1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/blkdev.h> 10 #include <linux/mm.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/task.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mman.h> 15 #include <linux/slab.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/swap.h> 18 #include <linux/vmalloc.h> 19 #include <linux/pagemap.h> 20 #include <linux/namei.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/blk-cgroup.h> 23 #include <linux/random.h> 24 #include <linux/writeback.h> 25 #include <linux/proc_fs.h> 26 #include <linux/seq_file.h> 27 #include <linux/init.h> 28 #include <linux/ksm.h> 29 #include <linux/rmap.h> 30 #include <linux/security.h> 31 #include <linux/backing-dev.h> 32 #include <linux/mutex.h> 33 #include <linux/capability.h> 34 #include <linux/syscalls.h> 35 #include <linux/memcontrol.h> 36 #include <linux/poll.h> 37 #include <linux/oom.h> 38 #include <linux/swapfile.h> 39 #include <linux/export.h> 40 #include <linux/swap_slots.h> 41 #include <linux/sort.h> 42 #include <linux/completion.h> 43 #include <linux/suspend.h> 44 #include <linux/zswap.h> 45 #include <linux/plist.h> 46 47 #include <asm/tlbflush.h> 48 #include <linux/swapops.h> 49 #include <linux/swap_cgroup.h> 50 #include "internal.h" 51 #include "swap.h" 52 53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 54 unsigned char); 55 static void free_swap_count_continuations(struct swap_info_struct *); 56 57 static DEFINE_SPINLOCK(swap_lock); 58 static unsigned int nr_swapfiles; 59 atomic_long_t nr_swap_pages; 60 /* 61 * Some modules use swappable objects and may try to swap them out under 62 * memory pressure (via the shrinker). Before doing so, they may wish to 63 * check to see if any swap space is available. 64 */ 65 EXPORT_SYMBOL_GPL(nr_swap_pages); 66 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 67 long total_swap_pages; 68 static int least_priority = -1; 69 unsigned long swapfile_maximum_size; 70 #ifdef CONFIG_MIGRATION 71 bool swap_migration_ad_supported; 72 #endif /* CONFIG_MIGRATION */ 73 74 static const char Bad_file[] = "Bad swap file entry "; 75 static const char Unused_file[] = "Unused swap file entry "; 76 static const char Bad_offset[] = "Bad swap offset entry "; 77 static const char Unused_offset[] = "Unused swap offset entry "; 78 79 /* 80 * all active swap_info_structs 81 * protected with swap_lock, and ordered by priority. 82 */ 83 static PLIST_HEAD(swap_active_head); 84 85 /* 86 * all available (active, not full) swap_info_structs 87 * protected with swap_avail_lock, ordered by priority. 88 * This is used by folio_alloc_swap() instead of swap_active_head 89 * because swap_active_head includes all swap_info_structs, 90 * but folio_alloc_swap() doesn't need to look at full ones. 91 * This uses its own lock instead of swap_lock because when a 92 * swap_info_struct changes between not-full/full, it needs to 93 * add/remove itself to/from this list, but the swap_info_struct->lock 94 * is held and the locking order requires swap_lock to be taken 95 * before any swap_info_struct->lock. 96 */ 97 static struct plist_head *swap_avail_heads; 98 static DEFINE_SPINLOCK(swap_avail_lock); 99 100 static struct swap_info_struct *swap_info[MAX_SWAPFILES]; 101 102 static DEFINE_MUTEX(swapon_mutex); 103 104 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 105 /* Activity counter to indicate that a swapon or swapoff has occurred */ 106 static atomic_t proc_poll_event = ATOMIC_INIT(0); 107 108 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 109 110 static struct swap_info_struct *swap_type_to_swap_info(int type) 111 { 112 if (type >= MAX_SWAPFILES) 113 return NULL; 114 115 return READ_ONCE(swap_info[type]); /* rcu_dereference() */ 116 } 117 118 static inline unsigned char swap_count(unsigned char ent) 119 { 120 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 121 } 122 123 /* Reclaim the swap entry anyway if possible */ 124 #define TTRS_ANYWAY 0x1 125 /* 126 * Reclaim the swap entry if there are no more mappings of the 127 * corresponding page 128 */ 129 #define TTRS_UNMAPPED 0x2 130 /* Reclaim the swap entry if swap is getting full*/ 131 #define TTRS_FULL 0x4 132 133 /* 134 * returns number of pages in the folio that backs the swap entry. If positive, 135 * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no 136 * folio was associated with the swap entry. 137 */ 138 static int __try_to_reclaim_swap(struct swap_info_struct *si, 139 unsigned long offset, unsigned long flags) 140 { 141 swp_entry_t entry = swp_entry(si->type, offset); 142 struct folio *folio; 143 int ret = 0; 144 145 folio = filemap_get_folio(swap_address_space(entry), offset); 146 if (IS_ERR(folio)) 147 return 0; 148 /* 149 * When this function is called from scan_swap_map_slots() and it's 150 * called by vmscan.c at reclaiming folios. So we hold a folio lock 151 * here. We have to use trylock for avoiding deadlock. This is a special 152 * case and you should use folio_free_swap() with explicit folio_lock() 153 * in usual operations. 154 */ 155 if (folio_trylock(folio)) { 156 if ((flags & TTRS_ANYWAY) || 157 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) || 158 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio))) 159 ret = folio_free_swap(folio); 160 folio_unlock(folio); 161 } 162 ret = ret ? folio_nr_pages(folio) : -folio_nr_pages(folio); 163 folio_put(folio); 164 return ret; 165 } 166 167 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 168 { 169 struct rb_node *rb = rb_first(&sis->swap_extent_root); 170 return rb_entry(rb, struct swap_extent, rb_node); 171 } 172 173 static inline struct swap_extent *next_se(struct swap_extent *se) 174 { 175 struct rb_node *rb = rb_next(&se->rb_node); 176 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 177 } 178 179 /* 180 * swapon tell device that all the old swap contents can be discarded, 181 * to allow the swap device to optimize its wear-levelling. 182 */ 183 static int discard_swap(struct swap_info_struct *si) 184 { 185 struct swap_extent *se; 186 sector_t start_block; 187 sector_t nr_blocks; 188 int err = 0; 189 190 /* Do not discard the swap header page! */ 191 se = first_se(si); 192 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 193 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 194 if (nr_blocks) { 195 err = blkdev_issue_discard(si->bdev, start_block, 196 nr_blocks, GFP_KERNEL); 197 if (err) 198 return err; 199 cond_resched(); 200 } 201 202 for (se = next_se(se); se; se = next_se(se)) { 203 start_block = se->start_block << (PAGE_SHIFT - 9); 204 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 205 206 err = blkdev_issue_discard(si->bdev, start_block, 207 nr_blocks, GFP_KERNEL); 208 if (err) 209 break; 210 211 cond_resched(); 212 } 213 return err; /* That will often be -EOPNOTSUPP */ 214 } 215 216 static struct swap_extent * 217 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 218 { 219 struct swap_extent *se; 220 struct rb_node *rb; 221 222 rb = sis->swap_extent_root.rb_node; 223 while (rb) { 224 se = rb_entry(rb, struct swap_extent, rb_node); 225 if (offset < se->start_page) 226 rb = rb->rb_left; 227 else if (offset >= se->start_page + se->nr_pages) 228 rb = rb->rb_right; 229 else 230 return se; 231 } 232 /* It *must* be present */ 233 BUG(); 234 } 235 236 sector_t swap_folio_sector(struct folio *folio) 237 { 238 struct swap_info_struct *sis = swp_swap_info(folio->swap); 239 struct swap_extent *se; 240 sector_t sector; 241 pgoff_t offset; 242 243 offset = swp_offset(folio->swap); 244 se = offset_to_swap_extent(sis, offset); 245 sector = se->start_block + (offset - se->start_page); 246 return sector << (PAGE_SHIFT - 9); 247 } 248 249 /* 250 * swap allocation tell device that a cluster of swap can now be discarded, 251 * to allow the swap device to optimize its wear-levelling. 252 */ 253 static void discard_swap_cluster(struct swap_info_struct *si, 254 pgoff_t start_page, pgoff_t nr_pages) 255 { 256 struct swap_extent *se = offset_to_swap_extent(si, start_page); 257 258 while (nr_pages) { 259 pgoff_t offset = start_page - se->start_page; 260 sector_t start_block = se->start_block + offset; 261 sector_t nr_blocks = se->nr_pages - offset; 262 263 if (nr_blocks > nr_pages) 264 nr_blocks = nr_pages; 265 start_page += nr_blocks; 266 nr_pages -= nr_blocks; 267 268 start_block <<= PAGE_SHIFT - 9; 269 nr_blocks <<= PAGE_SHIFT - 9; 270 if (blkdev_issue_discard(si->bdev, start_block, 271 nr_blocks, GFP_NOIO)) 272 break; 273 274 se = next_se(se); 275 } 276 } 277 278 #ifdef CONFIG_THP_SWAP 279 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 280 281 #define swap_entry_order(order) (order) 282 #else 283 #define SWAPFILE_CLUSTER 256 284 285 /* 286 * Define swap_entry_order() as constant to let compiler to optimize 287 * out some code if !CONFIG_THP_SWAP 288 */ 289 #define swap_entry_order(order) 0 290 #endif 291 #define LATENCY_LIMIT 256 292 293 static inline void cluster_set_flag(struct swap_cluster_info *info, 294 unsigned int flag) 295 { 296 info->flags = flag; 297 } 298 299 static inline unsigned int cluster_count(struct swap_cluster_info *info) 300 { 301 return info->data; 302 } 303 304 static inline void cluster_set_count(struct swap_cluster_info *info, 305 unsigned int c) 306 { 307 info->data = c; 308 } 309 310 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 311 unsigned int c, unsigned int f) 312 { 313 info->flags = f; 314 info->data = c; 315 } 316 317 static inline unsigned int cluster_next(struct swap_cluster_info *info) 318 { 319 return info->data; 320 } 321 322 static inline void cluster_set_next(struct swap_cluster_info *info, 323 unsigned int n) 324 { 325 info->data = n; 326 } 327 328 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 329 unsigned int n, unsigned int f) 330 { 331 info->flags = f; 332 info->data = n; 333 } 334 335 static inline bool cluster_is_free(struct swap_cluster_info *info) 336 { 337 return info->flags & CLUSTER_FLAG_FREE; 338 } 339 340 static inline bool cluster_is_null(struct swap_cluster_info *info) 341 { 342 return info->flags & CLUSTER_FLAG_NEXT_NULL; 343 } 344 345 static inline void cluster_set_null(struct swap_cluster_info *info) 346 { 347 info->flags = CLUSTER_FLAG_NEXT_NULL; 348 info->data = 0; 349 } 350 351 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 352 unsigned long offset) 353 { 354 struct swap_cluster_info *ci; 355 356 ci = si->cluster_info; 357 if (ci) { 358 ci += offset / SWAPFILE_CLUSTER; 359 spin_lock(&ci->lock); 360 } 361 return ci; 362 } 363 364 static inline void unlock_cluster(struct swap_cluster_info *ci) 365 { 366 if (ci) 367 spin_unlock(&ci->lock); 368 } 369 370 /* 371 * Determine the locking method in use for this device. Return 372 * swap_cluster_info if SSD-style cluster-based locking is in place. 373 */ 374 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 375 struct swap_info_struct *si, unsigned long offset) 376 { 377 struct swap_cluster_info *ci; 378 379 /* Try to use fine-grained SSD-style locking if available: */ 380 ci = lock_cluster(si, offset); 381 /* Otherwise, fall back to traditional, coarse locking: */ 382 if (!ci) 383 spin_lock(&si->lock); 384 385 return ci; 386 } 387 388 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 389 struct swap_cluster_info *ci) 390 { 391 if (ci) 392 unlock_cluster(ci); 393 else 394 spin_unlock(&si->lock); 395 } 396 397 static inline bool cluster_list_empty(struct swap_cluster_list *list) 398 { 399 return cluster_is_null(&list->head); 400 } 401 402 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 403 { 404 return cluster_next(&list->head); 405 } 406 407 static void cluster_list_init(struct swap_cluster_list *list) 408 { 409 cluster_set_null(&list->head); 410 cluster_set_null(&list->tail); 411 } 412 413 static void cluster_list_add_tail(struct swap_cluster_list *list, 414 struct swap_cluster_info *ci, 415 unsigned int idx) 416 { 417 if (cluster_list_empty(list)) { 418 cluster_set_next_flag(&list->head, idx, 0); 419 cluster_set_next_flag(&list->tail, idx, 0); 420 } else { 421 struct swap_cluster_info *ci_tail; 422 unsigned int tail = cluster_next(&list->tail); 423 424 /* 425 * Nested cluster lock, but both cluster locks are 426 * only acquired when we held swap_info_struct->lock 427 */ 428 ci_tail = ci + tail; 429 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 430 cluster_set_next(ci_tail, idx); 431 spin_unlock(&ci_tail->lock); 432 cluster_set_next_flag(&list->tail, idx, 0); 433 } 434 } 435 436 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 437 struct swap_cluster_info *ci) 438 { 439 unsigned int idx; 440 441 idx = cluster_next(&list->head); 442 if (cluster_next(&list->tail) == idx) { 443 cluster_set_null(&list->head); 444 cluster_set_null(&list->tail); 445 } else 446 cluster_set_next_flag(&list->head, 447 cluster_next(&ci[idx]), 0); 448 449 return idx; 450 } 451 452 /* Add a cluster to discard list and schedule it to do discard */ 453 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 454 unsigned int idx) 455 { 456 /* 457 * If scan_swap_map_slots() can't find a free cluster, it will check 458 * si->swap_map directly. To make sure the discarding cluster isn't 459 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied). 460 * It will be cleared after discard 461 */ 462 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 463 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 464 465 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 466 467 schedule_work(&si->discard_work); 468 } 469 470 static void __free_cluster(struct swap_info_struct *si, unsigned long idx) 471 { 472 struct swap_cluster_info *ci = si->cluster_info; 473 474 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); 475 cluster_list_add_tail(&si->free_clusters, ci, idx); 476 } 477 478 /* 479 * Doing discard actually. After a cluster discard is finished, the cluster 480 * will be added to free cluster list. caller should hold si->lock. 481 */ 482 static void swap_do_scheduled_discard(struct swap_info_struct *si) 483 { 484 struct swap_cluster_info *info, *ci; 485 unsigned int idx; 486 487 info = si->cluster_info; 488 489 while (!cluster_list_empty(&si->discard_clusters)) { 490 idx = cluster_list_del_first(&si->discard_clusters, info); 491 spin_unlock(&si->lock); 492 493 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 494 SWAPFILE_CLUSTER); 495 496 spin_lock(&si->lock); 497 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 498 __free_cluster(si, idx); 499 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 500 0, SWAPFILE_CLUSTER); 501 unlock_cluster(ci); 502 } 503 } 504 505 static void swap_discard_work(struct work_struct *work) 506 { 507 struct swap_info_struct *si; 508 509 si = container_of(work, struct swap_info_struct, discard_work); 510 511 spin_lock(&si->lock); 512 swap_do_scheduled_discard(si); 513 spin_unlock(&si->lock); 514 } 515 516 static void swap_users_ref_free(struct percpu_ref *ref) 517 { 518 struct swap_info_struct *si; 519 520 si = container_of(ref, struct swap_info_struct, users); 521 complete(&si->comp); 522 } 523 524 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) 525 { 526 struct swap_cluster_info *ci = si->cluster_info; 527 528 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); 529 cluster_list_del_first(&si->free_clusters, ci); 530 cluster_set_count_flag(ci + idx, 0, 0); 531 } 532 533 static void free_cluster(struct swap_info_struct *si, unsigned long idx) 534 { 535 struct swap_cluster_info *ci = si->cluster_info + idx; 536 537 VM_BUG_ON(cluster_count(ci) != 0); 538 /* 539 * If the swap is discardable, prepare discard the cluster 540 * instead of free it immediately. The cluster will be freed 541 * after discard. 542 */ 543 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 544 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 545 swap_cluster_schedule_discard(si, idx); 546 return; 547 } 548 549 __free_cluster(si, idx); 550 } 551 552 /* 553 * The cluster corresponding to page_nr will be used. The cluster will be 554 * removed from free cluster list and its usage counter will be increased by 555 * count. 556 */ 557 static void add_cluster_info_page(struct swap_info_struct *p, 558 struct swap_cluster_info *cluster_info, unsigned long page_nr, 559 unsigned long count) 560 { 561 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 562 563 if (!cluster_info) 564 return; 565 if (cluster_is_free(&cluster_info[idx])) 566 alloc_cluster(p, idx); 567 568 VM_BUG_ON(cluster_count(&cluster_info[idx]) + count > SWAPFILE_CLUSTER); 569 cluster_set_count(&cluster_info[idx], 570 cluster_count(&cluster_info[idx]) + count); 571 } 572 573 /* 574 * The cluster corresponding to page_nr will be used. The cluster will be 575 * removed from free cluster list and its usage counter will be increased by 1. 576 */ 577 static void inc_cluster_info_page(struct swap_info_struct *p, 578 struct swap_cluster_info *cluster_info, unsigned long page_nr) 579 { 580 add_cluster_info_page(p, cluster_info, page_nr, 1); 581 } 582 583 /* 584 * The cluster corresponding to page_nr decreases one usage. If the usage 585 * counter becomes 0, which means no page in the cluster is in using, we can 586 * optionally discard the cluster and add it to free cluster list. 587 */ 588 static void dec_cluster_info_page(struct swap_info_struct *p, 589 struct swap_cluster_info *cluster_info, unsigned long page_nr) 590 { 591 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 592 593 if (!cluster_info) 594 return; 595 596 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 597 cluster_set_count(&cluster_info[idx], 598 cluster_count(&cluster_info[idx]) - 1); 599 600 if (cluster_count(&cluster_info[idx]) == 0) 601 free_cluster(p, idx); 602 } 603 604 /* 605 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free 606 * cluster list. Avoiding such abuse to avoid list corruption. 607 */ 608 static bool 609 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 610 unsigned long offset, int order) 611 { 612 struct percpu_cluster *percpu_cluster; 613 bool conflict; 614 615 offset /= SWAPFILE_CLUSTER; 616 conflict = !cluster_list_empty(&si->free_clusters) && 617 offset != cluster_list_first(&si->free_clusters) && 618 cluster_is_free(&si->cluster_info[offset]); 619 620 if (!conflict) 621 return false; 622 623 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 624 percpu_cluster->next[order] = SWAP_NEXT_INVALID; 625 return true; 626 } 627 628 static inline bool swap_range_empty(char *swap_map, unsigned int start, 629 unsigned int nr_pages) 630 { 631 unsigned int i; 632 633 for (i = 0; i < nr_pages; i++) { 634 if (swap_map[start + i]) 635 return false; 636 } 637 638 return true; 639 } 640 641 /* 642 * Try to get swap entries with specified order from current cpu's swap entry 643 * pool (a cluster). This might involve allocating a new cluster for current CPU 644 * too. 645 */ 646 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 647 unsigned long *offset, unsigned long *scan_base, int order) 648 { 649 unsigned int nr_pages = 1 << order; 650 struct percpu_cluster *cluster; 651 struct swap_cluster_info *ci; 652 unsigned int tmp, max; 653 654 new_cluster: 655 cluster = this_cpu_ptr(si->percpu_cluster); 656 tmp = cluster->next[order]; 657 if (tmp == SWAP_NEXT_INVALID) { 658 if (!cluster_list_empty(&si->free_clusters)) { 659 tmp = cluster_next(&si->free_clusters.head) * 660 SWAPFILE_CLUSTER; 661 } else if (!cluster_list_empty(&si->discard_clusters)) { 662 /* 663 * we don't have free cluster but have some clusters in 664 * discarding, do discard now and reclaim them, then 665 * reread cluster_next_cpu since we dropped si->lock 666 */ 667 swap_do_scheduled_discard(si); 668 *scan_base = this_cpu_read(*si->cluster_next_cpu); 669 *offset = *scan_base; 670 goto new_cluster; 671 } else 672 return false; 673 } 674 675 /* 676 * Other CPUs can use our cluster if they can't find a free cluster, 677 * check if there is still free entry in the cluster, maintaining 678 * natural alignment. 679 */ 680 max = min_t(unsigned long, si->max, ALIGN(tmp + 1, SWAPFILE_CLUSTER)); 681 if (tmp < max) { 682 ci = lock_cluster(si, tmp); 683 while (tmp < max) { 684 if (swap_range_empty(si->swap_map, tmp, nr_pages)) 685 break; 686 tmp += nr_pages; 687 } 688 unlock_cluster(ci); 689 } 690 if (tmp >= max) { 691 cluster->next[order] = SWAP_NEXT_INVALID; 692 goto new_cluster; 693 } 694 *offset = tmp; 695 *scan_base = tmp; 696 tmp += nr_pages; 697 cluster->next[order] = tmp < max ? tmp : SWAP_NEXT_INVALID; 698 return true; 699 } 700 701 static void __del_from_avail_list(struct swap_info_struct *p) 702 { 703 int nid; 704 705 assert_spin_locked(&p->lock); 706 for_each_node(nid) 707 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); 708 } 709 710 static void del_from_avail_list(struct swap_info_struct *p) 711 { 712 spin_lock(&swap_avail_lock); 713 __del_from_avail_list(p); 714 spin_unlock(&swap_avail_lock); 715 } 716 717 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 718 unsigned int nr_entries) 719 { 720 unsigned int end = offset + nr_entries - 1; 721 722 if (offset == si->lowest_bit) 723 si->lowest_bit += nr_entries; 724 if (end == si->highest_bit) 725 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries); 726 WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries); 727 if (si->inuse_pages == si->pages) { 728 si->lowest_bit = si->max; 729 si->highest_bit = 0; 730 del_from_avail_list(si); 731 } 732 } 733 734 static void add_to_avail_list(struct swap_info_struct *p) 735 { 736 int nid; 737 738 spin_lock(&swap_avail_lock); 739 for_each_node(nid) 740 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); 741 spin_unlock(&swap_avail_lock); 742 } 743 744 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 745 unsigned int nr_entries) 746 { 747 unsigned long begin = offset; 748 unsigned long end = offset + nr_entries - 1; 749 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 750 751 if (offset < si->lowest_bit) 752 si->lowest_bit = offset; 753 if (end > si->highest_bit) { 754 bool was_full = !si->highest_bit; 755 756 WRITE_ONCE(si->highest_bit, end); 757 if (was_full && (si->flags & SWP_WRITEOK)) 758 add_to_avail_list(si); 759 } 760 if (si->flags & SWP_BLKDEV) 761 swap_slot_free_notify = 762 si->bdev->bd_disk->fops->swap_slot_free_notify; 763 else 764 swap_slot_free_notify = NULL; 765 while (offset <= end) { 766 arch_swap_invalidate_page(si->type, offset); 767 if (swap_slot_free_notify) 768 swap_slot_free_notify(si->bdev, offset); 769 offset++; 770 } 771 clear_shadow_from_swap_cache(si->type, begin, end); 772 773 /* 774 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0 775 * only after the above cleanups are done. 776 */ 777 smp_wmb(); 778 atomic_long_add(nr_entries, &nr_swap_pages); 779 WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries); 780 } 781 782 static void set_cluster_next(struct swap_info_struct *si, unsigned long next) 783 { 784 unsigned long prev; 785 786 if (!(si->flags & SWP_SOLIDSTATE)) { 787 si->cluster_next = next; 788 return; 789 } 790 791 prev = this_cpu_read(*si->cluster_next_cpu); 792 /* 793 * Cross the swap address space size aligned trunk, choose 794 * another trunk randomly to avoid lock contention on swap 795 * address space if possible. 796 */ 797 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) != 798 (next >> SWAP_ADDRESS_SPACE_SHIFT)) { 799 /* No free swap slots available */ 800 if (si->highest_bit <= si->lowest_bit) 801 return; 802 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit); 803 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES); 804 next = max_t(unsigned int, next, si->lowest_bit); 805 } 806 this_cpu_write(*si->cluster_next_cpu, next); 807 } 808 809 static bool swap_offset_available_and_locked(struct swap_info_struct *si, 810 unsigned long offset) 811 { 812 if (data_race(!si->swap_map[offset])) { 813 spin_lock(&si->lock); 814 return true; 815 } 816 817 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 818 spin_lock(&si->lock); 819 return true; 820 } 821 822 return false; 823 } 824 825 static int scan_swap_map_slots(struct swap_info_struct *si, 826 unsigned char usage, int nr, 827 swp_entry_t slots[], int order) 828 { 829 struct swap_cluster_info *ci; 830 unsigned long offset; 831 unsigned long scan_base; 832 unsigned long last_in_cluster = 0; 833 int latency_ration = LATENCY_LIMIT; 834 unsigned int nr_pages = 1 << order; 835 int n_ret = 0; 836 bool scanned_many = false; 837 838 /* 839 * We try to cluster swap pages by allocating them sequentially 840 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 841 * way, however, we resort to first-free allocation, starting 842 * a new cluster. This prevents us from scattering swap pages 843 * all over the entire swap partition, so that we reduce 844 * overall disk seek times between swap pages. -- sct 845 * But we do now try to find an empty cluster. -Andrea 846 * And we let swap pages go all over an SSD partition. Hugh 847 */ 848 849 if (order > 0) { 850 /* 851 * Should not even be attempting large allocations when huge 852 * page swap is disabled. Warn and fail the allocation. 853 */ 854 if (!IS_ENABLED(CONFIG_THP_SWAP) || 855 nr_pages > SWAPFILE_CLUSTER) { 856 VM_WARN_ON_ONCE(1); 857 return 0; 858 } 859 860 /* 861 * Swapfile is not block device or not using clusters so unable 862 * to allocate large entries. 863 */ 864 if (!(si->flags & SWP_BLKDEV) || !si->cluster_info) 865 return 0; 866 } 867 868 si->flags += SWP_SCANNING; 869 /* 870 * Use percpu scan base for SSD to reduce lock contention on 871 * cluster and swap cache. For HDD, sequential access is more 872 * important. 873 */ 874 if (si->flags & SWP_SOLIDSTATE) 875 scan_base = this_cpu_read(*si->cluster_next_cpu); 876 else 877 scan_base = si->cluster_next; 878 offset = scan_base; 879 880 /* SSD algorithm */ 881 if (si->cluster_info) { 882 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base, order)) { 883 if (order > 0) 884 goto no_page; 885 goto scan; 886 } 887 } else if (unlikely(!si->cluster_nr--)) { 888 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 889 si->cluster_nr = SWAPFILE_CLUSTER - 1; 890 goto checks; 891 } 892 893 spin_unlock(&si->lock); 894 895 /* 896 * If seek is expensive, start searching for new cluster from 897 * start of partition, to minimize the span of allocated swap. 898 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 899 * case, just handled by scan_swap_map_try_ssd_cluster() above. 900 */ 901 scan_base = offset = si->lowest_bit; 902 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 903 904 /* Locate the first empty (unaligned) cluster */ 905 for (; last_in_cluster <= READ_ONCE(si->highest_bit); offset++) { 906 if (si->swap_map[offset]) 907 last_in_cluster = offset + SWAPFILE_CLUSTER; 908 else if (offset == last_in_cluster) { 909 spin_lock(&si->lock); 910 offset -= SWAPFILE_CLUSTER - 1; 911 si->cluster_next = offset; 912 si->cluster_nr = SWAPFILE_CLUSTER - 1; 913 goto checks; 914 } 915 if (unlikely(--latency_ration < 0)) { 916 cond_resched(); 917 latency_ration = LATENCY_LIMIT; 918 } 919 } 920 921 offset = scan_base; 922 spin_lock(&si->lock); 923 si->cluster_nr = SWAPFILE_CLUSTER - 1; 924 } 925 926 checks: 927 if (si->cluster_info) { 928 while (scan_swap_map_ssd_cluster_conflict(si, offset, order)) { 929 /* take a break if we already got some slots */ 930 if (n_ret) 931 goto done; 932 if (!scan_swap_map_try_ssd_cluster(si, &offset, 933 &scan_base, order)) { 934 if (order > 0) 935 goto no_page; 936 goto scan; 937 } 938 } 939 } 940 if (!(si->flags & SWP_WRITEOK)) 941 goto no_page; 942 if (!si->highest_bit) 943 goto no_page; 944 if (offset > si->highest_bit) 945 scan_base = offset = si->lowest_bit; 946 947 ci = lock_cluster(si, offset); 948 /* reuse swap entry of cache-only swap if not busy. */ 949 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 950 int swap_was_freed; 951 unlock_cluster(ci); 952 spin_unlock(&si->lock); 953 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 954 spin_lock(&si->lock); 955 /* entry was freed successfully, try to use this again */ 956 if (swap_was_freed > 0) 957 goto checks; 958 goto scan; /* check next one */ 959 } 960 961 if (si->swap_map[offset]) { 962 unlock_cluster(ci); 963 if (!n_ret) 964 goto scan; 965 else 966 goto done; 967 } 968 memset(si->swap_map + offset, usage, nr_pages); 969 add_cluster_info_page(si, si->cluster_info, offset, nr_pages); 970 unlock_cluster(ci); 971 972 swap_range_alloc(si, offset, nr_pages); 973 slots[n_ret++] = swp_entry(si->type, offset); 974 975 /* got enough slots or reach max slots? */ 976 if ((n_ret == nr) || (offset >= si->highest_bit)) 977 goto done; 978 979 /* search for next available slot */ 980 981 /* time to take a break? */ 982 if (unlikely(--latency_ration < 0)) { 983 if (n_ret) 984 goto done; 985 spin_unlock(&si->lock); 986 cond_resched(); 987 spin_lock(&si->lock); 988 latency_ration = LATENCY_LIMIT; 989 } 990 991 /* try to get more slots in cluster */ 992 if (si->cluster_info) { 993 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base, order)) 994 goto checks; 995 if (order > 0) 996 goto done; 997 } else if (si->cluster_nr && !si->swap_map[++offset]) { 998 /* non-ssd case, still more slots in cluster? */ 999 --si->cluster_nr; 1000 goto checks; 1001 } 1002 1003 /* 1004 * Even if there's no free clusters available (fragmented), 1005 * try to scan a little more quickly with lock held unless we 1006 * have scanned too many slots already. 1007 */ 1008 if (!scanned_many) { 1009 unsigned long scan_limit; 1010 1011 if (offset < scan_base) 1012 scan_limit = scan_base; 1013 else 1014 scan_limit = si->highest_bit; 1015 for (; offset <= scan_limit && --latency_ration > 0; 1016 offset++) { 1017 if (!si->swap_map[offset]) 1018 goto checks; 1019 } 1020 } 1021 1022 done: 1023 if (order == 0) 1024 set_cluster_next(si, offset + 1); 1025 si->flags -= SWP_SCANNING; 1026 return n_ret; 1027 1028 scan: 1029 VM_WARN_ON(order > 0); 1030 spin_unlock(&si->lock); 1031 while (++offset <= READ_ONCE(si->highest_bit)) { 1032 if (unlikely(--latency_ration < 0)) { 1033 cond_resched(); 1034 latency_ration = LATENCY_LIMIT; 1035 scanned_many = true; 1036 } 1037 if (swap_offset_available_and_locked(si, offset)) 1038 goto checks; 1039 } 1040 offset = si->lowest_bit; 1041 while (offset < scan_base) { 1042 if (unlikely(--latency_ration < 0)) { 1043 cond_resched(); 1044 latency_ration = LATENCY_LIMIT; 1045 scanned_many = true; 1046 } 1047 if (swap_offset_available_and_locked(si, offset)) 1048 goto checks; 1049 offset++; 1050 } 1051 spin_lock(&si->lock); 1052 1053 no_page: 1054 si->flags -= SWP_SCANNING; 1055 return n_ret; 1056 } 1057 1058 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) 1059 { 1060 unsigned long offset = idx * SWAPFILE_CLUSTER; 1061 struct swap_cluster_info *ci; 1062 1063 ci = lock_cluster(si, offset); 1064 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER); 1065 cluster_set_count_flag(ci, 0, 0); 1066 free_cluster(si, idx); 1067 unlock_cluster(ci); 1068 swap_range_free(si, offset, SWAPFILE_CLUSTER); 1069 } 1070 1071 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_order) 1072 { 1073 int order = swap_entry_order(entry_order); 1074 unsigned long size = 1 << order; 1075 struct swap_info_struct *si, *next; 1076 long avail_pgs; 1077 int n_ret = 0; 1078 int node; 1079 1080 spin_lock(&swap_avail_lock); 1081 1082 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 1083 if (avail_pgs <= 0) { 1084 spin_unlock(&swap_avail_lock); 1085 goto noswap; 1086 } 1087 1088 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs); 1089 1090 atomic_long_sub(n_goal * size, &nr_swap_pages); 1091 1092 start_over: 1093 node = numa_node_id(); 1094 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1095 /* requeue si to after same-priority siblings */ 1096 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1097 spin_unlock(&swap_avail_lock); 1098 spin_lock(&si->lock); 1099 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 1100 spin_lock(&swap_avail_lock); 1101 if (plist_node_empty(&si->avail_lists[node])) { 1102 spin_unlock(&si->lock); 1103 goto nextsi; 1104 } 1105 WARN(!si->highest_bit, 1106 "swap_info %d in list but !highest_bit\n", 1107 si->type); 1108 WARN(!(si->flags & SWP_WRITEOK), 1109 "swap_info %d in list but !SWP_WRITEOK\n", 1110 si->type); 1111 __del_from_avail_list(si); 1112 spin_unlock(&si->lock); 1113 goto nextsi; 1114 } 1115 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 1116 n_goal, swp_entries, order); 1117 spin_unlock(&si->lock); 1118 if (n_ret || size > 1) 1119 goto check_out; 1120 cond_resched(); 1121 1122 spin_lock(&swap_avail_lock); 1123 nextsi: 1124 /* 1125 * if we got here, it's likely that si was almost full before, 1126 * and since scan_swap_map_slots() can drop the si->lock, 1127 * multiple callers probably all tried to get a page from the 1128 * same si and it filled up before we could get one; or, the si 1129 * filled up between us dropping swap_avail_lock and taking 1130 * si->lock. Since we dropped the swap_avail_lock, the 1131 * swap_avail_head list may have been modified; so if next is 1132 * still in the swap_avail_head list then try it, otherwise 1133 * start over if we have not gotten any slots. 1134 */ 1135 if (plist_node_empty(&next->avail_lists[node])) 1136 goto start_over; 1137 } 1138 1139 spin_unlock(&swap_avail_lock); 1140 1141 check_out: 1142 if (n_ret < n_goal) 1143 atomic_long_add((long)(n_goal - n_ret) * size, 1144 &nr_swap_pages); 1145 noswap: 1146 return n_ret; 1147 } 1148 1149 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1150 { 1151 struct swap_info_struct *p; 1152 unsigned long offset; 1153 1154 if (!entry.val) 1155 goto out; 1156 p = swp_swap_info(entry); 1157 if (!p) 1158 goto bad_nofile; 1159 if (data_race(!(p->flags & SWP_USED))) 1160 goto bad_device; 1161 offset = swp_offset(entry); 1162 if (offset >= p->max) 1163 goto bad_offset; 1164 if (data_race(!p->swap_map[swp_offset(entry)])) 1165 goto bad_free; 1166 return p; 1167 1168 bad_free: 1169 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); 1170 goto out; 1171 bad_offset: 1172 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1173 goto out; 1174 bad_device: 1175 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); 1176 goto out; 1177 bad_nofile: 1178 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1179 out: 1180 return NULL; 1181 } 1182 1183 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1184 struct swap_info_struct *q) 1185 { 1186 struct swap_info_struct *p; 1187 1188 p = _swap_info_get(entry); 1189 1190 if (p != q) { 1191 if (q != NULL) 1192 spin_unlock(&q->lock); 1193 if (p != NULL) 1194 spin_lock(&p->lock); 1195 } 1196 return p; 1197 } 1198 1199 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, 1200 unsigned long offset, 1201 unsigned char usage) 1202 { 1203 unsigned char count; 1204 unsigned char has_cache; 1205 1206 count = p->swap_map[offset]; 1207 1208 has_cache = count & SWAP_HAS_CACHE; 1209 count &= ~SWAP_HAS_CACHE; 1210 1211 if (usage == SWAP_HAS_CACHE) { 1212 VM_BUG_ON(!has_cache); 1213 has_cache = 0; 1214 } else if (count == SWAP_MAP_SHMEM) { 1215 /* 1216 * Or we could insist on shmem.c using a special 1217 * swap_shmem_free() and free_shmem_swap_and_cache()... 1218 */ 1219 count = 0; 1220 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1221 if (count == COUNT_CONTINUED) { 1222 if (swap_count_continued(p, offset, count)) 1223 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1224 else 1225 count = SWAP_MAP_MAX; 1226 } else 1227 count--; 1228 } 1229 1230 usage = count | has_cache; 1231 if (usage) 1232 WRITE_ONCE(p->swap_map[offset], usage); 1233 else 1234 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE); 1235 1236 return usage; 1237 } 1238 1239 /* 1240 * When we get a swap entry, if there aren't some other ways to 1241 * prevent swapoff, such as the folio in swap cache is locked, RCU 1242 * reader side is locked, etc., the swap entry may become invalid 1243 * because of swapoff. Then, we need to enclose all swap related 1244 * functions with get_swap_device() and put_swap_device(), unless the 1245 * swap functions call get/put_swap_device() by themselves. 1246 * 1247 * RCU reader side lock (including any spinlock) is sufficient to 1248 * prevent swapoff, because synchronize_rcu() is called in swapoff() 1249 * before freeing data structures. 1250 * 1251 * Check whether swap entry is valid in the swap device. If so, 1252 * return pointer to swap_info_struct, and keep the swap entry valid 1253 * via preventing the swap device from being swapoff, until 1254 * put_swap_device() is called. Otherwise return NULL. 1255 * 1256 * Notice that swapoff or swapoff+swapon can still happen before the 1257 * percpu_ref_tryget_live() in get_swap_device() or after the 1258 * percpu_ref_put() in put_swap_device() if there isn't any other way 1259 * to prevent swapoff. The caller must be prepared for that. For 1260 * example, the following situation is possible. 1261 * 1262 * CPU1 CPU2 1263 * do_swap_page() 1264 * ... swapoff+swapon 1265 * __read_swap_cache_async() 1266 * swapcache_prepare() 1267 * __swap_duplicate() 1268 * // check swap_map 1269 * // verify PTE not changed 1270 * 1271 * In __swap_duplicate(), the swap_map need to be checked before 1272 * changing partly because the specified swap entry may be for another 1273 * swap device which has been swapoff. And in do_swap_page(), after 1274 * the page is read from the swap device, the PTE is verified not 1275 * changed with the page table locked to check whether the swap device 1276 * has been swapoff or swapoff+swapon. 1277 */ 1278 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1279 { 1280 struct swap_info_struct *si; 1281 unsigned long offset; 1282 1283 if (!entry.val) 1284 goto out; 1285 si = swp_swap_info(entry); 1286 if (!si) 1287 goto bad_nofile; 1288 if (!percpu_ref_tryget_live(&si->users)) 1289 goto out; 1290 /* 1291 * Guarantee the si->users are checked before accessing other 1292 * fields of swap_info_struct. 1293 * 1294 * Paired with the spin_unlock() after setup_swap_info() in 1295 * enable_swap_info(). 1296 */ 1297 smp_rmb(); 1298 offset = swp_offset(entry); 1299 if (offset >= si->max) 1300 goto put_out; 1301 1302 return si; 1303 bad_nofile: 1304 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1305 out: 1306 return NULL; 1307 put_out: 1308 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1309 percpu_ref_put(&si->users); 1310 return NULL; 1311 } 1312 1313 static unsigned char __swap_entry_free(struct swap_info_struct *p, 1314 swp_entry_t entry) 1315 { 1316 struct swap_cluster_info *ci; 1317 unsigned long offset = swp_offset(entry); 1318 unsigned char usage; 1319 1320 ci = lock_cluster_or_swap_info(p, offset); 1321 usage = __swap_entry_free_locked(p, offset, 1); 1322 unlock_cluster_or_swap_info(p, ci); 1323 if (!usage) 1324 free_swap_slot(entry); 1325 1326 return usage; 1327 } 1328 1329 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 1330 { 1331 struct swap_cluster_info *ci; 1332 unsigned long offset = swp_offset(entry); 1333 unsigned char count; 1334 1335 ci = lock_cluster(p, offset); 1336 count = p->swap_map[offset]; 1337 VM_BUG_ON(count != SWAP_HAS_CACHE); 1338 p->swap_map[offset] = 0; 1339 dec_cluster_info_page(p, p->cluster_info, offset); 1340 unlock_cluster(ci); 1341 1342 mem_cgroup_uncharge_swap(entry, 1); 1343 swap_range_free(p, offset, 1); 1344 } 1345 1346 /* 1347 * Caller has made sure that the swap device corresponding to entry 1348 * is still around or has not been recycled. 1349 */ 1350 void swap_free(swp_entry_t entry) 1351 { 1352 struct swap_info_struct *p; 1353 1354 p = _swap_info_get(entry); 1355 if (p) 1356 __swap_entry_free(p, entry); 1357 } 1358 1359 /* 1360 * Called after dropping swapcache to decrease refcnt to swap entries. 1361 */ 1362 void put_swap_folio(struct folio *folio, swp_entry_t entry) 1363 { 1364 unsigned long offset = swp_offset(entry); 1365 unsigned long idx = offset / SWAPFILE_CLUSTER; 1366 struct swap_cluster_info *ci; 1367 struct swap_info_struct *si; 1368 unsigned char *map; 1369 unsigned int i, free_entries = 0; 1370 unsigned char val; 1371 int size = 1 << swap_entry_order(folio_order(folio)); 1372 1373 si = _swap_info_get(entry); 1374 if (!si) 1375 return; 1376 1377 ci = lock_cluster_or_swap_info(si, offset); 1378 if (size == SWAPFILE_CLUSTER) { 1379 map = si->swap_map + offset; 1380 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1381 val = map[i]; 1382 VM_BUG_ON(!(val & SWAP_HAS_CACHE)); 1383 if (val == SWAP_HAS_CACHE) 1384 free_entries++; 1385 } 1386 if (free_entries == SWAPFILE_CLUSTER) { 1387 unlock_cluster_or_swap_info(si, ci); 1388 spin_lock(&si->lock); 1389 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); 1390 swap_free_cluster(si, idx); 1391 spin_unlock(&si->lock); 1392 return; 1393 } 1394 } 1395 for (i = 0; i < size; i++, entry.val++) { 1396 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { 1397 unlock_cluster_or_swap_info(si, ci); 1398 free_swap_slot(entry); 1399 if (i == size - 1) 1400 return; 1401 lock_cluster_or_swap_info(si, offset); 1402 } 1403 } 1404 unlock_cluster_or_swap_info(si, ci); 1405 } 1406 1407 static int swp_entry_cmp(const void *ent1, const void *ent2) 1408 { 1409 const swp_entry_t *e1 = ent1, *e2 = ent2; 1410 1411 return (int)swp_type(*e1) - (int)swp_type(*e2); 1412 } 1413 1414 void swapcache_free_entries(swp_entry_t *entries, int n) 1415 { 1416 struct swap_info_struct *p, *prev; 1417 int i; 1418 1419 if (n <= 0) 1420 return; 1421 1422 prev = NULL; 1423 p = NULL; 1424 1425 /* 1426 * Sort swap entries by swap device, so each lock is only taken once. 1427 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1428 * so low that it isn't necessary to optimize further. 1429 */ 1430 if (nr_swapfiles > 1) 1431 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1432 for (i = 0; i < n; ++i) { 1433 p = swap_info_get_cont(entries[i], prev); 1434 if (p) 1435 swap_entry_free(p, entries[i]); 1436 prev = p; 1437 } 1438 if (p) 1439 spin_unlock(&p->lock); 1440 } 1441 1442 int __swap_count(swp_entry_t entry) 1443 { 1444 struct swap_info_struct *si = swp_swap_info(entry); 1445 pgoff_t offset = swp_offset(entry); 1446 1447 return swap_count(si->swap_map[offset]); 1448 } 1449 1450 /* 1451 * How many references to @entry are currently swapped out? 1452 * This does not give an exact answer when swap count is continued, 1453 * but does include the high COUNT_CONTINUED flag to allow for that. 1454 */ 1455 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1456 { 1457 pgoff_t offset = swp_offset(entry); 1458 struct swap_cluster_info *ci; 1459 int count; 1460 1461 ci = lock_cluster_or_swap_info(si, offset); 1462 count = swap_count(si->swap_map[offset]); 1463 unlock_cluster_or_swap_info(si, ci); 1464 return count; 1465 } 1466 1467 /* 1468 * How many references to @entry are currently swapped out? 1469 * This considers COUNT_CONTINUED so it returns exact answer. 1470 */ 1471 int swp_swapcount(swp_entry_t entry) 1472 { 1473 int count, tmp_count, n; 1474 struct swap_info_struct *p; 1475 struct swap_cluster_info *ci; 1476 struct page *page; 1477 pgoff_t offset; 1478 unsigned char *map; 1479 1480 p = _swap_info_get(entry); 1481 if (!p) 1482 return 0; 1483 1484 offset = swp_offset(entry); 1485 1486 ci = lock_cluster_or_swap_info(p, offset); 1487 1488 count = swap_count(p->swap_map[offset]); 1489 if (!(count & COUNT_CONTINUED)) 1490 goto out; 1491 1492 count &= ~COUNT_CONTINUED; 1493 n = SWAP_MAP_MAX + 1; 1494 1495 page = vmalloc_to_page(p->swap_map + offset); 1496 offset &= ~PAGE_MASK; 1497 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1498 1499 do { 1500 page = list_next_entry(page, lru); 1501 map = kmap_local_page(page); 1502 tmp_count = map[offset]; 1503 kunmap_local(map); 1504 1505 count += (tmp_count & ~COUNT_CONTINUED) * n; 1506 n *= (SWAP_CONT_MAX + 1); 1507 } while (tmp_count & COUNT_CONTINUED); 1508 out: 1509 unlock_cluster_or_swap_info(p, ci); 1510 return count; 1511 } 1512 1513 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1514 swp_entry_t entry, int order) 1515 { 1516 struct swap_cluster_info *ci; 1517 unsigned char *map = si->swap_map; 1518 unsigned int nr_pages = 1 << order; 1519 unsigned long roffset = swp_offset(entry); 1520 unsigned long offset = round_down(roffset, nr_pages); 1521 int i; 1522 bool ret = false; 1523 1524 ci = lock_cluster_or_swap_info(si, offset); 1525 if (!ci || nr_pages == 1) { 1526 if (swap_count(map[roffset])) 1527 ret = true; 1528 goto unlock_out; 1529 } 1530 for (i = 0; i < nr_pages; i++) { 1531 if (swap_count(map[offset + i])) { 1532 ret = true; 1533 break; 1534 } 1535 } 1536 unlock_out: 1537 unlock_cluster_or_swap_info(si, ci); 1538 return ret; 1539 } 1540 1541 static bool folio_swapped(struct folio *folio) 1542 { 1543 swp_entry_t entry = folio->swap; 1544 struct swap_info_struct *si = _swap_info_get(entry); 1545 1546 if (!si) 1547 return false; 1548 1549 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio))) 1550 return swap_swapcount(si, entry) != 0; 1551 1552 return swap_page_trans_huge_swapped(si, entry, folio_order(folio)); 1553 } 1554 1555 /** 1556 * folio_free_swap() - Free the swap space used for this folio. 1557 * @folio: The folio to remove. 1558 * 1559 * If swap is getting full, or if there are no more mappings of this folio, 1560 * then call folio_free_swap to free its swap space. 1561 * 1562 * Return: true if we were able to release the swap space. 1563 */ 1564 bool folio_free_swap(struct folio *folio) 1565 { 1566 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1567 1568 if (!folio_test_swapcache(folio)) 1569 return false; 1570 if (folio_test_writeback(folio)) 1571 return false; 1572 if (folio_swapped(folio)) 1573 return false; 1574 1575 /* 1576 * Once hibernation has begun to create its image of memory, 1577 * there's a danger that one of the calls to folio_free_swap() 1578 * - most probably a call from __try_to_reclaim_swap() while 1579 * hibernation is allocating its own swap pages for the image, 1580 * but conceivably even a call from memory reclaim - will free 1581 * the swap from a folio which has already been recorded in the 1582 * image as a clean swapcache folio, and then reuse its swap for 1583 * another page of the image. On waking from hibernation, the 1584 * original folio might be freed under memory pressure, then 1585 * later read back in from swap, now with the wrong data. 1586 * 1587 * Hibernation suspends storage while it is writing the image 1588 * to disk so check that here. 1589 */ 1590 if (pm_suspended_storage()) 1591 return false; 1592 1593 delete_from_swap_cache(folio); 1594 folio_set_dirty(folio); 1595 return true; 1596 } 1597 1598 /** 1599 * free_swap_and_cache_nr() - Release reference on range of swap entries and 1600 * reclaim their cache if no more references remain. 1601 * @entry: First entry of range. 1602 * @nr: Number of entries in range. 1603 * 1604 * For each swap entry in the contiguous range, release a reference. If any swap 1605 * entries become free, try to reclaim their underlying folios, if present. The 1606 * offset range is defined by [entry.offset, entry.offset + nr). 1607 */ 1608 void free_swap_and_cache_nr(swp_entry_t entry, int nr) 1609 { 1610 const unsigned long start_offset = swp_offset(entry); 1611 const unsigned long end_offset = start_offset + nr; 1612 unsigned int type = swp_type(entry); 1613 struct swap_info_struct *si; 1614 bool any_only_cache = false; 1615 unsigned long offset; 1616 unsigned char count; 1617 1618 if (non_swap_entry(entry)) 1619 return; 1620 1621 si = get_swap_device(entry); 1622 if (!si) 1623 return; 1624 1625 if (WARN_ON(end_offset > si->max)) 1626 goto out; 1627 1628 /* 1629 * First free all entries in the range. 1630 */ 1631 for (offset = start_offset; offset < end_offset; offset++) { 1632 if (data_race(si->swap_map[offset])) { 1633 count = __swap_entry_free(si, swp_entry(type, offset)); 1634 if (count == SWAP_HAS_CACHE) 1635 any_only_cache = true; 1636 } else { 1637 WARN_ON_ONCE(1); 1638 } 1639 } 1640 1641 /* 1642 * Short-circuit the below loop if none of the entries had their 1643 * reference drop to zero. 1644 */ 1645 if (!any_only_cache) 1646 goto out; 1647 1648 /* 1649 * Now go back over the range trying to reclaim the swap cache. This is 1650 * more efficient for large folios because we will only try to reclaim 1651 * the swap once per folio in the common case. If we do 1652 * __swap_entry_free() and __try_to_reclaim_swap() in the same loop, the 1653 * latter will get a reference and lock the folio for every individual 1654 * page but will only succeed once the swap slot for every subpage is 1655 * zero. 1656 */ 1657 for (offset = start_offset; offset < end_offset; offset += nr) { 1658 nr = 1; 1659 if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 1660 /* 1661 * Folios are always naturally aligned in swap so 1662 * advance forward to the next boundary. Zero means no 1663 * folio was found for the swap entry, so advance by 1 1664 * in this case. Negative value means folio was found 1665 * but could not be reclaimed. Here we can still advance 1666 * to the next boundary. 1667 */ 1668 nr = __try_to_reclaim_swap(si, offset, 1669 TTRS_UNMAPPED | TTRS_FULL); 1670 if (nr == 0) 1671 nr = 1; 1672 else if (nr < 0) 1673 nr = -nr; 1674 nr = ALIGN(offset + 1, nr) - offset; 1675 } 1676 } 1677 1678 out: 1679 put_swap_device(si); 1680 } 1681 1682 #ifdef CONFIG_HIBERNATION 1683 1684 swp_entry_t get_swap_page_of_type(int type) 1685 { 1686 struct swap_info_struct *si = swap_type_to_swap_info(type); 1687 swp_entry_t entry = {0}; 1688 1689 if (!si) 1690 goto fail; 1691 1692 /* This is called for allocating swap entry, not cache */ 1693 spin_lock(&si->lock); 1694 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry, 0)) 1695 atomic_long_dec(&nr_swap_pages); 1696 spin_unlock(&si->lock); 1697 fail: 1698 return entry; 1699 } 1700 1701 /* 1702 * Find the swap type that corresponds to given device (if any). 1703 * 1704 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1705 * from 0, in which the swap header is expected to be located. 1706 * 1707 * This is needed for the suspend to disk (aka swsusp). 1708 */ 1709 int swap_type_of(dev_t device, sector_t offset) 1710 { 1711 int type; 1712 1713 if (!device) 1714 return -1; 1715 1716 spin_lock(&swap_lock); 1717 for (type = 0; type < nr_swapfiles; type++) { 1718 struct swap_info_struct *sis = swap_info[type]; 1719 1720 if (!(sis->flags & SWP_WRITEOK)) 1721 continue; 1722 1723 if (device == sis->bdev->bd_dev) { 1724 struct swap_extent *se = first_se(sis); 1725 1726 if (se->start_block == offset) { 1727 spin_unlock(&swap_lock); 1728 return type; 1729 } 1730 } 1731 } 1732 spin_unlock(&swap_lock); 1733 return -ENODEV; 1734 } 1735 1736 int find_first_swap(dev_t *device) 1737 { 1738 int type; 1739 1740 spin_lock(&swap_lock); 1741 for (type = 0; type < nr_swapfiles; type++) { 1742 struct swap_info_struct *sis = swap_info[type]; 1743 1744 if (!(sis->flags & SWP_WRITEOK)) 1745 continue; 1746 *device = sis->bdev->bd_dev; 1747 spin_unlock(&swap_lock); 1748 return type; 1749 } 1750 spin_unlock(&swap_lock); 1751 return -ENODEV; 1752 } 1753 1754 /* 1755 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1756 * corresponding to given index in swap_info (swap type). 1757 */ 1758 sector_t swapdev_block(int type, pgoff_t offset) 1759 { 1760 struct swap_info_struct *si = swap_type_to_swap_info(type); 1761 struct swap_extent *se; 1762 1763 if (!si || !(si->flags & SWP_WRITEOK)) 1764 return 0; 1765 se = offset_to_swap_extent(si, offset); 1766 return se->start_block + (offset - se->start_page); 1767 } 1768 1769 /* 1770 * Return either the total number of swap pages of given type, or the number 1771 * of free pages of that type (depending on @free) 1772 * 1773 * This is needed for software suspend 1774 */ 1775 unsigned int count_swap_pages(int type, int free) 1776 { 1777 unsigned int n = 0; 1778 1779 spin_lock(&swap_lock); 1780 if ((unsigned int)type < nr_swapfiles) { 1781 struct swap_info_struct *sis = swap_info[type]; 1782 1783 spin_lock(&sis->lock); 1784 if (sis->flags & SWP_WRITEOK) { 1785 n = sis->pages; 1786 if (free) 1787 n -= sis->inuse_pages; 1788 } 1789 spin_unlock(&sis->lock); 1790 } 1791 spin_unlock(&swap_lock); 1792 return n; 1793 } 1794 #endif /* CONFIG_HIBERNATION */ 1795 1796 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1797 { 1798 return pte_same(pte_swp_clear_flags(pte), swp_pte); 1799 } 1800 1801 /* 1802 * No need to decide whether this PTE shares the swap entry with others, 1803 * just let do_wp_page work it out if a write is requested later - to 1804 * force COW, vm_page_prot omits write permission from any private vma. 1805 */ 1806 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1807 unsigned long addr, swp_entry_t entry, struct folio *folio) 1808 { 1809 struct page *page; 1810 struct folio *swapcache; 1811 spinlock_t *ptl; 1812 pte_t *pte, new_pte, old_pte; 1813 bool hwpoisoned = false; 1814 int ret = 1; 1815 1816 swapcache = folio; 1817 folio = ksm_might_need_to_copy(folio, vma, addr); 1818 if (unlikely(!folio)) 1819 return -ENOMEM; 1820 else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 1821 hwpoisoned = true; 1822 folio = swapcache; 1823 } 1824 1825 page = folio_file_page(folio, swp_offset(entry)); 1826 if (PageHWPoison(page)) 1827 hwpoisoned = true; 1828 1829 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1830 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte), 1831 swp_entry_to_pte(entry)))) { 1832 ret = 0; 1833 goto out; 1834 } 1835 1836 old_pte = ptep_get(pte); 1837 1838 if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) { 1839 swp_entry_t swp_entry; 1840 1841 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1842 if (hwpoisoned) { 1843 swp_entry = make_hwpoison_entry(page); 1844 } else { 1845 swp_entry = make_poisoned_swp_entry(); 1846 } 1847 new_pte = swp_entry_to_pte(swp_entry); 1848 ret = 0; 1849 goto setpte; 1850 } 1851 1852 /* 1853 * Some architectures may have to restore extra metadata to the page 1854 * when reading from swap. This metadata may be indexed by swap entry 1855 * so this must be called before swap_free(). 1856 */ 1857 arch_swap_restore(folio_swap(entry, folio), folio); 1858 1859 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1860 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1861 folio_get(folio); 1862 if (folio == swapcache) { 1863 rmap_t rmap_flags = RMAP_NONE; 1864 1865 /* 1866 * See do_swap_page(): writeback would be problematic. 1867 * However, we do a folio_wait_writeback() just before this 1868 * call and have the folio locked. 1869 */ 1870 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 1871 if (pte_swp_exclusive(old_pte)) 1872 rmap_flags |= RMAP_EXCLUSIVE; 1873 1874 folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags); 1875 } else { /* ksm created a completely new copy */ 1876 folio_add_new_anon_rmap(folio, vma, addr); 1877 folio_add_lru_vma(folio, vma); 1878 } 1879 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot)); 1880 if (pte_swp_soft_dirty(old_pte)) 1881 new_pte = pte_mksoft_dirty(new_pte); 1882 if (pte_swp_uffd_wp(old_pte)) 1883 new_pte = pte_mkuffd_wp(new_pte); 1884 setpte: 1885 set_pte_at(vma->vm_mm, addr, pte, new_pte); 1886 swap_free(entry); 1887 out: 1888 if (pte) 1889 pte_unmap_unlock(pte, ptl); 1890 if (folio != swapcache) { 1891 folio_unlock(folio); 1892 folio_put(folio); 1893 } 1894 return ret; 1895 } 1896 1897 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1898 unsigned long addr, unsigned long end, 1899 unsigned int type) 1900 { 1901 pte_t *pte = NULL; 1902 struct swap_info_struct *si; 1903 1904 si = swap_info[type]; 1905 do { 1906 struct folio *folio; 1907 unsigned long offset; 1908 unsigned char swp_count; 1909 swp_entry_t entry; 1910 int ret; 1911 pte_t ptent; 1912 1913 if (!pte++) { 1914 pte = pte_offset_map(pmd, addr); 1915 if (!pte) 1916 break; 1917 } 1918 1919 ptent = ptep_get_lockless(pte); 1920 1921 if (!is_swap_pte(ptent)) 1922 continue; 1923 1924 entry = pte_to_swp_entry(ptent); 1925 if (swp_type(entry) != type) 1926 continue; 1927 1928 offset = swp_offset(entry); 1929 pte_unmap(pte); 1930 pte = NULL; 1931 1932 folio = swap_cache_get_folio(entry, vma, addr); 1933 if (!folio) { 1934 struct page *page; 1935 struct vm_fault vmf = { 1936 .vma = vma, 1937 .address = addr, 1938 .real_address = addr, 1939 .pmd = pmd, 1940 }; 1941 1942 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 1943 &vmf); 1944 if (page) 1945 folio = page_folio(page); 1946 } 1947 if (!folio) { 1948 swp_count = READ_ONCE(si->swap_map[offset]); 1949 if (swp_count == 0 || swp_count == SWAP_MAP_BAD) 1950 continue; 1951 return -ENOMEM; 1952 } 1953 1954 folio_lock(folio); 1955 folio_wait_writeback(folio); 1956 ret = unuse_pte(vma, pmd, addr, entry, folio); 1957 if (ret < 0) { 1958 folio_unlock(folio); 1959 folio_put(folio); 1960 return ret; 1961 } 1962 1963 folio_free_swap(folio); 1964 folio_unlock(folio); 1965 folio_put(folio); 1966 } while (addr += PAGE_SIZE, addr != end); 1967 1968 if (pte) 1969 pte_unmap(pte); 1970 return 0; 1971 } 1972 1973 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1974 unsigned long addr, unsigned long end, 1975 unsigned int type) 1976 { 1977 pmd_t *pmd; 1978 unsigned long next; 1979 int ret; 1980 1981 pmd = pmd_offset(pud, addr); 1982 do { 1983 cond_resched(); 1984 next = pmd_addr_end(addr, end); 1985 ret = unuse_pte_range(vma, pmd, addr, next, type); 1986 if (ret) 1987 return ret; 1988 } while (pmd++, addr = next, addr != end); 1989 return 0; 1990 } 1991 1992 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 1993 unsigned long addr, unsigned long end, 1994 unsigned int type) 1995 { 1996 pud_t *pud; 1997 unsigned long next; 1998 int ret; 1999 2000 pud = pud_offset(p4d, addr); 2001 do { 2002 next = pud_addr_end(addr, end); 2003 if (pud_none_or_clear_bad(pud)) 2004 continue; 2005 ret = unuse_pmd_range(vma, pud, addr, next, type); 2006 if (ret) 2007 return ret; 2008 } while (pud++, addr = next, addr != end); 2009 return 0; 2010 } 2011 2012 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 2013 unsigned long addr, unsigned long end, 2014 unsigned int type) 2015 { 2016 p4d_t *p4d; 2017 unsigned long next; 2018 int ret; 2019 2020 p4d = p4d_offset(pgd, addr); 2021 do { 2022 next = p4d_addr_end(addr, end); 2023 if (p4d_none_or_clear_bad(p4d)) 2024 continue; 2025 ret = unuse_pud_range(vma, p4d, addr, next, type); 2026 if (ret) 2027 return ret; 2028 } while (p4d++, addr = next, addr != end); 2029 return 0; 2030 } 2031 2032 static int unuse_vma(struct vm_area_struct *vma, unsigned int type) 2033 { 2034 pgd_t *pgd; 2035 unsigned long addr, end, next; 2036 int ret; 2037 2038 addr = vma->vm_start; 2039 end = vma->vm_end; 2040 2041 pgd = pgd_offset(vma->vm_mm, addr); 2042 do { 2043 next = pgd_addr_end(addr, end); 2044 if (pgd_none_or_clear_bad(pgd)) 2045 continue; 2046 ret = unuse_p4d_range(vma, pgd, addr, next, type); 2047 if (ret) 2048 return ret; 2049 } while (pgd++, addr = next, addr != end); 2050 return 0; 2051 } 2052 2053 static int unuse_mm(struct mm_struct *mm, unsigned int type) 2054 { 2055 struct vm_area_struct *vma; 2056 int ret = 0; 2057 VMA_ITERATOR(vmi, mm, 0); 2058 2059 mmap_read_lock(mm); 2060 for_each_vma(vmi, vma) { 2061 if (vma->anon_vma) { 2062 ret = unuse_vma(vma, type); 2063 if (ret) 2064 break; 2065 } 2066 2067 cond_resched(); 2068 } 2069 mmap_read_unlock(mm); 2070 return ret; 2071 } 2072 2073 /* 2074 * Scan swap_map from current position to next entry still in use. 2075 * Return 0 if there are no inuse entries after prev till end of 2076 * the map. 2077 */ 2078 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 2079 unsigned int prev) 2080 { 2081 unsigned int i; 2082 unsigned char count; 2083 2084 /* 2085 * No need for swap_lock here: we're just looking 2086 * for whether an entry is in use, not modifying it; false 2087 * hits are okay, and sys_swapoff() has already prevented new 2088 * allocations from this area (while holding swap_lock). 2089 */ 2090 for (i = prev + 1; i < si->max; i++) { 2091 count = READ_ONCE(si->swap_map[i]); 2092 if (count && swap_count(count) != SWAP_MAP_BAD) 2093 break; 2094 if ((i % LATENCY_LIMIT) == 0) 2095 cond_resched(); 2096 } 2097 2098 if (i == si->max) 2099 i = 0; 2100 2101 return i; 2102 } 2103 2104 static int try_to_unuse(unsigned int type) 2105 { 2106 struct mm_struct *prev_mm; 2107 struct mm_struct *mm; 2108 struct list_head *p; 2109 int retval = 0; 2110 struct swap_info_struct *si = swap_info[type]; 2111 struct folio *folio; 2112 swp_entry_t entry; 2113 unsigned int i; 2114 2115 if (!READ_ONCE(si->inuse_pages)) 2116 goto success; 2117 2118 retry: 2119 retval = shmem_unuse(type); 2120 if (retval) 2121 return retval; 2122 2123 prev_mm = &init_mm; 2124 mmget(prev_mm); 2125 2126 spin_lock(&mmlist_lock); 2127 p = &init_mm.mmlist; 2128 while (READ_ONCE(si->inuse_pages) && 2129 !signal_pending(current) && 2130 (p = p->next) != &init_mm.mmlist) { 2131 2132 mm = list_entry(p, struct mm_struct, mmlist); 2133 if (!mmget_not_zero(mm)) 2134 continue; 2135 spin_unlock(&mmlist_lock); 2136 mmput(prev_mm); 2137 prev_mm = mm; 2138 retval = unuse_mm(mm, type); 2139 if (retval) { 2140 mmput(prev_mm); 2141 return retval; 2142 } 2143 2144 /* 2145 * Make sure that we aren't completely killing 2146 * interactive performance. 2147 */ 2148 cond_resched(); 2149 spin_lock(&mmlist_lock); 2150 } 2151 spin_unlock(&mmlist_lock); 2152 2153 mmput(prev_mm); 2154 2155 i = 0; 2156 while (READ_ONCE(si->inuse_pages) && 2157 !signal_pending(current) && 2158 (i = find_next_to_unuse(si, i)) != 0) { 2159 2160 entry = swp_entry(type, i); 2161 folio = filemap_get_folio(swap_address_space(entry), i); 2162 if (IS_ERR(folio)) 2163 continue; 2164 2165 /* 2166 * It is conceivable that a racing task removed this folio from 2167 * swap cache just before we acquired the page lock. The folio 2168 * might even be back in swap cache on another swap area. But 2169 * that is okay, folio_free_swap() only removes stale folios. 2170 */ 2171 folio_lock(folio); 2172 folio_wait_writeback(folio); 2173 folio_free_swap(folio); 2174 folio_unlock(folio); 2175 folio_put(folio); 2176 } 2177 2178 /* 2179 * Lets check again to see if there are still swap entries in the map. 2180 * If yes, we would need to do retry the unuse logic again. 2181 * Under global memory pressure, swap entries can be reinserted back 2182 * into process space after the mmlist loop above passes over them. 2183 * 2184 * Limit the number of retries? No: when mmget_not_zero() 2185 * above fails, that mm is likely to be freeing swap from 2186 * exit_mmap(), which proceeds at its own independent pace; 2187 * and even shmem_writepage() could have been preempted after 2188 * folio_alloc_swap(), temporarily hiding that swap. It's easy 2189 * and robust (though cpu-intensive) just to keep retrying. 2190 */ 2191 if (READ_ONCE(si->inuse_pages)) { 2192 if (!signal_pending(current)) 2193 goto retry; 2194 return -EINTR; 2195 } 2196 2197 success: 2198 /* 2199 * Make sure that further cleanups after try_to_unuse() returns happen 2200 * after swap_range_free() reduces si->inuse_pages to 0. 2201 */ 2202 smp_mb(); 2203 return 0; 2204 } 2205 2206 /* 2207 * After a successful try_to_unuse, if no swap is now in use, we know 2208 * we can empty the mmlist. swap_lock must be held on entry and exit. 2209 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2210 * added to the mmlist just after page_duplicate - before would be racy. 2211 */ 2212 static void drain_mmlist(void) 2213 { 2214 struct list_head *p, *next; 2215 unsigned int type; 2216 2217 for (type = 0; type < nr_swapfiles; type++) 2218 if (swap_info[type]->inuse_pages) 2219 return; 2220 spin_lock(&mmlist_lock); 2221 list_for_each_safe(p, next, &init_mm.mmlist) 2222 list_del_init(p); 2223 spin_unlock(&mmlist_lock); 2224 } 2225 2226 /* 2227 * Free all of a swapdev's extent information 2228 */ 2229 static void destroy_swap_extents(struct swap_info_struct *sis) 2230 { 2231 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2232 struct rb_node *rb = sis->swap_extent_root.rb_node; 2233 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2234 2235 rb_erase(rb, &sis->swap_extent_root); 2236 kfree(se); 2237 } 2238 2239 if (sis->flags & SWP_ACTIVATED) { 2240 struct file *swap_file = sis->swap_file; 2241 struct address_space *mapping = swap_file->f_mapping; 2242 2243 sis->flags &= ~SWP_ACTIVATED; 2244 if (mapping->a_ops->swap_deactivate) 2245 mapping->a_ops->swap_deactivate(swap_file); 2246 } 2247 } 2248 2249 /* 2250 * Add a block range (and the corresponding page range) into this swapdev's 2251 * extent tree. 2252 * 2253 * This function rather assumes that it is called in ascending page order. 2254 */ 2255 int 2256 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2257 unsigned long nr_pages, sector_t start_block) 2258 { 2259 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2260 struct swap_extent *se; 2261 struct swap_extent *new_se; 2262 2263 /* 2264 * place the new node at the right most since the 2265 * function is called in ascending page order. 2266 */ 2267 while (*link) { 2268 parent = *link; 2269 link = &parent->rb_right; 2270 } 2271 2272 if (parent) { 2273 se = rb_entry(parent, struct swap_extent, rb_node); 2274 BUG_ON(se->start_page + se->nr_pages != start_page); 2275 if (se->start_block + se->nr_pages == start_block) { 2276 /* Merge it */ 2277 se->nr_pages += nr_pages; 2278 return 0; 2279 } 2280 } 2281 2282 /* No merge, insert a new extent. */ 2283 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2284 if (new_se == NULL) 2285 return -ENOMEM; 2286 new_se->start_page = start_page; 2287 new_se->nr_pages = nr_pages; 2288 new_se->start_block = start_block; 2289 2290 rb_link_node(&new_se->rb_node, parent, link); 2291 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2292 return 1; 2293 } 2294 EXPORT_SYMBOL_GPL(add_swap_extent); 2295 2296 /* 2297 * A `swap extent' is a simple thing which maps a contiguous range of pages 2298 * onto a contiguous range of disk blocks. A rbtree of swap extents is 2299 * built at swapon time and is then used at swap_writepage/swap_read_folio 2300 * time for locating where on disk a page belongs. 2301 * 2302 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2303 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2304 * swap files identically. 2305 * 2306 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2307 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2308 * swapfiles are handled *identically* after swapon time. 2309 * 2310 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2311 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray 2312 * blocks are found which do not fall within the PAGE_SIZE alignment 2313 * requirements, they are simply tossed out - we will never use those blocks 2314 * for swapping. 2315 * 2316 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2317 * prevents users from writing to the swap device, which will corrupt memory. 2318 * 2319 * The amount of disk space which a single swap extent represents varies. 2320 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2321 * extents in the rbtree. - akpm. 2322 */ 2323 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2324 { 2325 struct file *swap_file = sis->swap_file; 2326 struct address_space *mapping = swap_file->f_mapping; 2327 struct inode *inode = mapping->host; 2328 int ret; 2329 2330 if (S_ISBLK(inode->i_mode)) { 2331 ret = add_swap_extent(sis, 0, sis->max, 0); 2332 *span = sis->pages; 2333 return ret; 2334 } 2335 2336 if (mapping->a_ops->swap_activate) { 2337 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2338 if (ret < 0) 2339 return ret; 2340 sis->flags |= SWP_ACTIVATED; 2341 if ((sis->flags & SWP_FS_OPS) && 2342 sio_pool_init() != 0) { 2343 destroy_swap_extents(sis); 2344 return -ENOMEM; 2345 } 2346 return ret; 2347 } 2348 2349 return generic_swapfile_activate(sis, swap_file, span); 2350 } 2351 2352 static int swap_node(struct swap_info_struct *p) 2353 { 2354 struct block_device *bdev; 2355 2356 if (p->bdev) 2357 bdev = p->bdev; 2358 else 2359 bdev = p->swap_file->f_inode->i_sb->s_bdev; 2360 2361 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2362 } 2363 2364 static void setup_swap_info(struct swap_info_struct *p, int prio, 2365 unsigned char *swap_map, 2366 struct swap_cluster_info *cluster_info) 2367 { 2368 int i; 2369 2370 if (prio >= 0) 2371 p->prio = prio; 2372 else 2373 p->prio = --least_priority; 2374 /* 2375 * the plist prio is negated because plist ordering is 2376 * low-to-high, while swap ordering is high-to-low 2377 */ 2378 p->list.prio = -p->prio; 2379 for_each_node(i) { 2380 if (p->prio >= 0) 2381 p->avail_lists[i].prio = -p->prio; 2382 else { 2383 if (swap_node(p) == i) 2384 p->avail_lists[i].prio = 1; 2385 else 2386 p->avail_lists[i].prio = -p->prio; 2387 } 2388 } 2389 p->swap_map = swap_map; 2390 p->cluster_info = cluster_info; 2391 } 2392 2393 static void _enable_swap_info(struct swap_info_struct *p) 2394 { 2395 p->flags |= SWP_WRITEOK; 2396 atomic_long_add(p->pages, &nr_swap_pages); 2397 total_swap_pages += p->pages; 2398 2399 assert_spin_locked(&swap_lock); 2400 /* 2401 * both lists are plists, and thus priority ordered. 2402 * swap_active_head needs to be priority ordered for swapoff(), 2403 * which on removal of any swap_info_struct with an auto-assigned 2404 * (i.e. negative) priority increments the auto-assigned priority 2405 * of any lower-priority swap_info_structs. 2406 * swap_avail_head needs to be priority ordered for folio_alloc_swap(), 2407 * which allocates swap pages from the highest available priority 2408 * swap_info_struct. 2409 */ 2410 plist_add(&p->list, &swap_active_head); 2411 2412 /* add to available list iff swap device is not full */ 2413 if (p->highest_bit) 2414 add_to_avail_list(p); 2415 } 2416 2417 static void enable_swap_info(struct swap_info_struct *p, int prio, 2418 unsigned char *swap_map, 2419 struct swap_cluster_info *cluster_info) 2420 { 2421 spin_lock(&swap_lock); 2422 spin_lock(&p->lock); 2423 setup_swap_info(p, prio, swap_map, cluster_info); 2424 spin_unlock(&p->lock); 2425 spin_unlock(&swap_lock); 2426 /* 2427 * Finished initializing swap device, now it's safe to reference it. 2428 */ 2429 percpu_ref_resurrect(&p->users); 2430 spin_lock(&swap_lock); 2431 spin_lock(&p->lock); 2432 _enable_swap_info(p); 2433 spin_unlock(&p->lock); 2434 spin_unlock(&swap_lock); 2435 } 2436 2437 static void reinsert_swap_info(struct swap_info_struct *p) 2438 { 2439 spin_lock(&swap_lock); 2440 spin_lock(&p->lock); 2441 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2442 _enable_swap_info(p); 2443 spin_unlock(&p->lock); 2444 spin_unlock(&swap_lock); 2445 } 2446 2447 static bool __has_usable_swap(void) 2448 { 2449 return !plist_head_empty(&swap_active_head); 2450 } 2451 2452 bool has_usable_swap(void) 2453 { 2454 bool ret; 2455 2456 spin_lock(&swap_lock); 2457 ret = __has_usable_swap(); 2458 spin_unlock(&swap_lock); 2459 return ret; 2460 } 2461 2462 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2463 { 2464 struct swap_info_struct *p = NULL; 2465 unsigned char *swap_map; 2466 struct swap_cluster_info *cluster_info; 2467 struct file *swap_file, *victim; 2468 struct address_space *mapping; 2469 struct inode *inode; 2470 struct filename *pathname; 2471 int err, found = 0; 2472 unsigned int old_block_size; 2473 2474 if (!capable(CAP_SYS_ADMIN)) 2475 return -EPERM; 2476 2477 BUG_ON(!current->mm); 2478 2479 pathname = getname(specialfile); 2480 if (IS_ERR(pathname)) 2481 return PTR_ERR(pathname); 2482 2483 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2484 err = PTR_ERR(victim); 2485 if (IS_ERR(victim)) 2486 goto out; 2487 2488 mapping = victim->f_mapping; 2489 spin_lock(&swap_lock); 2490 plist_for_each_entry(p, &swap_active_head, list) { 2491 if (p->flags & SWP_WRITEOK) { 2492 if (p->swap_file->f_mapping == mapping) { 2493 found = 1; 2494 break; 2495 } 2496 } 2497 } 2498 if (!found) { 2499 err = -EINVAL; 2500 spin_unlock(&swap_lock); 2501 goto out_dput; 2502 } 2503 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2504 vm_unacct_memory(p->pages); 2505 else { 2506 err = -ENOMEM; 2507 spin_unlock(&swap_lock); 2508 goto out_dput; 2509 } 2510 spin_lock(&p->lock); 2511 del_from_avail_list(p); 2512 if (p->prio < 0) { 2513 struct swap_info_struct *si = p; 2514 int nid; 2515 2516 plist_for_each_entry_continue(si, &swap_active_head, list) { 2517 si->prio++; 2518 si->list.prio--; 2519 for_each_node(nid) { 2520 if (si->avail_lists[nid].prio != 1) 2521 si->avail_lists[nid].prio--; 2522 } 2523 } 2524 least_priority++; 2525 } 2526 plist_del(&p->list, &swap_active_head); 2527 atomic_long_sub(p->pages, &nr_swap_pages); 2528 total_swap_pages -= p->pages; 2529 p->flags &= ~SWP_WRITEOK; 2530 spin_unlock(&p->lock); 2531 spin_unlock(&swap_lock); 2532 2533 disable_swap_slots_cache_lock(); 2534 2535 set_current_oom_origin(); 2536 err = try_to_unuse(p->type); 2537 clear_current_oom_origin(); 2538 2539 if (err) { 2540 /* re-insert swap space back into swap_list */ 2541 reinsert_swap_info(p); 2542 reenable_swap_slots_cache_unlock(); 2543 goto out_dput; 2544 } 2545 2546 reenable_swap_slots_cache_unlock(); 2547 2548 /* 2549 * Wait for swap operations protected by get/put_swap_device() 2550 * to complete. Because of synchronize_rcu() here, all swap 2551 * operations protected by RCU reader side lock (including any 2552 * spinlock) will be waited too. This makes it easy to 2553 * prevent folio_test_swapcache() and the following swap cache 2554 * operations from racing with swapoff. 2555 */ 2556 percpu_ref_kill(&p->users); 2557 synchronize_rcu(); 2558 wait_for_completion(&p->comp); 2559 2560 flush_work(&p->discard_work); 2561 2562 destroy_swap_extents(p); 2563 if (p->flags & SWP_CONTINUED) 2564 free_swap_count_continuations(p); 2565 2566 if (!p->bdev || !bdev_nonrot(p->bdev)) 2567 atomic_dec(&nr_rotate_swap); 2568 2569 mutex_lock(&swapon_mutex); 2570 spin_lock(&swap_lock); 2571 spin_lock(&p->lock); 2572 drain_mmlist(); 2573 2574 /* wait for anyone still in scan_swap_map_slots */ 2575 p->highest_bit = 0; /* cuts scans short */ 2576 while (p->flags >= SWP_SCANNING) { 2577 spin_unlock(&p->lock); 2578 spin_unlock(&swap_lock); 2579 schedule_timeout_uninterruptible(1); 2580 spin_lock(&swap_lock); 2581 spin_lock(&p->lock); 2582 } 2583 2584 swap_file = p->swap_file; 2585 old_block_size = p->old_block_size; 2586 p->swap_file = NULL; 2587 p->max = 0; 2588 swap_map = p->swap_map; 2589 p->swap_map = NULL; 2590 cluster_info = p->cluster_info; 2591 p->cluster_info = NULL; 2592 spin_unlock(&p->lock); 2593 spin_unlock(&swap_lock); 2594 arch_swap_invalidate_area(p->type); 2595 zswap_swapoff(p->type); 2596 mutex_unlock(&swapon_mutex); 2597 free_percpu(p->percpu_cluster); 2598 p->percpu_cluster = NULL; 2599 free_percpu(p->cluster_next_cpu); 2600 p->cluster_next_cpu = NULL; 2601 vfree(swap_map); 2602 kvfree(cluster_info); 2603 /* Destroy swap account information */ 2604 swap_cgroup_swapoff(p->type); 2605 exit_swap_address_space(p->type); 2606 2607 inode = mapping->host; 2608 if (p->bdev_file) { 2609 set_blocksize(p->bdev, old_block_size); 2610 fput(p->bdev_file); 2611 p->bdev_file = NULL; 2612 } 2613 2614 inode_lock(inode); 2615 inode->i_flags &= ~S_SWAPFILE; 2616 inode_unlock(inode); 2617 filp_close(swap_file, NULL); 2618 2619 /* 2620 * Clear the SWP_USED flag after all resources are freed so that swapon 2621 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2622 * not hold p->lock after we cleared its SWP_WRITEOK. 2623 */ 2624 spin_lock(&swap_lock); 2625 p->flags = 0; 2626 spin_unlock(&swap_lock); 2627 2628 err = 0; 2629 atomic_inc(&proc_poll_event); 2630 wake_up_interruptible(&proc_poll_wait); 2631 2632 out_dput: 2633 filp_close(victim, NULL); 2634 out: 2635 putname(pathname); 2636 return err; 2637 } 2638 2639 #ifdef CONFIG_PROC_FS 2640 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2641 { 2642 struct seq_file *seq = file->private_data; 2643 2644 poll_wait(file, &proc_poll_wait, wait); 2645 2646 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2647 seq->poll_event = atomic_read(&proc_poll_event); 2648 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2649 } 2650 2651 return EPOLLIN | EPOLLRDNORM; 2652 } 2653 2654 /* iterator */ 2655 static void *swap_start(struct seq_file *swap, loff_t *pos) 2656 { 2657 struct swap_info_struct *si; 2658 int type; 2659 loff_t l = *pos; 2660 2661 mutex_lock(&swapon_mutex); 2662 2663 if (!l) 2664 return SEQ_START_TOKEN; 2665 2666 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2667 if (!(si->flags & SWP_USED) || !si->swap_map) 2668 continue; 2669 if (!--l) 2670 return si; 2671 } 2672 2673 return NULL; 2674 } 2675 2676 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2677 { 2678 struct swap_info_struct *si = v; 2679 int type; 2680 2681 if (v == SEQ_START_TOKEN) 2682 type = 0; 2683 else 2684 type = si->type + 1; 2685 2686 ++(*pos); 2687 for (; (si = swap_type_to_swap_info(type)); type++) { 2688 if (!(si->flags & SWP_USED) || !si->swap_map) 2689 continue; 2690 return si; 2691 } 2692 2693 return NULL; 2694 } 2695 2696 static void swap_stop(struct seq_file *swap, void *v) 2697 { 2698 mutex_unlock(&swapon_mutex); 2699 } 2700 2701 static int swap_show(struct seq_file *swap, void *v) 2702 { 2703 struct swap_info_struct *si = v; 2704 struct file *file; 2705 int len; 2706 unsigned long bytes, inuse; 2707 2708 if (si == SEQ_START_TOKEN) { 2709 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 2710 return 0; 2711 } 2712 2713 bytes = K(si->pages); 2714 inuse = K(READ_ONCE(si->inuse_pages)); 2715 2716 file = si->swap_file; 2717 len = seq_file_path(swap, file, " \t\n\\"); 2718 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n", 2719 len < 40 ? 40 - len : 1, " ", 2720 S_ISBLK(file_inode(file)->i_mode) ? 2721 "partition" : "file\t", 2722 bytes, bytes < 10000000 ? "\t" : "", 2723 inuse, inuse < 10000000 ? "\t" : "", 2724 si->prio); 2725 return 0; 2726 } 2727 2728 static const struct seq_operations swaps_op = { 2729 .start = swap_start, 2730 .next = swap_next, 2731 .stop = swap_stop, 2732 .show = swap_show 2733 }; 2734 2735 static int swaps_open(struct inode *inode, struct file *file) 2736 { 2737 struct seq_file *seq; 2738 int ret; 2739 2740 ret = seq_open(file, &swaps_op); 2741 if (ret) 2742 return ret; 2743 2744 seq = file->private_data; 2745 seq->poll_event = atomic_read(&proc_poll_event); 2746 return 0; 2747 } 2748 2749 static const struct proc_ops swaps_proc_ops = { 2750 .proc_flags = PROC_ENTRY_PERMANENT, 2751 .proc_open = swaps_open, 2752 .proc_read = seq_read, 2753 .proc_lseek = seq_lseek, 2754 .proc_release = seq_release, 2755 .proc_poll = swaps_poll, 2756 }; 2757 2758 static int __init procswaps_init(void) 2759 { 2760 proc_create("swaps", 0, NULL, &swaps_proc_ops); 2761 return 0; 2762 } 2763 __initcall(procswaps_init); 2764 #endif /* CONFIG_PROC_FS */ 2765 2766 #ifdef MAX_SWAPFILES_CHECK 2767 static int __init max_swapfiles_check(void) 2768 { 2769 MAX_SWAPFILES_CHECK(); 2770 return 0; 2771 } 2772 late_initcall(max_swapfiles_check); 2773 #endif 2774 2775 static struct swap_info_struct *alloc_swap_info(void) 2776 { 2777 struct swap_info_struct *p; 2778 struct swap_info_struct *defer = NULL; 2779 unsigned int type; 2780 int i; 2781 2782 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2783 if (!p) 2784 return ERR_PTR(-ENOMEM); 2785 2786 if (percpu_ref_init(&p->users, swap_users_ref_free, 2787 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { 2788 kvfree(p); 2789 return ERR_PTR(-ENOMEM); 2790 } 2791 2792 spin_lock(&swap_lock); 2793 for (type = 0; type < nr_swapfiles; type++) { 2794 if (!(swap_info[type]->flags & SWP_USED)) 2795 break; 2796 } 2797 if (type >= MAX_SWAPFILES) { 2798 spin_unlock(&swap_lock); 2799 percpu_ref_exit(&p->users); 2800 kvfree(p); 2801 return ERR_PTR(-EPERM); 2802 } 2803 if (type >= nr_swapfiles) { 2804 p->type = type; 2805 /* 2806 * Publish the swap_info_struct after initializing it. 2807 * Note that kvzalloc() above zeroes all its fields. 2808 */ 2809 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ 2810 nr_swapfiles++; 2811 } else { 2812 defer = p; 2813 p = swap_info[type]; 2814 /* 2815 * Do not memset this entry: a racing procfs swap_next() 2816 * would be relying on p->type to remain valid. 2817 */ 2818 } 2819 p->swap_extent_root = RB_ROOT; 2820 plist_node_init(&p->list, 0); 2821 for_each_node(i) 2822 plist_node_init(&p->avail_lists[i], 0); 2823 p->flags = SWP_USED; 2824 spin_unlock(&swap_lock); 2825 if (defer) { 2826 percpu_ref_exit(&defer->users); 2827 kvfree(defer); 2828 } 2829 spin_lock_init(&p->lock); 2830 spin_lock_init(&p->cont_lock); 2831 init_completion(&p->comp); 2832 2833 return p; 2834 } 2835 2836 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2837 { 2838 int error; 2839 2840 if (S_ISBLK(inode->i_mode)) { 2841 p->bdev_file = bdev_file_open_by_dev(inode->i_rdev, 2842 BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL); 2843 if (IS_ERR(p->bdev_file)) { 2844 error = PTR_ERR(p->bdev_file); 2845 p->bdev_file = NULL; 2846 return error; 2847 } 2848 p->bdev = file_bdev(p->bdev_file); 2849 p->old_block_size = block_size(p->bdev); 2850 error = set_blocksize(p->bdev, PAGE_SIZE); 2851 if (error < 0) 2852 return error; 2853 /* 2854 * Zoned block devices contain zones that have a sequential 2855 * write only restriction. Hence zoned block devices are not 2856 * suitable for swapping. Disallow them here. 2857 */ 2858 if (bdev_is_zoned(p->bdev)) 2859 return -EINVAL; 2860 p->flags |= SWP_BLKDEV; 2861 } else if (S_ISREG(inode->i_mode)) { 2862 p->bdev = inode->i_sb->s_bdev; 2863 } 2864 2865 return 0; 2866 } 2867 2868 2869 /* 2870 * Find out how many pages are allowed for a single swap device. There 2871 * are two limiting factors: 2872 * 1) the number of bits for the swap offset in the swp_entry_t type, and 2873 * 2) the number of bits in the swap pte, as defined by the different 2874 * architectures. 2875 * 2876 * In order to find the largest possible bit mask, a swap entry with 2877 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 2878 * decoded to a swp_entry_t again, and finally the swap offset is 2879 * extracted. 2880 * 2881 * This will mask all the bits from the initial ~0UL mask that can't 2882 * be encoded in either the swp_entry_t or the architecture definition 2883 * of a swap pte. 2884 */ 2885 unsigned long generic_max_swapfile_size(void) 2886 { 2887 return swp_offset(pte_to_swp_entry( 2888 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2889 } 2890 2891 /* Can be overridden by an architecture for additional checks. */ 2892 __weak unsigned long arch_max_swapfile_size(void) 2893 { 2894 return generic_max_swapfile_size(); 2895 } 2896 2897 static unsigned long read_swap_header(struct swap_info_struct *p, 2898 union swap_header *swap_header, 2899 struct inode *inode) 2900 { 2901 int i; 2902 unsigned long maxpages; 2903 unsigned long swapfilepages; 2904 unsigned long last_page; 2905 2906 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2907 pr_err("Unable to find swap-space signature\n"); 2908 return 0; 2909 } 2910 2911 /* swap partition endianness hack... */ 2912 if (swab32(swap_header->info.version) == 1) { 2913 swab32s(&swap_header->info.version); 2914 swab32s(&swap_header->info.last_page); 2915 swab32s(&swap_header->info.nr_badpages); 2916 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2917 return 0; 2918 for (i = 0; i < swap_header->info.nr_badpages; i++) 2919 swab32s(&swap_header->info.badpages[i]); 2920 } 2921 /* Check the swap header's sub-version */ 2922 if (swap_header->info.version != 1) { 2923 pr_warn("Unable to handle swap header version %d\n", 2924 swap_header->info.version); 2925 return 0; 2926 } 2927 2928 p->lowest_bit = 1; 2929 p->cluster_next = 1; 2930 p->cluster_nr = 0; 2931 2932 maxpages = swapfile_maximum_size; 2933 last_page = swap_header->info.last_page; 2934 if (!last_page) { 2935 pr_warn("Empty swap-file\n"); 2936 return 0; 2937 } 2938 if (last_page > maxpages) { 2939 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2940 K(maxpages), K(last_page)); 2941 } 2942 if (maxpages > last_page) { 2943 maxpages = last_page + 1; 2944 /* p->max is an unsigned int: don't overflow it */ 2945 if ((unsigned int)maxpages == 0) 2946 maxpages = UINT_MAX; 2947 } 2948 p->highest_bit = maxpages - 1; 2949 2950 if (!maxpages) 2951 return 0; 2952 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2953 if (swapfilepages && maxpages > swapfilepages) { 2954 pr_warn("Swap area shorter than signature indicates\n"); 2955 return 0; 2956 } 2957 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2958 return 0; 2959 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2960 return 0; 2961 2962 return maxpages; 2963 } 2964 2965 #define SWAP_CLUSTER_INFO_COLS \ 2966 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 2967 #define SWAP_CLUSTER_SPACE_COLS \ 2968 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 2969 #define SWAP_CLUSTER_COLS \ 2970 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 2971 2972 static int setup_swap_map_and_extents(struct swap_info_struct *p, 2973 union swap_header *swap_header, 2974 unsigned char *swap_map, 2975 struct swap_cluster_info *cluster_info, 2976 unsigned long maxpages, 2977 sector_t *span) 2978 { 2979 unsigned int j, k; 2980 unsigned int nr_good_pages; 2981 int nr_extents; 2982 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2983 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 2984 unsigned long i, idx; 2985 2986 nr_good_pages = maxpages - 1; /* omit header page */ 2987 2988 cluster_list_init(&p->free_clusters); 2989 cluster_list_init(&p->discard_clusters); 2990 2991 for (i = 0; i < swap_header->info.nr_badpages; i++) { 2992 unsigned int page_nr = swap_header->info.badpages[i]; 2993 if (page_nr == 0 || page_nr > swap_header->info.last_page) 2994 return -EINVAL; 2995 if (page_nr < maxpages) { 2996 swap_map[page_nr] = SWAP_MAP_BAD; 2997 nr_good_pages--; 2998 /* 2999 * Haven't marked the cluster free yet, no list 3000 * operation involved 3001 */ 3002 inc_cluster_info_page(p, cluster_info, page_nr); 3003 } 3004 } 3005 3006 /* Haven't marked the cluster free yet, no list operation involved */ 3007 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 3008 inc_cluster_info_page(p, cluster_info, i); 3009 3010 if (nr_good_pages) { 3011 swap_map[0] = SWAP_MAP_BAD; 3012 /* 3013 * Not mark the cluster free yet, no list 3014 * operation involved 3015 */ 3016 inc_cluster_info_page(p, cluster_info, 0); 3017 p->max = maxpages; 3018 p->pages = nr_good_pages; 3019 nr_extents = setup_swap_extents(p, span); 3020 if (nr_extents < 0) 3021 return nr_extents; 3022 nr_good_pages = p->pages; 3023 } 3024 if (!nr_good_pages) { 3025 pr_warn("Empty swap-file\n"); 3026 return -EINVAL; 3027 } 3028 3029 if (!cluster_info) 3030 return nr_extents; 3031 3032 3033 /* 3034 * Reduce false cache line sharing between cluster_info and 3035 * sharing same address space. 3036 */ 3037 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 3038 j = (k + col) % SWAP_CLUSTER_COLS; 3039 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 3040 idx = i * SWAP_CLUSTER_COLS + j; 3041 if (idx >= nr_clusters) 3042 continue; 3043 if (cluster_count(&cluster_info[idx])) 3044 continue; 3045 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 3046 cluster_list_add_tail(&p->free_clusters, cluster_info, 3047 idx); 3048 } 3049 } 3050 return nr_extents; 3051 } 3052 3053 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 3054 { 3055 struct swap_info_struct *p; 3056 struct filename *name; 3057 struct file *swap_file = NULL; 3058 struct address_space *mapping; 3059 struct dentry *dentry; 3060 int prio; 3061 int error; 3062 union swap_header *swap_header; 3063 int nr_extents; 3064 sector_t span; 3065 unsigned long maxpages; 3066 unsigned char *swap_map = NULL; 3067 struct swap_cluster_info *cluster_info = NULL; 3068 struct page *page = NULL; 3069 struct inode *inode = NULL; 3070 bool inced_nr_rotate_swap = false; 3071 3072 if (swap_flags & ~SWAP_FLAGS_VALID) 3073 return -EINVAL; 3074 3075 if (!capable(CAP_SYS_ADMIN)) 3076 return -EPERM; 3077 3078 if (!swap_avail_heads) 3079 return -ENOMEM; 3080 3081 p = alloc_swap_info(); 3082 if (IS_ERR(p)) 3083 return PTR_ERR(p); 3084 3085 INIT_WORK(&p->discard_work, swap_discard_work); 3086 3087 name = getname(specialfile); 3088 if (IS_ERR(name)) { 3089 error = PTR_ERR(name); 3090 name = NULL; 3091 goto bad_swap; 3092 } 3093 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 3094 if (IS_ERR(swap_file)) { 3095 error = PTR_ERR(swap_file); 3096 swap_file = NULL; 3097 goto bad_swap; 3098 } 3099 3100 p->swap_file = swap_file; 3101 mapping = swap_file->f_mapping; 3102 dentry = swap_file->f_path.dentry; 3103 inode = mapping->host; 3104 3105 error = claim_swapfile(p, inode); 3106 if (unlikely(error)) 3107 goto bad_swap; 3108 3109 inode_lock(inode); 3110 if (d_unlinked(dentry) || cant_mount(dentry)) { 3111 error = -ENOENT; 3112 goto bad_swap_unlock_inode; 3113 } 3114 if (IS_SWAPFILE(inode)) { 3115 error = -EBUSY; 3116 goto bad_swap_unlock_inode; 3117 } 3118 3119 /* 3120 * Read the swap header. 3121 */ 3122 if (!mapping->a_ops->read_folio) { 3123 error = -EINVAL; 3124 goto bad_swap_unlock_inode; 3125 } 3126 page = read_mapping_page(mapping, 0, swap_file); 3127 if (IS_ERR(page)) { 3128 error = PTR_ERR(page); 3129 goto bad_swap_unlock_inode; 3130 } 3131 swap_header = kmap(page); 3132 3133 maxpages = read_swap_header(p, swap_header, inode); 3134 if (unlikely(!maxpages)) { 3135 error = -EINVAL; 3136 goto bad_swap_unlock_inode; 3137 } 3138 3139 /* OK, set up the swap map and apply the bad block list */ 3140 swap_map = vzalloc(maxpages); 3141 if (!swap_map) { 3142 error = -ENOMEM; 3143 goto bad_swap_unlock_inode; 3144 } 3145 3146 if (p->bdev && bdev_stable_writes(p->bdev)) 3147 p->flags |= SWP_STABLE_WRITES; 3148 3149 if (p->bdev && bdev_synchronous(p->bdev)) 3150 p->flags |= SWP_SYNCHRONOUS_IO; 3151 3152 if (p->bdev && bdev_nonrot(p->bdev)) { 3153 int cpu, i; 3154 unsigned long ci, nr_cluster; 3155 3156 p->flags |= SWP_SOLIDSTATE; 3157 p->cluster_next_cpu = alloc_percpu(unsigned int); 3158 if (!p->cluster_next_cpu) { 3159 error = -ENOMEM; 3160 goto bad_swap_unlock_inode; 3161 } 3162 /* 3163 * select a random position to start with to help wear leveling 3164 * SSD 3165 */ 3166 for_each_possible_cpu(cpu) { 3167 per_cpu(*p->cluster_next_cpu, cpu) = 3168 get_random_u32_inclusive(1, p->highest_bit); 3169 } 3170 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3171 3172 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), 3173 GFP_KERNEL); 3174 if (!cluster_info) { 3175 error = -ENOMEM; 3176 goto bad_swap_unlock_inode; 3177 } 3178 3179 for (ci = 0; ci < nr_cluster; ci++) 3180 spin_lock_init(&((cluster_info + ci)->lock)); 3181 3182 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 3183 if (!p->percpu_cluster) { 3184 error = -ENOMEM; 3185 goto bad_swap_unlock_inode; 3186 } 3187 for_each_possible_cpu(cpu) { 3188 struct percpu_cluster *cluster; 3189 3190 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 3191 for (i = 0; i < SWAP_NR_ORDERS; i++) 3192 cluster->next[i] = SWAP_NEXT_INVALID; 3193 } 3194 } else { 3195 atomic_inc(&nr_rotate_swap); 3196 inced_nr_rotate_swap = true; 3197 } 3198 3199 error = swap_cgroup_swapon(p->type, maxpages); 3200 if (error) 3201 goto bad_swap_unlock_inode; 3202 3203 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 3204 cluster_info, maxpages, &span); 3205 if (unlikely(nr_extents < 0)) { 3206 error = nr_extents; 3207 goto bad_swap_unlock_inode; 3208 } 3209 3210 if ((swap_flags & SWAP_FLAG_DISCARD) && 3211 p->bdev && bdev_max_discard_sectors(p->bdev)) { 3212 /* 3213 * When discard is enabled for swap with no particular 3214 * policy flagged, we set all swap discard flags here in 3215 * order to sustain backward compatibility with older 3216 * swapon(8) releases. 3217 */ 3218 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3219 SWP_PAGE_DISCARD); 3220 3221 /* 3222 * By flagging sys_swapon, a sysadmin can tell us to 3223 * either do single-time area discards only, or to just 3224 * perform discards for released swap page-clusters. 3225 * Now it's time to adjust the p->flags accordingly. 3226 */ 3227 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3228 p->flags &= ~SWP_PAGE_DISCARD; 3229 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3230 p->flags &= ~SWP_AREA_DISCARD; 3231 3232 /* issue a swapon-time discard if it's still required */ 3233 if (p->flags & SWP_AREA_DISCARD) { 3234 int err = discard_swap(p); 3235 if (unlikely(err)) 3236 pr_err("swapon: discard_swap(%p): %d\n", 3237 p, err); 3238 } 3239 } 3240 3241 error = init_swap_address_space(p->type, maxpages); 3242 if (error) 3243 goto bad_swap_unlock_inode; 3244 3245 error = zswap_swapon(p->type, maxpages); 3246 if (error) 3247 goto free_swap_address_space; 3248 3249 /* 3250 * Flush any pending IO and dirty mappings before we start using this 3251 * swap device. 3252 */ 3253 inode->i_flags |= S_SWAPFILE; 3254 error = inode_drain_writes(inode); 3255 if (error) { 3256 inode->i_flags &= ~S_SWAPFILE; 3257 goto free_swap_zswap; 3258 } 3259 3260 mutex_lock(&swapon_mutex); 3261 prio = -1; 3262 if (swap_flags & SWAP_FLAG_PREFER) 3263 prio = 3264 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3265 enable_swap_info(p, prio, swap_map, cluster_info); 3266 3267 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n", 3268 K(p->pages), name->name, p->prio, nr_extents, 3269 K((unsigned long long)span), 3270 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 3271 (p->flags & SWP_DISCARDABLE) ? "D" : "", 3272 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 3273 (p->flags & SWP_PAGE_DISCARD) ? "c" : ""); 3274 3275 mutex_unlock(&swapon_mutex); 3276 atomic_inc(&proc_poll_event); 3277 wake_up_interruptible(&proc_poll_wait); 3278 3279 error = 0; 3280 goto out; 3281 free_swap_zswap: 3282 zswap_swapoff(p->type); 3283 free_swap_address_space: 3284 exit_swap_address_space(p->type); 3285 bad_swap_unlock_inode: 3286 inode_unlock(inode); 3287 bad_swap: 3288 free_percpu(p->percpu_cluster); 3289 p->percpu_cluster = NULL; 3290 free_percpu(p->cluster_next_cpu); 3291 p->cluster_next_cpu = NULL; 3292 if (p->bdev_file) { 3293 set_blocksize(p->bdev, p->old_block_size); 3294 fput(p->bdev_file); 3295 p->bdev_file = NULL; 3296 } 3297 inode = NULL; 3298 destroy_swap_extents(p); 3299 swap_cgroup_swapoff(p->type); 3300 spin_lock(&swap_lock); 3301 p->swap_file = NULL; 3302 p->flags = 0; 3303 spin_unlock(&swap_lock); 3304 vfree(swap_map); 3305 kvfree(cluster_info); 3306 if (inced_nr_rotate_swap) 3307 atomic_dec(&nr_rotate_swap); 3308 if (swap_file) 3309 filp_close(swap_file, NULL); 3310 out: 3311 if (page && !IS_ERR(page)) { 3312 kunmap(page); 3313 put_page(page); 3314 } 3315 if (name) 3316 putname(name); 3317 if (inode) 3318 inode_unlock(inode); 3319 if (!error) 3320 enable_swap_slots_cache(); 3321 return error; 3322 } 3323 3324 void si_swapinfo(struct sysinfo *val) 3325 { 3326 unsigned int type; 3327 unsigned long nr_to_be_unused = 0; 3328 3329 spin_lock(&swap_lock); 3330 for (type = 0; type < nr_swapfiles; type++) { 3331 struct swap_info_struct *si = swap_info[type]; 3332 3333 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3334 nr_to_be_unused += READ_ONCE(si->inuse_pages); 3335 } 3336 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3337 val->totalswap = total_swap_pages + nr_to_be_unused; 3338 spin_unlock(&swap_lock); 3339 } 3340 3341 /* 3342 * Verify that a swap entry is valid and increment its swap map count. 3343 * 3344 * Returns error code in following case. 3345 * - success -> 0 3346 * - swp_entry is invalid -> EINVAL 3347 * - swp_entry is migration entry -> EINVAL 3348 * - swap-cache reference is requested but there is already one. -> EEXIST 3349 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3350 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3351 */ 3352 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 3353 { 3354 struct swap_info_struct *p; 3355 struct swap_cluster_info *ci; 3356 unsigned long offset; 3357 unsigned char count; 3358 unsigned char has_cache; 3359 int err; 3360 3361 p = swp_swap_info(entry); 3362 3363 offset = swp_offset(entry); 3364 ci = lock_cluster_or_swap_info(p, offset); 3365 3366 count = p->swap_map[offset]; 3367 3368 /* 3369 * swapin_readahead() doesn't check if a swap entry is valid, so the 3370 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3371 */ 3372 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3373 err = -ENOENT; 3374 goto unlock_out; 3375 } 3376 3377 has_cache = count & SWAP_HAS_CACHE; 3378 count &= ~SWAP_HAS_CACHE; 3379 err = 0; 3380 3381 if (usage == SWAP_HAS_CACHE) { 3382 3383 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 3384 if (!has_cache && count) 3385 has_cache = SWAP_HAS_CACHE; 3386 else if (has_cache) /* someone else added cache */ 3387 err = -EEXIST; 3388 else /* no users remaining */ 3389 err = -ENOENT; 3390 3391 } else if (count || has_cache) { 3392 3393 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3394 count += usage; 3395 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3396 err = -EINVAL; 3397 else if (swap_count_continued(p, offset, count)) 3398 count = COUNT_CONTINUED; 3399 else 3400 err = -ENOMEM; 3401 } else 3402 err = -ENOENT; /* unused swap entry */ 3403 3404 if (!err) 3405 WRITE_ONCE(p->swap_map[offset], count | has_cache); 3406 3407 unlock_out: 3408 unlock_cluster_or_swap_info(p, ci); 3409 return err; 3410 } 3411 3412 /* 3413 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3414 * (in which case its reference count is never incremented). 3415 */ 3416 void swap_shmem_alloc(swp_entry_t entry) 3417 { 3418 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3419 } 3420 3421 /* 3422 * Increase reference count of swap entry by 1. 3423 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3424 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3425 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3426 * might occur if a page table entry has got corrupted. 3427 */ 3428 int swap_duplicate(swp_entry_t entry) 3429 { 3430 int err = 0; 3431 3432 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3433 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3434 return err; 3435 } 3436 3437 /* 3438 * @entry: swap entry for which we allocate swap cache. 3439 * 3440 * Called when allocating swap cache for existing swap entry, 3441 * This can return error codes. Returns 0 at success. 3442 * -EEXIST means there is a swap cache. 3443 * Note: return code is different from swap_duplicate(). 3444 */ 3445 int swapcache_prepare(swp_entry_t entry) 3446 { 3447 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3448 } 3449 3450 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry) 3451 { 3452 struct swap_cluster_info *ci; 3453 unsigned long offset = swp_offset(entry); 3454 unsigned char usage; 3455 3456 ci = lock_cluster_or_swap_info(si, offset); 3457 usage = __swap_entry_free_locked(si, offset, SWAP_HAS_CACHE); 3458 unlock_cluster_or_swap_info(si, ci); 3459 if (!usage) 3460 free_swap_slot(entry); 3461 } 3462 3463 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3464 { 3465 return swap_type_to_swap_info(swp_type(entry)); 3466 } 3467 3468 /* 3469 * out-of-line methods to avoid include hell. 3470 */ 3471 struct address_space *swapcache_mapping(struct folio *folio) 3472 { 3473 return swp_swap_info(folio->swap)->swap_file->f_mapping; 3474 } 3475 EXPORT_SYMBOL_GPL(swapcache_mapping); 3476 3477 pgoff_t __page_file_index(struct page *page) 3478 { 3479 swp_entry_t swap = page_swap_entry(page); 3480 return swp_offset(swap); 3481 } 3482 EXPORT_SYMBOL_GPL(__page_file_index); 3483 3484 /* 3485 * add_swap_count_continuation - called when a swap count is duplicated 3486 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3487 * page of the original vmalloc'ed swap_map, to hold the continuation count 3488 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3489 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3490 * 3491 * These continuation pages are seldom referenced: the common paths all work 3492 * on the original swap_map, only referring to a continuation page when the 3493 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3494 * 3495 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3496 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3497 * can be called after dropping locks. 3498 */ 3499 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3500 { 3501 struct swap_info_struct *si; 3502 struct swap_cluster_info *ci; 3503 struct page *head; 3504 struct page *page; 3505 struct page *list_page; 3506 pgoff_t offset; 3507 unsigned char count; 3508 int ret = 0; 3509 3510 /* 3511 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3512 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3513 */ 3514 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3515 3516 si = get_swap_device(entry); 3517 if (!si) { 3518 /* 3519 * An acceptable race has occurred since the failing 3520 * __swap_duplicate(): the swap device may be swapoff 3521 */ 3522 goto outer; 3523 } 3524 spin_lock(&si->lock); 3525 3526 offset = swp_offset(entry); 3527 3528 ci = lock_cluster(si, offset); 3529 3530 count = swap_count(si->swap_map[offset]); 3531 3532 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3533 /* 3534 * The higher the swap count, the more likely it is that tasks 3535 * will race to add swap count continuation: we need to avoid 3536 * over-provisioning. 3537 */ 3538 goto out; 3539 } 3540 3541 if (!page) { 3542 ret = -ENOMEM; 3543 goto out; 3544 } 3545 3546 head = vmalloc_to_page(si->swap_map + offset); 3547 offset &= ~PAGE_MASK; 3548 3549 spin_lock(&si->cont_lock); 3550 /* 3551 * Page allocation does not initialize the page's lru field, 3552 * but it does always reset its private field. 3553 */ 3554 if (!page_private(head)) { 3555 BUG_ON(count & COUNT_CONTINUED); 3556 INIT_LIST_HEAD(&head->lru); 3557 set_page_private(head, SWP_CONTINUED); 3558 si->flags |= SWP_CONTINUED; 3559 } 3560 3561 list_for_each_entry(list_page, &head->lru, lru) { 3562 unsigned char *map; 3563 3564 /* 3565 * If the previous map said no continuation, but we've found 3566 * a continuation page, free our allocation and use this one. 3567 */ 3568 if (!(count & COUNT_CONTINUED)) 3569 goto out_unlock_cont; 3570 3571 map = kmap_local_page(list_page) + offset; 3572 count = *map; 3573 kunmap_local(map); 3574 3575 /* 3576 * If this continuation count now has some space in it, 3577 * free our allocation and use this one. 3578 */ 3579 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3580 goto out_unlock_cont; 3581 } 3582 3583 list_add_tail(&page->lru, &head->lru); 3584 page = NULL; /* now it's attached, don't free it */ 3585 out_unlock_cont: 3586 spin_unlock(&si->cont_lock); 3587 out: 3588 unlock_cluster(ci); 3589 spin_unlock(&si->lock); 3590 put_swap_device(si); 3591 outer: 3592 if (page) 3593 __free_page(page); 3594 return ret; 3595 } 3596 3597 /* 3598 * swap_count_continued - when the original swap_map count is incremented 3599 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3600 * into, carry if so, or else fail until a new continuation page is allocated; 3601 * when the original swap_map count is decremented from 0 with continuation, 3602 * borrow from the continuation and report whether it still holds more. 3603 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3604 * lock. 3605 */ 3606 static bool swap_count_continued(struct swap_info_struct *si, 3607 pgoff_t offset, unsigned char count) 3608 { 3609 struct page *head; 3610 struct page *page; 3611 unsigned char *map; 3612 bool ret; 3613 3614 head = vmalloc_to_page(si->swap_map + offset); 3615 if (page_private(head) != SWP_CONTINUED) { 3616 BUG_ON(count & COUNT_CONTINUED); 3617 return false; /* need to add count continuation */ 3618 } 3619 3620 spin_lock(&si->cont_lock); 3621 offset &= ~PAGE_MASK; 3622 page = list_next_entry(head, lru); 3623 map = kmap_local_page(page) + offset; 3624 3625 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3626 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3627 3628 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3629 /* 3630 * Think of how you add 1 to 999 3631 */ 3632 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3633 kunmap_local(map); 3634 page = list_next_entry(page, lru); 3635 BUG_ON(page == head); 3636 map = kmap_local_page(page) + offset; 3637 } 3638 if (*map == SWAP_CONT_MAX) { 3639 kunmap_local(map); 3640 page = list_next_entry(page, lru); 3641 if (page == head) { 3642 ret = false; /* add count continuation */ 3643 goto out; 3644 } 3645 map = kmap_local_page(page) + offset; 3646 init_map: *map = 0; /* we didn't zero the page */ 3647 } 3648 *map += 1; 3649 kunmap_local(map); 3650 while ((page = list_prev_entry(page, lru)) != head) { 3651 map = kmap_local_page(page) + offset; 3652 *map = COUNT_CONTINUED; 3653 kunmap_local(map); 3654 } 3655 ret = true; /* incremented */ 3656 3657 } else { /* decrementing */ 3658 /* 3659 * Think of how you subtract 1 from 1000 3660 */ 3661 BUG_ON(count != COUNT_CONTINUED); 3662 while (*map == COUNT_CONTINUED) { 3663 kunmap_local(map); 3664 page = list_next_entry(page, lru); 3665 BUG_ON(page == head); 3666 map = kmap_local_page(page) + offset; 3667 } 3668 BUG_ON(*map == 0); 3669 *map -= 1; 3670 if (*map == 0) 3671 count = 0; 3672 kunmap_local(map); 3673 while ((page = list_prev_entry(page, lru)) != head) { 3674 map = kmap_local_page(page) + offset; 3675 *map = SWAP_CONT_MAX | count; 3676 count = COUNT_CONTINUED; 3677 kunmap_local(map); 3678 } 3679 ret = count == COUNT_CONTINUED; 3680 } 3681 out: 3682 spin_unlock(&si->cont_lock); 3683 return ret; 3684 } 3685 3686 /* 3687 * free_swap_count_continuations - swapoff free all the continuation pages 3688 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3689 */ 3690 static void free_swap_count_continuations(struct swap_info_struct *si) 3691 { 3692 pgoff_t offset; 3693 3694 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3695 struct page *head; 3696 head = vmalloc_to_page(si->swap_map + offset); 3697 if (page_private(head)) { 3698 struct page *page, *next; 3699 3700 list_for_each_entry_safe(page, next, &head->lru, lru) { 3701 list_del(&page->lru); 3702 __free_page(page); 3703 } 3704 } 3705 } 3706 } 3707 3708 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3709 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp) 3710 { 3711 struct swap_info_struct *si, *next; 3712 int nid = folio_nid(folio); 3713 3714 if (!(gfp & __GFP_IO)) 3715 return; 3716 3717 if (!__has_usable_swap()) 3718 return; 3719 3720 if (!blk_cgroup_congested()) 3721 return; 3722 3723 /* 3724 * We've already scheduled a throttle, avoid taking the global swap 3725 * lock. 3726 */ 3727 if (current->throttle_disk) 3728 return; 3729 3730 spin_lock(&swap_avail_lock); 3731 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], 3732 avail_lists[nid]) { 3733 if (si->bdev) { 3734 blkcg_schedule_throttle(si->bdev->bd_disk, true); 3735 break; 3736 } 3737 } 3738 spin_unlock(&swap_avail_lock); 3739 } 3740 #endif 3741 3742 static int __init swapfile_init(void) 3743 { 3744 int nid; 3745 3746 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3747 GFP_KERNEL); 3748 if (!swap_avail_heads) { 3749 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3750 return -ENOMEM; 3751 } 3752 3753 for_each_node(nid) 3754 plist_head_init(&swap_avail_heads[nid]); 3755 3756 swapfile_maximum_size = arch_max_swapfile_size(); 3757 3758 #ifdef CONFIG_MIGRATION 3759 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS)) 3760 swap_migration_ad_supported = true; 3761 #endif /* CONFIG_MIGRATION */ 3762 3763 return 0; 3764 } 3765 subsys_initcall(swapfile_init); 3766