xref: /linux/mm/swapfile.c (revision dc0d1c4519095a6c6bbd9ec4a808674aba502741)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
41 
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46 
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 				 unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51 
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64 
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69 
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75 
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90 
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92 
93 static DEFINE_MUTEX(swapon_mutex);
94 
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98 
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100 
101 static inline unsigned char swap_count(unsigned char ent)
102 {
103 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
104 }
105 
106 /* returns 1 if swap entry is freed */
107 static int
108 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
109 {
110 	swp_entry_t entry = swp_entry(si->type, offset);
111 	struct page *page;
112 	int ret = 0;
113 
114 	page = find_get_page(swap_address_space(entry), swp_offset(entry));
115 	if (!page)
116 		return 0;
117 	/*
118 	 * This function is called from scan_swap_map() and it's called
119 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
120 	 * We have to use trylock for avoiding deadlock. This is a special
121 	 * case and you should use try_to_free_swap() with explicit lock_page()
122 	 * in usual operations.
123 	 */
124 	if (trylock_page(page)) {
125 		ret = try_to_free_swap(page);
126 		unlock_page(page);
127 	}
128 	put_page(page);
129 	return ret;
130 }
131 
132 /*
133  * swapon tell device that all the old swap contents can be discarded,
134  * to allow the swap device to optimize its wear-levelling.
135  */
136 static int discard_swap(struct swap_info_struct *si)
137 {
138 	struct swap_extent *se;
139 	sector_t start_block;
140 	sector_t nr_blocks;
141 	int err = 0;
142 
143 	/* Do not discard the swap header page! */
144 	se = &si->first_swap_extent;
145 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
146 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
147 	if (nr_blocks) {
148 		err = blkdev_issue_discard(si->bdev, start_block,
149 				nr_blocks, GFP_KERNEL, 0);
150 		if (err)
151 			return err;
152 		cond_resched();
153 	}
154 
155 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
156 		start_block = se->start_block << (PAGE_SHIFT - 9);
157 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
158 
159 		err = blkdev_issue_discard(si->bdev, start_block,
160 				nr_blocks, GFP_KERNEL, 0);
161 		if (err)
162 			break;
163 
164 		cond_resched();
165 	}
166 	return err;		/* That will often be -EOPNOTSUPP */
167 }
168 
169 /*
170  * swap allocation tell device that a cluster of swap can now be discarded,
171  * to allow the swap device to optimize its wear-levelling.
172  */
173 static void discard_swap_cluster(struct swap_info_struct *si,
174 				 pgoff_t start_page, pgoff_t nr_pages)
175 {
176 	struct swap_extent *se = si->curr_swap_extent;
177 	int found_extent = 0;
178 
179 	while (nr_pages) {
180 		if (se->start_page <= start_page &&
181 		    start_page < se->start_page + se->nr_pages) {
182 			pgoff_t offset = start_page - se->start_page;
183 			sector_t start_block = se->start_block + offset;
184 			sector_t nr_blocks = se->nr_pages - offset;
185 
186 			if (nr_blocks > nr_pages)
187 				nr_blocks = nr_pages;
188 			start_page += nr_blocks;
189 			nr_pages -= nr_blocks;
190 
191 			if (!found_extent++)
192 				si->curr_swap_extent = se;
193 
194 			start_block <<= PAGE_SHIFT - 9;
195 			nr_blocks <<= PAGE_SHIFT - 9;
196 			if (blkdev_issue_discard(si->bdev, start_block,
197 				    nr_blocks, GFP_NOIO, 0))
198 				break;
199 		}
200 
201 		se = list_next_entry(se, list);
202 	}
203 }
204 
205 #ifdef CONFIG_THP_SWAP
206 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
207 
208 #define swap_entry_size(size)	(size)
209 #else
210 #define SWAPFILE_CLUSTER	256
211 
212 /*
213  * Define swap_entry_size() as constant to let compiler to optimize
214  * out some code if !CONFIG_THP_SWAP
215  */
216 #define swap_entry_size(size)	1
217 #endif
218 #define LATENCY_LIMIT		256
219 
220 static inline void cluster_set_flag(struct swap_cluster_info *info,
221 	unsigned int flag)
222 {
223 	info->flags = flag;
224 }
225 
226 static inline unsigned int cluster_count(struct swap_cluster_info *info)
227 {
228 	return info->data;
229 }
230 
231 static inline void cluster_set_count(struct swap_cluster_info *info,
232 				     unsigned int c)
233 {
234 	info->data = c;
235 }
236 
237 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
238 					 unsigned int c, unsigned int f)
239 {
240 	info->flags = f;
241 	info->data = c;
242 }
243 
244 static inline unsigned int cluster_next(struct swap_cluster_info *info)
245 {
246 	return info->data;
247 }
248 
249 static inline void cluster_set_next(struct swap_cluster_info *info,
250 				    unsigned int n)
251 {
252 	info->data = n;
253 }
254 
255 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
256 					 unsigned int n, unsigned int f)
257 {
258 	info->flags = f;
259 	info->data = n;
260 }
261 
262 static inline bool cluster_is_free(struct swap_cluster_info *info)
263 {
264 	return info->flags & CLUSTER_FLAG_FREE;
265 }
266 
267 static inline bool cluster_is_null(struct swap_cluster_info *info)
268 {
269 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
270 }
271 
272 static inline void cluster_set_null(struct swap_cluster_info *info)
273 {
274 	info->flags = CLUSTER_FLAG_NEXT_NULL;
275 	info->data = 0;
276 }
277 
278 static inline bool cluster_is_huge(struct swap_cluster_info *info)
279 {
280 	if (IS_ENABLED(CONFIG_THP_SWAP))
281 		return info->flags & CLUSTER_FLAG_HUGE;
282 	return false;
283 }
284 
285 static inline void cluster_clear_huge(struct swap_cluster_info *info)
286 {
287 	info->flags &= ~CLUSTER_FLAG_HUGE;
288 }
289 
290 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
291 						     unsigned long offset)
292 {
293 	struct swap_cluster_info *ci;
294 
295 	ci = si->cluster_info;
296 	if (ci) {
297 		ci += offset / SWAPFILE_CLUSTER;
298 		spin_lock(&ci->lock);
299 	}
300 	return ci;
301 }
302 
303 static inline void unlock_cluster(struct swap_cluster_info *ci)
304 {
305 	if (ci)
306 		spin_unlock(&ci->lock);
307 }
308 
309 /*
310  * Determine the locking method in use for this device.  Return
311  * swap_cluster_info if SSD-style cluster-based locking is in place.
312  */
313 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
314 		struct swap_info_struct *si, unsigned long offset)
315 {
316 	struct swap_cluster_info *ci;
317 
318 	/* Try to use fine-grained SSD-style locking if available: */
319 	ci = lock_cluster(si, offset);
320 	/* Otherwise, fall back to traditional, coarse locking: */
321 	if (!ci)
322 		spin_lock(&si->lock);
323 
324 	return ci;
325 }
326 
327 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
328 					       struct swap_cluster_info *ci)
329 {
330 	if (ci)
331 		unlock_cluster(ci);
332 	else
333 		spin_unlock(&si->lock);
334 }
335 
336 static inline bool cluster_list_empty(struct swap_cluster_list *list)
337 {
338 	return cluster_is_null(&list->head);
339 }
340 
341 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
342 {
343 	return cluster_next(&list->head);
344 }
345 
346 static void cluster_list_init(struct swap_cluster_list *list)
347 {
348 	cluster_set_null(&list->head);
349 	cluster_set_null(&list->tail);
350 }
351 
352 static void cluster_list_add_tail(struct swap_cluster_list *list,
353 				  struct swap_cluster_info *ci,
354 				  unsigned int idx)
355 {
356 	if (cluster_list_empty(list)) {
357 		cluster_set_next_flag(&list->head, idx, 0);
358 		cluster_set_next_flag(&list->tail, idx, 0);
359 	} else {
360 		struct swap_cluster_info *ci_tail;
361 		unsigned int tail = cluster_next(&list->tail);
362 
363 		/*
364 		 * Nested cluster lock, but both cluster locks are
365 		 * only acquired when we held swap_info_struct->lock
366 		 */
367 		ci_tail = ci + tail;
368 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
369 		cluster_set_next(ci_tail, idx);
370 		spin_unlock(&ci_tail->lock);
371 		cluster_set_next_flag(&list->tail, idx, 0);
372 	}
373 }
374 
375 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
376 					   struct swap_cluster_info *ci)
377 {
378 	unsigned int idx;
379 
380 	idx = cluster_next(&list->head);
381 	if (cluster_next(&list->tail) == idx) {
382 		cluster_set_null(&list->head);
383 		cluster_set_null(&list->tail);
384 	} else
385 		cluster_set_next_flag(&list->head,
386 				      cluster_next(&ci[idx]), 0);
387 
388 	return idx;
389 }
390 
391 /* Add a cluster to discard list and schedule it to do discard */
392 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
393 		unsigned int idx)
394 {
395 	/*
396 	 * If scan_swap_map() can't find a free cluster, it will check
397 	 * si->swap_map directly. To make sure the discarding cluster isn't
398 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
399 	 * will be cleared after discard
400 	 */
401 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
402 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
403 
404 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
405 
406 	schedule_work(&si->discard_work);
407 }
408 
409 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
410 {
411 	struct swap_cluster_info *ci = si->cluster_info;
412 
413 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
414 	cluster_list_add_tail(&si->free_clusters, ci, idx);
415 }
416 
417 /*
418  * Doing discard actually. After a cluster discard is finished, the cluster
419  * will be added to free cluster list. caller should hold si->lock.
420 */
421 static void swap_do_scheduled_discard(struct swap_info_struct *si)
422 {
423 	struct swap_cluster_info *info, *ci;
424 	unsigned int idx;
425 
426 	info = si->cluster_info;
427 
428 	while (!cluster_list_empty(&si->discard_clusters)) {
429 		idx = cluster_list_del_first(&si->discard_clusters, info);
430 		spin_unlock(&si->lock);
431 
432 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
433 				SWAPFILE_CLUSTER);
434 
435 		spin_lock(&si->lock);
436 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
437 		__free_cluster(si, idx);
438 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
439 				0, SWAPFILE_CLUSTER);
440 		unlock_cluster(ci);
441 	}
442 }
443 
444 static void swap_discard_work(struct work_struct *work)
445 {
446 	struct swap_info_struct *si;
447 
448 	si = container_of(work, struct swap_info_struct, discard_work);
449 
450 	spin_lock(&si->lock);
451 	swap_do_scheduled_discard(si);
452 	spin_unlock(&si->lock);
453 }
454 
455 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
456 {
457 	struct swap_cluster_info *ci = si->cluster_info;
458 
459 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
460 	cluster_list_del_first(&si->free_clusters, ci);
461 	cluster_set_count_flag(ci + idx, 0, 0);
462 }
463 
464 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
465 {
466 	struct swap_cluster_info *ci = si->cluster_info + idx;
467 
468 	VM_BUG_ON(cluster_count(ci) != 0);
469 	/*
470 	 * If the swap is discardable, prepare discard the cluster
471 	 * instead of free it immediately. The cluster will be freed
472 	 * after discard.
473 	 */
474 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
475 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
476 		swap_cluster_schedule_discard(si, idx);
477 		return;
478 	}
479 
480 	__free_cluster(si, idx);
481 }
482 
483 /*
484  * The cluster corresponding to page_nr will be used. The cluster will be
485  * removed from free cluster list and its usage counter will be increased.
486  */
487 static void inc_cluster_info_page(struct swap_info_struct *p,
488 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
489 {
490 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
491 
492 	if (!cluster_info)
493 		return;
494 	if (cluster_is_free(&cluster_info[idx]))
495 		alloc_cluster(p, idx);
496 
497 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
498 	cluster_set_count(&cluster_info[idx],
499 		cluster_count(&cluster_info[idx]) + 1);
500 }
501 
502 /*
503  * The cluster corresponding to page_nr decreases one usage. If the usage
504  * counter becomes 0, which means no page in the cluster is in using, we can
505  * optionally discard the cluster and add it to free cluster list.
506  */
507 static void dec_cluster_info_page(struct swap_info_struct *p,
508 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
509 {
510 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
511 
512 	if (!cluster_info)
513 		return;
514 
515 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
516 	cluster_set_count(&cluster_info[idx],
517 		cluster_count(&cluster_info[idx]) - 1);
518 
519 	if (cluster_count(&cluster_info[idx]) == 0)
520 		free_cluster(p, idx);
521 }
522 
523 /*
524  * It's possible scan_swap_map() uses a free cluster in the middle of free
525  * cluster list. Avoiding such abuse to avoid list corruption.
526  */
527 static bool
528 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
529 	unsigned long offset)
530 {
531 	struct percpu_cluster *percpu_cluster;
532 	bool conflict;
533 
534 	offset /= SWAPFILE_CLUSTER;
535 	conflict = !cluster_list_empty(&si->free_clusters) &&
536 		offset != cluster_list_first(&si->free_clusters) &&
537 		cluster_is_free(&si->cluster_info[offset]);
538 
539 	if (!conflict)
540 		return false;
541 
542 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
543 	cluster_set_null(&percpu_cluster->index);
544 	return true;
545 }
546 
547 /*
548  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
549  * might involve allocating a new cluster for current CPU too.
550  */
551 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
552 	unsigned long *offset, unsigned long *scan_base)
553 {
554 	struct percpu_cluster *cluster;
555 	struct swap_cluster_info *ci;
556 	bool found_free;
557 	unsigned long tmp, max;
558 
559 new_cluster:
560 	cluster = this_cpu_ptr(si->percpu_cluster);
561 	if (cluster_is_null(&cluster->index)) {
562 		if (!cluster_list_empty(&si->free_clusters)) {
563 			cluster->index = si->free_clusters.head;
564 			cluster->next = cluster_next(&cluster->index) *
565 					SWAPFILE_CLUSTER;
566 		} else if (!cluster_list_empty(&si->discard_clusters)) {
567 			/*
568 			 * we don't have free cluster but have some clusters in
569 			 * discarding, do discard now and reclaim them
570 			 */
571 			swap_do_scheduled_discard(si);
572 			*scan_base = *offset = si->cluster_next;
573 			goto new_cluster;
574 		} else
575 			return false;
576 	}
577 
578 	found_free = false;
579 
580 	/*
581 	 * Other CPUs can use our cluster if they can't find a free cluster,
582 	 * check if there is still free entry in the cluster
583 	 */
584 	tmp = cluster->next;
585 	max = min_t(unsigned long, si->max,
586 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
587 	if (tmp >= max) {
588 		cluster_set_null(&cluster->index);
589 		goto new_cluster;
590 	}
591 	ci = lock_cluster(si, tmp);
592 	while (tmp < max) {
593 		if (!si->swap_map[tmp]) {
594 			found_free = true;
595 			break;
596 		}
597 		tmp++;
598 	}
599 	unlock_cluster(ci);
600 	if (!found_free) {
601 		cluster_set_null(&cluster->index);
602 		goto new_cluster;
603 	}
604 	cluster->next = tmp + 1;
605 	*offset = tmp;
606 	*scan_base = tmp;
607 	return found_free;
608 }
609 
610 static void __del_from_avail_list(struct swap_info_struct *p)
611 {
612 	int nid;
613 
614 	for_each_node(nid)
615 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
616 }
617 
618 static void del_from_avail_list(struct swap_info_struct *p)
619 {
620 	spin_lock(&swap_avail_lock);
621 	__del_from_avail_list(p);
622 	spin_unlock(&swap_avail_lock);
623 }
624 
625 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
626 			     unsigned int nr_entries)
627 {
628 	unsigned int end = offset + nr_entries - 1;
629 
630 	if (offset == si->lowest_bit)
631 		si->lowest_bit += nr_entries;
632 	if (end == si->highest_bit)
633 		si->highest_bit -= nr_entries;
634 	si->inuse_pages += nr_entries;
635 	if (si->inuse_pages == si->pages) {
636 		si->lowest_bit = si->max;
637 		si->highest_bit = 0;
638 		del_from_avail_list(si);
639 	}
640 }
641 
642 static void add_to_avail_list(struct swap_info_struct *p)
643 {
644 	int nid;
645 
646 	spin_lock(&swap_avail_lock);
647 	for_each_node(nid) {
648 		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
649 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
650 	}
651 	spin_unlock(&swap_avail_lock);
652 }
653 
654 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
655 			    unsigned int nr_entries)
656 {
657 	unsigned long end = offset + nr_entries - 1;
658 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
659 
660 	if (offset < si->lowest_bit)
661 		si->lowest_bit = offset;
662 	if (end > si->highest_bit) {
663 		bool was_full = !si->highest_bit;
664 
665 		si->highest_bit = end;
666 		if (was_full && (si->flags & SWP_WRITEOK))
667 			add_to_avail_list(si);
668 	}
669 	atomic_long_add(nr_entries, &nr_swap_pages);
670 	si->inuse_pages -= nr_entries;
671 	if (si->flags & SWP_BLKDEV)
672 		swap_slot_free_notify =
673 			si->bdev->bd_disk->fops->swap_slot_free_notify;
674 	else
675 		swap_slot_free_notify = NULL;
676 	while (offset <= end) {
677 		frontswap_invalidate_page(si->type, offset);
678 		if (swap_slot_free_notify)
679 			swap_slot_free_notify(si->bdev, offset);
680 		offset++;
681 	}
682 }
683 
684 static int scan_swap_map_slots(struct swap_info_struct *si,
685 			       unsigned char usage, int nr,
686 			       swp_entry_t slots[])
687 {
688 	struct swap_cluster_info *ci;
689 	unsigned long offset;
690 	unsigned long scan_base;
691 	unsigned long last_in_cluster = 0;
692 	int latency_ration = LATENCY_LIMIT;
693 	int n_ret = 0;
694 
695 	if (nr > SWAP_BATCH)
696 		nr = SWAP_BATCH;
697 
698 	/*
699 	 * We try to cluster swap pages by allocating them sequentially
700 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
701 	 * way, however, we resort to first-free allocation, starting
702 	 * a new cluster.  This prevents us from scattering swap pages
703 	 * all over the entire swap partition, so that we reduce
704 	 * overall disk seek times between swap pages.  -- sct
705 	 * But we do now try to find an empty cluster.  -Andrea
706 	 * And we let swap pages go all over an SSD partition.  Hugh
707 	 */
708 
709 	si->flags += SWP_SCANNING;
710 	scan_base = offset = si->cluster_next;
711 
712 	/* SSD algorithm */
713 	if (si->cluster_info) {
714 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
715 			goto checks;
716 		else
717 			goto scan;
718 	}
719 
720 	if (unlikely(!si->cluster_nr--)) {
721 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
722 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
723 			goto checks;
724 		}
725 
726 		spin_unlock(&si->lock);
727 
728 		/*
729 		 * If seek is expensive, start searching for new cluster from
730 		 * start of partition, to minimize the span of allocated swap.
731 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
732 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
733 		 */
734 		scan_base = offset = si->lowest_bit;
735 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
736 
737 		/* Locate the first empty (unaligned) cluster */
738 		for (; last_in_cluster <= si->highest_bit; offset++) {
739 			if (si->swap_map[offset])
740 				last_in_cluster = offset + SWAPFILE_CLUSTER;
741 			else if (offset == last_in_cluster) {
742 				spin_lock(&si->lock);
743 				offset -= SWAPFILE_CLUSTER - 1;
744 				si->cluster_next = offset;
745 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
746 				goto checks;
747 			}
748 			if (unlikely(--latency_ration < 0)) {
749 				cond_resched();
750 				latency_ration = LATENCY_LIMIT;
751 			}
752 		}
753 
754 		offset = scan_base;
755 		spin_lock(&si->lock);
756 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
757 	}
758 
759 checks:
760 	if (si->cluster_info) {
761 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
762 		/* take a break if we already got some slots */
763 			if (n_ret)
764 				goto done;
765 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
766 							&scan_base))
767 				goto scan;
768 		}
769 	}
770 	if (!(si->flags & SWP_WRITEOK))
771 		goto no_page;
772 	if (!si->highest_bit)
773 		goto no_page;
774 	if (offset > si->highest_bit)
775 		scan_base = offset = si->lowest_bit;
776 
777 	ci = lock_cluster(si, offset);
778 	/* reuse swap entry of cache-only swap if not busy. */
779 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
780 		int swap_was_freed;
781 		unlock_cluster(ci);
782 		spin_unlock(&si->lock);
783 		swap_was_freed = __try_to_reclaim_swap(si, offset);
784 		spin_lock(&si->lock);
785 		/* entry was freed successfully, try to use this again */
786 		if (swap_was_freed)
787 			goto checks;
788 		goto scan; /* check next one */
789 	}
790 
791 	if (si->swap_map[offset]) {
792 		unlock_cluster(ci);
793 		if (!n_ret)
794 			goto scan;
795 		else
796 			goto done;
797 	}
798 	si->swap_map[offset] = usage;
799 	inc_cluster_info_page(si, si->cluster_info, offset);
800 	unlock_cluster(ci);
801 
802 	swap_range_alloc(si, offset, 1);
803 	si->cluster_next = offset + 1;
804 	slots[n_ret++] = swp_entry(si->type, offset);
805 
806 	/* got enough slots or reach max slots? */
807 	if ((n_ret == nr) || (offset >= si->highest_bit))
808 		goto done;
809 
810 	/* search for next available slot */
811 
812 	/* time to take a break? */
813 	if (unlikely(--latency_ration < 0)) {
814 		if (n_ret)
815 			goto done;
816 		spin_unlock(&si->lock);
817 		cond_resched();
818 		spin_lock(&si->lock);
819 		latency_ration = LATENCY_LIMIT;
820 	}
821 
822 	/* try to get more slots in cluster */
823 	if (si->cluster_info) {
824 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
825 			goto checks;
826 		else
827 			goto done;
828 	}
829 	/* non-ssd case */
830 	++offset;
831 
832 	/* non-ssd case, still more slots in cluster? */
833 	if (si->cluster_nr && !si->swap_map[offset]) {
834 		--si->cluster_nr;
835 		goto checks;
836 	}
837 
838 done:
839 	si->flags -= SWP_SCANNING;
840 	return n_ret;
841 
842 scan:
843 	spin_unlock(&si->lock);
844 	while (++offset <= si->highest_bit) {
845 		if (!si->swap_map[offset]) {
846 			spin_lock(&si->lock);
847 			goto checks;
848 		}
849 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
850 			spin_lock(&si->lock);
851 			goto checks;
852 		}
853 		if (unlikely(--latency_ration < 0)) {
854 			cond_resched();
855 			latency_ration = LATENCY_LIMIT;
856 		}
857 	}
858 	offset = si->lowest_bit;
859 	while (offset < scan_base) {
860 		if (!si->swap_map[offset]) {
861 			spin_lock(&si->lock);
862 			goto checks;
863 		}
864 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
865 			spin_lock(&si->lock);
866 			goto checks;
867 		}
868 		if (unlikely(--latency_ration < 0)) {
869 			cond_resched();
870 			latency_ration = LATENCY_LIMIT;
871 		}
872 		offset++;
873 	}
874 	spin_lock(&si->lock);
875 
876 no_page:
877 	si->flags -= SWP_SCANNING;
878 	return n_ret;
879 }
880 
881 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
882 {
883 	unsigned long idx;
884 	struct swap_cluster_info *ci;
885 	unsigned long offset, i;
886 	unsigned char *map;
887 
888 	/*
889 	 * Should not even be attempting cluster allocations when huge
890 	 * page swap is disabled.  Warn and fail the allocation.
891 	 */
892 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
893 		VM_WARN_ON_ONCE(1);
894 		return 0;
895 	}
896 
897 	if (cluster_list_empty(&si->free_clusters))
898 		return 0;
899 
900 	idx = cluster_list_first(&si->free_clusters);
901 	offset = idx * SWAPFILE_CLUSTER;
902 	ci = lock_cluster(si, offset);
903 	alloc_cluster(si, idx);
904 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
905 
906 	map = si->swap_map + offset;
907 	for (i = 0; i < SWAPFILE_CLUSTER; i++)
908 		map[i] = SWAP_HAS_CACHE;
909 	unlock_cluster(ci);
910 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
911 	*slot = swp_entry(si->type, offset);
912 
913 	return 1;
914 }
915 
916 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
917 {
918 	unsigned long offset = idx * SWAPFILE_CLUSTER;
919 	struct swap_cluster_info *ci;
920 
921 	ci = lock_cluster(si, offset);
922 	cluster_set_count_flag(ci, 0, 0);
923 	free_cluster(si, idx);
924 	unlock_cluster(ci);
925 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
926 }
927 
928 static unsigned long scan_swap_map(struct swap_info_struct *si,
929 				   unsigned char usage)
930 {
931 	swp_entry_t entry;
932 	int n_ret;
933 
934 	n_ret = scan_swap_map_slots(si, usage, 1, &entry);
935 
936 	if (n_ret)
937 		return swp_offset(entry);
938 	else
939 		return 0;
940 
941 }
942 
943 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
944 {
945 	unsigned long size = swap_entry_size(entry_size);
946 	struct swap_info_struct *si, *next;
947 	long avail_pgs;
948 	int n_ret = 0;
949 	int node;
950 
951 	/* Only single cluster request supported */
952 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
953 
954 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
955 	if (avail_pgs <= 0)
956 		goto noswap;
957 
958 	if (n_goal > SWAP_BATCH)
959 		n_goal = SWAP_BATCH;
960 
961 	if (n_goal > avail_pgs)
962 		n_goal = avail_pgs;
963 
964 	atomic_long_sub(n_goal * size, &nr_swap_pages);
965 
966 	spin_lock(&swap_avail_lock);
967 
968 start_over:
969 	node = numa_node_id();
970 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
971 		/* requeue si to after same-priority siblings */
972 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
973 		spin_unlock(&swap_avail_lock);
974 		spin_lock(&si->lock);
975 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
976 			spin_lock(&swap_avail_lock);
977 			if (plist_node_empty(&si->avail_lists[node])) {
978 				spin_unlock(&si->lock);
979 				goto nextsi;
980 			}
981 			WARN(!si->highest_bit,
982 			     "swap_info %d in list but !highest_bit\n",
983 			     si->type);
984 			WARN(!(si->flags & SWP_WRITEOK),
985 			     "swap_info %d in list but !SWP_WRITEOK\n",
986 			     si->type);
987 			__del_from_avail_list(si);
988 			spin_unlock(&si->lock);
989 			goto nextsi;
990 		}
991 		if (size == SWAPFILE_CLUSTER) {
992 			if (!(si->flags & SWP_FILE))
993 				n_ret = swap_alloc_cluster(si, swp_entries);
994 		} else
995 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
996 						    n_goal, swp_entries);
997 		spin_unlock(&si->lock);
998 		if (n_ret || size == SWAPFILE_CLUSTER)
999 			goto check_out;
1000 		pr_debug("scan_swap_map of si %d failed to find offset\n",
1001 			si->type);
1002 
1003 		spin_lock(&swap_avail_lock);
1004 nextsi:
1005 		/*
1006 		 * if we got here, it's likely that si was almost full before,
1007 		 * and since scan_swap_map() can drop the si->lock, multiple
1008 		 * callers probably all tried to get a page from the same si
1009 		 * and it filled up before we could get one; or, the si filled
1010 		 * up between us dropping swap_avail_lock and taking si->lock.
1011 		 * Since we dropped the swap_avail_lock, the swap_avail_head
1012 		 * list may have been modified; so if next is still in the
1013 		 * swap_avail_head list then try it, otherwise start over
1014 		 * if we have not gotten any slots.
1015 		 */
1016 		if (plist_node_empty(&next->avail_lists[node]))
1017 			goto start_over;
1018 	}
1019 
1020 	spin_unlock(&swap_avail_lock);
1021 
1022 check_out:
1023 	if (n_ret < n_goal)
1024 		atomic_long_add((long)(n_goal - n_ret) * size,
1025 				&nr_swap_pages);
1026 noswap:
1027 	return n_ret;
1028 }
1029 
1030 /* The only caller of this function is now suspend routine */
1031 swp_entry_t get_swap_page_of_type(int type)
1032 {
1033 	struct swap_info_struct *si;
1034 	pgoff_t offset;
1035 
1036 	si = swap_info[type];
1037 	spin_lock(&si->lock);
1038 	if (si && (si->flags & SWP_WRITEOK)) {
1039 		atomic_long_dec(&nr_swap_pages);
1040 		/* This is called for allocating swap entry, not cache */
1041 		offset = scan_swap_map(si, 1);
1042 		if (offset) {
1043 			spin_unlock(&si->lock);
1044 			return swp_entry(type, offset);
1045 		}
1046 		atomic_long_inc(&nr_swap_pages);
1047 	}
1048 	spin_unlock(&si->lock);
1049 	return (swp_entry_t) {0};
1050 }
1051 
1052 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1053 {
1054 	struct swap_info_struct *p;
1055 	unsigned long offset, type;
1056 
1057 	if (!entry.val)
1058 		goto out;
1059 	type = swp_type(entry);
1060 	if (type >= nr_swapfiles)
1061 		goto bad_nofile;
1062 	p = swap_info[type];
1063 	if (!(p->flags & SWP_USED))
1064 		goto bad_device;
1065 	offset = swp_offset(entry);
1066 	if (offset >= p->max)
1067 		goto bad_offset;
1068 	return p;
1069 
1070 bad_offset:
1071 	pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1072 	goto out;
1073 bad_device:
1074 	pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1075 	goto out;
1076 bad_nofile:
1077 	pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1078 out:
1079 	return NULL;
1080 }
1081 
1082 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1083 {
1084 	struct swap_info_struct *p;
1085 
1086 	p = __swap_info_get(entry);
1087 	if (!p)
1088 		goto out;
1089 	if (!p->swap_map[swp_offset(entry)])
1090 		goto bad_free;
1091 	return p;
1092 
1093 bad_free:
1094 	pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1095 	goto out;
1096 out:
1097 	return NULL;
1098 }
1099 
1100 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1101 {
1102 	struct swap_info_struct *p;
1103 
1104 	p = _swap_info_get(entry);
1105 	if (p)
1106 		spin_lock(&p->lock);
1107 	return p;
1108 }
1109 
1110 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1111 					struct swap_info_struct *q)
1112 {
1113 	struct swap_info_struct *p;
1114 
1115 	p = _swap_info_get(entry);
1116 
1117 	if (p != q) {
1118 		if (q != NULL)
1119 			spin_unlock(&q->lock);
1120 		if (p != NULL)
1121 			spin_lock(&p->lock);
1122 	}
1123 	return p;
1124 }
1125 
1126 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1127 					      unsigned long offset,
1128 					      unsigned char usage)
1129 {
1130 	unsigned char count;
1131 	unsigned char has_cache;
1132 
1133 	count = p->swap_map[offset];
1134 
1135 	has_cache = count & SWAP_HAS_CACHE;
1136 	count &= ~SWAP_HAS_CACHE;
1137 
1138 	if (usage == SWAP_HAS_CACHE) {
1139 		VM_BUG_ON(!has_cache);
1140 		has_cache = 0;
1141 	} else if (count == SWAP_MAP_SHMEM) {
1142 		/*
1143 		 * Or we could insist on shmem.c using a special
1144 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1145 		 */
1146 		count = 0;
1147 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1148 		if (count == COUNT_CONTINUED) {
1149 			if (swap_count_continued(p, offset, count))
1150 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1151 			else
1152 				count = SWAP_MAP_MAX;
1153 		} else
1154 			count--;
1155 	}
1156 
1157 	usage = count | has_cache;
1158 	p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1159 
1160 	return usage;
1161 }
1162 
1163 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1164 				       swp_entry_t entry, unsigned char usage)
1165 {
1166 	struct swap_cluster_info *ci;
1167 	unsigned long offset = swp_offset(entry);
1168 
1169 	ci = lock_cluster_or_swap_info(p, offset);
1170 	usage = __swap_entry_free_locked(p, offset, usage);
1171 	unlock_cluster_or_swap_info(p, ci);
1172 
1173 	return usage;
1174 }
1175 
1176 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1177 {
1178 	struct swap_cluster_info *ci;
1179 	unsigned long offset = swp_offset(entry);
1180 	unsigned char count;
1181 
1182 	ci = lock_cluster(p, offset);
1183 	count = p->swap_map[offset];
1184 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1185 	p->swap_map[offset] = 0;
1186 	dec_cluster_info_page(p, p->cluster_info, offset);
1187 	unlock_cluster(ci);
1188 
1189 	mem_cgroup_uncharge_swap(entry, 1);
1190 	swap_range_free(p, offset, 1);
1191 }
1192 
1193 /*
1194  * Caller has made sure that the swap device corresponding to entry
1195  * is still around or has not been recycled.
1196  */
1197 void swap_free(swp_entry_t entry)
1198 {
1199 	struct swap_info_struct *p;
1200 
1201 	p = _swap_info_get(entry);
1202 	if (p) {
1203 		if (!__swap_entry_free(p, entry, 1))
1204 			free_swap_slot(entry);
1205 	}
1206 }
1207 
1208 /*
1209  * Called after dropping swapcache to decrease refcnt to swap entries.
1210  */
1211 void put_swap_page(struct page *page, swp_entry_t entry)
1212 {
1213 	unsigned long offset = swp_offset(entry);
1214 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1215 	struct swap_cluster_info *ci;
1216 	struct swap_info_struct *si;
1217 	unsigned char *map;
1218 	unsigned int i, free_entries = 0;
1219 	unsigned char val;
1220 	int size = swap_entry_size(hpage_nr_pages(page));
1221 
1222 	si = _swap_info_get(entry);
1223 	if (!si)
1224 		return;
1225 
1226 	ci = lock_cluster_or_swap_info(si, offset);
1227 	if (size == SWAPFILE_CLUSTER) {
1228 		VM_BUG_ON(!cluster_is_huge(ci));
1229 		map = si->swap_map + offset;
1230 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1231 			val = map[i];
1232 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1233 			if (val == SWAP_HAS_CACHE)
1234 				free_entries++;
1235 		}
1236 		cluster_clear_huge(ci);
1237 		if (free_entries == SWAPFILE_CLUSTER) {
1238 			unlock_cluster_or_swap_info(si, ci);
1239 			spin_lock(&si->lock);
1240 			ci = lock_cluster(si, offset);
1241 			memset(map, 0, SWAPFILE_CLUSTER);
1242 			unlock_cluster(ci);
1243 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1244 			swap_free_cluster(si, idx);
1245 			spin_unlock(&si->lock);
1246 			return;
1247 		}
1248 	}
1249 	for (i = 0; i < size; i++, entry.val++) {
1250 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1251 			unlock_cluster_or_swap_info(si, ci);
1252 			free_swap_slot(entry);
1253 			if (i == size - 1)
1254 				return;
1255 			lock_cluster_or_swap_info(si, offset);
1256 		}
1257 	}
1258 	unlock_cluster_or_swap_info(si, ci);
1259 }
1260 
1261 #ifdef CONFIG_THP_SWAP
1262 int split_swap_cluster(swp_entry_t entry)
1263 {
1264 	struct swap_info_struct *si;
1265 	struct swap_cluster_info *ci;
1266 	unsigned long offset = swp_offset(entry);
1267 
1268 	si = _swap_info_get(entry);
1269 	if (!si)
1270 		return -EBUSY;
1271 	ci = lock_cluster(si, offset);
1272 	cluster_clear_huge(ci);
1273 	unlock_cluster(ci);
1274 	return 0;
1275 }
1276 #endif
1277 
1278 static int swp_entry_cmp(const void *ent1, const void *ent2)
1279 {
1280 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1281 
1282 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1283 }
1284 
1285 void swapcache_free_entries(swp_entry_t *entries, int n)
1286 {
1287 	struct swap_info_struct *p, *prev;
1288 	int i;
1289 
1290 	if (n <= 0)
1291 		return;
1292 
1293 	prev = NULL;
1294 	p = NULL;
1295 
1296 	/*
1297 	 * Sort swap entries by swap device, so each lock is only taken once.
1298 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1299 	 * so low that it isn't necessary to optimize further.
1300 	 */
1301 	if (nr_swapfiles > 1)
1302 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1303 	for (i = 0; i < n; ++i) {
1304 		p = swap_info_get_cont(entries[i], prev);
1305 		if (p)
1306 			swap_entry_free(p, entries[i]);
1307 		prev = p;
1308 	}
1309 	if (p)
1310 		spin_unlock(&p->lock);
1311 }
1312 
1313 /*
1314  * How many references to page are currently swapped out?
1315  * This does not give an exact answer when swap count is continued,
1316  * but does include the high COUNT_CONTINUED flag to allow for that.
1317  */
1318 int page_swapcount(struct page *page)
1319 {
1320 	int count = 0;
1321 	struct swap_info_struct *p;
1322 	struct swap_cluster_info *ci;
1323 	swp_entry_t entry;
1324 	unsigned long offset;
1325 
1326 	entry.val = page_private(page);
1327 	p = _swap_info_get(entry);
1328 	if (p) {
1329 		offset = swp_offset(entry);
1330 		ci = lock_cluster_or_swap_info(p, offset);
1331 		count = swap_count(p->swap_map[offset]);
1332 		unlock_cluster_or_swap_info(p, ci);
1333 	}
1334 	return count;
1335 }
1336 
1337 int __swap_count(struct swap_info_struct *si, swp_entry_t entry)
1338 {
1339 	pgoff_t offset = swp_offset(entry);
1340 
1341 	return swap_count(si->swap_map[offset]);
1342 }
1343 
1344 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1345 {
1346 	int count = 0;
1347 	pgoff_t offset = swp_offset(entry);
1348 	struct swap_cluster_info *ci;
1349 
1350 	ci = lock_cluster_or_swap_info(si, offset);
1351 	count = swap_count(si->swap_map[offset]);
1352 	unlock_cluster_or_swap_info(si, ci);
1353 	return count;
1354 }
1355 
1356 /*
1357  * How many references to @entry are currently swapped out?
1358  * This does not give an exact answer when swap count is continued,
1359  * but does include the high COUNT_CONTINUED flag to allow for that.
1360  */
1361 int __swp_swapcount(swp_entry_t entry)
1362 {
1363 	int count = 0;
1364 	struct swap_info_struct *si;
1365 
1366 	si = __swap_info_get(entry);
1367 	if (si)
1368 		count = swap_swapcount(si, entry);
1369 	return count;
1370 }
1371 
1372 /*
1373  * How many references to @entry are currently swapped out?
1374  * This considers COUNT_CONTINUED so it returns exact answer.
1375  */
1376 int swp_swapcount(swp_entry_t entry)
1377 {
1378 	int count, tmp_count, n;
1379 	struct swap_info_struct *p;
1380 	struct swap_cluster_info *ci;
1381 	struct page *page;
1382 	pgoff_t offset;
1383 	unsigned char *map;
1384 
1385 	p = _swap_info_get(entry);
1386 	if (!p)
1387 		return 0;
1388 
1389 	offset = swp_offset(entry);
1390 
1391 	ci = lock_cluster_or_swap_info(p, offset);
1392 
1393 	count = swap_count(p->swap_map[offset]);
1394 	if (!(count & COUNT_CONTINUED))
1395 		goto out;
1396 
1397 	count &= ~COUNT_CONTINUED;
1398 	n = SWAP_MAP_MAX + 1;
1399 
1400 	page = vmalloc_to_page(p->swap_map + offset);
1401 	offset &= ~PAGE_MASK;
1402 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1403 
1404 	do {
1405 		page = list_next_entry(page, lru);
1406 		map = kmap_atomic(page);
1407 		tmp_count = map[offset];
1408 		kunmap_atomic(map);
1409 
1410 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1411 		n *= (SWAP_CONT_MAX + 1);
1412 	} while (tmp_count & COUNT_CONTINUED);
1413 out:
1414 	unlock_cluster_or_swap_info(p, ci);
1415 	return count;
1416 }
1417 
1418 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1419 					 swp_entry_t entry)
1420 {
1421 	struct swap_cluster_info *ci;
1422 	unsigned char *map = si->swap_map;
1423 	unsigned long roffset = swp_offset(entry);
1424 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1425 	int i;
1426 	bool ret = false;
1427 
1428 	ci = lock_cluster_or_swap_info(si, offset);
1429 	if (!ci || !cluster_is_huge(ci)) {
1430 		if (swap_count(map[roffset]))
1431 			ret = true;
1432 		goto unlock_out;
1433 	}
1434 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1435 		if (swap_count(map[offset + i])) {
1436 			ret = true;
1437 			break;
1438 		}
1439 	}
1440 unlock_out:
1441 	unlock_cluster_or_swap_info(si, ci);
1442 	return ret;
1443 }
1444 
1445 static bool page_swapped(struct page *page)
1446 {
1447 	swp_entry_t entry;
1448 	struct swap_info_struct *si;
1449 
1450 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1451 		return page_swapcount(page) != 0;
1452 
1453 	page = compound_head(page);
1454 	entry.val = page_private(page);
1455 	si = _swap_info_get(entry);
1456 	if (si)
1457 		return swap_page_trans_huge_swapped(si, entry);
1458 	return false;
1459 }
1460 
1461 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1462 					 int *total_swapcount)
1463 {
1464 	int i, map_swapcount, _total_mapcount, _total_swapcount;
1465 	unsigned long offset = 0;
1466 	struct swap_info_struct *si;
1467 	struct swap_cluster_info *ci = NULL;
1468 	unsigned char *map = NULL;
1469 	int mapcount, swapcount = 0;
1470 
1471 	/* hugetlbfs shouldn't call it */
1472 	VM_BUG_ON_PAGE(PageHuge(page), page);
1473 
1474 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1475 		mapcount = page_trans_huge_mapcount(page, total_mapcount);
1476 		if (PageSwapCache(page))
1477 			swapcount = page_swapcount(page);
1478 		if (total_swapcount)
1479 			*total_swapcount = swapcount;
1480 		return mapcount + swapcount;
1481 	}
1482 
1483 	page = compound_head(page);
1484 
1485 	_total_mapcount = _total_swapcount = map_swapcount = 0;
1486 	if (PageSwapCache(page)) {
1487 		swp_entry_t entry;
1488 
1489 		entry.val = page_private(page);
1490 		si = _swap_info_get(entry);
1491 		if (si) {
1492 			map = si->swap_map;
1493 			offset = swp_offset(entry);
1494 		}
1495 	}
1496 	if (map)
1497 		ci = lock_cluster(si, offset);
1498 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1499 		mapcount = atomic_read(&page[i]._mapcount) + 1;
1500 		_total_mapcount += mapcount;
1501 		if (map) {
1502 			swapcount = swap_count(map[offset + i]);
1503 			_total_swapcount += swapcount;
1504 		}
1505 		map_swapcount = max(map_swapcount, mapcount + swapcount);
1506 	}
1507 	unlock_cluster(ci);
1508 	if (PageDoubleMap(page)) {
1509 		map_swapcount -= 1;
1510 		_total_mapcount -= HPAGE_PMD_NR;
1511 	}
1512 	mapcount = compound_mapcount(page);
1513 	map_swapcount += mapcount;
1514 	_total_mapcount += mapcount;
1515 	if (total_mapcount)
1516 		*total_mapcount = _total_mapcount;
1517 	if (total_swapcount)
1518 		*total_swapcount = _total_swapcount;
1519 
1520 	return map_swapcount;
1521 }
1522 
1523 /*
1524  * We can write to an anon page without COW if there are no other references
1525  * to it.  And as a side-effect, free up its swap: because the old content
1526  * on disk will never be read, and seeking back there to write new content
1527  * later would only waste time away from clustering.
1528  *
1529  * NOTE: total_map_swapcount should not be relied upon by the caller if
1530  * reuse_swap_page() returns false, but it may be always overwritten
1531  * (see the other implementation for CONFIG_SWAP=n).
1532  */
1533 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1534 {
1535 	int count, total_mapcount, total_swapcount;
1536 
1537 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1538 	if (unlikely(PageKsm(page)))
1539 		return false;
1540 	count = page_trans_huge_map_swapcount(page, &total_mapcount,
1541 					      &total_swapcount);
1542 	if (total_map_swapcount)
1543 		*total_map_swapcount = total_mapcount + total_swapcount;
1544 	if (count == 1 && PageSwapCache(page) &&
1545 	    (likely(!PageTransCompound(page)) ||
1546 	     /* The remaining swap count will be freed soon */
1547 	     total_swapcount == page_swapcount(page))) {
1548 		if (!PageWriteback(page)) {
1549 			page = compound_head(page);
1550 			delete_from_swap_cache(page);
1551 			SetPageDirty(page);
1552 		} else {
1553 			swp_entry_t entry;
1554 			struct swap_info_struct *p;
1555 
1556 			entry.val = page_private(page);
1557 			p = swap_info_get(entry);
1558 			if (p->flags & SWP_STABLE_WRITES) {
1559 				spin_unlock(&p->lock);
1560 				return false;
1561 			}
1562 			spin_unlock(&p->lock);
1563 		}
1564 	}
1565 
1566 	return count <= 1;
1567 }
1568 
1569 /*
1570  * If swap is getting full, or if there are no more mappings of this page,
1571  * then try_to_free_swap is called to free its swap space.
1572  */
1573 int try_to_free_swap(struct page *page)
1574 {
1575 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1576 
1577 	if (!PageSwapCache(page))
1578 		return 0;
1579 	if (PageWriteback(page))
1580 		return 0;
1581 	if (page_swapped(page))
1582 		return 0;
1583 
1584 	/*
1585 	 * Once hibernation has begun to create its image of memory,
1586 	 * there's a danger that one of the calls to try_to_free_swap()
1587 	 * - most probably a call from __try_to_reclaim_swap() while
1588 	 * hibernation is allocating its own swap pages for the image,
1589 	 * but conceivably even a call from memory reclaim - will free
1590 	 * the swap from a page which has already been recorded in the
1591 	 * image as a clean swapcache page, and then reuse its swap for
1592 	 * another page of the image.  On waking from hibernation, the
1593 	 * original page might be freed under memory pressure, then
1594 	 * later read back in from swap, now with the wrong data.
1595 	 *
1596 	 * Hibernation suspends storage while it is writing the image
1597 	 * to disk so check that here.
1598 	 */
1599 	if (pm_suspended_storage())
1600 		return 0;
1601 
1602 	page = compound_head(page);
1603 	delete_from_swap_cache(page);
1604 	SetPageDirty(page);
1605 	return 1;
1606 }
1607 
1608 /*
1609  * Free the swap entry like above, but also try to
1610  * free the page cache entry if it is the last user.
1611  */
1612 int free_swap_and_cache(swp_entry_t entry)
1613 {
1614 	struct swap_info_struct *p;
1615 	struct page *page = NULL;
1616 	unsigned char count;
1617 
1618 	if (non_swap_entry(entry))
1619 		return 1;
1620 
1621 	p = _swap_info_get(entry);
1622 	if (p) {
1623 		count = __swap_entry_free(p, entry, 1);
1624 		if (count == SWAP_HAS_CACHE &&
1625 		    !swap_page_trans_huge_swapped(p, entry)) {
1626 			page = find_get_page(swap_address_space(entry),
1627 					     swp_offset(entry));
1628 			if (page && !trylock_page(page)) {
1629 				put_page(page);
1630 				page = NULL;
1631 			}
1632 		} else if (!count)
1633 			free_swap_slot(entry);
1634 	}
1635 	if (page) {
1636 		/*
1637 		 * Not mapped elsewhere, or swap space full? Free it!
1638 		 * Also recheck PageSwapCache now page is locked (above).
1639 		 */
1640 		if (PageSwapCache(page) && !PageWriteback(page) &&
1641 		    (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
1642 		    !swap_page_trans_huge_swapped(p, entry)) {
1643 			page = compound_head(page);
1644 			delete_from_swap_cache(page);
1645 			SetPageDirty(page);
1646 		}
1647 		unlock_page(page);
1648 		put_page(page);
1649 	}
1650 	return p != NULL;
1651 }
1652 
1653 #ifdef CONFIG_HIBERNATION
1654 /*
1655  * Find the swap type that corresponds to given device (if any).
1656  *
1657  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1658  * from 0, in which the swap header is expected to be located.
1659  *
1660  * This is needed for the suspend to disk (aka swsusp).
1661  */
1662 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1663 {
1664 	struct block_device *bdev = NULL;
1665 	int type;
1666 
1667 	if (device)
1668 		bdev = bdget(device);
1669 
1670 	spin_lock(&swap_lock);
1671 	for (type = 0; type < nr_swapfiles; type++) {
1672 		struct swap_info_struct *sis = swap_info[type];
1673 
1674 		if (!(sis->flags & SWP_WRITEOK))
1675 			continue;
1676 
1677 		if (!bdev) {
1678 			if (bdev_p)
1679 				*bdev_p = bdgrab(sis->bdev);
1680 
1681 			spin_unlock(&swap_lock);
1682 			return type;
1683 		}
1684 		if (bdev == sis->bdev) {
1685 			struct swap_extent *se = &sis->first_swap_extent;
1686 
1687 			if (se->start_block == offset) {
1688 				if (bdev_p)
1689 					*bdev_p = bdgrab(sis->bdev);
1690 
1691 				spin_unlock(&swap_lock);
1692 				bdput(bdev);
1693 				return type;
1694 			}
1695 		}
1696 	}
1697 	spin_unlock(&swap_lock);
1698 	if (bdev)
1699 		bdput(bdev);
1700 
1701 	return -ENODEV;
1702 }
1703 
1704 /*
1705  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1706  * corresponding to given index in swap_info (swap type).
1707  */
1708 sector_t swapdev_block(int type, pgoff_t offset)
1709 {
1710 	struct block_device *bdev;
1711 
1712 	if ((unsigned int)type >= nr_swapfiles)
1713 		return 0;
1714 	if (!(swap_info[type]->flags & SWP_WRITEOK))
1715 		return 0;
1716 	return map_swap_entry(swp_entry(type, offset), &bdev);
1717 }
1718 
1719 /*
1720  * Return either the total number of swap pages of given type, or the number
1721  * of free pages of that type (depending on @free)
1722  *
1723  * This is needed for software suspend
1724  */
1725 unsigned int count_swap_pages(int type, int free)
1726 {
1727 	unsigned int n = 0;
1728 
1729 	spin_lock(&swap_lock);
1730 	if ((unsigned int)type < nr_swapfiles) {
1731 		struct swap_info_struct *sis = swap_info[type];
1732 
1733 		spin_lock(&sis->lock);
1734 		if (sis->flags & SWP_WRITEOK) {
1735 			n = sis->pages;
1736 			if (free)
1737 				n -= sis->inuse_pages;
1738 		}
1739 		spin_unlock(&sis->lock);
1740 	}
1741 	spin_unlock(&swap_lock);
1742 	return n;
1743 }
1744 #endif /* CONFIG_HIBERNATION */
1745 
1746 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1747 {
1748 	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1749 }
1750 
1751 /*
1752  * No need to decide whether this PTE shares the swap entry with others,
1753  * just let do_wp_page work it out if a write is requested later - to
1754  * force COW, vm_page_prot omits write permission from any private vma.
1755  */
1756 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1757 		unsigned long addr, swp_entry_t entry, struct page *page)
1758 {
1759 	struct page *swapcache;
1760 	struct mem_cgroup *memcg;
1761 	spinlock_t *ptl;
1762 	pte_t *pte;
1763 	int ret = 1;
1764 
1765 	swapcache = page;
1766 	page = ksm_might_need_to_copy(page, vma, addr);
1767 	if (unlikely(!page))
1768 		return -ENOMEM;
1769 
1770 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1771 				&memcg, false)) {
1772 		ret = -ENOMEM;
1773 		goto out_nolock;
1774 	}
1775 
1776 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1777 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1778 		mem_cgroup_cancel_charge(page, memcg, false);
1779 		ret = 0;
1780 		goto out;
1781 	}
1782 
1783 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1784 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1785 	get_page(page);
1786 	set_pte_at(vma->vm_mm, addr, pte,
1787 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1788 	if (page == swapcache) {
1789 		page_add_anon_rmap(page, vma, addr, false);
1790 		mem_cgroup_commit_charge(page, memcg, true, false);
1791 	} else { /* ksm created a completely new copy */
1792 		page_add_new_anon_rmap(page, vma, addr, false);
1793 		mem_cgroup_commit_charge(page, memcg, false, false);
1794 		lru_cache_add_active_or_unevictable(page, vma);
1795 	}
1796 	swap_free(entry);
1797 	/*
1798 	 * Move the page to the active list so it is not
1799 	 * immediately swapped out again after swapon.
1800 	 */
1801 	activate_page(page);
1802 out:
1803 	pte_unmap_unlock(pte, ptl);
1804 out_nolock:
1805 	if (page != swapcache) {
1806 		unlock_page(page);
1807 		put_page(page);
1808 	}
1809 	return ret;
1810 }
1811 
1812 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1813 				unsigned long addr, unsigned long end,
1814 				swp_entry_t entry, struct page *page)
1815 {
1816 	pte_t swp_pte = swp_entry_to_pte(entry);
1817 	pte_t *pte;
1818 	int ret = 0;
1819 
1820 	/*
1821 	 * We don't actually need pte lock while scanning for swp_pte: since
1822 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1823 	 * page table while we're scanning; though it could get zapped, and on
1824 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1825 	 * of unmatched parts which look like swp_pte, so unuse_pte must
1826 	 * recheck under pte lock.  Scanning without pte lock lets it be
1827 	 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1828 	 */
1829 	pte = pte_offset_map(pmd, addr);
1830 	do {
1831 		/*
1832 		 * swapoff spends a _lot_ of time in this loop!
1833 		 * Test inline before going to call unuse_pte.
1834 		 */
1835 		if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1836 			pte_unmap(pte);
1837 			ret = unuse_pte(vma, pmd, addr, entry, page);
1838 			if (ret)
1839 				goto out;
1840 			pte = pte_offset_map(pmd, addr);
1841 		}
1842 	} while (pte++, addr += PAGE_SIZE, addr != end);
1843 	pte_unmap(pte - 1);
1844 out:
1845 	return ret;
1846 }
1847 
1848 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1849 				unsigned long addr, unsigned long end,
1850 				swp_entry_t entry, struct page *page)
1851 {
1852 	pmd_t *pmd;
1853 	unsigned long next;
1854 	int ret;
1855 
1856 	pmd = pmd_offset(pud, addr);
1857 	do {
1858 		cond_resched();
1859 		next = pmd_addr_end(addr, end);
1860 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1861 			continue;
1862 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1863 		if (ret)
1864 			return ret;
1865 	} while (pmd++, addr = next, addr != end);
1866 	return 0;
1867 }
1868 
1869 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1870 				unsigned long addr, unsigned long end,
1871 				swp_entry_t entry, struct page *page)
1872 {
1873 	pud_t *pud;
1874 	unsigned long next;
1875 	int ret;
1876 
1877 	pud = pud_offset(p4d, addr);
1878 	do {
1879 		next = pud_addr_end(addr, end);
1880 		if (pud_none_or_clear_bad(pud))
1881 			continue;
1882 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1883 		if (ret)
1884 			return ret;
1885 	} while (pud++, addr = next, addr != end);
1886 	return 0;
1887 }
1888 
1889 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1890 				unsigned long addr, unsigned long end,
1891 				swp_entry_t entry, struct page *page)
1892 {
1893 	p4d_t *p4d;
1894 	unsigned long next;
1895 	int ret;
1896 
1897 	p4d = p4d_offset(pgd, addr);
1898 	do {
1899 		next = p4d_addr_end(addr, end);
1900 		if (p4d_none_or_clear_bad(p4d))
1901 			continue;
1902 		ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1903 		if (ret)
1904 			return ret;
1905 	} while (p4d++, addr = next, addr != end);
1906 	return 0;
1907 }
1908 
1909 static int unuse_vma(struct vm_area_struct *vma,
1910 				swp_entry_t entry, struct page *page)
1911 {
1912 	pgd_t *pgd;
1913 	unsigned long addr, end, next;
1914 	int ret;
1915 
1916 	if (page_anon_vma(page)) {
1917 		addr = page_address_in_vma(page, vma);
1918 		if (addr == -EFAULT)
1919 			return 0;
1920 		else
1921 			end = addr + PAGE_SIZE;
1922 	} else {
1923 		addr = vma->vm_start;
1924 		end = vma->vm_end;
1925 	}
1926 
1927 	pgd = pgd_offset(vma->vm_mm, addr);
1928 	do {
1929 		next = pgd_addr_end(addr, end);
1930 		if (pgd_none_or_clear_bad(pgd))
1931 			continue;
1932 		ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1933 		if (ret)
1934 			return ret;
1935 	} while (pgd++, addr = next, addr != end);
1936 	return 0;
1937 }
1938 
1939 static int unuse_mm(struct mm_struct *mm,
1940 				swp_entry_t entry, struct page *page)
1941 {
1942 	struct vm_area_struct *vma;
1943 	int ret = 0;
1944 
1945 	if (!down_read_trylock(&mm->mmap_sem)) {
1946 		/*
1947 		 * Activate page so shrink_inactive_list is unlikely to unmap
1948 		 * its ptes while lock is dropped, so swapoff can make progress.
1949 		 */
1950 		activate_page(page);
1951 		unlock_page(page);
1952 		down_read(&mm->mmap_sem);
1953 		lock_page(page);
1954 	}
1955 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1956 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1957 			break;
1958 		cond_resched();
1959 	}
1960 	up_read(&mm->mmap_sem);
1961 	return (ret < 0)? ret: 0;
1962 }
1963 
1964 /*
1965  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1966  * from current position to next entry still in use.
1967  * Recycle to start on reaching the end, returning 0 when empty.
1968  */
1969 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1970 					unsigned int prev, bool frontswap)
1971 {
1972 	unsigned int max = si->max;
1973 	unsigned int i = prev;
1974 	unsigned char count;
1975 
1976 	/*
1977 	 * No need for swap_lock here: we're just looking
1978 	 * for whether an entry is in use, not modifying it; false
1979 	 * hits are okay, and sys_swapoff() has already prevented new
1980 	 * allocations from this area (while holding swap_lock).
1981 	 */
1982 	for (;;) {
1983 		if (++i >= max) {
1984 			if (!prev) {
1985 				i = 0;
1986 				break;
1987 			}
1988 			/*
1989 			 * No entries in use at top of swap_map,
1990 			 * loop back to start and recheck there.
1991 			 */
1992 			max = prev + 1;
1993 			prev = 0;
1994 			i = 1;
1995 		}
1996 		count = READ_ONCE(si->swap_map[i]);
1997 		if (count && swap_count(count) != SWAP_MAP_BAD)
1998 			if (!frontswap || frontswap_test(si, i))
1999 				break;
2000 		if ((i % LATENCY_LIMIT) == 0)
2001 			cond_resched();
2002 	}
2003 	return i;
2004 }
2005 
2006 /*
2007  * We completely avoid races by reading each swap page in advance,
2008  * and then search for the process using it.  All the necessary
2009  * page table adjustments can then be made atomically.
2010  *
2011  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2012  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2013  */
2014 int try_to_unuse(unsigned int type, bool frontswap,
2015 		 unsigned long pages_to_unuse)
2016 {
2017 	struct swap_info_struct *si = swap_info[type];
2018 	struct mm_struct *start_mm;
2019 	volatile unsigned char *swap_map; /* swap_map is accessed without
2020 					   * locking. Mark it as volatile
2021 					   * to prevent compiler doing
2022 					   * something odd.
2023 					   */
2024 	unsigned char swcount;
2025 	struct page *page;
2026 	swp_entry_t entry;
2027 	unsigned int i = 0;
2028 	int retval = 0;
2029 
2030 	/*
2031 	 * When searching mms for an entry, a good strategy is to
2032 	 * start at the first mm we freed the previous entry from
2033 	 * (though actually we don't notice whether we or coincidence
2034 	 * freed the entry).  Initialize this start_mm with a hold.
2035 	 *
2036 	 * A simpler strategy would be to start at the last mm we
2037 	 * freed the previous entry from; but that would take less
2038 	 * advantage of mmlist ordering, which clusters forked mms
2039 	 * together, child after parent.  If we race with dup_mmap(), we
2040 	 * prefer to resolve parent before child, lest we miss entries
2041 	 * duplicated after we scanned child: using last mm would invert
2042 	 * that.
2043 	 */
2044 	start_mm = &init_mm;
2045 	mmget(&init_mm);
2046 
2047 	/*
2048 	 * Keep on scanning until all entries have gone.  Usually,
2049 	 * one pass through swap_map is enough, but not necessarily:
2050 	 * there are races when an instance of an entry might be missed.
2051 	 */
2052 	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
2053 		if (signal_pending(current)) {
2054 			retval = -EINTR;
2055 			break;
2056 		}
2057 
2058 		/*
2059 		 * Get a page for the entry, using the existing swap
2060 		 * cache page if there is one.  Otherwise, get a clean
2061 		 * page and read the swap into it.
2062 		 */
2063 		swap_map = &si->swap_map[i];
2064 		entry = swp_entry(type, i);
2065 		page = read_swap_cache_async(entry,
2066 					GFP_HIGHUSER_MOVABLE, NULL, 0, false);
2067 		if (!page) {
2068 			/*
2069 			 * Either swap_duplicate() failed because entry
2070 			 * has been freed independently, and will not be
2071 			 * reused since sys_swapoff() already disabled
2072 			 * allocation from here, or alloc_page() failed.
2073 			 */
2074 			swcount = *swap_map;
2075 			/*
2076 			 * We don't hold lock here, so the swap entry could be
2077 			 * SWAP_MAP_BAD (when the cluster is discarding).
2078 			 * Instead of fail out, We can just skip the swap
2079 			 * entry because swapoff will wait for discarding
2080 			 * finish anyway.
2081 			 */
2082 			if (!swcount || swcount == SWAP_MAP_BAD)
2083 				continue;
2084 			retval = -ENOMEM;
2085 			break;
2086 		}
2087 
2088 		/*
2089 		 * Don't hold on to start_mm if it looks like exiting.
2090 		 */
2091 		if (atomic_read(&start_mm->mm_users) == 1) {
2092 			mmput(start_mm);
2093 			start_mm = &init_mm;
2094 			mmget(&init_mm);
2095 		}
2096 
2097 		/*
2098 		 * Wait for and lock page.  When do_swap_page races with
2099 		 * try_to_unuse, do_swap_page can handle the fault much
2100 		 * faster than try_to_unuse can locate the entry.  This
2101 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
2102 		 * defer to do_swap_page in such a case - in some tests,
2103 		 * do_swap_page and try_to_unuse repeatedly compete.
2104 		 */
2105 		wait_on_page_locked(page);
2106 		wait_on_page_writeback(page);
2107 		lock_page(page);
2108 		wait_on_page_writeback(page);
2109 
2110 		/*
2111 		 * Remove all references to entry.
2112 		 */
2113 		swcount = *swap_map;
2114 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2115 			retval = shmem_unuse(entry, page);
2116 			/* page has already been unlocked and released */
2117 			if (retval < 0)
2118 				break;
2119 			continue;
2120 		}
2121 		if (swap_count(swcount) && start_mm != &init_mm)
2122 			retval = unuse_mm(start_mm, entry, page);
2123 
2124 		if (swap_count(*swap_map)) {
2125 			int set_start_mm = (*swap_map >= swcount);
2126 			struct list_head *p = &start_mm->mmlist;
2127 			struct mm_struct *new_start_mm = start_mm;
2128 			struct mm_struct *prev_mm = start_mm;
2129 			struct mm_struct *mm;
2130 
2131 			mmget(new_start_mm);
2132 			mmget(prev_mm);
2133 			spin_lock(&mmlist_lock);
2134 			while (swap_count(*swap_map) && !retval &&
2135 					(p = p->next) != &start_mm->mmlist) {
2136 				mm = list_entry(p, struct mm_struct, mmlist);
2137 				if (!mmget_not_zero(mm))
2138 					continue;
2139 				spin_unlock(&mmlist_lock);
2140 				mmput(prev_mm);
2141 				prev_mm = mm;
2142 
2143 				cond_resched();
2144 
2145 				swcount = *swap_map;
2146 				if (!swap_count(swcount)) /* any usage ? */
2147 					;
2148 				else if (mm == &init_mm)
2149 					set_start_mm = 1;
2150 				else
2151 					retval = unuse_mm(mm, entry, page);
2152 
2153 				if (set_start_mm && *swap_map < swcount) {
2154 					mmput(new_start_mm);
2155 					mmget(mm);
2156 					new_start_mm = mm;
2157 					set_start_mm = 0;
2158 				}
2159 				spin_lock(&mmlist_lock);
2160 			}
2161 			spin_unlock(&mmlist_lock);
2162 			mmput(prev_mm);
2163 			mmput(start_mm);
2164 			start_mm = new_start_mm;
2165 		}
2166 		if (retval) {
2167 			unlock_page(page);
2168 			put_page(page);
2169 			break;
2170 		}
2171 
2172 		/*
2173 		 * If a reference remains (rare), we would like to leave
2174 		 * the page in the swap cache; but try_to_unmap could
2175 		 * then re-duplicate the entry once we drop page lock,
2176 		 * so we might loop indefinitely; also, that page could
2177 		 * not be swapped out to other storage meanwhile.  So:
2178 		 * delete from cache even if there's another reference,
2179 		 * after ensuring that the data has been saved to disk -
2180 		 * since if the reference remains (rarer), it will be
2181 		 * read from disk into another page.  Splitting into two
2182 		 * pages would be incorrect if swap supported "shared
2183 		 * private" pages, but they are handled by tmpfs files.
2184 		 *
2185 		 * Given how unuse_vma() targets one particular offset
2186 		 * in an anon_vma, once the anon_vma has been determined,
2187 		 * this splitting happens to be just what is needed to
2188 		 * handle where KSM pages have been swapped out: re-reading
2189 		 * is unnecessarily slow, but we can fix that later on.
2190 		 */
2191 		if (swap_count(*swap_map) &&
2192 		     PageDirty(page) && PageSwapCache(page)) {
2193 			struct writeback_control wbc = {
2194 				.sync_mode = WB_SYNC_NONE,
2195 			};
2196 
2197 			swap_writepage(compound_head(page), &wbc);
2198 			lock_page(page);
2199 			wait_on_page_writeback(page);
2200 		}
2201 
2202 		/*
2203 		 * It is conceivable that a racing task removed this page from
2204 		 * swap cache just before we acquired the page lock at the top,
2205 		 * or while we dropped it in unuse_mm().  The page might even
2206 		 * be back in swap cache on another swap area: that we must not
2207 		 * delete, since it may not have been written out to swap yet.
2208 		 */
2209 		if (PageSwapCache(page) &&
2210 		    likely(page_private(page) == entry.val) &&
2211 		    !page_swapped(page))
2212 			delete_from_swap_cache(compound_head(page));
2213 
2214 		/*
2215 		 * So we could skip searching mms once swap count went
2216 		 * to 1, we did not mark any present ptes as dirty: must
2217 		 * mark page dirty so shrink_page_list will preserve it.
2218 		 */
2219 		SetPageDirty(page);
2220 		unlock_page(page);
2221 		put_page(page);
2222 
2223 		/*
2224 		 * Make sure that we aren't completely killing
2225 		 * interactive performance.
2226 		 */
2227 		cond_resched();
2228 		if (frontswap && pages_to_unuse > 0) {
2229 			if (!--pages_to_unuse)
2230 				break;
2231 		}
2232 	}
2233 
2234 	mmput(start_mm);
2235 	return retval;
2236 }
2237 
2238 /*
2239  * After a successful try_to_unuse, if no swap is now in use, we know
2240  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2241  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2242  * added to the mmlist just after page_duplicate - before would be racy.
2243  */
2244 static void drain_mmlist(void)
2245 {
2246 	struct list_head *p, *next;
2247 	unsigned int type;
2248 
2249 	for (type = 0; type < nr_swapfiles; type++)
2250 		if (swap_info[type]->inuse_pages)
2251 			return;
2252 	spin_lock(&mmlist_lock);
2253 	list_for_each_safe(p, next, &init_mm.mmlist)
2254 		list_del_init(p);
2255 	spin_unlock(&mmlist_lock);
2256 }
2257 
2258 /*
2259  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2260  * corresponds to page offset for the specified swap entry.
2261  * Note that the type of this function is sector_t, but it returns page offset
2262  * into the bdev, not sector offset.
2263  */
2264 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2265 {
2266 	struct swap_info_struct *sis;
2267 	struct swap_extent *start_se;
2268 	struct swap_extent *se;
2269 	pgoff_t offset;
2270 
2271 	sis = swap_info[swp_type(entry)];
2272 	*bdev = sis->bdev;
2273 
2274 	offset = swp_offset(entry);
2275 	start_se = sis->curr_swap_extent;
2276 	se = start_se;
2277 
2278 	for ( ; ; ) {
2279 		if (se->start_page <= offset &&
2280 				offset < (se->start_page + se->nr_pages)) {
2281 			return se->start_block + (offset - se->start_page);
2282 		}
2283 		se = list_next_entry(se, list);
2284 		sis->curr_swap_extent = se;
2285 		BUG_ON(se == start_se);		/* It *must* be present */
2286 	}
2287 }
2288 
2289 /*
2290  * Returns the page offset into bdev for the specified page's swap entry.
2291  */
2292 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2293 {
2294 	swp_entry_t entry;
2295 	entry.val = page_private(page);
2296 	return map_swap_entry(entry, bdev);
2297 }
2298 
2299 /*
2300  * Free all of a swapdev's extent information
2301  */
2302 static void destroy_swap_extents(struct swap_info_struct *sis)
2303 {
2304 	while (!list_empty(&sis->first_swap_extent.list)) {
2305 		struct swap_extent *se;
2306 
2307 		se = list_first_entry(&sis->first_swap_extent.list,
2308 				struct swap_extent, list);
2309 		list_del(&se->list);
2310 		kfree(se);
2311 	}
2312 
2313 	if (sis->flags & SWP_FILE) {
2314 		struct file *swap_file = sis->swap_file;
2315 		struct address_space *mapping = swap_file->f_mapping;
2316 
2317 		sis->flags &= ~SWP_FILE;
2318 		mapping->a_ops->swap_deactivate(swap_file);
2319 	}
2320 }
2321 
2322 /*
2323  * Add a block range (and the corresponding page range) into this swapdev's
2324  * extent list.  The extent list is kept sorted in page order.
2325  *
2326  * This function rather assumes that it is called in ascending page order.
2327  */
2328 int
2329 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2330 		unsigned long nr_pages, sector_t start_block)
2331 {
2332 	struct swap_extent *se;
2333 	struct swap_extent *new_se;
2334 	struct list_head *lh;
2335 
2336 	if (start_page == 0) {
2337 		se = &sis->first_swap_extent;
2338 		sis->curr_swap_extent = se;
2339 		se->start_page = 0;
2340 		se->nr_pages = nr_pages;
2341 		se->start_block = start_block;
2342 		return 1;
2343 	} else {
2344 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
2345 		se = list_entry(lh, struct swap_extent, list);
2346 		BUG_ON(se->start_page + se->nr_pages != start_page);
2347 		if (se->start_block + se->nr_pages == start_block) {
2348 			/* Merge it */
2349 			se->nr_pages += nr_pages;
2350 			return 0;
2351 		}
2352 	}
2353 
2354 	/*
2355 	 * No merge.  Insert a new extent, preserving ordering.
2356 	 */
2357 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2358 	if (new_se == NULL)
2359 		return -ENOMEM;
2360 	new_se->start_page = start_page;
2361 	new_se->nr_pages = nr_pages;
2362 	new_se->start_block = start_block;
2363 
2364 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2365 	return 1;
2366 }
2367 
2368 /*
2369  * A `swap extent' is a simple thing which maps a contiguous range of pages
2370  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2371  * is built at swapon time and is then used at swap_writepage/swap_readpage
2372  * time for locating where on disk a page belongs.
2373  *
2374  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2375  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2376  * swap files identically.
2377  *
2378  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2379  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2380  * swapfiles are handled *identically* after swapon time.
2381  *
2382  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2383  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2384  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2385  * requirements, they are simply tossed out - we will never use those blocks
2386  * for swapping.
2387  *
2388  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2389  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2390  * which will scribble on the fs.
2391  *
2392  * The amount of disk space which a single swap extent represents varies.
2393  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2394  * extents in the list.  To avoid much list walking, we cache the previous
2395  * search location in `curr_swap_extent', and start new searches from there.
2396  * This is extremely effective.  The average number of iterations in
2397  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2398  */
2399 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2400 {
2401 	struct file *swap_file = sis->swap_file;
2402 	struct address_space *mapping = swap_file->f_mapping;
2403 	struct inode *inode = mapping->host;
2404 	int ret;
2405 
2406 	if (S_ISBLK(inode->i_mode)) {
2407 		ret = add_swap_extent(sis, 0, sis->max, 0);
2408 		*span = sis->pages;
2409 		return ret;
2410 	}
2411 
2412 	if (mapping->a_ops->swap_activate) {
2413 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2414 		if (!ret) {
2415 			sis->flags |= SWP_FILE;
2416 			ret = add_swap_extent(sis, 0, sis->max, 0);
2417 			*span = sis->pages;
2418 		}
2419 		return ret;
2420 	}
2421 
2422 	return generic_swapfile_activate(sis, swap_file, span);
2423 }
2424 
2425 static int swap_node(struct swap_info_struct *p)
2426 {
2427 	struct block_device *bdev;
2428 
2429 	if (p->bdev)
2430 		bdev = p->bdev;
2431 	else
2432 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2433 
2434 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2435 }
2436 
2437 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2438 				unsigned char *swap_map,
2439 				struct swap_cluster_info *cluster_info)
2440 {
2441 	int i;
2442 
2443 	if (prio >= 0)
2444 		p->prio = prio;
2445 	else
2446 		p->prio = --least_priority;
2447 	/*
2448 	 * the plist prio is negated because plist ordering is
2449 	 * low-to-high, while swap ordering is high-to-low
2450 	 */
2451 	p->list.prio = -p->prio;
2452 	for_each_node(i) {
2453 		if (p->prio >= 0)
2454 			p->avail_lists[i].prio = -p->prio;
2455 		else {
2456 			if (swap_node(p) == i)
2457 				p->avail_lists[i].prio = 1;
2458 			else
2459 				p->avail_lists[i].prio = -p->prio;
2460 		}
2461 	}
2462 	p->swap_map = swap_map;
2463 	p->cluster_info = cluster_info;
2464 	p->flags |= SWP_WRITEOK;
2465 	atomic_long_add(p->pages, &nr_swap_pages);
2466 	total_swap_pages += p->pages;
2467 
2468 	assert_spin_locked(&swap_lock);
2469 	/*
2470 	 * both lists are plists, and thus priority ordered.
2471 	 * swap_active_head needs to be priority ordered for swapoff(),
2472 	 * which on removal of any swap_info_struct with an auto-assigned
2473 	 * (i.e. negative) priority increments the auto-assigned priority
2474 	 * of any lower-priority swap_info_structs.
2475 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2476 	 * which allocates swap pages from the highest available priority
2477 	 * swap_info_struct.
2478 	 */
2479 	plist_add(&p->list, &swap_active_head);
2480 	add_to_avail_list(p);
2481 }
2482 
2483 static void enable_swap_info(struct swap_info_struct *p, int prio,
2484 				unsigned char *swap_map,
2485 				struct swap_cluster_info *cluster_info,
2486 				unsigned long *frontswap_map)
2487 {
2488 	frontswap_init(p->type, frontswap_map);
2489 	spin_lock(&swap_lock);
2490 	spin_lock(&p->lock);
2491 	 _enable_swap_info(p, prio, swap_map, cluster_info);
2492 	spin_unlock(&p->lock);
2493 	spin_unlock(&swap_lock);
2494 }
2495 
2496 static void reinsert_swap_info(struct swap_info_struct *p)
2497 {
2498 	spin_lock(&swap_lock);
2499 	spin_lock(&p->lock);
2500 	_enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2501 	spin_unlock(&p->lock);
2502 	spin_unlock(&swap_lock);
2503 }
2504 
2505 bool has_usable_swap(void)
2506 {
2507 	bool ret = true;
2508 
2509 	spin_lock(&swap_lock);
2510 	if (plist_head_empty(&swap_active_head))
2511 		ret = false;
2512 	spin_unlock(&swap_lock);
2513 	return ret;
2514 }
2515 
2516 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2517 {
2518 	struct swap_info_struct *p = NULL;
2519 	unsigned char *swap_map;
2520 	struct swap_cluster_info *cluster_info;
2521 	unsigned long *frontswap_map;
2522 	struct file *swap_file, *victim;
2523 	struct address_space *mapping;
2524 	struct inode *inode;
2525 	struct filename *pathname;
2526 	int err, found = 0;
2527 	unsigned int old_block_size;
2528 
2529 	if (!capable(CAP_SYS_ADMIN))
2530 		return -EPERM;
2531 
2532 	BUG_ON(!current->mm);
2533 
2534 	pathname = getname(specialfile);
2535 	if (IS_ERR(pathname))
2536 		return PTR_ERR(pathname);
2537 
2538 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2539 	err = PTR_ERR(victim);
2540 	if (IS_ERR(victim))
2541 		goto out;
2542 
2543 	mapping = victim->f_mapping;
2544 	spin_lock(&swap_lock);
2545 	plist_for_each_entry(p, &swap_active_head, list) {
2546 		if (p->flags & SWP_WRITEOK) {
2547 			if (p->swap_file->f_mapping == mapping) {
2548 				found = 1;
2549 				break;
2550 			}
2551 		}
2552 	}
2553 	if (!found) {
2554 		err = -EINVAL;
2555 		spin_unlock(&swap_lock);
2556 		goto out_dput;
2557 	}
2558 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2559 		vm_unacct_memory(p->pages);
2560 	else {
2561 		err = -ENOMEM;
2562 		spin_unlock(&swap_lock);
2563 		goto out_dput;
2564 	}
2565 	del_from_avail_list(p);
2566 	spin_lock(&p->lock);
2567 	if (p->prio < 0) {
2568 		struct swap_info_struct *si = p;
2569 		int nid;
2570 
2571 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2572 			si->prio++;
2573 			si->list.prio--;
2574 			for_each_node(nid) {
2575 				if (si->avail_lists[nid].prio != 1)
2576 					si->avail_lists[nid].prio--;
2577 			}
2578 		}
2579 		least_priority++;
2580 	}
2581 	plist_del(&p->list, &swap_active_head);
2582 	atomic_long_sub(p->pages, &nr_swap_pages);
2583 	total_swap_pages -= p->pages;
2584 	p->flags &= ~SWP_WRITEOK;
2585 	spin_unlock(&p->lock);
2586 	spin_unlock(&swap_lock);
2587 
2588 	disable_swap_slots_cache_lock();
2589 
2590 	set_current_oom_origin();
2591 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2592 	clear_current_oom_origin();
2593 
2594 	if (err) {
2595 		/* re-insert swap space back into swap_list */
2596 		reinsert_swap_info(p);
2597 		reenable_swap_slots_cache_unlock();
2598 		goto out_dput;
2599 	}
2600 
2601 	reenable_swap_slots_cache_unlock();
2602 
2603 	flush_work(&p->discard_work);
2604 
2605 	destroy_swap_extents(p);
2606 	if (p->flags & SWP_CONTINUED)
2607 		free_swap_count_continuations(p);
2608 
2609 	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2610 		atomic_dec(&nr_rotate_swap);
2611 
2612 	mutex_lock(&swapon_mutex);
2613 	spin_lock(&swap_lock);
2614 	spin_lock(&p->lock);
2615 	drain_mmlist();
2616 
2617 	/* wait for anyone still in scan_swap_map */
2618 	p->highest_bit = 0;		/* cuts scans short */
2619 	while (p->flags >= SWP_SCANNING) {
2620 		spin_unlock(&p->lock);
2621 		spin_unlock(&swap_lock);
2622 		schedule_timeout_uninterruptible(1);
2623 		spin_lock(&swap_lock);
2624 		spin_lock(&p->lock);
2625 	}
2626 
2627 	swap_file = p->swap_file;
2628 	old_block_size = p->old_block_size;
2629 	p->swap_file = NULL;
2630 	p->max = 0;
2631 	swap_map = p->swap_map;
2632 	p->swap_map = NULL;
2633 	cluster_info = p->cluster_info;
2634 	p->cluster_info = NULL;
2635 	frontswap_map = frontswap_map_get(p);
2636 	spin_unlock(&p->lock);
2637 	spin_unlock(&swap_lock);
2638 	frontswap_invalidate_area(p->type);
2639 	frontswap_map_set(p, NULL);
2640 	mutex_unlock(&swapon_mutex);
2641 	free_percpu(p->percpu_cluster);
2642 	p->percpu_cluster = NULL;
2643 	vfree(swap_map);
2644 	kvfree(cluster_info);
2645 	kvfree(frontswap_map);
2646 	/* Destroy swap account information */
2647 	swap_cgroup_swapoff(p->type);
2648 	exit_swap_address_space(p->type);
2649 
2650 	inode = mapping->host;
2651 	if (S_ISBLK(inode->i_mode)) {
2652 		struct block_device *bdev = I_BDEV(inode);
2653 		set_blocksize(bdev, old_block_size);
2654 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2655 	} else {
2656 		inode_lock(inode);
2657 		inode->i_flags &= ~S_SWAPFILE;
2658 		inode_unlock(inode);
2659 	}
2660 	filp_close(swap_file, NULL);
2661 
2662 	/*
2663 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2664 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2665 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2666 	 */
2667 	spin_lock(&swap_lock);
2668 	p->flags = 0;
2669 	spin_unlock(&swap_lock);
2670 
2671 	err = 0;
2672 	atomic_inc(&proc_poll_event);
2673 	wake_up_interruptible(&proc_poll_wait);
2674 
2675 out_dput:
2676 	filp_close(victim, NULL);
2677 out:
2678 	putname(pathname);
2679 	return err;
2680 }
2681 
2682 #ifdef CONFIG_PROC_FS
2683 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2684 {
2685 	struct seq_file *seq = file->private_data;
2686 
2687 	poll_wait(file, &proc_poll_wait, wait);
2688 
2689 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2690 		seq->poll_event = atomic_read(&proc_poll_event);
2691 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2692 	}
2693 
2694 	return EPOLLIN | EPOLLRDNORM;
2695 }
2696 
2697 /* iterator */
2698 static void *swap_start(struct seq_file *swap, loff_t *pos)
2699 {
2700 	struct swap_info_struct *si;
2701 	int type;
2702 	loff_t l = *pos;
2703 
2704 	mutex_lock(&swapon_mutex);
2705 
2706 	if (!l)
2707 		return SEQ_START_TOKEN;
2708 
2709 	for (type = 0; type < nr_swapfiles; type++) {
2710 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2711 		si = swap_info[type];
2712 		if (!(si->flags & SWP_USED) || !si->swap_map)
2713 			continue;
2714 		if (!--l)
2715 			return si;
2716 	}
2717 
2718 	return NULL;
2719 }
2720 
2721 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2722 {
2723 	struct swap_info_struct *si = v;
2724 	int type;
2725 
2726 	if (v == SEQ_START_TOKEN)
2727 		type = 0;
2728 	else
2729 		type = si->type + 1;
2730 
2731 	for (; type < nr_swapfiles; type++) {
2732 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2733 		si = swap_info[type];
2734 		if (!(si->flags & SWP_USED) || !si->swap_map)
2735 			continue;
2736 		++*pos;
2737 		return si;
2738 	}
2739 
2740 	return NULL;
2741 }
2742 
2743 static void swap_stop(struct seq_file *swap, void *v)
2744 {
2745 	mutex_unlock(&swapon_mutex);
2746 }
2747 
2748 static int swap_show(struct seq_file *swap, void *v)
2749 {
2750 	struct swap_info_struct *si = v;
2751 	struct file *file;
2752 	int len;
2753 
2754 	if (si == SEQ_START_TOKEN) {
2755 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2756 		return 0;
2757 	}
2758 
2759 	file = si->swap_file;
2760 	len = seq_file_path(swap, file, " \t\n\\");
2761 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2762 			len < 40 ? 40 - len : 1, " ",
2763 			S_ISBLK(file_inode(file)->i_mode) ?
2764 				"partition" : "file\t",
2765 			si->pages << (PAGE_SHIFT - 10),
2766 			si->inuse_pages << (PAGE_SHIFT - 10),
2767 			si->prio);
2768 	return 0;
2769 }
2770 
2771 static const struct seq_operations swaps_op = {
2772 	.start =	swap_start,
2773 	.next =		swap_next,
2774 	.stop =		swap_stop,
2775 	.show =		swap_show
2776 };
2777 
2778 static int swaps_open(struct inode *inode, struct file *file)
2779 {
2780 	struct seq_file *seq;
2781 	int ret;
2782 
2783 	ret = seq_open(file, &swaps_op);
2784 	if (ret)
2785 		return ret;
2786 
2787 	seq = file->private_data;
2788 	seq->poll_event = atomic_read(&proc_poll_event);
2789 	return 0;
2790 }
2791 
2792 static const struct file_operations proc_swaps_operations = {
2793 	.open		= swaps_open,
2794 	.read		= seq_read,
2795 	.llseek		= seq_lseek,
2796 	.release	= seq_release,
2797 	.poll		= swaps_poll,
2798 };
2799 
2800 static int __init procswaps_init(void)
2801 {
2802 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
2803 	return 0;
2804 }
2805 __initcall(procswaps_init);
2806 #endif /* CONFIG_PROC_FS */
2807 
2808 #ifdef MAX_SWAPFILES_CHECK
2809 static int __init max_swapfiles_check(void)
2810 {
2811 	MAX_SWAPFILES_CHECK();
2812 	return 0;
2813 }
2814 late_initcall(max_swapfiles_check);
2815 #endif
2816 
2817 static struct swap_info_struct *alloc_swap_info(void)
2818 {
2819 	struct swap_info_struct *p;
2820 	unsigned int type;
2821 	int i;
2822 
2823 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2824 	if (!p)
2825 		return ERR_PTR(-ENOMEM);
2826 
2827 	spin_lock(&swap_lock);
2828 	for (type = 0; type < nr_swapfiles; type++) {
2829 		if (!(swap_info[type]->flags & SWP_USED))
2830 			break;
2831 	}
2832 	if (type >= MAX_SWAPFILES) {
2833 		spin_unlock(&swap_lock);
2834 		kfree(p);
2835 		return ERR_PTR(-EPERM);
2836 	}
2837 	if (type >= nr_swapfiles) {
2838 		p->type = type;
2839 		swap_info[type] = p;
2840 		/*
2841 		 * Write swap_info[type] before nr_swapfiles, in case a
2842 		 * racing procfs swap_start() or swap_next() is reading them.
2843 		 * (We never shrink nr_swapfiles, we never free this entry.)
2844 		 */
2845 		smp_wmb();
2846 		nr_swapfiles++;
2847 	} else {
2848 		kfree(p);
2849 		p = swap_info[type];
2850 		/*
2851 		 * Do not memset this entry: a racing procfs swap_next()
2852 		 * would be relying on p->type to remain valid.
2853 		 */
2854 	}
2855 	INIT_LIST_HEAD(&p->first_swap_extent.list);
2856 	plist_node_init(&p->list, 0);
2857 	for_each_node(i)
2858 		plist_node_init(&p->avail_lists[i], 0);
2859 	p->flags = SWP_USED;
2860 	spin_unlock(&swap_lock);
2861 	spin_lock_init(&p->lock);
2862 	spin_lock_init(&p->cont_lock);
2863 
2864 	return p;
2865 }
2866 
2867 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2868 {
2869 	int error;
2870 
2871 	if (S_ISBLK(inode->i_mode)) {
2872 		p->bdev = bdgrab(I_BDEV(inode));
2873 		error = blkdev_get(p->bdev,
2874 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2875 		if (error < 0) {
2876 			p->bdev = NULL;
2877 			return error;
2878 		}
2879 		p->old_block_size = block_size(p->bdev);
2880 		error = set_blocksize(p->bdev, PAGE_SIZE);
2881 		if (error < 0)
2882 			return error;
2883 		p->flags |= SWP_BLKDEV;
2884 	} else if (S_ISREG(inode->i_mode)) {
2885 		p->bdev = inode->i_sb->s_bdev;
2886 		inode_lock(inode);
2887 		if (IS_SWAPFILE(inode))
2888 			return -EBUSY;
2889 	} else
2890 		return -EINVAL;
2891 
2892 	return 0;
2893 }
2894 
2895 
2896 /*
2897  * Find out how many pages are allowed for a single swap device. There
2898  * are two limiting factors:
2899  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2900  * 2) the number of bits in the swap pte, as defined by the different
2901  * architectures.
2902  *
2903  * In order to find the largest possible bit mask, a swap entry with
2904  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2905  * decoded to a swp_entry_t again, and finally the swap offset is
2906  * extracted.
2907  *
2908  * This will mask all the bits from the initial ~0UL mask that can't
2909  * be encoded in either the swp_entry_t or the architecture definition
2910  * of a swap pte.
2911  */
2912 unsigned long generic_max_swapfile_size(void)
2913 {
2914 	return swp_offset(pte_to_swp_entry(
2915 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2916 }
2917 
2918 /* Can be overridden by an architecture for additional checks. */
2919 __weak unsigned long max_swapfile_size(void)
2920 {
2921 	return generic_max_swapfile_size();
2922 }
2923 
2924 static unsigned long read_swap_header(struct swap_info_struct *p,
2925 					union swap_header *swap_header,
2926 					struct inode *inode)
2927 {
2928 	int i;
2929 	unsigned long maxpages;
2930 	unsigned long swapfilepages;
2931 	unsigned long last_page;
2932 
2933 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2934 		pr_err("Unable to find swap-space signature\n");
2935 		return 0;
2936 	}
2937 
2938 	/* swap partition endianess hack... */
2939 	if (swab32(swap_header->info.version) == 1) {
2940 		swab32s(&swap_header->info.version);
2941 		swab32s(&swap_header->info.last_page);
2942 		swab32s(&swap_header->info.nr_badpages);
2943 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2944 			return 0;
2945 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2946 			swab32s(&swap_header->info.badpages[i]);
2947 	}
2948 	/* Check the swap header's sub-version */
2949 	if (swap_header->info.version != 1) {
2950 		pr_warn("Unable to handle swap header version %d\n",
2951 			swap_header->info.version);
2952 		return 0;
2953 	}
2954 
2955 	p->lowest_bit  = 1;
2956 	p->cluster_next = 1;
2957 	p->cluster_nr = 0;
2958 
2959 	maxpages = max_swapfile_size();
2960 	last_page = swap_header->info.last_page;
2961 	if (!last_page) {
2962 		pr_warn("Empty swap-file\n");
2963 		return 0;
2964 	}
2965 	if (last_page > maxpages) {
2966 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2967 			maxpages << (PAGE_SHIFT - 10),
2968 			last_page << (PAGE_SHIFT - 10));
2969 	}
2970 	if (maxpages > last_page) {
2971 		maxpages = last_page + 1;
2972 		/* p->max is an unsigned int: don't overflow it */
2973 		if ((unsigned int)maxpages == 0)
2974 			maxpages = UINT_MAX;
2975 	}
2976 	p->highest_bit = maxpages - 1;
2977 
2978 	if (!maxpages)
2979 		return 0;
2980 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2981 	if (swapfilepages && maxpages > swapfilepages) {
2982 		pr_warn("Swap area shorter than signature indicates\n");
2983 		return 0;
2984 	}
2985 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2986 		return 0;
2987 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2988 		return 0;
2989 
2990 	return maxpages;
2991 }
2992 
2993 #define SWAP_CLUSTER_INFO_COLS						\
2994 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2995 #define SWAP_CLUSTER_SPACE_COLS						\
2996 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2997 #define SWAP_CLUSTER_COLS						\
2998 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2999 
3000 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3001 					union swap_header *swap_header,
3002 					unsigned char *swap_map,
3003 					struct swap_cluster_info *cluster_info,
3004 					unsigned long maxpages,
3005 					sector_t *span)
3006 {
3007 	unsigned int j, k;
3008 	unsigned int nr_good_pages;
3009 	int nr_extents;
3010 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3011 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3012 	unsigned long i, idx;
3013 
3014 	nr_good_pages = maxpages - 1;	/* omit header page */
3015 
3016 	cluster_list_init(&p->free_clusters);
3017 	cluster_list_init(&p->discard_clusters);
3018 
3019 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3020 		unsigned int page_nr = swap_header->info.badpages[i];
3021 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3022 			return -EINVAL;
3023 		if (page_nr < maxpages) {
3024 			swap_map[page_nr] = SWAP_MAP_BAD;
3025 			nr_good_pages--;
3026 			/*
3027 			 * Haven't marked the cluster free yet, no list
3028 			 * operation involved
3029 			 */
3030 			inc_cluster_info_page(p, cluster_info, page_nr);
3031 		}
3032 	}
3033 
3034 	/* Haven't marked the cluster free yet, no list operation involved */
3035 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3036 		inc_cluster_info_page(p, cluster_info, i);
3037 
3038 	if (nr_good_pages) {
3039 		swap_map[0] = SWAP_MAP_BAD;
3040 		/*
3041 		 * Not mark the cluster free yet, no list
3042 		 * operation involved
3043 		 */
3044 		inc_cluster_info_page(p, cluster_info, 0);
3045 		p->max = maxpages;
3046 		p->pages = nr_good_pages;
3047 		nr_extents = setup_swap_extents(p, span);
3048 		if (nr_extents < 0)
3049 			return nr_extents;
3050 		nr_good_pages = p->pages;
3051 	}
3052 	if (!nr_good_pages) {
3053 		pr_warn("Empty swap-file\n");
3054 		return -EINVAL;
3055 	}
3056 
3057 	if (!cluster_info)
3058 		return nr_extents;
3059 
3060 
3061 	/*
3062 	 * Reduce false cache line sharing between cluster_info and
3063 	 * sharing same address space.
3064 	 */
3065 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3066 		j = (k + col) % SWAP_CLUSTER_COLS;
3067 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3068 			idx = i * SWAP_CLUSTER_COLS + j;
3069 			if (idx >= nr_clusters)
3070 				continue;
3071 			if (cluster_count(&cluster_info[idx]))
3072 				continue;
3073 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3074 			cluster_list_add_tail(&p->free_clusters, cluster_info,
3075 					      idx);
3076 		}
3077 	}
3078 	return nr_extents;
3079 }
3080 
3081 /*
3082  * Helper to sys_swapon determining if a given swap
3083  * backing device queue supports DISCARD operations.
3084  */
3085 static bool swap_discardable(struct swap_info_struct *si)
3086 {
3087 	struct request_queue *q = bdev_get_queue(si->bdev);
3088 
3089 	if (!q || !blk_queue_discard(q))
3090 		return false;
3091 
3092 	return true;
3093 }
3094 
3095 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3096 {
3097 	struct swap_info_struct *p;
3098 	struct filename *name;
3099 	struct file *swap_file = NULL;
3100 	struct address_space *mapping;
3101 	int prio;
3102 	int error;
3103 	union swap_header *swap_header;
3104 	int nr_extents;
3105 	sector_t span;
3106 	unsigned long maxpages;
3107 	unsigned char *swap_map = NULL;
3108 	struct swap_cluster_info *cluster_info = NULL;
3109 	unsigned long *frontswap_map = NULL;
3110 	struct page *page = NULL;
3111 	struct inode *inode = NULL;
3112 	bool inced_nr_rotate_swap = false;
3113 
3114 	if (swap_flags & ~SWAP_FLAGS_VALID)
3115 		return -EINVAL;
3116 
3117 	if (!capable(CAP_SYS_ADMIN))
3118 		return -EPERM;
3119 
3120 	if (!swap_avail_heads)
3121 		return -ENOMEM;
3122 
3123 	p = alloc_swap_info();
3124 	if (IS_ERR(p))
3125 		return PTR_ERR(p);
3126 
3127 	INIT_WORK(&p->discard_work, swap_discard_work);
3128 
3129 	name = getname(specialfile);
3130 	if (IS_ERR(name)) {
3131 		error = PTR_ERR(name);
3132 		name = NULL;
3133 		goto bad_swap;
3134 	}
3135 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3136 	if (IS_ERR(swap_file)) {
3137 		error = PTR_ERR(swap_file);
3138 		swap_file = NULL;
3139 		goto bad_swap;
3140 	}
3141 
3142 	p->swap_file = swap_file;
3143 	mapping = swap_file->f_mapping;
3144 	inode = mapping->host;
3145 
3146 	/* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3147 	error = claim_swapfile(p, inode);
3148 	if (unlikely(error))
3149 		goto bad_swap;
3150 
3151 	/*
3152 	 * Read the swap header.
3153 	 */
3154 	if (!mapping->a_ops->readpage) {
3155 		error = -EINVAL;
3156 		goto bad_swap;
3157 	}
3158 	page = read_mapping_page(mapping, 0, swap_file);
3159 	if (IS_ERR(page)) {
3160 		error = PTR_ERR(page);
3161 		goto bad_swap;
3162 	}
3163 	swap_header = kmap(page);
3164 
3165 	maxpages = read_swap_header(p, swap_header, inode);
3166 	if (unlikely(!maxpages)) {
3167 		error = -EINVAL;
3168 		goto bad_swap;
3169 	}
3170 
3171 	/* OK, set up the swap map and apply the bad block list */
3172 	swap_map = vzalloc(maxpages);
3173 	if (!swap_map) {
3174 		error = -ENOMEM;
3175 		goto bad_swap;
3176 	}
3177 
3178 	if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3179 		p->flags |= SWP_STABLE_WRITES;
3180 
3181 	if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3182 		p->flags |= SWP_SYNCHRONOUS_IO;
3183 
3184 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3185 		int cpu;
3186 		unsigned long ci, nr_cluster;
3187 
3188 		p->flags |= SWP_SOLIDSTATE;
3189 		/*
3190 		 * select a random position to start with to help wear leveling
3191 		 * SSD
3192 		 */
3193 		p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3194 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3195 
3196 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3197 					GFP_KERNEL);
3198 		if (!cluster_info) {
3199 			error = -ENOMEM;
3200 			goto bad_swap;
3201 		}
3202 
3203 		for (ci = 0; ci < nr_cluster; ci++)
3204 			spin_lock_init(&((cluster_info + ci)->lock));
3205 
3206 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3207 		if (!p->percpu_cluster) {
3208 			error = -ENOMEM;
3209 			goto bad_swap;
3210 		}
3211 		for_each_possible_cpu(cpu) {
3212 			struct percpu_cluster *cluster;
3213 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3214 			cluster_set_null(&cluster->index);
3215 		}
3216 	} else {
3217 		atomic_inc(&nr_rotate_swap);
3218 		inced_nr_rotate_swap = true;
3219 	}
3220 
3221 	error = swap_cgroup_swapon(p->type, maxpages);
3222 	if (error)
3223 		goto bad_swap;
3224 
3225 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3226 		cluster_info, maxpages, &span);
3227 	if (unlikely(nr_extents < 0)) {
3228 		error = nr_extents;
3229 		goto bad_swap;
3230 	}
3231 	/* frontswap enabled? set up bit-per-page map for frontswap */
3232 	if (IS_ENABLED(CONFIG_FRONTSWAP))
3233 		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3234 					 sizeof(long),
3235 					 GFP_KERNEL);
3236 
3237 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3238 		/*
3239 		 * When discard is enabled for swap with no particular
3240 		 * policy flagged, we set all swap discard flags here in
3241 		 * order to sustain backward compatibility with older
3242 		 * swapon(8) releases.
3243 		 */
3244 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3245 			     SWP_PAGE_DISCARD);
3246 
3247 		/*
3248 		 * By flagging sys_swapon, a sysadmin can tell us to
3249 		 * either do single-time area discards only, or to just
3250 		 * perform discards for released swap page-clusters.
3251 		 * Now it's time to adjust the p->flags accordingly.
3252 		 */
3253 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3254 			p->flags &= ~SWP_PAGE_DISCARD;
3255 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3256 			p->flags &= ~SWP_AREA_DISCARD;
3257 
3258 		/* issue a swapon-time discard if it's still required */
3259 		if (p->flags & SWP_AREA_DISCARD) {
3260 			int err = discard_swap(p);
3261 			if (unlikely(err))
3262 				pr_err("swapon: discard_swap(%p): %d\n",
3263 					p, err);
3264 		}
3265 	}
3266 
3267 	error = init_swap_address_space(p->type, maxpages);
3268 	if (error)
3269 		goto bad_swap;
3270 
3271 	mutex_lock(&swapon_mutex);
3272 	prio = -1;
3273 	if (swap_flags & SWAP_FLAG_PREFER)
3274 		prio =
3275 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3276 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3277 
3278 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3279 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3280 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3281 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3282 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3283 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3284 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3285 		(frontswap_map) ? "FS" : "");
3286 
3287 	mutex_unlock(&swapon_mutex);
3288 	atomic_inc(&proc_poll_event);
3289 	wake_up_interruptible(&proc_poll_wait);
3290 
3291 	if (S_ISREG(inode->i_mode))
3292 		inode->i_flags |= S_SWAPFILE;
3293 	error = 0;
3294 	goto out;
3295 bad_swap:
3296 	free_percpu(p->percpu_cluster);
3297 	p->percpu_cluster = NULL;
3298 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3299 		set_blocksize(p->bdev, p->old_block_size);
3300 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3301 	}
3302 	destroy_swap_extents(p);
3303 	swap_cgroup_swapoff(p->type);
3304 	spin_lock(&swap_lock);
3305 	p->swap_file = NULL;
3306 	p->flags = 0;
3307 	spin_unlock(&swap_lock);
3308 	vfree(swap_map);
3309 	kvfree(cluster_info);
3310 	kvfree(frontswap_map);
3311 	if (inced_nr_rotate_swap)
3312 		atomic_dec(&nr_rotate_swap);
3313 	if (swap_file) {
3314 		if (inode && S_ISREG(inode->i_mode)) {
3315 			inode_unlock(inode);
3316 			inode = NULL;
3317 		}
3318 		filp_close(swap_file, NULL);
3319 	}
3320 out:
3321 	if (page && !IS_ERR(page)) {
3322 		kunmap(page);
3323 		put_page(page);
3324 	}
3325 	if (name)
3326 		putname(name);
3327 	if (inode && S_ISREG(inode->i_mode))
3328 		inode_unlock(inode);
3329 	if (!error)
3330 		enable_swap_slots_cache();
3331 	return error;
3332 }
3333 
3334 void si_swapinfo(struct sysinfo *val)
3335 {
3336 	unsigned int type;
3337 	unsigned long nr_to_be_unused = 0;
3338 
3339 	spin_lock(&swap_lock);
3340 	for (type = 0; type < nr_swapfiles; type++) {
3341 		struct swap_info_struct *si = swap_info[type];
3342 
3343 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3344 			nr_to_be_unused += si->inuse_pages;
3345 	}
3346 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3347 	val->totalswap = total_swap_pages + nr_to_be_unused;
3348 	spin_unlock(&swap_lock);
3349 }
3350 
3351 /*
3352  * Verify that a swap entry is valid and increment its swap map count.
3353  *
3354  * Returns error code in following case.
3355  * - success -> 0
3356  * - swp_entry is invalid -> EINVAL
3357  * - swp_entry is migration entry -> EINVAL
3358  * - swap-cache reference is requested but there is already one. -> EEXIST
3359  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3360  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3361  */
3362 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3363 {
3364 	struct swap_info_struct *p;
3365 	struct swap_cluster_info *ci;
3366 	unsigned long offset, type;
3367 	unsigned char count;
3368 	unsigned char has_cache;
3369 	int err = -EINVAL;
3370 
3371 	if (non_swap_entry(entry))
3372 		goto out;
3373 
3374 	type = swp_type(entry);
3375 	if (type >= nr_swapfiles)
3376 		goto bad_file;
3377 	p = swap_info[type];
3378 	offset = swp_offset(entry);
3379 	if (unlikely(offset >= p->max))
3380 		goto out;
3381 
3382 	ci = lock_cluster_or_swap_info(p, offset);
3383 
3384 	count = p->swap_map[offset];
3385 
3386 	/*
3387 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3388 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3389 	 */
3390 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3391 		err = -ENOENT;
3392 		goto unlock_out;
3393 	}
3394 
3395 	has_cache = count & SWAP_HAS_CACHE;
3396 	count &= ~SWAP_HAS_CACHE;
3397 	err = 0;
3398 
3399 	if (usage == SWAP_HAS_CACHE) {
3400 
3401 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3402 		if (!has_cache && count)
3403 			has_cache = SWAP_HAS_CACHE;
3404 		else if (has_cache)		/* someone else added cache */
3405 			err = -EEXIST;
3406 		else				/* no users remaining */
3407 			err = -ENOENT;
3408 
3409 	} else if (count || has_cache) {
3410 
3411 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3412 			count += usage;
3413 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3414 			err = -EINVAL;
3415 		else if (swap_count_continued(p, offset, count))
3416 			count = COUNT_CONTINUED;
3417 		else
3418 			err = -ENOMEM;
3419 	} else
3420 		err = -ENOENT;			/* unused swap entry */
3421 
3422 	p->swap_map[offset] = count | has_cache;
3423 
3424 unlock_out:
3425 	unlock_cluster_or_swap_info(p, ci);
3426 out:
3427 	return err;
3428 
3429 bad_file:
3430 	pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3431 	goto out;
3432 }
3433 
3434 /*
3435  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3436  * (in which case its reference count is never incremented).
3437  */
3438 void swap_shmem_alloc(swp_entry_t entry)
3439 {
3440 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3441 }
3442 
3443 /*
3444  * Increase reference count of swap entry by 1.
3445  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3446  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3447  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3448  * might occur if a page table entry has got corrupted.
3449  */
3450 int swap_duplicate(swp_entry_t entry)
3451 {
3452 	int err = 0;
3453 
3454 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3455 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3456 	return err;
3457 }
3458 
3459 /*
3460  * @entry: swap entry for which we allocate swap cache.
3461  *
3462  * Called when allocating swap cache for existing swap entry,
3463  * This can return error codes. Returns 0 at success.
3464  * -EBUSY means there is a swap cache.
3465  * Note: return code is different from swap_duplicate().
3466  */
3467 int swapcache_prepare(swp_entry_t entry)
3468 {
3469 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3470 }
3471 
3472 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3473 {
3474 	return swap_info[swp_type(entry)];
3475 }
3476 
3477 struct swap_info_struct *page_swap_info(struct page *page)
3478 {
3479 	swp_entry_t entry = { .val = page_private(page) };
3480 	return swp_swap_info(entry);
3481 }
3482 
3483 /*
3484  * out-of-line __page_file_ methods to avoid include hell.
3485  */
3486 struct address_space *__page_file_mapping(struct page *page)
3487 {
3488 	return page_swap_info(page)->swap_file->f_mapping;
3489 }
3490 EXPORT_SYMBOL_GPL(__page_file_mapping);
3491 
3492 pgoff_t __page_file_index(struct page *page)
3493 {
3494 	swp_entry_t swap = { .val = page_private(page) };
3495 	return swp_offset(swap);
3496 }
3497 EXPORT_SYMBOL_GPL(__page_file_index);
3498 
3499 /*
3500  * add_swap_count_continuation - called when a swap count is duplicated
3501  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3502  * page of the original vmalloc'ed swap_map, to hold the continuation count
3503  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3504  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3505  *
3506  * These continuation pages are seldom referenced: the common paths all work
3507  * on the original swap_map, only referring to a continuation page when the
3508  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3509  *
3510  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3511  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3512  * can be called after dropping locks.
3513  */
3514 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3515 {
3516 	struct swap_info_struct *si;
3517 	struct swap_cluster_info *ci;
3518 	struct page *head;
3519 	struct page *page;
3520 	struct page *list_page;
3521 	pgoff_t offset;
3522 	unsigned char count;
3523 
3524 	/*
3525 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3526 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3527 	 */
3528 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3529 
3530 	si = swap_info_get(entry);
3531 	if (!si) {
3532 		/*
3533 		 * An acceptable race has occurred since the failing
3534 		 * __swap_duplicate(): the swap entry has been freed,
3535 		 * perhaps even the whole swap_map cleared for swapoff.
3536 		 */
3537 		goto outer;
3538 	}
3539 
3540 	offset = swp_offset(entry);
3541 
3542 	ci = lock_cluster(si, offset);
3543 
3544 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3545 
3546 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3547 		/*
3548 		 * The higher the swap count, the more likely it is that tasks
3549 		 * will race to add swap count continuation: we need to avoid
3550 		 * over-provisioning.
3551 		 */
3552 		goto out;
3553 	}
3554 
3555 	if (!page) {
3556 		unlock_cluster(ci);
3557 		spin_unlock(&si->lock);
3558 		return -ENOMEM;
3559 	}
3560 
3561 	/*
3562 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3563 	 * no architecture is using highmem pages for kernel page tables: so it
3564 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3565 	 */
3566 	head = vmalloc_to_page(si->swap_map + offset);
3567 	offset &= ~PAGE_MASK;
3568 
3569 	spin_lock(&si->cont_lock);
3570 	/*
3571 	 * Page allocation does not initialize the page's lru field,
3572 	 * but it does always reset its private field.
3573 	 */
3574 	if (!page_private(head)) {
3575 		BUG_ON(count & COUNT_CONTINUED);
3576 		INIT_LIST_HEAD(&head->lru);
3577 		set_page_private(head, SWP_CONTINUED);
3578 		si->flags |= SWP_CONTINUED;
3579 	}
3580 
3581 	list_for_each_entry(list_page, &head->lru, lru) {
3582 		unsigned char *map;
3583 
3584 		/*
3585 		 * If the previous map said no continuation, but we've found
3586 		 * a continuation page, free our allocation and use this one.
3587 		 */
3588 		if (!(count & COUNT_CONTINUED))
3589 			goto out_unlock_cont;
3590 
3591 		map = kmap_atomic(list_page) + offset;
3592 		count = *map;
3593 		kunmap_atomic(map);
3594 
3595 		/*
3596 		 * If this continuation count now has some space in it,
3597 		 * free our allocation and use this one.
3598 		 */
3599 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3600 			goto out_unlock_cont;
3601 	}
3602 
3603 	list_add_tail(&page->lru, &head->lru);
3604 	page = NULL;			/* now it's attached, don't free it */
3605 out_unlock_cont:
3606 	spin_unlock(&si->cont_lock);
3607 out:
3608 	unlock_cluster(ci);
3609 	spin_unlock(&si->lock);
3610 outer:
3611 	if (page)
3612 		__free_page(page);
3613 	return 0;
3614 }
3615 
3616 /*
3617  * swap_count_continued - when the original swap_map count is incremented
3618  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3619  * into, carry if so, or else fail until a new continuation page is allocated;
3620  * when the original swap_map count is decremented from 0 with continuation,
3621  * borrow from the continuation and report whether it still holds more.
3622  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3623  * lock.
3624  */
3625 static bool swap_count_continued(struct swap_info_struct *si,
3626 				 pgoff_t offset, unsigned char count)
3627 {
3628 	struct page *head;
3629 	struct page *page;
3630 	unsigned char *map;
3631 	bool ret;
3632 
3633 	head = vmalloc_to_page(si->swap_map + offset);
3634 	if (page_private(head) != SWP_CONTINUED) {
3635 		BUG_ON(count & COUNT_CONTINUED);
3636 		return false;		/* need to add count continuation */
3637 	}
3638 
3639 	spin_lock(&si->cont_lock);
3640 	offset &= ~PAGE_MASK;
3641 	page = list_entry(head->lru.next, struct page, lru);
3642 	map = kmap_atomic(page) + offset;
3643 
3644 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3645 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3646 
3647 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3648 		/*
3649 		 * Think of how you add 1 to 999
3650 		 */
3651 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3652 			kunmap_atomic(map);
3653 			page = list_entry(page->lru.next, struct page, lru);
3654 			BUG_ON(page == head);
3655 			map = kmap_atomic(page) + offset;
3656 		}
3657 		if (*map == SWAP_CONT_MAX) {
3658 			kunmap_atomic(map);
3659 			page = list_entry(page->lru.next, struct page, lru);
3660 			if (page == head) {
3661 				ret = false;	/* add count continuation */
3662 				goto out;
3663 			}
3664 			map = kmap_atomic(page) + offset;
3665 init_map:		*map = 0;		/* we didn't zero the page */
3666 		}
3667 		*map += 1;
3668 		kunmap_atomic(map);
3669 		page = list_entry(page->lru.prev, struct page, lru);
3670 		while (page != head) {
3671 			map = kmap_atomic(page) + offset;
3672 			*map = COUNT_CONTINUED;
3673 			kunmap_atomic(map);
3674 			page = list_entry(page->lru.prev, struct page, lru);
3675 		}
3676 		ret = true;			/* incremented */
3677 
3678 	} else {				/* decrementing */
3679 		/*
3680 		 * Think of how you subtract 1 from 1000
3681 		 */
3682 		BUG_ON(count != COUNT_CONTINUED);
3683 		while (*map == COUNT_CONTINUED) {
3684 			kunmap_atomic(map);
3685 			page = list_entry(page->lru.next, struct page, lru);
3686 			BUG_ON(page == head);
3687 			map = kmap_atomic(page) + offset;
3688 		}
3689 		BUG_ON(*map == 0);
3690 		*map -= 1;
3691 		if (*map == 0)
3692 			count = 0;
3693 		kunmap_atomic(map);
3694 		page = list_entry(page->lru.prev, struct page, lru);
3695 		while (page != head) {
3696 			map = kmap_atomic(page) + offset;
3697 			*map = SWAP_CONT_MAX | count;
3698 			count = COUNT_CONTINUED;
3699 			kunmap_atomic(map);
3700 			page = list_entry(page->lru.prev, struct page, lru);
3701 		}
3702 		ret = count == COUNT_CONTINUED;
3703 	}
3704 out:
3705 	spin_unlock(&si->cont_lock);
3706 	return ret;
3707 }
3708 
3709 /*
3710  * free_swap_count_continuations - swapoff free all the continuation pages
3711  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3712  */
3713 static void free_swap_count_continuations(struct swap_info_struct *si)
3714 {
3715 	pgoff_t offset;
3716 
3717 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3718 		struct page *head;
3719 		head = vmalloc_to_page(si->swap_map + offset);
3720 		if (page_private(head)) {
3721 			struct page *page, *next;
3722 
3723 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3724 				list_del(&page->lru);
3725 				__free_page(page);
3726 			}
3727 		}
3728 	}
3729 }
3730 
3731 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3732 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3733 				  gfp_t gfp_mask)
3734 {
3735 	struct swap_info_struct *si, *next;
3736 	if (!(gfp_mask & __GFP_IO) || !memcg)
3737 		return;
3738 
3739 	if (!blk_cgroup_congested())
3740 		return;
3741 
3742 	/*
3743 	 * We've already scheduled a throttle, avoid taking the global swap
3744 	 * lock.
3745 	 */
3746 	if (current->throttle_queue)
3747 		return;
3748 
3749 	spin_lock(&swap_avail_lock);
3750 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3751 				  avail_lists[node]) {
3752 		if (si->bdev) {
3753 			blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3754 						true);
3755 			break;
3756 		}
3757 	}
3758 	spin_unlock(&swap_avail_lock);
3759 }
3760 #endif
3761 
3762 static int __init swapfile_init(void)
3763 {
3764 	int nid;
3765 
3766 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3767 					 GFP_KERNEL);
3768 	if (!swap_avail_heads) {
3769 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3770 		return -ENOMEM;
3771 	}
3772 
3773 	for_each_node(nid)
3774 		plist_head_init(&swap_avail_heads[nid]);
3775 
3776 	return 0;
3777 }
3778 subsys_initcall(swapfile_init);
3779