIFT - 9;
202 			if (blkdev_issue_discard(si->bdev, start_block,
203 							nr_blocks, GFP_NOIO))
204 				break;
205 		}
206 
207 		lh = se->list.next;
208 		if (lh == &si->extent_list)
209 			lh = lh->next;
210 		se = list_entry(lh, struct swap_extent, list);
211 	}
212 }
213 
214 static int wait_for_discard(void *word)
215 {
216 	schedule();
217 	return 0;
218 }
219 
220 #define SWAPFILE_CLUSTER	256
221 #define LATENCY_LIMIT		256
222 
223 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
224 					  int cache)
225 {
226 	unsigned long offset;
227 	unsigned long scan_base;
228 	unsigned long last_in_cluster = 0;
229 	int latency_ration = LATENCY_LIMIT;
230 	int found_free_cluster = 0;
231 
232 	/*
233 	 * We try to cluster swap pages by allocating them sequentially
234 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
235 	 * way, however, we resort to first-free allocation, starting
236 	 * a new cluster.  This prevents us from scattering swap pages
237 	 * all over the entire swap partition, so that we reduce
238 	 * overall disk seek times between swap pages.  -- sct
239 	 * But we do now try to find an empty cluster.  -Andrea
240 	 * And we let swap pages go all over an SSD partition.  Hugh
241 	 */
242 
243 	si->flags += SWP_SCANNING;
244 	scan_base = offset = si->cluster_next;
245 
246 	if (unlikely(!si->cluster_nr--)) {
247 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
248 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
249 			goto checks;
250 		}
251 		if (si->flags & SWP_DISCARDABLE) {
252 			/*
253 			 * Start range check on racing allocations, in case
254 			 * they overlap the cluster we eventually decide on
255 			 * (we scan without swap_lock to allow preemption).
256 			 * It's hardly conceivable that cluster_nr could be
257 			 * wrapped during our scan, but don't depend on it.
258 			 */
259 			if (si->lowest_alloc)
260 				goto checks;
261 			si->lowest_alloc = si->max;
262 			si->highest_alloc = 0;
263 		}
264 		spin_unlock(&swap_lock);
265 
266 		/*
267 		 * If seek is expensive, start searching for new cluster from
268 		 * start of partition, to minimize the span of allocated swap.
269 		 * But if seek is cheap, search from our current position, so
270 		 * that swap is allocated from all over the partition: if the
271 		 * Flash Translation Layer only remaps within limited zones,
272 		 * we don't want to wear out the first zone too quickly.
273 		 */
274 		if (!(si->flags & SWP_SOLIDSTATE))
275 			scan_base = offset = si->lowest_bit;
276 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
277 
278 		/* Locate the first empty (unaligned) cluster */
279 		for (; last_in_cluster <= si->highest_bit; offset++) {
280 			if (si->swap_map[offset])
281 				last_in_cluster = offset + SWAPFILE_CLUSTER;
282 			else if (offset == last_in_cluster) {
283 				spin_lock(&swap_lock);
284 				offset -= SWAPFILE_CLUSTER - 1;
285 				si->cluster_next = offset;
286 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
287 				found_free_cluster = 1;
288 				goto checks;
289 			}
290 			if (unlikely(--latency_ration < 0)) {
291 				cond_resched();
292 				latency_ration = LATENCY_LIMIT;
293 			}
294 		}
295 
296 		offset = si->lowest_bit;
297 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
298 
299 		/* Locate the first empty (unaligned) cluster */
300 		for (; last_in_cluster < scan_base; offset++) {
301 			if (si->swap_map[offset])
302 				last_in_cluster = offset + SWAPFILE_CLUSTER;
303 			else if (offset == last_in_cluster) {
304 				spin_lock(&swap_lock);
305 				offset -= SWAPFILE_CLUSTER - 1;
306 				si->cluster_next = offset;
307 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
308 				found_free_cluster = 1;
309 				goto checks;
310 			}
311 			if (unlikely(--latency_ration < 0)) {
312 				cond_resched();
313 				latency_ration = LATENCY_LIMIT;
314 			}
315 		}
316 
317 		offset = scan_base;
318 		spin_lock(&swap_lock);
319 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
320 		si->lowest_alloc = 0;
321 	}
322 
323 checks:
324 	if (!(si->flags & SWP_WRITEOK))
325 		goto no_page;
326 	if (!si->highest_bit)
327 		goto no_page;
328 	if (offset > si->highest_bit)
329 		scan_base = offset = si->lowest_bit;
330 
331 	/* reuse swap entry of cache-only swap if not busy. */
332 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
333 		int swap_was_freed;
334 		spin_unlock(&swap_lock);
335 		swap_was_freed = __try_to_reclaim_swap(si, offset);
336 		spin_lock(&swap_lock);
337 		/* entry was freed successfully, try to use this again */
338 		if (swap_was_freed)
339 			goto checks;
340 		goto scan; /* check next one */
341 	}
342 
343 	if (si->swap_map[offset])
344 		goto scan;
345 
346 	if (offset == si->lowest_bit)
347 		si->lowest_bit++;
348 	if (offset == si->highest_bit)
349 		si->highest_bit--;
350 	si->inuse_pages++;
351 	if (si->inuse_pages == si->pages) {
352 		si->lowest_bit = si->max;
353 		si->highest_bit = 0;
354 	}
355 	if (cache == SWAP_CACHE) /* at usual swap-out via vmscan.c */
356 		si->swap_map[offset] = encode_swapmap(0, true);
357 	else /* at suspend */
358 		si->swap_map[offset] = encode_swapmap(1, false);
359 	si->cluster_next = offset + 1;
360 	si->flags -= SWP_SCANNING;
361 
362 	if (si->lowest_alloc) {
363 		/*
364 		 * Only set when SWP_DISCARDABLE, and there's a scan
365 		 * for a free cluster in progress or just completed.
366 		 */
367 		if (found_free_cluster) {
368 			/*
369 			 * To optimize wear-levelling, discard the
370 			 * old data of the cluster, taking care not to
371 			 * discard any of its pages that have already
372 			 * been allocated by racing tasks (offset has
373 			 * already stepped over any at the beginning).
374 			 */
375 			if (offset < si->highest_alloc &&
376 			    si->lowest_alloc <= last_in_cluster)
377 				last_in_cluster = si->lowest_alloc - 1;
378 			si->flags |= SWP_DISCARDING;
379 			spin_unlock(&swap_lock);
380 
381 			if (offset < last_in_cluster)
382 				discard_swap_cluster(si, offset,
383 					last_in_cluster - offset + 1);
384 
385 			spin_lock(&swap_lock);
386 			si->lowest_alloc = 0;
387 			si->flags &= ~SWP_DISCARDING;
388 
389 			smp_mb();	/* wake_up_bit advises this */
390 			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
391 
392 		} else if (si->flags & SWP_DISCARDING) {
393 			/*
394 			 * Delay using pages allocated by racing tasks
395 			 * until the whole discard has been issued. We
396 			 * could defer that delay until swap_writepage,
397 			 * but it's easier to keep this self-contained.
398 			 */
399 			spin_unlock(&swap_lock);
400 			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
401 				wait_for_discard, TASK_UNINTERRUPTIBLE);
402 			spin_lock(&swap_lock);
403 		} else {
404 			/*
405 			 * Note pages allocated by racing tasks while
406 			 * scan for a free cluster is in progress, so
407 			 * that its final discard can exclude them.
408 			 */
409 			if (offset < si->lowest_alloc)
410 				si->lowest_alloc = offset;
411 			if (offset > si->highest_alloc)
412 				si->highest_alloc = offset;
413 		}
414 	}
415 	return offset;
416 
417 scan:
418 	spin_unlock(&swap_lock);
419 	while (++offset <= si->highest_bit) {
420 		if (!si->swap_map[offset]) {
421 			spin_lock(&swap_lock);
422 			goto checks;
423 		}
424 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
425 			spin_lock(&swap_lock);
426 			goto checks;
427 		}
428 		if (unlikely(--latency_ration < 0)) {
429 			cond_resched();
430 			latency_ration = LATENCY_LIMIT;
431 		}
432 	}
433 	offset = si->lowest_bit;
434 	while (++offset < scan_base) {
435 		if (!si->swap_map[offset]) {
436 			spin_lock(&swap_lock);
437 			goto checks;
438 		}
439 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
440 			spin_lock(&swap_lock);
441 			goto checks;
442 		}
443 		if (unlikely(--latency_ration < 0)) {
444 			cond_resched();
445 			latency_ration = LATENCY_LIMIT;
446 		}
447 	}
448 	spin_lock(&swap_lock);
449 
450 no_page:
451 	si->flags -= SWP_SCANNING;
452 	return 0;
453 }
454 
455 swp_entry_t get_swap_page(void)
456 {
457 	struct swap_info_struct *si;
458 	pgoff_t offset;
459 	int type, next;
460 	int wrapped = 0;
461 
462 	spin_lock(&swap_lock);
463 	if (nr_swap_pages <= 0)
464 		goto noswap;
465 	nr_swap_pages--;
466 
467 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
468 		si = swap_info + type;
469 		next = si->next;
470 		if (next < 0 ||
471 		    (!wrapped && si->prio != swap_info[next].prio)) {
472 			next = swap_list.head;
473 			wrapped++;
474 		}
475 
476 		if (!si->highest_bit)
477 			continue;
478 		if (!(si->flags & SWP_WRITEOK))
479 			continue;
480 
481 		swap_list.next = next;
482 		/* This is called for allocating swap entry for cache */
483 		offset = scan_swap_map(si, SWAP_CACHE);
484 		if (offset) {
485 			spin_unlock(&swap_lock);
486 			return swp_entry(type, offset);
487 		}
488 		next = swap_list.next;
489 	}
490 
491 	nr_swap_pages++;
492 noswap:
493 	spin_unlock(&swap_lock);
494 	return (swp_entry_t) {0};
495 }
496 
497 /* The only caller of this function is now susupend routine */
498 swp_entry_t get_swap_page_of_type(int type)
499 {
500 	struct swap_info_struct *si;
501 	pgoff_t offset;
502 
503 	spin_lock(&swap_lock);
504 	si = swap_info + type;
505 	if (si->flags & SWP_WRITEOK) {
506 		nr_swap_pages--;
507 		/* This is called for allocating swap entry, not cache */
508 		offset = scan_swap_map(si, SWAP_MAP);
509 		if (offset) {
510 			spin_unlock(&swap_lock);
511 			return swp_entry(type, offset);
512 		}
513 		nr_swap_pages++;
514 	}
515 	spin_unlock(&swap_lock);
516 	return (swp_entry_t) {0};
517 }
518 
519 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
520 {
521 	struct swap_info_struct * p;
522 	unsigned long offset, type;
523 
524 	if (!entry.val)
525 		goto out;
526 	type = swp_type(entry);
527 	if (type >= nr_swapfiles)
528 		goto bad_nofile;
529 	p = & swap_info[type];
530 	if (!(p->flags & SWP_USED))
531 		goto bad_device;
532 	offset = swp_offset(entry);
533 	if (offset >= p->max)
534 		goto bad_offset;
535 	if (!p->swap_map[offset])
536 		goto bad_free;
537 	spin_lock(&swap_lock);
538 	return p;
539 
540 bad_free:
541 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
542 	goto out;
543 bad_offset:
544 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
545 	goto out;
546 bad_device:
547 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
548 	goto out;
549 bad_nofile:
550 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
551 out:
552 	return NULL;
553 }
554 
555 static int swap_entry_free(struct swap_info_struct *p,
556 			   swp_entry_t ent, int cache)
557 {
558 	unsigned long offset = swp_offset(ent);
559 	int count = swap_count(p->swap_map[offset]);
560 	bool has_cache;
561 
562 	has_cache = swap_has_cache(p->swap_map[offset]);
563 
564 	if (cache == SWAP_MAP) { /* dropping usage count of swap */
565 		if (count < SWAP_MAP_MAX) {
566 			count--;
567 			p->swap_map[offset] = encode_swapmap(count, has_cache);
568 		}
569 	} else { /* dropping swap cache flag */
570 		VM_BUG_ON(!has_cache);
571 		p->swap_map[offset] = encode_swapmap(count, false);
572 
573 	}
574 	/* return code. */
575 	count = p->swap_map[offset];
576 	/* free if no reference */
577 	if (!count) {
578 		if (offset < p->lowest_bit)
579 			p->lowest_bit = offset;
580 		if (offset > p->highest_bit)
581 			p->highest_bit = offset;
582 		if (p->prio > swap_info[swap_list.next].prio)
583 			swap_list.next = p - swap_info;
584 		nr_swap_pages++;
585 		p->inuse_pages--;
586 	}
587 	if (!swap_count(count))
588 		mem_cgroup_uncharge_swap(ent);
589 	return count;
590 }
591 
592 /*
593  * Caller has made sure that the swapdevice corresponding to entry
594  * is still around or has not been recycled.
595  */
596 void swap_free(swp_entry_t entry)
597 {
598 	struct swap_info_struct * p;
599 
600 	p = swap_info_get(entry);
601 	if (p) {
602 		swap_entry_free(p, entry, SWAP_MAP);
603 		spin_unlock(&swap_lock);
604 	}
605 }
606 
607 /*
608  * Called after dropping swapcache to decrease refcnt to swap entries.
609  */
610 void swapcache_free(swp_entry_t entry, struct page *page)
611 {
612 	struct swap_info_struct *p;
613 	int ret;
614 
615 	p = swap_info_get(entry);
616 	if (p) {
617 		ret = swap_entry_free(p, entry, SWAP_CACHE);
618 		if (page) {
619 			bool swapout;
620 			if (ret)
621 				swapout = true; /* the end of swap out */
622 			else
623 				swapout = false; /* no more swap users! */
624 			mem_cgroup_uncharge_swapcache(page, entry, swapout);
625 		}
626 		spin_unlock(&swap_lock);
627 	}
628 	return;
629 }
630 
631 /*
632  * How many references to page are currently swapped out?
633  */
634 static inline int page_swapcount(struct page *page)
635 {
636 	int count = 0;
637 	struct swap_info_struct *p;
638 	swp_entry_t entry;
639 
640 	entry.val = page_private(page);
641 	p = swap_info_get(entry);
642 	if (p) {
643 		count = swap_count(p->swap_map[swp_offset(entry)]);
644 		spin_unlock(&swap_lock);
645 	}
646 	return count;
647 }
648 
649 /*
650  * We can write to an anon page without COW if there are no other references
651  * to it.  And as a side-effect, free up its swap: because the old content
652  * on disk will never be read, and seeking back there to write new content
653  * later would only waste time away from clustering.
654  */
655 int reuse_swap_page(struct page *page)
656 {
657 	int count;
658 
659 	VM_BUG_ON(!PageLocked(page));
660 	count = page_mapcount(page);
661 	if (count <= 1 && PageSwapCache(page)) {
662 		count += page_swapcount(page);
663 		if (count == 1 && !PageWriteback(page)) {
664 			delete_from_swap_cache(page);
665 			SetPageDirty(page);
666 		}
667 	}
668 	return count == 1;
669 }
670 
671 /*
672  * If swap is getting full, or if there are no more mappings of this page,
673  * then try_to_free_swap is called to free its swap space.
674  */
675 int try_to_free_swap(struct page *page)
676 {
677 	VM_BUG_ON(!PageLocked(page));
678 
679 	if (!PageSwapCache(page))
680 		return 0;
681 	if (PageWriteback(page))
682 		return 0;
683 	if (page_swapcount(page))
684 		return 0;
685 
686 	delete_from_swap_cache(page);
687 	SetPageDirty(page);
688 	return 1;
689 }
690 
691 /*
692  * Free the swap entry like above, but also try to
693  * free the page cache entry if it is the last user.
694  */
695 int free_swap_and_cache(swp_entry_t entry)
696 {
697 	struct swap_info_struct *p;
698 	struct page *page = NULL;
699 
700 	if (is_migration_entry(entry))
701 		return 1;
702 
703 	p = swap_info_get(entry);
704 	if (p) {
705 		if (swap_entry_free(p, entry, SWAP_MAP) == SWAP_HAS_CACHE) {
706 			page = find_get_page(&swapper_space, entry.val);
707 			if (page && !trylock_page(page)) {
708 				page_cache_release(page);
709 				page = NULL;
710 			}
711 		}
712 		spin_unlock(&swap_lock);
713 	}
714 	if (page) {
715 		/*
716 		 * Not mapped elsewhere, or swap space full? Free it!
717 		 * Also recheck PageSwapCache now page is locked (above).
718 		 */
719 		if (PageSwapCache(page) && !PageWriteback(page) &&
720 				(!page_mapped(page) || vm_swap_full())) {
721 			delete_from_swap_cache(page);
722 			SetPageDirty(page);
723 		}
724 		unlock_page(page);
725 		page_cache_release(page);
726 	}
727 	return p != NULL;
728 }
729 
730 #ifdef CONFIG_HIBERNATION
731 /*
732  * Find the swap type that corresponds to given device (if any).
733  *
734  * @offset - number of the PAGE_SIZE-sized block of the device, starting
735  * from 0, in which the swap header is expected to be located.
736  *
737  * This is needed for the suspend to disk (aka swsusp).
738  */
739 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
740 {
741 	struct block_device *bdev = NULL;
742 	int i;
743 
744 	if (device)
745 		bdev = bdget(device);
746 
747 	spin_lock(&swap_lock);
748 	for (i = 0; i < nr_swapfiles; i++) {
749 		struct swap_info_struct *sis = swap_info + i;
750 
751 		if (!(sis->flags & SWP_WRITEOK))
752 			continue;
753 
754 		if (!bdev) {
755 			if (bdev_p)
756 				*bdev_p = bdgrab(sis->bdev);
757 
758 			spin_unlock(&swap_lock);
759 			return i;
760 		}
761 		if (bdev == sis->bdev) {
762 			struct swap_extent *se;
763 
764 			se = list_entry(sis->extent_list.next,
765 					struct swap_extent, list);
766 			if (se->start_block == offset) {
767 				if (bdev_p)
768 					*bdev_p = bdgrab(sis->bdev);
769 
770 				spin_unlock(&swap_lock);
771 				bdput(bdev);
772 				return i;
773 			}
774 		}
775 	}
776 	spin_unlock(&swap_lock);
777 	if (bdev)
778 		bdput(bdev);
779 
780 	return -ENODEV;
781 }
782 
783 /*
784  * Return either the total number of swap pages of given type, or the number
785  * of free pages of that type (depending on @free)
786  *
787  * This is needed for software suspend
788  */
789 unsigned int count_swap_pages(int type, int free)
790 {
791 	unsigned int n = 0;
792 
793 	if (type < nr_swapfiles) {
794 		spin_lock(&swap_lock);
795 		if (swap_info[type].flags & SWP_WRITEOK) {
796 			n = swap_info[type].pages;
797 			if (free)
798 				n -= swap_info[type].inuse_pages;
799 		}
800 		spin_unlock(&swap_lock);
801 	}
802 	return n;
803 }
804 #endif
805 
806 /*
807  * No need to decide whether this PTE shares the swap entry with others,
808  * just let do_wp_page work it out if a write is requested later - to
809  * force COW, vm_page_prot omits write permission from any private vma.
810  */
811 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
812 		unsigned long addr, swp_entry_t entry, struct page *page)
813 {
814 	struct mem_cgroup *ptr = NULL;
815 	spinlock_t *ptl;
816 	pte_t *pte;
817 	int ret = 1;
818 
819 	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
820 		ret = -ENOMEM;
821 		goto out_nolock;
822 	}
823 
824 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
825 	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
826 		if (ret > 0)
827 			mem_cgroup_cancel_charge_swapin(ptr);
828 		ret = 0;
829 		goto out;
830 	}
831 
832 	inc_mm_counter(vma->vm_mm, anon_rss);
833 	get_page(page);
834 	set_pte_at(vma->vm_mm, addr, pte,
835 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
836 	page_add_anon_rmap(page, vma, addr);
837 	mem_cgroup_commit_charge_swapin(page, ptr);
838 	swap_free(entry);
839 	/*
840 	 * Move the page to the active list so it is not
841 	 * immediately swapped out again after swapon.
842 	 */
843 	activate_page(page);
844 out:
845 	pte_unmap_unlock(pte, ptl);
846 out_nolock:
847 	return ret;
848 }
849 
850 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
851 				unsigned long addr, unsigned long end,
852 				swp_entry_t entry, struct page *page)
853 {
854 	pte_t swp_pte = swp_entry_to_pte(entry);
855 	pte_t *pte;
856 	int ret = 0;
857 
858 	/*
859 	 * We don't actually need pte lock while scanning for swp_pte: since
860 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
861 	 * page table while we're scanning; though it could get zapped, and on
862 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
863 	 * of unmatched parts which look like swp_pte, so unuse_pte must
864 	 * recheck under pte lock.  Scanning without pte lock lets it be
865 	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
866 	 */
867 	pte = pte_offset_map(pmd, addr);
868 	do {
869 		/*
870 		 * swapoff spends a _lot_ of time in this loop!
871 		 * Test inline before going to call unuse_pte.
872 		 */
873 		if (unlikely(pte_same(*pte, swp_pte))) {
874 			pte_unmap(pte);
875 			ret = unuse_pte(vma, pmd, addr, entry, page);
876 			if (ret)
877 				goto out;
878 			pte = pte_offset_map(pmd, addr);
879 		}
880 	} while (pte++, addr += PAGE_SIZE, addr != end);
881 	pte_unmap(pte - 1);
882 out:
883 	return ret;
884 }
885 
886 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
887 				unsigned long addr, unsigned long end,
888 				swp_entry_t entry, struct page *page)
889 {
890 	pmd_t *pmd;
891 	unsigned long next;
892 	int ret;
893 
894 	pmd = pmd_offset(pud, addr);
895 	do {
896 		next = pmd_addr_end(addr, end);
897 		if (pmd_none_or_clear_bad(pmd))
898 			continue;
899 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
900 		if (ret)
901 			return ret;
902 	} while (pmd++, addr = next, addr != end);
903 	return 0;
904 }
905 
906 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
907 				unsigned long addr, unsigned long end,
908 				swp_entry_t entry, struct page *page)
909 {
910 	pud_t *pud;
911 	unsigned long next;
912 	int ret;
913 
914 	pud = pud_offset(pgd, addr);
915 	do {
916 		next = pud_addr_end(addr, end);
917 		if (pud_none_or_clear_bad(pud))
918 			continue;
919 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
920 		if (ret)
921 			return ret;
922 	} while (pud++, addr = next, addr != end);
923 	return 0;
924 }
925 
926 static int unuse_vma(struct vm_area_struct *vma,
927 				swp_entry_t entry, struct page *page)
928 {
929 	pgd_t *pgd;
930 	unsigned long addr, end, next;
931 	int ret;
932 
933 	if (page->mapping) {
934 		addr = page_address_in_vma(page, vma);
935 		if (addr == -EFAULT)
936 			return 0;
937 		else
938 			end = addr + PAGE_SIZE;
939 	} else {
940 		addr = vma->vm_start;
941 		end = vma->vm_end;
942 	}
943 
944 	pgd = pgd_offset(vma->vm_mm, addr);
945 	do {
946 		next = pgd_addr_end(addr, end);
947 		if (pgd_none_or_clear_bad(pgd))
948 			continue;
949 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
950 		if (ret)
951 			return ret;
952 	} while (pgd++, addr = next, addr != end);
953 	return 0;
954 }
955 
956 static int unuse_mm(struct mm_struct *mm,
957 				swp_entry_t entry, struct page *page)
958 {
959 	struct vm_area_struct *vma;
960 	int ret = 0;
961 
962 	if (!down_read_trylock(&mm->mmap_sem)) {
963 		/*
964 		 * Activate page so shrink_inactive_list is unlikely to unmap
965 		 * its ptes while lock is dropped, so swapoff can make progress.
966 		 */
967 		activate_page(page);
968 		unlock_page(page);
969 		down_read(&mm->mmap_sem);
970 		lock_page(page);
971 	}
972 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
973 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
974 			break;
975 	}
976 	up_read(&mm->mmap_sem);
977 	return (ret < 0)? ret: 0;
978 }
979 
980 /*
981  * Scan swap_map from current position to next entry still in use.
982  * Recycle to start on reaching the end, returning 0 when empty.
983  */
984 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
985 					unsigned int prev)
986 {
987 	unsigned int max = si->max;
988 	unsigned int i = prev;
989 	int count;
990 
991 	/*
992 	 * No need for swap_lock here: we're just looking
993 	 * for whether an entry is in use, not modifying it; false
994 	 * hits are okay, and sys_swapoff() has already prevented new
995 	 * allocations from this area (while holding swap_lock).
996 	 */
997 	for (;;) {
998 		if (++i >= max) {
999 			if (!prev) {
1000 				i = 0;
1001 				break;
1002 			}
1003 			/*
1004 			 * No entries in use at top of swap_map,
1005 			 * loop back to start and recheck there.
1006 			 */
1007 			max = prev + 1;
1008 			prev = 0;
1009 			i = 1;
1010 		}
1011 		count = si->swap_map[i];
1012 		if (count && swap_count(count) != SWAP_MAP_BAD)
1013 			break;
1014 	}
1015 	return i;
1016 }
1017 
1018 /*
1019  * We completely avoid races by reading each swap page in advance,
1020  * and then search for the process using it.  All the necessary
1021  * page table adjustments can then be made atomically.
1022  */
1023 static int try_to_unuse(unsigned int type)
1024 {
1025 	struct swap_info_struct * si = &swap_info[type];
1026 	struct mm_struct *start_mm;
1027 	unsigned short *swap_map;
1028 	unsigned short swcount;
1029 	struct page *page;
1030 	swp_entry_t entry;
1031 	unsigned int i = 0;
1032 	int retval = 0;
1033 	int reset_overflow = 0;
1034 	int shmem;
1035 
1036 	/*
1037 	 * When searching mms for an entry, a good strategy is to
1038 	 * start at the first mm we freed the previous entry from
1039 	 * (though actually we don't notice whether we or coincidence
1040 	 * freed the entry).  Initialize this start_mm with a hold.
1041 	 *
1042 	 * A simpler strategy would be to start at the last mm we
1043 	 * freed the previous entry from; but that would take less
1044 	 * advantage of mmlist ordering, which clusters forked mms
1045 	 * together, child after parent.  If we race with dup_mmap(), we
1046 	 * prefer to resolve parent before child, lest we miss entries
1047 	 * duplicated after we scanned child: using last mm would invert
1048 	 * that.  Though it's only a serious concern when an overflowed
1049 	 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
1050 	 */
1051 	start_mm = &init_mm;
1052 	atomic_inc(&init_mm.mm_users);
1053 
1054 	/*
1055 	 * Keep on scanning until all entries have gone.  Usually,
1056 	 * one pass through swap_map is enough, but not necessarily:
1057 	 * there are races when an instance of an entry might be missed.
1058 	 */
1059 	while ((i = find_next_to_unuse(si, i)) != 0) {
1060 		if (signal_pending(current)) {
1061 			retval = -EINTR;
1062 			break;
1063 		}
1064 
1065 		/*
1066 		 * Get a page for the entry, using the existing swap
1067 		 * cache page if there is one.  Otherwise, get a clean
1068 		 * page and read the swap into it.
1069 		 */
1070 		swap_map = &si->swap_map[i];
1071 		entry = swp_entry(type, i);
1072 		page = read_swap_cache_async(entry,
1073 					GFP_HIGHUSER_MOVABLE, NULL, 0);
1074 		if (!page) {
1075 			/*
1076 			 * Either swap_duplicate() failed because entry
1077 			 * has been freed independently, and will not be
1078 			 * reused since sys_swapoff() already disabled
1079 			 * allocation from here, or alloc_page() failed.
1080 			 */
1081 			if (!*swap_map)
1082 				continue;
1083 			retval = -ENOMEM;
1084 			break;
1085 		}
1086 
1087 		/*
1088 		 * Don't hold on to start_mm if it looks like exiting.
1089 		 */
1090 		if (atomic_read(&start_mm->mm_users) == 1) {
1091 			mmput(start_mm);
1092 			start_mm = &init_mm;
1093 			atomic_inc(&init_mm.mm_users);
1094 		}
1095 
1096 		/*
1097 		 * Wait for and lock page.  When do_swap_page races with
1098 		 * try_to_unuse, do_swap_page can handle the fault much
1099 		 * faster than try_to_unuse can locate the entry.  This
1100 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1101 		 * defer to do_swap_page in such a case - in some tests,
1102 		 * do_swap_page and try_to_unuse repeatedly compete.
1103 		 */
1104 		wait_on_page_locked(page);
1105 		wait_on_page_writeback(page);
1106 		lock_page(page);
1107 		wait_on_page_writeback(page);
1108 
1109 		/*
1110 		 * Remove all references to entry.
1111 		 * Whenever we reach init_mm, there's no address space
1112 		 * to search, but use it as a reminder to search shmem.
1113 		 */
1114 		shmem = 0;
1115 		swcount = *swap_map;
1116 		if (swap_count(swcount)) {
1117 			if (start_mm == &init_mm)
1118 				shmem = shmem_unuse(entry, page);
1119 			else
1120 				retval = unuse_mm(start_mm, entry, page);
1121 		}
1122 		if (swap_count(*swap_map)) {
1123 			int set_start_mm = (*swap_map >= swcount);
1124 			struct list_head *p = &start_mm->mmlist;
1125 			struct mm_struct *new_start_mm = start_mm;
1126 			struct mm_struct *prev_mm = start_mm;
1127 			struct mm_struct *mm;
1128 
1129 			atomic_inc(&new_start_mm->mm_users);
1130 			atomic_inc(&prev_mm->mm_users);
1131 			spin_lock(&mmlist_lock);
1132 			while (swap_count(*swap_map) && !retval && !shmem &&
1133 					(p = p->next) != &start_mm->mmlist) {
1134 				mm = list_entry(p, struct mm_struct, mmlist);
1135 				if (!atomic_inc_not_zero(&mm->mm_users))
1136 					continue;
1137 				spin_unlock(&mmlist_lock);
1138 				mmput(prev_mm);
1139 				prev_mm = mm;
1140 
1141 				cond_resched();
1142 
1143 				swcount = *swap_map;
1144 				if (!swap_count(swcount)) /* any usage ? */
1145 					;
1146 				else if (mm == &init_mm) {
1147 					set_start_mm = 1;
1148 					shmem = shmem_unuse(entry, page);
1149 				} else
1150 					retval = unuse_mm(mm, entry, page);
1151 
1152 				if (set_start_mm &&
1153 				    swap_count(*swap_map) < swcount) {
1154 					mmput(new_start_mm);
1155 					atomic_inc(&mm->mm_users);
1156 					new_start_mm = mm;
1157 					set_start_mm = 0;
1158 				}
1159 				spin_lock(&mmlist_lock);
1160 			}
1161 			spin_unlock(&mmlist_lock);
1162 			mmput(prev_mm);
1163 			mmput(start_mm);
1164 			start_mm = new_start_mm;
1165 		}
1166 		if (shmem) {
1167 			/* page has already been unlocked and released */
1168 			if (shmem > 0)
1169 				continue;
1170 			retval = shmem;
1171 			break;
1172 		}
1173 		if (retval) {
1174 			unlock_page(page);
1175 			page_cache_release(page);
1176 			break;
1177 		}
1178 
1179 		/*
1180 		 * How could swap count reach 0x7ffe ?
1181 		 * There's no way to repeat a swap page within an mm
1182 		 * (except in shmem, where it's the shared object which takes
1183 		 * the reference count)?
1184 		 * We believe SWAP_MAP_MAX cannot occur.(if occur, unsigned
1185 		 * short is too small....)
1186 		 * If that's wrong, then we should worry more about
1187 		 * exit_mmap() and do_munmap() cases described above:
1188 		 * we might be resetting SWAP_MAP_MAX too early here.
1189 		 * We know "Undead"s can happen, they're okay, so don't
1190 		 * report them; but do report if we reset SWAP_MAP_MAX.
1191 		 */
1192 		/* We might release the lock_page() in unuse_mm(). */
1193 		if (!PageSwapCache(page) || page_private(page) != entry.val)
1194 			goto retry;
1195 
1196 		if (swap_count(*swap_map) == SWAP_MAP_MAX) {
1197 			spin_lock(&swap_lock);
1198 			*swap_map = encode_swapmap(0, true);
1199 			spin_unlock(&swap_lock);
1200 			reset_overflow = 1;
1201 		}
1202 
1203 		/*
1204 		 * If a reference remains (rare), we would like to leave
1205 		 * the page in the swap cache; but try_to_unmap could
1206 		 * then re-duplicate the entry once we drop page lock,
1207 		 * so we might loop indefinitely; also, that page could
1208 		 * not be swapped out to other storage meanwhile.  So:
1209 		 * delete from cache even if there's another reference,
1210 		 * after ensuring that the data has been saved to disk -
1211 		 * since if the reference remains (rarer), it will be
1212 		 * read from disk into another page.  Splitting into two
1213 		 * pages would be incorrect if swap supported "shared
1214 		 * private" pages, but they are handled by tmpfs files.
1215 		 */
1216 		if (swap_count(*swap_map) &&
1217 		     PageDirty(page) && PageSwapCache(page)) {
1218 			struct writeback_control wbc = {
1219 				.sync_mode = WB_SYNC_NONE,
1220 			};
1221 
1222 			swap_writepage(page, &wbc);
1223 			lock_page(page);
1224 			wait_on_page_writeback(page);
1225 		}
1226 
1227 		/*
1228 		 * It is conceivable that a racing task removed this page from
1229 		 * swap cache just before we acquired the page lock at the top,
1230 		 * or while we dropped it in unuse_mm().  The page might even
1231 		 * be back in swap cache on another swap area: that we must not
1232 		 * delete, since it may not have been written out to swap yet.
1233 		 */
1234 		if (PageSwapCache(page) &&
1235 		    likely(page_private(page) == entry.val))
1236 			delete_from_swap_cache(page);
1237 
1238 		/*
1239 		 * So we could skip searching mms once swap count went
1240 		 * to 1, we did not mark any present ptes as dirty: must
1241 		 * mark page dirty so shrink_page_list will preserve it.
1242 		 */
1243 		SetPageDirty(page);
1244 retry:
1245 		unlock_page(page);
1246 		page_cache_release(page);
1247 
1248 		/*
1249 		 * Make sure that we aren't completely killing
1250 		 * interactive performance.
1251 		 */
1252 		cond_resched();
1253 	}
1254 
1255 	mmput(start_mm);
1256 	if (reset_overflow) {
1257 		printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
1258 		swap_overflow = 0;
1259 	}
1260 	return retval;
1261 }
1262 
1263 /*
1264  * After a successful try_to_unuse, if no swap is now in use, we know
1265  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1266  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1267  * added to the mmlist just after page_duplicate - before would be racy.
1268  */
1269 static void drain_mmlist(void)
1270 {
1271 	struct list_head *p, *next;
1272 	unsigned int i;
1273 
1274 	for (i = 0; i < nr_swapfiles; i++)
1275 		if (swap_info[i].inuse_pages)
1276 			return;
1277 	spin_lock(&mmlist_lock);
1278 	list_for_each_safe(p, next, &init_mm.mmlist)
1279 		list_del_init(p);
1280 	spin_unlock(&mmlist_lock);
1281 }
1282 
1283 /*
1284  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1285  * corresponds to page offset `offset'.
1286  */
1287 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
1288 {
1289 	struct swap_extent *se = sis->curr_swap_extent;
1290 	struct swap_extent *start_se = se;
1291 
1292 	for ( ; ; ) {
1293 		struct list_head *lh;
1294 
1295 		if (se->start_page <= offset &&
1296 				offset < (se->start_page + se->nr_pages)) {
1297 			return se->start_block + (offset - se->start_page);
1298 		}
1299 		lh = se->list.next;
1300 		if (lh == &sis->extent_list)
1301 			lh = lh->next;
1302 		se = list_entry(lh, struct swap_extent, list);
1303 		sis->curr_swap_extent = se;
1304 		BUG_ON(se == start_se);		/* It *must* be present */
1305 	}
1306 }
1307 
1308 #ifdef CONFIG_HIBERNATION
1309 /*
1310  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1311  * corresponding to given index in swap_info (swap type).
1312  */
1313 sector_t swapdev_block(int swap_type, pgoff_t offset)
1314 {
1315 	struct swap_info_struct *sis;
1316 
1317 	if (swap_type >= nr_swapfiles)
1318 		return 0;
1319 
1320 	sis = swap_info + swap_type;
1321 	return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
1322 }
1323 #endif /* CONFIG_HIBERNATION */
1324 
1325 /*
1326  * Free all of a swapdev's extent information
1327  */
1328 static void destroy_swap_extents(struct swap_info_struct *sis)
1329 {
1330 	while (!list_empty(&sis->extent_list)) {
1331 		struct swap_extent *se;
1332 
1333 		se = list_entry(sis->extent_list.next,
1334 				struct swap_extent, list);
1335 		list_del(&se->list);
1336 		kfree(se);
1337 	}
1338 }
1339 
1340 /*
1341  * Add a block range (and the corresponding page range) into this swapdev's
1342  * extent list.  The extent list is kept sorted in page order.
1343  *
1344  * This function rather assumes that it is called in ascending page order.
1345  */
1346 static int
1347 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1348 		unsigned long nr_pages, sector_t start_block)
1349 {
1350 	struct swap_extent *se;
1351 	struct swap_extent *new_se;
1352 	struct list_head *lh;
1353 
1354 	lh = sis->extent_list.prev;	/* The highest page extent */
1355 	if (lh != &sis->extent_list) {
1356 		se = list_entry(lh, struct swap_extent, list);
1357 		BUG_ON(se->start_page + se->nr_pages != start_page);
1358 		if (se->start_block + se->nr_pages == start_block) {
1359 			/* Merge it */
1360 			se->nr_pages += nr_pages;
1361 			return 0;
1362 		}
1363 	}
1364 
1365 	/*
1366 	 * No merge.  Insert a new extent, preserving ordering.
1367 	 */
1368 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1369 	if (new_se == NULL)
1370 		return -ENOMEM;
1371 	new_se->start_page = start_page;
1372 	new_se->nr_pages = nr_pages;
1373 	new_se->start_block = start_block;
1374 
1375 	list_add_tail(&new_se->list, &sis->extent_list);
1376 	return 1;
1377 }
1378 
1379 /*
1380  * A `swap extent' is a simple thing which maps a contiguous range of pages
1381  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1382  * is built at swapon time and is then used at swap_writepage/swap_readpage
1383  * time for locating where on disk a page belongs.
1384  *
1385  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1386  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1387  * swap files identically.
1388  *
1389  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1390  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1391  * swapfiles are handled *identically* after swapon time.
1392  *
1393  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1394  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1395  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1396  * requirements, they are simply tossed out - we will never use those blocks
1397  * for swapping.
1398  *
1399  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1400  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1401  * which will scribble on the fs.
1402  *
1403  * The amount of disk space which a single swap extent represents varies.
1404  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1405  * extents in the list.  To avoid much list walking, we cache the previous
1406  * search location in `curr_swap_extent', and start new searches from there.
1407  * This is extremely effective.  The average number of iterations in
1408  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1409  */
1410 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1411 {
1412 	struct inode *inode;
1413 	unsigned blocks_per_page;
1414 	unsigned long page_no;
1415 	unsigned blkbits;
1416 	sector_t probe_block;
1417 	sector_t last_block;
1418 	sector_t lowest_block = -1;
1419 	sector_t highest_block = 0;
1420 	int nr_extents = 0;
1421 	int ret;
1422 
1423 	inode = sis->swap_file->f_mapping->host;
1424 	if (S_ISBLK(inode->i_mode)) {
1425 		ret = add_swap_extent(sis, 0, sis->max, 0);
1426 		*span = sis->pages;
1427 		goto done;
1428 	}
1429 
1430 	blkbits = inode->i_blkbits;
1431 	blocks_per_page = PAGE_SIZE >> blkbits;
1432 
1433 	/*
1434 	 * Map all the blocks into the extent list.  This code doesn't try
1435 	 * to be very smart.
1436 	 */
1437 	probe_block = 0;
1438 	page_no = 0;
1439 	last_block = i_size_read(inode) >> blkbits;
1440 	while ((probe_block + blocks_per_page) <= last_block &&
1441 			page_no < sis->max) {
1442 		unsigned block_in_page;
1443 		sector_t first_block;
1444 
1445 		first_block = bmap(inode, probe_block);
1446 		if (first_block == 0)
1447 			goto bad_bmap;
1448 
1449 		/*
1450 		 * It must be PAGE_SIZE aligned on-disk
1451 		 */
1452 		if (first_block & (blocks_per_page - 1)) {
1453 			probe_block++;
1454 			goto reprobe;
1455 		}
1456 
1457 		for (block_in_page = 1; block_in_page < blocks_per_page;
1458 					block_in_page++) {
1459 			sector_t block;
1460 
1461 			block = bmap(inode, probe_block + block_in_page);
1462 			if (block == 0)
1463 				goto bad_bmap;
1464 			if (block != first_block + block_in_page) {
1465 				/* Discontiguity */
1466 				probe_block++;
1467 				goto reprobe;
1468 			}
1469 		}
1470 
1471 		first_block >>= (PAGE_SHIFT - blkbits);
1472 		if (page_no) {	/* exclude the header page */
1473 			if (first_block < lowest_block)
1474 				lowest_block = first_block;
1475 			if (first_block > highest_block)
1476 				highest_block = first_block;
1477 		}
1478 
1479 		/*
1480 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1481 		 */
1482 		ret = add_swap_extent(sis, page_no, 1, first_block);
1483 		if (ret < 0)
1484 			goto out;
1485 		nr_extents += ret;
1486 		page_no++;
1487 		probe_block += blocks_per_page;
1488 reprobe:
1489 		continue;
1490 	}
1491 	ret = nr_extents;
1492 	*span = 1 + highest_block - lowest_block;
1493 	if (page_no == 0)
1494 		page_no = 1;	/* force Empty message */
1495 	sis->max = page_no;
1496 	sis->pages = page_no - 1;
1497 	sis->highest_bit = page_no - 1;
1498 done:
1499 	sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1500 					struct swap_extent, list);
1501 	goto out;
1502 bad_bmap:
1503 	printk(KERN_ERR "swapon: swapfile has holes\n");
1504 	ret = -EINVAL;
1505 out:
1506 	return ret;
1507 }
1508 
1509 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1510 {
1511 	struct swap_info_struct * p = NULL;
1512 	unsigned short *swap_map;
1513 	struct file *swap_file, *victim;
1514 	struct address_space *mapping;
1515 	struct inode *inode;
1516 	char * pathname;
1517 	int i, type, prev;
1518 	int err;
1519 
1520 	if (!capable(CAP_SYS_ADMIN))
1521 		return -EPERM;
1522 
1523 	pathname = getname(specialfile);
1524 	err = PTR_ERR(pathname);
1525 	if (IS_ERR(pathname))
1526 		goto out;
1527 
1528 	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1529 	putname(pathname);
1530 	err = PTR_ERR(victim);
1531 	if (IS_ERR(victim))
1532 		goto out;
1533 
1534 	mapping = victim->f_mapping;
1535 	prev = -1;
1536 	spin_lock(&swap_lock);
1537 	for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1538 		p = swap_info + type;
1539 		if (p->flags & SWP_WRITEOK) {
1540 			if (p->swap_file->f_mapping == mapping)
1541 				break;
1542 		}
1543 		prev = type;
1544 	}
1545 	if (type < 0) {
1546 		err = -EINVAL;
1547 		spin_unlock(&swap_lock);
1548 		goto out_dput;
1549 	}
1550 	if (!security_vm_enough_memory(p->pages))
1551 		vm_unacct_memory(p->pages);
1552 	else {
1553 		err = -ENOMEM;
1554 		spin_unlock(&swap_lock);
1555 		goto out_dput;
1556 	}
1557 	if (prev < 0) {
1558 		swap_list.head = p->next;
1559 	} else {
1560 		swap_info[prev].next = p->next;
1561 	}
1562 	if (type == swap_list.next) {
1563 		/* just pick something that's safe... */
1564 		swap_list.next = swap_list.head;
1565 	}
1566 	if (p->prio < 0) {
1567 		for (i = p->next; i >= 0; i = swap_info[i].next)
1568 			swap_info[i].prio = p->prio--;
1569 		least_priority++;
1570 	}
1571 	nr_swap_pages -= p->pages;
1572 	total_swap_pages -= p->pages;
1573 	p->flags &= ~SWP_WRITEOK;
1574 	spin_unlock(&swap_lock);
1575 
1576 	current->flags |= PF_SWAPOFF;
1577 	err = try_to_unuse(type);
1578 	current->flags &= ~PF_SWAPOFF;
1579 
1580 	if (err) {
1581 		/* re-insert swap space back into swap_list */
1582 		spin_lock(&swap_lock);
1583 		if (p->prio < 0)
1584 			p->prio = --least_priority;
1585 		prev = -1;
1586 		for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1587 			if (p->prio >= swap_info[i].prio)
1588 				break;
1589 			prev = i;
1590 		}
1591 		p->next = i;
1592 		if (prev < 0)
1593 			swap_list.head = swap_list.next = p - swap_info;
1594 		else
1595 			swap_info[prev].next = p - swap_info;
1596 		nr_swap_pages += p->pages;
1597 		total_swap_pages += p->pages;
1598 		p->flags |= SWP_WRITEOK;
1599 		spin_unlock(&swap_lock);
1600 		goto out_dput;
1601 	}
1602 
1603 	/* wait for any unplug function to finish */
1604 	down_write(&swap_unplug_sem);
1605 	up_write(&swap_unplug_sem);
1606 
1607 	destroy_swap_extents(p);
1608 	mutex_lock(&swapon_mutex);
1609 	spin_lock(&swap_lock);
1610 	drain_mmlist();
1611 
1612 	/* wait for anyone still in scan_swap_map */
1613 	p->highest_bit = 0;		/* cuts scans short */
1614 	while (p->flags >= SWP_SCANNING) {
1615 		spin_unlock(&swap_lock);
1616 		schedule_timeout_uninterruptible(1);
1617 		spin_lock(&swap_lock);
1618 	}
1619 
1620 	swap_file = p->swap_file;
1621 	p->swap_file = NULL;
1622 	p->max = 0;
1623 	swap_map = p->swap_map;
1624 	p->swap_map = NULL;
1625 	p->flags = 0;
1626 	spin_unlock(&swap_lock);
1627 	mutex_unlock(&swapon_mutex);
1628 	vfree(swap_map);
1629 	/* Destroy swap account informatin */
1630 	swap_cgroup_swapoff(type);
1631 
1632 	inode = mapping->host;
1633 	if (S_ISBLK(inode->i_mode)) {
1634 		struct block_device *bdev = I_BDEV(inode);
1635 		set_blocksize(bdev, p->old_block_size);
1636 		bd_release(bdev);
1637 	} else {
1638 		mutex_lock(&inode->i_mutex);
1639 		inode->i_flags &= ~S_SWAPFILE;
1640 		mutex_unlock(&inode->i_mutex);
1641 	}
1642 	filp_close(swap_file, NULL);
1643 	err = 0;
1644 
1645 out_dput:
1646 	filp_close(victim, NULL);
1647 out:
1648 	return err;
1649 }
1650 
1651 #ifdef CONFIG_PROC_FS
1652 /* iterator */
1653 static void *swap_start(struct seq_file *swap, loff_t *pos)
1654 {
1655 	struct swap_info_struct *ptr = swap_info;
1656 	int i;
1657 	loff_t l = *pos;
1658 
1659 	mutex_lock(&swapon_mutex);
1660 
1661 	if (!l)
1662 		return SEQ_START_TOKEN;
1663 
1664 	for (i = 0; i < nr_swapfiles; i++, ptr++) {
1665 		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1666 			continue;
1667 		if (!--l)
1668 			return ptr;
1669 	}
1670 
1671 	return NULL;
1672 }
1673 
1674 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1675 {
1676 	struct swap_info_struct *ptr;
1677 	struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1678 
1679 	if (v == SEQ_START_TOKEN)
1680 		ptr = swap_info;
1681 	else {
1682 		ptr = v;
1683 		ptr++;
1684 	}
1685 
1686 	for (; ptr < endptr; ptr++) {
1687 		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1688 			continue;
1689 		++*pos;
1690 		return ptr;
1691 	}
1692 
1693 	return NULL;
1694 }
1695 
1696 static void swap_stop(struct seq_file *swap, void *v)
1697 {
1698 	mutex_unlock(&swapon_mutex);
1699 }
1700 
1701 static int swap_show(struct seq_file *swap, void *v)
1702 {
1703 	struct swap_info_struct *ptr = v;
1704 	struct file *file;
1705 	int len;
1706 
1707 	if (ptr == SEQ_START_TOKEN) {
1708 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1709 		return 0;
1710 	}
1711 
1712 	file = ptr->swap_file;
1713 	len = seq_path(swap, &file->f_path, " \t\n\\");
1714 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1715 			len < 40 ? 40 - len : 1, " ",
1716 			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1717 				"partition" : "file\t",
1718 			ptr->pages << (PAGE_SHIFT - 10),
1719 			ptr->inuse_pages << (PAGE_SHIFT - 10),
1720 			ptr->prio);
1721 	return 0;
1722 }
1723 
1724 static const struct seq_operations swaps_op = {
1725 	.start =	swap_start,
1726 	.next =		swap_next,
1727 	.stop =		swap_stop,
1728 	.show =		swap_show
1729 };
1730 
1731 static int swaps_open(struct inode *inode, struct file *file)
1732 {
1733 	return seq_open(file, &swaps_op);
1734 }
1735 
1736 static const struct file_operations proc_swaps_operations = {
1737 	.open		= swaps_open,
1738 	.read		= seq_read,
1739 	.llseek		= seq_lseek,
1740 	.release	= seq_release,
1741 };
1742 
1743 static int __init procswaps_init(void)
1744 {
1745 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1746 	return 0;
1747 }
1748 __initcall(procswaps_init);
1749 #endif /* CONFIG_PROC_FS */
1750 
1751 #ifdef MAX_SWAPFILES_CHECK
1752 static int __init max_swapfiles_check(void)
1753 {
1754 	MAX_SWAPFILES_CHECK();
1755 	return 0;
1756 }
1757 late_initcall(max_swapfiles_check);
1758 #endif
1759 
1760 /*
1761  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1762  *
1763  * The swapon system call
1764  */
1765 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1766 {
1767 	struct swap_info_struct * p;
1768 	char *name = NULL;
1769 	struct block_device *bdev = NULL;
1770 	struct file *swap_file = NULL;
1771 	struct address_space *mapping;
1772 	unsigned int type;
1773 	int i, prev;
1774 	int error;
1775 	union swap_header *swap_header = NULL;
1776 	unsigned int nr_good_pages = 0;
1777 	int nr_extents = 0;
1778 	sector_t span;
1779 	unsigned long maxpages = 1;
1780 	unsigned long swapfilepages;
1781 	unsigned short *swap_map = NULL;
1782 	struct page *page = NULL;
1783 	struct inode *inode = NULL;
1784 	int did_down = 0;
1785 
1786 	if (!capable(CAP_SYS_ADMIN))
1787 		return -EPERM;
1788 	spin_lock(&swap_lock);
1789 	p = swap_info;
1790 	for (type = 0 ; type < nr_swapfiles ; type++,p++)
1791 		if (!(p->flags & SWP_USED))
1792 			break;
1793 	error = -EPERM;
1794 	if (type >= MAX_SWAPFILES) {
1795 		spin_unlock(&swap_lock);
1796 		goto out;
1797 	}
1798 	if (type >= nr_swapfiles)
1799 		nr_swapfiles = type+1;
1800 	memset(p, 0, sizeof(*p));
1801 	INIT_LIST_HEAD(&p->extent_list);
1802 	p->flags = SWP_USED;
1803 	p->next = -1;
1804 	spin_unlock(&swap_lock);
1805 	name = getname(specialfile);
1806 	error = PTR_ERR(name);
1807 	if (IS_ERR(name)) {
1808 		name = NULL;
1809 		goto bad_swap_2;
1810 	}
1811 	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1812 	error = PTR_ERR(swap_file);
1813 	if (IS_ERR(swap_file)) {
1814 		swap_file = NULL;
1815 		goto bad_swap_2;
1816 	}
1817 
1818 	p->swap_file = swap_file;
1819 	mapping = swap_file->f_mapping;
1820 	inode = mapping->host;
1821 
1822 	error = -EBUSY;
1823 	for (i = 0; i < nr_swapfiles; i++) {
1824 		struct swap_info_struct *q = &swap_info[i];
1825 
1826 		if (i == type || !q->swap_file)
1827 			continue;
1828 		if (mapping == q->swap_file->f_mapping)
1829 			goto bad_swap;
1830 	}
1831 
1832 	error = -EINVAL;
1833 	if (S_ISBLK(inode->i_mode)) {
1834 		bdev = I_BDEV(inode);
1835 		error = bd_claim(bdev, sys_swapon);
1836 		if (error < 0) {
1837 			bdev = NULL;
1838 			error = -EINVAL;
1839 			goto bad_swap;
1840 		}
1841 		p->old_block_size = block_size(bdev);
1842 		error = set_blocksize(bdev, PAGE_SIZE);
1843 		if (error < 0)
1844 			goto bad_swap;
1845 		p->bdev = bdev;
1846 	} else if (S_ISREG(inode->i_mode)) {
1847 		p->bdev = inode->i_sb->s_bdev;
1848 		mutex_lock(&inode->i_mutex);
1849 		did_down = 1;
1850 		if (IS_SWAPFILE(inode)) {
1851 			error = -EBUSY;
1852 			goto bad_swap;
1853 		}
1854 	} else {
1855 		goto bad_swap;
1856 	}
1857 
1858 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1859 
1860 	/*
1861 	 * Read the swap header.
1862 	 */
1863 	if (!mapping->a_ops->readpage) {
1864 		error = -EINVAL;
1865 		goto bad_swap;
1866 	}
1867 	page = read_mapping_page(mapping, 0, swap_file);
1868 	if (IS_ERR(page)) {
1869 		error = PTR_ERR(page);
1870 		goto bad_swap;
1871 	}
1872 	swap_header = kmap(page);
1873 
1874 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1875 		printk(KERN_ERR "Unable to find swap-space signature\n");
1876 		error = -EINVAL;
1877 		goto bad_swap;
1878 	}
1879 
1880 	/* swap partition endianess hack... */
1881 	if (swab32(swap_header->info.version) == 1) {
1882 		swab32s(&swap_header->info.version);
1883 		swab32s(&swap_header->info.last_page);
1884 		swab32s(&swap_header->info.nr_badpages);
1885 		for (i = 0; i < swap_header->info.nr_badpages; i++)
1886 			swab32s(&swap_header->info.badpages[i]);
1887 	}
1888 	/* Check the swap header's sub-version */
1889 	if (swap_header->info.version != 1) {
1890 		printk(KERN_WARNING
1891 		       "Unable to handle swap header version %d\n",
1892 		       swap_header->info.version);
1893 		error = -EINVAL;
1894 		goto bad_swap;
1895 	}
1896 
1897 	p->lowest_bit  = 1;
1898 	p->cluster_next = 1;
1899 
1900 	/*
1901 	 * Find out how many pages are allowed for a single swap
1902 	 * device. There are two limiting factors: 1) the number of
1903 	 * bits for the swap offset in the swp_entry_t type and
1904 	 * 2) the number of bits in the a swap pte as defined by
1905 	 * the different architectures. In order to find the
1906 	 * largest possible bit mask a swap entry with swap type 0
1907 	 * and swap offset ~0UL is created, encoded to a swap pte,
1908 	 * decoded to a swp_entry_t again and finally the swap
1909 	 * offset is extracted. This will mask all the bits from
1910 	 * the initial ~0UL mask that can't be encoded in either
1911 	 * the swp_entry_t or the architecture definition of a
1912 	 * swap pte.
1913 	 */
1914 	maxpages = swp_offset(pte_to_swp_entry(
1915 			swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1916 	if (maxpages > swap_header->info.last_page)
1917 		maxpages = swap_header->info.last_page;
1918 	p->highest_bit = maxpages - 1;
1919 
1920 	error = -EINVAL;
1921 	if (!maxpages)
1922 		goto bad_swap;
1923 	if (swapfilepages && maxpages > swapfilepages) {
1924 		printk(KERN_WARNING
1925 		       "Swap area shorter than signature indicates\n");
1926 		goto bad_swap;
1927 	}
1928 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1929 		goto bad_swap;
1930 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1931 		goto bad_swap;
1932 
1933 	/* OK, set up the swap map and apply the bad block list */
1934 	swap_map = vmalloc(maxpages * sizeof(short));
1935 	if (!swap_map) {
1936 		error = -ENOMEM;
1937 		goto bad_swap;
1938 	}
1939 
1940 	memset(swap_map, 0, maxpages * sizeof(short));
1941 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
1942 		int page_nr = swap_header->info.badpages[i];
1943 		if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
1944 			error = -EINVAL;
1945 			goto bad_swap;
1946 		}
1947 		swap_map[page_nr] = SWAP_MAP_BAD;
1948 	}
1949 
1950 	error = swap_cgroup_swapon(type, maxpages);
1951 	if (error)
1952 		goto bad_swap;
1953 
1954 	nr_good_pages = swap_header->info.last_page -
1955 			swap_header->info.nr_badpages -
1956 			1 /* header page */;
1957 
1958 	if (nr_good_pages) {
1959 		swap_map[0] = SWAP_MAP_BAD;
1960 		p->max = maxpages;
1961 		p->pages = nr_good_pages;
1962 		nr_extents = setup_swap_extents(p, &span);
1963 		if (nr_extents < 0) {
1964 			error = nr_extents;
1965 			goto bad_swap;
1966 		}
1967 		nr_good_pages = p->pages;
1968 	}
1969 	if (!nr_good_pages) {
1970 		printk(KERN_WARNING "Empty swap-file\n");
1971 		error = -EINVAL;
1972 		goto bad_swap;
1973 	}
1974 
1975 	if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
1976 		p->flags |= SWP_SOLIDSTATE;
1977 		p->cluster_next = 1 + (random32() % p->highest_bit);
1978 	}
1979 	if (discard_swap(p) == 0)
1980 		p->flags |= SWP_DISCARDABLE;
1981 
1982 	mutex_lock(&swapon_mutex);
1983 	spin_lock(&swap_lock);
1984 	if (swap_flags & SWAP_FLAG_PREFER)
1985 		p->prio =
1986 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1987 	else
1988 		p->prio = --least_priority;
1989 	p->swap_map = swap_map;
1990 	p->flags |= SWP_WRITEOK;
1991 	nr_swap_pages += nr_good_pages;
1992 	total_swap_pages += nr_good_pages;
1993 
1994 	printk(KERN_INFO "Adding %uk swap on %s.  "
1995 			"Priority:%d extents:%d across:%lluk %s%s\n",
1996 		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1997 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
1998 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
1999 		(p->flags & SWP_DISCARDABLE) ? "D" : "");
2000 
2001 	/* insert swap space into swap_list: */
2002 	prev = -1;
2003 	for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
2004 		if (p->prio >= swap_info[i].prio) {
2005 			break;
2006 		}
2007 		prev = i;
2008 	}
2009 	p->next = i;
2010 	if (prev < 0) {
2011 		swap_list.head = swap_list.next = p - swap_info;
2012 	} else {
2013 		swap_info[prev].next = p - swap_info;
2014 	}
2015 	spin_unlock(&swap_lock);
2016 	mutex_unlock(&swapon_mutex);
2017 	error = 0;
2018 	goto out;
2019 bad_swap:
2020 	if (bdev) {
2021 		set_blocksize(bdev, p->old_block_size);
2022 		bd_release(bdev);
2023 	}
2024 	destroy_swap_extents(p);
2025 	swap_cgroup_swapoff(type);
2026 bad_swap_2:
2027 	spin_lock(&swap_lock);
2028 	p->swap_file = NULL;
2029 	p->flags = 0;
2030 	spin_unlock(&swap_lock);
2031 	vfree(swap_map);
2032 	if (swap_file)
2033 		filp_close(swap_file, NULL);
2034 out:
2035 	if (page && !IS_ERR(page)) {
2036 		kunmap(page);
2037 		page_cache_release(page);
2038 	}
2039 	if (name)
2040 		putname(name);
2041 	if (did_down) {
2042 		if (!error)
2043 			inode->i_flags |= S_SWAPFILE;
2044 		mutex_unlock(&inode->i_mutex);
2045 	}
2046 	return error;
2047 }
2048 
2049 void si_swapinfo(struct sysinfo *val)
2050 {
2051 	unsigned int i;
2052 	unsigned long nr_to_be_unused = 0;
2053 
2054 	spin_lock(&swap_lock);
2055 	for (i = 0; i < nr_swapfiles; i++) {
2056 		if (!(swap_info[i].flags & SWP_USED) ||
2057 		     (swap_info[i].flags & SWP_WRITEOK))
2058 			continue;
2059 		nr_to_be_unused += swap_info[i].inuse_pages;
2060 	}
2061 	val->freeswap = nr_swap_pages + nr_to_be_unused;
2062 	val->totalswap = total_swap_pages + nr_to_be_unused;
2063 	spin_unlock(&swap_lock);
2064 }
2065 
2066 /*
2067  * Verify that a swap entry is valid and increment its swap map count.
2068  *
2069  * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
2070  * "permanent", but will be reclaimed by the next swapoff.
2071  * Returns error code in following case.
2072  * - success -> 0
2073  * - swp_entry is invalid -> EINVAL
2074  * - swp_entry is migration entry -> EINVAL
2075  * - swap-cache reference is requested but there is already one. -> EEXIST
2076  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2077  */
2078 static int __swap_duplicate(swp_entry_t entry, bool cache)
2079 {
2080 	struct swap_info_struct * p;
2081 	unsigned long offset, type;
2082 	int result = -EINVAL;
2083 	int count;
2084 	bool has_cache;
2085 
2086 	if (is_migration_entry(entry))
2087 		return -EINVAL;
2088 
2089 	type = swp_type(entry);
2090 	if (type >= nr_swapfiles)
2091 		goto bad_file;
2092 	p = type + swap_info;
2093 	offset = swp_offset(entry);
2094 
2095 	spin_lock(&swap_lock);
2096 
2097 	if (unlikely(offset >= p->max))
2098 		goto unlock_out;
2099 
2100 	count = swap_count(p->swap_map[offset]);
2101 	has_cache = swap_has_cache(p->swap_map[offset]);
2102 
2103 	if (cache == SWAP_CACHE) { /* called for swapcache/swapin-readahead */
2104 
2105 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2106 		if (!has_cache && count) {
2107 			p->swap_map[offset] = encode_swapmap(count, true);
2108 			result = 0;
2109 		} else if (has_cache) /* someone added cache */
2110 			result = -EEXIST;
2111 		else if (!count) /* no users */
2112 			result = -ENOENT;
2113 
2114 	} else if (count || has_cache) {
2115 		if (count < SWAP_MAP_MAX - 1) {
2116 			p->swap_map[offset] = encode_swapmap(count + 1,
2117 							     has_cache);
2118 			result = 0;
2119 		} else if (count <= SWAP_MAP_MAX) {
2120 			if (swap_overflow++ < 5)
2121 				printk(KERN_WARNING
2122 				       "swap_dup: swap entry overflow\n");
2123 			p->swap_map[offset] = encode_swapmap(SWAP_MAP_MAX,
2124 							      has_cache);
2125 			result = 0;
2126 		}
2127 	} else
2128 		result = -ENOENT; /* unused swap entry */
2129 unlock_out:
2130 	spin_unlock(&swap_lock);
2131 out:
2132 	return result;
2133 
2134 bad_file:
2135 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2136 	goto out;
2137 }
2138 /*
2139  * increase reference count of swap entry by 1.
2140  */
2141 void swap_duplicate(swp_entry_t entry)
2142 {
2143 	__swap_duplicate(entry, SWAP_MAP);
2144 }
2145 
2146 /*
2147  * @entry: swap entry for which we allocate swap cache.
2148  *
2149  * Called when allocating swap cache for exising swap entry,
2150  * This can return error codes. Returns 0 at success.
2151  * -EBUSY means there is a swap cache.
2152  * Note: return code is different from swap_duplicate().
2153  */
2154 int swapcache_prepare(swp_entry_t entry)
2155 {
2156 	return __swap_duplicate(entry, SWAP_CACHE);
2157 }
2158 
2159 
2160 struct swap_info_struct *
2161 get_swap_info_struct(unsigned type)
2162 {
2163 	return &swap_info[type];
2164 }
2165 
2166 /*
2167  * swap_lock prevents swap_map being freed. Don't grab an extra
2168  * reference on the swaphandle, it doesn't matter if it becomes unused.
2169  */
2170 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2171 {
2172 	struct swap_info_struct *si;
2173 	int our_page_cluster = page_cluster;
2174 	pgoff_t target, toff;
2175 	pgoff_t base, end;
2176 	int nr_pages = 0;
2177 
2178 	if (!our_page_cluster)	/* no readahead */
2179 		return 0;
2180 
2181 	si = &swap_info[swp_type(entry)];
2182 	target = swp_offset(entry);
2183 	base = (target >> our_page_cluster) << our_page_cluster;
2184 	end = base + (1 << our_page_cluster);
2185 	if (!base)		/* first page is swap header */
2186 		base++;
2187 
2188 	spin_lock(&swap_lock);
2189 	if (end > si->max)	/* don't go beyond end of map */
2190 		end = si->max;
2191 
2192 	/* Count contiguous allocated slots above our target */
2193 	for (toff = target; ++toff < end; nr_pages++) {
2194 		/* Don't read in free or bad pages */
2195 		if (!si->swap_map[toff])
2196 			break;
2197 		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2198 			break;
2199 	}
2200 	/* Count contiguous allocated slots below our target */
2201 	for (toff = target; --toff >= base; nr_pages++) {
2202 		/* Don't read in free or bad pages */
2203 		if (!si->swap_map[toff])
2204 			break;
2205 		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2206 			break;
2207 	}
2208 	spin_unlock(&swap_lock);
2209 
2210 	/*
2211 	 * Indicate starting offset, and return number of pages to get:
2212 	 * if only 1, say 0, since there's then no readahead to be done.
2213 	 */
2214 	*offset = ++toff;
2215 	return nr_pages? ++nr_pages: 0;
2216 }
2217