xref: /linux/mm/swapfile.c (revision d8310914848223de7ec04d55bd15f013f0dad803)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 #include <linux/suspend.h>
44 #include <linux/zswap.h>
45 #include <linux/plist.h>
46 
47 #include <asm/tlbflush.h>
48 #include <linux/swapops.h>
49 #include <linux/swap_cgroup.h>
50 #include "internal.h"
51 #include "swap.h"
52 
53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
54 				 unsigned char);
55 static void free_swap_count_continuations(struct swap_info_struct *);
56 
57 static DEFINE_SPINLOCK(swap_lock);
58 static unsigned int nr_swapfiles;
59 atomic_long_t nr_swap_pages;
60 /*
61  * Some modules use swappable objects and may try to swap them out under
62  * memory pressure (via the shrinker). Before doing so, they may wish to
63  * check to see if any swap space is available.
64  */
65 EXPORT_SYMBOL_GPL(nr_swap_pages);
66 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
67 long total_swap_pages;
68 static int least_priority = -1;
69 unsigned long swapfile_maximum_size;
70 #ifdef CONFIG_MIGRATION
71 bool swap_migration_ad_supported;
72 #endif	/* CONFIG_MIGRATION */
73 
74 static const char Bad_file[] = "Bad swap file entry ";
75 static const char Unused_file[] = "Unused swap file entry ";
76 static const char Bad_offset[] = "Bad swap offset entry ";
77 static const char Unused_offset[] = "Unused swap offset entry ";
78 
79 /*
80  * all active swap_info_structs
81  * protected with swap_lock, and ordered by priority.
82  */
83 static PLIST_HEAD(swap_active_head);
84 
85 /*
86  * all available (active, not full) swap_info_structs
87  * protected with swap_avail_lock, ordered by priority.
88  * This is used by folio_alloc_swap() instead of swap_active_head
89  * because swap_active_head includes all swap_info_structs,
90  * but folio_alloc_swap() doesn't need to look at full ones.
91  * This uses its own lock instead of swap_lock because when a
92  * swap_info_struct changes between not-full/full, it needs to
93  * add/remove itself to/from this list, but the swap_info_struct->lock
94  * is held and the locking order requires swap_lock to be taken
95  * before any swap_info_struct->lock.
96  */
97 static struct plist_head *swap_avail_heads;
98 static DEFINE_SPINLOCK(swap_avail_lock);
99 
100 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
101 
102 static DEFINE_MUTEX(swapon_mutex);
103 
104 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
105 /* Activity counter to indicate that a swapon or swapoff has occurred */
106 static atomic_t proc_poll_event = ATOMIC_INIT(0);
107 
108 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
109 
110 static struct swap_info_struct *swap_type_to_swap_info(int type)
111 {
112 	if (type >= MAX_SWAPFILES)
113 		return NULL;
114 
115 	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
116 }
117 
118 static inline unsigned char swap_count(unsigned char ent)
119 {
120 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
121 }
122 
123 /* Reclaim the swap entry anyway if possible */
124 #define TTRS_ANYWAY		0x1
125 /*
126  * Reclaim the swap entry if there are no more mappings of the
127  * corresponding page
128  */
129 #define TTRS_UNMAPPED		0x2
130 /* Reclaim the swap entry if swap is getting full*/
131 #define TTRS_FULL		0x4
132 
133 /* returns 1 if swap entry is freed */
134 static int __try_to_reclaim_swap(struct swap_info_struct *si,
135 				 unsigned long offset, unsigned long flags)
136 {
137 	swp_entry_t entry = swp_entry(si->type, offset);
138 	struct folio *folio;
139 	int ret = 0;
140 
141 	folio = filemap_get_folio(swap_address_space(entry), offset);
142 	if (IS_ERR(folio))
143 		return 0;
144 	/*
145 	 * When this function is called from scan_swap_map_slots() and it's
146 	 * called by vmscan.c at reclaiming folios. So we hold a folio lock
147 	 * here. We have to use trylock for avoiding deadlock. This is a special
148 	 * case and you should use folio_free_swap() with explicit folio_lock()
149 	 * in usual operations.
150 	 */
151 	if (folio_trylock(folio)) {
152 		if ((flags & TTRS_ANYWAY) ||
153 		    ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
154 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
155 			ret = folio_free_swap(folio);
156 		folio_unlock(folio);
157 	}
158 	folio_put(folio);
159 	return ret;
160 }
161 
162 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
163 {
164 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
165 	return rb_entry(rb, struct swap_extent, rb_node);
166 }
167 
168 static inline struct swap_extent *next_se(struct swap_extent *se)
169 {
170 	struct rb_node *rb = rb_next(&se->rb_node);
171 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
172 }
173 
174 /*
175  * swapon tell device that all the old swap contents can be discarded,
176  * to allow the swap device to optimize its wear-levelling.
177  */
178 static int discard_swap(struct swap_info_struct *si)
179 {
180 	struct swap_extent *se;
181 	sector_t start_block;
182 	sector_t nr_blocks;
183 	int err = 0;
184 
185 	/* Do not discard the swap header page! */
186 	se = first_se(si);
187 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
188 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
189 	if (nr_blocks) {
190 		err = blkdev_issue_discard(si->bdev, start_block,
191 				nr_blocks, GFP_KERNEL);
192 		if (err)
193 			return err;
194 		cond_resched();
195 	}
196 
197 	for (se = next_se(se); se; se = next_se(se)) {
198 		start_block = se->start_block << (PAGE_SHIFT - 9);
199 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
200 
201 		err = blkdev_issue_discard(si->bdev, start_block,
202 				nr_blocks, GFP_KERNEL);
203 		if (err)
204 			break;
205 
206 		cond_resched();
207 	}
208 	return err;		/* That will often be -EOPNOTSUPP */
209 }
210 
211 static struct swap_extent *
212 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
213 {
214 	struct swap_extent *se;
215 	struct rb_node *rb;
216 
217 	rb = sis->swap_extent_root.rb_node;
218 	while (rb) {
219 		se = rb_entry(rb, struct swap_extent, rb_node);
220 		if (offset < se->start_page)
221 			rb = rb->rb_left;
222 		else if (offset >= se->start_page + se->nr_pages)
223 			rb = rb->rb_right;
224 		else
225 			return se;
226 	}
227 	/* It *must* be present */
228 	BUG();
229 }
230 
231 sector_t swap_folio_sector(struct folio *folio)
232 {
233 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
234 	struct swap_extent *se;
235 	sector_t sector;
236 	pgoff_t offset;
237 
238 	offset = swp_offset(folio->swap);
239 	se = offset_to_swap_extent(sis, offset);
240 	sector = se->start_block + (offset - se->start_page);
241 	return sector << (PAGE_SHIFT - 9);
242 }
243 
244 /*
245  * swap allocation tell device that a cluster of swap can now be discarded,
246  * to allow the swap device to optimize its wear-levelling.
247  */
248 static void discard_swap_cluster(struct swap_info_struct *si,
249 				 pgoff_t start_page, pgoff_t nr_pages)
250 {
251 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
252 
253 	while (nr_pages) {
254 		pgoff_t offset = start_page - se->start_page;
255 		sector_t start_block = se->start_block + offset;
256 		sector_t nr_blocks = se->nr_pages - offset;
257 
258 		if (nr_blocks > nr_pages)
259 			nr_blocks = nr_pages;
260 		start_page += nr_blocks;
261 		nr_pages -= nr_blocks;
262 
263 		start_block <<= PAGE_SHIFT - 9;
264 		nr_blocks <<= PAGE_SHIFT - 9;
265 		if (blkdev_issue_discard(si->bdev, start_block,
266 					nr_blocks, GFP_NOIO))
267 			break;
268 
269 		se = next_se(se);
270 	}
271 }
272 
273 #ifdef CONFIG_THP_SWAP
274 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
275 
276 #define swap_entry_size(size)	(size)
277 #else
278 #define SWAPFILE_CLUSTER	256
279 
280 /*
281  * Define swap_entry_size() as constant to let compiler to optimize
282  * out some code if !CONFIG_THP_SWAP
283  */
284 #define swap_entry_size(size)	1
285 #endif
286 #define LATENCY_LIMIT		256
287 
288 static inline void cluster_set_flag(struct swap_cluster_info *info,
289 	unsigned int flag)
290 {
291 	info->flags = flag;
292 }
293 
294 static inline unsigned int cluster_count(struct swap_cluster_info *info)
295 {
296 	return info->data;
297 }
298 
299 static inline void cluster_set_count(struct swap_cluster_info *info,
300 				     unsigned int c)
301 {
302 	info->data = c;
303 }
304 
305 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
306 					 unsigned int c, unsigned int f)
307 {
308 	info->flags = f;
309 	info->data = c;
310 }
311 
312 static inline unsigned int cluster_next(struct swap_cluster_info *info)
313 {
314 	return info->data;
315 }
316 
317 static inline void cluster_set_next(struct swap_cluster_info *info,
318 				    unsigned int n)
319 {
320 	info->data = n;
321 }
322 
323 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
324 					 unsigned int n, unsigned int f)
325 {
326 	info->flags = f;
327 	info->data = n;
328 }
329 
330 static inline bool cluster_is_free(struct swap_cluster_info *info)
331 {
332 	return info->flags & CLUSTER_FLAG_FREE;
333 }
334 
335 static inline bool cluster_is_null(struct swap_cluster_info *info)
336 {
337 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
338 }
339 
340 static inline void cluster_set_null(struct swap_cluster_info *info)
341 {
342 	info->flags = CLUSTER_FLAG_NEXT_NULL;
343 	info->data = 0;
344 }
345 
346 static inline bool cluster_is_huge(struct swap_cluster_info *info)
347 {
348 	if (IS_ENABLED(CONFIG_THP_SWAP))
349 		return info->flags & CLUSTER_FLAG_HUGE;
350 	return false;
351 }
352 
353 static inline void cluster_clear_huge(struct swap_cluster_info *info)
354 {
355 	info->flags &= ~CLUSTER_FLAG_HUGE;
356 }
357 
358 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
359 						     unsigned long offset)
360 {
361 	struct swap_cluster_info *ci;
362 
363 	ci = si->cluster_info;
364 	if (ci) {
365 		ci += offset / SWAPFILE_CLUSTER;
366 		spin_lock(&ci->lock);
367 	}
368 	return ci;
369 }
370 
371 static inline void unlock_cluster(struct swap_cluster_info *ci)
372 {
373 	if (ci)
374 		spin_unlock(&ci->lock);
375 }
376 
377 /*
378  * Determine the locking method in use for this device.  Return
379  * swap_cluster_info if SSD-style cluster-based locking is in place.
380  */
381 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
382 		struct swap_info_struct *si, unsigned long offset)
383 {
384 	struct swap_cluster_info *ci;
385 
386 	/* Try to use fine-grained SSD-style locking if available: */
387 	ci = lock_cluster(si, offset);
388 	/* Otherwise, fall back to traditional, coarse locking: */
389 	if (!ci)
390 		spin_lock(&si->lock);
391 
392 	return ci;
393 }
394 
395 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
396 					       struct swap_cluster_info *ci)
397 {
398 	if (ci)
399 		unlock_cluster(ci);
400 	else
401 		spin_unlock(&si->lock);
402 }
403 
404 static inline bool cluster_list_empty(struct swap_cluster_list *list)
405 {
406 	return cluster_is_null(&list->head);
407 }
408 
409 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
410 {
411 	return cluster_next(&list->head);
412 }
413 
414 static void cluster_list_init(struct swap_cluster_list *list)
415 {
416 	cluster_set_null(&list->head);
417 	cluster_set_null(&list->tail);
418 }
419 
420 static void cluster_list_add_tail(struct swap_cluster_list *list,
421 				  struct swap_cluster_info *ci,
422 				  unsigned int idx)
423 {
424 	if (cluster_list_empty(list)) {
425 		cluster_set_next_flag(&list->head, idx, 0);
426 		cluster_set_next_flag(&list->tail, idx, 0);
427 	} else {
428 		struct swap_cluster_info *ci_tail;
429 		unsigned int tail = cluster_next(&list->tail);
430 
431 		/*
432 		 * Nested cluster lock, but both cluster locks are
433 		 * only acquired when we held swap_info_struct->lock
434 		 */
435 		ci_tail = ci + tail;
436 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
437 		cluster_set_next(ci_tail, idx);
438 		spin_unlock(&ci_tail->lock);
439 		cluster_set_next_flag(&list->tail, idx, 0);
440 	}
441 }
442 
443 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
444 					   struct swap_cluster_info *ci)
445 {
446 	unsigned int idx;
447 
448 	idx = cluster_next(&list->head);
449 	if (cluster_next(&list->tail) == idx) {
450 		cluster_set_null(&list->head);
451 		cluster_set_null(&list->tail);
452 	} else
453 		cluster_set_next_flag(&list->head,
454 				      cluster_next(&ci[idx]), 0);
455 
456 	return idx;
457 }
458 
459 /* Add a cluster to discard list and schedule it to do discard */
460 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
461 		unsigned int idx)
462 {
463 	/*
464 	 * If scan_swap_map_slots() can't find a free cluster, it will check
465 	 * si->swap_map directly. To make sure the discarding cluster isn't
466 	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
467 	 * It will be cleared after discard
468 	 */
469 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
470 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
471 
472 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
473 
474 	schedule_work(&si->discard_work);
475 }
476 
477 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
478 {
479 	struct swap_cluster_info *ci = si->cluster_info;
480 
481 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
482 	cluster_list_add_tail(&si->free_clusters, ci, idx);
483 }
484 
485 /*
486  * Doing discard actually. After a cluster discard is finished, the cluster
487  * will be added to free cluster list. caller should hold si->lock.
488 */
489 static void swap_do_scheduled_discard(struct swap_info_struct *si)
490 {
491 	struct swap_cluster_info *info, *ci;
492 	unsigned int idx;
493 
494 	info = si->cluster_info;
495 
496 	while (!cluster_list_empty(&si->discard_clusters)) {
497 		idx = cluster_list_del_first(&si->discard_clusters, info);
498 		spin_unlock(&si->lock);
499 
500 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
501 				SWAPFILE_CLUSTER);
502 
503 		spin_lock(&si->lock);
504 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
505 		__free_cluster(si, idx);
506 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
507 				0, SWAPFILE_CLUSTER);
508 		unlock_cluster(ci);
509 	}
510 }
511 
512 static void swap_discard_work(struct work_struct *work)
513 {
514 	struct swap_info_struct *si;
515 
516 	si = container_of(work, struct swap_info_struct, discard_work);
517 
518 	spin_lock(&si->lock);
519 	swap_do_scheduled_discard(si);
520 	spin_unlock(&si->lock);
521 }
522 
523 static void swap_users_ref_free(struct percpu_ref *ref)
524 {
525 	struct swap_info_struct *si;
526 
527 	si = container_of(ref, struct swap_info_struct, users);
528 	complete(&si->comp);
529 }
530 
531 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
532 {
533 	struct swap_cluster_info *ci = si->cluster_info;
534 
535 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
536 	cluster_list_del_first(&si->free_clusters, ci);
537 	cluster_set_count_flag(ci + idx, 0, 0);
538 }
539 
540 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
541 {
542 	struct swap_cluster_info *ci = si->cluster_info + idx;
543 
544 	VM_BUG_ON(cluster_count(ci) != 0);
545 	/*
546 	 * If the swap is discardable, prepare discard the cluster
547 	 * instead of free it immediately. The cluster will be freed
548 	 * after discard.
549 	 */
550 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
551 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
552 		swap_cluster_schedule_discard(si, idx);
553 		return;
554 	}
555 
556 	__free_cluster(si, idx);
557 }
558 
559 /*
560  * The cluster corresponding to page_nr will be used. The cluster will be
561  * removed from free cluster list and its usage counter will be increased.
562  */
563 static void inc_cluster_info_page(struct swap_info_struct *p,
564 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
565 {
566 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
567 
568 	if (!cluster_info)
569 		return;
570 	if (cluster_is_free(&cluster_info[idx]))
571 		alloc_cluster(p, idx);
572 
573 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
574 	cluster_set_count(&cluster_info[idx],
575 		cluster_count(&cluster_info[idx]) + 1);
576 }
577 
578 /*
579  * The cluster corresponding to page_nr decreases one usage. If the usage
580  * counter becomes 0, which means no page in the cluster is in using, we can
581  * optionally discard the cluster and add it to free cluster list.
582  */
583 static void dec_cluster_info_page(struct swap_info_struct *p,
584 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
585 {
586 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
587 
588 	if (!cluster_info)
589 		return;
590 
591 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
592 	cluster_set_count(&cluster_info[idx],
593 		cluster_count(&cluster_info[idx]) - 1);
594 
595 	if (cluster_count(&cluster_info[idx]) == 0)
596 		free_cluster(p, idx);
597 }
598 
599 /*
600  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
601  * cluster list. Avoiding such abuse to avoid list corruption.
602  */
603 static bool
604 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
605 	unsigned long offset)
606 {
607 	struct percpu_cluster *percpu_cluster;
608 	bool conflict;
609 
610 	offset /= SWAPFILE_CLUSTER;
611 	conflict = !cluster_list_empty(&si->free_clusters) &&
612 		offset != cluster_list_first(&si->free_clusters) &&
613 		cluster_is_free(&si->cluster_info[offset]);
614 
615 	if (!conflict)
616 		return false;
617 
618 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
619 	cluster_set_null(&percpu_cluster->index);
620 	return true;
621 }
622 
623 /*
624  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
625  * might involve allocating a new cluster for current CPU too.
626  */
627 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
628 	unsigned long *offset, unsigned long *scan_base)
629 {
630 	struct percpu_cluster *cluster;
631 	struct swap_cluster_info *ci;
632 	unsigned long tmp, max;
633 
634 new_cluster:
635 	cluster = this_cpu_ptr(si->percpu_cluster);
636 	if (cluster_is_null(&cluster->index)) {
637 		if (!cluster_list_empty(&si->free_clusters)) {
638 			cluster->index = si->free_clusters.head;
639 			cluster->next = cluster_next(&cluster->index) *
640 					SWAPFILE_CLUSTER;
641 		} else if (!cluster_list_empty(&si->discard_clusters)) {
642 			/*
643 			 * we don't have free cluster but have some clusters in
644 			 * discarding, do discard now and reclaim them, then
645 			 * reread cluster_next_cpu since we dropped si->lock
646 			 */
647 			swap_do_scheduled_discard(si);
648 			*scan_base = this_cpu_read(*si->cluster_next_cpu);
649 			*offset = *scan_base;
650 			goto new_cluster;
651 		} else
652 			return false;
653 	}
654 
655 	/*
656 	 * Other CPUs can use our cluster if they can't find a free cluster,
657 	 * check if there is still free entry in the cluster
658 	 */
659 	tmp = cluster->next;
660 	max = min_t(unsigned long, si->max,
661 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
662 	if (tmp < max) {
663 		ci = lock_cluster(si, tmp);
664 		while (tmp < max) {
665 			if (!si->swap_map[tmp])
666 				break;
667 			tmp++;
668 		}
669 		unlock_cluster(ci);
670 	}
671 	if (tmp >= max) {
672 		cluster_set_null(&cluster->index);
673 		goto new_cluster;
674 	}
675 	cluster->next = tmp + 1;
676 	*offset = tmp;
677 	*scan_base = tmp;
678 	return true;
679 }
680 
681 static void __del_from_avail_list(struct swap_info_struct *p)
682 {
683 	int nid;
684 
685 	assert_spin_locked(&p->lock);
686 	for_each_node(nid)
687 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
688 }
689 
690 static void del_from_avail_list(struct swap_info_struct *p)
691 {
692 	spin_lock(&swap_avail_lock);
693 	__del_from_avail_list(p);
694 	spin_unlock(&swap_avail_lock);
695 }
696 
697 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
698 			     unsigned int nr_entries)
699 {
700 	unsigned int end = offset + nr_entries - 1;
701 
702 	if (offset == si->lowest_bit)
703 		si->lowest_bit += nr_entries;
704 	if (end == si->highest_bit)
705 		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
706 	WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
707 	if (si->inuse_pages == si->pages) {
708 		si->lowest_bit = si->max;
709 		si->highest_bit = 0;
710 		del_from_avail_list(si);
711 	}
712 }
713 
714 static void add_to_avail_list(struct swap_info_struct *p)
715 {
716 	int nid;
717 
718 	spin_lock(&swap_avail_lock);
719 	for_each_node(nid)
720 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
721 	spin_unlock(&swap_avail_lock);
722 }
723 
724 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
725 			    unsigned int nr_entries)
726 {
727 	unsigned long begin = offset;
728 	unsigned long end = offset + nr_entries - 1;
729 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
730 
731 	if (offset < si->lowest_bit)
732 		si->lowest_bit = offset;
733 	if (end > si->highest_bit) {
734 		bool was_full = !si->highest_bit;
735 
736 		WRITE_ONCE(si->highest_bit, end);
737 		if (was_full && (si->flags & SWP_WRITEOK))
738 			add_to_avail_list(si);
739 	}
740 	if (si->flags & SWP_BLKDEV)
741 		swap_slot_free_notify =
742 			si->bdev->bd_disk->fops->swap_slot_free_notify;
743 	else
744 		swap_slot_free_notify = NULL;
745 	while (offset <= end) {
746 		arch_swap_invalidate_page(si->type, offset);
747 		zswap_invalidate(si->type, offset);
748 		if (swap_slot_free_notify)
749 			swap_slot_free_notify(si->bdev, offset);
750 		offset++;
751 	}
752 	clear_shadow_from_swap_cache(si->type, begin, end);
753 
754 	/*
755 	 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
756 	 * only after the above cleanups are done.
757 	 */
758 	smp_wmb();
759 	atomic_long_add(nr_entries, &nr_swap_pages);
760 	WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
761 }
762 
763 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
764 {
765 	unsigned long prev;
766 
767 	if (!(si->flags & SWP_SOLIDSTATE)) {
768 		si->cluster_next = next;
769 		return;
770 	}
771 
772 	prev = this_cpu_read(*si->cluster_next_cpu);
773 	/*
774 	 * Cross the swap address space size aligned trunk, choose
775 	 * another trunk randomly to avoid lock contention on swap
776 	 * address space if possible.
777 	 */
778 	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
779 	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
780 		/* No free swap slots available */
781 		if (si->highest_bit <= si->lowest_bit)
782 			return;
783 		next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
784 		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
785 		next = max_t(unsigned int, next, si->lowest_bit);
786 	}
787 	this_cpu_write(*si->cluster_next_cpu, next);
788 }
789 
790 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
791 					     unsigned long offset)
792 {
793 	if (data_race(!si->swap_map[offset])) {
794 		spin_lock(&si->lock);
795 		return true;
796 	}
797 
798 	if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
799 		spin_lock(&si->lock);
800 		return true;
801 	}
802 
803 	return false;
804 }
805 
806 static int scan_swap_map_slots(struct swap_info_struct *si,
807 			       unsigned char usage, int nr,
808 			       swp_entry_t slots[])
809 {
810 	struct swap_cluster_info *ci;
811 	unsigned long offset;
812 	unsigned long scan_base;
813 	unsigned long last_in_cluster = 0;
814 	int latency_ration = LATENCY_LIMIT;
815 	int n_ret = 0;
816 	bool scanned_many = false;
817 
818 	/*
819 	 * We try to cluster swap pages by allocating them sequentially
820 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
821 	 * way, however, we resort to first-free allocation, starting
822 	 * a new cluster.  This prevents us from scattering swap pages
823 	 * all over the entire swap partition, so that we reduce
824 	 * overall disk seek times between swap pages.  -- sct
825 	 * But we do now try to find an empty cluster.  -Andrea
826 	 * And we let swap pages go all over an SSD partition.  Hugh
827 	 */
828 
829 	si->flags += SWP_SCANNING;
830 	/*
831 	 * Use percpu scan base for SSD to reduce lock contention on
832 	 * cluster and swap cache.  For HDD, sequential access is more
833 	 * important.
834 	 */
835 	if (si->flags & SWP_SOLIDSTATE)
836 		scan_base = this_cpu_read(*si->cluster_next_cpu);
837 	else
838 		scan_base = si->cluster_next;
839 	offset = scan_base;
840 
841 	/* SSD algorithm */
842 	if (si->cluster_info) {
843 		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
844 			goto scan;
845 	} else if (unlikely(!si->cluster_nr--)) {
846 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
847 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
848 			goto checks;
849 		}
850 
851 		spin_unlock(&si->lock);
852 
853 		/*
854 		 * If seek is expensive, start searching for new cluster from
855 		 * start of partition, to minimize the span of allocated swap.
856 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
857 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
858 		 */
859 		scan_base = offset = si->lowest_bit;
860 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
861 
862 		/* Locate the first empty (unaligned) cluster */
863 		for (; last_in_cluster <= si->highest_bit; offset++) {
864 			if (si->swap_map[offset])
865 				last_in_cluster = offset + SWAPFILE_CLUSTER;
866 			else if (offset == last_in_cluster) {
867 				spin_lock(&si->lock);
868 				offset -= SWAPFILE_CLUSTER - 1;
869 				si->cluster_next = offset;
870 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
871 				goto checks;
872 			}
873 			if (unlikely(--latency_ration < 0)) {
874 				cond_resched();
875 				latency_ration = LATENCY_LIMIT;
876 			}
877 		}
878 
879 		offset = scan_base;
880 		spin_lock(&si->lock);
881 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
882 	}
883 
884 checks:
885 	if (si->cluster_info) {
886 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
887 		/* take a break if we already got some slots */
888 			if (n_ret)
889 				goto done;
890 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
891 							&scan_base))
892 				goto scan;
893 		}
894 	}
895 	if (!(si->flags & SWP_WRITEOK))
896 		goto no_page;
897 	if (!si->highest_bit)
898 		goto no_page;
899 	if (offset > si->highest_bit)
900 		scan_base = offset = si->lowest_bit;
901 
902 	ci = lock_cluster(si, offset);
903 	/* reuse swap entry of cache-only swap if not busy. */
904 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
905 		int swap_was_freed;
906 		unlock_cluster(ci);
907 		spin_unlock(&si->lock);
908 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
909 		spin_lock(&si->lock);
910 		/* entry was freed successfully, try to use this again */
911 		if (swap_was_freed)
912 			goto checks;
913 		goto scan; /* check next one */
914 	}
915 
916 	if (si->swap_map[offset]) {
917 		unlock_cluster(ci);
918 		if (!n_ret)
919 			goto scan;
920 		else
921 			goto done;
922 	}
923 	WRITE_ONCE(si->swap_map[offset], usage);
924 	inc_cluster_info_page(si, si->cluster_info, offset);
925 	unlock_cluster(ci);
926 
927 	swap_range_alloc(si, offset, 1);
928 	slots[n_ret++] = swp_entry(si->type, offset);
929 
930 	/* got enough slots or reach max slots? */
931 	if ((n_ret == nr) || (offset >= si->highest_bit))
932 		goto done;
933 
934 	/* search for next available slot */
935 
936 	/* time to take a break? */
937 	if (unlikely(--latency_ration < 0)) {
938 		if (n_ret)
939 			goto done;
940 		spin_unlock(&si->lock);
941 		cond_resched();
942 		spin_lock(&si->lock);
943 		latency_ration = LATENCY_LIMIT;
944 	}
945 
946 	/* try to get more slots in cluster */
947 	if (si->cluster_info) {
948 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
949 			goto checks;
950 	} else if (si->cluster_nr && !si->swap_map[++offset]) {
951 		/* non-ssd case, still more slots in cluster? */
952 		--si->cluster_nr;
953 		goto checks;
954 	}
955 
956 	/*
957 	 * Even if there's no free clusters available (fragmented),
958 	 * try to scan a little more quickly with lock held unless we
959 	 * have scanned too many slots already.
960 	 */
961 	if (!scanned_many) {
962 		unsigned long scan_limit;
963 
964 		if (offset < scan_base)
965 			scan_limit = scan_base;
966 		else
967 			scan_limit = si->highest_bit;
968 		for (; offset <= scan_limit && --latency_ration > 0;
969 		     offset++) {
970 			if (!si->swap_map[offset])
971 				goto checks;
972 		}
973 	}
974 
975 done:
976 	set_cluster_next(si, offset + 1);
977 	si->flags -= SWP_SCANNING;
978 	return n_ret;
979 
980 scan:
981 	spin_unlock(&si->lock);
982 	while (++offset <= READ_ONCE(si->highest_bit)) {
983 		if (unlikely(--latency_ration < 0)) {
984 			cond_resched();
985 			latency_ration = LATENCY_LIMIT;
986 			scanned_many = true;
987 		}
988 		if (swap_offset_available_and_locked(si, offset))
989 			goto checks;
990 	}
991 	offset = si->lowest_bit;
992 	while (offset < scan_base) {
993 		if (unlikely(--latency_ration < 0)) {
994 			cond_resched();
995 			latency_ration = LATENCY_LIMIT;
996 			scanned_many = true;
997 		}
998 		if (swap_offset_available_and_locked(si, offset))
999 			goto checks;
1000 		offset++;
1001 	}
1002 	spin_lock(&si->lock);
1003 
1004 no_page:
1005 	si->flags -= SWP_SCANNING;
1006 	return n_ret;
1007 }
1008 
1009 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1010 {
1011 	unsigned long idx;
1012 	struct swap_cluster_info *ci;
1013 	unsigned long offset;
1014 
1015 	/*
1016 	 * Should not even be attempting cluster allocations when huge
1017 	 * page swap is disabled.  Warn and fail the allocation.
1018 	 */
1019 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1020 		VM_WARN_ON_ONCE(1);
1021 		return 0;
1022 	}
1023 
1024 	if (cluster_list_empty(&si->free_clusters))
1025 		return 0;
1026 
1027 	idx = cluster_list_first(&si->free_clusters);
1028 	offset = idx * SWAPFILE_CLUSTER;
1029 	ci = lock_cluster(si, offset);
1030 	alloc_cluster(si, idx);
1031 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1032 
1033 	memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1034 	unlock_cluster(ci);
1035 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1036 	*slot = swp_entry(si->type, offset);
1037 
1038 	return 1;
1039 }
1040 
1041 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1042 {
1043 	unsigned long offset = idx * SWAPFILE_CLUSTER;
1044 	struct swap_cluster_info *ci;
1045 
1046 	ci = lock_cluster(si, offset);
1047 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1048 	cluster_set_count_flag(ci, 0, 0);
1049 	free_cluster(si, idx);
1050 	unlock_cluster(ci);
1051 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1052 }
1053 
1054 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1055 {
1056 	unsigned long size = swap_entry_size(entry_size);
1057 	struct swap_info_struct *si, *next;
1058 	long avail_pgs;
1059 	int n_ret = 0;
1060 	int node;
1061 
1062 	/* Only single cluster request supported */
1063 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1064 
1065 	spin_lock(&swap_avail_lock);
1066 
1067 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1068 	if (avail_pgs <= 0) {
1069 		spin_unlock(&swap_avail_lock);
1070 		goto noswap;
1071 	}
1072 
1073 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1074 
1075 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1076 
1077 start_over:
1078 	node = numa_node_id();
1079 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1080 		/* requeue si to after same-priority siblings */
1081 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1082 		spin_unlock(&swap_avail_lock);
1083 		spin_lock(&si->lock);
1084 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1085 			spin_lock(&swap_avail_lock);
1086 			if (plist_node_empty(&si->avail_lists[node])) {
1087 				spin_unlock(&si->lock);
1088 				goto nextsi;
1089 			}
1090 			WARN(!si->highest_bit,
1091 			     "swap_info %d in list but !highest_bit\n",
1092 			     si->type);
1093 			WARN(!(si->flags & SWP_WRITEOK),
1094 			     "swap_info %d in list but !SWP_WRITEOK\n",
1095 			     si->type);
1096 			__del_from_avail_list(si);
1097 			spin_unlock(&si->lock);
1098 			goto nextsi;
1099 		}
1100 		if (size == SWAPFILE_CLUSTER) {
1101 			if (si->flags & SWP_BLKDEV)
1102 				n_ret = swap_alloc_cluster(si, swp_entries);
1103 		} else
1104 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1105 						    n_goal, swp_entries);
1106 		spin_unlock(&si->lock);
1107 		if (n_ret || size == SWAPFILE_CLUSTER)
1108 			goto check_out;
1109 		cond_resched();
1110 
1111 		spin_lock(&swap_avail_lock);
1112 nextsi:
1113 		/*
1114 		 * if we got here, it's likely that si was almost full before,
1115 		 * and since scan_swap_map_slots() can drop the si->lock,
1116 		 * multiple callers probably all tried to get a page from the
1117 		 * same si and it filled up before we could get one; or, the si
1118 		 * filled up between us dropping swap_avail_lock and taking
1119 		 * si->lock. Since we dropped the swap_avail_lock, the
1120 		 * swap_avail_head list may have been modified; so if next is
1121 		 * still in the swap_avail_head list then try it, otherwise
1122 		 * start over if we have not gotten any slots.
1123 		 */
1124 		if (plist_node_empty(&next->avail_lists[node]))
1125 			goto start_over;
1126 	}
1127 
1128 	spin_unlock(&swap_avail_lock);
1129 
1130 check_out:
1131 	if (n_ret < n_goal)
1132 		atomic_long_add((long)(n_goal - n_ret) * size,
1133 				&nr_swap_pages);
1134 noswap:
1135 	return n_ret;
1136 }
1137 
1138 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1139 {
1140 	struct swap_info_struct *p;
1141 	unsigned long offset;
1142 
1143 	if (!entry.val)
1144 		goto out;
1145 	p = swp_swap_info(entry);
1146 	if (!p)
1147 		goto bad_nofile;
1148 	if (data_race(!(p->flags & SWP_USED)))
1149 		goto bad_device;
1150 	offset = swp_offset(entry);
1151 	if (offset >= p->max)
1152 		goto bad_offset;
1153 	if (data_race(!p->swap_map[swp_offset(entry)]))
1154 		goto bad_free;
1155 	return p;
1156 
1157 bad_free:
1158 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1159 	goto out;
1160 bad_offset:
1161 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1162 	goto out;
1163 bad_device:
1164 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1165 	goto out;
1166 bad_nofile:
1167 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1168 out:
1169 	return NULL;
1170 }
1171 
1172 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1173 					struct swap_info_struct *q)
1174 {
1175 	struct swap_info_struct *p;
1176 
1177 	p = _swap_info_get(entry);
1178 
1179 	if (p != q) {
1180 		if (q != NULL)
1181 			spin_unlock(&q->lock);
1182 		if (p != NULL)
1183 			spin_lock(&p->lock);
1184 	}
1185 	return p;
1186 }
1187 
1188 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1189 					      unsigned long offset,
1190 					      unsigned char usage)
1191 {
1192 	unsigned char count;
1193 	unsigned char has_cache;
1194 
1195 	count = p->swap_map[offset];
1196 
1197 	has_cache = count & SWAP_HAS_CACHE;
1198 	count &= ~SWAP_HAS_CACHE;
1199 
1200 	if (usage == SWAP_HAS_CACHE) {
1201 		VM_BUG_ON(!has_cache);
1202 		has_cache = 0;
1203 	} else if (count == SWAP_MAP_SHMEM) {
1204 		/*
1205 		 * Or we could insist on shmem.c using a special
1206 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1207 		 */
1208 		count = 0;
1209 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1210 		if (count == COUNT_CONTINUED) {
1211 			if (swap_count_continued(p, offset, count))
1212 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1213 			else
1214 				count = SWAP_MAP_MAX;
1215 		} else
1216 			count--;
1217 	}
1218 
1219 	usage = count | has_cache;
1220 	if (usage)
1221 		WRITE_ONCE(p->swap_map[offset], usage);
1222 	else
1223 		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1224 
1225 	return usage;
1226 }
1227 
1228 /*
1229  * When we get a swap entry, if there aren't some other ways to
1230  * prevent swapoff, such as the folio in swap cache is locked, page
1231  * table lock is held, etc., the swap entry may become invalid because
1232  * of swapoff.  Then, we need to enclose all swap related functions
1233  * with get_swap_device() and put_swap_device(), unless the swap
1234  * functions call get/put_swap_device() by themselves.
1235  *
1236  * Check whether swap entry is valid in the swap device.  If so,
1237  * return pointer to swap_info_struct, and keep the swap entry valid
1238  * via preventing the swap device from being swapoff, until
1239  * put_swap_device() is called.  Otherwise return NULL.
1240  *
1241  * Notice that swapoff or swapoff+swapon can still happen before the
1242  * percpu_ref_tryget_live() in get_swap_device() or after the
1243  * percpu_ref_put() in put_swap_device() if there isn't any other way
1244  * to prevent swapoff.  The caller must be prepared for that.  For
1245  * example, the following situation is possible.
1246  *
1247  *   CPU1				CPU2
1248  *   do_swap_page()
1249  *     ...				swapoff+swapon
1250  *     __read_swap_cache_async()
1251  *       swapcache_prepare()
1252  *         __swap_duplicate()
1253  *           // check swap_map
1254  *     // verify PTE not changed
1255  *
1256  * In __swap_duplicate(), the swap_map need to be checked before
1257  * changing partly because the specified swap entry may be for another
1258  * swap device which has been swapoff.  And in do_swap_page(), after
1259  * the page is read from the swap device, the PTE is verified not
1260  * changed with the page table locked to check whether the swap device
1261  * has been swapoff or swapoff+swapon.
1262  */
1263 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1264 {
1265 	struct swap_info_struct *si;
1266 	unsigned long offset;
1267 
1268 	if (!entry.val)
1269 		goto out;
1270 	si = swp_swap_info(entry);
1271 	if (!si)
1272 		goto bad_nofile;
1273 	if (!percpu_ref_tryget_live(&si->users))
1274 		goto out;
1275 	/*
1276 	 * Guarantee the si->users are checked before accessing other
1277 	 * fields of swap_info_struct.
1278 	 *
1279 	 * Paired with the spin_unlock() after setup_swap_info() in
1280 	 * enable_swap_info().
1281 	 */
1282 	smp_rmb();
1283 	offset = swp_offset(entry);
1284 	if (offset >= si->max)
1285 		goto put_out;
1286 
1287 	return si;
1288 bad_nofile:
1289 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1290 out:
1291 	return NULL;
1292 put_out:
1293 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1294 	percpu_ref_put(&si->users);
1295 	return NULL;
1296 }
1297 
1298 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1299 				       swp_entry_t entry)
1300 {
1301 	struct swap_cluster_info *ci;
1302 	unsigned long offset = swp_offset(entry);
1303 	unsigned char usage;
1304 
1305 	ci = lock_cluster_or_swap_info(p, offset);
1306 	usage = __swap_entry_free_locked(p, offset, 1);
1307 	unlock_cluster_or_swap_info(p, ci);
1308 	if (!usage)
1309 		free_swap_slot(entry);
1310 
1311 	return usage;
1312 }
1313 
1314 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1315 {
1316 	struct swap_cluster_info *ci;
1317 	unsigned long offset = swp_offset(entry);
1318 	unsigned char count;
1319 
1320 	ci = lock_cluster(p, offset);
1321 	count = p->swap_map[offset];
1322 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1323 	p->swap_map[offset] = 0;
1324 	dec_cluster_info_page(p, p->cluster_info, offset);
1325 	unlock_cluster(ci);
1326 
1327 	mem_cgroup_uncharge_swap(entry, 1);
1328 	swap_range_free(p, offset, 1);
1329 }
1330 
1331 /*
1332  * Caller has made sure that the swap device corresponding to entry
1333  * is still around or has not been recycled.
1334  */
1335 void swap_free(swp_entry_t entry)
1336 {
1337 	struct swap_info_struct *p;
1338 
1339 	p = _swap_info_get(entry);
1340 	if (p)
1341 		__swap_entry_free(p, entry);
1342 }
1343 
1344 /*
1345  * Called after dropping swapcache to decrease refcnt to swap entries.
1346  */
1347 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1348 {
1349 	unsigned long offset = swp_offset(entry);
1350 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1351 	struct swap_cluster_info *ci;
1352 	struct swap_info_struct *si;
1353 	unsigned char *map;
1354 	unsigned int i, free_entries = 0;
1355 	unsigned char val;
1356 	int size = swap_entry_size(folio_nr_pages(folio));
1357 
1358 	si = _swap_info_get(entry);
1359 	if (!si)
1360 		return;
1361 
1362 	ci = lock_cluster_or_swap_info(si, offset);
1363 	if (size == SWAPFILE_CLUSTER) {
1364 		VM_BUG_ON(!cluster_is_huge(ci));
1365 		map = si->swap_map + offset;
1366 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1367 			val = map[i];
1368 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1369 			if (val == SWAP_HAS_CACHE)
1370 				free_entries++;
1371 		}
1372 		cluster_clear_huge(ci);
1373 		if (free_entries == SWAPFILE_CLUSTER) {
1374 			unlock_cluster_or_swap_info(si, ci);
1375 			spin_lock(&si->lock);
1376 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1377 			swap_free_cluster(si, idx);
1378 			spin_unlock(&si->lock);
1379 			return;
1380 		}
1381 	}
1382 	for (i = 0; i < size; i++, entry.val++) {
1383 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1384 			unlock_cluster_or_swap_info(si, ci);
1385 			free_swap_slot(entry);
1386 			if (i == size - 1)
1387 				return;
1388 			lock_cluster_or_swap_info(si, offset);
1389 		}
1390 	}
1391 	unlock_cluster_or_swap_info(si, ci);
1392 }
1393 
1394 #ifdef CONFIG_THP_SWAP
1395 int split_swap_cluster(swp_entry_t entry)
1396 {
1397 	struct swap_info_struct *si;
1398 	struct swap_cluster_info *ci;
1399 	unsigned long offset = swp_offset(entry);
1400 
1401 	si = _swap_info_get(entry);
1402 	if (!si)
1403 		return -EBUSY;
1404 	ci = lock_cluster(si, offset);
1405 	cluster_clear_huge(ci);
1406 	unlock_cluster(ci);
1407 	return 0;
1408 }
1409 #endif
1410 
1411 static int swp_entry_cmp(const void *ent1, const void *ent2)
1412 {
1413 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1414 
1415 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1416 }
1417 
1418 void swapcache_free_entries(swp_entry_t *entries, int n)
1419 {
1420 	struct swap_info_struct *p, *prev;
1421 	int i;
1422 
1423 	if (n <= 0)
1424 		return;
1425 
1426 	prev = NULL;
1427 	p = NULL;
1428 
1429 	/*
1430 	 * Sort swap entries by swap device, so each lock is only taken once.
1431 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1432 	 * so low that it isn't necessary to optimize further.
1433 	 */
1434 	if (nr_swapfiles > 1)
1435 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1436 	for (i = 0; i < n; ++i) {
1437 		p = swap_info_get_cont(entries[i], prev);
1438 		if (p)
1439 			swap_entry_free(p, entries[i]);
1440 		prev = p;
1441 	}
1442 	if (p)
1443 		spin_unlock(&p->lock);
1444 }
1445 
1446 int __swap_count(swp_entry_t entry)
1447 {
1448 	struct swap_info_struct *si = swp_swap_info(entry);
1449 	pgoff_t offset = swp_offset(entry);
1450 
1451 	return swap_count(si->swap_map[offset]);
1452 }
1453 
1454 /*
1455  * How many references to @entry are currently swapped out?
1456  * This does not give an exact answer when swap count is continued,
1457  * but does include the high COUNT_CONTINUED flag to allow for that.
1458  */
1459 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1460 {
1461 	pgoff_t offset = swp_offset(entry);
1462 	struct swap_cluster_info *ci;
1463 	int count;
1464 
1465 	ci = lock_cluster_or_swap_info(si, offset);
1466 	count = swap_count(si->swap_map[offset]);
1467 	unlock_cluster_or_swap_info(si, ci);
1468 	return count;
1469 }
1470 
1471 /*
1472  * How many references to @entry are currently swapped out?
1473  * This considers COUNT_CONTINUED so it returns exact answer.
1474  */
1475 int swp_swapcount(swp_entry_t entry)
1476 {
1477 	int count, tmp_count, n;
1478 	struct swap_info_struct *p;
1479 	struct swap_cluster_info *ci;
1480 	struct page *page;
1481 	pgoff_t offset;
1482 	unsigned char *map;
1483 
1484 	p = _swap_info_get(entry);
1485 	if (!p)
1486 		return 0;
1487 
1488 	offset = swp_offset(entry);
1489 
1490 	ci = lock_cluster_or_swap_info(p, offset);
1491 
1492 	count = swap_count(p->swap_map[offset]);
1493 	if (!(count & COUNT_CONTINUED))
1494 		goto out;
1495 
1496 	count &= ~COUNT_CONTINUED;
1497 	n = SWAP_MAP_MAX + 1;
1498 
1499 	page = vmalloc_to_page(p->swap_map + offset);
1500 	offset &= ~PAGE_MASK;
1501 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1502 
1503 	do {
1504 		page = list_next_entry(page, lru);
1505 		map = kmap_local_page(page);
1506 		tmp_count = map[offset];
1507 		kunmap_local(map);
1508 
1509 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1510 		n *= (SWAP_CONT_MAX + 1);
1511 	} while (tmp_count & COUNT_CONTINUED);
1512 out:
1513 	unlock_cluster_or_swap_info(p, ci);
1514 	return count;
1515 }
1516 
1517 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1518 					 swp_entry_t entry)
1519 {
1520 	struct swap_cluster_info *ci;
1521 	unsigned char *map = si->swap_map;
1522 	unsigned long roffset = swp_offset(entry);
1523 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1524 	int i;
1525 	bool ret = false;
1526 
1527 	ci = lock_cluster_or_swap_info(si, offset);
1528 	if (!ci || !cluster_is_huge(ci)) {
1529 		if (swap_count(map[roffset]))
1530 			ret = true;
1531 		goto unlock_out;
1532 	}
1533 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1534 		if (swap_count(map[offset + i])) {
1535 			ret = true;
1536 			break;
1537 		}
1538 	}
1539 unlock_out:
1540 	unlock_cluster_or_swap_info(si, ci);
1541 	return ret;
1542 }
1543 
1544 static bool folio_swapped(struct folio *folio)
1545 {
1546 	swp_entry_t entry = folio->swap;
1547 	struct swap_info_struct *si = _swap_info_get(entry);
1548 
1549 	if (!si)
1550 		return false;
1551 
1552 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1553 		return swap_swapcount(si, entry) != 0;
1554 
1555 	return swap_page_trans_huge_swapped(si, entry);
1556 }
1557 
1558 /**
1559  * folio_free_swap() - Free the swap space used for this folio.
1560  * @folio: The folio to remove.
1561  *
1562  * If swap is getting full, or if there are no more mappings of this folio,
1563  * then call folio_free_swap to free its swap space.
1564  *
1565  * Return: true if we were able to release the swap space.
1566  */
1567 bool folio_free_swap(struct folio *folio)
1568 {
1569 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1570 
1571 	if (!folio_test_swapcache(folio))
1572 		return false;
1573 	if (folio_test_writeback(folio))
1574 		return false;
1575 	if (folio_swapped(folio))
1576 		return false;
1577 
1578 	/*
1579 	 * Once hibernation has begun to create its image of memory,
1580 	 * there's a danger that one of the calls to folio_free_swap()
1581 	 * - most probably a call from __try_to_reclaim_swap() while
1582 	 * hibernation is allocating its own swap pages for the image,
1583 	 * but conceivably even a call from memory reclaim - will free
1584 	 * the swap from a folio which has already been recorded in the
1585 	 * image as a clean swapcache folio, and then reuse its swap for
1586 	 * another page of the image.  On waking from hibernation, the
1587 	 * original folio might be freed under memory pressure, then
1588 	 * later read back in from swap, now with the wrong data.
1589 	 *
1590 	 * Hibernation suspends storage while it is writing the image
1591 	 * to disk so check that here.
1592 	 */
1593 	if (pm_suspended_storage())
1594 		return false;
1595 
1596 	delete_from_swap_cache(folio);
1597 	folio_set_dirty(folio);
1598 	return true;
1599 }
1600 
1601 /*
1602  * Free the swap entry like above, but also try to
1603  * free the page cache entry if it is the last user.
1604  */
1605 int free_swap_and_cache(swp_entry_t entry)
1606 {
1607 	struct swap_info_struct *p;
1608 	unsigned char count;
1609 
1610 	if (non_swap_entry(entry))
1611 		return 1;
1612 
1613 	p = _swap_info_get(entry);
1614 	if (p) {
1615 		count = __swap_entry_free(p, entry);
1616 		if (count == SWAP_HAS_CACHE &&
1617 		    !swap_page_trans_huge_swapped(p, entry))
1618 			__try_to_reclaim_swap(p, swp_offset(entry),
1619 					      TTRS_UNMAPPED | TTRS_FULL);
1620 	}
1621 	return p != NULL;
1622 }
1623 
1624 #ifdef CONFIG_HIBERNATION
1625 
1626 swp_entry_t get_swap_page_of_type(int type)
1627 {
1628 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1629 	swp_entry_t entry = {0};
1630 
1631 	if (!si)
1632 		goto fail;
1633 
1634 	/* This is called for allocating swap entry, not cache */
1635 	spin_lock(&si->lock);
1636 	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1637 		atomic_long_dec(&nr_swap_pages);
1638 	spin_unlock(&si->lock);
1639 fail:
1640 	return entry;
1641 }
1642 
1643 /*
1644  * Find the swap type that corresponds to given device (if any).
1645  *
1646  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1647  * from 0, in which the swap header is expected to be located.
1648  *
1649  * This is needed for the suspend to disk (aka swsusp).
1650  */
1651 int swap_type_of(dev_t device, sector_t offset)
1652 {
1653 	int type;
1654 
1655 	if (!device)
1656 		return -1;
1657 
1658 	spin_lock(&swap_lock);
1659 	for (type = 0; type < nr_swapfiles; type++) {
1660 		struct swap_info_struct *sis = swap_info[type];
1661 
1662 		if (!(sis->flags & SWP_WRITEOK))
1663 			continue;
1664 
1665 		if (device == sis->bdev->bd_dev) {
1666 			struct swap_extent *se = first_se(sis);
1667 
1668 			if (se->start_block == offset) {
1669 				spin_unlock(&swap_lock);
1670 				return type;
1671 			}
1672 		}
1673 	}
1674 	spin_unlock(&swap_lock);
1675 	return -ENODEV;
1676 }
1677 
1678 int find_first_swap(dev_t *device)
1679 {
1680 	int type;
1681 
1682 	spin_lock(&swap_lock);
1683 	for (type = 0; type < nr_swapfiles; type++) {
1684 		struct swap_info_struct *sis = swap_info[type];
1685 
1686 		if (!(sis->flags & SWP_WRITEOK))
1687 			continue;
1688 		*device = sis->bdev->bd_dev;
1689 		spin_unlock(&swap_lock);
1690 		return type;
1691 	}
1692 	spin_unlock(&swap_lock);
1693 	return -ENODEV;
1694 }
1695 
1696 /*
1697  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1698  * corresponding to given index in swap_info (swap type).
1699  */
1700 sector_t swapdev_block(int type, pgoff_t offset)
1701 {
1702 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1703 	struct swap_extent *se;
1704 
1705 	if (!si || !(si->flags & SWP_WRITEOK))
1706 		return 0;
1707 	se = offset_to_swap_extent(si, offset);
1708 	return se->start_block + (offset - se->start_page);
1709 }
1710 
1711 /*
1712  * Return either the total number of swap pages of given type, or the number
1713  * of free pages of that type (depending on @free)
1714  *
1715  * This is needed for software suspend
1716  */
1717 unsigned int count_swap_pages(int type, int free)
1718 {
1719 	unsigned int n = 0;
1720 
1721 	spin_lock(&swap_lock);
1722 	if ((unsigned int)type < nr_swapfiles) {
1723 		struct swap_info_struct *sis = swap_info[type];
1724 
1725 		spin_lock(&sis->lock);
1726 		if (sis->flags & SWP_WRITEOK) {
1727 			n = sis->pages;
1728 			if (free)
1729 				n -= sis->inuse_pages;
1730 		}
1731 		spin_unlock(&sis->lock);
1732 	}
1733 	spin_unlock(&swap_lock);
1734 	return n;
1735 }
1736 #endif /* CONFIG_HIBERNATION */
1737 
1738 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1739 {
1740 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1741 }
1742 
1743 /*
1744  * No need to decide whether this PTE shares the swap entry with others,
1745  * just let do_wp_page work it out if a write is requested later - to
1746  * force COW, vm_page_prot omits write permission from any private vma.
1747  */
1748 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1749 		unsigned long addr, swp_entry_t entry, struct folio *folio)
1750 {
1751 	struct page *page;
1752 	struct folio *swapcache;
1753 	spinlock_t *ptl;
1754 	pte_t *pte, new_pte, old_pte;
1755 	bool hwpoisoned = false;
1756 	int ret = 1;
1757 
1758 	swapcache = folio;
1759 	folio = ksm_might_need_to_copy(folio, vma, addr);
1760 	if (unlikely(!folio))
1761 		return -ENOMEM;
1762 	else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
1763 		hwpoisoned = true;
1764 		folio = swapcache;
1765 	}
1766 
1767 	page = folio_file_page(folio, swp_offset(entry));
1768 	if (PageHWPoison(page))
1769 		hwpoisoned = true;
1770 
1771 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1772 	if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
1773 						swp_entry_to_pte(entry)))) {
1774 		ret = 0;
1775 		goto out;
1776 	}
1777 
1778 	old_pte = ptep_get(pte);
1779 
1780 	if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
1781 		swp_entry_t swp_entry;
1782 
1783 		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1784 		if (hwpoisoned) {
1785 			swp_entry = make_hwpoison_entry(page);
1786 		} else {
1787 			swp_entry = make_poisoned_swp_entry();
1788 		}
1789 		new_pte = swp_entry_to_pte(swp_entry);
1790 		ret = 0;
1791 		goto setpte;
1792 	}
1793 
1794 	/*
1795 	 * Some architectures may have to restore extra metadata to the page
1796 	 * when reading from swap. This metadata may be indexed by swap entry
1797 	 * so this must be called before swap_free().
1798 	 */
1799 	arch_swap_restore(entry, folio);
1800 
1801 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1802 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1803 	folio_get(folio);
1804 	if (folio == swapcache) {
1805 		rmap_t rmap_flags = RMAP_NONE;
1806 
1807 		/*
1808 		 * See do_swap_page(): writeback would be problematic.
1809 		 * However, we do a folio_wait_writeback() just before this
1810 		 * call and have the folio locked.
1811 		 */
1812 		VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
1813 		if (pte_swp_exclusive(old_pte))
1814 			rmap_flags |= RMAP_EXCLUSIVE;
1815 
1816 		folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
1817 	} else { /* ksm created a completely new copy */
1818 		folio_add_new_anon_rmap(folio, vma, addr);
1819 		folio_add_lru_vma(folio, vma);
1820 	}
1821 	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1822 	if (pte_swp_soft_dirty(old_pte))
1823 		new_pte = pte_mksoft_dirty(new_pte);
1824 	if (pte_swp_uffd_wp(old_pte))
1825 		new_pte = pte_mkuffd_wp(new_pte);
1826 setpte:
1827 	set_pte_at(vma->vm_mm, addr, pte, new_pte);
1828 	swap_free(entry);
1829 out:
1830 	if (pte)
1831 		pte_unmap_unlock(pte, ptl);
1832 	if (folio != swapcache) {
1833 		folio_unlock(folio);
1834 		folio_put(folio);
1835 	}
1836 	return ret;
1837 }
1838 
1839 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1840 			unsigned long addr, unsigned long end,
1841 			unsigned int type)
1842 {
1843 	pte_t *pte = NULL;
1844 	struct swap_info_struct *si;
1845 
1846 	si = swap_info[type];
1847 	do {
1848 		struct folio *folio;
1849 		unsigned long offset;
1850 		unsigned char swp_count;
1851 		swp_entry_t entry;
1852 		int ret;
1853 		pte_t ptent;
1854 
1855 		if (!pte++) {
1856 			pte = pte_offset_map(pmd, addr);
1857 			if (!pte)
1858 				break;
1859 		}
1860 
1861 		ptent = ptep_get_lockless(pte);
1862 
1863 		if (!is_swap_pte(ptent))
1864 			continue;
1865 
1866 		entry = pte_to_swp_entry(ptent);
1867 		if (swp_type(entry) != type)
1868 			continue;
1869 
1870 		offset = swp_offset(entry);
1871 		pte_unmap(pte);
1872 		pte = NULL;
1873 
1874 		folio = swap_cache_get_folio(entry, vma, addr);
1875 		if (!folio) {
1876 			struct page *page;
1877 			struct vm_fault vmf = {
1878 				.vma = vma,
1879 				.address = addr,
1880 				.real_address = addr,
1881 				.pmd = pmd,
1882 			};
1883 
1884 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1885 						&vmf);
1886 			if (page)
1887 				folio = page_folio(page);
1888 		}
1889 		if (!folio) {
1890 			swp_count = READ_ONCE(si->swap_map[offset]);
1891 			if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1892 				continue;
1893 			return -ENOMEM;
1894 		}
1895 
1896 		folio_lock(folio);
1897 		folio_wait_writeback(folio);
1898 		ret = unuse_pte(vma, pmd, addr, entry, folio);
1899 		if (ret < 0) {
1900 			folio_unlock(folio);
1901 			folio_put(folio);
1902 			return ret;
1903 		}
1904 
1905 		folio_free_swap(folio);
1906 		folio_unlock(folio);
1907 		folio_put(folio);
1908 	} while (addr += PAGE_SIZE, addr != end);
1909 
1910 	if (pte)
1911 		pte_unmap(pte);
1912 	return 0;
1913 }
1914 
1915 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1916 				unsigned long addr, unsigned long end,
1917 				unsigned int type)
1918 {
1919 	pmd_t *pmd;
1920 	unsigned long next;
1921 	int ret;
1922 
1923 	pmd = pmd_offset(pud, addr);
1924 	do {
1925 		cond_resched();
1926 		next = pmd_addr_end(addr, end);
1927 		ret = unuse_pte_range(vma, pmd, addr, next, type);
1928 		if (ret)
1929 			return ret;
1930 	} while (pmd++, addr = next, addr != end);
1931 	return 0;
1932 }
1933 
1934 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1935 				unsigned long addr, unsigned long end,
1936 				unsigned int type)
1937 {
1938 	pud_t *pud;
1939 	unsigned long next;
1940 	int ret;
1941 
1942 	pud = pud_offset(p4d, addr);
1943 	do {
1944 		next = pud_addr_end(addr, end);
1945 		if (pud_none_or_clear_bad(pud))
1946 			continue;
1947 		ret = unuse_pmd_range(vma, pud, addr, next, type);
1948 		if (ret)
1949 			return ret;
1950 	} while (pud++, addr = next, addr != end);
1951 	return 0;
1952 }
1953 
1954 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1955 				unsigned long addr, unsigned long end,
1956 				unsigned int type)
1957 {
1958 	p4d_t *p4d;
1959 	unsigned long next;
1960 	int ret;
1961 
1962 	p4d = p4d_offset(pgd, addr);
1963 	do {
1964 		next = p4d_addr_end(addr, end);
1965 		if (p4d_none_or_clear_bad(p4d))
1966 			continue;
1967 		ret = unuse_pud_range(vma, p4d, addr, next, type);
1968 		if (ret)
1969 			return ret;
1970 	} while (p4d++, addr = next, addr != end);
1971 	return 0;
1972 }
1973 
1974 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1975 {
1976 	pgd_t *pgd;
1977 	unsigned long addr, end, next;
1978 	int ret;
1979 
1980 	addr = vma->vm_start;
1981 	end = vma->vm_end;
1982 
1983 	pgd = pgd_offset(vma->vm_mm, addr);
1984 	do {
1985 		next = pgd_addr_end(addr, end);
1986 		if (pgd_none_or_clear_bad(pgd))
1987 			continue;
1988 		ret = unuse_p4d_range(vma, pgd, addr, next, type);
1989 		if (ret)
1990 			return ret;
1991 	} while (pgd++, addr = next, addr != end);
1992 	return 0;
1993 }
1994 
1995 static int unuse_mm(struct mm_struct *mm, unsigned int type)
1996 {
1997 	struct vm_area_struct *vma;
1998 	int ret = 0;
1999 	VMA_ITERATOR(vmi, mm, 0);
2000 
2001 	mmap_read_lock(mm);
2002 	for_each_vma(vmi, vma) {
2003 		if (vma->anon_vma) {
2004 			ret = unuse_vma(vma, type);
2005 			if (ret)
2006 				break;
2007 		}
2008 
2009 		cond_resched();
2010 	}
2011 	mmap_read_unlock(mm);
2012 	return ret;
2013 }
2014 
2015 /*
2016  * Scan swap_map from current position to next entry still in use.
2017  * Return 0 if there are no inuse entries after prev till end of
2018  * the map.
2019  */
2020 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2021 					unsigned int prev)
2022 {
2023 	unsigned int i;
2024 	unsigned char count;
2025 
2026 	/*
2027 	 * No need for swap_lock here: we're just looking
2028 	 * for whether an entry is in use, not modifying it; false
2029 	 * hits are okay, and sys_swapoff() has already prevented new
2030 	 * allocations from this area (while holding swap_lock).
2031 	 */
2032 	for (i = prev + 1; i < si->max; i++) {
2033 		count = READ_ONCE(si->swap_map[i]);
2034 		if (count && swap_count(count) != SWAP_MAP_BAD)
2035 			break;
2036 		if ((i % LATENCY_LIMIT) == 0)
2037 			cond_resched();
2038 	}
2039 
2040 	if (i == si->max)
2041 		i = 0;
2042 
2043 	return i;
2044 }
2045 
2046 static int try_to_unuse(unsigned int type)
2047 {
2048 	struct mm_struct *prev_mm;
2049 	struct mm_struct *mm;
2050 	struct list_head *p;
2051 	int retval = 0;
2052 	struct swap_info_struct *si = swap_info[type];
2053 	struct folio *folio;
2054 	swp_entry_t entry;
2055 	unsigned int i;
2056 
2057 	if (!READ_ONCE(si->inuse_pages))
2058 		goto success;
2059 
2060 retry:
2061 	retval = shmem_unuse(type);
2062 	if (retval)
2063 		return retval;
2064 
2065 	prev_mm = &init_mm;
2066 	mmget(prev_mm);
2067 
2068 	spin_lock(&mmlist_lock);
2069 	p = &init_mm.mmlist;
2070 	while (READ_ONCE(si->inuse_pages) &&
2071 	       !signal_pending(current) &&
2072 	       (p = p->next) != &init_mm.mmlist) {
2073 
2074 		mm = list_entry(p, struct mm_struct, mmlist);
2075 		if (!mmget_not_zero(mm))
2076 			continue;
2077 		spin_unlock(&mmlist_lock);
2078 		mmput(prev_mm);
2079 		prev_mm = mm;
2080 		retval = unuse_mm(mm, type);
2081 		if (retval) {
2082 			mmput(prev_mm);
2083 			return retval;
2084 		}
2085 
2086 		/*
2087 		 * Make sure that we aren't completely killing
2088 		 * interactive performance.
2089 		 */
2090 		cond_resched();
2091 		spin_lock(&mmlist_lock);
2092 	}
2093 	spin_unlock(&mmlist_lock);
2094 
2095 	mmput(prev_mm);
2096 
2097 	i = 0;
2098 	while (READ_ONCE(si->inuse_pages) &&
2099 	       !signal_pending(current) &&
2100 	       (i = find_next_to_unuse(si, i)) != 0) {
2101 
2102 		entry = swp_entry(type, i);
2103 		folio = filemap_get_folio(swap_address_space(entry), i);
2104 		if (IS_ERR(folio))
2105 			continue;
2106 
2107 		/*
2108 		 * It is conceivable that a racing task removed this folio from
2109 		 * swap cache just before we acquired the page lock. The folio
2110 		 * might even be back in swap cache on another swap area. But
2111 		 * that is okay, folio_free_swap() only removes stale folios.
2112 		 */
2113 		folio_lock(folio);
2114 		folio_wait_writeback(folio);
2115 		folio_free_swap(folio);
2116 		folio_unlock(folio);
2117 		folio_put(folio);
2118 	}
2119 
2120 	/*
2121 	 * Lets check again to see if there are still swap entries in the map.
2122 	 * If yes, we would need to do retry the unuse logic again.
2123 	 * Under global memory pressure, swap entries can be reinserted back
2124 	 * into process space after the mmlist loop above passes over them.
2125 	 *
2126 	 * Limit the number of retries? No: when mmget_not_zero()
2127 	 * above fails, that mm is likely to be freeing swap from
2128 	 * exit_mmap(), which proceeds at its own independent pace;
2129 	 * and even shmem_writepage() could have been preempted after
2130 	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2131 	 * and robust (though cpu-intensive) just to keep retrying.
2132 	 */
2133 	if (READ_ONCE(si->inuse_pages)) {
2134 		if (!signal_pending(current))
2135 			goto retry;
2136 		return -EINTR;
2137 	}
2138 
2139 success:
2140 	/*
2141 	 * Make sure that further cleanups after try_to_unuse() returns happen
2142 	 * after swap_range_free() reduces si->inuse_pages to 0.
2143 	 */
2144 	smp_mb();
2145 	return 0;
2146 }
2147 
2148 /*
2149  * After a successful try_to_unuse, if no swap is now in use, we know
2150  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2151  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2152  * added to the mmlist just after page_duplicate - before would be racy.
2153  */
2154 static void drain_mmlist(void)
2155 {
2156 	struct list_head *p, *next;
2157 	unsigned int type;
2158 
2159 	for (type = 0; type < nr_swapfiles; type++)
2160 		if (swap_info[type]->inuse_pages)
2161 			return;
2162 	spin_lock(&mmlist_lock);
2163 	list_for_each_safe(p, next, &init_mm.mmlist)
2164 		list_del_init(p);
2165 	spin_unlock(&mmlist_lock);
2166 }
2167 
2168 /*
2169  * Free all of a swapdev's extent information
2170  */
2171 static void destroy_swap_extents(struct swap_info_struct *sis)
2172 {
2173 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2174 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2175 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2176 
2177 		rb_erase(rb, &sis->swap_extent_root);
2178 		kfree(se);
2179 	}
2180 
2181 	if (sis->flags & SWP_ACTIVATED) {
2182 		struct file *swap_file = sis->swap_file;
2183 		struct address_space *mapping = swap_file->f_mapping;
2184 
2185 		sis->flags &= ~SWP_ACTIVATED;
2186 		if (mapping->a_ops->swap_deactivate)
2187 			mapping->a_ops->swap_deactivate(swap_file);
2188 	}
2189 }
2190 
2191 /*
2192  * Add a block range (and the corresponding page range) into this swapdev's
2193  * extent tree.
2194  *
2195  * This function rather assumes that it is called in ascending page order.
2196  */
2197 int
2198 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2199 		unsigned long nr_pages, sector_t start_block)
2200 {
2201 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2202 	struct swap_extent *se;
2203 	struct swap_extent *new_se;
2204 
2205 	/*
2206 	 * place the new node at the right most since the
2207 	 * function is called in ascending page order.
2208 	 */
2209 	while (*link) {
2210 		parent = *link;
2211 		link = &parent->rb_right;
2212 	}
2213 
2214 	if (parent) {
2215 		se = rb_entry(parent, struct swap_extent, rb_node);
2216 		BUG_ON(se->start_page + se->nr_pages != start_page);
2217 		if (se->start_block + se->nr_pages == start_block) {
2218 			/* Merge it */
2219 			se->nr_pages += nr_pages;
2220 			return 0;
2221 		}
2222 	}
2223 
2224 	/* No merge, insert a new extent. */
2225 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2226 	if (new_se == NULL)
2227 		return -ENOMEM;
2228 	new_se->start_page = start_page;
2229 	new_se->nr_pages = nr_pages;
2230 	new_se->start_block = start_block;
2231 
2232 	rb_link_node(&new_se->rb_node, parent, link);
2233 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2234 	return 1;
2235 }
2236 EXPORT_SYMBOL_GPL(add_swap_extent);
2237 
2238 /*
2239  * A `swap extent' is a simple thing which maps a contiguous range of pages
2240  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2241  * built at swapon time and is then used at swap_writepage/swap_read_folio
2242  * time for locating where on disk a page belongs.
2243  *
2244  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2245  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2246  * swap files identically.
2247  *
2248  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2249  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2250  * swapfiles are handled *identically* after swapon time.
2251  *
2252  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2253  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2254  * blocks are found which do not fall within the PAGE_SIZE alignment
2255  * requirements, they are simply tossed out - we will never use those blocks
2256  * for swapping.
2257  *
2258  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2259  * prevents users from writing to the swap device, which will corrupt memory.
2260  *
2261  * The amount of disk space which a single swap extent represents varies.
2262  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2263  * extents in the rbtree. - akpm.
2264  */
2265 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2266 {
2267 	struct file *swap_file = sis->swap_file;
2268 	struct address_space *mapping = swap_file->f_mapping;
2269 	struct inode *inode = mapping->host;
2270 	int ret;
2271 
2272 	if (S_ISBLK(inode->i_mode)) {
2273 		ret = add_swap_extent(sis, 0, sis->max, 0);
2274 		*span = sis->pages;
2275 		return ret;
2276 	}
2277 
2278 	if (mapping->a_ops->swap_activate) {
2279 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2280 		if (ret < 0)
2281 			return ret;
2282 		sis->flags |= SWP_ACTIVATED;
2283 		if ((sis->flags & SWP_FS_OPS) &&
2284 		    sio_pool_init() != 0) {
2285 			destroy_swap_extents(sis);
2286 			return -ENOMEM;
2287 		}
2288 		return ret;
2289 	}
2290 
2291 	return generic_swapfile_activate(sis, swap_file, span);
2292 }
2293 
2294 static int swap_node(struct swap_info_struct *p)
2295 {
2296 	struct block_device *bdev;
2297 
2298 	if (p->bdev)
2299 		bdev = p->bdev;
2300 	else
2301 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2302 
2303 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2304 }
2305 
2306 static void setup_swap_info(struct swap_info_struct *p, int prio,
2307 			    unsigned char *swap_map,
2308 			    struct swap_cluster_info *cluster_info)
2309 {
2310 	int i;
2311 
2312 	if (prio >= 0)
2313 		p->prio = prio;
2314 	else
2315 		p->prio = --least_priority;
2316 	/*
2317 	 * the plist prio is negated because plist ordering is
2318 	 * low-to-high, while swap ordering is high-to-low
2319 	 */
2320 	p->list.prio = -p->prio;
2321 	for_each_node(i) {
2322 		if (p->prio >= 0)
2323 			p->avail_lists[i].prio = -p->prio;
2324 		else {
2325 			if (swap_node(p) == i)
2326 				p->avail_lists[i].prio = 1;
2327 			else
2328 				p->avail_lists[i].prio = -p->prio;
2329 		}
2330 	}
2331 	p->swap_map = swap_map;
2332 	p->cluster_info = cluster_info;
2333 }
2334 
2335 static void _enable_swap_info(struct swap_info_struct *p)
2336 {
2337 	p->flags |= SWP_WRITEOK;
2338 	atomic_long_add(p->pages, &nr_swap_pages);
2339 	total_swap_pages += p->pages;
2340 
2341 	assert_spin_locked(&swap_lock);
2342 	/*
2343 	 * both lists are plists, and thus priority ordered.
2344 	 * swap_active_head needs to be priority ordered for swapoff(),
2345 	 * which on removal of any swap_info_struct with an auto-assigned
2346 	 * (i.e. negative) priority increments the auto-assigned priority
2347 	 * of any lower-priority swap_info_structs.
2348 	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2349 	 * which allocates swap pages from the highest available priority
2350 	 * swap_info_struct.
2351 	 */
2352 	plist_add(&p->list, &swap_active_head);
2353 
2354 	/* add to available list iff swap device is not full */
2355 	if (p->highest_bit)
2356 		add_to_avail_list(p);
2357 }
2358 
2359 static void enable_swap_info(struct swap_info_struct *p, int prio,
2360 				unsigned char *swap_map,
2361 				struct swap_cluster_info *cluster_info)
2362 {
2363 	spin_lock(&swap_lock);
2364 	spin_lock(&p->lock);
2365 	setup_swap_info(p, prio, swap_map, cluster_info);
2366 	spin_unlock(&p->lock);
2367 	spin_unlock(&swap_lock);
2368 	/*
2369 	 * Finished initializing swap device, now it's safe to reference it.
2370 	 */
2371 	percpu_ref_resurrect(&p->users);
2372 	spin_lock(&swap_lock);
2373 	spin_lock(&p->lock);
2374 	_enable_swap_info(p);
2375 	spin_unlock(&p->lock);
2376 	spin_unlock(&swap_lock);
2377 }
2378 
2379 static void reinsert_swap_info(struct swap_info_struct *p)
2380 {
2381 	spin_lock(&swap_lock);
2382 	spin_lock(&p->lock);
2383 	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2384 	_enable_swap_info(p);
2385 	spin_unlock(&p->lock);
2386 	spin_unlock(&swap_lock);
2387 }
2388 
2389 bool has_usable_swap(void)
2390 {
2391 	bool ret = true;
2392 
2393 	spin_lock(&swap_lock);
2394 	if (plist_head_empty(&swap_active_head))
2395 		ret = false;
2396 	spin_unlock(&swap_lock);
2397 	return ret;
2398 }
2399 
2400 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2401 {
2402 	struct swap_info_struct *p = NULL;
2403 	unsigned char *swap_map;
2404 	struct swap_cluster_info *cluster_info;
2405 	struct file *swap_file, *victim;
2406 	struct address_space *mapping;
2407 	struct inode *inode;
2408 	struct filename *pathname;
2409 	int err, found = 0;
2410 	unsigned int old_block_size;
2411 
2412 	if (!capable(CAP_SYS_ADMIN))
2413 		return -EPERM;
2414 
2415 	BUG_ON(!current->mm);
2416 
2417 	pathname = getname(specialfile);
2418 	if (IS_ERR(pathname))
2419 		return PTR_ERR(pathname);
2420 
2421 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2422 	err = PTR_ERR(victim);
2423 	if (IS_ERR(victim))
2424 		goto out;
2425 
2426 	mapping = victim->f_mapping;
2427 	spin_lock(&swap_lock);
2428 	plist_for_each_entry(p, &swap_active_head, list) {
2429 		if (p->flags & SWP_WRITEOK) {
2430 			if (p->swap_file->f_mapping == mapping) {
2431 				found = 1;
2432 				break;
2433 			}
2434 		}
2435 	}
2436 	if (!found) {
2437 		err = -EINVAL;
2438 		spin_unlock(&swap_lock);
2439 		goto out_dput;
2440 	}
2441 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2442 		vm_unacct_memory(p->pages);
2443 	else {
2444 		err = -ENOMEM;
2445 		spin_unlock(&swap_lock);
2446 		goto out_dput;
2447 	}
2448 	spin_lock(&p->lock);
2449 	del_from_avail_list(p);
2450 	if (p->prio < 0) {
2451 		struct swap_info_struct *si = p;
2452 		int nid;
2453 
2454 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2455 			si->prio++;
2456 			si->list.prio--;
2457 			for_each_node(nid) {
2458 				if (si->avail_lists[nid].prio != 1)
2459 					si->avail_lists[nid].prio--;
2460 			}
2461 		}
2462 		least_priority++;
2463 	}
2464 	plist_del(&p->list, &swap_active_head);
2465 	atomic_long_sub(p->pages, &nr_swap_pages);
2466 	total_swap_pages -= p->pages;
2467 	p->flags &= ~SWP_WRITEOK;
2468 	spin_unlock(&p->lock);
2469 	spin_unlock(&swap_lock);
2470 
2471 	disable_swap_slots_cache_lock();
2472 
2473 	set_current_oom_origin();
2474 	err = try_to_unuse(p->type);
2475 	clear_current_oom_origin();
2476 
2477 	if (err) {
2478 		/* re-insert swap space back into swap_list */
2479 		reinsert_swap_info(p);
2480 		reenable_swap_slots_cache_unlock();
2481 		goto out_dput;
2482 	}
2483 
2484 	reenable_swap_slots_cache_unlock();
2485 
2486 	/*
2487 	 * Wait for swap operations protected by get/put_swap_device()
2488 	 * to complete.
2489 	 *
2490 	 * We need synchronize_rcu() here to protect the accessing to
2491 	 * the swap cache data structure.
2492 	 */
2493 	percpu_ref_kill(&p->users);
2494 	synchronize_rcu();
2495 	wait_for_completion(&p->comp);
2496 
2497 	flush_work(&p->discard_work);
2498 
2499 	destroy_swap_extents(p);
2500 	if (p->flags & SWP_CONTINUED)
2501 		free_swap_count_continuations(p);
2502 
2503 	if (!p->bdev || !bdev_nonrot(p->bdev))
2504 		atomic_dec(&nr_rotate_swap);
2505 
2506 	mutex_lock(&swapon_mutex);
2507 	spin_lock(&swap_lock);
2508 	spin_lock(&p->lock);
2509 	drain_mmlist();
2510 
2511 	/* wait for anyone still in scan_swap_map_slots */
2512 	p->highest_bit = 0;		/* cuts scans short */
2513 	while (p->flags >= SWP_SCANNING) {
2514 		spin_unlock(&p->lock);
2515 		spin_unlock(&swap_lock);
2516 		schedule_timeout_uninterruptible(1);
2517 		spin_lock(&swap_lock);
2518 		spin_lock(&p->lock);
2519 	}
2520 
2521 	swap_file = p->swap_file;
2522 	old_block_size = p->old_block_size;
2523 	p->swap_file = NULL;
2524 	p->max = 0;
2525 	swap_map = p->swap_map;
2526 	p->swap_map = NULL;
2527 	cluster_info = p->cluster_info;
2528 	p->cluster_info = NULL;
2529 	spin_unlock(&p->lock);
2530 	spin_unlock(&swap_lock);
2531 	arch_swap_invalidate_area(p->type);
2532 	zswap_swapoff(p->type);
2533 	mutex_unlock(&swapon_mutex);
2534 	free_percpu(p->percpu_cluster);
2535 	p->percpu_cluster = NULL;
2536 	free_percpu(p->cluster_next_cpu);
2537 	p->cluster_next_cpu = NULL;
2538 	vfree(swap_map);
2539 	kvfree(cluster_info);
2540 	/* Destroy swap account information */
2541 	swap_cgroup_swapoff(p->type);
2542 	exit_swap_address_space(p->type);
2543 
2544 	inode = mapping->host;
2545 	if (p->bdev_handle) {
2546 		set_blocksize(p->bdev, old_block_size);
2547 		bdev_release(p->bdev_handle);
2548 		p->bdev_handle = NULL;
2549 	}
2550 
2551 	inode_lock(inode);
2552 	inode->i_flags &= ~S_SWAPFILE;
2553 	inode_unlock(inode);
2554 	filp_close(swap_file, NULL);
2555 
2556 	/*
2557 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2558 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2559 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2560 	 */
2561 	spin_lock(&swap_lock);
2562 	p->flags = 0;
2563 	spin_unlock(&swap_lock);
2564 
2565 	err = 0;
2566 	atomic_inc(&proc_poll_event);
2567 	wake_up_interruptible(&proc_poll_wait);
2568 
2569 out_dput:
2570 	filp_close(victim, NULL);
2571 out:
2572 	putname(pathname);
2573 	return err;
2574 }
2575 
2576 #ifdef CONFIG_PROC_FS
2577 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2578 {
2579 	struct seq_file *seq = file->private_data;
2580 
2581 	poll_wait(file, &proc_poll_wait, wait);
2582 
2583 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2584 		seq->poll_event = atomic_read(&proc_poll_event);
2585 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2586 	}
2587 
2588 	return EPOLLIN | EPOLLRDNORM;
2589 }
2590 
2591 /* iterator */
2592 static void *swap_start(struct seq_file *swap, loff_t *pos)
2593 {
2594 	struct swap_info_struct *si;
2595 	int type;
2596 	loff_t l = *pos;
2597 
2598 	mutex_lock(&swapon_mutex);
2599 
2600 	if (!l)
2601 		return SEQ_START_TOKEN;
2602 
2603 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2604 		if (!(si->flags & SWP_USED) || !si->swap_map)
2605 			continue;
2606 		if (!--l)
2607 			return si;
2608 	}
2609 
2610 	return NULL;
2611 }
2612 
2613 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2614 {
2615 	struct swap_info_struct *si = v;
2616 	int type;
2617 
2618 	if (v == SEQ_START_TOKEN)
2619 		type = 0;
2620 	else
2621 		type = si->type + 1;
2622 
2623 	++(*pos);
2624 	for (; (si = swap_type_to_swap_info(type)); type++) {
2625 		if (!(si->flags & SWP_USED) || !si->swap_map)
2626 			continue;
2627 		return si;
2628 	}
2629 
2630 	return NULL;
2631 }
2632 
2633 static void swap_stop(struct seq_file *swap, void *v)
2634 {
2635 	mutex_unlock(&swapon_mutex);
2636 }
2637 
2638 static int swap_show(struct seq_file *swap, void *v)
2639 {
2640 	struct swap_info_struct *si = v;
2641 	struct file *file;
2642 	int len;
2643 	unsigned long bytes, inuse;
2644 
2645 	if (si == SEQ_START_TOKEN) {
2646 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2647 		return 0;
2648 	}
2649 
2650 	bytes = K(si->pages);
2651 	inuse = K(READ_ONCE(si->inuse_pages));
2652 
2653 	file = si->swap_file;
2654 	len = seq_file_path(swap, file, " \t\n\\");
2655 	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2656 			len < 40 ? 40 - len : 1, " ",
2657 			S_ISBLK(file_inode(file)->i_mode) ?
2658 				"partition" : "file\t",
2659 			bytes, bytes < 10000000 ? "\t" : "",
2660 			inuse, inuse < 10000000 ? "\t" : "",
2661 			si->prio);
2662 	return 0;
2663 }
2664 
2665 static const struct seq_operations swaps_op = {
2666 	.start =	swap_start,
2667 	.next =		swap_next,
2668 	.stop =		swap_stop,
2669 	.show =		swap_show
2670 };
2671 
2672 static int swaps_open(struct inode *inode, struct file *file)
2673 {
2674 	struct seq_file *seq;
2675 	int ret;
2676 
2677 	ret = seq_open(file, &swaps_op);
2678 	if (ret)
2679 		return ret;
2680 
2681 	seq = file->private_data;
2682 	seq->poll_event = atomic_read(&proc_poll_event);
2683 	return 0;
2684 }
2685 
2686 static const struct proc_ops swaps_proc_ops = {
2687 	.proc_flags	= PROC_ENTRY_PERMANENT,
2688 	.proc_open	= swaps_open,
2689 	.proc_read	= seq_read,
2690 	.proc_lseek	= seq_lseek,
2691 	.proc_release	= seq_release,
2692 	.proc_poll	= swaps_poll,
2693 };
2694 
2695 static int __init procswaps_init(void)
2696 {
2697 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2698 	return 0;
2699 }
2700 __initcall(procswaps_init);
2701 #endif /* CONFIG_PROC_FS */
2702 
2703 #ifdef MAX_SWAPFILES_CHECK
2704 static int __init max_swapfiles_check(void)
2705 {
2706 	MAX_SWAPFILES_CHECK();
2707 	return 0;
2708 }
2709 late_initcall(max_swapfiles_check);
2710 #endif
2711 
2712 static struct swap_info_struct *alloc_swap_info(void)
2713 {
2714 	struct swap_info_struct *p;
2715 	struct swap_info_struct *defer = NULL;
2716 	unsigned int type;
2717 	int i;
2718 
2719 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2720 	if (!p)
2721 		return ERR_PTR(-ENOMEM);
2722 
2723 	if (percpu_ref_init(&p->users, swap_users_ref_free,
2724 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2725 		kvfree(p);
2726 		return ERR_PTR(-ENOMEM);
2727 	}
2728 
2729 	spin_lock(&swap_lock);
2730 	for (type = 0; type < nr_swapfiles; type++) {
2731 		if (!(swap_info[type]->flags & SWP_USED))
2732 			break;
2733 	}
2734 	if (type >= MAX_SWAPFILES) {
2735 		spin_unlock(&swap_lock);
2736 		percpu_ref_exit(&p->users);
2737 		kvfree(p);
2738 		return ERR_PTR(-EPERM);
2739 	}
2740 	if (type >= nr_swapfiles) {
2741 		p->type = type;
2742 		/*
2743 		 * Publish the swap_info_struct after initializing it.
2744 		 * Note that kvzalloc() above zeroes all its fields.
2745 		 */
2746 		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2747 		nr_swapfiles++;
2748 	} else {
2749 		defer = p;
2750 		p = swap_info[type];
2751 		/*
2752 		 * Do not memset this entry: a racing procfs swap_next()
2753 		 * would be relying on p->type to remain valid.
2754 		 */
2755 	}
2756 	p->swap_extent_root = RB_ROOT;
2757 	plist_node_init(&p->list, 0);
2758 	for_each_node(i)
2759 		plist_node_init(&p->avail_lists[i], 0);
2760 	p->flags = SWP_USED;
2761 	spin_unlock(&swap_lock);
2762 	if (defer) {
2763 		percpu_ref_exit(&defer->users);
2764 		kvfree(defer);
2765 	}
2766 	spin_lock_init(&p->lock);
2767 	spin_lock_init(&p->cont_lock);
2768 	init_completion(&p->comp);
2769 
2770 	return p;
2771 }
2772 
2773 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2774 {
2775 	int error;
2776 
2777 	if (S_ISBLK(inode->i_mode)) {
2778 		p->bdev_handle = bdev_open_by_dev(inode->i_rdev,
2779 				BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL);
2780 		if (IS_ERR(p->bdev_handle)) {
2781 			error = PTR_ERR(p->bdev_handle);
2782 			p->bdev_handle = NULL;
2783 			return error;
2784 		}
2785 		p->bdev = p->bdev_handle->bdev;
2786 		p->old_block_size = block_size(p->bdev);
2787 		error = set_blocksize(p->bdev, PAGE_SIZE);
2788 		if (error < 0)
2789 			return error;
2790 		/*
2791 		 * Zoned block devices contain zones that have a sequential
2792 		 * write only restriction.  Hence zoned block devices are not
2793 		 * suitable for swapping.  Disallow them here.
2794 		 */
2795 		if (bdev_is_zoned(p->bdev))
2796 			return -EINVAL;
2797 		p->flags |= SWP_BLKDEV;
2798 	} else if (S_ISREG(inode->i_mode)) {
2799 		p->bdev = inode->i_sb->s_bdev;
2800 	}
2801 
2802 	return 0;
2803 }
2804 
2805 
2806 /*
2807  * Find out how many pages are allowed for a single swap device. There
2808  * are two limiting factors:
2809  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2810  * 2) the number of bits in the swap pte, as defined by the different
2811  * architectures.
2812  *
2813  * In order to find the largest possible bit mask, a swap entry with
2814  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2815  * decoded to a swp_entry_t again, and finally the swap offset is
2816  * extracted.
2817  *
2818  * This will mask all the bits from the initial ~0UL mask that can't
2819  * be encoded in either the swp_entry_t or the architecture definition
2820  * of a swap pte.
2821  */
2822 unsigned long generic_max_swapfile_size(void)
2823 {
2824 	return swp_offset(pte_to_swp_entry(
2825 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2826 }
2827 
2828 /* Can be overridden by an architecture for additional checks. */
2829 __weak unsigned long arch_max_swapfile_size(void)
2830 {
2831 	return generic_max_swapfile_size();
2832 }
2833 
2834 static unsigned long read_swap_header(struct swap_info_struct *p,
2835 					union swap_header *swap_header,
2836 					struct inode *inode)
2837 {
2838 	int i;
2839 	unsigned long maxpages;
2840 	unsigned long swapfilepages;
2841 	unsigned long last_page;
2842 
2843 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2844 		pr_err("Unable to find swap-space signature\n");
2845 		return 0;
2846 	}
2847 
2848 	/* swap partition endianness hack... */
2849 	if (swab32(swap_header->info.version) == 1) {
2850 		swab32s(&swap_header->info.version);
2851 		swab32s(&swap_header->info.last_page);
2852 		swab32s(&swap_header->info.nr_badpages);
2853 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2854 			return 0;
2855 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2856 			swab32s(&swap_header->info.badpages[i]);
2857 	}
2858 	/* Check the swap header's sub-version */
2859 	if (swap_header->info.version != 1) {
2860 		pr_warn("Unable to handle swap header version %d\n",
2861 			swap_header->info.version);
2862 		return 0;
2863 	}
2864 
2865 	p->lowest_bit  = 1;
2866 	p->cluster_next = 1;
2867 	p->cluster_nr = 0;
2868 
2869 	maxpages = swapfile_maximum_size;
2870 	last_page = swap_header->info.last_page;
2871 	if (!last_page) {
2872 		pr_warn("Empty swap-file\n");
2873 		return 0;
2874 	}
2875 	if (last_page > maxpages) {
2876 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2877 			K(maxpages), K(last_page));
2878 	}
2879 	if (maxpages > last_page) {
2880 		maxpages = last_page + 1;
2881 		/* p->max is an unsigned int: don't overflow it */
2882 		if ((unsigned int)maxpages == 0)
2883 			maxpages = UINT_MAX;
2884 	}
2885 	p->highest_bit = maxpages - 1;
2886 
2887 	if (!maxpages)
2888 		return 0;
2889 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2890 	if (swapfilepages && maxpages > swapfilepages) {
2891 		pr_warn("Swap area shorter than signature indicates\n");
2892 		return 0;
2893 	}
2894 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2895 		return 0;
2896 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2897 		return 0;
2898 
2899 	return maxpages;
2900 }
2901 
2902 #define SWAP_CLUSTER_INFO_COLS						\
2903 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2904 #define SWAP_CLUSTER_SPACE_COLS						\
2905 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2906 #define SWAP_CLUSTER_COLS						\
2907 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2908 
2909 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2910 					union swap_header *swap_header,
2911 					unsigned char *swap_map,
2912 					struct swap_cluster_info *cluster_info,
2913 					unsigned long maxpages,
2914 					sector_t *span)
2915 {
2916 	unsigned int j, k;
2917 	unsigned int nr_good_pages;
2918 	int nr_extents;
2919 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2920 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2921 	unsigned long i, idx;
2922 
2923 	nr_good_pages = maxpages - 1;	/* omit header page */
2924 
2925 	cluster_list_init(&p->free_clusters);
2926 	cluster_list_init(&p->discard_clusters);
2927 
2928 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2929 		unsigned int page_nr = swap_header->info.badpages[i];
2930 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2931 			return -EINVAL;
2932 		if (page_nr < maxpages) {
2933 			swap_map[page_nr] = SWAP_MAP_BAD;
2934 			nr_good_pages--;
2935 			/*
2936 			 * Haven't marked the cluster free yet, no list
2937 			 * operation involved
2938 			 */
2939 			inc_cluster_info_page(p, cluster_info, page_nr);
2940 		}
2941 	}
2942 
2943 	/* Haven't marked the cluster free yet, no list operation involved */
2944 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2945 		inc_cluster_info_page(p, cluster_info, i);
2946 
2947 	if (nr_good_pages) {
2948 		swap_map[0] = SWAP_MAP_BAD;
2949 		/*
2950 		 * Not mark the cluster free yet, no list
2951 		 * operation involved
2952 		 */
2953 		inc_cluster_info_page(p, cluster_info, 0);
2954 		p->max = maxpages;
2955 		p->pages = nr_good_pages;
2956 		nr_extents = setup_swap_extents(p, span);
2957 		if (nr_extents < 0)
2958 			return nr_extents;
2959 		nr_good_pages = p->pages;
2960 	}
2961 	if (!nr_good_pages) {
2962 		pr_warn("Empty swap-file\n");
2963 		return -EINVAL;
2964 	}
2965 
2966 	if (!cluster_info)
2967 		return nr_extents;
2968 
2969 
2970 	/*
2971 	 * Reduce false cache line sharing between cluster_info and
2972 	 * sharing same address space.
2973 	 */
2974 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2975 		j = (k + col) % SWAP_CLUSTER_COLS;
2976 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2977 			idx = i * SWAP_CLUSTER_COLS + j;
2978 			if (idx >= nr_clusters)
2979 				continue;
2980 			if (cluster_count(&cluster_info[idx]))
2981 				continue;
2982 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2983 			cluster_list_add_tail(&p->free_clusters, cluster_info,
2984 					      idx);
2985 		}
2986 	}
2987 	return nr_extents;
2988 }
2989 
2990 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2991 {
2992 	struct swap_info_struct *p;
2993 	struct filename *name;
2994 	struct file *swap_file = NULL;
2995 	struct address_space *mapping;
2996 	struct dentry *dentry;
2997 	int prio;
2998 	int error;
2999 	union swap_header *swap_header;
3000 	int nr_extents;
3001 	sector_t span;
3002 	unsigned long maxpages;
3003 	unsigned char *swap_map = NULL;
3004 	struct swap_cluster_info *cluster_info = NULL;
3005 	struct page *page = NULL;
3006 	struct inode *inode = NULL;
3007 	bool inced_nr_rotate_swap = false;
3008 
3009 	if (swap_flags & ~SWAP_FLAGS_VALID)
3010 		return -EINVAL;
3011 
3012 	if (!capable(CAP_SYS_ADMIN))
3013 		return -EPERM;
3014 
3015 	if (!swap_avail_heads)
3016 		return -ENOMEM;
3017 
3018 	p = alloc_swap_info();
3019 	if (IS_ERR(p))
3020 		return PTR_ERR(p);
3021 
3022 	INIT_WORK(&p->discard_work, swap_discard_work);
3023 
3024 	name = getname(specialfile);
3025 	if (IS_ERR(name)) {
3026 		error = PTR_ERR(name);
3027 		name = NULL;
3028 		goto bad_swap;
3029 	}
3030 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3031 	if (IS_ERR(swap_file)) {
3032 		error = PTR_ERR(swap_file);
3033 		swap_file = NULL;
3034 		goto bad_swap;
3035 	}
3036 
3037 	p->swap_file = swap_file;
3038 	mapping = swap_file->f_mapping;
3039 	dentry = swap_file->f_path.dentry;
3040 	inode = mapping->host;
3041 
3042 	error = claim_swapfile(p, inode);
3043 	if (unlikely(error))
3044 		goto bad_swap;
3045 
3046 	inode_lock(inode);
3047 	if (d_unlinked(dentry) || cant_mount(dentry)) {
3048 		error = -ENOENT;
3049 		goto bad_swap_unlock_inode;
3050 	}
3051 	if (IS_SWAPFILE(inode)) {
3052 		error = -EBUSY;
3053 		goto bad_swap_unlock_inode;
3054 	}
3055 
3056 	/*
3057 	 * Read the swap header.
3058 	 */
3059 	if (!mapping->a_ops->read_folio) {
3060 		error = -EINVAL;
3061 		goto bad_swap_unlock_inode;
3062 	}
3063 	page = read_mapping_page(mapping, 0, swap_file);
3064 	if (IS_ERR(page)) {
3065 		error = PTR_ERR(page);
3066 		goto bad_swap_unlock_inode;
3067 	}
3068 	swap_header = kmap(page);
3069 
3070 	maxpages = read_swap_header(p, swap_header, inode);
3071 	if (unlikely(!maxpages)) {
3072 		error = -EINVAL;
3073 		goto bad_swap_unlock_inode;
3074 	}
3075 
3076 	/* OK, set up the swap map and apply the bad block list */
3077 	swap_map = vzalloc(maxpages);
3078 	if (!swap_map) {
3079 		error = -ENOMEM;
3080 		goto bad_swap_unlock_inode;
3081 	}
3082 
3083 	if (p->bdev && bdev_stable_writes(p->bdev))
3084 		p->flags |= SWP_STABLE_WRITES;
3085 
3086 	if (p->bdev && bdev_synchronous(p->bdev))
3087 		p->flags |= SWP_SYNCHRONOUS_IO;
3088 
3089 	if (p->bdev && bdev_nonrot(p->bdev)) {
3090 		int cpu;
3091 		unsigned long ci, nr_cluster;
3092 
3093 		p->flags |= SWP_SOLIDSTATE;
3094 		p->cluster_next_cpu = alloc_percpu(unsigned int);
3095 		if (!p->cluster_next_cpu) {
3096 			error = -ENOMEM;
3097 			goto bad_swap_unlock_inode;
3098 		}
3099 		/*
3100 		 * select a random position to start with to help wear leveling
3101 		 * SSD
3102 		 */
3103 		for_each_possible_cpu(cpu) {
3104 			per_cpu(*p->cluster_next_cpu, cpu) =
3105 				get_random_u32_inclusive(1, p->highest_bit);
3106 		}
3107 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3108 
3109 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3110 					GFP_KERNEL);
3111 		if (!cluster_info) {
3112 			error = -ENOMEM;
3113 			goto bad_swap_unlock_inode;
3114 		}
3115 
3116 		for (ci = 0; ci < nr_cluster; ci++)
3117 			spin_lock_init(&((cluster_info + ci)->lock));
3118 
3119 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3120 		if (!p->percpu_cluster) {
3121 			error = -ENOMEM;
3122 			goto bad_swap_unlock_inode;
3123 		}
3124 		for_each_possible_cpu(cpu) {
3125 			struct percpu_cluster *cluster;
3126 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3127 			cluster_set_null(&cluster->index);
3128 		}
3129 	} else {
3130 		atomic_inc(&nr_rotate_swap);
3131 		inced_nr_rotate_swap = true;
3132 	}
3133 
3134 	error = swap_cgroup_swapon(p->type, maxpages);
3135 	if (error)
3136 		goto bad_swap_unlock_inode;
3137 
3138 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3139 		cluster_info, maxpages, &span);
3140 	if (unlikely(nr_extents < 0)) {
3141 		error = nr_extents;
3142 		goto bad_swap_unlock_inode;
3143 	}
3144 
3145 	if ((swap_flags & SWAP_FLAG_DISCARD) &&
3146 	    p->bdev && bdev_max_discard_sectors(p->bdev)) {
3147 		/*
3148 		 * When discard is enabled for swap with no particular
3149 		 * policy flagged, we set all swap discard flags here in
3150 		 * order to sustain backward compatibility with older
3151 		 * swapon(8) releases.
3152 		 */
3153 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3154 			     SWP_PAGE_DISCARD);
3155 
3156 		/*
3157 		 * By flagging sys_swapon, a sysadmin can tell us to
3158 		 * either do single-time area discards only, or to just
3159 		 * perform discards for released swap page-clusters.
3160 		 * Now it's time to adjust the p->flags accordingly.
3161 		 */
3162 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3163 			p->flags &= ~SWP_PAGE_DISCARD;
3164 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3165 			p->flags &= ~SWP_AREA_DISCARD;
3166 
3167 		/* issue a swapon-time discard if it's still required */
3168 		if (p->flags & SWP_AREA_DISCARD) {
3169 			int err = discard_swap(p);
3170 			if (unlikely(err))
3171 				pr_err("swapon: discard_swap(%p): %d\n",
3172 					p, err);
3173 		}
3174 	}
3175 
3176 	error = init_swap_address_space(p->type, maxpages);
3177 	if (error)
3178 		goto bad_swap_unlock_inode;
3179 
3180 	error = zswap_swapon(p->type, maxpages);
3181 	if (error)
3182 		goto free_swap_address_space;
3183 
3184 	/*
3185 	 * Flush any pending IO and dirty mappings before we start using this
3186 	 * swap device.
3187 	 */
3188 	inode->i_flags |= S_SWAPFILE;
3189 	error = inode_drain_writes(inode);
3190 	if (error) {
3191 		inode->i_flags &= ~S_SWAPFILE;
3192 		goto free_swap_zswap;
3193 	}
3194 
3195 	mutex_lock(&swapon_mutex);
3196 	prio = -1;
3197 	if (swap_flags & SWAP_FLAG_PREFER)
3198 		prio =
3199 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3200 	enable_swap_info(p, prio, swap_map, cluster_info);
3201 
3202 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3203 		K(p->pages), name->name, p->prio, nr_extents,
3204 		K((unsigned long long)span),
3205 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3206 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3207 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3208 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "");
3209 
3210 	mutex_unlock(&swapon_mutex);
3211 	atomic_inc(&proc_poll_event);
3212 	wake_up_interruptible(&proc_poll_wait);
3213 
3214 	error = 0;
3215 	goto out;
3216 free_swap_zswap:
3217 	zswap_swapoff(p->type);
3218 free_swap_address_space:
3219 	exit_swap_address_space(p->type);
3220 bad_swap_unlock_inode:
3221 	inode_unlock(inode);
3222 bad_swap:
3223 	free_percpu(p->percpu_cluster);
3224 	p->percpu_cluster = NULL;
3225 	free_percpu(p->cluster_next_cpu);
3226 	p->cluster_next_cpu = NULL;
3227 	if (p->bdev_handle) {
3228 		set_blocksize(p->bdev, p->old_block_size);
3229 		bdev_release(p->bdev_handle);
3230 		p->bdev_handle = NULL;
3231 	}
3232 	inode = NULL;
3233 	destroy_swap_extents(p);
3234 	swap_cgroup_swapoff(p->type);
3235 	spin_lock(&swap_lock);
3236 	p->swap_file = NULL;
3237 	p->flags = 0;
3238 	spin_unlock(&swap_lock);
3239 	vfree(swap_map);
3240 	kvfree(cluster_info);
3241 	if (inced_nr_rotate_swap)
3242 		atomic_dec(&nr_rotate_swap);
3243 	if (swap_file)
3244 		filp_close(swap_file, NULL);
3245 out:
3246 	if (page && !IS_ERR(page)) {
3247 		kunmap(page);
3248 		put_page(page);
3249 	}
3250 	if (name)
3251 		putname(name);
3252 	if (inode)
3253 		inode_unlock(inode);
3254 	if (!error)
3255 		enable_swap_slots_cache();
3256 	return error;
3257 }
3258 
3259 void si_swapinfo(struct sysinfo *val)
3260 {
3261 	unsigned int type;
3262 	unsigned long nr_to_be_unused = 0;
3263 
3264 	spin_lock(&swap_lock);
3265 	for (type = 0; type < nr_swapfiles; type++) {
3266 		struct swap_info_struct *si = swap_info[type];
3267 
3268 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3269 			nr_to_be_unused += READ_ONCE(si->inuse_pages);
3270 	}
3271 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3272 	val->totalswap = total_swap_pages + nr_to_be_unused;
3273 	spin_unlock(&swap_lock);
3274 }
3275 
3276 /*
3277  * Verify that a swap entry is valid and increment its swap map count.
3278  *
3279  * Returns error code in following case.
3280  * - success -> 0
3281  * - swp_entry is invalid -> EINVAL
3282  * - swp_entry is migration entry -> EINVAL
3283  * - swap-cache reference is requested but there is already one. -> EEXIST
3284  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3285  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3286  */
3287 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3288 {
3289 	struct swap_info_struct *p;
3290 	struct swap_cluster_info *ci;
3291 	unsigned long offset;
3292 	unsigned char count;
3293 	unsigned char has_cache;
3294 	int err;
3295 
3296 	p = swp_swap_info(entry);
3297 
3298 	offset = swp_offset(entry);
3299 	ci = lock_cluster_or_swap_info(p, offset);
3300 
3301 	count = p->swap_map[offset];
3302 
3303 	/*
3304 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3305 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3306 	 */
3307 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3308 		err = -ENOENT;
3309 		goto unlock_out;
3310 	}
3311 
3312 	has_cache = count & SWAP_HAS_CACHE;
3313 	count &= ~SWAP_HAS_CACHE;
3314 	err = 0;
3315 
3316 	if (usage == SWAP_HAS_CACHE) {
3317 
3318 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3319 		if (!has_cache && count)
3320 			has_cache = SWAP_HAS_CACHE;
3321 		else if (has_cache)		/* someone else added cache */
3322 			err = -EEXIST;
3323 		else				/* no users remaining */
3324 			err = -ENOENT;
3325 
3326 	} else if (count || has_cache) {
3327 
3328 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3329 			count += usage;
3330 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3331 			err = -EINVAL;
3332 		else if (swap_count_continued(p, offset, count))
3333 			count = COUNT_CONTINUED;
3334 		else
3335 			err = -ENOMEM;
3336 	} else
3337 		err = -ENOENT;			/* unused swap entry */
3338 
3339 	WRITE_ONCE(p->swap_map[offset], count | has_cache);
3340 
3341 unlock_out:
3342 	unlock_cluster_or_swap_info(p, ci);
3343 	return err;
3344 }
3345 
3346 /*
3347  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3348  * (in which case its reference count is never incremented).
3349  */
3350 void swap_shmem_alloc(swp_entry_t entry)
3351 {
3352 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3353 }
3354 
3355 /*
3356  * Increase reference count of swap entry by 1.
3357  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3358  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3359  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3360  * might occur if a page table entry has got corrupted.
3361  */
3362 int swap_duplicate(swp_entry_t entry)
3363 {
3364 	int err = 0;
3365 
3366 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3367 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3368 	return err;
3369 }
3370 
3371 /*
3372  * @entry: swap entry for which we allocate swap cache.
3373  *
3374  * Called when allocating swap cache for existing swap entry,
3375  * This can return error codes. Returns 0 at success.
3376  * -EEXIST means there is a swap cache.
3377  * Note: return code is different from swap_duplicate().
3378  */
3379 int swapcache_prepare(swp_entry_t entry)
3380 {
3381 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3382 }
3383 
3384 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry)
3385 {
3386 	struct swap_cluster_info *ci;
3387 	unsigned long offset = swp_offset(entry);
3388 	unsigned char usage;
3389 
3390 	ci = lock_cluster_or_swap_info(si, offset);
3391 	usage = __swap_entry_free_locked(si, offset, SWAP_HAS_CACHE);
3392 	unlock_cluster_or_swap_info(si, ci);
3393 	if (!usage)
3394 		free_swap_slot(entry);
3395 }
3396 
3397 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3398 {
3399 	return swap_type_to_swap_info(swp_type(entry));
3400 }
3401 
3402 /*
3403  * out-of-line methods to avoid include hell.
3404  */
3405 struct address_space *swapcache_mapping(struct folio *folio)
3406 {
3407 	return swp_swap_info(folio->swap)->swap_file->f_mapping;
3408 }
3409 EXPORT_SYMBOL_GPL(swapcache_mapping);
3410 
3411 pgoff_t __page_file_index(struct page *page)
3412 {
3413 	swp_entry_t swap = page_swap_entry(page);
3414 	return swp_offset(swap);
3415 }
3416 EXPORT_SYMBOL_GPL(__page_file_index);
3417 
3418 /*
3419  * add_swap_count_continuation - called when a swap count is duplicated
3420  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3421  * page of the original vmalloc'ed swap_map, to hold the continuation count
3422  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3423  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3424  *
3425  * These continuation pages are seldom referenced: the common paths all work
3426  * on the original swap_map, only referring to a continuation page when the
3427  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3428  *
3429  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3430  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3431  * can be called after dropping locks.
3432  */
3433 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3434 {
3435 	struct swap_info_struct *si;
3436 	struct swap_cluster_info *ci;
3437 	struct page *head;
3438 	struct page *page;
3439 	struct page *list_page;
3440 	pgoff_t offset;
3441 	unsigned char count;
3442 	int ret = 0;
3443 
3444 	/*
3445 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3446 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3447 	 */
3448 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3449 
3450 	si = get_swap_device(entry);
3451 	if (!si) {
3452 		/*
3453 		 * An acceptable race has occurred since the failing
3454 		 * __swap_duplicate(): the swap device may be swapoff
3455 		 */
3456 		goto outer;
3457 	}
3458 	spin_lock(&si->lock);
3459 
3460 	offset = swp_offset(entry);
3461 
3462 	ci = lock_cluster(si, offset);
3463 
3464 	count = swap_count(si->swap_map[offset]);
3465 
3466 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3467 		/*
3468 		 * The higher the swap count, the more likely it is that tasks
3469 		 * will race to add swap count continuation: we need to avoid
3470 		 * over-provisioning.
3471 		 */
3472 		goto out;
3473 	}
3474 
3475 	if (!page) {
3476 		ret = -ENOMEM;
3477 		goto out;
3478 	}
3479 
3480 	head = vmalloc_to_page(si->swap_map + offset);
3481 	offset &= ~PAGE_MASK;
3482 
3483 	spin_lock(&si->cont_lock);
3484 	/*
3485 	 * Page allocation does not initialize the page's lru field,
3486 	 * but it does always reset its private field.
3487 	 */
3488 	if (!page_private(head)) {
3489 		BUG_ON(count & COUNT_CONTINUED);
3490 		INIT_LIST_HEAD(&head->lru);
3491 		set_page_private(head, SWP_CONTINUED);
3492 		si->flags |= SWP_CONTINUED;
3493 	}
3494 
3495 	list_for_each_entry(list_page, &head->lru, lru) {
3496 		unsigned char *map;
3497 
3498 		/*
3499 		 * If the previous map said no continuation, but we've found
3500 		 * a continuation page, free our allocation and use this one.
3501 		 */
3502 		if (!(count & COUNT_CONTINUED))
3503 			goto out_unlock_cont;
3504 
3505 		map = kmap_local_page(list_page) + offset;
3506 		count = *map;
3507 		kunmap_local(map);
3508 
3509 		/*
3510 		 * If this continuation count now has some space in it,
3511 		 * free our allocation and use this one.
3512 		 */
3513 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3514 			goto out_unlock_cont;
3515 	}
3516 
3517 	list_add_tail(&page->lru, &head->lru);
3518 	page = NULL;			/* now it's attached, don't free it */
3519 out_unlock_cont:
3520 	spin_unlock(&si->cont_lock);
3521 out:
3522 	unlock_cluster(ci);
3523 	spin_unlock(&si->lock);
3524 	put_swap_device(si);
3525 outer:
3526 	if (page)
3527 		__free_page(page);
3528 	return ret;
3529 }
3530 
3531 /*
3532  * swap_count_continued - when the original swap_map count is incremented
3533  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3534  * into, carry if so, or else fail until a new continuation page is allocated;
3535  * when the original swap_map count is decremented from 0 with continuation,
3536  * borrow from the continuation and report whether it still holds more.
3537  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3538  * lock.
3539  */
3540 static bool swap_count_continued(struct swap_info_struct *si,
3541 				 pgoff_t offset, unsigned char count)
3542 {
3543 	struct page *head;
3544 	struct page *page;
3545 	unsigned char *map;
3546 	bool ret;
3547 
3548 	head = vmalloc_to_page(si->swap_map + offset);
3549 	if (page_private(head) != SWP_CONTINUED) {
3550 		BUG_ON(count & COUNT_CONTINUED);
3551 		return false;		/* need to add count continuation */
3552 	}
3553 
3554 	spin_lock(&si->cont_lock);
3555 	offset &= ~PAGE_MASK;
3556 	page = list_next_entry(head, lru);
3557 	map = kmap_local_page(page) + offset;
3558 
3559 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3560 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3561 
3562 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3563 		/*
3564 		 * Think of how you add 1 to 999
3565 		 */
3566 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3567 			kunmap_local(map);
3568 			page = list_next_entry(page, lru);
3569 			BUG_ON(page == head);
3570 			map = kmap_local_page(page) + offset;
3571 		}
3572 		if (*map == SWAP_CONT_MAX) {
3573 			kunmap_local(map);
3574 			page = list_next_entry(page, lru);
3575 			if (page == head) {
3576 				ret = false;	/* add count continuation */
3577 				goto out;
3578 			}
3579 			map = kmap_local_page(page) + offset;
3580 init_map:		*map = 0;		/* we didn't zero the page */
3581 		}
3582 		*map += 1;
3583 		kunmap_local(map);
3584 		while ((page = list_prev_entry(page, lru)) != head) {
3585 			map = kmap_local_page(page) + offset;
3586 			*map = COUNT_CONTINUED;
3587 			kunmap_local(map);
3588 		}
3589 		ret = true;			/* incremented */
3590 
3591 	} else {				/* decrementing */
3592 		/*
3593 		 * Think of how you subtract 1 from 1000
3594 		 */
3595 		BUG_ON(count != COUNT_CONTINUED);
3596 		while (*map == COUNT_CONTINUED) {
3597 			kunmap_local(map);
3598 			page = list_next_entry(page, lru);
3599 			BUG_ON(page == head);
3600 			map = kmap_local_page(page) + offset;
3601 		}
3602 		BUG_ON(*map == 0);
3603 		*map -= 1;
3604 		if (*map == 0)
3605 			count = 0;
3606 		kunmap_local(map);
3607 		while ((page = list_prev_entry(page, lru)) != head) {
3608 			map = kmap_local_page(page) + offset;
3609 			*map = SWAP_CONT_MAX | count;
3610 			count = COUNT_CONTINUED;
3611 			kunmap_local(map);
3612 		}
3613 		ret = count == COUNT_CONTINUED;
3614 	}
3615 out:
3616 	spin_unlock(&si->cont_lock);
3617 	return ret;
3618 }
3619 
3620 /*
3621  * free_swap_count_continuations - swapoff free all the continuation pages
3622  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3623  */
3624 static void free_swap_count_continuations(struct swap_info_struct *si)
3625 {
3626 	pgoff_t offset;
3627 
3628 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3629 		struct page *head;
3630 		head = vmalloc_to_page(si->swap_map + offset);
3631 		if (page_private(head)) {
3632 			struct page *page, *next;
3633 
3634 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3635 				list_del(&page->lru);
3636 				__free_page(page);
3637 			}
3638 		}
3639 	}
3640 }
3641 
3642 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3643 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3644 {
3645 	struct swap_info_struct *si, *next;
3646 	int nid = folio_nid(folio);
3647 
3648 	if (!(gfp & __GFP_IO))
3649 		return;
3650 
3651 	if (!blk_cgroup_congested())
3652 		return;
3653 
3654 	/*
3655 	 * We've already scheduled a throttle, avoid taking the global swap
3656 	 * lock.
3657 	 */
3658 	if (current->throttle_disk)
3659 		return;
3660 
3661 	spin_lock(&swap_avail_lock);
3662 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3663 				  avail_lists[nid]) {
3664 		if (si->bdev) {
3665 			blkcg_schedule_throttle(si->bdev->bd_disk, true);
3666 			break;
3667 		}
3668 	}
3669 	spin_unlock(&swap_avail_lock);
3670 }
3671 #endif
3672 
3673 static int __init swapfile_init(void)
3674 {
3675 	int nid;
3676 
3677 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3678 					 GFP_KERNEL);
3679 	if (!swap_avail_heads) {
3680 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3681 		return -ENOMEM;
3682 	}
3683 
3684 	for_each_node(nid)
3685 		plist_head_init(&swap_avail_heads[nid]);
3686 
3687 	swapfile_maximum_size = arch_max_swapfile_size();
3688 
3689 #ifdef CONFIG_MIGRATION
3690 	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3691 		swap_migration_ad_supported = true;
3692 #endif	/* CONFIG_MIGRATION */
3693 
3694 	return 0;
3695 }
3696 subsys_initcall(swapfile_init);
3697