1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/blkdev.h> 10 #include <linux/mm.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/task.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mman.h> 15 #include <linux/slab.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/swap.h> 18 #include <linux/vmalloc.h> 19 #include <linux/pagemap.h> 20 #include <linux/namei.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/blk-cgroup.h> 23 #include <linux/random.h> 24 #include <linux/writeback.h> 25 #include <linux/proc_fs.h> 26 #include <linux/seq_file.h> 27 #include <linux/init.h> 28 #include <linux/ksm.h> 29 #include <linux/rmap.h> 30 #include <linux/security.h> 31 #include <linux/backing-dev.h> 32 #include <linux/mutex.h> 33 #include <linux/capability.h> 34 #include <linux/syscalls.h> 35 #include <linux/memcontrol.h> 36 #include <linux/poll.h> 37 #include <linux/oom.h> 38 #include <linux/swapfile.h> 39 #include <linux/export.h> 40 #include <linux/swap_slots.h> 41 #include <linux/sort.h> 42 #include <linux/completion.h> 43 #include <linux/suspend.h> 44 #include <linux/zswap.h> 45 #include <linux/plist.h> 46 47 #include <asm/tlbflush.h> 48 #include <linux/swapops.h> 49 #include <linux/swap_cgroup.h> 50 #include "internal.h" 51 #include "swap.h" 52 53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 54 unsigned char); 55 static void free_swap_count_continuations(struct swap_info_struct *); 56 57 static DEFINE_SPINLOCK(swap_lock); 58 static unsigned int nr_swapfiles; 59 atomic_long_t nr_swap_pages; 60 /* 61 * Some modules use swappable objects and may try to swap them out under 62 * memory pressure (via the shrinker). Before doing so, they may wish to 63 * check to see if any swap space is available. 64 */ 65 EXPORT_SYMBOL_GPL(nr_swap_pages); 66 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 67 long total_swap_pages; 68 static int least_priority = -1; 69 unsigned long swapfile_maximum_size; 70 #ifdef CONFIG_MIGRATION 71 bool swap_migration_ad_supported; 72 #endif /* CONFIG_MIGRATION */ 73 74 static const char Bad_file[] = "Bad swap file entry "; 75 static const char Unused_file[] = "Unused swap file entry "; 76 static const char Bad_offset[] = "Bad swap offset entry "; 77 static const char Unused_offset[] = "Unused swap offset entry "; 78 79 /* 80 * all active swap_info_structs 81 * protected with swap_lock, and ordered by priority. 82 */ 83 static PLIST_HEAD(swap_active_head); 84 85 /* 86 * all available (active, not full) swap_info_structs 87 * protected with swap_avail_lock, ordered by priority. 88 * This is used by folio_alloc_swap() instead of swap_active_head 89 * because swap_active_head includes all swap_info_structs, 90 * but folio_alloc_swap() doesn't need to look at full ones. 91 * This uses its own lock instead of swap_lock because when a 92 * swap_info_struct changes between not-full/full, it needs to 93 * add/remove itself to/from this list, but the swap_info_struct->lock 94 * is held and the locking order requires swap_lock to be taken 95 * before any swap_info_struct->lock. 96 */ 97 static struct plist_head *swap_avail_heads; 98 static DEFINE_SPINLOCK(swap_avail_lock); 99 100 static struct swap_info_struct *swap_info[MAX_SWAPFILES]; 101 102 static DEFINE_MUTEX(swapon_mutex); 103 104 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 105 /* Activity counter to indicate that a swapon or swapoff has occurred */ 106 static atomic_t proc_poll_event = ATOMIC_INIT(0); 107 108 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 109 110 static struct swap_info_struct *swap_type_to_swap_info(int type) 111 { 112 if (type >= MAX_SWAPFILES) 113 return NULL; 114 115 return READ_ONCE(swap_info[type]); /* rcu_dereference() */ 116 } 117 118 static inline unsigned char swap_count(unsigned char ent) 119 { 120 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 121 } 122 123 /* Reclaim the swap entry anyway if possible */ 124 #define TTRS_ANYWAY 0x1 125 /* 126 * Reclaim the swap entry if there are no more mappings of the 127 * corresponding page 128 */ 129 #define TTRS_UNMAPPED 0x2 130 /* Reclaim the swap entry if swap is getting full*/ 131 #define TTRS_FULL 0x4 132 133 /* returns 1 if swap entry is freed */ 134 static int __try_to_reclaim_swap(struct swap_info_struct *si, 135 unsigned long offset, unsigned long flags) 136 { 137 swp_entry_t entry = swp_entry(si->type, offset); 138 struct folio *folio; 139 int ret = 0; 140 141 folio = filemap_get_folio(swap_address_space(entry), offset); 142 if (IS_ERR(folio)) 143 return 0; 144 /* 145 * When this function is called from scan_swap_map_slots() and it's 146 * called by vmscan.c at reclaiming folios. So we hold a folio lock 147 * here. We have to use trylock for avoiding deadlock. This is a special 148 * case and you should use folio_free_swap() with explicit folio_lock() 149 * in usual operations. 150 */ 151 if (folio_trylock(folio)) { 152 if ((flags & TTRS_ANYWAY) || 153 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) || 154 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio))) 155 ret = folio_free_swap(folio); 156 folio_unlock(folio); 157 } 158 folio_put(folio); 159 return ret; 160 } 161 162 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 163 { 164 struct rb_node *rb = rb_first(&sis->swap_extent_root); 165 return rb_entry(rb, struct swap_extent, rb_node); 166 } 167 168 static inline struct swap_extent *next_se(struct swap_extent *se) 169 { 170 struct rb_node *rb = rb_next(&se->rb_node); 171 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 172 } 173 174 /* 175 * swapon tell device that all the old swap contents can be discarded, 176 * to allow the swap device to optimize its wear-levelling. 177 */ 178 static int discard_swap(struct swap_info_struct *si) 179 { 180 struct swap_extent *se; 181 sector_t start_block; 182 sector_t nr_blocks; 183 int err = 0; 184 185 /* Do not discard the swap header page! */ 186 se = first_se(si); 187 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 188 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 189 if (nr_blocks) { 190 err = blkdev_issue_discard(si->bdev, start_block, 191 nr_blocks, GFP_KERNEL); 192 if (err) 193 return err; 194 cond_resched(); 195 } 196 197 for (se = next_se(se); se; se = next_se(se)) { 198 start_block = se->start_block << (PAGE_SHIFT - 9); 199 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 200 201 err = blkdev_issue_discard(si->bdev, start_block, 202 nr_blocks, GFP_KERNEL); 203 if (err) 204 break; 205 206 cond_resched(); 207 } 208 return err; /* That will often be -EOPNOTSUPP */ 209 } 210 211 static struct swap_extent * 212 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 213 { 214 struct swap_extent *se; 215 struct rb_node *rb; 216 217 rb = sis->swap_extent_root.rb_node; 218 while (rb) { 219 se = rb_entry(rb, struct swap_extent, rb_node); 220 if (offset < se->start_page) 221 rb = rb->rb_left; 222 else if (offset >= se->start_page + se->nr_pages) 223 rb = rb->rb_right; 224 else 225 return se; 226 } 227 /* It *must* be present */ 228 BUG(); 229 } 230 231 sector_t swap_folio_sector(struct folio *folio) 232 { 233 struct swap_info_struct *sis = swp_swap_info(folio->swap); 234 struct swap_extent *se; 235 sector_t sector; 236 pgoff_t offset; 237 238 offset = swp_offset(folio->swap); 239 se = offset_to_swap_extent(sis, offset); 240 sector = se->start_block + (offset - se->start_page); 241 return sector << (PAGE_SHIFT - 9); 242 } 243 244 /* 245 * swap allocation tell device that a cluster of swap can now be discarded, 246 * to allow the swap device to optimize its wear-levelling. 247 */ 248 static void discard_swap_cluster(struct swap_info_struct *si, 249 pgoff_t start_page, pgoff_t nr_pages) 250 { 251 struct swap_extent *se = offset_to_swap_extent(si, start_page); 252 253 while (nr_pages) { 254 pgoff_t offset = start_page - se->start_page; 255 sector_t start_block = se->start_block + offset; 256 sector_t nr_blocks = se->nr_pages - offset; 257 258 if (nr_blocks > nr_pages) 259 nr_blocks = nr_pages; 260 start_page += nr_blocks; 261 nr_pages -= nr_blocks; 262 263 start_block <<= PAGE_SHIFT - 9; 264 nr_blocks <<= PAGE_SHIFT - 9; 265 if (blkdev_issue_discard(si->bdev, start_block, 266 nr_blocks, GFP_NOIO)) 267 break; 268 269 se = next_se(se); 270 } 271 } 272 273 #ifdef CONFIG_THP_SWAP 274 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 275 276 #define swap_entry_size(size) (size) 277 #else 278 #define SWAPFILE_CLUSTER 256 279 280 /* 281 * Define swap_entry_size() as constant to let compiler to optimize 282 * out some code if !CONFIG_THP_SWAP 283 */ 284 #define swap_entry_size(size) 1 285 #endif 286 #define LATENCY_LIMIT 256 287 288 static inline void cluster_set_flag(struct swap_cluster_info *info, 289 unsigned int flag) 290 { 291 info->flags = flag; 292 } 293 294 static inline unsigned int cluster_count(struct swap_cluster_info *info) 295 { 296 return info->data; 297 } 298 299 static inline void cluster_set_count(struct swap_cluster_info *info, 300 unsigned int c) 301 { 302 info->data = c; 303 } 304 305 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 306 unsigned int c, unsigned int f) 307 { 308 info->flags = f; 309 info->data = c; 310 } 311 312 static inline unsigned int cluster_next(struct swap_cluster_info *info) 313 { 314 return info->data; 315 } 316 317 static inline void cluster_set_next(struct swap_cluster_info *info, 318 unsigned int n) 319 { 320 info->data = n; 321 } 322 323 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 324 unsigned int n, unsigned int f) 325 { 326 info->flags = f; 327 info->data = n; 328 } 329 330 static inline bool cluster_is_free(struct swap_cluster_info *info) 331 { 332 return info->flags & CLUSTER_FLAG_FREE; 333 } 334 335 static inline bool cluster_is_null(struct swap_cluster_info *info) 336 { 337 return info->flags & CLUSTER_FLAG_NEXT_NULL; 338 } 339 340 static inline void cluster_set_null(struct swap_cluster_info *info) 341 { 342 info->flags = CLUSTER_FLAG_NEXT_NULL; 343 info->data = 0; 344 } 345 346 static inline bool cluster_is_huge(struct swap_cluster_info *info) 347 { 348 if (IS_ENABLED(CONFIG_THP_SWAP)) 349 return info->flags & CLUSTER_FLAG_HUGE; 350 return false; 351 } 352 353 static inline void cluster_clear_huge(struct swap_cluster_info *info) 354 { 355 info->flags &= ~CLUSTER_FLAG_HUGE; 356 } 357 358 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 359 unsigned long offset) 360 { 361 struct swap_cluster_info *ci; 362 363 ci = si->cluster_info; 364 if (ci) { 365 ci += offset / SWAPFILE_CLUSTER; 366 spin_lock(&ci->lock); 367 } 368 return ci; 369 } 370 371 static inline void unlock_cluster(struct swap_cluster_info *ci) 372 { 373 if (ci) 374 spin_unlock(&ci->lock); 375 } 376 377 /* 378 * Determine the locking method in use for this device. Return 379 * swap_cluster_info if SSD-style cluster-based locking is in place. 380 */ 381 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 382 struct swap_info_struct *si, unsigned long offset) 383 { 384 struct swap_cluster_info *ci; 385 386 /* Try to use fine-grained SSD-style locking if available: */ 387 ci = lock_cluster(si, offset); 388 /* Otherwise, fall back to traditional, coarse locking: */ 389 if (!ci) 390 spin_lock(&si->lock); 391 392 return ci; 393 } 394 395 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 396 struct swap_cluster_info *ci) 397 { 398 if (ci) 399 unlock_cluster(ci); 400 else 401 spin_unlock(&si->lock); 402 } 403 404 static inline bool cluster_list_empty(struct swap_cluster_list *list) 405 { 406 return cluster_is_null(&list->head); 407 } 408 409 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 410 { 411 return cluster_next(&list->head); 412 } 413 414 static void cluster_list_init(struct swap_cluster_list *list) 415 { 416 cluster_set_null(&list->head); 417 cluster_set_null(&list->tail); 418 } 419 420 static void cluster_list_add_tail(struct swap_cluster_list *list, 421 struct swap_cluster_info *ci, 422 unsigned int idx) 423 { 424 if (cluster_list_empty(list)) { 425 cluster_set_next_flag(&list->head, idx, 0); 426 cluster_set_next_flag(&list->tail, idx, 0); 427 } else { 428 struct swap_cluster_info *ci_tail; 429 unsigned int tail = cluster_next(&list->tail); 430 431 /* 432 * Nested cluster lock, but both cluster locks are 433 * only acquired when we held swap_info_struct->lock 434 */ 435 ci_tail = ci + tail; 436 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 437 cluster_set_next(ci_tail, idx); 438 spin_unlock(&ci_tail->lock); 439 cluster_set_next_flag(&list->tail, idx, 0); 440 } 441 } 442 443 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 444 struct swap_cluster_info *ci) 445 { 446 unsigned int idx; 447 448 idx = cluster_next(&list->head); 449 if (cluster_next(&list->tail) == idx) { 450 cluster_set_null(&list->head); 451 cluster_set_null(&list->tail); 452 } else 453 cluster_set_next_flag(&list->head, 454 cluster_next(&ci[idx]), 0); 455 456 return idx; 457 } 458 459 /* Add a cluster to discard list and schedule it to do discard */ 460 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 461 unsigned int idx) 462 { 463 /* 464 * If scan_swap_map_slots() can't find a free cluster, it will check 465 * si->swap_map directly. To make sure the discarding cluster isn't 466 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied). 467 * It will be cleared after discard 468 */ 469 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 470 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 471 472 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 473 474 schedule_work(&si->discard_work); 475 } 476 477 static void __free_cluster(struct swap_info_struct *si, unsigned long idx) 478 { 479 struct swap_cluster_info *ci = si->cluster_info; 480 481 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); 482 cluster_list_add_tail(&si->free_clusters, ci, idx); 483 } 484 485 /* 486 * Doing discard actually. After a cluster discard is finished, the cluster 487 * will be added to free cluster list. caller should hold si->lock. 488 */ 489 static void swap_do_scheduled_discard(struct swap_info_struct *si) 490 { 491 struct swap_cluster_info *info, *ci; 492 unsigned int idx; 493 494 info = si->cluster_info; 495 496 while (!cluster_list_empty(&si->discard_clusters)) { 497 idx = cluster_list_del_first(&si->discard_clusters, info); 498 spin_unlock(&si->lock); 499 500 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 501 SWAPFILE_CLUSTER); 502 503 spin_lock(&si->lock); 504 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 505 __free_cluster(si, idx); 506 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 507 0, SWAPFILE_CLUSTER); 508 unlock_cluster(ci); 509 } 510 } 511 512 static void swap_discard_work(struct work_struct *work) 513 { 514 struct swap_info_struct *si; 515 516 si = container_of(work, struct swap_info_struct, discard_work); 517 518 spin_lock(&si->lock); 519 swap_do_scheduled_discard(si); 520 spin_unlock(&si->lock); 521 } 522 523 static void swap_users_ref_free(struct percpu_ref *ref) 524 { 525 struct swap_info_struct *si; 526 527 si = container_of(ref, struct swap_info_struct, users); 528 complete(&si->comp); 529 } 530 531 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) 532 { 533 struct swap_cluster_info *ci = si->cluster_info; 534 535 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); 536 cluster_list_del_first(&si->free_clusters, ci); 537 cluster_set_count_flag(ci + idx, 0, 0); 538 } 539 540 static void free_cluster(struct swap_info_struct *si, unsigned long idx) 541 { 542 struct swap_cluster_info *ci = si->cluster_info + idx; 543 544 VM_BUG_ON(cluster_count(ci) != 0); 545 /* 546 * If the swap is discardable, prepare discard the cluster 547 * instead of free it immediately. The cluster will be freed 548 * after discard. 549 */ 550 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 551 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 552 swap_cluster_schedule_discard(si, idx); 553 return; 554 } 555 556 __free_cluster(si, idx); 557 } 558 559 /* 560 * The cluster corresponding to page_nr will be used. The cluster will be 561 * removed from free cluster list and its usage counter will be increased. 562 */ 563 static void inc_cluster_info_page(struct swap_info_struct *p, 564 struct swap_cluster_info *cluster_info, unsigned long page_nr) 565 { 566 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 567 568 if (!cluster_info) 569 return; 570 if (cluster_is_free(&cluster_info[idx])) 571 alloc_cluster(p, idx); 572 573 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 574 cluster_set_count(&cluster_info[idx], 575 cluster_count(&cluster_info[idx]) + 1); 576 } 577 578 /* 579 * The cluster corresponding to page_nr decreases one usage. If the usage 580 * counter becomes 0, which means no page in the cluster is in using, we can 581 * optionally discard the cluster and add it to free cluster list. 582 */ 583 static void dec_cluster_info_page(struct swap_info_struct *p, 584 struct swap_cluster_info *cluster_info, unsigned long page_nr) 585 { 586 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 587 588 if (!cluster_info) 589 return; 590 591 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 592 cluster_set_count(&cluster_info[idx], 593 cluster_count(&cluster_info[idx]) - 1); 594 595 if (cluster_count(&cluster_info[idx]) == 0) 596 free_cluster(p, idx); 597 } 598 599 /* 600 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free 601 * cluster list. Avoiding such abuse to avoid list corruption. 602 */ 603 static bool 604 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 605 unsigned long offset) 606 { 607 struct percpu_cluster *percpu_cluster; 608 bool conflict; 609 610 offset /= SWAPFILE_CLUSTER; 611 conflict = !cluster_list_empty(&si->free_clusters) && 612 offset != cluster_list_first(&si->free_clusters) && 613 cluster_is_free(&si->cluster_info[offset]); 614 615 if (!conflict) 616 return false; 617 618 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 619 cluster_set_null(&percpu_cluster->index); 620 return true; 621 } 622 623 /* 624 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 625 * might involve allocating a new cluster for current CPU too. 626 */ 627 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 628 unsigned long *offset, unsigned long *scan_base) 629 { 630 struct percpu_cluster *cluster; 631 struct swap_cluster_info *ci; 632 unsigned long tmp, max; 633 634 new_cluster: 635 cluster = this_cpu_ptr(si->percpu_cluster); 636 if (cluster_is_null(&cluster->index)) { 637 if (!cluster_list_empty(&si->free_clusters)) { 638 cluster->index = si->free_clusters.head; 639 cluster->next = cluster_next(&cluster->index) * 640 SWAPFILE_CLUSTER; 641 } else if (!cluster_list_empty(&si->discard_clusters)) { 642 /* 643 * we don't have free cluster but have some clusters in 644 * discarding, do discard now and reclaim them, then 645 * reread cluster_next_cpu since we dropped si->lock 646 */ 647 swap_do_scheduled_discard(si); 648 *scan_base = this_cpu_read(*si->cluster_next_cpu); 649 *offset = *scan_base; 650 goto new_cluster; 651 } else 652 return false; 653 } 654 655 /* 656 * Other CPUs can use our cluster if they can't find a free cluster, 657 * check if there is still free entry in the cluster 658 */ 659 tmp = cluster->next; 660 max = min_t(unsigned long, si->max, 661 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); 662 if (tmp < max) { 663 ci = lock_cluster(si, tmp); 664 while (tmp < max) { 665 if (!si->swap_map[tmp]) 666 break; 667 tmp++; 668 } 669 unlock_cluster(ci); 670 } 671 if (tmp >= max) { 672 cluster_set_null(&cluster->index); 673 goto new_cluster; 674 } 675 cluster->next = tmp + 1; 676 *offset = tmp; 677 *scan_base = tmp; 678 return true; 679 } 680 681 static void __del_from_avail_list(struct swap_info_struct *p) 682 { 683 int nid; 684 685 assert_spin_locked(&p->lock); 686 for_each_node(nid) 687 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); 688 } 689 690 static void del_from_avail_list(struct swap_info_struct *p) 691 { 692 spin_lock(&swap_avail_lock); 693 __del_from_avail_list(p); 694 spin_unlock(&swap_avail_lock); 695 } 696 697 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 698 unsigned int nr_entries) 699 { 700 unsigned int end = offset + nr_entries - 1; 701 702 if (offset == si->lowest_bit) 703 si->lowest_bit += nr_entries; 704 if (end == si->highest_bit) 705 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries); 706 WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries); 707 if (si->inuse_pages == si->pages) { 708 si->lowest_bit = si->max; 709 si->highest_bit = 0; 710 del_from_avail_list(si); 711 } 712 } 713 714 static void add_to_avail_list(struct swap_info_struct *p) 715 { 716 int nid; 717 718 spin_lock(&swap_avail_lock); 719 for_each_node(nid) 720 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); 721 spin_unlock(&swap_avail_lock); 722 } 723 724 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 725 unsigned int nr_entries) 726 { 727 unsigned long begin = offset; 728 unsigned long end = offset + nr_entries - 1; 729 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 730 731 if (offset < si->lowest_bit) 732 si->lowest_bit = offset; 733 if (end > si->highest_bit) { 734 bool was_full = !si->highest_bit; 735 736 WRITE_ONCE(si->highest_bit, end); 737 if (was_full && (si->flags & SWP_WRITEOK)) 738 add_to_avail_list(si); 739 } 740 if (si->flags & SWP_BLKDEV) 741 swap_slot_free_notify = 742 si->bdev->bd_disk->fops->swap_slot_free_notify; 743 else 744 swap_slot_free_notify = NULL; 745 while (offset <= end) { 746 arch_swap_invalidate_page(si->type, offset); 747 zswap_invalidate(si->type, offset); 748 if (swap_slot_free_notify) 749 swap_slot_free_notify(si->bdev, offset); 750 offset++; 751 } 752 clear_shadow_from_swap_cache(si->type, begin, end); 753 754 /* 755 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0 756 * only after the above cleanups are done. 757 */ 758 smp_wmb(); 759 atomic_long_add(nr_entries, &nr_swap_pages); 760 WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries); 761 } 762 763 static void set_cluster_next(struct swap_info_struct *si, unsigned long next) 764 { 765 unsigned long prev; 766 767 if (!(si->flags & SWP_SOLIDSTATE)) { 768 si->cluster_next = next; 769 return; 770 } 771 772 prev = this_cpu_read(*si->cluster_next_cpu); 773 /* 774 * Cross the swap address space size aligned trunk, choose 775 * another trunk randomly to avoid lock contention on swap 776 * address space if possible. 777 */ 778 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) != 779 (next >> SWAP_ADDRESS_SPACE_SHIFT)) { 780 /* No free swap slots available */ 781 if (si->highest_bit <= si->lowest_bit) 782 return; 783 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit); 784 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES); 785 next = max_t(unsigned int, next, si->lowest_bit); 786 } 787 this_cpu_write(*si->cluster_next_cpu, next); 788 } 789 790 static bool swap_offset_available_and_locked(struct swap_info_struct *si, 791 unsigned long offset) 792 { 793 if (data_race(!si->swap_map[offset])) { 794 spin_lock(&si->lock); 795 return true; 796 } 797 798 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 799 spin_lock(&si->lock); 800 return true; 801 } 802 803 return false; 804 } 805 806 static int scan_swap_map_slots(struct swap_info_struct *si, 807 unsigned char usage, int nr, 808 swp_entry_t slots[]) 809 { 810 struct swap_cluster_info *ci; 811 unsigned long offset; 812 unsigned long scan_base; 813 unsigned long last_in_cluster = 0; 814 int latency_ration = LATENCY_LIMIT; 815 int n_ret = 0; 816 bool scanned_many = false; 817 818 /* 819 * We try to cluster swap pages by allocating them sequentially 820 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 821 * way, however, we resort to first-free allocation, starting 822 * a new cluster. This prevents us from scattering swap pages 823 * all over the entire swap partition, so that we reduce 824 * overall disk seek times between swap pages. -- sct 825 * But we do now try to find an empty cluster. -Andrea 826 * And we let swap pages go all over an SSD partition. Hugh 827 */ 828 829 si->flags += SWP_SCANNING; 830 /* 831 * Use percpu scan base for SSD to reduce lock contention on 832 * cluster and swap cache. For HDD, sequential access is more 833 * important. 834 */ 835 if (si->flags & SWP_SOLIDSTATE) 836 scan_base = this_cpu_read(*si->cluster_next_cpu); 837 else 838 scan_base = si->cluster_next; 839 offset = scan_base; 840 841 /* SSD algorithm */ 842 if (si->cluster_info) { 843 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 844 goto scan; 845 } else if (unlikely(!si->cluster_nr--)) { 846 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 847 si->cluster_nr = SWAPFILE_CLUSTER - 1; 848 goto checks; 849 } 850 851 spin_unlock(&si->lock); 852 853 /* 854 * If seek is expensive, start searching for new cluster from 855 * start of partition, to minimize the span of allocated swap. 856 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 857 * case, just handled by scan_swap_map_try_ssd_cluster() above. 858 */ 859 scan_base = offset = si->lowest_bit; 860 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 861 862 /* Locate the first empty (unaligned) cluster */ 863 for (; last_in_cluster <= si->highest_bit; offset++) { 864 if (si->swap_map[offset]) 865 last_in_cluster = offset + SWAPFILE_CLUSTER; 866 else if (offset == last_in_cluster) { 867 spin_lock(&si->lock); 868 offset -= SWAPFILE_CLUSTER - 1; 869 si->cluster_next = offset; 870 si->cluster_nr = SWAPFILE_CLUSTER - 1; 871 goto checks; 872 } 873 if (unlikely(--latency_ration < 0)) { 874 cond_resched(); 875 latency_ration = LATENCY_LIMIT; 876 } 877 } 878 879 offset = scan_base; 880 spin_lock(&si->lock); 881 si->cluster_nr = SWAPFILE_CLUSTER - 1; 882 } 883 884 checks: 885 if (si->cluster_info) { 886 while (scan_swap_map_ssd_cluster_conflict(si, offset)) { 887 /* take a break if we already got some slots */ 888 if (n_ret) 889 goto done; 890 if (!scan_swap_map_try_ssd_cluster(si, &offset, 891 &scan_base)) 892 goto scan; 893 } 894 } 895 if (!(si->flags & SWP_WRITEOK)) 896 goto no_page; 897 if (!si->highest_bit) 898 goto no_page; 899 if (offset > si->highest_bit) 900 scan_base = offset = si->lowest_bit; 901 902 ci = lock_cluster(si, offset); 903 /* reuse swap entry of cache-only swap if not busy. */ 904 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 905 int swap_was_freed; 906 unlock_cluster(ci); 907 spin_unlock(&si->lock); 908 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 909 spin_lock(&si->lock); 910 /* entry was freed successfully, try to use this again */ 911 if (swap_was_freed) 912 goto checks; 913 goto scan; /* check next one */ 914 } 915 916 if (si->swap_map[offset]) { 917 unlock_cluster(ci); 918 if (!n_ret) 919 goto scan; 920 else 921 goto done; 922 } 923 WRITE_ONCE(si->swap_map[offset], usage); 924 inc_cluster_info_page(si, si->cluster_info, offset); 925 unlock_cluster(ci); 926 927 swap_range_alloc(si, offset, 1); 928 slots[n_ret++] = swp_entry(si->type, offset); 929 930 /* got enough slots or reach max slots? */ 931 if ((n_ret == nr) || (offset >= si->highest_bit)) 932 goto done; 933 934 /* search for next available slot */ 935 936 /* time to take a break? */ 937 if (unlikely(--latency_ration < 0)) { 938 if (n_ret) 939 goto done; 940 spin_unlock(&si->lock); 941 cond_resched(); 942 spin_lock(&si->lock); 943 latency_ration = LATENCY_LIMIT; 944 } 945 946 /* try to get more slots in cluster */ 947 if (si->cluster_info) { 948 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 949 goto checks; 950 } else if (si->cluster_nr && !si->swap_map[++offset]) { 951 /* non-ssd case, still more slots in cluster? */ 952 --si->cluster_nr; 953 goto checks; 954 } 955 956 /* 957 * Even if there's no free clusters available (fragmented), 958 * try to scan a little more quickly with lock held unless we 959 * have scanned too many slots already. 960 */ 961 if (!scanned_many) { 962 unsigned long scan_limit; 963 964 if (offset < scan_base) 965 scan_limit = scan_base; 966 else 967 scan_limit = si->highest_bit; 968 for (; offset <= scan_limit && --latency_ration > 0; 969 offset++) { 970 if (!si->swap_map[offset]) 971 goto checks; 972 } 973 } 974 975 done: 976 set_cluster_next(si, offset + 1); 977 si->flags -= SWP_SCANNING; 978 return n_ret; 979 980 scan: 981 spin_unlock(&si->lock); 982 while (++offset <= READ_ONCE(si->highest_bit)) { 983 if (unlikely(--latency_ration < 0)) { 984 cond_resched(); 985 latency_ration = LATENCY_LIMIT; 986 scanned_many = true; 987 } 988 if (swap_offset_available_and_locked(si, offset)) 989 goto checks; 990 } 991 offset = si->lowest_bit; 992 while (offset < scan_base) { 993 if (unlikely(--latency_ration < 0)) { 994 cond_resched(); 995 latency_ration = LATENCY_LIMIT; 996 scanned_many = true; 997 } 998 if (swap_offset_available_and_locked(si, offset)) 999 goto checks; 1000 offset++; 1001 } 1002 spin_lock(&si->lock); 1003 1004 no_page: 1005 si->flags -= SWP_SCANNING; 1006 return n_ret; 1007 } 1008 1009 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) 1010 { 1011 unsigned long idx; 1012 struct swap_cluster_info *ci; 1013 unsigned long offset; 1014 1015 /* 1016 * Should not even be attempting cluster allocations when huge 1017 * page swap is disabled. Warn and fail the allocation. 1018 */ 1019 if (!IS_ENABLED(CONFIG_THP_SWAP)) { 1020 VM_WARN_ON_ONCE(1); 1021 return 0; 1022 } 1023 1024 if (cluster_list_empty(&si->free_clusters)) 1025 return 0; 1026 1027 idx = cluster_list_first(&si->free_clusters); 1028 offset = idx * SWAPFILE_CLUSTER; 1029 ci = lock_cluster(si, offset); 1030 alloc_cluster(si, idx); 1031 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); 1032 1033 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER); 1034 unlock_cluster(ci); 1035 swap_range_alloc(si, offset, SWAPFILE_CLUSTER); 1036 *slot = swp_entry(si->type, offset); 1037 1038 return 1; 1039 } 1040 1041 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) 1042 { 1043 unsigned long offset = idx * SWAPFILE_CLUSTER; 1044 struct swap_cluster_info *ci; 1045 1046 ci = lock_cluster(si, offset); 1047 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER); 1048 cluster_set_count_flag(ci, 0, 0); 1049 free_cluster(si, idx); 1050 unlock_cluster(ci); 1051 swap_range_free(si, offset, SWAPFILE_CLUSTER); 1052 } 1053 1054 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size) 1055 { 1056 unsigned long size = swap_entry_size(entry_size); 1057 struct swap_info_struct *si, *next; 1058 long avail_pgs; 1059 int n_ret = 0; 1060 int node; 1061 1062 /* Only single cluster request supported */ 1063 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER); 1064 1065 spin_lock(&swap_avail_lock); 1066 1067 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 1068 if (avail_pgs <= 0) { 1069 spin_unlock(&swap_avail_lock); 1070 goto noswap; 1071 } 1072 1073 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs); 1074 1075 atomic_long_sub(n_goal * size, &nr_swap_pages); 1076 1077 start_over: 1078 node = numa_node_id(); 1079 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1080 /* requeue si to after same-priority siblings */ 1081 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1082 spin_unlock(&swap_avail_lock); 1083 spin_lock(&si->lock); 1084 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 1085 spin_lock(&swap_avail_lock); 1086 if (plist_node_empty(&si->avail_lists[node])) { 1087 spin_unlock(&si->lock); 1088 goto nextsi; 1089 } 1090 WARN(!si->highest_bit, 1091 "swap_info %d in list but !highest_bit\n", 1092 si->type); 1093 WARN(!(si->flags & SWP_WRITEOK), 1094 "swap_info %d in list but !SWP_WRITEOK\n", 1095 si->type); 1096 __del_from_avail_list(si); 1097 spin_unlock(&si->lock); 1098 goto nextsi; 1099 } 1100 if (size == SWAPFILE_CLUSTER) { 1101 if (si->flags & SWP_BLKDEV) 1102 n_ret = swap_alloc_cluster(si, swp_entries); 1103 } else 1104 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 1105 n_goal, swp_entries); 1106 spin_unlock(&si->lock); 1107 if (n_ret || size == SWAPFILE_CLUSTER) 1108 goto check_out; 1109 cond_resched(); 1110 1111 spin_lock(&swap_avail_lock); 1112 nextsi: 1113 /* 1114 * if we got here, it's likely that si was almost full before, 1115 * and since scan_swap_map_slots() can drop the si->lock, 1116 * multiple callers probably all tried to get a page from the 1117 * same si and it filled up before we could get one; or, the si 1118 * filled up between us dropping swap_avail_lock and taking 1119 * si->lock. Since we dropped the swap_avail_lock, the 1120 * swap_avail_head list may have been modified; so if next is 1121 * still in the swap_avail_head list then try it, otherwise 1122 * start over if we have not gotten any slots. 1123 */ 1124 if (plist_node_empty(&next->avail_lists[node])) 1125 goto start_over; 1126 } 1127 1128 spin_unlock(&swap_avail_lock); 1129 1130 check_out: 1131 if (n_ret < n_goal) 1132 atomic_long_add((long)(n_goal - n_ret) * size, 1133 &nr_swap_pages); 1134 noswap: 1135 return n_ret; 1136 } 1137 1138 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1139 { 1140 struct swap_info_struct *p; 1141 unsigned long offset; 1142 1143 if (!entry.val) 1144 goto out; 1145 p = swp_swap_info(entry); 1146 if (!p) 1147 goto bad_nofile; 1148 if (data_race(!(p->flags & SWP_USED))) 1149 goto bad_device; 1150 offset = swp_offset(entry); 1151 if (offset >= p->max) 1152 goto bad_offset; 1153 if (data_race(!p->swap_map[swp_offset(entry)])) 1154 goto bad_free; 1155 return p; 1156 1157 bad_free: 1158 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); 1159 goto out; 1160 bad_offset: 1161 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1162 goto out; 1163 bad_device: 1164 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); 1165 goto out; 1166 bad_nofile: 1167 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1168 out: 1169 return NULL; 1170 } 1171 1172 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1173 struct swap_info_struct *q) 1174 { 1175 struct swap_info_struct *p; 1176 1177 p = _swap_info_get(entry); 1178 1179 if (p != q) { 1180 if (q != NULL) 1181 spin_unlock(&q->lock); 1182 if (p != NULL) 1183 spin_lock(&p->lock); 1184 } 1185 return p; 1186 } 1187 1188 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, 1189 unsigned long offset, 1190 unsigned char usage) 1191 { 1192 unsigned char count; 1193 unsigned char has_cache; 1194 1195 count = p->swap_map[offset]; 1196 1197 has_cache = count & SWAP_HAS_CACHE; 1198 count &= ~SWAP_HAS_CACHE; 1199 1200 if (usage == SWAP_HAS_CACHE) { 1201 VM_BUG_ON(!has_cache); 1202 has_cache = 0; 1203 } else if (count == SWAP_MAP_SHMEM) { 1204 /* 1205 * Or we could insist on shmem.c using a special 1206 * swap_shmem_free() and free_shmem_swap_and_cache()... 1207 */ 1208 count = 0; 1209 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1210 if (count == COUNT_CONTINUED) { 1211 if (swap_count_continued(p, offset, count)) 1212 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1213 else 1214 count = SWAP_MAP_MAX; 1215 } else 1216 count--; 1217 } 1218 1219 usage = count | has_cache; 1220 if (usage) 1221 WRITE_ONCE(p->swap_map[offset], usage); 1222 else 1223 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE); 1224 1225 return usage; 1226 } 1227 1228 /* 1229 * When we get a swap entry, if there aren't some other ways to 1230 * prevent swapoff, such as the folio in swap cache is locked, page 1231 * table lock is held, etc., the swap entry may become invalid because 1232 * of swapoff. Then, we need to enclose all swap related functions 1233 * with get_swap_device() and put_swap_device(), unless the swap 1234 * functions call get/put_swap_device() by themselves. 1235 * 1236 * Check whether swap entry is valid in the swap device. If so, 1237 * return pointer to swap_info_struct, and keep the swap entry valid 1238 * via preventing the swap device from being swapoff, until 1239 * put_swap_device() is called. Otherwise return NULL. 1240 * 1241 * Notice that swapoff or swapoff+swapon can still happen before the 1242 * percpu_ref_tryget_live() in get_swap_device() or after the 1243 * percpu_ref_put() in put_swap_device() if there isn't any other way 1244 * to prevent swapoff. The caller must be prepared for that. For 1245 * example, the following situation is possible. 1246 * 1247 * CPU1 CPU2 1248 * do_swap_page() 1249 * ... swapoff+swapon 1250 * __read_swap_cache_async() 1251 * swapcache_prepare() 1252 * __swap_duplicate() 1253 * // check swap_map 1254 * // verify PTE not changed 1255 * 1256 * In __swap_duplicate(), the swap_map need to be checked before 1257 * changing partly because the specified swap entry may be for another 1258 * swap device which has been swapoff. And in do_swap_page(), after 1259 * the page is read from the swap device, the PTE is verified not 1260 * changed with the page table locked to check whether the swap device 1261 * has been swapoff or swapoff+swapon. 1262 */ 1263 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1264 { 1265 struct swap_info_struct *si; 1266 unsigned long offset; 1267 1268 if (!entry.val) 1269 goto out; 1270 si = swp_swap_info(entry); 1271 if (!si) 1272 goto bad_nofile; 1273 if (!percpu_ref_tryget_live(&si->users)) 1274 goto out; 1275 /* 1276 * Guarantee the si->users are checked before accessing other 1277 * fields of swap_info_struct. 1278 * 1279 * Paired with the spin_unlock() after setup_swap_info() in 1280 * enable_swap_info(). 1281 */ 1282 smp_rmb(); 1283 offset = swp_offset(entry); 1284 if (offset >= si->max) 1285 goto put_out; 1286 1287 return si; 1288 bad_nofile: 1289 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1290 out: 1291 return NULL; 1292 put_out: 1293 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1294 percpu_ref_put(&si->users); 1295 return NULL; 1296 } 1297 1298 static unsigned char __swap_entry_free(struct swap_info_struct *p, 1299 swp_entry_t entry) 1300 { 1301 struct swap_cluster_info *ci; 1302 unsigned long offset = swp_offset(entry); 1303 unsigned char usage; 1304 1305 ci = lock_cluster_or_swap_info(p, offset); 1306 usage = __swap_entry_free_locked(p, offset, 1); 1307 unlock_cluster_or_swap_info(p, ci); 1308 if (!usage) 1309 free_swap_slot(entry); 1310 1311 return usage; 1312 } 1313 1314 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 1315 { 1316 struct swap_cluster_info *ci; 1317 unsigned long offset = swp_offset(entry); 1318 unsigned char count; 1319 1320 ci = lock_cluster(p, offset); 1321 count = p->swap_map[offset]; 1322 VM_BUG_ON(count != SWAP_HAS_CACHE); 1323 p->swap_map[offset] = 0; 1324 dec_cluster_info_page(p, p->cluster_info, offset); 1325 unlock_cluster(ci); 1326 1327 mem_cgroup_uncharge_swap(entry, 1); 1328 swap_range_free(p, offset, 1); 1329 } 1330 1331 /* 1332 * Caller has made sure that the swap device corresponding to entry 1333 * is still around or has not been recycled. 1334 */ 1335 void swap_free(swp_entry_t entry) 1336 { 1337 struct swap_info_struct *p; 1338 1339 p = _swap_info_get(entry); 1340 if (p) 1341 __swap_entry_free(p, entry); 1342 } 1343 1344 /* 1345 * Called after dropping swapcache to decrease refcnt to swap entries. 1346 */ 1347 void put_swap_folio(struct folio *folio, swp_entry_t entry) 1348 { 1349 unsigned long offset = swp_offset(entry); 1350 unsigned long idx = offset / SWAPFILE_CLUSTER; 1351 struct swap_cluster_info *ci; 1352 struct swap_info_struct *si; 1353 unsigned char *map; 1354 unsigned int i, free_entries = 0; 1355 unsigned char val; 1356 int size = swap_entry_size(folio_nr_pages(folio)); 1357 1358 si = _swap_info_get(entry); 1359 if (!si) 1360 return; 1361 1362 ci = lock_cluster_or_swap_info(si, offset); 1363 if (size == SWAPFILE_CLUSTER) { 1364 VM_BUG_ON(!cluster_is_huge(ci)); 1365 map = si->swap_map + offset; 1366 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1367 val = map[i]; 1368 VM_BUG_ON(!(val & SWAP_HAS_CACHE)); 1369 if (val == SWAP_HAS_CACHE) 1370 free_entries++; 1371 } 1372 cluster_clear_huge(ci); 1373 if (free_entries == SWAPFILE_CLUSTER) { 1374 unlock_cluster_or_swap_info(si, ci); 1375 spin_lock(&si->lock); 1376 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); 1377 swap_free_cluster(si, idx); 1378 spin_unlock(&si->lock); 1379 return; 1380 } 1381 } 1382 for (i = 0; i < size; i++, entry.val++) { 1383 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { 1384 unlock_cluster_or_swap_info(si, ci); 1385 free_swap_slot(entry); 1386 if (i == size - 1) 1387 return; 1388 lock_cluster_or_swap_info(si, offset); 1389 } 1390 } 1391 unlock_cluster_or_swap_info(si, ci); 1392 } 1393 1394 #ifdef CONFIG_THP_SWAP 1395 int split_swap_cluster(swp_entry_t entry) 1396 { 1397 struct swap_info_struct *si; 1398 struct swap_cluster_info *ci; 1399 unsigned long offset = swp_offset(entry); 1400 1401 si = _swap_info_get(entry); 1402 if (!si) 1403 return -EBUSY; 1404 ci = lock_cluster(si, offset); 1405 cluster_clear_huge(ci); 1406 unlock_cluster(ci); 1407 return 0; 1408 } 1409 #endif 1410 1411 static int swp_entry_cmp(const void *ent1, const void *ent2) 1412 { 1413 const swp_entry_t *e1 = ent1, *e2 = ent2; 1414 1415 return (int)swp_type(*e1) - (int)swp_type(*e2); 1416 } 1417 1418 void swapcache_free_entries(swp_entry_t *entries, int n) 1419 { 1420 struct swap_info_struct *p, *prev; 1421 int i; 1422 1423 if (n <= 0) 1424 return; 1425 1426 prev = NULL; 1427 p = NULL; 1428 1429 /* 1430 * Sort swap entries by swap device, so each lock is only taken once. 1431 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1432 * so low that it isn't necessary to optimize further. 1433 */ 1434 if (nr_swapfiles > 1) 1435 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1436 for (i = 0; i < n; ++i) { 1437 p = swap_info_get_cont(entries[i], prev); 1438 if (p) 1439 swap_entry_free(p, entries[i]); 1440 prev = p; 1441 } 1442 if (p) 1443 spin_unlock(&p->lock); 1444 } 1445 1446 int __swap_count(swp_entry_t entry) 1447 { 1448 struct swap_info_struct *si = swp_swap_info(entry); 1449 pgoff_t offset = swp_offset(entry); 1450 1451 return swap_count(si->swap_map[offset]); 1452 } 1453 1454 /* 1455 * How many references to @entry are currently swapped out? 1456 * This does not give an exact answer when swap count is continued, 1457 * but does include the high COUNT_CONTINUED flag to allow for that. 1458 */ 1459 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1460 { 1461 pgoff_t offset = swp_offset(entry); 1462 struct swap_cluster_info *ci; 1463 int count; 1464 1465 ci = lock_cluster_or_swap_info(si, offset); 1466 count = swap_count(si->swap_map[offset]); 1467 unlock_cluster_or_swap_info(si, ci); 1468 return count; 1469 } 1470 1471 /* 1472 * How many references to @entry are currently swapped out? 1473 * This considers COUNT_CONTINUED so it returns exact answer. 1474 */ 1475 int swp_swapcount(swp_entry_t entry) 1476 { 1477 int count, tmp_count, n; 1478 struct swap_info_struct *p; 1479 struct swap_cluster_info *ci; 1480 struct page *page; 1481 pgoff_t offset; 1482 unsigned char *map; 1483 1484 p = _swap_info_get(entry); 1485 if (!p) 1486 return 0; 1487 1488 offset = swp_offset(entry); 1489 1490 ci = lock_cluster_or_swap_info(p, offset); 1491 1492 count = swap_count(p->swap_map[offset]); 1493 if (!(count & COUNT_CONTINUED)) 1494 goto out; 1495 1496 count &= ~COUNT_CONTINUED; 1497 n = SWAP_MAP_MAX + 1; 1498 1499 page = vmalloc_to_page(p->swap_map + offset); 1500 offset &= ~PAGE_MASK; 1501 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1502 1503 do { 1504 page = list_next_entry(page, lru); 1505 map = kmap_local_page(page); 1506 tmp_count = map[offset]; 1507 kunmap_local(map); 1508 1509 count += (tmp_count & ~COUNT_CONTINUED) * n; 1510 n *= (SWAP_CONT_MAX + 1); 1511 } while (tmp_count & COUNT_CONTINUED); 1512 out: 1513 unlock_cluster_or_swap_info(p, ci); 1514 return count; 1515 } 1516 1517 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1518 swp_entry_t entry) 1519 { 1520 struct swap_cluster_info *ci; 1521 unsigned char *map = si->swap_map; 1522 unsigned long roffset = swp_offset(entry); 1523 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); 1524 int i; 1525 bool ret = false; 1526 1527 ci = lock_cluster_or_swap_info(si, offset); 1528 if (!ci || !cluster_is_huge(ci)) { 1529 if (swap_count(map[roffset])) 1530 ret = true; 1531 goto unlock_out; 1532 } 1533 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1534 if (swap_count(map[offset + i])) { 1535 ret = true; 1536 break; 1537 } 1538 } 1539 unlock_out: 1540 unlock_cluster_or_swap_info(si, ci); 1541 return ret; 1542 } 1543 1544 static bool folio_swapped(struct folio *folio) 1545 { 1546 swp_entry_t entry = folio->swap; 1547 struct swap_info_struct *si = _swap_info_get(entry); 1548 1549 if (!si) 1550 return false; 1551 1552 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio))) 1553 return swap_swapcount(si, entry) != 0; 1554 1555 return swap_page_trans_huge_swapped(si, entry); 1556 } 1557 1558 /** 1559 * folio_free_swap() - Free the swap space used for this folio. 1560 * @folio: The folio to remove. 1561 * 1562 * If swap is getting full, or if there are no more mappings of this folio, 1563 * then call folio_free_swap to free its swap space. 1564 * 1565 * Return: true if we were able to release the swap space. 1566 */ 1567 bool folio_free_swap(struct folio *folio) 1568 { 1569 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1570 1571 if (!folio_test_swapcache(folio)) 1572 return false; 1573 if (folio_test_writeback(folio)) 1574 return false; 1575 if (folio_swapped(folio)) 1576 return false; 1577 1578 /* 1579 * Once hibernation has begun to create its image of memory, 1580 * there's a danger that one of the calls to folio_free_swap() 1581 * - most probably a call from __try_to_reclaim_swap() while 1582 * hibernation is allocating its own swap pages for the image, 1583 * but conceivably even a call from memory reclaim - will free 1584 * the swap from a folio which has already been recorded in the 1585 * image as a clean swapcache folio, and then reuse its swap for 1586 * another page of the image. On waking from hibernation, the 1587 * original folio might be freed under memory pressure, then 1588 * later read back in from swap, now with the wrong data. 1589 * 1590 * Hibernation suspends storage while it is writing the image 1591 * to disk so check that here. 1592 */ 1593 if (pm_suspended_storage()) 1594 return false; 1595 1596 delete_from_swap_cache(folio); 1597 folio_set_dirty(folio); 1598 return true; 1599 } 1600 1601 /* 1602 * Free the swap entry like above, but also try to 1603 * free the page cache entry if it is the last user. 1604 */ 1605 int free_swap_and_cache(swp_entry_t entry) 1606 { 1607 struct swap_info_struct *p; 1608 unsigned char count; 1609 1610 if (non_swap_entry(entry)) 1611 return 1; 1612 1613 p = _swap_info_get(entry); 1614 if (p) { 1615 count = __swap_entry_free(p, entry); 1616 if (count == SWAP_HAS_CACHE && 1617 !swap_page_trans_huge_swapped(p, entry)) 1618 __try_to_reclaim_swap(p, swp_offset(entry), 1619 TTRS_UNMAPPED | TTRS_FULL); 1620 } 1621 return p != NULL; 1622 } 1623 1624 #ifdef CONFIG_HIBERNATION 1625 1626 swp_entry_t get_swap_page_of_type(int type) 1627 { 1628 struct swap_info_struct *si = swap_type_to_swap_info(type); 1629 swp_entry_t entry = {0}; 1630 1631 if (!si) 1632 goto fail; 1633 1634 /* This is called for allocating swap entry, not cache */ 1635 spin_lock(&si->lock); 1636 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry)) 1637 atomic_long_dec(&nr_swap_pages); 1638 spin_unlock(&si->lock); 1639 fail: 1640 return entry; 1641 } 1642 1643 /* 1644 * Find the swap type that corresponds to given device (if any). 1645 * 1646 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1647 * from 0, in which the swap header is expected to be located. 1648 * 1649 * This is needed for the suspend to disk (aka swsusp). 1650 */ 1651 int swap_type_of(dev_t device, sector_t offset) 1652 { 1653 int type; 1654 1655 if (!device) 1656 return -1; 1657 1658 spin_lock(&swap_lock); 1659 for (type = 0; type < nr_swapfiles; type++) { 1660 struct swap_info_struct *sis = swap_info[type]; 1661 1662 if (!(sis->flags & SWP_WRITEOK)) 1663 continue; 1664 1665 if (device == sis->bdev->bd_dev) { 1666 struct swap_extent *se = first_se(sis); 1667 1668 if (se->start_block == offset) { 1669 spin_unlock(&swap_lock); 1670 return type; 1671 } 1672 } 1673 } 1674 spin_unlock(&swap_lock); 1675 return -ENODEV; 1676 } 1677 1678 int find_first_swap(dev_t *device) 1679 { 1680 int type; 1681 1682 spin_lock(&swap_lock); 1683 for (type = 0; type < nr_swapfiles; type++) { 1684 struct swap_info_struct *sis = swap_info[type]; 1685 1686 if (!(sis->flags & SWP_WRITEOK)) 1687 continue; 1688 *device = sis->bdev->bd_dev; 1689 spin_unlock(&swap_lock); 1690 return type; 1691 } 1692 spin_unlock(&swap_lock); 1693 return -ENODEV; 1694 } 1695 1696 /* 1697 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1698 * corresponding to given index in swap_info (swap type). 1699 */ 1700 sector_t swapdev_block(int type, pgoff_t offset) 1701 { 1702 struct swap_info_struct *si = swap_type_to_swap_info(type); 1703 struct swap_extent *se; 1704 1705 if (!si || !(si->flags & SWP_WRITEOK)) 1706 return 0; 1707 se = offset_to_swap_extent(si, offset); 1708 return se->start_block + (offset - se->start_page); 1709 } 1710 1711 /* 1712 * Return either the total number of swap pages of given type, or the number 1713 * of free pages of that type (depending on @free) 1714 * 1715 * This is needed for software suspend 1716 */ 1717 unsigned int count_swap_pages(int type, int free) 1718 { 1719 unsigned int n = 0; 1720 1721 spin_lock(&swap_lock); 1722 if ((unsigned int)type < nr_swapfiles) { 1723 struct swap_info_struct *sis = swap_info[type]; 1724 1725 spin_lock(&sis->lock); 1726 if (sis->flags & SWP_WRITEOK) { 1727 n = sis->pages; 1728 if (free) 1729 n -= sis->inuse_pages; 1730 } 1731 spin_unlock(&sis->lock); 1732 } 1733 spin_unlock(&swap_lock); 1734 return n; 1735 } 1736 #endif /* CONFIG_HIBERNATION */ 1737 1738 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1739 { 1740 return pte_same(pte_swp_clear_flags(pte), swp_pte); 1741 } 1742 1743 /* 1744 * No need to decide whether this PTE shares the swap entry with others, 1745 * just let do_wp_page work it out if a write is requested later - to 1746 * force COW, vm_page_prot omits write permission from any private vma. 1747 */ 1748 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1749 unsigned long addr, swp_entry_t entry, struct folio *folio) 1750 { 1751 struct page *page; 1752 struct folio *swapcache; 1753 spinlock_t *ptl; 1754 pte_t *pte, new_pte, old_pte; 1755 bool hwpoisoned = false; 1756 int ret = 1; 1757 1758 swapcache = folio; 1759 folio = ksm_might_need_to_copy(folio, vma, addr); 1760 if (unlikely(!folio)) 1761 return -ENOMEM; 1762 else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 1763 hwpoisoned = true; 1764 folio = swapcache; 1765 } 1766 1767 page = folio_file_page(folio, swp_offset(entry)); 1768 if (PageHWPoison(page)) 1769 hwpoisoned = true; 1770 1771 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1772 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte), 1773 swp_entry_to_pte(entry)))) { 1774 ret = 0; 1775 goto out; 1776 } 1777 1778 old_pte = ptep_get(pte); 1779 1780 if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) { 1781 swp_entry_t swp_entry; 1782 1783 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1784 if (hwpoisoned) { 1785 swp_entry = make_hwpoison_entry(page); 1786 } else { 1787 swp_entry = make_poisoned_swp_entry(); 1788 } 1789 new_pte = swp_entry_to_pte(swp_entry); 1790 ret = 0; 1791 goto setpte; 1792 } 1793 1794 /* 1795 * Some architectures may have to restore extra metadata to the page 1796 * when reading from swap. This metadata may be indexed by swap entry 1797 * so this must be called before swap_free(). 1798 */ 1799 arch_swap_restore(entry, folio); 1800 1801 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1802 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1803 folio_get(folio); 1804 if (folio == swapcache) { 1805 rmap_t rmap_flags = RMAP_NONE; 1806 1807 /* 1808 * See do_swap_page(): writeback would be problematic. 1809 * However, we do a folio_wait_writeback() just before this 1810 * call and have the folio locked. 1811 */ 1812 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 1813 if (pte_swp_exclusive(old_pte)) 1814 rmap_flags |= RMAP_EXCLUSIVE; 1815 1816 folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags); 1817 } else { /* ksm created a completely new copy */ 1818 folio_add_new_anon_rmap(folio, vma, addr); 1819 folio_add_lru_vma(folio, vma); 1820 } 1821 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot)); 1822 if (pte_swp_soft_dirty(old_pte)) 1823 new_pte = pte_mksoft_dirty(new_pte); 1824 if (pte_swp_uffd_wp(old_pte)) 1825 new_pte = pte_mkuffd_wp(new_pte); 1826 setpte: 1827 set_pte_at(vma->vm_mm, addr, pte, new_pte); 1828 swap_free(entry); 1829 out: 1830 if (pte) 1831 pte_unmap_unlock(pte, ptl); 1832 if (folio != swapcache) { 1833 folio_unlock(folio); 1834 folio_put(folio); 1835 } 1836 return ret; 1837 } 1838 1839 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1840 unsigned long addr, unsigned long end, 1841 unsigned int type) 1842 { 1843 pte_t *pte = NULL; 1844 struct swap_info_struct *si; 1845 1846 si = swap_info[type]; 1847 do { 1848 struct folio *folio; 1849 unsigned long offset; 1850 unsigned char swp_count; 1851 swp_entry_t entry; 1852 int ret; 1853 pte_t ptent; 1854 1855 if (!pte++) { 1856 pte = pte_offset_map(pmd, addr); 1857 if (!pte) 1858 break; 1859 } 1860 1861 ptent = ptep_get_lockless(pte); 1862 1863 if (!is_swap_pte(ptent)) 1864 continue; 1865 1866 entry = pte_to_swp_entry(ptent); 1867 if (swp_type(entry) != type) 1868 continue; 1869 1870 offset = swp_offset(entry); 1871 pte_unmap(pte); 1872 pte = NULL; 1873 1874 folio = swap_cache_get_folio(entry, vma, addr); 1875 if (!folio) { 1876 struct page *page; 1877 struct vm_fault vmf = { 1878 .vma = vma, 1879 .address = addr, 1880 .real_address = addr, 1881 .pmd = pmd, 1882 }; 1883 1884 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 1885 &vmf); 1886 if (page) 1887 folio = page_folio(page); 1888 } 1889 if (!folio) { 1890 swp_count = READ_ONCE(si->swap_map[offset]); 1891 if (swp_count == 0 || swp_count == SWAP_MAP_BAD) 1892 continue; 1893 return -ENOMEM; 1894 } 1895 1896 folio_lock(folio); 1897 folio_wait_writeback(folio); 1898 ret = unuse_pte(vma, pmd, addr, entry, folio); 1899 if (ret < 0) { 1900 folio_unlock(folio); 1901 folio_put(folio); 1902 return ret; 1903 } 1904 1905 folio_free_swap(folio); 1906 folio_unlock(folio); 1907 folio_put(folio); 1908 } while (addr += PAGE_SIZE, addr != end); 1909 1910 if (pte) 1911 pte_unmap(pte); 1912 return 0; 1913 } 1914 1915 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1916 unsigned long addr, unsigned long end, 1917 unsigned int type) 1918 { 1919 pmd_t *pmd; 1920 unsigned long next; 1921 int ret; 1922 1923 pmd = pmd_offset(pud, addr); 1924 do { 1925 cond_resched(); 1926 next = pmd_addr_end(addr, end); 1927 ret = unuse_pte_range(vma, pmd, addr, next, type); 1928 if (ret) 1929 return ret; 1930 } while (pmd++, addr = next, addr != end); 1931 return 0; 1932 } 1933 1934 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 1935 unsigned long addr, unsigned long end, 1936 unsigned int type) 1937 { 1938 pud_t *pud; 1939 unsigned long next; 1940 int ret; 1941 1942 pud = pud_offset(p4d, addr); 1943 do { 1944 next = pud_addr_end(addr, end); 1945 if (pud_none_or_clear_bad(pud)) 1946 continue; 1947 ret = unuse_pmd_range(vma, pud, addr, next, type); 1948 if (ret) 1949 return ret; 1950 } while (pud++, addr = next, addr != end); 1951 return 0; 1952 } 1953 1954 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 1955 unsigned long addr, unsigned long end, 1956 unsigned int type) 1957 { 1958 p4d_t *p4d; 1959 unsigned long next; 1960 int ret; 1961 1962 p4d = p4d_offset(pgd, addr); 1963 do { 1964 next = p4d_addr_end(addr, end); 1965 if (p4d_none_or_clear_bad(p4d)) 1966 continue; 1967 ret = unuse_pud_range(vma, p4d, addr, next, type); 1968 if (ret) 1969 return ret; 1970 } while (p4d++, addr = next, addr != end); 1971 return 0; 1972 } 1973 1974 static int unuse_vma(struct vm_area_struct *vma, unsigned int type) 1975 { 1976 pgd_t *pgd; 1977 unsigned long addr, end, next; 1978 int ret; 1979 1980 addr = vma->vm_start; 1981 end = vma->vm_end; 1982 1983 pgd = pgd_offset(vma->vm_mm, addr); 1984 do { 1985 next = pgd_addr_end(addr, end); 1986 if (pgd_none_or_clear_bad(pgd)) 1987 continue; 1988 ret = unuse_p4d_range(vma, pgd, addr, next, type); 1989 if (ret) 1990 return ret; 1991 } while (pgd++, addr = next, addr != end); 1992 return 0; 1993 } 1994 1995 static int unuse_mm(struct mm_struct *mm, unsigned int type) 1996 { 1997 struct vm_area_struct *vma; 1998 int ret = 0; 1999 VMA_ITERATOR(vmi, mm, 0); 2000 2001 mmap_read_lock(mm); 2002 for_each_vma(vmi, vma) { 2003 if (vma->anon_vma) { 2004 ret = unuse_vma(vma, type); 2005 if (ret) 2006 break; 2007 } 2008 2009 cond_resched(); 2010 } 2011 mmap_read_unlock(mm); 2012 return ret; 2013 } 2014 2015 /* 2016 * Scan swap_map from current position to next entry still in use. 2017 * Return 0 if there are no inuse entries after prev till end of 2018 * the map. 2019 */ 2020 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 2021 unsigned int prev) 2022 { 2023 unsigned int i; 2024 unsigned char count; 2025 2026 /* 2027 * No need for swap_lock here: we're just looking 2028 * for whether an entry is in use, not modifying it; false 2029 * hits are okay, and sys_swapoff() has already prevented new 2030 * allocations from this area (while holding swap_lock). 2031 */ 2032 for (i = prev + 1; i < si->max; i++) { 2033 count = READ_ONCE(si->swap_map[i]); 2034 if (count && swap_count(count) != SWAP_MAP_BAD) 2035 break; 2036 if ((i % LATENCY_LIMIT) == 0) 2037 cond_resched(); 2038 } 2039 2040 if (i == si->max) 2041 i = 0; 2042 2043 return i; 2044 } 2045 2046 static int try_to_unuse(unsigned int type) 2047 { 2048 struct mm_struct *prev_mm; 2049 struct mm_struct *mm; 2050 struct list_head *p; 2051 int retval = 0; 2052 struct swap_info_struct *si = swap_info[type]; 2053 struct folio *folio; 2054 swp_entry_t entry; 2055 unsigned int i; 2056 2057 if (!READ_ONCE(si->inuse_pages)) 2058 goto success; 2059 2060 retry: 2061 retval = shmem_unuse(type); 2062 if (retval) 2063 return retval; 2064 2065 prev_mm = &init_mm; 2066 mmget(prev_mm); 2067 2068 spin_lock(&mmlist_lock); 2069 p = &init_mm.mmlist; 2070 while (READ_ONCE(si->inuse_pages) && 2071 !signal_pending(current) && 2072 (p = p->next) != &init_mm.mmlist) { 2073 2074 mm = list_entry(p, struct mm_struct, mmlist); 2075 if (!mmget_not_zero(mm)) 2076 continue; 2077 spin_unlock(&mmlist_lock); 2078 mmput(prev_mm); 2079 prev_mm = mm; 2080 retval = unuse_mm(mm, type); 2081 if (retval) { 2082 mmput(prev_mm); 2083 return retval; 2084 } 2085 2086 /* 2087 * Make sure that we aren't completely killing 2088 * interactive performance. 2089 */ 2090 cond_resched(); 2091 spin_lock(&mmlist_lock); 2092 } 2093 spin_unlock(&mmlist_lock); 2094 2095 mmput(prev_mm); 2096 2097 i = 0; 2098 while (READ_ONCE(si->inuse_pages) && 2099 !signal_pending(current) && 2100 (i = find_next_to_unuse(si, i)) != 0) { 2101 2102 entry = swp_entry(type, i); 2103 folio = filemap_get_folio(swap_address_space(entry), i); 2104 if (IS_ERR(folio)) 2105 continue; 2106 2107 /* 2108 * It is conceivable that a racing task removed this folio from 2109 * swap cache just before we acquired the page lock. The folio 2110 * might even be back in swap cache on another swap area. But 2111 * that is okay, folio_free_swap() only removes stale folios. 2112 */ 2113 folio_lock(folio); 2114 folio_wait_writeback(folio); 2115 folio_free_swap(folio); 2116 folio_unlock(folio); 2117 folio_put(folio); 2118 } 2119 2120 /* 2121 * Lets check again to see if there are still swap entries in the map. 2122 * If yes, we would need to do retry the unuse logic again. 2123 * Under global memory pressure, swap entries can be reinserted back 2124 * into process space after the mmlist loop above passes over them. 2125 * 2126 * Limit the number of retries? No: when mmget_not_zero() 2127 * above fails, that mm is likely to be freeing swap from 2128 * exit_mmap(), which proceeds at its own independent pace; 2129 * and even shmem_writepage() could have been preempted after 2130 * folio_alloc_swap(), temporarily hiding that swap. It's easy 2131 * and robust (though cpu-intensive) just to keep retrying. 2132 */ 2133 if (READ_ONCE(si->inuse_pages)) { 2134 if (!signal_pending(current)) 2135 goto retry; 2136 return -EINTR; 2137 } 2138 2139 success: 2140 /* 2141 * Make sure that further cleanups after try_to_unuse() returns happen 2142 * after swap_range_free() reduces si->inuse_pages to 0. 2143 */ 2144 smp_mb(); 2145 return 0; 2146 } 2147 2148 /* 2149 * After a successful try_to_unuse, if no swap is now in use, we know 2150 * we can empty the mmlist. swap_lock must be held on entry and exit. 2151 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2152 * added to the mmlist just after page_duplicate - before would be racy. 2153 */ 2154 static void drain_mmlist(void) 2155 { 2156 struct list_head *p, *next; 2157 unsigned int type; 2158 2159 for (type = 0; type < nr_swapfiles; type++) 2160 if (swap_info[type]->inuse_pages) 2161 return; 2162 spin_lock(&mmlist_lock); 2163 list_for_each_safe(p, next, &init_mm.mmlist) 2164 list_del_init(p); 2165 spin_unlock(&mmlist_lock); 2166 } 2167 2168 /* 2169 * Free all of a swapdev's extent information 2170 */ 2171 static void destroy_swap_extents(struct swap_info_struct *sis) 2172 { 2173 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2174 struct rb_node *rb = sis->swap_extent_root.rb_node; 2175 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2176 2177 rb_erase(rb, &sis->swap_extent_root); 2178 kfree(se); 2179 } 2180 2181 if (sis->flags & SWP_ACTIVATED) { 2182 struct file *swap_file = sis->swap_file; 2183 struct address_space *mapping = swap_file->f_mapping; 2184 2185 sis->flags &= ~SWP_ACTIVATED; 2186 if (mapping->a_ops->swap_deactivate) 2187 mapping->a_ops->swap_deactivate(swap_file); 2188 } 2189 } 2190 2191 /* 2192 * Add a block range (and the corresponding page range) into this swapdev's 2193 * extent tree. 2194 * 2195 * This function rather assumes that it is called in ascending page order. 2196 */ 2197 int 2198 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2199 unsigned long nr_pages, sector_t start_block) 2200 { 2201 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2202 struct swap_extent *se; 2203 struct swap_extent *new_se; 2204 2205 /* 2206 * place the new node at the right most since the 2207 * function is called in ascending page order. 2208 */ 2209 while (*link) { 2210 parent = *link; 2211 link = &parent->rb_right; 2212 } 2213 2214 if (parent) { 2215 se = rb_entry(parent, struct swap_extent, rb_node); 2216 BUG_ON(se->start_page + se->nr_pages != start_page); 2217 if (se->start_block + se->nr_pages == start_block) { 2218 /* Merge it */ 2219 se->nr_pages += nr_pages; 2220 return 0; 2221 } 2222 } 2223 2224 /* No merge, insert a new extent. */ 2225 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2226 if (new_se == NULL) 2227 return -ENOMEM; 2228 new_se->start_page = start_page; 2229 new_se->nr_pages = nr_pages; 2230 new_se->start_block = start_block; 2231 2232 rb_link_node(&new_se->rb_node, parent, link); 2233 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2234 return 1; 2235 } 2236 EXPORT_SYMBOL_GPL(add_swap_extent); 2237 2238 /* 2239 * A `swap extent' is a simple thing which maps a contiguous range of pages 2240 * onto a contiguous range of disk blocks. A rbtree of swap extents is 2241 * built at swapon time and is then used at swap_writepage/swap_read_folio 2242 * time for locating where on disk a page belongs. 2243 * 2244 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2245 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2246 * swap files identically. 2247 * 2248 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2249 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2250 * swapfiles are handled *identically* after swapon time. 2251 * 2252 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2253 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray 2254 * blocks are found which do not fall within the PAGE_SIZE alignment 2255 * requirements, they are simply tossed out - we will never use those blocks 2256 * for swapping. 2257 * 2258 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2259 * prevents users from writing to the swap device, which will corrupt memory. 2260 * 2261 * The amount of disk space which a single swap extent represents varies. 2262 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2263 * extents in the rbtree. - akpm. 2264 */ 2265 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2266 { 2267 struct file *swap_file = sis->swap_file; 2268 struct address_space *mapping = swap_file->f_mapping; 2269 struct inode *inode = mapping->host; 2270 int ret; 2271 2272 if (S_ISBLK(inode->i_mode)) { 2273 ret = add_swap_extent(sis, 0, sis->max, 0); 2274 *span = sis->pages; 2275 return ret; 2276 } 2277 2278 if (mapping->a_ops->swap_activate) { 2279 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2280 if (ret < 0) 2281 return ret; 2282 sis->flags |= SWP_ACTIVATED; 2283 if ((sis->flags & SWP_FS_OPS) && 2284 sio_pool_init() != 0) { 2285 destroy_swap_extents(sis); 2286 return -ENOMEM; 2287 } 2288 return ret; 2289 } 2290 2291 return generic_swapfile_activate(sis, swap_file, span); 2292 } 2293 2294 static int swap_node(struct swap_info_struct *p) 2295 { 2296 struct block_device *bdev; 2297 2298 if (p->bdev) 2299 bdev = p->bdev; 2300 else 2301 bdev = p->swap_file->f_inode->i_sb->s_bdev; 2302 2303 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2304 } 2305 2306 static void setup_swap_info(struct swap_info_struct *p, int prio, 2307 unsigned char *swap_map, 2308 struct swap_cluster_info *cluster_info) 2309 { 2310 int i; 2311 2312 if (prio >= 0) 2313 p->prio = prio; 2314 else 2315 p->prio = --least_priority; 2316 /* 2317 * the plist prio is negated because plist ordering is 2318 * low-to-high, while swap ordering is high-to-low 2319 */ 2320 p->list.prio = -p->prio; 2321 for_each_node(i) { 2322 if (p->prio >= 0) 2323 p->avail_lists[i].prio = -p->prio; 2324 else { 2325 if (swap_node(p) == i) 2326 p->avail_lists[i].prio = 1; 2327 else 2328 p->avail_lists[i].prio = -p->prio; 2329 } 2330 } 2331 p->swap_map = swap_map; 2332 p->cluster_info = cluster_info; 2333 } 2334 2335 static void _enable_swap_info(struct swap_info_struct *p) 2336 { 2337 p->flags |= SWP_WRITEOK; 2338 atomic_long_add(p->pages, &nr_swap_pages); 2339 total_swap_pages += p->pages; 2340 2341 assert_spin_locked(&swap_lock); 2342 /* 2343 * both lists are plists, and thus priority ordered. 2344 * swap_active_head needs to be priority ordered for swapoff(), 2345 * which on removal of any swap_info_struct with an auto-assigned 2346 * (i.e. negative) priority increments the auto-assigned priority 2347 * of any lower-priority swap_info_structs. 2348 * swap_avail_head needs to be priority ordered for folio_alloc_swap(), 2349 * which allocates swap pages from the highest available priority 2350 * swap_info_struct. 2351 */ 2352 plist_add(&p->list, &swap_active_head); 2353 2354 /* add to available list iff swap device is not full */ 2355 if (p->highest_bit) 2356 add_to_avail_list(p); 2357 } 2358 2359 static void enable_swap_info(struct swap_info_struct *p, int prio, 2360 unsigned char *swap_map, 2361 struct swap_cluster_info *cluster_info) 2362 { 2363 spin_lock(&swap_lock); 2364 spin_lock(&p->lock); 2365 setup_swap_info(p, prio, swap_map, cluster_info); 2366 spin_unlock(&p->lock); 2367 spin_unlock(&swap_lock); 2368 /* 2369 * Finished initializing swap device, now it's safe to reference it. 2370 */ 2371 percpu_ref_resurrect(&p->users); 2372 spin_lock(&swap_lock); 2373 spin_lock(&p->lock); 2374 _enable_swap_info(p); 2375 spin_unlock(&p->lock); 2376 spin_unlock(&swap_lock); 2377 } 2378 2379 static void reinsert_swap_info(struct swap_info_struct *p) 2380 { 2381 spin_lock(&swap_lock); 2382 spin_lock(&p->lock); 2383 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2384 _enable_swap_info(p); 2385 spin_unlock(&p->lock); 2386 spin_unlock(&swap_lock); 2387 } 2388 2389 bool has_usable_swap(void) 2390 { 2391 bool ret = true; 2392 2393 spin_lock(&swap_lock); 2394 if (plist_head_empty(&swap_active_head)) 2395 ret = false; 2396 spin_unlock(&swap_lock); 2397 return ret; 2398 } 2399 2400 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2401 { 2402 struct swap_info_struct *p = NULL; 2403 unsigned char *swap_map; 2404 struct swap_cluster_info *cluster_info; 2405 struct file *swap_file, *victim; 2406 struct address_space *mapping; 2407 struct inode *inode; 2408 struct filename *pathname; 2409 int err, found = 0; 2410 unsigned int old_block_size; 2411 2412 if (!capable(CAP_SYS_ADMIN)) 2413 return -EPERM; 2414 2415 BUG_ON(!current->mm); 2416 2417 pathname = getname(specialfile); 2418 if (IS_ERR(pathname)) 2419 return PTR_ERR(pathname); 2420 2421 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2422 err = PTR_ERR(victim); 2423 if (IS_ERR(victim)) 2424 goto out; 2425 2426 mapping = victim->f_mapping; 2427 spin_lock(&swap_lock); 2428 plist_for_each_entry(p, &swap_active_head, list) { 2429 if (p->flags & SWP_WRITEOK) { 2430 if (p->swap_file->f_mapping == mapping) { 2431 found = 1; 2432 break; 2433 } 2434 } 2435 } 2436 if (!found) { 2437 err = -EINVAL; 2438 spin_unlock(&swap_lock); 2439 goto out_dput; 2440 } 2441 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2442 vm_unacct_memory(p->pages); 2443 else { 2444 err = -ENOMEM; 2445 spin_unlock(&swap_lock); 2446 goto out_dput; 2447 } 2448 spin_lock(&p->lock); 2449 del_from_avail_list(p); 2450 if (p->prio < 0) { 2451 struct swap_info_struct *si = p; 2452 int nid; 2453 2454 plist_for_each_entry_continue(si, &swap_active_head, list) { 2455 si->prio++; 2456 si->list.prio--; 2457 for_each_node(nid) { 2458 if (si->avail_lists[nid].prio != 1) 2459 si->avail_lists[nid].prio--; 2460 } 2461 } 2462 least_priority++; 2463 } 2464 plist_del(&p->list, &swap_active_head); 2465 atomic_long_sub(p->pages, &nr_swap_pages); 2466 total_swap_pages -= p->pages; 2467 p->flags &= ~SWP_WRITEOK; 2468 spin_unlock(&p->lock); 2469 spin_unlock(&swap_lock); 2470 2471 disable_swap_slots_cache_lock(); 2472 2473 set_current_oom_origin(); 2474 err = try_to_unuse(p->type); 2475 clear_current_oom_origin(); 2476 2477 if (err) { 2478 /* re-insert swap space back into swap_list */ 2479 reinsert_swap_info(p); 2480 reenable_swap_slots_cache_unlock(); 2481 goto out_dput; 2482 } 2483 2484 reenable_swap_slots_cache_unlock(); 2485 2486 /* 2487 * Wait for swap operations protected by get/put_swap_device() 2488 * to complete. 2489 * 2490 * We need synchronize_rcu() here to protect the accessing to 2491 * the swap cache data structure. 2492 */ 2493 percpu_ref_kill(&p->users); 2494 synchronize_rcu(); 2495 wait_for_completion(&p->comp); 2496 2497 flush_work(&p->discard_work); 2498 2499 destroy_swap_extents(p); 2500 if (p->flags & SWP_CONTINUED) 2501 free_swap_count_continuations(p); 2502 2503 if (!p->bdev || !bdev_nonrot(p->bdev)) 2504 atomic_dec(&nr_rotate_swap); 2505 2506 mutex_lock(&swapon_mutex); 2507 spin_lock(&swap_lock); 2508 spin_lock(&p->lock); 2509 drain_mmlist(); 2510 2511 /* wait for anyone still in scan_swap_map_slots */ 2512 p->highest_bit = 0; /* cuts scans short */ 2513 while (p->flags >= SWP_SCANNING) { 2514 spin_unlock(&p->lock); 2515 spin_unlock(&swap_lock); 2516 schedule_timeout_uninterruptible(1); 2517 spin_lock(&swap_lock); 2518 spin_lock(&p->lock); 2519 } 2520 2521 swap_file = p->swap_file; 2522 old_block_size = p->old_block_size; 2523 p->swap_file = NULL; 2524 p->max = 0; 2525 swap_map = p->swap_map; 2526 p->swap_map = NULL; 2527 cluster_info = p->cluster_info; 2528 p->cluster_info = NULL; 2529 spin_unlock(&p->lock); 2530 spin_unlock(&swap_lock); 2531 arch_swap_invalidate_area(p->type); 2532 zswap_swapoff(p->type); 2533 mutex_unlock(&swapon_mutex); 2534 free_percpu(p->percpu_cluster); 2535 p->percpu_cluster = NULL; 2536 free_percpu(p->cluster_next_cpu); 2537 p->cluster_next_cpu = NULL; 2538 vfree(swap_map); 2539 kvfree(cluster_info); 2540 /* Destroy swap account information */ 2541 swap_cgroup_swapoff(p->type); 2542 exit_swap_address_space(p->type); 2543 2544 inode = mapping->host; 2545 if (p->bdev_handle) { 2546 set_blocksize(p->bdev, old_block_size); 2547 bdev_release(p->bdev_handle); 2548 p->bdev_handle = NULL; 2549 } 2550 2551 inode_lock(inode); 2552 inode->i_flags &= ~S_SWAPFILE; 2553 inode_unlock(inode); 2554 filp_close(swap_file, NULL); 2555 2556 /* 2557 * Clear the SWP_USED flag after all resources are freed so that swapon 2558 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2559 * not hold p->lock after we cleared its SWP_WRITEOK. 2560 */ 2561 spin_lock(&swap_lock); 2562 p->flags = 0; 2563 spin_unlock(&swap_lock); 2564 2565 err = 0; 2566 atomic_inc(&proc_poll_event); 2567 wake_up_interruptible(&proc_poll_wait); 2568 2569 out_dput: 2570 filp_close(victim, NULL); 2571 out: 2572 putname(pathname); 2573 return err; 2574 } 2575 2576 #ifdef CONFIG_PROC_FS 2577 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2578 { 2579 struct seq_file *seq = file->private_data; 2580 2581 poll_wait(file, &proc_poll_wait, wait); 2582 2583 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2584 seq->poll_event = atomic_read(&proc_poll_event); 2585 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2586 } 2587 2588 return EPOLLIN | EPOLLRDNORM; 2589 } 2590 2591 /* iterator */ 2592 static void *swap_start(struct seq_file *swap, loff_t *pos) 2593 { 2594 struct swap_info_struct *si; 2595 int type; 2596 loff_t l = *pos; 2597 2598 mutex_lock(&swapon_mutex); 2599 2600 if (!l) 2601 return SEQ_START_TOKEN; 2602 2603 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2604 if (!(si->flags & SWP_USED) || !si->swap_map) 2605 continue; 2606 if (!--l) 2607 return si; 2608 } 2609 2610 return NULL; 2611 } 2612 2613 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2614 { 2615 struct swap_info_struct *si = v; 2616 int type; 2617 2618 if (v == SEQ_START_TOKEN) 2619 type = 0; 2620 else 2621 type = si->type + 1; 2622 2623 ++(*pos); 2624 for (; (si = swap_type_to_swap_info(type)); type++) { 2625 if (!(si->flags & SWP_USED) || !si->swap_map) 2626 continue; 2627 return si; 2628 } 2629 2630 return NULL; 2631 } 2632 2633 static void swap_stop(struct seq_file *swap, void *v) 2634 { 2635 mutex_unlock(&swapon_mutex); 2636 } 2637 2638 static int swap_show(struct seq_file *swap, void *v) 2639 { 2640 struct swap_info_struct *si = v; 2641 struct file *file; 2642 int len; 2643 unsigned long bytes, inuse; 2644 2645 if (si == SEQ_START_TOKEN) { 2646 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 2647 return 0; 2648 } 2649 2650 bytes = K(si->pages); 2651 inuse = K(READ_ONCE(si->inuse_pages)); 2652 2653 file = si->swap_file; 2654 len = seq_file_path(swap, file, " \t\n\\"); 2655 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n", 2656 len < 40 ? 40 - len : 1, " ", 2657 S_ISBLK(file_inode(file)->i_mode) ? 2658 "partition" : "file\t", 2659 bytes, bytes < 10000000 ? "\t" : "", 2660 inuse, inuse < 10000000 ? "\t" : "", 2661 si->prio); 2662 return 0; 2663 } 2664 2665 static const struct seq_operations swaps_op = { 2666 .start = swap_start, 2667 .next = swap_next, 2668 .stop = swap_stop, 2669 .show = swap_show 2670 }; 2671 2672 static int swaps_open(struct inode *inode, struct file *file) 2673 { 2674 struct seq_file *seq; 2675 int ret; 2676 2677 ret = seq_open(file, &swaps_op); 2678 if (ret) 2679 return ret; 2680 2681 seq = file->private_data; 2682 seq->poll_event = atomic_read(&proc_poll_event); 2683 return 0; 2684 } 2685 2686 static const struct proc_ops swaps_proc_ops = { 2687 .proc_flags = PROC_ENTRY_PERMANENT, 2688 .proc_open = swaps_open, 2689 .proc_read = seq_read, 2690 .proc_lseek = seq_lseek, 2691 .proc_release = seq_release, 2692 .proc_poll = swaps_poll, 2693 }; 2694 2695 static int __init procswaps_init(void) 2696 { 2697 proc_create("swaps", 0, NULL, &swaps_proc_ops); 2698 return 0; 2699 } 2700 __initcall(procswaps_init); 2701 #endif /* CONFIG_PROC_FS */ 2702 2703 #ifdef MAX_SWAPFILES_CHECK 2704 static int __init max_swapfiles_check(void) 2705 { 2706 MAX_SWAPFILES_CHECK(); 2707 return 0; 2708 } 2709 late_initcall(max_swapfiles_check); 2710 #endif 2711 2712 static struct swap_info_struct *alloc_swap_info(void) 2713 { 2714 struct swap_info_struct *p; 2715 struct swap_info_struct *defer = NULL; 2716 unsigned int type; 2717 int i; 2718 2719 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2720 if (!p) 2721 return ERR_PTR(-ENOMEM); 2722 2723 if (percpu_ref_init(&p->users, swap_users_ref_free, 2724 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { 2725 kvfree(p); 2726 return ERR_PTR(-ENOMEM); 2727 } 2728 2729 spin_lock(&swap_lock); 2730 for (type = 0; type < nr_swapfiles; type++) { 2731 if (!(swap_info[type]->flags & SWP_USED)) 2732 break; 2733 } 2734 if (type >= MAX_SWAPFILES) { 2735 spin_unlock(&swap_lock); 2736 percpu_ref_exit(&p->users); 2737 kvfree(p); 2738 return ERR_PTR(-EPERM); 2739 } 2740 if (type >= nr_swapfiles) { 2741 p->type = type; 2742 /* 2743 * Publish the swap_info_struct after initializing it. 2744 * Note that kvzalloc() above zeroes all its fields. 2745 */ 2746 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ 2747 nr_swapfiles++; 2748 } else { 2749 defer = p; 2750 p = swap_info[type]; 2751 /* 2752 * Do not memset this entry: a racing procfs swap_next() 2753 * would be relying on p->type to remain valid. 2754 */ 2755 } 2756 p->swap_extent_root = RB_ROOT; 2757 plist_node_init(&p->list, 0); 2758 for_each_node(i) 2759 plist_node_init(&p->avail_lists[i], 0); 2760 p->flags = SWP_USED; 2761 spin_unlock(&swap_lock); 2762 if (defer) { 2763 percpu_ref_exit(&defer->users); 2764 kvfree(defer); 2765 } 2766 spin_lock_init(&p->lock); 2767 spin_lock_init(&p->cont_lock); 2768 init_completion(&p->comp); 2769 2770 return p; 2771 } 2772 2773 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2774 { 2775 int error; 2776 2777 if (S_ISBLK(inode->i_mode)) { 2778 p->bdev_handle = bdev_open_by_dev(inode->i_rdev, 2779 BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL); 2780 if (IS_ERR(p->bdev_handle)) { 2781 error = PTR_ERR(p->bdev_handle); 2782 p->bdev_handle = NULL; 2783 return error; 2784 } 2785 p->bdev = p->bdev_handle->bdev; 2786 p->old_block_size = block_size(p->bdev); 2787 error = set_blocksize(p->bdev, PAGE_SIZE); 2788 if (error < 0) 2789 return error; 2790 /* 2791 * Zoned block devices contain zones that have a sequential 2792 * write only restriction. Hence zoned block devices are not 2793 * suitable for swapping. Disallow them here. 2794 */ 2795 if (bdev_is_zoned(p->bdev)) 2796 return -EINVAL; 2797 p->flags |= SWP_BLKDEV; 2798 } else if (S_ISREG(inode->i_mode)) { 2799 p->bdev = inode->i_sb->s_bdev; 2800 } 2801 2802 return 0; 2803 } 2804 2805 2806 /* 2807 * Find out how many pages are allowed for a single swap device. There 2808 * are two limiting factors: 2809 * 1) the number of bits for the swap offset in the swp_entry_t type, and 2810 * 2) the number of bits in the swap pte, as defined by the different 2811 * architectures. 2812 * 2813 * In order to find the largest possible bit mask, a swap entry with 2814 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 2815 * decoded to a swp_entry_t again, and finally the swap offset is 2816 * extracted. 2817 * 2818 * This will mask all the bits from the initial ~0UL mask that can't 2819 * be encoded in either the swp_entry_t or the architecture definition 2820 * of a swap pte. 2821 */ 2822 unsigned long generic_max_swapfile_size(void) 2823 { 2824 return swp_offset(pte_to_swp_entry( 2825 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2826 } 2827 2828 /* Can be overridden by an architecture for additional checks. */ 2829 __weak unsigned long arch_max_swapfile_size(void) 2830 { 2831 return generic_max_swapfile_size(); 2832 } 2833 2834 static unsigned long read_swap_header(struct swap_info_struct *p, 2835 union swap_header *swap_header, 2836 struct inode *inode) 2837 { 2838 int i; 2839 unsigned long maxpages; 2840 unsigned long swapfilepages; 2841 unsigned long last_page; 2842 2843 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2844 pr_err("Unable to find swap-space signature\n"); 2845 return 0; 2846 } 2847 2848 /* swap partition endianness hack... */ 2849 if (swab32(swap_header->info.version) == 1) { 2850 swab32s(&swap_header->info.version); 2851 swab32s(&swap_header->info.last_page); 2852 swab32s(&swap_header->info.nr_badpages); 2853 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2854 return 0; 2855 for (i = 0; i < swap_header->info.nr_badpages; i++) 2856 swab32s(&swap_header->info.badpages[i]); 2857 } 2858 /* Check the swap header's sub-version */ 2859 if (swap_header->info.version != 1) { 2860 pr_warn("Unable to handle swap header version %d\n", 2861 swap_header->info.version); 2862 return 0; 2863 } 2864 2865 p->lowest_bit = 1; 2866 p->cluster_next = 1; 2867 p->cluster_nr = 0; 2868 2869 maxpages = swapfile_maximum_size; 2870 last_page = swap_header->info.last_page; 2871 if (!last_page) { 2872 pr_warn("Empty swap-file\n"); 2873 return 0; 2874 } 2875 if (last_page > maxpages) { 2876 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2877 K(maxpages), K(last_page)); 2878 } 2879 if (maxpages > last_page) { 2880 maxpages = last_page + 1; 2881 /* p->max is an unsigned int: don't overflow it */ 2882 if ((unsigned int)maxpages == 0) 2883 maxpages = UINT_MAX; 2884 } 2885 p->highest_bit = maxpages - 1; 2886 2887 if (!maxpages) 2888 return 0; 2889 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2890 if (swapfilepages && maxpages > swapfilepages) { 2891 pr_warn("Swap area shorter than signature indicates\n"); 2892 return 0; 2893 } 2894 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2895 return 0; 2896 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2897 return 0; 2898 2899 return maxpages; 2900 } 2901 2902 #define SWAP_CLUSTER_INFO_COLS \ 2903 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 2904 #define SWAP_CLUSTER_SPACE_COLS \ 2905 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 2906 #define SWAP_CLUSTER_COLS \ 2907 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 2908 2909 static int setup_swap_map_and_extents(struct swap_info_struct *p, 2910 union swap_header *swap_header, 2911 unsigned char *swap_map, 2912 struct swap_cluster_info *cluster_info, 2913 unsigned long maxpages, 2914 sector_t *span) 2915 { 2916 unsigned int j, k; 2917 unsigned int nr_good_pages; 2918 int nr_extents; 2919 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2920 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 2921 unsigned long i, idx; 2922 2923 nr_good_pages = maxpages - 1; /* omit header page */ 2924 2925 cluster_list_init(&p->free_clusters); 2926 cluster_list_init(&p->discard_clusters); 2927 2928 for (i = 0; i < swap_header->info.nr_badpages; i++) { 2929 unsigned int page_nr = swap_header->info.badpages[i]; 2930 if (page_nr == 0 || page_nr > swap_header->info.last_page) 2931 return -EINVAL; 2932 if (page_nr < maxpages) { 2933 swap_map[page_nr] = SWAP_MAP_BAD; 2934 nr_good_pages--; 2935 /* 2936 * Haven't marked the cluster free yet, no list 2937 * operation involved 2938 */ 2939 inc_cluster_info_page(p, cluster_info, page_nr); 2940 } 2941 } 2942 2943 /* Haven't marked the cluster free yet, no list operation involved */ 2944 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 2945 inc_cluster_info_page(p, cluster_info, i); 2946 2947 if (nr_good_pages) { 2948 swap_map[0] = SWAP_MAP_BAD; 2949 /* 2950 * Not mark the cluster free yet, no list 2951 * operation involved 2952 */ 2953 inc_cluster_info_page(p, cluster_info, 0); 2954 p->max = maxpages; 2955 p->pages = nr_good_pages; 2956 nr_extents = setup_swap_extents(p, span); 2957 if (nr_extents < 0) 2958 return nr_extents; 2959 nr_good_pages = p->pages; 2960 } 2961 if (!nr_good_pages) { 2962 pr_warn("Empty swap-file\n"); 2963 return -EINVAL; 2964 } 2965 2966 if (!cluster_info) 2967 return nr_extents; 2968 2969 2970 /* 2971 * Reduce false cache line sharing between cluster_info and 2972 * sharing same address space. 2973 */ 2974 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 2975 j = (k + col) % SWAP_CLUSTER_COLS; 2976 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 2977 idx = i * SWAP_CLUSTER_COLS + j; 2978 if (idx >= nr_clusters) 2979 continue; 2980 if (cluster_count(&cluster_info[idx])) 2981 continue; 2982 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 2983 cluster_list_add_tail(&p->free_clusters, cluster_info, 2984 idx); 2985 } 2986 } 2987 return nr_extents; 2988 } 2989 2990 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 2991 { 2992 struct swap_info_struct *p; 2993 struct filename *name; 2994 struct file *swap_file = NULL; 2995 struct address_space *mapping; 2996 struct dentry *dentry; 2997 int prio; 2998 int error; 2999 union swap_header *swap_header; 3000 int nr_extents; 3001 sector_t span; 3002 unsigned long maxpages; 3003 unsigned char *swap_map = NULL; 3004 struct swap_cluster_info *cluster_info = NULL; 3005 struct page *page = NULL; 3006 struct inode *inode = NULL; 3007 bool inced_nr_rotate_swap = false; 3008 3009 if (swap_flags & ~SWAP_FLAGS_VALID) 3010 return -EINVAL; 3011 3012 if (!capable(CAP_SYS_ADMIN)) 3013 return -EPERM; 3014 3015 if (!swap_avail_heads) 3016 return -ENOMEM; 3017 3018 p = alloc_swap_info(); 3019 if (IS_ERR(p)) 3020 return PTR_ERR(p); 3021 3022 INIT_WORK(&p->discard_work, swap_discard_work); 3023 3024 name = getname(specialfile); 3025 if (IS_ERR(name)) { 3026 error = PTR_ERR(name); 3027 name = NULL; 3028 goto bad_swap; 3029 } 3030 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 3031 if (IS_ERR(swap_file)) { 3032 error = PTR_ERR(swap_file); 3033 swap_file = NULL; 3034 goto bad_swap; 3035 } 3036 3037 p->swap_file = swap_file; 3038 mapping = swap_file->f_mapping; 3039 dentry = swap_file->f_path.dentry; 3040 inode = mapping->host; 3041 3042 error = claim_swapfile(p, inode); 3043 if (unlikely(error)) 3044 goto bad_swap; 3045 3046 inode_lock(inode); 3047 if (d_unlinked(dentry) || cant_mount(dentry)) { 3048 error = -ENOENT; 3049 goto bad_swap_unlock_inode; 3050 } 3051 if (IS_SWAPFILE(inode)) { 3052 error = -EBUSY; 3053 goto bad_swap_unlock_inode; 3054 } 3055 3056 /* 3057 * Read the swap header. 3058 */ 3059 if (!mapping->a_ops->read_folio) { 3060 error = -EINVAL; 3061 goto bad_swap_unlock_inode; 3062 } 3063 page = read_mapping_page(mapping, 0, swap_file); 3064 if (IS_ERR(page)) { 3065 error = PTR_ERR(page); 3066 goto bad_swap_unlock_inode; 3067 } 3068 swap_header = kmap(page); 3069 3070 maxpages = read_swap_header(p, swap_header, inode); 3071 if (unlikely(!maxpages)) { 3072 error = -EINVAL; 3073 goto bad_swap_unlock_inode; 3074 } 3075 3076 /* OK, set up the swap map and apply the bad block list */ 3077 swap_map = vzalloc(maxpages); 3078 if (!swap_map) { 3079 error = -ENOMEM; 3080 goto bad_swap_unlock_inode; 3081 } 3082 3083 if (p->bdev && bdev_stable_writes(p->bdev)) 3084 p->flags |= SWP_STABLE_WRITES; 3085 3086 if (p->bdev && bdev_synchronous(p->bdev)) 3087 p->flags |= SWP_SYNCHRONOUS_IO; 3088 3089 if (p->bdev && bdev_nonrot(p->bdev)) { 3090 int cpu; 3091 unsigned long ci, nr_cluster; 3092 3093 p->flags |= SWP_SOLIDSTATE; 3094 p->cluster_next_cpu = alloc_percpu(unsigned int); 3095 if (!p->cluster_next_cpu) { 3096 error = -ENOMEM; 3097 goto bad_swap_unlock_inode; 3098 } 3099 /* 3100 * select a random position to start with to help wear leveling 3101 * SSD 3102 */ 3103 for_each_possible_cpu(cpu) { 3104 per_cpu(*p->cluster_next_cpu, cpu) = 3105 get_random_u32_inclusive(1, p->highest_bit); 3106 } 3107 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3108 3109 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), 3110 GFP_KERNEL); 3111 if (!cluster_info) { 3112 error = -ENOMEM; 3113 goto bad_swap_unlock_inode; 3114 } 3115 3116 for (ci = 0; ci < nr_cluster; ci++) 3117 spin_lock_init(&((cluster_info + ci)->lock)); 3118 3119 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 3120 if (!p->percpu_cluster) { 3121 error = -ENOMEM; 3122 goto bad_swap_unlock_inode; 3123 } 3124 for_each_possible_cpu(cpu) { 3125 struct percpu_cluster *cluster; 3126 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 3127 cluster_set_null(&cluster->index); 3128 } 3129 } else { 3130 atomic_inc(&nr_rotate_swap); 3131 inced_nr_rotate_swap = true; 3132 } 3133 3134 error = swap_cgroup_swapon(p->type, maxpages); 3135 if (error) 3136 goto bad_swap_unlock_inode; 3137 3138 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 3139 cluster_info, maxpages, &span); 3140 if (unlikely(nr_extents < 0)) { 3141 error = nr_extents; 3142 goto bad_swap_unlock_inode; 3143 } 3144 3145 if ((swap_flags & SWAP_FLAG_DISCARD) && 3146 p->bdev && bdev_max_discard_sectors(p->bdev)) { 3147 /* 3148 * When discard is enabled for swap with no particular 3149 * policy flagged, we set all swap discard flags here in 3150 * order to sustain backward compatibility with older 3151 * swapon(8) releases. 3152 */ 3153 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3154 SWP_PAGE_DISCARD); 3155 3156 /* 3157 * By flagging sys_swapon, a sysadmin can tell us to 3158 * either do single-time area discards only, or to just 3159 * perform discards for released swap page-clusters. 3160 * Now it's time to adjust the p->flags accordingly. 3161 */ 3162 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3163 p->flags &= ~SWP_PAGE_DISCARD; 3164 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3165 p->flags &= ~SWP_AREA_DISCARD; 3166 3167 /* issue a swapon-time discard if it's still required */ 3168 if (p->flags & SWP_AREA_DISCARD) { 3169 int err = discard_swap(p); 3170 if (unlikely(err)) 3171 pr_err("swapon: discard_swap(%p): %d\n", 3172 p, err); 3173 } 3174 } 3175 3176 error = init_swap_address_space(p->type, maxpages); 3177 if (error) 3178 goto bad_swap_unlock_inode; 3179 3180 error = zswap_swapon(p->type, maxpages); 3181 if (error) 3182 goto free_swap_address_space; 3183 3184 /* 3185 * Flush any pending IO and dirty mappings before we start using this 3186 * swap device. 3187 */ 3188 inode->i_flags |= S_SWAPFILE; 3189 error = inode_drain_writes(inode); 3190 if (error) { 3191 inode->i_flags &= ~S_SWAPFILE; 3192 goto free_swap_zswap; 3193 } 3194 3195 mutex_lock(&swapon_mutex); 3196 prio = -1; 3197 if (swap_flags & SWAP_FLAG_PREFER) 3198 prio = 3199 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3200 enable_swap_info(p, prio, swap_map, cluster_info); 3201 3202 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n", 3203 K(p->pages), name->name, p->prio, nr_extents, 3204 K((unsigned long long)span), 3205 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 3206 (p->flags & SWP_DISCARDABLE) ? "D" : "", 3207 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 3208 (p->flags & SWP_PAGE_DISCARD) ? "c" : ""); 3209 3210 mutex_unlock(&swapon_mutex); 3211 atomic_inc(&proc_poll_event); 3212 wake_up_interruptible(&proc_poll_wait); 3213 3214 error = 0; 3215 goto out; 3216 free_swap_zswap: 3217 zswap_swapoff(p->type); 3218 free_swap_address_space: 3219 exit_swap_address_space(p->type); 3220 bad_swap_unlock_inode: 3221 inode_unlock(inode); 3222 bad_swap: 3223 free_percpu(p->percpu_cluster); 3224 p->percpu_cluster = NULL; 3225 free_percpu(p->cluster_next_cpu); 3226 p->cluster_next_cpu = NULL; 3227 if (p->bdev_handle) { 3228 set_blocksize(p->bdev, p->old_block_size); 3229 bdev_release(p->bdev_handle); 3230 p->bdev_handle = NULL; 3231 } 3232 inode = NULL; 3233 destroy_swap_extents(p); 3234 swap_cgroup_swapoff(p->type); 3235 spin_lock(&swap_lock); 3236 p->swap_file = NULL; 3237 p->flags = 0; 3238 spin_unlock(&swap_lock); 3239 vfree(swap_map); 3240 kvfree(cluster_info); 3241 if (inced_nr_rotate_swap) 3242 atomic_dec(&nr_rotate_swap); 3243 if (swap_file) 3244 filp_close(swap_file, NULL); 3245 out: 3246 if (page && !IS_ERR(page)) { 3247 kunmap(page); 3248 put_page(page); 3249 } 3250 if (name) 3251 putname(name); 3252 if (inode) 3253 inode_unlock(inode); 3254 if (!error) 3255 enable_swap_slots_cache(); 3256 return error; 3257 } 3258 3259 void si_swapinfo(struct sysinfo *val) 3260 { 3261 unsigned int type; 3262 unsigned long nr_to_be_unused = 0; 3263 3264 spin_lock(&swap_lock); 3265 for (type = 0; type < nr_swapfiles; type++) { 3266 struct swap_info_struct *si = swap_info[type]; 3267 3268 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3269 nr_to_be_unused += READ_ONCE(si->inuse_pages); 3270 } 3271 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3272 val->totalswap = total_swap_pages + nr_to_be_unused; 3273 spin_unlock(&swap_lock); 3274 } 3275 3276 /* 3277 * Verify that a swap entry is valid and increment its swap map count. 3278 * 3279 * Returns error code in following case. 3280 * - success -> 0 3281 * - swp_entry is invalid -> EINVAL 3282 * - swp_entry is migration entry -> EINVAL 3283 * - swap-cache reference is requested but there is already one. -> EEXIST 3284 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3285 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3286 */ 3287 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 3288 { 3289 struct swap_info_struct *p; 3290 struct swap_cluster_info *ci; 3291 unsigned long offset; 3292 unsigned char count; 3293 unsigned char has_cache; 3294 int err; 3295 3296 p = swp_swap_info(entry); 3297 3298 offset = swp_offset(entry); 3299 ci = lock_cluster_or_swap_info(p, offset); 3300 3301 count = p->swap_map[offset]; 3302 3303 /* 3304 * swapin_readahead() doesn't check if a swap entry is valid, so the 3305 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3306 */ 3307 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3308 err = -ENOENT; 3309 goto unlock_out; 3310 } 3311 3312 has_cache = count & SWAP_HAS_CACHE; 3313 count &= ~SWAP_HAS_CACHE; 3314 err = 0; 3315 3316 if (usage == SWAP_HAS_CACHE) { 3317 3318 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 3319 if (!has_cache && count) 3320 has_cache = SWAP_HAS_CACHE; 3321 else if (has_cache) /* someone else added cache */ 3322 err = -EEXIST; 3323 else /* no users remaining */ 3324 err = -ENOENT; 3325 3326 } else if (count || has_cache) { 3327 3328 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3329 count += usage; 3330 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3331 err = -EINVAL; 3332 else if (swap_count_continued(p, offset, count)) 3333 count = COUNT_CONTINUED; 3334 else 3335 err = -ENOMEM; 3336 } else 3337 err = -ENOENT; /* unused swap entry */ 3338 3339 WRITE_ONCE(p->swap_map[offset], count | has_cache); 3340 3341 unlock_out: 3342 unlock_cluster_or_swap_info(p, ci); 3343 return err; 3344 } 3345 3346 /* 3347 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3348 * (in which case its reference count is never incremented). 3349 */ 3350 void swap_shmem_alloc(swp_entry_t entry) 3351 { 3352 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3353 } 3354 3355 /* 3356 * Increase reference count of swap entry by 1. 3357 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3358 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3359 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3360 * might occur if a page table entry has got corrupted. 3361 */ 3362 int swap_duplicate(swp_entry_t entry) 3363 { 3364 int err = 0; 3365 3366 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3367 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3368 return err; 3369 } 3370 3371 /* 3372 * @entry: swap entry for which we allocate swap cache. 3373 * 3374 * Called when allocating swap cache for existing swap entry, 3375 * This can return error codes. Returns 0 at success. 3376 * -EEXIST means there is a swap cache. 3377 * Note: return code is different from swap_duplicate(). 3378 */ 3379 int swapcache_prepare(swp_entry_t entry) 3380 { 3381 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3382 } 3383 3384 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry) 3385 { 3386 struct swap_cluster_info *ci; 3387 unsigned long offset = swp_offset(entry); 3388 unsigned char usage; 3389 3390 ci = lock_cluster_or_swap_info(si, offset); 3391 usage = __swap_entry_free_locked(si, offset, SWAP_HAS_CACHE); 3392 unlock_cluster_or_swap_info(si, ci); 3393 if (!usage) 3394 free_swap_slot(entry); 3395 } 3396 3397 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3398 { 3399 return swap_type_to_swap_info(swp_type(entry)); 3400 } 3401 3402 /* 3403 * out-of-line methods to avoid include hell. 3404 */ 3405 struct address_space *swapcache_mapping(struct folio *folio) 3406 { 3407 return swp_swap_info(folio->swap)->swap_file->f_mapping; 3408 } 3409 EXPORT_SYMBOL_GPL(swapcache_mapping); 3410 3411 pgoff_t __page_file_index(struct page *page) 3412 { 3413 swp_entry_t swap = page_swap_entry(page); 3414 return swp_offset(swap); 3415 } 3416 EXPORT_SYMBOL_GPL(__page_file_index); 3417 3418 /* 3419 * add_swap_count_continuation - called when a swap count is duplicated 3420 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3421 * page of the original vmalloc'ed swap_map, to hold the continuation count 3422 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3423 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3424 * 3425 * These continuation pages are seldom referenced: the common paths all work 3426 * on the original swap_map, only referring to a continuation page when the 3427 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3428 * 3429 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3430 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3431 * can be called after dropping locks. 3432 */ 3433 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3434 { 3435 struct swap_info_struct *si; 3436 struct swap_cluster_info *ci; 3437 struct page *head; 3438 struct page *page; 3439 struct page *list_page; 3440 pgoff_t offset; 3441 unsigned char count; 3442 int ret = 0; 3443 3444 /* 3445 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3446 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3447 */ 3448 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3449 3450 si = get_swap_device(entry); 3451 if (!si) { 3452 /* 3453 * An acceptable race has occurred since the failing 3454 * __swap_duplicate(): the swap device may be swapoff 3455 */ 3456 goto outer; 3457 } 3458 spin_lock(&si->lock); 3459 3460 offset = swp_offset(entry); 3461 3462 ci = lock_cluster(si, offset); 3463 3464 count = swap_count(si->swap_map[offset]); 3465 3466 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3467 /* 3468 * The higher the swap count, the more likely it is that tasks 3469 * will race to add swap count continuation: we need to avoid 3470 * over-provisioning. 3471 */ 3472 goto out; 3473 } 3474 3475 if (!page) { 3476 ret = -ENOMEM; 3477 goto out; 3478 } 3479 3480 head = vmalloc_to_page(si->swap_map + offset); 3481 offset &= ~PAGE_MASK; 3482 3483 spin_lock(&si->cont_lock); 3484 /* 3485 * Page allocation does not initialize the page's lru field, 3486 * but it does always reset its private field. 3487 */ 3488 if (!page_private(head)) { 3489 BUG_ON(count & COUNT_CONTINUED); 3490 INIT_LIST_HEAD(&head->lru); 3491 set_page_private(head, SWP_CONTINUED); 3492 si->flags |= SWP_CONTINUED; 3493 } 3494 3495 list_for_each_entry(list_page, &head->lru, lru) { 3496 unsigned char *map; 3497 3498 /* 3499 * If the previous map said no continuation, but we've found 3500 * a continuation page, free our allocation and use this one. 3501 */ 3502 if (!(count & COUNT_CONTINUED)) 3503 goto out_unlock_cont; 3504 3505 map = kmap_local_page(list_page) + offset; 3506 count = *map; 3507 kunmap_local(map); 3508 3509 /* 3510 * If this continuation count now has some space in it, 3511 * free our allocation and use this one. 3512 */ 3513 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3514 goto out_unlock_cont; 3515 } 3516 3517 list_add_tail(&page->lru, &head->lru); 3518 page = NULL; /* now it's attached, don't free it */ 3519 out_unlock_cont: 3520 spin_unlock(&si->cont_lock); 3521 out: 3522 unlock_cluster(ci); 3523 spin_unlock(&si->lock); 3524 put_swap_device(si); 3525 outer: 3526 if (page) 3527 __free_page(page); 3528 return ret; 3529 } 3530 3531 /* 3532 * swap_count_continued - when the original swap_map count is incremented 3533 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3534 * into, carry if so, or else fail until a new continuation page is allocated; 3535 * when the original swap_map count is decremented from 0 with continuation, 3536 * borrow from the continuation and report whether it still holds more. 3537 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3538 * lock. 3539 */ 3540 static bool swap_count_continued(struct swap_info_struct *si, 3541 pgoff_t offset, unsigned char count) 3542 { 3543 struct page *head; 3544 struct page *page; 3545 unsigned char *map; 3546 bool ret; 3547 3548 head = vmalloc_to_page(si->swap_map + offset); 3549 if (page_private(head) != SWP_CONTINUED) { 3550 BUG_ON(count & COUNT_CONTINUED); 3551 return false; /* need to add count continuation */ 3552 } 3553 3554 spin_lock(&si->cont_lock); 3555 offset &= ~PAGE_MASK; 3556 page = list_next_entry(head, lru); 3557 map = kmap_local_page(page) + offset; 3558 3559 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3560 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3561 3562 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3563 /* 3564 * Think of how you add 1 to 999 3565 */ 3566 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3567 kunmap_local(map); 3568 page = list_next_entry(page, lru); 3569 BUG_ON(page == head); 3570 map = kmap_local_page(page) + offset; 3571 } 3572 if (*map == SWAP_CONT_MAX) { 3573 kunmap_local(map); 3574 page = list_next_entry(page, lru); 3575 if (page == head) { 3576 ret = false; /* add count continuation */ 3577 goto out; 3578 } 3579 map = kmap_local_page(page) + offset; 3580 init_map: *map = 0; /* we didn't zero the page */ 3581 } 3582 *map += 1; 3583 kunmap_local(map); 3584 while ((page = list_prev_entry(page, lru)) != head) { 3585 map = kmap_local_page(page) + offset; 3586 *map = COUNT_CONTINUED; 3587 kunmap_local(map); 3588 } 3589 ret = true; /* incremented */ 3590 3591 } else { /* decrementing */ 3592 /* 3593 * Think of how you subtract 1 from 1000 3594 */ 3595 BUG_ON(count != COUNT_CONTINUED); 3596 while (*map == COUNT_CONTINUED) { 3597 kunmap_local(map); 3598 page = list_next_entry(page, lru); 3599 BUG_ON(page == head); 3600 map = kmap_local_page(page) + offset; 3601 } 3602 BUG_ON(*map == 0); 3603 *map -= 1; 3604 if (*map == 0) 3605 count = 0; 3606 kunmap_local(map); 3607 while ((page = list_prev_entry(page, lru)) != head) { 3608 map = kmap_local_page(page) + offset; 3609 *map = SWAP_CONT_MAX | count; 3610 count = COUNT_CONTINUED; 3611 kunmap_local(map); 3612 } 3613 ret = count == COUNT_CONTINUED; 3614 } 3615 out: 3616 spin_unlock(&si->cont_lock); 3617 return ret; 3618 } 3619 3620 /* 3621 * free_swap_count_continuations - swapoff free all the continuation pages 3622 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3623 */ 3624 static void free_swap_count_continuations(struct swap_info_struct *si) 3625 { 3626 pgoff_t offset; 3627 3628 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3629 struct page *head; 3630 head = vmalloc_to_page(si->swap_map + offset); 3631 if (page_private(head)) { 3632 struct page *page, *next; 3633 3634 list_for_each_entry_safe(page, next, &head->lru, lru) { 3635 list_del(&page->lru); 3636 __free_page(page); 3637 } 3638 } 3639 } 3640 } 3641 3642 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3643 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp) 3644 { 3645 struct swap_info_struct *si, *next; 3646 int nid = folio_nid(folio); 3647 3648 if (!(gfp & __GFP_IO)) 3649 return; 3650 3651 if (!blk_cgroup_congested()) 3652 return; 3653 3654 /* 3655 * We've already scheduled a throttle, avoid taking the global swap 3656 * lock. 3657 */ 3658 if (current->throttle_disk) 3659 return; 3660 3661 spin_lock(&swap_avail_lock); 3662 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], 3663 avail_lists[nid]) { 3664 if (si->bdev) { 3665 blkcg_schedule_throttle(si->bdev->bd_disk, true); 3666 break; 3667 } 3668 } 3669 spin_unlock(&swap_avail_lock); 3670 } 3671 #endif 3672 3673 static int __init swapfile_init(void) 3674 { 3675 int nid; 3676 3677 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3678 GFP_KERNEL); 3679 if (!swap_avail_heads) { 3680 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3681 return -ENOMEM; 3682 } 3683 3684 for_each_node(nid) 3685 plist_head_init(&swap_avail_heads[nid]); 3686 3687 swapfile_maximum_size = arch_max_swapfile_size(); 3688 3689 #ifdef CONFIG_MIGRATION 3690 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS)) 3691 swap_migration_ad_supported = true; 3692 #endif /* CONFIG_MIGRATION */ 3693 3694 return 0; 3695 } 3696 subsys_initcall(swapfile_init); 3697