1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/hugetlb.h> 10 #include <linux/mman.h> 11 #include <linux/slab.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/shmem_fs.h> 18 #include <linux/blkdev.h> 19 #include <linux/random.h> 20 #include <linux/writeback.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/init.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/security.h> 27 #include <linux/backing-dev.h> 28 #include <linux/mutex.h> 29 #include <linux/capability.h> 30 #include <linux/syscalls.h> 31 #include <linux/memcontrol.h> 32 #include <linux/poll.h> 33 #include <linux/oom.h> 34 #include <linux/frontswap.h> 35 #include <linux/swapfile.h> 36 #include <linux/export.h> 37 38 #include <asm/pgtable.h> 39 #include <asm/tlbflush.h> 40 #include <linux/swapops.h> 41 #include <linux/page_cgroup.h> 42 43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 44 unsigned char); 45 static void free_swap_count_continuations(struct swap_info_struct *); 46 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 47 48 DEFINE_SPINLOCK(swap_lock); 49 static unsigned int nr_swapfiles; 50 atomic_long_t nr_swap_pages; 51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 52 long total_swap_pages; 53 static int least_priority; 54 static atomic_t highest_priority_index = ATOMIC_INIT(-1); 55 56 static const char Bad_file[] = "Bad swap file entry "; 57 static const char Unused_file[] = "Unused swap file entry "; 58 static const char Bad_offset[] = "Bad swap offset entry "; 59 static const char Unused_offset[] = "Unused swap offset entry "; 60 61 struct swap_list_t swap_list = {-1, -1}; 62 63 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 64 65 static DEFINE_MUTEX(swapon_mutex); 66 67 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 68 /* Activity counter to indicate that a swapon or swapoff has occurred */ 69 static atomic_t proc_poll_event = ATOMIC_INIT(0); 70 71 static inline unsigned char swap_count(unsigned char ent) 72 { 73 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */ 74 } 75 76 /* returns 1 if swap entry is freed */ 77 static int 78 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) 79 { 80 swp_entry_t entry = swp_entry(si->type, offset); 81 struct page *page; 82 int ret = 0; 83 84 page = find_get_page(swap_address_space(entry), entry.val); 85 if (!page) 86 return 0; 87 /* 88 * This function is called from scan_swap_map() and it's called 89 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. 90 * We have to use trylock for avoiding deadlock. This is a special 91 * case and you should use try_to_free_swap() with explicit lock_page() 92 * in usual operations. 93 */ 94 if (trylock_page(page)) { 95 ret = try_to_free_swap(page); 96 unlock_page(page); 97 } 98 page_cache_release(page); 99 return ret; 100 } 101 102 /* 103 * swapon tell device that all the old swap contents can be discarded, 104 * to allow the swap device to optimize its wear-levelling. 105 */ 106 static int discard_swap(struct swap_info_struct *si) 107 { 108 struct swap_extent *se; 109 sector_t start_block; 110 sector_t nr_blocks; 111 int err = 0; 112 113 /* Do not discard the swap header page! */ 114 se = &si->first_swap_extent; 115 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 116 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 117 if (nr_blocks) { 118 err = blkdev_issue_discard(si->bdev, start_block, 119 nr_blocks, GFP_KERNEL, 0); 120 if (err) 121 return err; 122 cond_resched(); 123 } 124 125 list_for_each_entry(se, &si->first_swap_extent.list, list) { 126 start_block = se->start_block << (PAGE_SHIFT - 9); 127 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 128 129 err = blkdev_issue_discard(si->bdev, start_block, 130 nr_blocks, GFP_KERNEL, 0); 131 if (err) 132 break; 133 134 cond_resched(); 135 } 136 return err; /* That will often be -EOPNOTSUPP */ 137 } 138 139 /* 140 * swap allocation tell device that a cluster of swap can now be discarded, 141 * to allow the swap device to optimize its wear-levelling. 142 */ 143 static void discard_swap_cluster(struct swap_info_struct *si, 144 pgoff_t start_page, pgoff_t nr_pages) 145 { 146 struct swap_extent *se = si->curr_swap_extent; 147 int found_extent = 0; 148 149 while (nr_pages) { 150 struct list_head *lh; 151 152 if (se->start_page <= start_page && 153 start_page < se->start_page + se->nr_pages) { 154 pgoff_t offset = start_page - se->start_page; 155 sector_t start_block = se->start_block + offset; 156 sector_t nr_blocks = se->nr_pages - offset; 157 158 if (nr_blocks > nr_pages) 159 nr_blocks = nr_pages; 160 start_page += nr_blocks; 161 nr_pages -= nr_blocks; 162 163 if (!found_extent++) 164 si->curr_swap_extent = se; 165 166 start_block <<= PAGE_SHIFT - 9; 167 nr_blocks <<= PAGE_SHIFT - 9; 168 if (blkdev_issue_discard(si->bdev, start_block, 169 nr_blocks, GFP_NOIO, 0)) 170 break; 171 } 172 173 lh = se->list.next; 174 se = list_entry(lh, struct swap_extent, list); 175 } 176 } 177 178 #define SWAPFILE_CLUSTER 256 179 #define LATENCY_LIMIT 256 180 181 static inline void cluster_set_flag(struct swap_cluster_info *info, 182 unsigned int flag) 183 { 184 info->flags = flag; 185 } 186 187 static inline unsigned int cluster_count(struct swap_cluster_info *info) 188 { 189 return info->data; 190 } 191 192 static inline void cluster_set_count(struct swap_cluster_info *info, 193 unsigned int c) 194 { 195 info->data = c; 196 } 197 198 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 199 unsigned int c, unsigned int f) 200 { 201 info->flags = f; 202 info->data = c; 203 } 204 205 static inline unsigned int cluster_next(struct swap_cluster_info *info) 206 { 207 return info->data; 208 } 209 210 static inline void cluster_set_next(struct swap_cluster_info *info, 211 unsigned int n) 212 { 213 info->data = n; 214 } 215 216 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 217 unsigned int n, unsigned int f) 218 { 219 info->flags = f; 220 info->data = n; 221 } 222 223 static inline bool cluster_is_free(struct swap_cluster_info *info) 224 { 225 return info->flags & CLUSTER_FLAG_FREE; 226 } 227 228 static inline bool cluster_is_null(struct swap_cluster_info *info) 229 { 230 return info->flags & CLUSTER_FLAG_NEXT_NULL; 231 } 232 233 static inline void cluster_set_null(struct swap_cluster_info *info) 234 { 235 info->flags = CLUSTER_FLAG_NEXT_NULL; 236 info->data = 0; 237 } 238 239 /* Add a cluster to discard list and schedule it to do discard */ 240 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 241 unsigned int idx) 242 { 243 /* 244 * If scan_swap_map() can't find a free cluster, it will check 245 * si->swap_map directly. To make sure the discarding cluster isn't 246 * taken by scan_swap_map(), mark the swap entries bad (occupied). It 247 * will be cleared after discard 248 */ 249 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 250 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 251 252 if (cluster_is_null(&si->discard_cluster_head)) { 253 cluster_set_next_flag(&si->discard_cluster_head, 254 idx, 0); 255 cluster_set_next_flag(&si->discard_cluster_tail, 256 idx, 0); 257 } else { 258 unsigned int tail = cluster_next(&si->discard_cluster_tail); 259 cluster_set_next(&si->cluster_info[tail], idx); 260 cluster_set_next_flag(&si->discard_cluster_tail, 261 idx, 0); 262 } 263 264 schedule_work(&si->discard_work); 265 } 266 267 /* 268 * Doing discard actually. After a cluster discard is finished, the cluster 269 * will be added to free cluster list. caller should hold si->lock. 270 */ 271 static void swap_do_scheduled_discard(struct swap_info_struct *si) 272 { 273 struct swap_cluster_info *info; 274 unsigned int idx; 275 276 info = si->cluster_info; 277 278 while (!cluster_is_null(&si->discard_cluster_head)) { 279 idx = cluster_next(&si->discard_cluster_head); 280 281 cluster_set_next_flag(&si->discard_cluster_head, 282 cluster_next(&info[idx]), 0); 283 if (cluster_next(&si->discard_cluster_tail) == idx) { 284 cluster_set_null(&si->discard_cluster_head); 285 cluster_set_null(&si->discard_cluster_tail); 286 } 287 spin_unlock(&si->lock); 288 289 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 290 SWAPFILE_CLUSTER); 291 292 spin_lock(&si->lock); 293 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE); 294 if (cluster_is_null(&si->free_cluster_head)) { 295 cluster_set_next_flag(&si->free_cluster_head, 296 idx, 0); 297 cluster_set_next_flag(&si->free_cluster_tail, 298 idx, 0); 299 } else { 300 unsigned int tail; 301 302 tail = cluster_next(&si->free_cluster_tail); 303 cluster_set_next(&info[tail], idx); 304 cluster_set_next_flag(&si->free_cluster_tail, 305 idx, 0); 306 } 307 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 308 0, SWAPFILE_CLUSTER); 309 } 310 } 311 312 static void swap_discard_work(struct work_struct *work) 313 { 314 struct swap_info_struct *si; 315 316 si = container_of(work, struct swap_info_struct, discard_work); 317 318 spin_lock(&si->lock); 319 swap_do_scheduled_discard(si); 320 spin_unlock(&si->lock); 321 } 322 323 /* 324 * The cluster corresponding to page_nr will be used. The cluster will be 325 * removed from free cluster list and its usage counter will be increased. 326 */ 327 static void inc_cluster_info_page(struct swap_info_struct *p, 328 struct swap_cluster_info *cluster_info, unsigned long page_nr) 329 { 330 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 331 332 if (!cluster_info) 333 return; 334 if (cluster_is_free(&cluster_info[idx])) { 335 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx); 336 cluster_set_next_flag(&p->free_cluster_head, 337 cluster_next(&cluster_info[idx]), 0); 338 if (cluster_next(&p->free_cluster_tail) == idx) { 339 cluster_set_null(&p->free_cluster_tail); 340 cluster_set_null(&p->free_cluster_head); 341 } 342 cluster_set_count_flag(&cluster_info[idx], 0, 0); 343 } 344 345 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 346 cluster_set_count(&cluster_info[idx], 347 cluster_count(&cluster_info[idx]) + 1); 348 } 349 350 /* 351 * The cluster corresponding to page_nr decreases one usage. If the usage 352 * counter becomes 0, which means no page in the cluster is in using, we can 353 * optionally discard the cluster and add it to free cluster list. 354 */ 355 static void dec_cluster_info_page(struct swap_info_struct *p, 356 struct swap_cluster_info *cluster_info, unsigned long page_nr) 357 { 358 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 359 360 if (!cluster_info) 361 return; 362 363 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 364 cluster_set_count(&cluster_info[idx], 365 cluster_count(&cluster_info[idx]) - 1); 366 367 if (cluster_count(&cluster_info[idx]) == 0) { 368 /* 369 * If the swap is discardable, prepare discard the cluster 370 * instead of free it immediately. The cluster will be freed 371 * after discard. 372 */ 373 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 374 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 375 swap_cluster_schedule_discard(p, idx); 376 return; 377 } 378 379 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 380 if (cluster_is_null(&p->free_cluster_head)) { 381 cluster_set_next_flag(&p->free_cluster_head, idx, 0); 382 cluster_set_next_flag(&p->free_cluster_tail, idx, 0); 383 } else { 384 unsigned int tail = cluster_next(&p->free_cluster_tail); 385 cluster_set_next(&cluster_info[tail], idx); 386 cluster_set_next_flag(&p->free_cluster_tail, idx, 0); 387 } 388 } 389 } 390 391 /* 392 * It's possible scan_swap_map() uses a free cluster in the middle of free 393 * cluster list. Avoiding such abuse to avoid list corruption. 394 */ 395 static bool 396 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 397 unsigned long offset) 398 { 399 struct percpu_cluster *percpu_cluster; 400 bool conflict; 401 402 offset /= SWAPFILE_CLUSTER; 403 conflict = !cluster_is_null(&si->free_cluster_head) && 404 offset != cluster_next(&si->free_cluster_head) && 405 cluster_is_free(&si->cluster_info[offset]); 406 407 if (!conflict) 408 return false; 409 410 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 411 cluster_set_null(&percpu_cluster->index); 412 return true; 413 } 414 415 /* 416 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 417 * might involve allocating a new cluster for current CPU too. 418 */ 419 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 420 unsigned long *offset, unsigned long *scan_base) 421 { 422 struct percpu_cluster *cluster; 423 bool found_free; 424 unsigned long tmp; 425 426 new_cluster: 427 cluster = this_cpu_ptr(si->percpu_cluster); 428 if (cluster_is_null(&cluster->index)) { 429 if (!cluster_is_null(&si->free_cluster_head)) { 430 cluster->index = si->free_cluster_head; 431 cluster->next = cluster_next(&cluster->index) * 432 SWAPFILE_CLUSTER; 433 } else if (!cluster_is_null(&si->discard_cluster_head)) { 434 /* 435 * we don't have free cluster but have some clusters in 436 * discarding, do discard now and reclaim them 437 */ 438 swap_do_scheduled_discard(si); 439 *scan_base = *offset = si->cluster_next; 440 goto new_cluster; 441 } else 442 return; 443 } 444 445 found_free = false; 446 447 /* 448 * Other CPUs can use our cluster if they can't find a free cluster, 449 * check if there is still free entry in the cluster 450 */ 451 tmp = cluster->next; 452 while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) * 453 SWAPFILE_CLUSTER) { 454 if (!si->swap_map[tmp]) { 455 found_free = true; 456 break; 457 } 458 tmp++; 459 } 460 if (!found_free) { 461 cluster_set_null(&cluster->index); 462 goto new_cluster; 463 } 464 cluster->next = tmp + 1; 465 *offset = tmp; 466 *scan_base = tmp; 467 } 468 469 static unsigned long scan_swap_map(struct swap_info_struct *si, 470 unsigned char usage) 471 { 472 unsigned long offset; 473 unsigned long scan_base; 474 unsigned long last_in_cluster = 0; 475 int latency_ration = LATENCY_LIMIT; 476 477 /* 478 * We try to cluster swap pages by allocating them sequentially 479 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 480 * way, however, we resort to first-free allocation, starting 481 * a new cluster. This prevents us from scattering swap pages 482 * all over the entire swap partition, so that we reduce 483 * overall disk seek times between swap pages. -- sct 484 * But we do now try to find an empty cluster. -Andrea 485 * And we let swap pages go all over an SSD partition. Hugh 486 */ 487 488 si->flags += SWP_SCANNING; 489 scan_base = offset = si->cluster_next; 490 491 /* SSD algorithm */ 492 if (si->cluster_info) { 493 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base); 494 goto checks; 495 } 496 497 if (unlikely(!si->cluster_nr--)) { 498 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 499 si->cluster_nr = SWAPFILE_CLUSTER - 1; 500 goto checks; 501 } 502 503 spin_unlock(&si->lock); 504 505 /* 506 * If seek is expensive, start searching for new cluster from 507 * start of partition, to minimize the span of allocated swap. 508 * But if seek is cheap, search from our current position, so 509 * that swap is allocated from all over the partition: if the 510 * Flash Translation Layer only remaps within limited zones, 511 * we don't want to wear out the first zone too quickly. 512 */ 513 if (!(si->flags & SWP_SOLIDSTATE)) 514 scan_base = offset = si->lowest_bit; 515 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 516 517 /* Locate the first empty (unaligned) cluster */ 518 for (; last_in_cluster <= si->highest_bit; offset++) { 519 if (si->swap_map[offset]) 520 last_in_cluster = offset + SWAPFILE_CLUSTER; 521 else if (offset == last_in_cluster) { 522 spin_lock(&si->lock); 523 offset -= SWAPFILE_CLUSTER - 1; 524 si->cluster_next = offset; 525 si->cluster_nr = SWAPFILE_CLUSTER - 1; 526 goto checks; 527 } 528 if (unlikely(--latency_ration < 0)) { 529 cond_resched(); 530 latency_ration = LATENCY_LIMIT; 531 } 532 } 533 534 offset = si->lowest_bit; 535 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 536 537 /* Locate the first empty (unaligned) cluster */ 538 for (; last_in_cluster < scan_base; offset++) { 539 if (si->swap_map[offset]) 540 last_in_cluster = offset + SWAPFILE_CLUSTER; 541 else if (offset == last_in_cluster) { 542 spin_lock(&si->lock); 543 offset -= SWAPFILE_CLUSTER - 1; 544 si->cluster_next = offset; 545 si->cluster_nr = SWAPFILE_CLUSTER - 1; 546 goto checks; 547 } 548 if (unlikely(--latency_ration < 0)) { 549 cond_resched(); 550 latency_ration = LATENCY_LIMIT; 551 } 552 } 553 554 offset = scan_base; 555 spin_lock(&si->lock); 556 si->cluster_nr = SWAPFILE_CLUSTER - 1; 557 } 558 559 checks: 560 if (si->cluster_info) { 561 while (scan_swap_map_ssd_cluster_conflict(si, offset)) 562 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base); 563 } 564 if (!(si->flags & SWP_WRITEOK)) 565 goto no_page; 566 if (!si->highest_bit) 567 goto no_page; 568 if (offset > si->highest_bit) 569 scan_base = offset = si->lowest_bit; 570 571 /* reuse swap entry of cache-only swap if not busy. */ 572 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 573 int swap_was_freed; 574 spin_unlock(&si->lock); 575 swap_was_freed = __try_to_reclaim_swap(si, offset); 576 spin_lock(&si->lock); 577 /* entry was freed successfully, try to use this again */ 578 if (swap_was_freed) 579 goto checks; 580 goto scan; /* check next one */ 581 } 582 583 if (si->swap_map[offset]) 584 goto scan; 585 586 if (offset == si->lowest_bit) 587 si->lowest_bit++; 588 if (offset == si->highest_bit) 589 si->highest_bit--; 590 si->inuse_pages++; 591 if (si->inuse_pages == si->pages) { 592 si->lowest_bit = si->max; 593 si->highest_bit = 0; 594 } 595 si->swap_map[offset] = usage; 596 inc_cluster_info_page(si, si->cluster_info, offset); 597 si->cluster_next = offset + 1; 598 si->flags -= SWP_SCANNING; 599 600 return offset; 601 602 scan: 603 spin_unlock(&si->lock); 604 while (++offset <= si->highest_bit) { 605 if (!si->swap_map[offset]) { 606 spin_lock(&si->lock); 607 goto checks; 608 } 609 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 610 spin_lock(&si->lock); 611 goto checks; 612 } 613 if (unlikely(--latency_ration < 0)) { 614 cond_resched(); 615 latency_ration = LATENCY_LIMIT; 616 } 617 } 618 offset = si->lowest_bit; 619 while (offset < scan_base) { 620 if (!si->swap_map[offset]) { 621 spin_lock(&si->lock); 622 goto checks; 623 } 624 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 625 spin_lock(&si->lock); 626 goto checks; 627 } 628 if (unlikely(--latency_ration < 0)) { 629 cond_resched(); 630 latency_ration = LATENCY_LIMIT; 631 } 632 offset++; 633 } 634 spin_lock(&si->lock); 635 636 no_page: 637 si->flags -= SWP_SCANNING; 638 return 0; 639 } 640 641 swp_entry_t get_swap_page(void) 642 { 643 struct swap_info_struct *si; 644 pgoff_t offset; 645 int type, next; 646 int wrapped = 0; 647 int hp_index; 648 649 spin_lock(&swap_lock); 650 if (atomic_long_read(&nr_swap_pages) <= 0) 651 goto noswap; 652 atomic_long_dec(&nr_swap_pages); 653 654 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { 655 hp_index = atomic_xchg(&highest_priority_index, -1); 656 /* 657 * highest_priority_index records current highest priority swap 658 * type which just frees swap entries. If its priority is 659 * higher than that of swap_list.next swap type, we use it. It 660 * isn't protected by swap_lock, so it can be an invalid value 661 * if the corresponding swap type is swapoff. We double check 662 * the flags here. It's even possible the swap type is swapoff 663 * and swapon again and its priority is changed. In such rare 664 * case, low prority swap type might be used, but eventually 665 * high priority swap will be used after several rounds of 666 * swap. 667 */ 668 if (hp_index != -1 && hp_index != type && 669 swap_info[type]->prio < swap_info[hp_index]->prio && 670 (swap_info[hp_index]->flags & SWP_WRITEOK)) { 671 type = hp_index; 672 swap_list.next = type; 673 } 674 675 si = swap_info[type]; 676 next = si->next; 677 if (next < 0 || 678 (!wrapped && si->prio != swap_info[next]->prio)) { 679 next = swap_list.head; 680 wrapped++; 681 } 682 683 spin_lock(&si->lock); 684 if (!si->highest_bit) { 685 spin_unlock(&si->lock); 686 continue; 687 } 688 if (!(si->flags & SWP_WRITEOK)) { 689 spin_unlock(&si->lock); 690 continue; 691 } 692 693 swap_list.next = next; 694 695 spin_unlock(&swap_lock); 696 /* This is called for allocating swap entry for cache */ 697 offset = scan_swap_map(si, SWAP_HAS_CACHE); 698 spin_unlock(&si->lock); 699 if (offset) 700 return swp_entry(type, offset); 701 spin_lock(&swap_lock); 702 next = swap_list.next; 703 } 704 705 atomic_long_inc(&nr_swap_pages); 706 noswap: 707 spin_unlock(&swap_lock); 708 return (swp_entry_t) {0}; 709 } 710 711 /* The only caller of this function is now suspend routine */ 712 swp_entry_t get_swap_page_of_type(int type) 713 { 714 struct swap_info_struct *si; 715 pgoff_t offset; 716 717 si = swap_info[type]; 718 spin_lock(&si->lock); 719 if (si && (si->flags & SWP_WRITEOK)) { 720 atomic_long_dec(&nr_swap_pages); 721 /* This is called for allocating swap entry, not cache */ 722 offset = scan_swap_map(si, 1); 723 if (offset) { 724 spin_unlock(&si->lock); 725 return swp_entry(type, offset); 726 } 727 atomic_long_inc(&nr_swap_pages); 728 } 729 spin_unlock(&si->lock); 730 return (swp_entry_t) {0}; 731 } 732 733 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 734 { 735 struct swap_info_struct *p; 736 unsigned long offset, type; 737 738 if (!entry.val) 739 goto out; 740 type = swp_type(entry); 741 if (type >= nr_swapfiles) 742 goto bad_nofile; 743 p = swap_info[type]; 744 if (!(p->flags & SWP_USED)) 745 goto bad_device; 746 offset = swp_offset(entry); 747 if (offset >= p->max) 748 goto bad_offset; 749 if (!p->swap_map[offset]) 750 goto bad_free; 751 spin_lock(&p->lock); 752 return p; 753 754 bad_free: 755 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val); 756 goto out; 757 bad_offset: 758 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val); 759 goto out; 760 bad_device: 761 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val); 762 goto out; 763 bad_nofile: 764 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val); 765 out: 766 return NULL; 767 } 768 769 /* 770 * This swap type frees swap entry, check if it is the highest priority swap 771 * type which just frees swap entry. get_swap_page() uses 772 * highest_priority_index to search highest priority swap type. The 773 * swap_info_struct.lock can't protect us if there are multiple swap types 774 * active, so we use atomic_cmpxchg. 775 */ 776 static void set_highest_priority_index(int type) 777 { 778 int old_hp_index, new_hp_index; 779 780 do { 781 old_hp_index = atomic_read(&highest_priority_index); 782 if (old_hp_index != -1 && 783 swap_info[old_hp_index]->prio >= swap_info[type]->prio) 784 break; 785 new_hp_index = type; 786 } while (atomic_cmpxchg(&highest_priority_index, 787 old_hp_index, new_hp_index) != old_hp_index); 788 } 789 790 static unsigned char swap_entry_free(struct swap_info_struct *p, 791 swp_entry_t entry, unsigned char usage) 792 { 793 unsigned long offset = swp_offset(entry); 794 unsigned char count; 795 unsigned char has_cache; 796 797 count = p->swap_map[offset]; 798 has_cache = count & SWAP_HAS_CACHE; 799 count &= ~SWAP_HAS_CACHE; 800 801 if (usage == SWAP_HAS_CACHE) { 802 VM_BUG_ON(!has_cache); 803 has_cache = 0; 804 } else if (count == SWAP_MAP_SHMEM) { 805 /* 806 * Or we could insist on shmem.c using a special 807 * swap_shmem_free() and free_shmem_swap_and_cache()... 808 */ 809 count = 0; 810 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 811 if (count == COUNT_CONTINUED) { 812 if (swap_count_continued(p, offset, count)) 813 count = SWAP_MAP_MAX | COUNT_CONTINUED; 814 else 815 count = SWAP_MAP_MAX; 816 } else 817 count--; 818 } 819 820 if (!count) 821 mem_cgroup_uncharge_swap(entry); 822 823 usage = count | has_cache; 824 p->swap_map[offset] = usage; 825 826 /* free if no reference */ 827 if (!usage) { 828 dec_cluster_info_page(p, p->cluster_info, offset); 829 if (offset < p->lowest_bit) 830 p->lowest_bit = offset; 831 if (offset > p->highest_bit) 832 p->highest_bit = offset; 833 set_highest_priority_index(p->type); 834 atomic_long_inc(&nr_swap_pages); 835 p->inuse_pages--; 836 frontswap_invalidate_page(p->type, offset); 837 if (p->flags & SWP_BLKDEV) { 838 struct gendisk *disk = p->bdev->bd_disk; 839 if (disk->fops->swap_slot_free_notify) 840 disk->fops->swap_slot_free_notify(p->bdev, 841 offset); 842 } 843 } 844 845 return usage; 846 } 847 848 /* 849 * Caller has made sure that the swap device corresponding to entry 850 * is still around or has not been recycled. 851 */ 852 void swap_free(swp_entry_t entry) 853 { 854 struct swap_info_struct *p; 855 856 p = swap_info_get(entry); 857 if (p) { 858 swap_entry_free(p, entry, 1); 859 spin_unlock(&p->lock); 860 } 861 } 862 863 /* 864 * Called after dropping swapcache to decrease refcnt to swap entries. 865 */ 866 void swapcache_free(swp_entry_t entry, struct page *page) 867 { 868 struct swap_info_struct *p; 869 unsigned char count; 870 871 p = swap_info_get(entry); 872 if (p) { 873 count = swap_entry_free(p, entry, SWAP_HAS_CACHE); 874 if (page) 875 mem_cgroup_uncharge_swapcache(page, entry, count != 0); 876 spin_unlock(&p->lock); 877 } 878 } 879 880 /* 881 * How many references to page are currently swapped out? 882 * This does not give an exact answer when swap count is continued, 883 * but does include the high COUNT_CONTINUED flag to allow for that. 884 */ 885 int page_swapcount(struct page *page) 886 { 887 int count = 0; 888 struct swap_info_struct *p; 889 swp_entry_t entry; 890 891 entry.val = page_private(page); 892 p = swap_info_get(entry); 893 if (p) { 894 count = swap_count(p->swap_map[swp_offset(entry)]); 895 spin_unlock(&p->lock); 896 } 897 return count; 898 } 899 900 /* 901 * We can write to an anon page without COW if there are no other references 902 * to it. And as a side-effect, free up its swap: because the old content 903 * on disk will never be read, and seeking back there to write new content 904 * later would only waste time away from clustering. 905 */ 906 int reuse_swap_page(struct page *page) 907 { 908 int count; 909 910 VM_BUG_ON_PAGE(!PageLocked(page), page); 911 if (unlikely(PageKsm(page))) 912 return 0; 913 count = page_mapcount(page); 914 if (count <= 1 && PageSwapCache(page)) { 915 count += page_swapcount(page); 916 if (count == 1 && !PageWriteback(page)) { 917 delete_from_swap_cache(page); 918 SetPageDirty(page); 919 } 920 } 921 return count <= 1; 922 } 923 924 /* 925 * If swap is getting full, or if there are no more mappings of this page, 926 * then try_to_free_swap is called to free its swap space. 927 */ 928 int try_to_free_swap(struct page *page) 929 { 930 VM_BUG_ON_PAGE(!PageLocked(page), page); 931 932 if (!PageSwapCache(page)) 933 return 0; 934 if (PageWriteback(page)) 935 return 0; 936 if (page_swapcount(page)) 937 return 0; 938 939 /* 940 * Once hibernation has begun to create its image of memory, 941 * there's a danger that one of the calls to try_to_free_swap() 942 * - most probably a call from __try_to_reclaim_swap() while 943 * hibernation is allocating its own swap pages for the image, 944 * but conceivably even a call from memory reclaim - will free 945 * the swap from a page which has already been recorded in the 946 * image as a clean swapcache page, and then reuse its swap for 947 * another page of the image. On waking from hibernation, the 948 * original page might be freed under memory pressure, then 949 * later read back in from swap, now with the wrong data. 950 * 951 * Hibernation suspends storage while it is writing the image 952 * to disk so check that here. 953 */ 954 if (pm_suspended_storage()) 955 return 0; 956 957 delete_from_swap_cache(page); 958 SetPageDirty(page); 959 return 1; 960 } 961 962 /* 963 * Free the swap entry like above, but also try to 964 * free the page cache entry if it is the last user. 965 */ 966 int free_swap_and_cache(swp_entry_t entry) 967 { 968 struct swap_info_struct *p; 969 struct page *page = NULL; 970 971 if (non_swap_entry(entry)) 972 return 1; 973 974 p = swap_info_get(entry); 975 if (p) { 976 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) { 977 page = find_get_page(swap_address_space(entry), 978 entry.val); 979 if (page && !trylock_page(page)) { 980 page_cache_release(page); 981 page = NULL; 982 } 983 } 984 spin_unlock(&p->lock); 985 } 986 if (page) { 987 /* 988 * Not mapped elsewhere, or swap space full? Free it! 989 * Also recheck PageSwapCache now page is locked (above). 990 */ 991 if (PageSwapCache(page) && !PageWriteback(page) && 992 (!page_mapped(page) || vm_swap_full())) { 993 delete_from_swap_cache(page); 994 SetPageDirty(page); 995 } 996 unlock_page(page); 997 page_cache_release(page); 998 } 999 return p != NULL; 1000 } 1001 1002 #ifdef CONFIG_HIBERNATION 1003 /* 1004 * Find the swap type that corresponds to given device (if any). 1005 * 1006 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1007 * from 0, in which the swap header is expected to be located. 1008 * 1009 * This is needed for the suspend to disk (aka swsusp). 1010 */ 1011 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 1012 { 1013 struct block_device *bdev = NULL; 1014 int type; 1015 1016 if (device) 1017 bdev = bdget(device); 1018 1019 spin_lock(&swap_lock); 1020 for (type = 0; type < nr_swapfiles; type++) { 1021 struct swap_info_struct *sis = swap_info[type]; 1022 1023 if (!(sis->flags & SWP_WRITEOK)) 1024 continue; 1025 1026 if (!bdev) { 1027 if (bdev_p) 1028 *bdev_p = bdgrab(sis->bdev); 1029 1030 spin_unlock(&swap_lock); 1031 return type; 1032 } 1033 if (bdev == sis->bdev) { 1034 struct swap_extent *se = &sis->first_swap_extent; 1035 1036 if (se->start_block == offset) { 1037 if (bdev_p) 1038 *bdev_p = bdgrab(sis->bdev); 1039 1040 spin_unlock(&swap_lock); 1041 bdput(bdev); 1042 return type; 1043 } 1044 } 1045 } 1046 spin_unlock(&swap_lock); 1047 if (bdev) 1048 bdput(bdev); 1049 1050 return -ENODEV; 1051 } 1052 1053 /* 1054 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1055 * corresponding to given index in swap_info (swap type). 1056 */ 1057 sector_t swapdev_block(int type, pgoff_t offset) 1058 { 1059 struct block_device *bdev; 1060 1061 if ((unsigned int)type >= nr_swapfiles) 1062 return 0; 1063 if (!(swap_info[type]->flags & SWP_WRITEOK)) 1064 return 0; 1065 return map_swap_entry(swp_entry(type, offset), &bdev); 1066 } 1067 1068 /* 1069 * Return either the total number of swap pages of given type, or the number 1070 * of free pages of that type (depending on @free) 1071 * 1072 * This is needed for software suspend 1073 */ 1074 unsigned int count_swap_pages(int type, int free) 1075 { 1076 unsigned int n = 0; 1077 1078 spin_lock(&swap_lock); 1079 if ((unsigned int)type < nr_swapfiles) { 1080 struct swap_info_struct *sis = swap_info[type]; 1081 1082 spin_lock(&sis->lock); 1083 if (sis->flags & SWP_WRITEOK) { 1084 n = sis->pages; 1085 if (free) 1086 n -= sis->inuse_pages; 1087 } 1088 spin_unlock(&sis->lock); 1089 } 1090 spin_unlock(&swap_lock); 1091 return n; 1092 } 1093 #endif /* CONFIG_HIBERNATION */ 1094 1095 static inline int maybe_same_pte(pte_t pte, pte_t swp_pte) 1096 { 1097 #ifdef CONFIG_MEM_SOFT_DIRTY 1098 /* 1099 * When pte keeps soft dirty bit the pte generated 1100 * from swap entry does not has it, still it's same 1101 * pte from logical point of view. 1102 */ 1103 pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte); 1104 return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty); 1105 #else 1106 return pte_same(pte, swp_pte); 1107 #endif 1108 } 1109 1110 /* 1111 * No need to decide whether this PTE shares the swap entry with others, 1112 * just let do_wp_page work it out if a write is requested later - to 1113 * force COW, vm_page_prot omits write permission from any private vma. 1114 */ 1115 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1116 unsigned long addr, swp_entry_t entry, struct page *page) 1117 { 1118 struct page *swapcache; 1119 struct mem_cgroup *memcg; 1120 spinlock_t *ptl; 1121 pte_t *pte; 1122 int ret = 1; 1123 1124 swapcache = page; 1125 page = ksm_might_need_to_copy(page, vma, addr); 1126 if (unlikely(!page)) 1127 return -ENOMEM; 1128 1129 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, 1130 GFP_KERNEL, &memcg)) { 1131 ret = -ENOMEM; 1132 goto out_nolock; 1133 } 1134 1135 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1136 if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) { 1137 mem_cgroup_cancel_charge_swapin(memcg); 1138 ret = 0; 1139 goto out; 1140 } 1141 1142 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1143 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1144 get_page(page); 1145 set_pte_at(vma->vm_mm, addr, pte, 1146 pte_mkold(mk_pte(page, vma->vm_page_prot))); 1147 if (page == swapcache) 1148 page_add_anon_rmap(page, vma, addr); 1149 else /* ksm created a completely new copy */ 1150 page_add_new_anon_rmap(page, vma, addr); 1151 mem_cgroup_commit_charge_swapin(page, memcg); 1152 swap_free(entry); 1153 /* 1154 * Move the page to the active list so it is not 1155 * immediately swapped out again after swapon. 1156 */ 1157 activate_page(page); 1158 out: 1159 pte_unmap_unlock(pte, ptl); 1160 out_nolock: 1161 if (page != swapcache) { 1162 unlock_page(page); 1163 put_page(page); 1164 } 1165 return ret; 1166 } 1167 1168 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1169 unsigned long addr, unsigned long end, 1170 swp_entry_t entry, struct page *page) 1171 { 1172 pte_t swp_pte = swp_entry_to_pte(entry); 1173 pte_t *pte; 1174 int ret = 0; 1175 1176 /* 1177 * We don't actually need pte lock while scanning for swp_pte: since 1178 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 1179 * page table while we're scanning; though it could get zapped, and on 1180 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 1181 * of unmatched parts which look like swp_pte, so unuse_pte must 1182 * recheck under pte lock. Scanning without pte lock lets it be 1183 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 1184 */ 1185 pte = pte_offset_map(pmd, addr); 1186 do { 1187 /* 1188 * swapoff spends a _lot_ of time in this loop! 1189 * Test inline before going to call unuse_pte. 1190 */ 1191 if (unlikely(maybe_same_pte(*pte, swp_pte))) { 1192 pte_unmap(pte); 1193 ret = unuse_pte(vma, pmd, addr, entry, page); 1194 if (ret) 1195 goto out; 1196 pte = pte_offset_map(pmd, addr); 1197 } 1198 } while (pte++, addr += PAGE_SIZE, addr != end); 1199 pte_unmap(pte - 1); 1200 out: 1201 return ret; 1202 } 1203 1204 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1205 unsigned long addr, unsigned long end, 1206 swp_entry_t entry, struct page *page) 1207 { 1208 pmd_t *pmd; 1209 unsigned long next; 1210 int ret; 1211 1212 pmd = pmd_offset(pud, addr); 1213 do { 1214 next = pmd_addr_end(addr, end); 1215 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1216 continue; 1217 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 1218 if (ret) 1219 return ret; 1220 } while (pmd++, addr = next, addr != end); 1221 return 0; 1222 } 1223 1224 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 1225 unsigned long addr, unsigned long end, 1226 swp_entry_t entry, struct page *page) 1227 { 1228 pud_t *pud; 1229 unsigned long next; 1230 int ret; 1231 1232 pud = pud_offset(pgd, addr); 1233 do { 1234 next = pud_addr_end(addr, end); 1235 if (pud_none_or_clear_bad(pud)) 1236 continue; 1237 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 1238 if (ret) 1239 return ret; 1240 } while (pud++, addr = next, addr != end); 1241 return 0; 1242 } 1243 1244 static int unuse_vma(struct vm_area_struct *vma, 1245 swp_entry_t entry, struct page *page) 1246 { 1247 pgd_t *pgd; 1248 unsigned long addr, end, next; 1249 int ret; 1250 1251 if (page_anon_vma(page)) { 1252 addr = page_address_in_vma(page, vma); 1253 if (addr == -EFAULT) 1254 return 0; 1255 else 1256 end = addr + PAGE_SIZE; 1257 } else { 1258 addr = vma->vm_start; 1259 end = vma->vm_end; 1260 } 1261 1262 pgd = pgd_offset(vma->vm_mm, addr); 1263 do { 1264 next = pgd_addr_end(addr, end); 1265 if (pgd_none_or_clear_bad(pgd)) 1266 continue; 1267 ret = unuse_pud_range(vma, pgd, addr, next, entry, page); 1268 if (ret) 1269 return ret; 1270 } while (pgd++, addr = next, addr != end); 1271 return 0; 1272 } 1273 1274 static int unuse_mm(struct mm_struct *mm, 1275 swp_entry_t entry, struct page *page) 1276 { 1277 struct vm_area_struct *vma; 1278 int ret = 0; 1279 1280 if (!down_read_trylock(&mm->mmap_sem)) { 1281 /* 1282 * Activate page so shrink_inactive_list is unlikely to unmap 1283 * its ptes while lock is dropped, so swapoff can make progress. 1284 */ 1285 activate_page(page); 1286 unlock_page(page); 1287 down_read(&mm->mmap_sem); 1288 lock_page(page); 1289 } 1290 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1291 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 1292 break; 1293 } 1294 up_read(&mm->mmap_sem); 1295 return (ret < 0)? ret: 0; 1296 } 1297 1298 /* 1299 * Scan swap_map (or frontswap_map if frontswap parameter is true) 1300 * from current position to next entry still in use. 1301 * Recycle to start on reaching the end, returning 0 when empty. 1302 */ 1303 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 1304 unsigned int prev, bool frontswap) 1305 { 1306 unsigned int max = si->max; 1307 unsigned int i = prev; 1308 unsigned char count; 1309 1310 /* 1311 * No need for swap_lock here: we're just looking 1312 * for whether an entry is in use, not modifying it; false 1313 * hits are okay, and sys_swapoff() has already prevented new 1314 * allocations from this area (while holding swap_lock). 1315 */ 1316 for (;;) { 1317 if (++i >= max) { 1318 if (!prev) { 1319 i = 0; 1320 break; 1321 } 1322 /* 1323 * No entries in use at top of swap_map, 1324 * loop back to start and recheck there. 1325 */ 1326 max = prev + 1; 1327 prev = 0; 1328 i = 1; 1329 } 1330 if (frontswap) { 1331 if (frontswap_test(si, i)) 1332 break; 1333 else 1334 continue; 1335 } 1336 count = ACCESS_ONCE(si->swap_map[i]); 1337 if (count && swap_count(count) != SWAP_MAP_BAD) 1338 break; 1339 } 1340 return i; 1341 } 1342 1343 /* 1344 * We completely avoid races by reading each swap page in advance, 1345 * and then search for the process using it. All the necessary 1346 * page table adjustments can then be made atomically. 1347 * 1348 * if the boolean frontswap is true, only unuse pages_to_unuse pages; 1349 * pages_to_unuse==0 means all pages; ignored if frontswap is false 1350 */ 1351 int try_to_unuse(unsigned int type, bool frontswap, 1352 unsigned long pages_to_unuse) 1353 { 1354 struct swap_info_struct *si = swap_info[type]; 1355 struct mm_struct *start_mm; 1356 volatile unsigned char *swap_map; /* swap_map is accessed without 1357 * locking. Mark it as volatile 1358 * to prevent compiler doing 1359 * something odd. 1360 */ 1361 unsigned char swcount; 1362 struct page *page; 1363 swp_entry_t entry; 1364 unsigned int i = 0; 1365 int retval = 0; 1366 1367 /* 1368 * When searching mms for an entry, a good strategy is to 1369 * start at the first mm we freed the previous entry from 1370 * (though actually we don't notice whether we or coincidence 1371 * freed the entry). Initialize this start_mm with a hold. 1372 * 1373 * A simpler strategy would be to start at the last mm we 1374 * freed the previous entry from; but that would take less 1375 * advantage of mmlist ordering, which clusters forked mms 1376 * together, child after parent. If we race with dup_mmap(), we 1377 * prefer to resolve parent before child, lest we miss entries 1378 * duplicated after we scanned child: using last mm would invert 1379 * that. 1380 */ 1381 start_mm = &init_mm; 1382 atomic_inc(&init_mm.mm_users); 1383 1384 /* 1385 * Keep on scanning until all entries have gone. Usually, 1386 * one pass through swap_map is enough, but not necessarily: 1387 * there are races when an instance of an entry might be missed. 1388 */ 1389 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) { 1390 if (signal_pending(current)) { 1391 retval = -EINTR; 1392 break; 1393 } 1394 1395 /* 1396 * Get a page for the entry, using the existing swap 1397 * cache page if there is one. Otherwise, get a clean 1398 * page and read the swap into it. 1399 */ 1400 swap_map = &si->swap_map[i]; 1401 entry = swp_entry(type, i); 1402 page = read_swap_cache_async(entry, 1403 GFP_HIGHUSER_MOVABLE, NULL, 0); 1404 if (!page) { 1405 /* 1406 * Either swap_duplicate() failed because entry 1407 * has been freed independently, and will not be 1408 * reused since sys_swapoff() already disabled 1409 * allocation from here, or alloc_page() failed. 1410 */ 1411 swcount = *swap_map; 1412 /* 1413 * We don't hold lock here, so the swap entry could be 1414 * SWAP_MAP_BAD (when the cluster is discarding). 1415 * Instead of fail out, We can just skip the swap 1416 * entry because swapoff will wait for discarding 1417 * finish anyway. 1418 */ 1419 if (!swcount || swcount == SWAP_MAP_BAD) 1420 continue; 1421 retval = -ENOMEM; 1422 break; 1423 } 1424 1425 /* 1426 * Don't hold on to start_mm if it looks like exiting. 1427 */ 1428 if (atomic_read(&start_mm->mm_users) == 1) { 1429 mmput(start_mm); 1430 start_mm = &init_mm; 1431 atomic_inc(&init_mm.mm_users); 1432 } 1433 1434 /* 1435 * Wait for and lock page. When do_swap_page races with 1436 * try_to_unuse, do_swap_page can handle the fault much 1437 * faster than try_to_unuse can locate the entry. This 1438 * apparently redundant "wait_on_page_locked" lets try_to_unuse 1439 * defer to do_swap_page in such a case - in some tests, 1440 * do_swap_page and try_to_unuse repeatedly compete. 1441 */ 1442 wait_on_page_locked(page); 1443 wait_on_page_writeback(page); 1444 lock_page(page); 1445 wait_on_page_writeback(page); 1446 1447 /* 1448 * Remove all references to entry. 1449 */ 1450 swcount = *swap_map; 1451 if (swap_count(swcount) == SWAP_MAP_SHMEM) { 1452 retval = shmem_unuse(entry, page); 1453 /* page has already been unlocked and released */ 1454 if (retval < 0) 1455 break; 1456 continue; 1457 } 1458 if (swap_count(swcount) && start_mm != &init_mm) 1459 retval = unuse_mm(start_mm, entry, page); 1460 1461 if (swap_count(*swap_map)) { 1462 int set_start_mm = (*swap_map >= swcount); 1463 struct list_head *p = &start_mm->mmlist; 1464 struct mm_struct *new_start_mm = start_mm; 1465 struct mm_struct *prev_mm = start_mm; 1466 struct mm_struct *mm; 1467 1468 atomic_inc(&new_start_mm->mm_users); 1469 atomic_inc(&prev_mm->mm_users); 1470 spin_lock(&mmlist_lock); 1471 while (swap_count(*swap_map) && !retval && 1472 (p = p->next) != &start_mm->mmlist) { 1473 mm = list_entry(p, struct mm_struct, mmlist); 1474 if (!atomic_inc_not_zero(&mm->mm_users)) 1475 continue; 1476 spin_unlock(&mmlist_lock); 1477 mmput(prev_mm); 1478 prev_mm = mm; 1479 1480 cond_resched(); 1481 1482 swcount = *swap_map; 1483 if (!swap_count(swcount)) /* any usage ? */ 1484 ; 1485 else if (mm == &init_mm) 1486 set_start_mm = 1; 1487 else 1488 retval = unuse_mm(mm, entry, page); 1489 1490 if (set_start_mm && *swap_map < swcount) { 1491 mmput(new_start_mm); 1492 atomic_inc(&mm->mm_users); 1493 new_start_mm = mm; 1494 set_start_mm = 0; 1495 } 1496 spin_lock(&mmlist_lock); 1497 } 1498 spin_unlock(&mmlist_lock); 1499 mmput(prev_mm); 1500 mmput(start_mm); 1501 start_mm = new_start_mm; 1502 } 1503 if (retval) { 1504 unlock_page(page); 1505 page_cache_release(page); 1506 break; 1507 } 1508 1509 /* 1510 * If a reference remains (rare), we would like to leave 1511 * the page in the swap cache; but try_to_unmap could 1512 * then re-duplicate the entry once we drop page lock, 1513 * so we might loop indefinitely; also, that page could 1514 * not be swapped out to other storage meanwhile. So: 1515 * delete from cache even if there's another reference, 1516 * after ensuring that the data has been saved to disk - 1517 * since if the reference remains (rarer), it will be 1518 * read from disk into another page. Splitting into two 1519 * pages would be incorrect if swap supported "shared 1520 * private" pages, but they are handled by tmpfs files. 1521 * 1522 * Given how unuse_vma() targets one particular offset 1523 * in an anon_vma, once the anon_vma has been determined, 1524 * this splitting happens to be just what is needed to 1525 * handle where KSM pages have been swapped out: re-reading 1526 * is unnecessarily slow, but we can fix that later on. 1527 */ 1528 if (swap_count(*swap_map) && 1529 PageDirty(page) && PageSwapCache(page)) { 1530 struct writeback_control wbc = { 1531 .sync_mode = WB_SYNC_NONE, 1532 }; 1533 1534 swap_writepage(page, &wbc); 1535 lock_page(page); 1536 wait_on_page_writeback(page); 1537 } 1538 1539 /* 1540 * It is conceivable that a racing task removed this page from 1541 * swap cache just before we acquired the page lock at the top, 1542 * or while we dropped it in unuse_mm(). The page might even 1543 * be back in swap cache on another swap area: that we must not 1544 * delete, since it may not have been written out to swap yet. 1545 */ 1546 if (PageSwapCache(page) && 1547 likely(page_private(page) == entry.val)) 1548 delete_from_swap_cache(page); 1549 1550 /* 1551 * So we could skip searching mms once swap count went 1552 * to 1, we did not mark any present ptes as dirty: must 1553 * mark page dirty so shrink_page_list will preserve it. 1554 */ 1555 SetPageDirty(page); 1556 unlock_page(page); 1557 page_cache_release(page); 1558 1559 /* 1560 * Make sure that we aren't completely killing 1561 * interactive performance. 1562 */ 1563 cond_resched(); 1564 if (frontswap && pages_to_unuse > 0) { 1565 if (!--pages_to_unuse) 1566 break; 1567 } 1568 } 1569 1570 mmput(start_mm); 1571 return retval; 1572 } 1573 1574 /* 1575 * After a successful try_to_unuse, if no swap is now in use, we know 1576 * we can empty the mmlist. swap_lock must be held on entry and exit. 1577 * Note that mmlist_lock nests inside swap_lock, and an mm must be 1578 * added to the mmlist just after page_duplicate - before would be racy. 1579 */ 1580 static void drain_mmlist(void) 1581 { 1582 struct list_head *p, *next; 1583 unsigned int type; 1584 1585 for (type = 0; type < nr_swapfiles; type++) 1586 if (swap_info[type]->inuse_pages) 1587 return; 1588 spin_lock(&mmlist_lock); 1589 list_for_each_safe(p, next, &init_mm.mmlist) 1590 list_del_init(p); 1591 spin_unlock(&mmlist_lock); 1592 } 1593 1594 /* 1595 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 1596 * corresponds to page offset for the specified swap entry. 1597 * Note that the type of this function is sector_t, but it returns page offset 1598 * into the bdev, not sector offset. 1599 */ 1600 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 1601 { 1602 struct swap_info_struct *sis; 1603 struct swap_extent *start_se; 1604 struct swap_extent *se; 1605 pgoff_t offset; 1606 1607 sis = swap_info[swp_type(entry)]; 1608 *bdev = sis->bdev; 1609 1610 offset = swp_offset(entry); 1611 start_se = sis->curr_swap_extent; 1612 se = start_se; 1613 1614 for ( ; ; ) { 1615 struct list_head *lh; 1616 1617 if (se->start_page <= offset && 1618 offset < (se->start_page + se->nr_pages)) { 1619 return se->start_block + (offset - se->start_page); 1620 } 1621 lh = se->list.next; 1622 se = list_entry(lh, struct swap_extent, list); 1623 sis->curr_swap_extent = se; 1624 BUG_ON(se == start_se); /* It *must* be present */ 1625 } 1626 } 1627 1628 /* 1629 * Returns the page offset into bdev for the specified page's swap entry. 1630 */ 1631 sector_t map_swap_page(struct page *page, struct block_device **bdev) 1632 { 1633 swp_entry_t entry; 1634 entry.val = page_private(page); 1635 return map_swap_entry(entry, bdev); 1636 } 1637 1638 /* 1639 * Free all of a swapdev's extent information 1640 */ 1641 static void destroy_swap_extents(struct swap_info_struct *sis) 1642 { 1643 while (!list_empty(&sis->first_swap_extent.list)) { 1644 struct swap_extent *se; 1645 1646 se = list_entry(sis->first_swap_extent.list.next, 1647 struct swap_extent, list); 1648 list_del(&se->list); 1649 kfree(se); 1650 } 1651 1652 if (sis->flags & SWP_FILE) { 1653 struct file *swap_file = sis->swap_file; 1654 struct address_space *mapping = swap_file->f_mapping; 1655 1656 sis->flags &= ~SWP_FILE; 1657 mapping->a_ops->swap_deactivate(swap_file); 1658 } 1659 } 1660 1661 /* 1662 * Add a block range (and the corresponding page range) into this swapdev's 1663 * extent list. The extent list is kept sorted in page order. 1664 * 1665 * This function rather assumes that it is called in ascending page order. 1666 */ 1667 int 1668 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 1669 unsigned long nr_pages, sector_t start_block) 1670 { 1671 struct swap_extent *se; 1672 struct swap_extent *new_se; 1673 struct list_head *lh; 1674 1675 if (start_page == 0) { 1676 se = &sis->first_swap_extent; 1677 sis->curr_swap_extent = se; 1678 se->start_page = 0; 1679 se->nr_pages = nr_pages; 1680 se->start_block = start_block; 1681 return 1; 1682 } else { 1683 lh = sis->first_swap_extent.list.prev; /* Highest extent */ 1684 se = list_entry(lh, struct swap_extent, list); 1685 BUG_ON(se->start_page + se->nr_pages != start_page); 1686 if (se->start_block + se->nr_pages == start_block) { 1687 /* Merge it */ 1688 se->nr_pages += nr_pages; 1689 return 0; 1690 } 1691 } 1692 1693 /* 1694 * No merge. Insert a new extent, preserving ordering. 1695 */ 1696 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 1697 if (new_se == NULL) 1698 return -ENOMEM; 1699 new_se->start_page = start_page; 1700 new_se->nr_pages = nr_pages; 1701 new_se->start_block = start_block; 1702 1703 list_add_tail(&new_se->list, &sis->first_swap_extent.list); 1704 return 1; 1705 } 1706 1707 /* 1708 * A `swap extent' is a simple thing which maps a contiguous range of pages 1709 * onto a contiguous range of disk blocks. An ordered list of swap extents 1710 * is built at swapon time and is then used at swap_writepage/swap_readpage 1711 * time for locating where on disk a page belongs. 1712 * 1713 * If the swapfile is an S_ISBLK block device, a single extent is installed. 1714 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 1715 * swap files identically. 1716 * 1717 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 1718 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 1719 * swapfiles are handled *identically* after swapon time. 1720 * 1721 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 1722 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 1723 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 1724 * requirements, they are simply tossed out - we will never use those blocks 1725 * for swapping. 1726 * 1727 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 1728 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 1729 * which will scribble on the fs. 1730 * 1731 * The amount of disk space which a single swap extent represents varies. 1732 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 1733 * extents in the list. To avoid much list walking, we cache the previous 1734 * search location in `curr_swap_extent', and start new searches from there. 1735 * This is extremely effective. The average number of iterations in 1736 * map_swap_page() has been measured at about 0.3 per page. - akpm. 1737 */ 1738 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 1739 { 1740 struct file *swap_file = sis->swap_file; 1741 struct address_space *mapping = swap_file->f_mapping; 1742 struct inode *inode = mapping->host; 1743 int ret; 1744 1745 if (S_ISBLK(inode->i_mode)) { 1746 ret = add_swap_extent(sis, 0, sis->max, 0); 1747 *span = sis->pages; 1748 return ret; 1749 } 1750 1751 if (mapping->a_ops->swap_activate) { 1752 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 1753 if (!ret) { 1754 sis->flags |= SWP_FILE; 1755 ret = add_swap_extent(sis, 0, sis->max, 0); 1756 *span = sis->pages; 1757 } 1758 return ret; 1759 } 1760 1761 return generic_swapfile_activate(sis, swap_file, span); 1762 } 1763 1764 static void _enable_swap_info(struct swap_info_struct *p, int prio, 1765 unsigned char *swap_map, 1766 struct swap_cluster_info *cluster_info) 1767 { 1768 int i, prev; 1769 1770 if (prio >= 0) 1771 p->prio = prio; 1772 else 1773 p->prio = --least_priority; 1774 p->swap_map = swap_map; 1775 p->cluster_info = cluster_info; 1776 p->flags |= SWP_WRITEOK; 1777 atomic_long_add(p->pages, &nr_swap_pages); 1778 total_swap_pages += p->pages; 1779 1780 /* insert swap space into swap_list: */ 1781 prev = -1; 1782 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) { 1783 if (p->prio >= swap_info[i]->prio) 1784 break; 1785 prev = i; 1786 } 1787 p->next = i; 1788 if (prev < 0) 1789 swap_list.head = swap_list.next = p->type; 1790 else 1791 swap_info[prev]->next = p->type; 1792 } 1793 1794 static void enable_swap_info(struct swap_info_struct *p, int prio, 1795 unsigned char *swap_map, 1796 struct swap_cluster_info *cluster_info, 1797 unsigned long *frontswap_map) 1798 { 1799 frontswap_init(p->type, frontswap_map); 1800 spin_lock(&swap_lock); 1801 spin_lock(&p->lock); 1802 _enable_swap_info(p, prio, swap_map, cluster_info); 1803 spin_unlock(&p->lock); 1804 spin_unlock(&swap_lock); 1805 } 1806 1807 static void reinsert_swap_info(struct swap_info_struct *p) 1808 { 1809 spin_lock(&swap_lock); 1810 spin_lock(&p->lock); 1811 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info); 1812 spin_unlock(&p->lock); 1813 spin_unlock(&swap_lock); 1814 } 1815 1816 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 1817 { 1818 struct swap_info_struct *p = NULL; 1819 unsigned char *swap_map; 1820 struct swap_cluster_info *cluster_info; 1821 unsigned long *frontswap_map; 1822 struct file *swap_file, *victim; 1823 struct address_space *mapping; 1824 struct inode *inode; 1825 struct filename *pathname; 1826 int i, type, prev; 1827 int err; 1828 unsigned int old_block_size; 1829 1830 if (!capable(CAP_SYS_ADMIN)) 1831 return -EPERM; 1832 1833 BUG_ON(!current->mm); 1834 1835 pathname = getname(specialfile); 1836 if (IS_ERR(pathname)) 1837 return PTR_ERR(pathname); 1838 1839 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 1840 err = PTR_ERR(victim); 1841 if (IS_ERR(victim)) 1842 goto out; 1843 1844 mapping = victim->f_mapping; 1845 prev = -1; 1846 spin_lock(&swap_lock); 1847 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) { 1848 p = swap_info[type]; 1849 if (p->flags & SWP_WRITEOK) { 1850 if (p->swap_file->f_mapping == mapping) 1851 break; 1852 } 1853 prev = type; 1854 } 1855 if (type < 0) { 1856 err = -EINVAL; 1857 spin_unlock(&swap_lock); 1858 goto out_dput; 1859 } 1860 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 1861 vm_unacct_memory(p->pages); 1862 else { 1863 err = -ENOMEM; 1864 spin_unlock(&swap_lock); 1865 goto out_dput; 1866 } 1867 if (prev < 0) 1868 swap_list.head = p->next; 1869 else 1870 swap_info[prev]->next = p->next; 1871 if (type == swap_list.next) { 1872 /* just pick something that's safe... */ 1873 swap_list.next = swap_list.head; 1874 } 1875 spin_lock(&p->lock); 1876 if (p->prio < 0) { 1877 for (i = p->next; i >= 0; i = swap_info[i]->next) 1878 swap_info[i]->prio = p->prio--; 1879 least_priority++; 1880 } 1881 atomic_long_sub(p->pages, &nr_swap_pages); 1882 total_swap_pages -= p->pages; 1883 p->flags &= ~SWP_WRITEOK; 1884 spin_unlock(&p->lock); 1885 spin_unlock(&swap_lock); 1886 1887 set_current_oom_origin(); 1888 err = try_to_unuse(type, false, 0); /* force all pages to be unused */ 1889 clear_current_oom_origin(); 1890 1891 if (err) { 1892 /* re-insert swap space back into swap_list */ 1893 reinsert_swap_info(p); 1894 goto out_dput; 1895 } 1896 1897 flush_work(&p->discard_work); 1898 1899 destroy_swap_extents(p); 1900 if (p->flags & SWP_CONTINUED) 1901 free_swap_count_continuations(p); 1902 1903 mutex_lock(&swapon_mutex); 1904 spin_lock(&swap_lock); 1905 spin_lock(&p->lock); 1906 drain_mmlist(); 1907 1908 /* wait for anyone still in scan_swap_map */ 1909 p->highest_bit = 0; /* cuts scans short */ 1910 while (p->flags >= SWP_SCANNING) { 1911 spin_unlock(&p->lock); 1912 spin_unlock(&swap_lock); 1913 schedule_timeout_uninterruptible(1); 1914 spin_lock(&swap_lock); 1915 spin_lock(&p->lock); 1916 } 1917 1918 swap_file = p->swap_file; 1919 old_block_size = p->old_block_size; 1920 p->swap_file = NULL; 1921 p->max = 0; 1922 swap_map = p->swap_map; 1923 p->swap_map = NULL; 1924 cluster_info = p->cluster_info; 1925 p->cluster_info = NULL; 1926 p->flags = 0; 1927 frontswap_map = frontswap_map_get(p); 1928 spin_unlock(&p->lock); 1929 spin_unlock(&swap_lock); 1930 frontswap_invalidate_area(type); 1931 frontswap_map_set(p, NULL); 1932 mutex_unlock(&swapon_mutex); 1933 free_percpu(p->percpu_cluster); 1934 p->percpu_cluster = NULL; 1935 vfree(swap_map); 1936 vfree(cluster_info); 1937 vfree(frontswap_map); 1938 /* Destroy swap account information */ 1939 swap_cgroup_swapoff(type); 1940 1941 inode = mapping->host; 1942 if (S_ISBLK(inode->i_mode)) { 1943 struct block_device *bdev = I_BDEV(inode); 1944 set_blocksize(bdev, old_block_size); 1945 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 1946 } else { 1947 mutex_lock(&inode->i_mutex); 1948 inode->i_flags &= ~S_SWAPFILE; 1949 mutex_unlock(&inode->i_mutex); 1950 } 1951 filp_close(swap_file, NULL); 1952 err = 0; 1953 atomic_inc(&proc_poll_event); 1954 wake_up_interruptible(&proc_poll_wait); 1955 1956 out_dput: 1957 filp_close(victim, NULL); 1958 out: 1959 putname(pathname); 1960 return err; 1961 } 1962 1963 #ifdef CONFIG_PROC_FS 1964 static unsigned swaps_poll(struct file *file, poll_table *wait) 1965 { 1966 struct seq_file *seq = file->private_data; 1967 1968 poll_wait(file, &proc_poll_wait, wait); 1969 1970 if (seq->poll_event != atomic_read(&proc_poll_event)) { 1971 seq->poll_event = atomic_read(&proc_poll_event); 1972 return POLLIN | POLLRDNORM | POLLERR | POLLPRI; 1973 } 1974 1975 return POLLIN | POLLRDNORM; 1976 } 1977 1978 /* iterator */ 1979 static void *swap_start(struct seq_file *swap, loff_t *pos) 1980 { 1981 struct swap_info_struct *si; 1982 int type; 1983 loff_t l = *pos; 1984 1985 mutex_lock(&swapon_mutex); 1986 1987 if (!l) 1988 return SEQ_START_TOKEN; 1989 1990 for (type = 0; type < nr_swapfiles; type++) { 1991 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 1992 si = swap_info[type]; 1993 if (!(si->flags & SWP_USED) || !si->swap_map) 1994 continue; 1995 if (!--l) 1996 return si; 1997 } 1998 1999 return NULL; 2000 } 2001 2002 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2003 { 2004 struct swap_info_struct *si = v; 2005 int type; 2006 2007 if (v == SEQ_START_TOKEN) 2008 type = 0; 2009 else 2010 type = si->type + 1; 2011 2012 for (; type < nr_swapfiles; type++) { 2013 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 2014 si = swap_info[type]; 2015 if (!(si->flags & SWP_USED) || !si->swap_map) 2016 continue; 2017 ++*pos; 2018 return si; 2019 } 2020 2021 return NULL; 2022 } 2023 2024 static void swap_stop(struct seq_file *swap, void *v) 2025 { 2026 mutex_unlock(&swapon_mutex); 2027 } 2028 2029 static int swap_show(struct seq_file *swap, void *v) 2030 { 2031 struct swap_info_struct *si = v; 2032 struct file *file; 2033 int len; 2034 2035 if (si == SEQ_START_TOKEN) { 2036 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 2037 return 0; 2038 } 2039 2040 file = si->swap_file; 2041 len = seq_path(swap, &file->f_path, " \t\n\\"); 2042 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 2043 len < 40 ? 40 - len : 1, " ", 2044 S_ISBLK(file_inode(file)->i_mode) ? 2045 "partition" : "file\t", 2046 si->pages << (PAGE_SHIFT - 10), 2047 si->inuse_pages << (PAGE_SHIFT - 10), 2048 si->prio); 2049 return 0; 2050 } 2051 2052 static const struct seq_operations swaps_op = { 2053 .start = swap_start, 2054 .next = swap_next, 2055 .stop = swap_stop, 2056 .show = swap_show 2057 }; 2058 2059 static int swaps_open(struct inode *inode, struct file *file) 2060 { 2061 struct seq_file *seq; 2062 int ret; 2063 2064 ret = seq_open(file, &swaps_op); 2065 if (ret) 2066 return ret; 2067 2068 seq = file->private_data; 2069 seq->poll_event = atomic_read(&proc_poll_event); 2070 return 0; 2071 } 2072 2073 static const struct file_operations proc_swaps_operations = { 2074 .open = swaps_open, 2075 .read = seq_read, 2076 .llseek = seq_lseek, 2077 .release = seq_release, 2078 .poll = swaps_poll, 2079 }; 2080 2081 static int __init procswaps_init(void) 2082 { 2083 proc_create("swaps", 0, NULL, &proc_swaps_operations); 2084 return 0; 2085 } 2086 __initcall(procswaps_init); 2087 #endif /* CONFIG_PROC_FS */ 2088 2089 #ifdef MAX_SWAPFILES_CHECK 2090 static int __init max_swapfiles_check(void) 2091 { 2092 MAX_SWAPFILES_CHECK(); 2093 return 0; 2094 } 2095 late_initcall(max_swapfiles_check); 2096 #endif 2097 2098 static struct swap_info_struct *alloc_swap_info(void) 2099 { 2100 struct swap_info_struct *p; 2101 unsigned int type; 2102 2103 p = kzalloc(sizeof(*p), GFP_KERNEL); 2104 if (!p) 2105 return ERR_PTR(-ENOMEM); 2106 2107 spin_lock(&swap_lock); 2108 for (type = 0; type < nr_swapfiles; type++) { 2109 if (!(swap_info[type]->flags & SWP_USED)) 2110 break; 2111 } 2112 if (type >= MAX_SWAPFILES) { 2113 spin_unlock(&swap_lock); 2114 kfree(p); 2115 return ERR_PTR(-EPERM); 2116 } 2117 if (type >= nr_swapfiles) { 2118 p->type = type; 2119 swap_info[type] = p; 2120 /* 2121 * Write swap_info[type] before nr_swapfiles, in case a 2122 * racing procfs swap_start() or swap_next() is reading them. 2123 * (We never shrink nr_swapfiles, we never free this entry.) 2124 */ 2125 smp_wmb(); 2126 nr_swapfiles++; 2127 } else { 2128 kfree(p); 2129 p = swap_info[type]; 2130 /* 2131 * Do not memset this entry: a racing procfs swap_next() 2132 * would be relying on p->type to remain valid. 2133 */ 2134 } 2135 INIT_LIST_HEAD(&p->first_swap_extent.list); 2136 p->flags = SWP_USED; 2137 p->next = -1; 2138 spin_unlock(&swap_lock); 2139 spin_lock_init(&p->lock); 2140 2141 return p; 2142 } 2143 2144 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2145 { 2146 int error; 2147 2148 if (S_ISBLK(inode->i_mode)) { 2149 p->bdev = bdgrab(I_BDEV(inode)); 2150 error = blkdev_get(p->bdev, 2151 FMODE_READ | FMODE_WRITE | FMODE_EXCL, 2152 sys_swapon); 2153 if (error < 0) { 2154 p->bdev = NULL; 2155 return -EINVAL; 2156 } 2157 p->old_block_size = block_size(p->bdev); 2158 error = set_blocksize(p->bdev, PAGE_SIZE); 2159 if (error < 0) 2160 return error; 2161 p->flags |= SWP_BLKDEV; 2162 } else if (S_ISREG(inode->i_mode)) { 2163 p->bdev = inode->i_sb->s_bdev; 2164 mutex_lock(&inode->i_mutex); 2165 if (IS_SWAPFILE(inode)) 2166 return -EBUSY; 2167 } else 2168 return -EINVAL; 2169 2170 return 0; 2171 } 2172 2173 static unsigned long read_swap_header(struct swap_info_struct *p, 2174 union swap_header *swap_header, 2175 struct inode *inode) 2176 { 2177 int i; 2178 unsigned long maxpages; 2179 unsigned long swapfilepages; 2180 unsigned long last_page; 2181 2182 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2183 pr_err("Unable to find swap-space signature\n"); 2184 return 0; 2185 } 2186 2187 /* swap partition endianess hack... */ 2188 if (swab32(swap_header->info.version) == 1) { 2189 swab32s(&swap_header->info.version); 2190 swab32s(&swap_header->info.last_page); 2191 swab32s(&swap_header->info.nr_badpages); 2192 for (i = 0; i < swap_header->info.nr_badpages; i++) 2193 swab32s(&swap_header->info.badpages[i]); 2194 } 2195 /* Check the swap header's sub-version */ 2196 if (swap_header->info.version != 1) { 2197 pr_warn("Unable to handle swap header version %d\n", 2198 swap_header->info.version); 2199 return 0; 2200 } 2201 2202 p->lowest_bit = 1; 2203 p->cluster_next = 1; 2204 p->cluster_nr = 0; 2205 2206 /* 2207 * Find out how many pages are allowed for a single swap 2208 * device. There are two limiting factors: 1) the number 2209 * of bits for the swap offset in the swp_entry_t type, and 2210 * 2) the number of bits in the swap pte as defined by the 2211 * different architectures. In order to find the 2212 * largest possible bit mask, a swap entry with swap type 0 2213 * and swap offset ~0UL is created, encoded to a swap pte, 2214 * decoded to a swp_entry_t again, and finally the swap 2215 * offset is extracted. This will mask all the bits from 2216 * the initial ~0UL mask that can't be encoded in either 2217 * the swp_entry_t or the architecture definition of a 2218 * swap pte. 2219 */ 2220 maxpages = swp_offset(pte_to_swp_entry( 2221 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2222 last_page = swap_header->info.last_page; 2223 if (last_page > maxpages) { 2224 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2225 maxpages << (PAGE_SHIFT - 10), 2226 last_page << (PAGE_SHIFT - 10)); 2227 } 2228 if (maxpages > last_page) { 2229 maxpages = last_page + 1; 2230 /* p->max is an unsigned int: don't overflow it */ 2231 if ((unsigned int)maxpages == 0) 2232 maxpages = UINT_MAX; 2233 } 2234 p->highest_bit = maxpages - 1; 2235 2236 if (!maxpages) 2237 return 0; 2238 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2239 if (swapfilepages && maxpages > swapfilepages) { 2240 pr_warn("Swap area shorter than signature indicates\n"); 2241 return 0; 2242 } 2243 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2244 return 0; 2245 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2246 return 0; 2247 2248 return maxpages; 2249 } 2250 2251 static int setup_swap_map_and_extents(struct swap_info_struct *p, 2252 union swap_header *swap_header, 2253 unsigned char *swap_map, 2254 struct swap_cluster_info *cluster_info, 2255 unsigned long maxpages, 2256 sector_t *span) 2257 { 2258 int i; 2259 unsigned int nr_good_pages; 2260 int nr_extents; 2261 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2262 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER; 2263 2264 nr_good_pages = maxpages - 1; /* omit header page */ 2265 2266 cluster_set_null(&p->free_cluster_head); 2267 cluster_set_null(&p->free_cluster_tail); 2268 cluster_set_null(&p->discard_cluster_head); 2269 cluster_set_null(&p->discard_cluster_tail); 2270 2271 for (i = 0; i < swap_header->info.nr_badpages; i++) { 2272 unsigned int page_nr = swap_header->info.badpages[i]; 2273 if (page_nr == 0 || page_nr > swap_header->info.last_page) 2274 return -EINVAL; 2275 if (page_nr < maxpages) { 2276 swap_map[page_nr] = SWAP_MAP_BAD; 2277 nr_good_pages--; 2278 /* 2279 * Haven't marked the cluster free yet, no list 2280 * operation involved 2281 */ 2282 inc_cluster_info_page(p, cluster_info, page_nr); 2283 } 2284 } 2285 2286 /* Haven't marked the cluster free yet, no list operation involved */ 2287 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 2288 inc_cluster_info_page(p, cluster_info, i); 2289 2290 if (nr_good_pages) { 2291 swap_map[0] = SWAP_MAP_BAD; 2292 /* 2293 * Not mark the cluster free yet, no list 2294 * operation involved 2295 */ 2296 inc_cluster_info_page(p, cluster_info, 0); 2297 p->max = maxpages; 2298 p->pages = nr_good_pages; 2299 nr_extents = setup_swap_extents(p, span); 2300 if (nr_extents < 0) 2301 return nr_extents; 2302 nr_good_pages = p->pages; 2303 } 2304 if (!nr_good_pages) { 2305 pr_warn("Empty swap-file\n"); 2306 return -EINVAL; 2307 } 2308 2309 if (!cluster_info) 2310 return nr_extents; 2311 2312 for (i = 0; i < nr_clusters; i++) { 2313 if (!cluster_count(&cluster_info[idx])) { 2314 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 2315 if (cluster_is_null(&p->free_cluster_head)) { 2316 cluster_set_next_flag(&p->free_cluster_head, 2317 idx, 0); 2318 cluster_set_next_flag(&p->free_cluster_tail, 2319 idx, 0); 2320 } else { 2321 unsigned int tail; 2322 2323 tail = cluster_next(&p->free_cluster_tail); 2324 cluster_set_next(&cluster_info[tail], idx); 2325 cluster_set_next_flag(&p->free_cluster_tail, 2326 idx, 0); 2327 } 2328 } 2329 idx++; 2330 if (idx == nr_clusters) 2331 idx = 0; 2332 } 2333 return nr_extents; 2334 } 2335 2336 /* 2337 * Helper to sys_swapon determining if a given swap 2338 * backing device queue supports DISCARD operations. 2339 */ 2340 static bool swap_discardable(struct swap_info_struct *si) 2341 { 2342 struct request_queue *q = bdev_get_queue(si->bdev); 2343 2344 if (!q || !blk_queue_discard(q)) 2345 return false; 2346 2347 return true; 2348 } 2349 2350 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 2351 { 2352 struct swap_info_struct *p; 2353 struct filename *name; 2354 struct file *swap_file = NULL; 2355 struct address_space *mapping; 2356 int i; 2357 int prio; 2358 int error; 2359 union swap_header *swap_header; 2360 int nr_extents; 2361 sector_t span; 2362 unsigned long maxpages; 2363 unsigned char *swap_map = NULL; 2364 struct swap_cluster_info *cluster_info = NULL; 2365 unsigned long *frontswap_map = NULL; 2366 struct page *page = NULL; 2367 struct inode *inode = NULL; 2368 2369 if (swap_flags & ~SWAP_FLAGS_VALID) 2370 return -EINVAL; 2371 2372 if (!capable(CAP_SYS_ADMIN)) 2373 return -EPERM; 2374 2375 p = alloc_swap_info(); 2376 if (IS_ERR(p)) 2377 return PTR_ERR(p); 2378 2379 INIT_WORK(&p->discard_work, swap_discard_work); 2380 2381 name = getname(specialfile); 2382 if (IS_ERR(name)) { 2383 error = PTR_ERR(name); 2384 name = NULL; 2385 goto bad_swap; 2386 } 2387 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 2388 if (IS_ERR(swap_file)) { 2389 error = PTR_ERR(swap_file); 2390 swap_file = NULL; 2391 goto bad_swap; 2392 } 2393 2394 p->swap_file = swap_file; 2395 mapping = swap_file->f_mapping; 2396 2397 for (i = 0; i < nr_swapfiles; i++) { 2398 struct swap_info_struct *q = swap_info[i]; 2399 2400 if (q == p || !q->swap_file) 2401 continue; 2402 if (mapping == q->swap_file->f_mapping) { 2403 error = -EBUSY; 2404 goto bad_swap; 2405 } 2406 } 2407 2408 inode = mapping->host; 2409 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */ 2410 error = claim_swapfile(p, inode); 2411 if (unlikely(error)) 2412 goto bad_swap; 2413 2414 /* 2415 * Read the swap header. 2416 */ 2417 if (!mapping->a_ops->readpage) { 2418 error = -EINVAL; 2419 goto bad_swap; 2420 } 2421 page = read_mapping_page(mapping, 0, swap_file); 2422 if (IS_ERR(page)) { 2423 error = PTR_ERR(page); 2424 goto bad_swap; 2425 } 2426 swap_header = kmap(page); 2427 2428 maxpages = read_swap_header(p, swap_header, inode); 2429 if (unlikely(!maxpages)) { 2430 error = -EINVAL; 2431 goto bad_swap; 2432 } 2433 2434 /* OK, set up the swap map and apply the bad block list */ 2435 swap_map = vzalloc(maxpages); 2436 if (!swap_map) { 2437 error = -ENOMEM; 2438 goto bad_swap; 2439 } 2440 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { 2441 p->flags |= SWP_SOLIDSTATE; 2442 /* 2443 * select a random position to start with to help wear leveling 2444 * SSD 2445 */ 2446 p->cluster_next = 1 + (prandom_u32() % p->highest_bit); 2447 2448 cluster_info = vzalloc(DIV_ROUND_UP(maxpages, 2449 SWAPFILE_CLUSTER) * sizeof(*cluster_info)); 2450 if (!cluster_info) { 2451 error = -ENOMEM; 2452 goto bad_swap; 2453 } 2454 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 2455 if (!p->percpu_cluster) { 2456 error = -ENOMEM; 2457 goto bad_swap; 2458 } 2459 for_each_possible_cpu(i) { 2460 struct percpu_cluster *cluster; 2461 cluster = per_cpu_ptr(p->percpu_cluster, i); 2462 cluster_set_null(&cluster->index); 2463 } 2464 } 2465 2466 error = swap_cgroup_swapon(p->type, maxpages); 2467 if (error) 2468 goto bad_swap; 2469 2470 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 2471 cluster_info, maxpages, &span); 2472 if (unlikely(nr_extents < 0)) { 2473 error = nr_extents; 2474 goto bad_swap; 2475 } 2476 /* frontswap enabled? set up bit-per-page map for frontswap */ 2477 if (frontswap_enabled) 2478 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long)); 2479 2480 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { 2481 /* 2482 * When discard is enabled for swap with no particular 2483 * policy flagged, we set all swap discard flags here in 2484 * order to sustain backward compatibility with older 2485 * swapon(8) releases. 2486 */ 2487 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 2488 SWP_PAGE_DISCARD); 2489 2490 /* 2491 * By flagging sys_swapon, a sysadmin can tell us to 2492 * either do single-time area discards only, or to just 2493 * perform discards for released swap page-clusters. 2494 * Now it's time to adjust the p->flags accordingly. 2495 */ 2496 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 2497 p->flags &= ~SWP_PAGE_DISCARD; 2498 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 2499 p->flags &= ~SWP_AREA_DISCARD; 2500 2501 /* issue a swapon-time discard if it's still required */ 2502 if (p->flags & SWP_AREA_DISCARD) { 2503 int err = discard_swap(p); 2504 if (unlikely(err)) 2505 pr_err("swapon: discard_swap(%p): %d\n", 2506 p, err); 2507 } 2508 } 2509 2510 mutex_lock(&swapon_mutex); 2511 prio = -1; 2512 if (swap_flags & SWAP_FLAG_PREFER) 2513 prio = 2514 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 2515 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 2516 2517 pr_info("Adding %uk swap on %s. " 2518 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 2519 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 2520 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 2521 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 2522 (p->flags & SWP_DISCARDABLE) ? "D" : "", 2523 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 2524 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 2525 (frontswap_map) ? "FS" : ""); 2526 2527 mutex_unlock(&swapon_mutex); 2528 atomic_inc(&proc_poll_event); 2529 wake_up_interruptible(&proc_poll_wait); 2530 2531 if (S_ISREG(inode->i_mode)) 2532 inode->i_flags |= S_SWAPFILE; 2533 error = 0; 2534 goto out; 2535 bad_swap: 2536 free_percpu(p->percpu_cluster); 2537 p->percpu_cluster = NULL; 2538 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 2539 set_blocksize(p->bdev, p->old_block_size); 2540 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2541 } 2542 destroy_swap_extents(p); 2543 swap_cgroup_swapoff(p->type); 2544 spin_lock(&swap_lock); 2545 p->swap_file = NULL; 2546 p->flags = 0; 2547 spin_unlock(&swap_lock); 2548 vfree(swap_map); 2549 vfree(cluster_info); 2550 if (swap_file) { 2551 if (inode && S_ISREG(inode->i_mode)) { 2552 mutex_unlock(&inode->i_mutex); 2553 inode = NULL; 2554 } 2555 filp_close(swap_file, NULL); 2556 } 2557 out: 2558 if (page && !IS_ERR(page)) { 2559 kunmap(page); 2560 page_cache_release(page); 2561 } 2562 if (name) 2563 putname(name); 2564 if (inode && S_ISREG(inode->i_mode)) 2565 mutex_unlock(&inode->i_mutex); 2566 return error; 2567 } 2568 2569 void si_swapinfo(struct sysinfo *val) 2570 { 2571 unsigned int type; 2572 unsigned long nr_to_be_unused = 0; 2573 2574 spin_lock(&swap_lock); 2575 for (type = 0; type < nr_swapfiles; type++) { 2576 struct swap_info_struct *si = swap_info[type]; 2577 2578 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 2579 nr_to_be_unused += si->inuse_pages; 2580 } 2581 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 2582 val->totalswap = total_swap_pages + nr_to_be_unused; 2583 spin_unlock(&swap_lock); 2584 } 2585 2586 /* 2587 * Verify that a swap entry is valid and increment its swap map count. 2588 * 2589 * Returns error code in following case. 2590 * - success -> 0 2591 * - swp_entry is invalid -> EINVAL 2592 * - swp_entry is migration entry -> EINVAL 2593 * - swap-cache reference is requested but there is already one. -> EEXIST 2594 * - swap-cache reference is requested but the entry is not used. -> ENOENT 2595 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 2596 */ 2597 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 2598 { 2599 struct swap_info_struct *p; 2600 unsigned long offset, type; 2601 unsigned char count; 2602 unsigned char has_cache; 2603 int err = -EINVAL; 2604 2605 if (non_swap_entry(entry)) 2606 goto out; 2607 2608 type = swp_type(entry); 2609 if (type >= nr_swapfiles) 2610 goto bad_file; 2611 p = swap_info[type]; 2612 offset = swp_offset(entry); 2613 2614 spin_lock(&p->lock); 2615 if (unlikely(offset >= p->max)) 2616 goto unlock_out; 2617 2618 count = p->swap_map[offset]; 2619 2620 /* 2621 * swapin_readahead() doesn't check if a swap entry is valid, so the 2622 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 2623 */ 2624 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 2625 err = -ENOENT; 2626 goto unlock_out; 2627 } 2628 2629 has_cache = count & SWAP_HAS_CACHE; 2630 count &= ~SWAP_HAS_CACHE; 2631 err = 0; 2632 2633 if (usage == SWAP_HAS_CACHE) { 2634 2635 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 2636 if (!has_cache && count) 2637 has_cache = SWAP_HAS_CACHE; 2638 else if (has_cache) /* someone else added cache */ 2639 err = -EEXIST; 2640 else /* no users remaining */ 2641 err = -ENOENT; 2642 2643 } else if (count || has_cache) { 2644 2645 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 2646 count += usage; 2647 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 2648 err = -EINVAL; 2649 else if (swap_count_continued(p, offset, count)) 2650 count = COUNT_CONTINUED; 2651 else 2652 err = -ENOMEM; 2653 } else 2654 err = -ENOENT; /* unused swap entry */ 2655 2656 p->swap_map[offset] = count | has_cache; 2657 2658 unlock_out: 2659 spin_unlock(&p->lock); 2660 out: 2661 return err; 2662 2663 bad_file: 2664 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val); 2665 goto out; 2666 } 2667 2668 /* 2669 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 2670 * (in which case its reference count is never incremented). 2671 */ 2672 void swap_shmem_alloc(swp_entry_t entry) 2673 { 2674 __swap_duplicate(entry, SWAP_MAP_SHMEM); 2675 } 2676 2677 /* 2678 * Increase reference count of swap entry by 1. 2679 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 2680 * but could not be atomically allocated. Returns 0, just as if it succeeded, 2681 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 2682 * might occur if a page table entry has got corrupted. 2683 */ 2684 int swap_duplicate(swp_entry_t entry) 2685 { 2686 int err = 0; 2687 2688 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 2689 err = add_swap_count_continuation(entry, GFP_ATOMIC); 2690 return err; 2691 } 2692 2693 /* 2694 * @entry: swap entry for which we allocate swap cache. 2695 * 2696 * Called when allocating swap cache for existing swap entry, 2697 * This can return error codes. Returns 0 at success. 2698 * -EBUSY means there is a swap cache. 2699 * Note: return code is different from swap_duplicate(). 2700 */ 2701 int swapcache_prepare(swp_entry_t entry) 2702 { 2703 return __swap_duplicate(entry, SWAP_HAS_CACHE); 2704 } 2705 2706 struct swap_info_struct *page_swap_info(struct page *page) 2707 { 2708 swp_entry_t swap = { .val = page_private(page) }; 2709 BUG_ON(!PageSwapCache(page)); 2710 return swap_info[swp_type(swap)]; 2711 } 2712 2713 /* 2714 * out-of-line __page_file_ methods to avoid include hell. 2715 */ 2716 struct address_space *__page_file_mapping(struct page *page) 2717 { 2718 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 2719 return page_swap_info(page)->swap_file->f_mapping; 2720 } 2721 EXPORT_SYMBOL_GPL(__page_file_mapping); 2722 2723 pgoff_t __page_file_index(struct page *page) 2724 { 2725 swp_entry_t swap = { .val = page_private(page) }; 2726 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 2727 return swp_offset(swap); 2728 } 2729 EXPORT_SYMBOL_GPL(__page_file_index); 2730 2731 /* 2732 * add_swap_count_continuation - called when a swap count is duplicated 2733 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 2734 * page of the original vmalloc'ed swap_map, to hold the continuation count 2735 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 2736 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 2737 * 2738 * These continuation pages are seldom referenced: the common paths all work 2739 * on the original swap_map, only referring to a continuation page when the 2740 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 2741 * 2742 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 2743 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 2744 * can be called after dropping locks. 2745 */ 2746 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 2747 { 2748 struct swap_info_struct *si; 2749 struct page *head; 2750 struct page *page; 2751 struct page *list_page; 2752 pgoff_t offset; 2753 unsigned char count; 2754 2755 /* 2756 * When debugging, it's easier to use __GFP_ZERO here; but it's better 2757 * for latency not to zero a page while GFP_ATOMIC and holding locks. 2758 */ 2759 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 2760 2761 si = swap_info_get(entry); 2762 if (!si) { 2763 /* 2764 * An acceptable race has occurred since the failing 2765 * __swap_duplicate(): the swap entry has been freed, 2766 * perhaps even the whole swap_map cleared for swapoff. 2767 */ 2768 goto outer; 2769 } 2770 2771 offset = swp_offset(entry); 2772 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 2773 2774 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 2775 /* 2776 * The higher the swap count, the more likely it is that tasks 2777 * will race to add swap count continuation: we need to avoid 2778 * over-provisioning. 2779 */ 2780 goto out; 2781 } 2782 2783 if (!page) { 2784 spin_unlock(&si->lock); 2785 return -ENOMEM; 2786 } 2787 2788 /* 2789 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 2790 * no architecture is using highmem pages for kernel page tables: so it 2791 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 2792 */ 2793 head = vmalloc_to_page(si->swap_map + offset); 2794 offset &= ~PAGE_MASK; 2795 2796 /* 2797 * Page allocation does not initialize the page's lru field, 2798 * but it does always reset its private field. 2799 */ 2800 if (!page_private(head)) { 2801 BUG_ON(count & COUNT_CONTINUED); 2802 INIT_LIST_HEAD(&head->lru); 2803 set_page_private(head, SWP_CONTINUED); 2804 si->flags |= SWP_CONTINUED; 2805 } 2806 2807 list_for_each_entry(list_page, &head->lru, lru) { 2808 unsigned char *map; 2809 2810 /* 2811 * If the previous map said no continuation, but we've found 2812 * a continuation page, free our allocation and use this one. 2813 */ 2814 if (!(count & COUNT_CONTINUED)) 2815 goto out; 2816 2817 map = kmap_atomic(list_page) + offset; 2818 count = *map; 2819 kunmap_atomic(map); 2820 2821 /* 2822 * If this continuation count now has some space in it, 2823 * free our allocation and use this one. 2824 */ 2825 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 2826 goto out; 2827 } 2828 2829 list_add_tail(&page->lru, &head->lru); 2830 page = NULL; /* now it's attached, don't free it */ 2831 out: 2832 spin_unlock(&si->lock); 2833 outer: 2834 if (page) 2835 __free_page(page); 2836 return 0; 2837 } 2838 2839 /* 2840 * swap_count_continued - when the original swap_map count is incremented 2841 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 2842 * into, carry if so, or else fail until a new continuation page is allocated; 2843 * when the original swap_map count is decremented from 0 with continuation, 2844 * borrow from the continuation and report whether it still holds more. 2845 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock. 2846 */ 2847 static bool swap_count_continued(struct swap_info_struct *si, 2848 pgoff_t offset, unsigned char count) 2849 { 2850 struct page *head; 2851 struct page *page; 2852 unsigned char *map; 2853 2854 head = vmalloc_to_page(si->swap_map + offset); 2855 if (page_private(head) != SWP_CONTINUED) { 2856 BUG_ON(count & COUNT_CONTINUED); 2857 return false; /* need to add count continuation */ 2858 } 2859 2860 offset &= ~PAGE_MASK; 2861 page = list_entry(head->lru.next, struct page, lru); 2862 map = kmap_atomic(page) + offset; 2863 2864 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 2865 goto init_map; /* jump over SWAP_CONT_MAX checks */ 2866 2867 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 2868 /* 2869 * Think of how you add 1 to 999 2870 */ 2871 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 2872 kunmap_atomic(map); 2873 page = list_entry(page->lru.next, struct page, lru); 2874 BUG_ON(page == head); 2875 map = kmap_atomic(page) + offset; 2876 } 2877 if (*map == SWAP_CONT_MAX) { 2878 kunmap_atomic(map); 2879 page = list_entry(page->lru.next, struct page, lru); 2880 if (page == head) 2881 return false; /* add count continuation */ 2882 map = kmap_atomic(page) + offset; 2883 init_map: *map = 0; /* we didn't zero the page */ 2884 } 2885 *map += 1; 2886 kunmap_atomic(map); 2887 page = list_entry(page->lru.prev, struct page, lru); 2888 while (page != head) { 2889 map = kmap_atomic(page) + offset; 2890 *map = COUNT_CONTINUED; 2891 kunmap_atomic(map); 2892 page = list_entry(page->lru.prev, struct page, lru); 2893 } 2894 return true; /* incremented */ 2895 2896 } else { /* decrementing */ 2897 /* 2898 * Think of how you subtract 1 from 1000 2899 */ 2900 BUG_ON(count != COUNT_CONTINUED); 2901 while (*map == COUNT_CONTINUED) { 2902 kunmap_atomic(map); 2903 page = list_entry(page->lru.next, struct page, lru); 2904 BUG_ON(page == head); 2905 map = kmap_atomic(page) + offset; 2906 } 2907 BUG_ON(*map == 0); 2908 *map -= 1; 2909 if (*map == 0) 2910 count = 0; 2911 kunmap_atomic(map); 2912 page = list_entry(page->lru.prev, struct page, lru); 2913 while (page != head) { 2914 map = kmap_atomic(page) + offset; 2915 *map = SWAP_CONT_MAX | count; 2916 count = COUNT_CONTINUED; 2917 kunmap_atomic(map); 2918 page = list_entry(page->lru.prev, struct page, lru); 2919 } 2920 return count == COUNT_CONTINUED; 2921 } 2922 } 2923 2924 /* 2925 * free_swap_count_continuations - swapoff free all the continuation pages 2926 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 2927 */ 2928 static void free_swap_count_continuations(struct swap_info_struct *si) 2929 { 2930 pgoff_t offset; 2931 2932 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 2933 struct page *head; 2934 head = vmalloc_to_page(si->swap_map + offset); 2935 if (page_private(head)) { 2936 struct list_head *this, *next; 2937 list_for_each_safe(this, next, &head->lru) { 2938 struct page *page; 2939 page = list_entry(this, struct page, lru); 2940 list_del(this); 2941 __free_page(page); 2942 } 2943 } 2944 } 2945 } 2946