1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/hugetlb.h> 10 #include <linux/mman.h> 11 #include <linux/slab.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/shm.h> 18 #include <linux/blkdev.h> 19 #include <linux/random.h> 20 #include <linux/writeback.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/init.h> 24 #include <linux/module.h> 25 #include <linux/rmap.h> 26 #include <linux/security.h> 27 #include <linux/backing-dev.h> 28 #include <linux/mutex.h> 29 #include <linux/capability.h> 30 #include <linux/syscalls.h> 31 #include <linux/memcontrol.h> 32 33 #include <asm/pgtable.h> 34 #include <asm/tlbflush.h> 35 #include <linux/swapops.h> 36 #include <linux/page_cgroup.h> 37 38 static DEFINE_SPINLOCK(swap_lock); 39 static unsigned int nr_swapfiles; 40 long nr_swap_pages; 41 long total_swap_pages; 42 static int swap_overflow; 43 static int least_priority; 44 45 static const char Bad_file[] = "Bad swap file entry "; 46 static const char Unused_file[] = "Unused swap file entry "; 47 static const char Bad_offset[] = "Bad swap offset entry "; 48 static const char Unused_offset[] = "Unused swap offset entry "; 49 50 static struct swap_list_t swap_list = {-1, -1}; 51 52 static struct swap_info_struct swap_info[MAX_SWAPFILES]; 53 54 static DEFINE_MUTEX(swapon_mutex); 55 56 /* For reference count accounting in swap_map */ 57 /* enum for swap_map[] handling. internal use only */ 58 enum { 59 SWAP_MAP = 0, /* ops for reference from swap users */ 60 SWAP_CACHE, /* ops for reference from swap cache */ 61 }; 62 63 static inline int swap_count(unsigned short ent) 64 { 65 return ent & SWAP_COUNT_MASK; 66 } 67 68 static inline bool swap_has_cache(unsigned short ent) 69 { 70 return !!(ent & SWAP_HAS_CACHE); 71 } 72 73 static inline unsigned short encode_swapmap(int count, bool has_cache) 74 { 75 unsigned short ret = count; 76 77 if (has_cache) 78 return SWAP_HAS_CACHE | ret; 79 return ret; 80 } 81 82 /* returnes 1 if swap entry is freed */ 83 static int 84 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) 85 { 86 int type = si - swap_info; 87 swp_entry_t entry = swp_entry(type, offset); 88 struct page *page; 89 int ret = 0; 90 91 page = find_get_page(&swapper_space, entry.val); 92 if (!page) 93 return 0; 94 /* 95 * This function is called from scan_swap_map() and it's called 96 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. 97 * We have to use trylock for avoiding deadlock. This is a special 98 * case and you should use try_to_free_swap() with explicit lock_page() 99 * in usual operations. 100 */ 101 if (trylock_page(page)) { 102 ret = try_to_free_swap(page); 103 unlock_page(page); 104 } 105 page_cache_release(page); 106 return ret; 107 } 108 109 /* 110 * We need this because the bdev->unplug_fn can sleep and we cannot 111 * hold swap_lock while calling the unplug_fn. And swap_lock 112 * cannot be turned into a mutex. 113 */ 114 static DECLARE_RWSEM(swap_unplug_sem); 115 116 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page) 117 { 118 swp_entry_t entry; 119 120 down_read(&swap_unplug_sem); 121 entry.val = page_private(page); 122 if (PageSwapCache(page)) { 123 struct block_device *bdev = swap_info[swp_type(entry)].bdev; 124 struct backing_dev_info *bdi; 125 126 /* 127 * If the page is removed from swapcache from under us (with a 128 * racy try_to_unuse/swapoff) we need an additional reference 129 * count to avoid reading garbage from page_private(page) above. 130 * If the WARN_ON triggers during a swapoff it maybe the race 131 * condition and it's harmless. However if it triggers without 132 * swapoff it signals a problem. 133 */ 134 WARN_ON(page_count(page) <= 1); 135 136 bdi = bdev->bd_inode->i_mapping->backing_dev_info; 137 blk_run_backing_dev(bdi, page); 138 } 139 up_read(&swap_unplug_sem); 140 } 141 142 /* 143 * swapon tell device that all the old swap contents can be discarded, 144 * to allow the swap device to optimize its wear-levelling. 145 */ 146 static int discard_swap(struct swap_info_struct *si) 147 { 148 struct swap_extent *se; 149 int err = 0; 150 151 list_for_each_entry(se, &si->extent_list, list) { 152 sector_t start_block = se->start_block << (PAGE_SHIFT - 9); 153 sector_t nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 154 155 if (se->start_page == 0) { 156 /* Do not discard the swap header page! */ 157 start_block += 1 << (PAGE_SHIFT - 9); 158 nr_blocks -= 1 << (PAGE_SHIFT - 9); 159 if (!nr_blocks) 160 continue; 161 } 162 163 err = blkdev_issue_discard(si->bdev, start_block, 164 nr_blocks, GFP_KERNEL); 165 if (err) 166 break; 167 168 cond_resched(); 169 } 170 return err; /* That will often be -EOPNOTSUPP */ 171 } 172 173 /* 174 * swap allocation tell device that a cluster of swap can now be discarded, 175 * to allow the swap device to optimize its wear-levelling. 176 */ 177 static void discard_swap_cluster(struct swap_info_struct *si, 178 pgoff_t start_page, pgoff_t nr_pages) 179 { 180 struct swap_extent *se = si->curr_swap_extent; 181 int found_extent = 0; 182 183 while (nr_pages) { 184 struct list_head *lh; 185 186 if (se->start_page <= start_page && 187 start_page < se->start_page + se->nr_pages) { 188 pgoff_t offset = start_page - se->start_page; 189 sector_t start_block = se->start_block + offset; 190 sector_t nr_blocks = se->nr_pages - offset; 191 192 if (nr_blocks > nr_pages) 193 nr_blocks = nr_pages; 194 start_page += nr_blocks; 195 nr_pages -= nr_blocks; 196 197 if (!found_extent++) 198 si->curr_swap_extent = se; 199 200 start_block <<= PAGE_SHIFT - 9; 201 nr_blocks <<= PAGE_SHIFT - 9; 202 if (blkdev_issue_discard(si->bdev, start_block, 203 nr_blocks, GFP_NOIO)) 204 break; 205 } 206 207 lh = se->list.next; 208 if (lh == &si->extent_list) 209 lh = lh->next; 210 se = list_entry(lh, struct swap_extent, list); 211 } 212 } 213 214 static int wait_for_discard(void *word) 215 { 216 schedule(); 217 return 0; 218 } 219 220 #define SWAPFILE_CLUSTER 256 221 #define LATENCY_LIMIT 256 222 223 static inline unsigned long scan_swap_map(struct swap_info_struct *si, 224 int cache) 225 { 226 unsigned long offset; 227 unsigned long scan_base; 228 unsigned long last_in_cluster = 0; 229 int latency_ration = LATENCY_LIMIT; 230 int found_free_cluster = 0; 231 232 /* 233 * We try to cluster swap pages by allocating them sequentially 234 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 235 * way, however, we resort to first-free allocation, starting 236 * a new cluster. This prevents us from scattering swap pages 237 * all over the entire swap partition, so that we reduce 238 * overall disk seek times between swap pages. -- sct 239 * But we do now try to find an empty cluster. -Andrea 240 * And we let swap pages go all over an SSD partition. Hugh 241 */ 242 243 si->flags += SWP_SCANNING; 244 scan_base = offset = si->cluster_next; 245 246 if (unlikely(!si->cluster_nr--)) { 247 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 248 si->cluster_nr = SWAPFILE_CLUSTER - 1; 249 goto checks; 250 } 251 if (si->flags & SWP_DISCARDABLE) { 252 /* 253 * Start range check on racing allocations, in case 254 * they overlap the cluster we eventually decide on 255 * (we scan without swap_lock to allow preemption). 256 * It's hardly conceivable that cluster_nr could be 257 * wrapped during our scan, but don't depend on it. 258 */ 259 if (si->lowest_alloc) 260 goto checks; 261 si->lowest_alloc = si->max; 262 si->highest_alloc = 0; 263 } 264 spin_unlock(&swap_lock); 265 266 /* 267 * If seek is expensive, start searching for new cluster from 268 * start of partition, to minimize the span of allocated swap. 269 * But if seek is cheap, search from our current position, so 270 * that swap is allocated from all over the partition: if the 271 * Flash Translation Layer only remaps within limited zones, 272 * we don't want to wear out the first zone too quickly. 273 */ 274 if (!(si->flags & SWP_SOLIDSTATE)) 275 scan_base = offset = si->lowest_bit; 276 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 277 278 /* Locate the first empty (unaligned) cluster */ 279 for (; last_in_cluster <= si->highest_bit; offset++) { 280 if (si->swap_map[offset]) 281 last_in_cluster = offset + SWAPFILE_CLUSTER; 282 else if (offset == last_in_cluster) { 283 spin_lock(&swap_lock); 284 offset -= SWAPFILE_CLUSTER - 1; 285 si->cluster_next = offset; 286 si->cluster_nr = SWAPFILE_CLUSTER - 1; 287 found_free_cluster = 1; 288 goto checks; 289 } 290 if (unlikely(--latency_ration < 0)) { 291 cond_resched(); 292 latency_ration = LATENCY_LIMIT; 293 } 294 } 295 296 offset = si->lowest_bit; 297 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 298 299 /* Locate the first empty (unaligned) cluster */ 300 for (; last_in_cluster < scan_base; offset++) { 301 if (si->swap_map[offset]) 302 last_in_cluster = offset + SWAPFILE_CLUSTER; 303 else if (offset == last_in_cluster) { 304 spin_lock(&swap_lock); 305 offset -= SWAPFILE_CLUSTER - 1; 306 si->cluster_next = offset; 307 si->cluster_nr = SWAPFILE_CLUSTER - 1; 308 found_free_cluster = 1; 309 goto checks; 310 } 311 if (unlikely(--latency_ration < 0)) { 312 cond_resched(); 313 latency_ration = LATENCY_LIMIT; 314 } 315 } 316 317 offset = scan_base; 318 spin_lock(&swap_lock); 319 si->cluster_nr = SWAPFILE_CLUSTER - 1; 320 si->lowest_alloc = 0; 321 } 322 323 checks: 324 if (!(si->flags & SWP_WRITEOK)) 325 goto no_page; 326 if (!si->highest_bit) 327 goto no_page; 328 if (offset > si->highest_bit) 329 scan_base = offset = si->lowest_bit; 330 331 /* reuse swap entry of cache-only swap if not busy. */ 332 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 333 int swap_was_freed; 334 spin_unlock(&swap_lock); 335 swap_was_freed = __try_to_reclaim_swap(si, offset); 336 spin_lock(&swap_lock); 337 /* entry was freed successfully, try to use this again */ 338 if (swap_was_freed) 339 goto checks; 340 goto scan; /* check next one */ 341 } 342 343 if (si->swap_map[offset]) 344 goto scan; 345 346 if (offset == si->lowest_bit) 347 si->lowest_bit++; 348 if (offset == si->highest_bit) 349 si->highest_bit--; 350 si->inuse_pages++; 351 if (si->inuse_pages == si->pages) { 352 si->lowest_bit = si->max; 353 si->highest_bit = 0; 354 } 355 if (cache == SWAP_CACHE) /* at usual swap-out via vmscan.c */ 356 si->swap_map[offset] = encode_swapmap(0, true); 357 else /* at suspend */ 358 si->swap_map[offset] = encode_swapmap(1, false); 359 si->cluster_next = offset + 1; 360 si->flags -= SWP_SCANNING; 361 362 if (si->lowest_alloc) { 363 /* 364 * Only set when SWP_DISCARDABLE, and there's a scan 365 * for a free cluster in progress or just completed. 366 */ 367 if (found_free_cluster) { 368 /* 369 * To optimize wear-levelling, discard the 370 * old data of the cluster, taking care not to 371 * discard any of its pages that have already 372 * been allocated by racing tasks (offset has 373 * already stepped over any at the beginning). 374 */ 375 if (offset < si->highest_alloc && 376 si->lowest_alloc <= last_in_cluster) 377 last_in_cluster = si->lowest_alloc - 1; 378 si->flags |= SWP_DISCARDING; 379 spin_unlock(&swap_lock); 380 381 if (offset < last_in_cluster) 382 discard_swap_cluster(si, offset, 383 last_in_cluster - offset + 1); 384 385 spin_lock(&swap_lock); 386 si->lowest_alloc = 0; 387 si->flags &= ~SWP_DISCARDING; 388 389 smp_mb(); /* wake_up_bit advises this */ 390 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING)); 391 392 } else if (si->flags & SWP_DISCARDING) { 393 /* 394 * Delay using pages allocated by racing tasks 395 * until the whole discard has been issued. We 396 * could defer that delay until swap_writepage, 397 * but it's easier to keep this self-contained. 398 */ 399 spin_unlock(&swap_lock); 400 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING), 401 wait_for_discard, TASK_UNINTERRUPTIBLE); 402 spin_lock(&swap_lock); 403 } else { 404 /* 405 * Note pages allocated by racing tasks while 406 * scan for a free cluster is in progress, so 407 * that its final discard can exclude them. 408 */ 409 if (offset < si->lowest_alloc) 410 si->lowest_alloc = offset; 411 if (offset > si->highest_alloc) 412 si->highest_alloc = offset; 413 } 414 } 415 return offset; 416 417 scan: 418 spin_unlock(&swap_lock); 419 while (++offset <= si->highest_bit) { 420 if (!si->swap_map[offset]) { 421 spin_lock(&swap_lock); 422 goto checks; 423 } 424 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 425 spin_lock(&swap_lock); 426 goto checks; 427 } 428 if (unlikely(--latency_ration < 0)) { 429 cond_resched(); 430 latency_ration = LATENCY_LIMIT; 431 } 432 } 433 offset = si->lowest_bit; 434 while (++offset < scan_base) { 435 if (!si->swap_map[offset]) { 436 spin_lock(&swap_lock); 437 goto checks; 438 } 439 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 440 spin_lock(&swap_lock); 441 goto checks; 442 } 443 if (unlikely(--latency_ration < 0)) { 444 cond_resched(); 445 latency_ration = LATENCY_LIMIT; 446 } 447 } 448 spin_lock(&swap_lock); 449 450 no_page: 451 si->flags -= SWP_SCANNING; 452 return 0; 453 } 454 455 swp_entry_t get_swap_page(void) 456 { 457 struct swap_info_struct *si; 458 pgoff_t offset; 459 int type, next; 460 int wrapped = 0; 461 462 spin_lock(&swap_lock); 463 if (nr_swap_pages <= 0) 464 goto noswap; 465 nr_swap_pages--; 466 467 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { 468 si = swap_info + type; 469 next = si->next; 470 if (next < 0 || 471 (!wrapped && si->prio != swap_info[next].prio)) { 472 next = swap_list.head; 473 wrapped++; 474 } 475 476 if (!si->highest_bit) 477 continue; 478 if (!(si->flags & SWP_WRITEOK)) 479 continue; 480 481 swap_list.next = next; 482 /* This is called for allocating swap entry for cache */ 483 offset = scan_swap_map(si, SWAP_CACHE); 484 if (offset) { 485 spin_unlock(&swap_lock); 486 return swp_entry(type, offset); 487 } 488 next = swap_list.next; 489 } 490 491 nr_swap_pages++; 492 noswap: 493 spin_unlock(&swap_lock); 494 return (swp_entry_t) {0}; 495 } 496 497 /* The only caller of this function is now susupend routine */ 498 swp_entry_t get_swap_page_of_type(int type) 499 { 500 struct swap_info_struct *si; 501 pgoff_t offset; 502 503 spin_lock(&swap_lock); 504 si = swap_info + type; 505 if (si->flags & SWP_WRITEOK) { 506 nr_swap_pages--; 507 /* This is called for allocating swap entry, not cache */ 508 offset = scan_swap_map(si, SWAP_MAP); 509 if (offset) { 510 spin_unlock(&swap_lock); 511 return swp_entry(type, offset); 512 } 513 nr_swap_pages++; 514 } 515 spin_unlock(&swap_lock); 516 return (swp_entry_t) {0}; 517 } 518 519 static struct swap_info_struct * swap_info_get(swp_entry_t entry) 520 { 521 struct swap_info_struct * p; 522 unsigned long offset, type; 523 524 if (!entry.val) 525 goto out; 526 type = swp_type(entry); 527 if (type >= nr_swapfiles) 528 goto bad_nofile; 529 p = & swap_info[type]; 530 if (!(p->flags & SWP_USED)) 531 goto bad_device; 532 offset = swp_offset(entry); 533 if (offset >= p->max) 534 goto bad_offset; 535 if (!p->swap_map[offset]) 536 goto bad_free; 537 spin_lock(&swap_lock); 538 return p; 539 540 bad_free: 541 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); 542 goto out; 543 bad_offset: 544 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); 545 goto out; 546 bad_device: 547 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); 548 goto out; 549 bad_nofile: 550 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); 551 out: 552 return NULL; 553 } 554 555 static int swap_entry_free(struct swap_info_struct *p, 556 swp_entry_t ent, int cache) 557 { 558 unsigned long offset = swp_offset(ent); 559 int count = swap_count(p->swap_map[offset]); 560 bool has_cache; 561 562 has_cache = swap_has_cache(p->swap_map[offset]); 563 564 if (cache == SWAP_MAP) { /* dropping usage count of swap */ 565 if (count < SWAP_MAP_MAX) { 566 count--; 567 p->swap_map[offset] = encode_swapmap(count, has_cache); 568 } 569 } else { /* dropping swap cache flag */ 570 VM_BUG_ON(!has_cache); 571 p->swap_map[offset] = encode_swapmap(count, false); 572 573 } 574 /* return code. */ 575 count = p->swap_map[offset]; 576 /* free if no reference */ 577 if (!count) { 578 if (offset < p->lowest_bit) 579 p->lowest_bit = offset; 580 if (offset > p->highest_bit) 581 p->highest_bit = offset; 582 if (p->prio > swap_info[swap_list.next].prio) 583 swap_list.next = p - swap_info; 584 nr_swap_pages++; 585 p->inuse_pages--; 586 } 587 if (!swap_count(count)) 588 mem_cgroup_uncharge_swap(ent); 589 return count; 590 } 591 592 /* 593 * Caller has made sure that the swapdevice corresponding to entry 594 * is still around or has not been recycled. 595 */ 596 void swap_free(swp_entry_t entry) 597 { 598 struct swap_info_struct * p; 599 600 p = swap_info_get(entry); 601 if (p) { 602 swap_entry_free(p, entry, SWAP_MAP); 603 spin_unlock(&swap_lock); 604 } 605 } 606 607 /* 608 * Called after dropping swapcache to decrease refcnt to swap entries. 609 */ 610 void swapcache_free(swp_entry_t entry, struct page *page) 611 { 612 struct swap_info_struct *p; 613 int ret; 614 615 p = swap_info_get(entry); 616 if (p) { 617 ret = swap_entry_free(p, entry, SWAP_CACHE); 618 if (page) { 619 bool swapout; 620 if (ret) 621 swapout = true; /* the end of swap out */ 622 else 623 swapout = false; /* no more swap users! */ 624 mem_cgroup_uncharge_swapcache(page, entry, swapout); 625 } 626 spin_unlock(&swap_lock); 627 } 628 return; 629 } 630 631 /* 632 * How many references to page are currently swapped out? 633 */ 634 static inline int page_swapcount(struct page *page) 635 { 636 int count = 0; 637 struct swap_info_struct *p; 638 swp_entry_t entry; 639 640 entry.val = page_private(page); 641 p = swap_info_get(entry); 642 if (p) { 643 count = swap_count(p->swap_map[swp_offset(entry)]); 644 spin_unlock(&swap_lock); 645 } 646 return count; 647 } 648 649 /* 650 * We can write to an anon page without COW if there are no other references 651 * to it. And as a side-effect, free up its swap: because the old content 652 * on disk will never be read, and seeking back there to write new content 653 * later would only waste time away from clustering. 654 */ 655 int reuse_swap_page(struct page *page) 656 { 657 int count; 658 659 VM_BUG_ON(!PageLocked(page)); 660 count = page_mapcount(page); 661 if (count <= 1 && PageSwapCache(page)) { 662 count += page_swapcount(page); 663 if (count == 1 && !PageWriteback(page)) { 664 delete_from_swap_cache(page); 665 SetPageDirty(page); 666 } 667 } 668 return count == 1; 669 } 670 671 /* 672 * If swap is getting full, or if there are no more mappings of this page, 673 * then try_to_free_swap is called to free its swap space. 674 */ 675 int try_to_free_swap(struct page *page) 676 { 677 VM_BUG_ON(!PageLocked(page)); 678 679 if (!PageSwapCache(page)) 680 return 0; 681 if (PageWriteback(page)) 682 return 0; 683 if (page_swapcount(page)) 684 return 0; 685 686 delete_from_swap_cache(page); 687 SetPageDirty(page); 688 return 1; 689 } 690 691 /* 692 * Free the swap entry like above, but also try to 693 * free the page cache entry if it is the last user. 694 */ 695 int free_swap_and_cache(swp_entry_t entry) 696 { 697 struct swap_info_struct *p; 698 struct page *page = NULL; 699 700 if (is_migration_entry(entry)) 701 return 1; 702 703 p = swap_info_get(entry); 704 if (p) { 705 if (swap_entry_free(p, entry, SWAP_MAP) == SWAP_HAS_CACHE) { 706 page = find_get_page(&swapper_space, entry.val); 707 if (page && !trylock_page(page)) { 708 page_cache_release(page); 709 page = NULL; 710 } 711 } 712 spin_unlock(&swap_lock); 713 } 714 if (page) { 715 /* 716 * Not mapped elsewhere, or swap space full? Free it! 717 * Also recheck PageSwapCache now page is locked (above). 718 */ 719 if (PageSwapCache(page) && !PageWriteback(page) && 720 (!page_mapped(page) || vm_swap_full())) { 721 delete_from_swap_cache(page); 722 SetPageDirty(page); 723 } 724 unlock_page(page); 725 page_cache_release(page); 726 } 727 return p != NULL; 728 } 729 730 #ifdef CONFIG_HIBERNATION 731 /* 732 * Find the swap type that corresponds to given device (if any). 733 * 734 * @offset - number of the PAGE_SIZE-sized block of the device, starting 735 * from 0, in which the swap header is expected to be located. 736 * 737 * This is needed for the suspend to disk (aka swsusp). 738 */ 739 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 740 { 741 struct block_device *bdev = NULL; 742 int i; 743 744 if (device) 745 bdev = bdget(device); 746 747 spin_lock(&swap_lock); 748 for (i = 0; i < nr_swapfiles; i++) { 749 struct swap_info_struct *sis = swap_info + i; 750 751 if (!(sis->flags & SWP_WRITEOK)) 752 continue; 753 754 if (!bdev) { 755 if (bdev_p) 756 *bdev_p = bdgrab(sis->bdev); 757 758 spin_unlock(&swap_lock); 759 return i; 760 } 761 if (bdev == sis->bdev) { 762 struct swap_extent *se; 763 764 se = list_entry(sis->extent_list.next, 765 struct swap_extent, list); 766 if (se->start_block == offset) { 767 if (bdev_p) 768 *bdev_p = bdgrab(sis->bdev); 769 770 spin_unlock(&swap_lock); 771 bdput(bdev); 772 return i; 773 } 774 } 775 } 776 spin_unlock(&swap_lock); 777 if (bdev) 778 bdput(bdev); 779 780 return -ENODEV; 781 } 782 783 /* 784 * Return either the total number of swap pages of given type, or the number 785 * of free pages of that type (depending on @free) 786 * 787 * This is needed for software suspend 788 */ 789 unsigned int count_swap_pages(int type, int free) 790 { 791 unsigned int n = 0; 792 793 if (type < nr_swapfiles) { 794 spin_lock(&swap_lock); 795 if (swap_info[type].flags & SWP_WRITEOK) { 796 n = swap_info[type].pages; 797 if (free) 798 n -= swap_info[type].inuse_pages; 799 } 800 spin_unlock(&swap_lock); 801 } 802 return n; 803 } 804 #endif 805 806 /* 807 * No need to decide whether this PTE shares the swap entry with others, 808 * just let do_wp_page work it out if a write is requested later - to 809 * force COW, vm_page_prot omits write permission from any private vma. 810 */ 811 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 812 unsigned long addr, swp_entry_t entry, struct page *page) 813 { 814 struct mem_cgroup *ptr = NULL; 815 spinlock_t *ptl; 816 pte_t *pte; 817 int ret = 1; 818 819 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) { 820 ret = -ENOMEM; 821 goto out_nolock; 822 } 823 824 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 825 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) { 826 if (ret > 0) 827 mem_cgroup_cancel_charge_swapin(ptr); 828 ret = 0; 829 goto out; 830 } 831 832 inc_mm_counter(vma->vm_mm, anon_rss); 833 get_page(page); 834 set_pte_at(vma->vm_mm, addr, pte, 835 pte_mkold(mk_pte(page, vma->vm_page_prot))); 836 page_add_anon_rmap(page, vma, addr); 837 mem_cgroup_commit_charge_swapin(page, ptr); 838 swap_free(entry); 839 /* 840 * Move the page to the active list so it is not 841 * immediately swapped out again after swapon. 842 */ 843 activate_page(page); 844 out: 845 pte_unmap_unlock(pte, ptl); 846 out_nolock: 847 return ret; 848 } 849 850 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 851 unsigned long addr, unsigned long end, 852 swp_entry_t entry, struct page *page) 853 { 854 pte_t swp_pte = swp_entry_to_pte(entry); 855 pte_t *pte; 856 int ret = 0; 857 858 /* 859 * We don't actually need pte lock while scanning for swp_pte: since 860 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 861 * page table while we're scanning; though it could get zapped, and on 862 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 863 * of unmatched parts which look like swp_pte, so unuse_pte must 864 * recheck under pte lock. Scanning without pte lock lets it be 865 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 866 */ 867 pte = pte_offset_map(pmd, addr); 868 do { 869 /* 870 * swapoff spends a _lot_ of time in this loop! 871 * Test inline before going to call unuse_pte. 872 */ 873 if (unlikely(pte_same(*pte, swp_pte))) { 874 pte_unmap(pte); 875 ret = unuse_pte(vma, pmd, addr, entry, page); 876 if (ret) 877 goto out; 878 pte = pte_offset_map(pmd, addr); 879 } 880 } while (pte++, addr += PAGE_SIZE, addr != end); 881 pte_unmap(pte - 1); 882 out: 883 return ret; 884 } 885 886 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 887 unsigned long addr, unsigned long end, 888 swp_entry_t entry, struct page *page) 889 { 890 pmd_t *pmd; 891 unsigned long next; 892 int ret; 893 894 pmd = pmd_offset(pud, addr); 895 do { 896 next = pmd_addr_end(addr, end); 897 if (pmd_none_or_clear_bad(pmd)) 898 continue; 899 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 900 if (ret) 901 return ret; 902 } while (pmd++, addr = next, addr != end); 903 return 0; 904 } 905 906 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 907 unsigned long addr, unsigned long end, 908 swp_entry_t entry, struct page *page) 909 { 910 pud_t *pud; 911 unsigned long next; 912 int ret; 913 914 pud = pud_offset(pgd, addr); 915 do { 916 next = pud_addr_end(addr, end); 917 if (pud_none_or_clear_bad(pud)) 918 continue; 919 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 920 if (ret) 921 return ret; 922 } while (pud++, addr = next, addr != end); 923 return 0; 924 } 925 926 static int unuse_vma(struct vm_area_struct *vma, 927 swp_entry_t entry, struct page *page) 928 { 929 pgd_t *pgd; 930 unsigned long addr, end, next; 931 int ret; 932 933 if (page->mapping) { 934 addr = page_address_in_vma(page, vma); 935 if (addr == -EFAULT) 936 return 0; 937 else 938 end = addr + PAGE_SIZE; 939 } else { 940 addr = vma->vm_start; 941 end = vma->vm_end; 942 } 943 944 pgd = pgd_offset(vma->vm_mm, addr); 945 do { 946 next = pgd_addr_end(addr, end); 947 if (pgd_none_or_clear_bad(pgd)) 948 continue; 949 ret = unuse_pud_range(vma, pgd, addr, next, entry, page); 950 if (ret) 951 return ret; 952 } while (pgd++, addr = next, addr != end); 953 return 0; 954 } 955 956 static int unuse_mm(struct mm_struct *mm, 957 swp_entry_t entry, struct page *page) 958 { 959 struct vm_area_struct *vma; 960 int ret = 0; 961 962 if (!down_read_trylock(&mm->mmap_sem)) { 963 /* 964 * Activate page so shrink_inactive_list is unlikely to unmap 965 * its ptes while lock is dropped, so swapoff can make progress. 966 */ 967 activate_page(page); 968 unlock_page(page); 969 down_read(&mm->mmap_sem); 970 lock_page(page); 971 } 972 for (vma = mm->mmap; vma; vma = vma->vm_next) { 973 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 974 break; 975 } 976 up_read(&mm->mmap_sem); 977 return (ret < 0)? ret: 0; 978 } 979 980 /* 981 * Scan swap_map from current position to next entry still in use. 982 * Recycle to start on reaching the end, returning 0 when empty. 983 */ 984 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 985 unsigned int prev) 986 { 987 unsigned int max = si->max; 988 unsigned int i = prev; 989 int count; 990 991 /* 992 * No need for swap_lock here: we're just looking 993 * for whether an entry is in use, not modifying it; false 994 * hits are okay, and sys_swapoff() has already prevented new 995 * allocations from this area (while holding swap_lock). 996 */ 997 for (;;) { 998 if (++i >= max) { 999 if (!prev) { 1000 i = 0; 1001 break; 1002 } 1003 /* 1004 * No entries in use at top of swap_map, 1005 * loop back to start and recheck there. 1006 */ 1007 max = prev + 1; 1008 prev = 0; 1009 i = 1; 1010 } 1011 count = si->swap_map[i]; 1012 if (count && swap_count(count) != SWAP_MAP_BAD) 1013 break; 1014 } 1015 return i; 1016 } 1017 1018 /* 1019 * We completely avoid races by reading each swap page in advance, 1020 * and then search for the process using it. All the necessary 1021 * page table adjustments can then be made atomically. 1022 */ 1023 static int try_to_unuse(unsigned int type) 1024 { 1025 struct swap_info_struct * si = &swap_info[type]; 1026 struct mm_struct *start_mm; 1027 unsigned short *swap_map; 1028 unsigned short swcount; 1029 struct page *page; 1030 swp_entry_t entry; 1031 unsigned int i = 0; 1032 int retval = 0; 1033 int reset_overflow = 0; 1034 int shmem; 1035 1036 /* 1037 * When searching mms for an entry, a good strategy is to 1038 * start at the first mm we freed the previous entry from 1039 * (though actually we don't notice whether we or coincidence 1040 * freed the entry). Initialize this start_mm with a hold. 1041 * 1042 * A simpler strategy would be to start at the last mm we 1043 * freed the previous entry from; but that would take less 1044 * advantage of mmlist ordering, which clusters forked mms 1045 * together, child after parent. If we race with dup_mmap(), we 1046 * prefer to resolve parent before child, lest we miss entries 1047 * duplicated after we scanned child: using last mm would invert 1048 * that. Though it's only a serious concern when an overflowed 1049 * swap count is reset from SWAP_MAP_MAX, preventing a rescan. 1050 */ 1051 start_mm = &init_mm; 1052 atomic_inc(&init_mm.mm_users); 1053 1054 /* 1055 * Keep on scanning until all entries have gone. Usually, 1056 * one pass through swap_map is enough, but not necessarily: 1057 * there are races when an instance of an entry might be missed. 1058 */ 1059 while ((i = find_next_to_unuse(si, i)) != 0) { 1060 if (signal_pending(current)) { 1061 retval = -EINTR; 1062 break; 1063 } 1064 1065 /* 1066 * Get a page for the entry, using the existing swap 1067 * cache page if there is one. Otherwise, get a clean 1068 * page and read the swap into it. 1069 */ 1070 swap_map = &si->swap_map[i]; 1071 entry = swp_entry(type, i); 1072 page = read_swap_cache_async(entry, 1073 GFP_HIGHUSER_MOVABLE, NULL, 0); 1074 if (!page) { 1075 /* 1076 * Either swap_duplicate() failed because entry 1077 * has been freed independently, and will not be 1078 * reused since sys_swapoff() already disabled 1079 * allocation from here, or alloc_page() failed. 1080 */ 1081 if (!*swap_map) 1082 continue; 1083 retval = -ENOMEM; 1084 break; 1085 } 1086 1087 /* 1088 * Don't hold on to start_mm if it looks like exiting. 1089 */ 1090 if (atomic_read(&start_mm->mm_users) == 1) { 1091 mmput(start_mm); 1092 start_mm = &init_mm; 1093 atomic_inc(&init_mm.mm_users); 1094 } 1095 1096 /* 1097 * Wait for and lock page. When do_swap_page races with 1098 * try_to_unuse, do_swap_page can handle the fault much 1099 * faster than try_to_unuse can locate the entry. This 1100 * apparently redundant "wait_on_page_locked" lets try_to_unuse 1101 * defer to do_swap_page in such a case - in some tests, 1102 * do_swap_page and try_to_unuse repeatedly compete. 1103 */ 1104 wait_on_page_locked(page); 1105 wait_on_page_writeback(page); 1106 lock_page(page); 1107 wait_on_page_writeback(page); 1108 1109 /* 1110 * Remove all references to entry. 1111 * Whenever we reach init_mm, there's no address space 1112 * to search, but use it as a reminder to search shmem. 1113 */ 1114 shmem = 0; 1115 swcount = *swap_map; 1116 if (swap_count(swcount)) { 1117 if (start_mm == &init_mm) 1118 shmem = shmem_unuse(entry, page); 1119 else 1120 retval = unuse_mm(start_mm, entry, page); 1121 } 1122 if (swap_count(*swap_map)) { 1123 int set_start_mm = (*swap_map >= swcount); 1124 struct list_head *p = &start_mm->mmlist; 1125 struct mm_struct *new_start_mm = start_mm; 1126 struct mm_struct *prev_mm = start_mm; 1127 struct mm_struct *mm; 1128 1129 atomic_inc(&new_start_mm->mm_users); 1130 atomic_inc(&prev_mm->mm_users); 1131 spin_lock(&mmlist_lock); 1132 while (swap_count(*swap_map) && !retval && !shmem && 1133 (p = p->next) != &start_mm->mmlist) { 1134 mm = list_entry(p, struct mm_struct, mmlist); 1135 if (!atomic_inc_not_zero(&mm->mm_users)) 1136 continue; 1137 spin_unlock(&mmlist_lock); 1138 mmput(prev_mm); 1139 prev_mm = mm; 1140 1141 cond_resched(); 1142 1143 swcount = *swap_map; 1144 if (!swap_count(swcount)) /* any usage ? */ 1145 ; 1146 else if (mm == &init_mm) { 1147 set_start_mm = 1; 1148 shmem = shmem_unuse(entry, page); 1149 } else 1150 retval = unuse_mm(mm, entry, page); 1151 1152 if (set_start_mm && 1153 swap_count(*swap_map) < swcount) { 1154 mmput(new_start_mm); 1155 atomic_inc(&mm->mm_users); 1156 new_start_mm = mm; 1157 set_start_mm = 0; 1158 } 1159 spin_lock(&mmlist_lock); 1160 } 1161 spin_unlock(&mmlist_lock); 1162 mmput(prev_mm); 1163 mmput(start_mm); 1164 start_mm = new_start_mm; 1165 } 1166 if (shmem) { 1167 /* page has already been unlocked and released */ 1168 if (shmem > 0) 1169 continue; 1170 retval = shmem; 1171 break; 1172 } 1173 if (retval) { 1174 unlock_page(page); 1175 page_cache_release(page); 1176 break; 1177 } 1178 1179 /* 1180 * How could swap count reach 0x7ffe ? 1181 * There's no way to repeat a swap page within an mm 1182 * (except in shmem, where it's the shared object which takes 1183 * the reference count)? 1184 * We believe SWAP_MAP_MAX cannot occur.(if occur, unsigned 1185 * short is too small....) 1186 * If that's wrong, then we should worry more about 1187 * exit_mmap() and do_munmap() cases described above: 1188 * we might be resetting SWAP_MAP_MAX too early here. 1189 * We know "Undead"s can happen, they're okay, so don't 1190 * report them; but do report if we reset SWAP_MAP_MAX. 1191 */ 1192 /* We might release the lock_page() in unuse_mm(). */ 1193 if (!PageSwapCache(page) || page_private(page) != entry.val) 1194 goto retry; 1195 1196 if (swap_count(*swap_map) == SWAP_MAP_MAX) { 1197 spin_lock(&swap_lock); 1198 *swap_map = encode_swapmap(0, true); 1199 spin_unlock(&swap_lock); 1200 reset_overflow = 1; 1201 } 1202 1203 /* 1204 * If a reference remains (rare), we would like to leave 1205 * the page in the swap cache; but try_to_unmap could 1206 * then re-duplicate the entry once we drop page lock, 1207 * so we might loop indefinitely; also, that page could 1208 * not be swapped out to other storage meanwhile. So: 1209 * delete from cache even if there's another reference, 1210 * after ensuring that the data has been saved to disk - 1211 * since if the reference remains (rarer), it will be 1212 * read from disk into another page. Splitting into two 1213 * pages would be incorrect if swap supported "shared 1214 * private" pages, but they are handled by tmpfs files. 1215 */ 1216 if (swap_count(*swap_map) && 1217 PageDirty(page) && PageSwapCache(page)) { 1218 struct writeback_control wbc = { 1219 .sync_mode = WB_SYNC_NONE, 1220 }; 1221 1222 swap_writepage(page, &wbc); 1223 lock_page(page); 1224 wait_on_page_writeback(page); 1225 } 1226 1227 /* 1228 * It is conceivable that a racing task removed this page from 1229 * swap cache just before we acquired the page lock at the top, 1230 * or while we dropped it in unuse_mm(). The page might even 1231 * be back in swap cache on another swap area: that we must not 1232 * delete, since it may not have been written out to swap yet. 1233 */ 1234 if (PageSwapCache(page) && 1235 likely(page_private(page) == entry.val)) 1236 delete_from_swap_cache(page); 1237 1238 /* 1239 * So we could skip searching mms once swap count went 1240 * to 1, we did not mark any present ptes as dirty: must 1241 * mark page dirty so shrink_page_list will preserve it. 1242 */ 1243 SetPageDirty(page); 1244 retry: 1245 unlock_page(page); 1246 page_cache_release(page); 1247 1248 /* 1249 * Make sure that we aren't completely killing 1250 * interactive performance. 1251 */ 1252 cond_resched(); 1253 } 1254 1255 mmput(start_mm); 1256 if (reset_overflow) { 1257 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n"); 1258 swap_overflow = 0; 1259 } 1260 return retval; 1261 } 1262 1263 /* 1264 * After a successful try_to_unuse, if no swap is now in use, we know 1265 * we can empty the mmlist. swap_lock must be held on entry and exit. 1266 * Note that mmlist_lock nests inside swap_lock, and an mm must be 1267 * added to the mmlist just after page_duplicate - before would be racy. 1268 */ 1269 static void drain_mmlist(void) 1270 { 1271 struct list_head *p, *next; 1272 unsigned int i; 1273 1274 for (i = 0; i < nr_swapfiles; i++) 1275 if (swap_info[i].inuse_pages) 1276 return; 1277 spin_lock(&mmlist_lock); 1278 list_for_each_safe(p, next, &init_mm.mmlist) 1279 list_del_init(p); 1280 spin_unlock(&mmlist_lock); 1281 } 1282 1283 /* 1284 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 1285 * corresponds to page offset `offset'. 1286 */ 1287 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset) 1288 { 1289 struct swap_extent *se = sis->curr_swap_extent; 1290 struct swap_extent *start_se = se; 1291 1292 for ( ; ; ) { 1293 struct list_head *lh; 1294 1295 if (se->start_page <= offset && 1296 offset < (se->start_page + se->nr_pages)) { 1297 return se->start_block + (offset - se->start_page); 1298 } 1299 lh = se->list.next; 1300 if (lh == &sis->extent_list) 1301 lh = lh->next; 1302 se = list_entry(lh, struct swap_extent, list); 1303 sis->curr_swap_extent = se; 1304 BUG_ON(se == start_se); /* It *must* be present */ 1305 } 1306 } 1307 1308 #ifdef CONFIG_HIBERNATION 1309 /* 1310 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1311 * corresponding to given index in swap_info (swap type). 1312 */ 1313 sector_t swapdev_block(int swap_type, pgoff_t offset) 1314 { 1315 struct swap_info_struct *sis; 1316 1317 if (swap_type >= nr_swapfiles) 1318 return 0; 1319 1320 sis = swap_info + swap_type; 1321 return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0; 1322 } 1323 #endif /* CONFIG_HIBERNATION */ 1324 1325 /* 1326 * Free all of a swapdev's extent information 1327 */ 1328 static void destroy_swap_extents(struct swap_info_struct *sis) 1329 { 1330 while (!list_empty(&sis->extent_list)) { 1331 struct swap_extent *se; 1332 1333 se = list_entry(sis->extent_list.next, 1334 struct swap_extent, list); 1335 list_del(&se->list); 1336 kfree(se); 1337 } 1338 } 1339 1340 /* 1341 * Add a block range (and the corresponding page range) into this swapdev's 1342 * extent list. The extent list is kept sorted in page order. 1343 * 1344 * This function rather assumes that it is called in ascending page order. 1345 */ 1346 static int 1347 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 1348 unsigned long nr_pages, sector_t start_block) 1349 { 1350 struct swap_extent *se; 1351 struct swap_extent *new_se; 1352 struct list_head *lh; 1353 1354 lh = sis->extent_list.prev; /* The highest page extent */ 1355 if (lh != &sis->extent_list) { 1356 se = list_entry(lh, struct swap_extent, list); 1357 BUG_ON(se->start_page + se->nr_pages != start_page); 1358 if (se->start_block + se->nr_pages == start_block) { 1359 /* Merge it */ 1360 se->nr_pages += nr_pages; 1361 return 0; 1362 } 1363 } 1364 1365 /* 1366 * No merge. Insert a new extent, preserving ordering. 1367 */ 1368 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 1369 if (new_se == NULL) 1370 return -ENOMEM; 1371 new_se->start_page = start_page; 1372 new_se->nr_pages = nr_pages; 1373 new_se->start_block = start_block; 1374 1375 list_add_tail(&new_se->list, &sis->extent_list); 1376 return 1; 1377 } 1378 1379 /* 1380 * A `swap extent' is a simple thing which maps a contiguous range of pages 1381 * onto a contiguous range of disk blocks. An ordered list of swap extents 1382 * is built at swapon time and is then used at swap_writepage/swap_readpage 1383 * time for locating where on disk a page belongs. 1384 * 1385 * If the swapfile is an S_ISBLK block device, a single extent is installed. 1386 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 1387 * swap files identically. 1388 * 1389 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 1390 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 1391 * swapfiles are handled *identically* after swapon time. 1392 * 1393 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 1394 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 1395 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 1396 * requirements, they are simply tossed out - we will never use those blocks 1397 * for swapping. 1398 * 1399 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 1400 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 1401 * which will scribble on the fs. 1402 * 1403 * The amount of disk space which a single swap extent represents varies. 1404 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 1405 * extents in the list. To avoid much list walking, we cache the previous 1406 * search location in `curr_swap_extent', and start new searches from there. 1407 * This is extremely effective. The average number of iterations in 1408 * map_swap_page() has been measured at about 0.3 per page. - akpm. 1409 */ 1410 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 1411 { 1412 struct inode *inode; 1413 unsigned blocks_per_page; 1414 unsigned long page_no; 1415 unsigned blkbits; 1416 sector_t probe_block; 1417 sector_t last_block; 1418 sector_t lowest_block = -1; 1419 sector_t highest_block = 0; 1420 int nr_extents = 0; 1421 int ret; 1422 1423 inode = sis->swap_file->f_mapping->host; 1424 if (S_ISBLK(inode->i_mode)) { 1425 ret = add_swap_extent(sis, 0, sis->max, 0); 1426 *span = sis->pages; 1427 goto done; 1428 } 1429 1430 blkbits = inode->i_blkbits; 1431 blocks_per_page = PAGE_SIZE >> blkbits; 1432 1433 /* 1434 * Map all the blocks into the extent list. This code doesn't try 1435 * to be very smart. 1436 */ 1437 probe_block = 0; 1438 page_no = 0; 1439 last_block = i_size_read(inode) >> blkbits; 1440 while ((probe_block + blocks_per_page) <= last_block && 1441 page_no < sis->max) { 1442 unsigned block_in_page; 1443 sector_t first_block; 1444 1445 first_block = bmap(inode, probe_block); 1446 if (first_block == 0) 1447 goto bad_bmap; 1448 1449 /* 1450 * It must be PAGE_SIZE aligned on-disk 1451 */ 1452 if (first_block & (blocks_per_page - 1)) { 1453 probe_block++; 1454 goto reprobe; 1455 } 1456 1457 for (block_in_page = 1; block_in_page < blocks_per_page; 1458 block_in_page++) { 1459 sector_t block; 1460 1461 block = bmap(inode, probe_block + block_in_page); 1462 if (block == 0) 1463 goto bad_bmap; 1464 if (block != first_block + block_in_page) { 1465 /* Discontiguity */ 1466 probe_block++; 1467 goto reprobe; 1468 } 1469 } 1470 1471 first_block >>= (PAGE_SHIFT - blkbits); 1472 if (page_no) { /* exclude the header page */ 1473 if (first_block < lowest_block) 1474 lowest_block = first_block; 1475 if (first_block > highest_block) 1476 highest_block = first_block; 1477 } 1478 1479 /* 1480 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 1481 */ 1482 ret = add_swap_extent(sis, page_no, 1, first_block); 1483 if (ret < 0) 1484 goto out; 1485 nr_extents += ret; 1486 page_no++; 1487 probe_block += blocks_per_page; 1488 reprobe: 1489 continue; 1490 } 1491 ret = nr_extents; 1492 *span = 1 + highest_block - lowest_block; 1493 if (page_no == 0) 1494 page_no = 1; /* force Empty message */ 1495 sis->max = page_no; 1496 sis->pages = page_no - 1; 1497 sis->highest_bit = page_no - 1; 1498 done: 1499 sis->curr_swap_extent = list_entry(sis->extent_list.prev, 1500 struct swap_extent, list); 1501 goto out; 1502 bad_bmap: 1503 printk(KERN_ERR "swapon: swapfile has holes\n"); 1504 ret = -EINVAL; 1505 out: 1506 return ret; 1507 } 1508 1509 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 1510 { 1511 struct swap_info_struct * p = NULL; 1512 unsigned short *swap_map; 1513 struct file *swap_file, *victim; 1514 struct address_space *mapping; 1515 struct inode *inode; 1516 char * pathname; 1517 int i, type, prev; 1518 int err; 1519 1520 if (!capable(CAP_SYS_ADMIN)) 1521 return -EPERM; 1522 1523 pathname = getname(specialfile); 1524 err = PTR_ERR(pathname); 1525 if (IS_ERR(pathname)) 1526 goto out; 1527 1528 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0); 1529 putname(pathname); 1530 err = PTR_ERR(victim); 1531 if (IS_ERR(victim)) 1532 goto out; 1533 1534 mapping = victim->f_mapping; 1535 prev = -1; 1536 spin_lock(&swap_lock); 1537 for (type = swap_list.head; type >= 0; type = swap_info[type].next) { 1538 p = swap_info + type; 1539 if (p->flags & SWP_WRITEOK) { 1540 if (p->swap_file->f_mapping == mapping) 1541 break; 1542 } 1543 prev = type; 1544 } 1545 if (type < 0) { 1546 err = -EINVAL; 1547 spin_unlock(&swap_lock); 1548 goto out_dput; 1549 } 1550 if (!security_vm_enough_memory(p->pages)) 1551 vm_unacct_memory(p->pages); 1552 else { 1553 err = -ENOMEM; 1554 spin_unlock(&swap_lock); 1555 goto out_dput; 1556 } 1557 if (prev < 0) { 1558 swap_list.head = p->next; 1559 } else { 1560 swap_info[prev].next = p->next; 1561 } 1562 if (type == swap_list.next) { 1563 /* just pick something that's safe... */ 1564 swap_list.next = swap_list.head; 1565 } 1566 if (p->prio < 0) { 1567 for (i = p->next; i >= 0; i = swap_info[i].next) 1568 swap_info[i].prio = p->prio--; 1569 least_priority++; 1570 } 1571 nr_swap_pages -= p->pages; 1572 total_swap_pages -= p->pages; 1573 p->flags &= ~SWP_WRITEOK; 1574 spin_unlock(&swap_lock); 1575 1576 current->flags |= PF_SWAPOFF; 1577 err = try_to_unuse(type); 1578 current->flags &= ~PF_SWAPOFF; 1579 1580 if (err) { 1581 /* re-insert swap space back into swap_list */ 1582 spin_lock(&swap_lock); 1583 if (p->prio < 0) 1584 p->prio = --least_priority; 1585 prev = -1; 1586 for (i = swap_list.head; i >= 0; i = swap_info[i].next) { 1587 if (p->prio >= swap_info[i].prio) 1588 break; 1589 prev = i; 1590 } 1591 p->next = i; 1592 if (prev < 0) 1593 swap_list.head = swap_list.next = p - swap_info; 1594 else 1595 swap_info[prev].next = p - swap_info; 1596 nr_swap_pages += p->pages; 1597 total_swap_pages += p->pages; 1598 p->flags |= SWP_WRITEOK; 1599 spin_unlock(&swap_lock); 1600 goto out_dput; 1601 } 1602 1603 /* wait for any unplug function to finish */ 1604 down_write(&swap_unplug_sem); 1605 up_write(&swap_unplug_sem); 1606 1607 destroy_swap_extents(p); 1608 mutex_lock(&swapon_mutex); 1609 spin_lock(&swap_lock); 1610 drain_mmlist(); 1611 1612 /* wait for anyone still in scan_swap_map */ 1613 p->highest_bit = 0; /* cuts scans short */ 1614 while (p->flags >= SWP_SCANNING) { 1615 spin_unlock(&swap_lock); 1616 schedule_timeout_uninterruptible(1); 1617 spin_lock(&swap_lock); 1618 } 1619 1620 swap_file = p->swap_file; 1621 p->swap_file = NULL; 1622 p->max = 0; 1623 swap_map = p->swap_map; 1624 p->swap_map = NULL; 1625 p->flags = 0; 1626 spin_unlock(&swap_lock); 1627 mutex_unlock(&swapon_mutex); 1628 vfree(swap_map); 1629 /* Destroy swap account informatin */ 1630 swap_cgroup_swapoff(type); 1631 1632 inode = mapping->host; 1633 if (S_ISBLK(inode->i_mode)) { 1634 struct block_device *bdev = I_BDEV(inode); 1635 set_blocksize(bdev, p->old_block_size); 1636 bd_release(bdev); 1637 } else { 1638 mutex_lock(&inode->i_mutex); 1639 inode->i_flags &= ~S_SWAPFILE; 1640 mutex_unlock(&inode->i_mutex); 1641 } 1642 filp_close(swap_file, NULL); 1643 err = 0; 1644 1645 out_dput: 1646 filp_close(victim, NULL); 1647 out: 1648 return err; 1649 } 1650 1651 #ifdef CONFIG_PROC_FS 1652 /* iterator */ 1653 static void *swap_start(struct seq_file *swap, loff_t *pos) 1654 { 1655 struct swap_info_struct *ptr = swap_info; 1656 int i; 1657 loff_t l = *pos; 1658 1659 mutex_lock(&swapon_mutex); 1660 1661 if (!l) 1662 return SEQ_START_TOKEN; 1663 1664 for (i = 0; i < nr_swapfiles; i++, ptr++) { 1665 if (!(ptr->flags & SWP_USED) || !ptr->swap_map) 1666 continue; 1667 if (!--l) 1668 return ptr; 1669 } 1670 1671 return NULL; 1672 } 1673 1674 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 1675 { 1676 struct swap_info_struct *ptr; 1677 struct swap_info_struct *endptr = swap_info + nr_swapfiles; 1678 1679 if (v == SEQ_START_TOKEN) 1680 ptr = swap_info; 1681 else { 1682 ptr = v; 1683 ptr++; 1684 } 1685 1686 for (; ptr < endptr; ptr++) { 1687 if (!(ptr->flags & SWP_USED) || !ptr->swap_map) 1688 continue; 1689 ++*pos; 1690 return ptr; 1691 } 1692 1693 return NULL; 1694 } 1695 1696 static void swap_stop(struct seq_file *swap, void *v) 1697 { 1698 mutex_unlock(&swapon_mutex); 1699 } 1700 1701 static int swap_show(struct seq_file *swap, void *v) 1702 { 1703 struct swap_info_struct *ptr = v; 1704 struct file *file; 1705 int len; 1706 1707 if (ptr == SEQ_START_TOKEN) { 1708 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 1709 return 0; 1710 } 1711 1712 file = ptr->swap_file; 1713 len = seq_path(swap, &file->f_path, " \t\n\\"); 1714 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 1715 len < 40 ? 40 - len : 1, " ", 1716 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ? 1717 "partition" : "file\t", 1718 ptr->pages << (PAGE_SHIFT - 10), 1719 ptr->inuse_pages << (PAGE_SHIFT - 10), 1720 ptr->prio); 1721 return 0; 1722 } 1723 1724 static const struct seq_operations swaps_op = { 1725 .start = swap_start, 1726 .next = swap_next, 1727 .stop = swap_stop, 1728 .show = swap_show 1729 }; 1730 1731 static int swaps_open(struct inode *inode, struct file *file) 1732 { 1733 return seq_open(file, &swaps_op); 1734 } 1735 1736 static const struct file_operations proc_swaps_operations = { 1737 .open = swaps_open, 1738 .read = seq_read, 1739 .llseek = seq_lseek, 1740 .release = seq_release, 1741 }; 1742 1743 static int __init procswaps_init(void) 1744 { 1745 proc_create("swaps", 0, NULL, &proc_swaps_operations); 1746 return 0; 1747 } 1748 __initcall(procswaps_init); 1749 #endif /* CONFIG_PROC_FS */ 1750 1751 #ifdef MAX_SWAPFILES_CHECK 1752 static int __init max_swapfiles_check(void) 1753 { 1754 MAX_SWAPFILES_CHECK(); 1755 return 0; 1756 } 1757 late_initcall(max_swapfiles_check); 1758 #endif 1759 1760 /* 1761 * Written 01/25/92 by Simmule Turner, heavily changed by Linus. 1762 * 1763 * The swapon system call 1764 */ 1765 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 1766 { 1767 struct swap_info_struct * p; 1768 char *name = NULL; 1769 struct block_device *bdev = NULL; 1770 struct file *swap_file = NULL; 1771 struct address_space *mapping; 1772 unsigned int type; 1773 int i, prev; 1774 int error; 1775 union swap_header *swap_header = NULL; 1776 unsigned int nr_good_pages = 0; 1777 int nr_extents = 0; 1778 sector_t span; 1779 unsigned long maxpages = 1; 1780 unsigned long swapfilepages; 1781 unsigned short *swap_map = NULL; 1782 struct page *page = NULL; 1783 struct inode *inode = NULL; 1784 int did_down = 0; 1785 1786 if (!capable(CAP_SYS_ADMIN)) 1787 return -EPERM; 1788 spin_lock(&swap_lock); 1789 p = swap_info; 1790 for (type = 0 ; type < nr_swapfiles ; type++,p++) 1791 if (!(p->flags & SWP_USED)) 1792 break; 1793 error = -EPERM; 1794 if (type >= MAX_SWAPFILES) { 1795 spin_unlock(&swap_lock); 1796 goto out; 1797 } 1798 if (type >= nr_swapfiles) 1799 nr_swapfiles = type+1; 1800 memset(p, 0, sizeof(*p)); 1801 INIT_LIST_HEAD(&p->extent_list); 1802 p->flags = SWP_USED; 1803 p->next = -1; 1804 spin_unlock(&swap_lock); 1805 name = getname(specialfile); 1806 error = PTR_ERR(name); 1807 if (IS_ERR(name)) { 1808 name = NULL; 1809 goto bad_swap_2; 1810 } 1811 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0); 1812 error = PTR_ERR(swap_file); 1813 if (IS_ERR(swap_file)) { 1814 swap_file = NULL; 1815 goto bad_swap_2; 1816 } 1817 1818 p->swap_file = swap_file; 1819 mapping = swap_file->f_mapping; 1820 inode = mapping->host; 1821 1822 error = -EBUSY; 1823 for (i = 0; i < nr_swapfiles; i++) { 1824 struct swap_info_struct *q = &swap_info[i]; 1825 1826 if (i == type || !q->swap_file) 1827 continue; 1828 if (mapping == q->swap_file->f_mapping) 1829 goto bad_swap; 1830 } 1831 1832 error = -EINVAL; 1833 if (S_ISBLK(inode->i_mode)) { 1834 bdev = I_BDEV(inode); 1835 error = bd_claim(bdev, sys_swapon); 1836 if (error < 0) { 1837 bdev = NULL; 1838 error = -EINVAL; 1839 goto bad_swap; 1840 } 1841 p->old_block_size = block_size(bdev); 1842 error = set_blocksize(bdev, PAGE_SIZE); 1843 if (error < 0) 1844 goto bad_swap; 1845 p->bdev = bdev; 1846 } else if (S_ISREG(inode->i_mode)) { 1847 p->bdev = inode->i_sb->s_bdev; 1848 mutex_lock(&inode->i_mutex); 1849 did_down = 1; 1850 if (IS_SWAPFILE(inode)) { 1851 error = -EBUSY; 1852 goto bad_swap; 1853 } 1854 } else { 1855 goto bad_swap; 1856 } 1857 1858 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 1859 1860 /* 1861 * Read the swap header. 1862 */ 1863 if (!mapping->a_ops->readpage) { 1864 error = -EINVAL; 1865 goto bad_swap; 1866 } 1867 page = read_mapping_page(mapping, 0, swap_file); 1868 if (IS_ERR(page)) { 1869 error = PTR_ERR(page); 1870 goto bad_swap; 1871 } 1872 swap_header = kmap(page); 1873 1874 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 1875 printk(KERN_ERR "Unable to find swap-space signature\n"); 1876 error = -EINVAL; 1877 goto bad_swap; 1878 } 1879 1880 /* swap partition endianess hack... */ 1881 if (swab32(swap_header->info.version) == 1) { 1882 swab32s(&swap_header->info.version); 1883 swab32s(&swap_header->info.last_page); 1884 swab32s(&swap_header->info.nr_badpages); 1885 for (i = 0; i < swap_header->info.nr_badpages; i++) 1886 swab32s(&swap_header->info.badpages[i]); 1887 } 1888 /* Check the swap header's sub-version */ 1889 if (swap_header->info.version != 1) { 1890 printk(KERN_WARNING 1891 "Unable to handle swap header version %d\n", 1892 swap_header->info.version); 1893 error = -EINVAL; 1894 goto bad_swap; 1895 } 1896 1897 p->lowest_bit = 1; 1898 p->cluster_next = 1; 1899 1900 /* 1901 * Find out how many pages are allowed for a single swap 1902 * device. There are two limiting factors: 1) the number of 1903 * bits for the swap offset in the swp_entry_t type and 1904 * 2) the number of bits in the a swap pte as defined by 1905 * the different architectures. In order to find the 1906 * largest possible bit mask a swap entry with swap type 0 1907 * and swap offset ~0UL is created, encoded to a swap pte, 1908 * decoded to a swp_entry_t again and finally the swap 1909 * offset is extracted. This will mask all the bits from 1910 * the initial ~0UL mask that can't be encoded in either 1911 * the swp_entry_t or the architecture definition of a 1912 * swap pte. 1913 */ 1914 maxpages = swp_offset(pte_to_swp_entry( 1915 swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1; 1916 if (maxpages > swap_header->info.last_page) 1917 maxpages = swap_header->info.last_page; 1918 p->highest_bit = maxpages - 1; 1919 1920 error = -EINVAL; 1921 if (!maxpages) 1922 goto bad_swap; 1923 if (swapfilepages && maxpages > swapfilepages) { 1924 printk(KERN_WARNING 1925 "Swap area shorter than signature indicates\n"); 1926 goto bad_swap; 1927 } 1928 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 1929 goto bad_swap; 1930 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 1931 goto bad_swap; 1932 1933 /* OK, set up the swap map and apply the bad block list */ 1934 swap_map = vmalloc(maxpages * sizeof(short)); 1935 if (!swap_map) { 1936 error = -ENOMEM; 1937 goto bad_swap; 1938 } 1939 1940 memset(swap_map, 0, maxpages * sizeof(short)); 1941 for (i = 0; i < swap_header->info.nr_badpages; i++) { 1942 int page_nr = swap_header->info.badpages[i]; 1943 if (page_nr <= 0 || page_nr >= swap_header->info.last_page) { 1944 error = -EINVAL; 1945 goto bad_swap; 1946 } 1947 swap_map[page_nr] = SWAP_MAP_BAD; 1948 } 1949 1950 error = swap_cgroup_swapon(type, maxpages); 1951 if (error) 1952 goto bad_swap; 1953 1954 nr_good_pages = swap_header->info.last_page - 1955 swap_header->info.nr_badpages - 1956 1 /* header page */; 1957 1958 if (nr_good_pages) { 1959 swap_map[0] = SWAP_MAP_BAD; 1960 p->max = maxpages; 1961 p->pages = nr_good_pages; 1962 nr_extents = setup_swap_extents(p, &span); 1963 if (nr_extents < 0) { 1964 error = nr_extents; 1965 goto bad_swap; 1966 } 1967 nr_good_pages = p->pages; 1968 } 1969 if (!nr_good_pages) { 1970 printk(KERN_WARNING "Empty swap-file\n"); 1971 error = -EINVAL; 1972 goto bad_swap; 1973 } 1974 1975 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) { 1976 p->flags |= SWP_SOLIDSTATE; 1977 p->cluster_next = 1 + (random32() % p->highest_bit); 1978 } 1979 if (discard_swap(p) == 0) 1980 p->flags |= SWP_DISCARDABLE; 1981 1982 mutex_lock(&swapon_mutex); 1983 spin_lock(&swap_lock); 1984 if (swap_flags & SWAP_FLAG_PREFER) 1985 p->prio = 1986 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 1987 else 1988 p->prio = --least_priority; 1989 p->swap_map = swap_map; 1990 p->flags |= SWP_WRITEOK; 1991 nr_swap_pages += nr_good_pages; 1992 total_swap_pages += nr_good_pages; 1993 1994 printk(KERN_INFO "Adding %uk swap on %s. " 1995 "Priority:%d extents:%d across:%lluk %s%s\n", 1996 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio, 1997 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 1998 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 1999 (p->flags & SWP_DISCARDABLE) ? "D" : ""); 2000 2001 /* insert swap space into swap_list: */ 2002 prev = -1; 2003 for (i = swap_list.head; i >= 0; i = swap_info[i].next) { 2004 if (p->prio >= swap_info[i].prio) { 2005 break; 2006 } 2007 prev = i; 2008 } 2009 p->next = i; 2010 if (prev < 0) { 2011 swap_list.head = swap_list.next = p - swap_info; 2012 } else { 2013 swap_info[prev].next = p - swap_info; 2014 } 2015 spin_unlock(&swap_lock); 2016 mutex_unlock(&swapon_mutex); 2017 error = 0; 2018 goto out; 2019 bad_swap: 2020 if (bdev) { 2021 set_blocksize(bdev, p->old_block_size); 2022 bd_release(bdev); 2023 } 2024 destroy_swap_extents(p); 2025 swap_cgroup_swapoff(type); 2026 bad_swap_2: 2027 spin_lock(&swap_lock); 2028 p->swap_file = NULL; 2029 p->flags = 0; 2030 spin_unlock(&swap_lock); 2031 vfree(swap_map); 2032 if (swap_file) 2033 filp_close(swap_file, NULL); 2034 out: 2035 if (page && !IS_ERR(page)) { 2036 kunmap(page); 2037 page_cache_release(page); 2038 } 2039 if (name) 2040 putname(name); 2041 if (did_down) { 2042 if (!error) 2043 inode->i_flags |= S_SWAPFILE; 2044 mutex_unlock(&inode->i_mutex); 2045 } 2046 return error; 2047 } 2048 2049 void si_swapinfo(struct sysinfo *val) 2050 { 2051 unsigned int i; 2052 unsigned long nr_to_be_unused = 0; 2053 2054 spin_lock(&swap_lock); 2055 for (i = 0; i < nr_swapfiles; i++) { 2056 if (!(swap_info[i].flags & SWP_USED) || 2057 (swap_info[i].flags & SWP_WRITEOK)) 2058 continue; 2059 nr_to_be_unused += swap_info[i].inuse_pages; 2060 } 2061 val->freeswap = nr_swap_pages + nr_to_be_unused; 2062 val->totalswap = total_swap_pages + nr_to_be_unused; 2063 spin_unlock(&swap_lock); 2064 } 2065 2066 /* 2067 * Verify that a swap entry is valid and increment its swap map count. 2068 * 2069 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as 2070 * "permanent", but will be reclaimed by the next swapoff. 2071 * Returns error code in following case. 2072 * - success -> 0 2073 * - swp_entry is invalid -> EINVAL 2074 * - swp_entry is migration entry -> EINVAL 2075 * - swap-cache reference is requested but there is already one. -> EEXIST 2076 * - swap-cache reference is requested but the entry is not used. -> ENOENT 2077 */ 2078 static int __swap_duplicate(swp_entry_t entry, bool cache) 2079 { 2080 struct swap_info_struct * p; 2081 unsigned long offset, type; 2082 int result = -EINVAL; 2083 int count; 2084 bool has_cache; 2085 2086 if (is_migration_entry(entry)) 2087 return -EINVAL; 2088 2089 type = swp_type(entry); 2090 if (type >= nr_swapfiles) 2091 goto bad_file; 2092 p = type + swap_info; 2093 offset = swp_offset(entry); 2094 2095 spin_lock(&swap_lock); 2096 2097 if (unlikely(offset >= p->max)) 2098 goto unlock_out; 2099 2100 count = swap_count(p->swap_map[offset]); 2101 has_cache = swap_has_cache(p->swap_map[offset]); 2102 2103 if (cache == SWAP_CACHE) { /* called for swapcache/swapin-readahead */ 2104 2105 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 2106 if (!has_cache && count) { 2107 p->swap_map[offset] = encode_swapmap(count, true); 2108 result = 0; 2109 } else if (has_cache) /* someone added cache */ 2110 result = -EEXIST; 2111 else if (!count) /* no users */ 2112 result = -ENOENT; 2113 2114 } else if (count || has_cache) { 2115 if (count < SWAP_MAP_MAX - 1) { 2116 p->swap_map[offset] = encode_swapmap(count + 1, 2117 has_cache); 2118 result = 0; 2119 } else if (count <= SWAP_MAP_MAX) { 2120 if (swap_overflow++ < 5) 2121 printk(KERN_WARNING 2122 "swap_dup: swap entry overflow\n"); 2123 p->swap_map[offset] = encode_swapmap(SWAP_MAP_MAX, 2124 has_cache); 2125 result = 0; 2126 } 2127 } else 2128 result = -ENOENT; /* unused swap entry */ 2129 unlock_out: 2130 spin_unlock(&swap_lock); 2131 out: 2132 return result; 2133 2134 bad_file: 2135 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); 2136 goto out; 2137 } 2138 /* 2139 * increase reference count of swap entry by 1. 2140 */ 2141 void swap_duplicate(swp_entry_t entry) 2142 { 2143 __swap_duplicate(entry, SWAP_MAP); 2144 } 2145 2146 /* 2147 * @entry: swap entry for which we allocate swap cache. 2148 * 2149 * Called when allocating swap cache for exising swap entry, 2150 * This can return error codes. Returns 0 at success. 2151 * -EBUSY means there is a swap cache. 2152 * Note: return code is different from swap_duplicate(). 2153 */ 2154 int swapcache_prepare(swp_entry_t entry) 2155 { 2156 return __swap_duplicate(entry, SWAP_CACHE); 2157 } 2158 2159 2160 struct swap_info_struct * 2161 get_swap_info_struct(unsigned type) 2162 { 2163 return &swap_info[type]; 2164 } 2165 2166 /* 2167 * swap_lock prevents swap_map being freed. Don't grab an extra 2168 * reference on the swaphandle, it doesn't matter if it becomes unused. 2169 */ 2170 int valid_swaphandles(swp_entry_t entry, unsigned long *offset) 2171 { 2172 struct swap_info_struct *si; 2173 int our_page_cluster = page_cluster; 2174 pgoff_t target, toff; 2175 pgoff_t base, end; 2176 int nr_pages = 0; 2177 2178 if (!our_page_cluster) /* no readahead */ 2179 return 0; 2180 2181 si = &swap_info[swp_type(entry)]; 2182 target = swp_offset(entry); 2183 base = (target >> our_page_cluster) << our_page_cluster; 2184 end = base + (1 << our_page_cluster); 2185 if (!base) /* first page is swap header */ 2186 base++; 2187 2188 spin_lock(&swap_lock); 2189 if (end > si->max) /* don't go beyond end of map */ 2190 end = si->max; 2191 2192 /* Count contiguous allocated slots above our target */ 2193 for (toff = target; ++toff < end; nr_pages++) { 2194 /* Don't read in free or bad pages */ 2195 if (!si->swap_map[toff]) 2196 break; 2197 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD) 2198 break; 2199 } 2200 /* Count contiguous allocated slots below our target */ 2201 for (toff = target; --toff >= base; nr_pages++) { 2202 /* Don't read in free or bad pages */ 2203 if (!si->swap_map[toff]) 2204 break; 2205 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD) 2206 break; 2207 } 2208 spin_unlock(&swap_lock); 2209 2210 /* 2211 * Indicate starting offset, and return number of pages to get: 2212 * if only 1, say 0, since there's then no readahead to be done. 2213 */ 2214 *offset = ++toff; 2215 return nr_pages? ++nr_pages: 0; 2216 } 2217