1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/mm.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/task.h> 12 #include <linux/hugetlb.h> 13 #include <linux/mman.h> 14 #include <linux/slab.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/swap.h> 17 #include <linux/vmalloc.h> 18 #include <linux/pagemap.h> 19 #include <linux/namei.h> 20 #include <linux/shmem_fs.h> 21 #include <linux/blkdev.h> 22 #include <linux/random.h> 23 #include <linux/writeback.h> 24 #include <linux/proc_fs.h> 25 #include <linux/seq_file.h> 26 #include <linux/init.h> 27 #include <linux/ksm.h> 28 #include <linux/rmap.h> 29 #include <linux/security.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mutex.h> 32 #include <linux/capability.h> 33 #include <linux/syscalls.h> 34 #include <linux/memcontrol.h> 35 #include <linux/poll.h> 36 #include <linux/oom.h> 37 #include <linux/frontswap.h> 38 #include <linux/swapfile.h> 39 #include <linux/export.h> 40 #include <linux/swap_slots.h> 41 #include <linux/sort.h> 42 43 #include <asm/tlbflush.h> 44 #include <linux/swapops.h> 45 #include <linux/swap_cgroup.h> 46 47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 48 unsigned char); 49 static void free_swap_count_continuations(struct swap_info_struct *); 50 51 DEFINE_SPINLOCK(swap_lock); 52 static unsigned int nr_swapfiles; 53 atomic_long_t nr_swap_pages; 54 /* 55 * Some modules use swappable objects and may try to swap them out under 56 * memory pressure (via the shrinker). Before doing so, they may wish to 57 * check to see if any swap space is available. 58 */ 59 EXPORT_SYMBOL_GPL(nr_swap_pages); 60 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 61 long total_swap_pages; 62 static int least_priority = -1; 63 64 static const char Bad_file[] = "Bad swap file entry "; 65 static const char Unused_file[] = "Unused swap file entry "; 66 static const char Bad_offset[] = "Bad swap offset entry "; 67 static const char Unused_offset[] = "Unused swap offset entry "; 68 69 /* 70 * all active swap_info_structs 71 * protected with swap_lock, and ordered by priority. 72 */ 73 PLIST_HEAD(swap_active_head); 74 75 /* 76 * all available (active, not full) swap_info_structs 77 * protected with swap_avail_lock, ordered by priority. 78 * This is used by get_swap_page() instead of swap_active_head 79 * because swap_active_head includes all swap_info_structs, 80 * but get_swap_page() doesn't need to look at full ones. 81 * This uses its own lock instead of swap_lock because when a 82 * swap_info_struct changes between not-full/full, it needs to 83 * add/remove itself to/from this list, but the swap_info_struct->lock 84 * is held and the locking order requires swap_lock to be taken 85 * before any swap_info_struct->lock. 86 */ 87 static struct plist_head *swap_avail_heads; 88 static DEFINE_SPINLOCK(swap_avail_lock); 89 90 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 91 92 static DEFINE_MUTEX(swapon_mutex); 93 94 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 95 /* Activity counter to indicate that a swapon or swapoff has occurred */ 96 static atomic_t proc_poll_event = ATOMIC_INIT(0); 97 98 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 99 100 static struct swap_info_struct *swap_type_to_swap_info(int type) 101 { 102 if (type >= READ_ONCE(nr_swapfiles)) 103 return NULL; 104 105 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */ 106 return READ_ONCE(swap_info[type]); 107 } 108 109 static inline unsigned char swap_count(unsigned char ent) 110 { 111 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 112 } 113 114 /* Reclaim the swap entry anyway if possible */ 115 #define TTRS_ANYWAY 0x1 116 /* 117 * Reclaim the swap entry if there are no more mappings of the 118 * corresponding page 119 */ 120 #define TTRS_UNMAPPED 0x2 121 /* Reclaim the swap entry if swap is getting full*/ 122 #define TTRS_FULL 0x4 123 124 /* returns 1 if swap entry is freed */ 125 static int __try_to_reclaim_swap(struct swap_info_struct *si, 126 unsigned long offset, unsigned long flags) 127 { 128 swp_entry_t entry = swp_entry(si->type, offset); 129 struct page *page; 130 int ret = 0; 131 132 page = find_get_page(swap_address_space(entry), offset); 133 if (!page) 134 return 0; 135 /* 136 * When this function is called from scan_swap_map_slots() and it's 137 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page, 138 * here. We have to use trylock for avoiding deadlock. This is a special 139 * case and you should use try_to_free_swap() with explicit lock_page() 140 * in usual operations. 141 */ 142 if (trylock_page(page)) { 143 if ((flags & TTRS_ANYWAY) || 144 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) || 145 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page))) 146 ret = try_to_free_swap(page); 147 unlock_page(page); 148 } 149 put_page(page); 150 return ret; 151 } 152 153 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 154 { 155 struct rb_node *rb = rb_first(&sis->swap_extent_root); 156 return rb_entry(rb, struct swap_extent, rb_node); 157 } 158 159 static inline struct swap_extent *next_se(struct swap_extent *se) 160 { 161 struct rb_node *rb = rb_next(&se->rb_node); 162 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 163 } 164 165 /* 166 * swapon tell device that all the old swap contents can be discarded, 167 * to allow the swap device to optimize its wear-levelling. 168 */ 169 static int discard_swap(struct swap_info_struct *si) 170 { 171 struct swap_extent *se; 172 sector_t start_block; 173 sector_t nr_blocks; 174 int err = 0; 175 176 /* Do not discard the swap header page! */ 177 se = first_se(si); 178 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 179 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 180 if (nr_blocks) { 181 err = blkdev_issue_discard(si->bdev, start_block, 182 nr_blocks, GFP_KERNEL, 0); 183 if (err) 184 return err; 185 cond_resched(); 186 } 187 188 for (se = next_se(se); se; se = next_se(se)) { 189 start_block = se->start_block << (PAGE_SHIFT - 9); 190 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 191 192 err = blkdev_issue_discard(si->bdev, start_block, 193 nr_blocks, GFP_KERNEL, 0); 194 if (err) 195 break; 196 197 cond_resched(); 198 } 199 return err; /* That will often be -EOPNOTSUPP */ 200 } 201 202 static struct swap_extent * 203 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 204 { 205 struct swap_extent *se; 206 struct rb_node *rb; 207 208 rb = sis->swap_extent_root.rb_node; 209 while (rb) { 210 se = rb_entry(rb, struct swap_extent, rb_node); 211 if (offset < se->start_page) 212 rb = rb->rb_left; 213 else if (offset >= se->start_page + se->nr_pages) 214 rb = rb->rb_right; 215 else 216 return se; 217 } 218 /* It *must* be present */ 219 BUG(); 220 } 221 222 sector_t swap_page_sector(struct page *page) 223 { 224 struct swap_info_struct *sis = page_swap_info(page); 225 struct swap_extent *se; 226 sector_t sector; 227 pgoff_t offset; 228 229 offset = __page_file_index(page); 230 se = offset_to_swap_extent(sis, offset); 231 sector = se->start_block + (offset - se->start_page); 232 return sector << (PAGE_SHIFT - 9); 233 } 234 235 /* 236 * swap allocation tell device that a cluster of swap can now be discarded, 237 * to allow the swap device to optimize its wear-levelling. 238 */ 239 static void discard_swap_cluster(struct swap_info_struct *si, 240 pgoff_t start_page, pgoff_t nr_pages) 241 { 242 struct swap_extent *se = offset_to_swap_extent(si, start_page); 243 244 while (nr_pages) { 245 pgoff_t offset = start_page - se->start_page; 246 sector_t start_block = se->start_block + offset; 247 sector_t nr_blocks = se->nr_pages - offset; 248 249 if (nr_blocks > nr_pages) 250 nr_blocks = nr_pages; 251 start_page += nr_blocks; 252 nr_pages -= nr_blocks; 253 254 start_block <<= PAGE_SHIFT - 9; 255 nr_blocks <<= PAGE_SHIFT - 9; 256 if (blkdev_issue_discard(si->bdev, start_block, 257 nr_blocks, GFP_NOIO, 0)) 258 break; 259 260 se = next_se(se); 261 } 262 } 263 264 #ifdef CONFIG_THP_SWAP 265 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 266 267 #define swap_entry_size(size) (size) 268 #else 269 #define SWAPFILE_CLUSTER 256 270 271 /* 272 * Define swap_entry_size() as constant to let compiler to optimize 273 * out some code if !CONFIG_THP_SWAP 274 */ 275 #define swap_entry_size(size) 1 276 #endif 277 #define LATENCY_LIMIT 256 278 279 static inline void cluster_set_flag(struct swap_cluster_info *info, 280 unsigned int flag) 281 { 282 info->flags = flag; 283 } 284 285 static inline unsigned int cluster_count(struct swap_cluster_info *info) 286 { 287 return info->data; 288 } 289 290 static inline void cluster_set_count(struct swap_cluster_info *info, 291 unsigned int c) 292 { 293 info->data = c; 294 } 295 296 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 297 unsigned int c, unsigned int f) 298 { 299 info->flags = f; 300 info->data = c; 301 } 302 303 static inline unsigned int cluster_next(struct swap_cluster_info *info) 304 { 305 return info->data; 306 } 307 308 static inline void cluster_set_next(struct swap_cluster_info *info, 309 unsigned int n) 310 { 311 info->data = n; 312 } 313 314 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 315 unsigned int n, unsigned int f) 316 { 317 info->flags = f; 318 info->data = n; 319 } 320 321 static inline bool cluster_is_free(struct swap_cluster_info *info) 322 { 323 return info->flags & CLUSTER_FLAG_FREE; 324 } 325 326 static inline bool cluster_is_null(struct swap_cluster_info *info) 327 { 328 return info->flags & CLUSTER_FLAG_NEXT_NULL; 329 } 330 331 static inline void cluster_set_null(struct swap_cluster_info *info) 332 { 333 info->flags = CLUSTER_FLAG_NEXT_NULL; 334 info->data = 0; 335 } 336 337 static inline bool cluster_is_huge(struct swap_cluster_info *info) 338 { 339 if (IS_ENABLED(CONFIG_THP_SWAP)) 340 return info->flags & CLUSTER_FLAG_HUGE; 341 return false; 342 } 343 344 static inline void cluster_clear_huge(struct swap_cluster_info *info) 345 { 346 info->flags &= ~CLUSTER_FLAG_HUGE; 347 } 348 349 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 350 unsigned long offset) 351 { 352 struct swap_cluster_info *ci; 353 354 ci = si->cluster_info; 355 if (ci) { 356 ci += offset / SWAPFILE_CLUSTER; 357 spin_lock(&ci->lock); 358 } 359 return ci; 360 } 361 362 static inline void unlock_cluster(struct swap_cluster_info *ci) 363 { 364 if (ci) 365 spin_unlock(&ci->lock); 366 } 367 368 /* 369 * Determine the locking method in use for this device. Return 370 * swap_cluster_info if SSD-style cluster-based locking is in place. 371 */ 372 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 373 struct swap_info_struct *si, unsigned long offset) 374 { 375 struct swap_cluster_info *ci; 376 377 /* Try to use fine-grained SSD-style locking if available: */ 378 ci = lock_cluster(si, offset); 379 /* Otherwise, fall back to traditional, coarse locking: */ 380 if (!ci) 381 spin_lock(&si->lock); 382 383 return ci; 384 } 385 386 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 387 struct swap_cluster_info *ci) 388 { 389 if (ci) 390 unlock_cluster(ci); 391 else 392 spin_unlock(&si->lock); 393 } 394 395 static inline bool cluster_list_empty(struct swap_cluster_list *list) 396 { 397 return cluster_is_null(&list->head); 398 } 399 400 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 401 { 402 return cluster_next(&list->head); 403 } 404 405 static void cluster_list_init(struct swap_cluster_list *list) 406 { 407 cluster_set_null(&list->head); 408 cluster_set_null(&list->tail); 409 } 410 411 static void cluster_list_add_tail(struct swap_cluster_list *list, 412 struct swap_cluster_info *ci, 413 unsigned int idx) 414 { 415 if (cluster_list_empty(list)) { 416 cluster_set_next_flag(&list->head, idx, 0); 417 cluster_set_next_flag(&list->tail, idx, 0); 418 } else { 419 struct swap_cluster_info *ci_tail; 420 unsigned int tail = cluster_next(&list->tail); 421 422 /* 423 * Nested cluster lock, but both cluster locks are 424 * only acquired when we held swap_info_struct->lock 425 */ 426 ci_tail = ci + tail; 427 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 428 cluster_set_next(ci_tail, idx); 429 spin_unlock(&ci_tail->lock); 430 cluster_set_next_flag(&list->tail, idx, 0); 431 } 432 } 433 434 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 435 struct swap_cluster_info *ci) 436 { 437 unsigned int idx; 438 439 idx = cluster_next(&list->head); 440 if (cluster_next(&list->tail) == idx) { 441 cluster_set_null(&list->head); 442 cluster_set_null(&list->tail); 443 } else 444 cluster_set_next_flag(&list->head, 445 cluster_next(&ci[idx]), 0); 446 447 return idx; 448 } 449 450 /* Add a cluster to discard list and schedule it to do discard */ 451 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 452 unsigned int idx) 453 { 454 /* 455 * If scan_swap_map() can't find a free cluster, it will check 456 * si->swap_map directly. To make sure the discarding cluster isn't 457 * taken by scan_swap_map(), mark the swap entries bad (occupied). It 458 * will be cleared after discard 459 */ 460 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 461 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 462 463 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 464 465 schedule_work(&si->discard_work); 466 } 467 468 static void __free_cluster(struct swap_info_struct *si, unsigned long idx) 469 { 470 struct swap_cluster_info *ci = si->cluster_info; 471 472 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); 473 cluster_list_add_tail(&si->free_clusters, ci, idx); 474 } 475 476 /* 477 * Doing discard actually. After a cluster discard is finished, the cluster 478 * will be added to free cluster list. caller should hold si->lock. 479 */ 480 static void swap_do_scheduled_discard(struct swap_info_struct *si) 481 { 482 struct swap_cluster_info *info, *ci; 483 unsigned int idx; 484 485 info = si->cluster_info; 486 487 while (!cluster_list_empty(&si->discard_clusters)) { 488 idx = cluster_list_del_first(&si->discard_clusters, info); 489 spin_unlock(&si->lock); 490 491 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 492 SWAPFILE_CLUSTER); 493 494 spin_lock(&si->lock); 495 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 496 __free_cluster(si, idx); 497 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 498 0, SWAPFILE_CLUSTER); 499 unlock_cluster(ci); 500 } 501 } 502 503 static void swap_discard_work(struct work_struct *work) 504 { 505 struct swap_info_struct *si; 506 507 si = container_of(work, struct swap_info_struct, discard_work); 508 509 spin_lock(&si->lock); 510 swap_do_scheduled_discard(si); 511 spin_unlock(&si->lock); 512 } 513 514 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) 515 { 516 struct swap_cluster_info *ci = si->cluster_info; 517 518 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); 519 cluster_list_del_first(&si->free_clusters, ci); 520 cluster_set_count_flag(ci + idx, 0, 0); 521 } 522 523 static void free_cluster(struct swap_info_struct *si, unsigned long idx) 524 { 525 struct swap_cluster_info *ci = si->cluster_info + idx; 526 527 VM_BUG_ON(cluster_count(ci) != 0); 528 /* 529 * If the swap is discardable, prepare discard the cluster 530 * instead of free it immediately. The cluster will be freed 531 * after discard. 532 */ 533 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 534 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 535 swap_cluster_schedule_discard(si, idx); 536 return; 537 } 538 539 __free_cluster(si, idx); 540 } 541 542 /* 543 * The cluster corresponding to page_nr will be used. The cluster will be 544 * removed from free cluster list and its usage counter will be increased. 545 */ 546 static void inc_cluster_info_page(struct swap_info_struct *p, 547 struct swap_cluster_info *cluster_info, unsigned long page_nr) 548 { 549 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 550 551 if (!cluster_info) 552 return; 553 if (cluster_is_free(&cluster_info[idx])) 554 alloc_cluster(p, idx); 555 556 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 557 cluster_set_count(&cluster_info[idx], 558 cluster_count(&cluster_info[idx]) + 1); 559 } 560 561 /* 562 * The cluster corresponding to page_nr decreases one usage. If the usage 563 * counter becomes 0, which means no page in the cluster is in using, we can 564 * optionally discard the cluster and add it to free cluster list. 565 */ 566 static void dec_cluster_info_page(struct swap_info_struct *p, 567 struct swap_cluster_info *cluster_info, unsigned long page_nr) 568 { 569 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 570 571 if (!cluster_info) 572 return; 573 574 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 575 cluster_set_count(&cluster_info[idx], 576 cluster_count(&cluster_info[idx]) - 1); 577 578 if (cluster_count(&cluster_info[idx]) == 0) 579 free_cluster(p, idx); 580 } 581 582 /* 583 * It's possible scan_swap_map() uses a free cluster in the middle of free 584 * cluster list. Avoiding such abuse to avoid list corruption. 585 */ 586 static bool 587 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 588 unsigned long offset) 589 { 590 struct percpu_cluster *percpu_cluster; 591 bool conflict; 592 593 offset /= SWAPFILE_CLUSTER; 594 conflict = !cluster_list_empty(&si->free_clusters) && 595 offset != cluster_list_first(&si->free_clusters) && 596 cluster_is_free(&si->cluster_info[offset]); 597 598 if (!conflict) 599 return false; 600 601 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 602 cluster_set_null(&percpu_cluster->index); 603 return true; 604 } 605 606 /* 607 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 608 * might involve allocating a new cluster for current CPU too. 609 */ 610 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 611 unsigned long *offset, unsigned long *scan_base) 612 { 613 struct percpu_cluster *cluster; 614 struct swap_cluster_info *ci; 615 unsigned long tmp, max; 616 617 new_cluster: 618 cluster = this_cpu_ptr(si->percpu_cluster); 619 if (cluster_is_null(&cluster->index)) { 620 if (!cluster_list_empty(&si->free_clusters)) { 621 cluster->index = si->free_clusters.head; 622 cluster->next = cluster_next(&cluster->index) * 623 SWAPFILE_CLUSTER; 624 } else if (!cluster_list_empty(&si->discard_clusters)) { 625 /* 626 * we don't have free cluster but have some clusters in 627 * discarding, do discard now and reclaim them, then 628 * reread cluster_next_cpu since we dropped si->lock 629 */ 630 swap_do_scheduled_discard(si); 631 *scan_base = this_cpu_read(*si->cluster_next_cpu); 632 *offset = *scan_base; 633 goto new_cluster; 634 } else 635 return false; 636 } 637 638 /* 639 * Other CPUs can use our cluster if they can't find a free cluster, 640 * check if there is still free entry in the cluster 641 */ 642 tmp = cluster->next; 643 max = min_t(unsigned long, si->max, 644 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); 645 if (tmp < max) { 646 ci = lock_cluster(si, tmp); 647 while (tmp < max) { 648 if (!si->swap_map[tmp]) 649 break; 650 tmp++; 651 } 652 unlock_cluster(ci); 653 } 654 if (tmp >= max) { 655 cluster_set_null(&cluster->index); 656 goto new_cluster; 657 } 658 cluster->next = tmp + 1; 659 *offset = tmp; 660 *scan_base = tmp; 661 return true; 662 } 663 664 static void __del_from_avail_list(struct swap_info_struct *p) 665 { 666 int nid; 667 668 for_each_node(nid) 669 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); 670 } 671 672 static void del_from_avail_list(struct swap_info_struct *p) 673 { 674 spin_lock(&swap_avail_lock); 675 __del_from_avail_list(p); 676 spin_unlock(&swap_avail_lock); 677 } 678 679 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 680 unsigned int nr_entries) 681 { 682 unsigned int end = offset + nr_entries - 1; 683 684 if (offset == si->lowest_bit) 685 si->lowest_bit += nr_entries; 686 if (end == si->highest_bit) 687 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries); 688 si->inuse_pages += nr_entries; 689 if (si->inuse_pages == si->pages) { 690 si->lowest_bit = si->max; 691 si->highest_bit = 0; 692 del_from_avail_list(si); 693 } 694 } 695 696 static void add_to_avail_list(struct swap_info_struct *p) 697 { 698 int nid; 699 700 spin_lock(&swap_avail_lock); 701 for_each_node(nid) { 702 WARN_ON(!plist_node_empty(&p->avail_lists[nid])); 703 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); 704 } 705 spin_unlock(&swap_avail_lock); 706 } 707 708 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 709 unsigned int nr_entries) 710 { 711 unsigned long begin = offset; 712 unsigned long end = offset + nr_entries - 1; 713 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 714 715 if (offset < si->lowest_bit) 716 si->lowest_bit = offset; 717 if (end > si->highest_bit) { 718 bool was_full = !si->highest_bit; 719 720 WRITE_ONCE(si->highest_bit, end); 721 if (was_full && (si->flags & SWP_WRITEOK)) 722 add_to_avail_list(si); 723 } 724 atomic_long_add(nr_entries, &nr_swap_pages); 725 si->inuse_pages -= nr_entries; 726 if (si->flags & SWP_BLKDEV) 727 swap_slot_free_notify = 728 si->bdev->bd_disk->fops->swap_slot_free_notify; 729 else 730 swap_slot_free_notify = NULL; 731 while (offset <= end) { 732 arch_swap_invalidate_page(si->type, offset); 733 frontswap_invalidate_page(si->type, offset); 734 if (swap_slot_free_notify) 735 swap_slot_free_notify(si->bdev, offset); 736 offset++; 737 } 738 clear_shadow_from_swap_cache(si->type, begin, end); 739 } 740 741 static void set_cluster_next(struct swap_info_struct *si, unsigned long next) 742 { 743 unsigned long prev; 744 745 if (!(si->flags & SWP_SOLIDSTATE)) { 746 si->cluster_next = next; 747 return; 748 } 749 750 prev = this_cpu_read(*si->cluster_next_cpu); 751 /* 752 * Cross the swap address space size aligned trunk, choose 753 * another trunk randomly to avoid lock contention on swap 754 * address space if possible. 755 */ 756 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) != 757 (next >> SWAP_ADDRESS_SPACE_SHIFT)) { 758 /* No free swap slots available */ 759 if (si->highest_bit <= si->lowest_bit) 760 return; 761 next = si->lowest_bit + 762 prandom_u32_max(si->highest_bit - si->lowest_bit + 1); 763 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES); 764 next = max_t(unsigned int, next, si->lowest_bit); 765 } 766 this_cpu_write(*si->cluster_next_cpu, next); 767 } 768 769 static int scan_swap_map_slots(struct swap_info_struct *si, 770 unsigned char usage, int nr, 771 swp_entry_t slots[]) 772 { 773 struct swap_cluster_info *ci; 774 unsigned long offset; 775 unsigned long scan_base; 776 unsigned long last_in_cluster = 0; 777 int latency_ration = LATENCY_LIMIT; 778 int n_ret = 0; 779 bool scanned_many = false; 780 781 /* 782 * We try to cluster swap pages by allocating them sequentially 783 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 784 * way, however, we resort to first-free allocation, starting 785 * a new cluster. This prevents us from scattering swap pages 786 * all over the entire swap partition, so that we reduce 787 * overall disk seek times between swap pages. -- sct 788 * But we do now try to find an empty cluster. -Andrea 789 * And we let swap pages go all over an SSD partition. Hugh 790 */ 791 792 si->flags += SWP_SCANNING; 793 /* 794 * Use percpu scan base for SSD to reduce lock contention on 795 * cluster and swap cache. For HDD, sequential access is more 796 * important. 797 */ 798 if (si->flags & SWP_SOLIDSTATE) 799 scan_base = this_cpu_read(*si->cluster_next_cpu); 800 else 801 scan_base = si->cluster_next; 802 offset = scan_base; 803 804 /* SSD algorithm */ 805 if (si->cluster_info) { 806 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 807 goto scan; 808 } else if (unlikely(!si->cluster_nr--)) { 809 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 810 si->cluster_nr = SWAPFILE_CLUSTER - 1; 811 goto checks; 812 } 813 814 spin_unlock(&si->lock); 815 816 /* 817 * If seek is expensive, start searching for new cluster from 818 * start of partition, to minimize the span of allocated swap. 819 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 820 * case, just handled by scan_swap_map_try_ssd_cluster() above. 821 */ 822 scan_base = offset = si->lowest_bit; 823 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 824 825 /* Locate the first empty (unaligned) cluster */ 826 for (; last_in_cluster <= si->highest_bit; offset++) { 827 if (si->swap_map[offset]) 828 last_in_cluster = offset + SWAPFILE_CLUSTER; 829 else if (offset == last_in_cluster) { 830 spin_lock(&si->lock); 831 offset -= SWAPFILE_CLUSTER - 1; 832 si->cluster_next = offset; 833 si->cluster_nr = SWAPFILE_CLUSTER - 1; 834 goto checks; 835 } 836 if (unlikely(--latency_ration < 0)) { 837 cond_resched(); 838 latency_ration = LATENCY_LIMIT; 839 } 840 } 841 842 offset = scan_base; 843 spin_lock(&si->lock); 844 si->cluster_nr = SWAPFILE_CLUSTER - 1; 845 } 846 847 checks: 848 if (si->cluster_info) { 849 while (scan_swap_map_ssd_cluster_conflict(si, offset)) { 850 /* take a break if we already got some slots */ 851 if (n_ret) 852 goto done; 853 if (!scan_swap_map_try_ssd_cluster(si, &offset, 854 &scan_base)) 855 goto scan; 856 } 857 } 858 if (!(si->flags & SWP_WRITEOK)) 859 goto no_page; 860 if (!si->highest_bit) 861 goto no_page; 862 if (offset > si->highest_bit) 863 scan_base = offset = si->lowest_bit; 864 865 ci = lock_cluster(si, offset); 866 /* reuse swap entry of cache-only swap if not busy. */ 867 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 868 int swap_was_freed; 869 unlock_cluster(ci); 870 spin_unlock(&si->lock); 871 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 872 spin_lock(&si->lock); 873 /* entry was freed successfully, try to use this again */ 874 if (swap_was_freed) 875 goto checks; 876 goto scan; /* check next one */ 877 } 878 879 if (si->swap_map[offset]) { 880 unlock_cluster(ci); 881 if (!n_ret) 882 goto scan; 883 else 884 goto done; 885 } 886 WRITE_ONCE(si->swap_map[offset], usage); 887 inc_cluster_info_page(si, si->cluster_info, offset); 888 unlock_cluster(ci); 889 890 swap_range_alloc(si, offset, 1); 891 slots[n_ret++] = swp_entry(si->type, offset); 892 893 /* got enough slots or reach max slots? */ 894 if ((n_ret == nr) || (offset >= si->highest_bit)) 895 goto done; 896 897 /* search for next available slot */ 898 899 /* time to take a break? */ 900 if (unlikely(--latency_ration < 0)) { 901 if (n_ret) 902 goto done; 903 spin_unlock(&si->lock); 904 cond_resched(); 905 spin_lock(&si->lock); 906 latency_ration = LATENCY_LIMIT; 907 } 908 909 /* try to get more slots in cluster */ 910 if (si->cluster_info) { 911 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 912 goto checks; 913 } else if (si->cluster_nr && !si->swap_map[++offset]) { 914 /* non-ssd case, still more slots in cluster? */ 915 --si->cluster_nr; 916 goto checks; 917 } 918 919 /* 920 * Even if there's no free clusters available (fragmented), 921 * try to scan a little more quickly with lock held unless we 922 * have scanned too many slots already. 923 */ 924 if (!scanned_many) { 925 unsigned long scan_limit; 926 927 if (offset < scan_base) 928 scan_limit = scan_base; 929 else 930 scan_limit = si->highest_bit; 931 for (; offset <= scan_limit && --latency_ration > 0; 932 offset++) { 933 if (!si->swap_map[offset]) 934 goto checks; 935 } 936 } 937 938 done: 939 set_cluster_next(si, offset + 1); 940 si->flags -= SWP_SCANNING; 941 return n_ret; 942 943 scan: 944 spin_unlock(&si->lock); 945 while (++offset <= READ_ONCE(si->highest_bit)) { 946 if (data_race(!si->swap_map[offset])) { 947 spin_lock(&si->lock); 948 goto checks; 949 } 950 if (vm_swap_full() && 951 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 952 spin_lock(&si->lock); 953 goto checks; 954 } 955 if (unlikely(--latency_ration < 0)) { 956 cond_resched(); 957 latency_ration = LATENCY_LIMIT; 958 scanned_many = true; 959 } 960 } 961 offset = si->lowest_bit; 962 while (offset < scan_base) { 963 if (data_race(!si->swap_map[offset])) { 964 spin_lock(&si->lock); 965 goto checks; 966 } 967 if (vm_swap_full() && 968 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 969 spin_lock(&si->lock); 970 goto checks; 971 } 972 if (unlikely(--latency_ration < 0)) { 973 cond_resched(); 974 latency_ration = LATENCY_LIMIT; 975 scanned_many = true; 976 } 977 offset++; 978 } 979 spin_lock(&si->lock); 980 981 no_page: 982 si->flags -= SWP_SCANNING; 983 return n_ret; 984 } 985 986 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) 987 { 988 unsigned long idx; 989 struct swap_cluster_info *ci; 990 unsigned long offset; 991 992 /* 993 * Should not even be attempting cluster allocations when huge 994 * page swap is disabled. Warn and fail the allocation. 995 */ 996 if (!IS_ENABLED(CONFIG_THP_SWAP)) { 997 VM_WARN_ON_ONCE(1); 998 return 0; 999 } 1000 1001 if (cluster_list_empty(&si->free_clusters)) 1002 return 0; 1003 1004 idx = cluster_list_first(&si->free_clusters); 1005 offset = idx * SWAPFILE_CLUSTER; 1006 ci = lock_cluster(si, offset); 1007 alloc_cluster(si, idx); 1008 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); 1009 1010 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER); 1011 unlock_cluster(ci); 1012 swap_range_alloc(si, offset, SWAPFILE_CLUSTER); 1013 *slot = swp_entry(si->type, offset); 1014 1015 return 1; 1016 } 1017 1018 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) 1019 { 1020 unsigned long offset = idx * SWAPFILE_CLUSTER; 1021 struct swap_cluster_info *ci; 1022 1023 ci = lock_cluster(si, offset); 1024 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER); 1025 cluster_set_count_flag(ci, 0, 0); 1026 free_cluster(si, idx); 1027 unlock_cluster(ci); 1028 swap_range_free(si, offset, SWAPFILE_CLUSTER); 1029 } 1030 1031 static unsigned long scan_swap_map(struct swap_info_struct *si, 1032 unsigned char usage) 1033 { 1034 swp_entry_t entry; 1035 int n_ret; 1036 1037 n_ret = scan_swap_map_slots(si, usage, 1, &entry); 1038 1039 if (n_ret) 1040 return swp_offset(entry); 1041 else 1042 return 0; 1043 1044 } 1045 1046 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size) 1047 { 1048 unsigned long size = swap_entry_size(entry_size); 1049 struct swap_info_struct *si, *next; 1050 long avail_pgs; 1051 int n_ret = 0; 1052 int node; 1053 1054 /* Only single cluster request supported */ 1055 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER); 1056 1057 spin_lock(&swap_avail_lock); 1058 1059 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 1060 if (avail_pgs <= 0) { 1061 spin_unlock(&swap_avail_lock); 1062 goto noswap; 1063 } 1064 1065 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs); 1066 1067 atomic_long_sub(n_goal * size, &nr_swap_pages); 1068 1069 start_over: 1070 node = numa_node_id(); 1071 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1072 /* requeue si to after same-priority siblings */ 1073 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1074 spin_unlock(&swap_avail_lock); 1075 spin_lock(&si->lock); 1076 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 1077 spin_lock(&swap_avail_lock); 1078 if (plist_node_empty(&si->avail_lists[node])) { 1079 spin_unlock(&si->lock); 1080 goto nextsi; 1081 } 1082 WARN(!si->highest_bit, 1083 "swap_info %d in list but !highest_bit\n", 1084 si->type); 1085 WARN(!(si->flags & SWP_WRITEOK), 1086 "swap_info %d in list but !SWP_WRITEOK\n", 1087 si->type); 1088 __del_from_avail_list(si); 1089 spin_unlock(&si->lock); 1090 goto nextsi; 1091 } 1092 if (size == SWAPFILE_CLUSTER) { 1093 if (si->flags & SWP_BLKDEV) 1094 n_ret = swap_alloc_cluster(si, swp_entries); 1095 } else 1096 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 1097 n_goal, swp_entries); 1098 spin_unlock(&si->lock); 1099 if (n_ret || size == SWAPFILE_CLUSTER) 1100 goto check_out; 1101 pr_debug("scan_swap_map of si %d failed to find offset\n", 1102 si->type); 1103 1104 spin_lock(&swap_avail_lock); 1105 nextsi: 1106 /* 1107 * if we got here, it's likely that si was almost full before, 1108 * and since scan_swap_map() can drop the si->lock, multiple 1109 * callers probably all tried to get a page from the same si 1110 * and it filled up before we could get one; or, the si filled 1111 * up between us dropping swap_avail_lock and taking si->lock. 1112 * Since we dropped the swap_avail_lock, the swap_avail_head 1113 * list may have been modified; so if next is still in the 1114 * swap_avail_head list then try it, otherwise start over 1115 * if we have not gotten any slots. 1116 */ 1117 if (plist_node_empty(&next->avail_lists[node])) 1118 goto start_over; 1119 } 1120 1121 spin_unlock(&swap_avail_lock); 1122 1123 check_out: 1124 if (n_ret < n_goal) 1125 atomic_long_add((long)(n_goal - n_ret) * size, 1126 &nr_swap_pages); 1127 noswap: 1128 return n_ret; 1129 } 1130 1131 /* The only caller of this function is now suspend routine */ 1132 swp_entry_t get_swap_page_of_type(int type) 1133 { 1134 struct swap_info_struct *si = swap_type_to_swap_info(type); 1135 pgoff_t offset; 1136 1137 if (!si) 1138 goto fail; 1139 1140 spin_lock(&si->lock); 1141 if (si->flags & SWP_WRITEOK) { 1142 /* This is called for allocating swap entry, not cache */ 1143 offset = scan_swap_map(si, 1); 1144 if (offset) { 1145 atomic_long_dec(&nr_swap_pages); 1146 spin_unlock(&si->lock); 1147 return swp_entry(type, offset); 1148 } 1149 } 1150 spin_unlock(&si->lock); 1151 fail: 1152 return (swp_entry_t) {0}; 1153 } 1154 1155 static struct swap_info_struct *__swap_info_get(swp_entry_t entry) 1156 { 1157 struct swap_info_struct *p; 1158 unsigned long offset; 1159 1160 if (!entry.val) 1161 goto out; 1162 p = swp_swap_info(entry); 1163 if (!p) 1164 goto bad_nofile; 1165 if (data_race(!(p->flags & SWP_USED))) 1166 goto bad_device; 1167 offset = swp_offset(entry); 1168 if (offset >= p->max) 1169 goto bad_offset; 1170 return p; 1171 1172 bad_offset: 1173 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1174 goto out; 1175 bad_device: 1176 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); 1177 goto out; 1178 bad_nofile: 1179 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1180 out: 1181 return NULL; 1182 } 1183 1184 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1185 { 1186 struct swap_info_struct *p; 1187 1188 p = __swap_info_get(entry); 1189 if (!p) 1190 goto out; 1191 if (data_race(!p->swap_map[swp_offset(entry)])) 1192 goto bad_free; 1193 return p; 1194 1195 bad_free: 1196 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); 1197 out: 1198 return NULL; 1199 } 1200 1201 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 1202 { 1203 struct swap_info_struct *p; 1204 1205 p = _swap_info_get(entry); 1206 if (p) 1207 spin_lock(&p->lock); 1208 return p; 1209 } 1210 1211 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1212 struct swap_info_struct *q) 1213 { 1214 struct swap_info_struct *p; 1215 1216 p = _swap_info_get(entry); 1217 1218 if (p != q) { 1219 if (q != NULL) 1220 spin_unlock(&q->lock); 1221 if (p != NULL) 1222 spin_lock(&p->lock); 1223 } 1224 return p; 1225 } 1226 1227 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, 1228 unsigned long offset, 1229 unsigned char usage) 1230 { 1231 unsigned char count; 1232 unsigned char has_cache; 1233 1234 count = p->swap_map[offset]; 1235 1236 has_cache = count & SWAP_HAS_CACHE; 1237 count &= ~SWAP_HAS_CACHE; 1238 1239 if (usage == SWAP_HAS_CACHE) { 1240 VM_BUG_ON(!has_cache); 1241 has_cache = 0; 1242 } else if (count == SWAP_MAP_SHMEM) { 1243 /* 1244 * Or we could insist on shmem.c using a special 1245 * swap_shmem_free() and free_shmem_swap_and_cache()... 1246 */ 1247 count = 0; 1248 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1249 if (count == COUNT_CONTINUED) { 1250 if (swap_count_continued(p, offset, count)) 1251 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1252 else 1253 count = SWAP_MAP_MAX; 1254 } else 1255 count--; 1256 } 1257 1258 usage = count | has_cache; 1259 if (usage) 1260 WRITE_ONCE(p->swap_map[offset], usage); 1261 else 1262 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE); 1263 1264 return usage; 1265 } 1266 1267 /* 1268 * Check whether swap entry is valid in the swap device. If so, 1269 * return pointer to swap_info_struct, and keep the swap entry valid 1270 * via preventing the swap device from being swapoff, until 1271 * put_swap_device() is called. Otherwise return NULL. 1272 * 1273 * The entirety of the RCU read critical section must come before the 1274 * return from or after the call to synchronize_rcu() in 1275 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is 1276 * true, the si->map, si->cluster_info, etc. must be valid in the 1277 * critical section. 1278 * 1279 * Notice that swapoff or swapoff+swapon can still happen before the 1280 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock() 1281 * in put_swap_device() if there isn't any other way to prevent 1282 * swapoff, such as page lock, page table lock, etc. The caller must 1283 * be prepared for that. For example, the following situation is 1284 * possible. 1285 * 1286 * CPU1 CPU2 1287 * do_swap_page() 1288 * ... swapoff+swapon 1289 * __read_swap_cache_async() 1290 * swapcache_prepare() 1291 * __swap_duplicate() 1292 * // check swap_map 1293 * // verify PTE not changed 1294 * 1295 * In __swap_duplicate(), the swap_map need to be checked before 1296 * changing partly because the specified swap entry may be for another 1297 * swap device which has been swapoff. And in do_swap_page(), after 1298 * the page is read from the swap device, the PTE is verified not 1299 * changed with the page table locked to check whether the swap device 1300 * has been swapoff or swapoff+swapon. 1301 */ 1302 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1303 { 1304 struct swap_info_struct *si; 1305 unsigned long offset; 1306 1307 if (!entry.val) 1308 goto out; 1309 si = swp_swap_info(entry); 1310 if (!si) 1311 goto bad_nofile; 1312 1313 rcu_read_lock(); 1314 if (data_race(!(si->flags & SWP_VALID))) 1315 goto unlock_out; 1316 offset = swp_offset(entry); 1317 if (offset >= si->max) 1318 goto unlock_out; 1319 1320 return si; 1321 bad_nofile: 1322 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1323 out: 1324 return NULL; 1325 unlock_out: 1326 rcu_read_unlock(); 1327 return NULL; 1328 } 1329 1330 static unsigned char __swap_entry_free(struct swap_info_struct *p, 1331 swp_entry_t entry) 1332 { 1333 struct swap_cluster_info *ci; 1334 unsigned long offset = swp_offset(entry); 1335 unsigned char usage; 1336 1337 ci = lock_cluster_or_swap_info(p, offset); 1338 usage = __swap_entry_free_locked(p, offset, 1); 1339 unlock_cluster_or_swap_info(p, ci); 1340 if (!usage) 1341 free_swap_slot(entry); 1342 1343 return usage; 1344 } 1345 1346 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 1347 { 1348 struct swap_cluster_info *ci; 1349 unsigned long offset = swp_offset(entry); 1350 unsigned char count; 1351 1352 ci = lock_cluster(p, offset); 1353 count = p->swap_map[offset]; 1354 VM_BUG_ON(count != SWAP_HAS_CACHE); 1355 p->swap_map[offset] = 0; 1356 dec_cluster_info_page(p, p->cluster_info, offset); 1357 unlock_cluster(ci); 1358 1359 mem_cgroup_uncharge_swap(entry, 1); 1360 swap_range_free(p, offset, 1); 1361 } 1362 1363 /* 1364 * Caller has made sure that the swap device corresponding to entry 1365 * is still around or has not been recycled. 1366 */ 1367 void swap_free(swp_entry_t entry) 1368 { 1369 struct swap_info_struct *p; 1370 1371 p = _swap_info_get(entry); 1372 if (p) 1373 __swap_entry_free(p, entry); 1374 } 1375 1376 /* 1377 * Called after dropping swapcache to decrease refcnt to swap entries. 1378 */ 1379 void put_swap_page(struct page *page, swp_entry_t entry) 1380 { 1381 unsigned long offset = swp_offset(entry); 1382 unsigned long idx = offset / SWAPFILE_CLUSTER; 1383 struct swap_cluster_info *ci; 1384 struct swap_info_struct *si; 1385 unsigned char *map; 1386 unsigned int i, free_entries = 0; 1387 unsigned char val; 1388 int size = swap_entry_size(thp_nr_pages(page)); 1389 1390 si = _swap_info_get(entry); 1391 if (!si) 1392 return; 1393 1394 ci = lock_cluster_or_swap_info(si, offset); 1395 if (size == SWAPFILE_CLUSTER) { 1396 VM_BUG_ON(!cluster_is_huge(ci)); 1397 map = si->swap_map + offset; 1398 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1399 val = map[i]; 1400 VM_BUG_ON(!(val & SWAP_HAS_CACHE)); 1401 if (val == SWAP_HAS_CACHE) 1402 free_entries++; 1403 } 1404 cluster_clear_huge(ci); 1405 if (free_entries == SWAPFILE_CLUSTER) { 1406 unlock_cluster_or_swap_info(si, ci); 1407 spin_lock(&si->lock); 1408 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); 1409 swap_free_cluster(si, idx); 1410 spin_unlock(&si->lock); 1411 return; 1412 } 1413 } 1414 for (i = 0; i < size; i++, entry.val++) { 1415 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { 1416 unlock_cluster_or_swap_info(si, ci); 1417 free_swap_slot(entry); 1418 if (i == size - 1) 1419 return; 1420 lock_cluster_or_swap_info(si, offset); 1421 } 1422 } 1423 unlock_cluster_or_swap_info(si, ci); 1424 } 1425 1426 #ifdef CONFIG_THP_SWAP 1427 int split_swap_cluster(swp_entry_t entry) 1428 { 1429 struct swap_info_struct *si; 1430 struct swap_cluster_info *ci; 1431 unsigned long offset = swp_offset(entry); 1432 1433 si = _swap_info_get(entry); 1434 if (!si) 1435 return -EBUSY; 1436 ci = lock_cluster(si, offset); 1437 cluster_clear_huge(ci); 1438 unlock_cluster(ci); 1439 return 0; 1440 } 1441 #endif 1442 1443 static int swp_entry_cmp(const void *ent1, const void *ent2) 1444 { 1445 const swp_entry_t *e1 = ent1, *e2 = ent2; 1446 1447 return (int)swp_type(*e1) - (int)swp_type(*e2); 1448 } 1449 1450 void swapcache_free_entries(swp_entry_t *entries, int n) 1451 { 1452 struct swap_info_struct *p, *prev; 1453 int i; 1454 1455 if (n <= 0) 1456 return; 1457 1458 prev = NULL; 1459 p = NULL; 1460 1461 /* 1462 * Sort swap entries by swap device, so each lock is only taken once. 1463 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1464 * so low that it isn't necessary to optimize further. 1465 */ 1466 if (nr_swapfiles > 1) 1467 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1468 for (i = 0; i < n; ++i) { 1469 p = swap_info_get_cont(entries[i], prev); 1470 if (p) 1471 swap_entry_free(p, entries[i]); 1472 prev = p; 1473 } 1474 if (p) 1475 spin_unlock(&p->lock); 1476 } 1477 1478 /* 1479 * How many references to page are currently swapped out? 1480 * This does not give an exact answer when swap count is continued, 1481 * but does include the high COUNT_CONTINUED flag to allow for that. 1482 */ 1483 int page_swapcount(struct page *page) 1484 { 1485 int count = 0; 1486 struct swap_info_struct *p; 1487 struct swap_cluster_info *ci; 1488 swp_entry_t entry; 1489 unsigned long offset; 1490 1491 entry.val = page_private(page); 1492 p = _swap_info_get(entry); 1493 if (p) { 1494 offset = swp_offset(entry); 1495 ci = lock_cluster_or_swap_info(p, offset); 1496 count = swap_count(p->swap_map[offset]); 1497 unlock_cluster_or_swap_info(p, ci); 1498 } 1499 return count; 1500 } 1501 1502 int __swap_count(swp_entry_t entry) 1503 { 1504 struct swap_info_struct *si; 1505 pgoff_t offset = swp_offset(entry); 1506 int count = 0; 1507 1508 si = get_swap_device(entry); 1509 if (si) { 1510 count = swap_count(si->swap_map[offset]); 1511 put_swap_device(si); 1512 } 1513 return count; 1514 } 1515 1516 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1517 { 1518 int count = 0; 1519 pgoff_t offset = swp_offset(entry); 1520 struct swap_cluster_info *ci; 1521 1522 ci = lock_cluster_or_swap_info(si, offset); 1523 count = swap_count(si->swap_map[offset]); 1524 unlock_cluster_or_swap_info(si, ci); 1525 return count; 1526 } 1527 1528 /* 1529 * How many references to @entry are currently swapped out? 1530 * This does not give an exact answer when swap count is continued, 1531 * but does include the high COUNT_CONTINUED flag to allow for that. 1532 */ 1533 int __swp_swapcount(swp_entry_t entry) 1534 { 1535 int count = 0; 1536 struct swap_info_struct *si; 1537 1538 si = get_swap_device(entry); 1539 if (si) { 1540 count = swap_swapcount(si, entry); 1541 put_swap_device(si); 1542 } 1543 return count; 1544 } 1545 1546 /* 1547 * How many references to @entry are currently swapped out? 1548 * This considers COUNT_CONTINUED so it returns exact answer. 1549 */ 1550 int swp_swapcount(swp_entry_t entry) 1551 { 1552 int count, tmp_count, n; 1553 struct swap_info_struct *p; 1554 struct swap_cluster_info *ci; 1555 struct page *page; 1556 pgoff_t offset; 1557 unsigned char *map; 1558 1559 p = _swap_info_get(entry); 1560 if (!p) 1561 return 0; 1562 1563 offset = swp_offset(entry); 1564 1565 ci = lock_cluster_or_swap_info(p, offset); 1566 1567 count = swap_count(p->swap_map[offset]); 1568 if (!(count & COUNT_CONTINUED)) 1569 goto out; 1570 1571 count &= ~COUNT_CONTINUED; 1572 n = SWAP_MAP_MAX + 1; 1573 1574 page = vmalloc_to_page(p->swap_map + offset); 1575 offset &= ~PAGE_MASK; 1576 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1577 1578 do { 1579 page = list_next_entry(page, lru); 1580 map = kmap_atomic(page); 1581 tmp_count = map[offset]; 1582 kunmap_atomic(map); 1583 1584 count += (tmp_count & ~COUNT_CONTINUED) * n; 1585 n *= (SWAP_CONT_MAX + 1); 1586 } while (tmp_count & COUNT_CONTINUED); 1587 out: 1588 unlock_cluster_or_swap_info(p, ci); 1589 return count; 1590 } 1591 1592 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1593 swp_entry_t entry) 1594 { 1595 struct swap_cluster_info *ci; 1596 unsigned char *map = si->swap_map; 1597 unsigned long roffset = swp_offset(entry); 1598 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); 1599 int i; 1600 bool ret = false; 1601 1602 ci = lock_cluster_or_swap_info(si, offset); 1603 if (!ci || !cluster_is_huge(ci)) { 1604 if (swap_count(map[roffset])) 1605 ret = true; 1606 goto unlock_out; 1607 } 1608 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1609 if (swap_count(map[offset + i])) { 1610 ret = true; 1611 break; 1612 } 1613 } 1614 unlock_out: 1615 unlock_cluster_or_swap_info(si, ci); 1616 return ret; 1617 } 1618 1619 static bool page_swapped(struct page *page) 1620 { 1621 swp_entry_t entry; 1622 struct swap_info_struct *si; 1623 1624 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) 1625 return page_swapcount(page) != 0; 1626 1627 page = compound_head(page); 1628 entry.val = page_private(page); 1629 si = _swap_info_get(entry); 1630 if (si) 1631 return swap_page_trans_huge_swapped(si, entry); 1632 return false; 1633 } 1634 1635 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount, 1636 int *total_swapcount) 1637 { 1638 int i, map_swapcount, _total_mapcount, _total_swapcount; 1639 unsigned long offset = 0; 1640 struct swap_info_struct *si; 1641 struct swap_cluster_info *ci = NULL; 1642 unsigned char *map = NULL; 1643 int mapcount, swapcount = 0; 1644 1645 /* hugetlbfs shouldn't call it */ 1646 VM_BUG_ON_PAGE(PageHuge(page), page); 1647 1648 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) { 1649 mapcount = page_trans_huge_mapcount(page, total_mapcount); 1650 if (PageSwapCache(page)) 1651 swapcount = page_swapcount(page); 1652 if (total_swapcount) 1653 *total_swapcount = swapcount; 1654 return mapcount + swapcount; 1655 } 1656 1657 page = compound_head(page); 1658 1659 _total_mapcount = _total_swapcount = map_swapcount = 0; 1660 if (PageSwapCache(page)) { 1661 swp_entry_t entry; 1662 1663 entry.val = page_private(page); 1664 si = _swap_info_get(entry); 1665 if (si) { 1666 map = si->swap_map; 1667 offset = swp_offset(entry); 1668 } 1669 } 1670 if (map) 1671 ci = lock_cluster(si, offset); 1672 for (i = 0; i < HPAGE_PMD_NR; i++) { 1673 mapcount = atomic_read(&page[i]._mapcount) + 1; 1674 _total_mapcount += mapcount; 1675 if (map) { 1676 swapcount = swap_count(map[offset + i]); 1677 _total_swapcount += swapcount; 1678 } 1679 map_swapcount = max(map_swapcount, mapcount + swapcount); 1680 } 1681 unlock_cluster(ci); 1682 if (PageDoubleMap(page)) { 1683 map_swapcount -= 1; 1684 _total_mapcount -= HPAGE_PMD_NR; 1685 } 1686 mapcount = compound_mapcount(page); 1687 map_swapcount += mapcount; 1688 _total_mapcount += mapcount; 1689 if (total_mapcount) 1690 *total_mapcount = _total_mapcount; 1691 if (total_swapcount) 1692 *total_swapcount = _total_swapcount; 1693 1694 return map_swapcount; 1695 } 1696 1697 /* 1698 * We can write to an anon page without COW if there are no other references 1699 * to it. And as a side-effect, free up its swap: because the old content 1700 * on disk will never be read, and seeking back there to write new content 1701 * later would only waste time away from clustering. 1702 * 1703 * NOTE: total_map_swapcount should not be relied upon by the caller if 1704 * reuse_swap_page() returns false, but it may be always overwritten 1705 * (see the other implementation for CONFIG_SWAP=n). 1706 */ 1707 bool reuse_swap_page(struct page *page, int *total_map_swapcount) 1708 { 1709 int count, total_mapcount, total_swapcount; 1710 1711 VM_BUG_ON_PAGE(!PageLocked(page), page); 1712 if (unlikely(PageKsm(page))) 1713 return false; 1714 count = page_trans_huge_map_swapcount(page, &total_mapcount, 1715 &total_swapcount); 1716 if (total_map_swapcount) 1717 *total_map_swapcount = total_mapcount + total_swapcount; 1718 if (count == 1 && PageSwapCache(page) && 1719 (likely(!PageTransCompound(page)) || 1720 /* The remaining swap count will be freed soon */ 1721 total_swapcount == page_swapcount(page))) { 1722 if (!PageWriteback(page)) { 1723 page = compound_head(page); 1724 delete_from_swap_cache(page); 1725 SetPageDirty(page); 1726 } else { 1727 swp_entry_t entry; 1728 struct swap_info_struct *p; 1729 1730 entry.val = page_private(page); 1731 p = swap_info_get(entry); 1732 if (p->flags & SWP_STABLE_WRITES) { 1733 spin_unlock(&p->lock); 1734 return false; 1735 } 1736 spin_unlock(&p->lock); 1737 } 1738 } 1739 1740 return count <= 1; 1741 } 1742 1743 /* 1744 * If swap is getting full, or if there are no more mappings of this page, 1745 * then try_to_free_swap is called to free its swap space. 1746 */ 1747 int try_to_free_swap(struct page *page) 1748 { 1749 VM_BUG_ON_PAGE(!PageLocked(page), page); 1750 1751 if (!PageSwapCache(page)) 1752 return 0; 1753 if (PageWriteback(page)) 1754 return 0; 1755 if (page_swapped(page)) 1756 return 0; 1757 1758 /* 1759 * Once hibernation has begun to create its image of memory, 1760 * there's a danger that one of the calls to try_to_free_swap() 1761 * - most probably a call from __try_to_reclaim_swap() while 1762 * hibernation is allocating its own swap pages for the image, 1763 * but conceivably even a call from memory reclaim - will free 1764 * the swap from a page which has already been recorded in the 1765 * image as a clean swapcache page, and then reuse its swap for 1766 * another page of the image. On waking from hibernation, the 1767 * original page might be freed under memory pressure, then 1768 * later read back in from swap, now with the wrong data. 1769 * 1770 * Hibernation suspends storage while it is writing the image 1771 * to disk so check that here. 1772 */ 1773 if (pm_suspended_storage()) 1774 return 0; 1775 1776 page = compound_head(page); 1777 delete_from_swap_cache(page); 1778 SetPageDirty(page); 1779 return 1; 1780 } 1781 1782 /* 1783 * Free the swap entry like above, but also try to 1784 * free the page cache entry if it is the last user. 1785 */ 1786 int free_swap_and_cache(swp_entry_t entry) 1787 { 1788 struct swap_info_struct *p; 1789 unsigned char count; 1790 1791 if (non_swap_entry(entry)) 1792 return 1; 1793 1794 p = _swap_info_get(entry); 1795 if (p) { 1796 count = __swap_entry_free(p, entry); 1797 if (count == SWAP_HAS_CACHE && 1798 !swap_page_trans_huge_swapped(p, entry)) 1799 __try_to_reclaim_swap(p, swp_offset(entry), 1800 TTRS_UNMAPPED | TTRS_FULL); 1801 } 1802 return p != NULL; 1803 } 1804 1805 #ifdef CONFIG_HIBERNATION 1806 /* 1807 * Find the swap type that corresponds to given device (if any). 1808 * 1809 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1810 * from 0, in which the swap header is expected to be located. 1811 * 1812 * This is needed for the suspend to disk (aka swsusp). 1813 */ 1814 int swap_type_of(dev_t device, sector_t offset) 1815 { 1816 int type; 1817 1818 if (!device) 1819 return -1; 1820 1821 spin_lock(&swap_lock); 1822 for (type = 0; type < nr_swapfiles; type++) { 1823 struct swap_info_struct *sis = swap_info[type]; 1824 1825 if (!(sis->flags & SWP_WRITEOK)) 1826 continue; 1827 1828 if (device == sis->bdev->bd_dev) { 1829 struct swap_extent *se = first_se(sis); 1830 1831 if (se->start_block == offset) { 1832 spin_unlock(&swap_lock); 1833 return type; 1834 } 1835 } 1836 } 1837 spin_unlock(&swap_lock); 1838 return -ENODEV; 1839 } 1840 1841 int find_first_swap(dev_t *device) 1842 { 1843 int type; 1844 1845 spin_lock(&swap_lock); 1846 for (type = 0; type < nr_swapfiles; type++) { 1847 struct swap_info_struct *sis = swap_info[type]; 1848 1849 if (!(sis->flags & SWP_WRITEOK)) 1850 continue; 1851 *device = sis->bdev->bd_dev; 1852 spin_unlock(&swap_lock); 1853 return type; 1854 } 1855 spin_unlock(&swap_lock); 1856 return -ENODEV; 1857 } 1858 1859 /* 1860 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1861 * corresponding to given index in swap_info (swap type). 1862 */ 1863 sector_t swapdev_block(int type, pgoff_t offset) 1864 { 1865 struct swap_info_struct *si = swap_type_to_swap_info(type); 1866 struct swap_extent *se; 1867 1868 if (!si || !(si->flags & SWP_WRITEOK)) 1869 return 0; 1870 se = offset_to_swap_extent(si, offset); 1871 return se->start_block + (offset - se->start_page); 1872 } 1873 1874 /* 1875 * Return either the total number of swap pages of given type, or the number 1876 * of free pages of that type (depending on @free) 1877 * 1878 * This is needed for software suspend 1879 */ 1880 unsigned int count_swap_pages(int type, int free) 1881 { 1882 unsigned int n = 0; 1883 1884 spin_lock(&swap_lock); 1885 if ((unsigned int)type < nr_swapfiles) { 1886 struct swap_info_struct *sis = swap_info[type]; 1887 1888 spin_lock(&sis->lock); 1889 if (sis->flags & SWP_WRITEOK) { 1890 n = sis->pages; 1891 if (free) 1892 n -= sis->inuse_pages; 1893 } 1894 spin_unlock(&sis->lock); 1895 } 1896 spin_unlock(&swap_lock); 1897 return n; 1898 } 1899 #endif /* CONFIG_HIBERNATION */ 1900 1901 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1902 { 1903 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte); 1904 } 1905 1906 /* 1907 * No need to decide whether this PTE shares the swap entry with others, 1908 * just let do_wp_page work it out if a write is requested later - to 1909 * force COW, vm_page_prot omits write permission from any private vma. 1910 */ 1911 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1912 unsigned long addr, swp_entry_t entry, struct page *page) 1913 { 1914 struct page *swapcache; 1915 spinlock_t *ptl; 1916 pte_t *pte; 1917 int ret = 1; 1918 1919 swapcache = page; 1920 page = ksm_might_need_to_copy(page, vma, addr); 1921 if (unlikely(!page)) 1922 return -ENOMEM; 1923 1924 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1925 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { 1926 ret = 0; 1927 goto out; 1928 } 1929 1930 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1931 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1932 get_page(page); 1933 set_pte_at(vma->vm_mm, addr, pte, 1934 pte_mkold(mk_pte(page, vma->vm_page_prot))); 1935 if (page == swapcache) { 1936 page_add_anon_rmap(page, vma, addr, false); 1937 } else { /* ksm created a completely new copy */ 1938 page_add_new_anon_rmap(page, vma, addr, false); 1939 lru_cache_add_inactive_or_unevictable(page, vma); 1940 } 1941 swap_free(entry); 1942 out: 1943 pte_unmap_unlock(pte, ptl); 1944 if (page != swapcache) { 1945 unlock_page(page); 1946 put_page(page); 1947 } 1948 return ret; 1949 } 1950 1951 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1952 unsigned long addr, unsigned long end, 1953 unsigned int type, bool frontswap, 1954 unsigned long *fs_pages_to_unuse) 1955 { 1956 struct page *page; 1957 swp_entry_t entry; 1958 pte_t *pte; 1959 struct swap_info_struct *si; 1960 unsigned long offset; 1961 int ret = 0; 1962 volatile unsigned char *swap_map; 1963 1964 si = swap_info[type]; 1965 pte = pte_offset_map(pmd, addr); 1966 do { 1967 if (!is_swap_pte(*pte)) 1968 continue; 1969 1970 entry = pte_to_swp_entry(*pte); 1971 if (swp_type(entry) != type) 1972 continue; 1973 1974 offset = swp_offset(entry); 1975 if (frontswap && !frontswap_test(si, offset)) 1976 continue; 1977 1978 pte_unmap(pte); 1979 swap_map = &si->swap_map[offset]; 1980 page = lookup_swap_cache(entry, vma, addr); 1981 if (!page) { 1982 struct vm_fault vmf = { 1983 .vma = vma, 1984 .address = addr, 1985 .pmd = pmd, 1986 }; 1987 1988 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 1989 &vmf); 1990 } 1991 if (!page) { 1992 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD) 1993 goto try_next; 1994 return -ENOMEM; 1995 } 1996 1997 lock_page(page); 1998 wait_on_page_writeback(page); 1999 ret = unuse_pte(vma, pmd, addr, entry, page); 2000 if (ret < 0) { 2001 unlock_page(page); 2002 put_page(page); 2003 goto out; 2004 } 2005 2006 try_to_free_swap(page); 2007 unlock_page(page); 2008 put_page(page); 2009 2010 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) { 2011 ret = FRONTSWAP_PAGES_UNUSED; 2012 goto out; 2013 } 2014 try_next: 2015 pte = pte_offset_map(pmd, addr); 2016 } while (pte++, addr += PAGE_SIZE, addr != end); 2017 pte_unmap(pte - 1); 2018 2019 ret = 0; 2020 out: 2021 return ret; 2022 } 2023 2024 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 2025 unsigned long addr, unsigned long end, 2026 unsigned int type, bool frontswap, 2027 unsigned long *fs_pages_to_unuse) 2028 { 2029 pmd_t *pmd; 2030 unsigned long next; 2031 int ret; 2032 2033 pmd = pmd_offset(pud, addr); 2034 do { 2035 cond_resched(); 2036 next = pmd_addr_end(addr, end); 2037 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 2038 continue; 2039 ret = unuse_pte_range(vma, pmd, addr, next, type, 2040 frontswap, fs_pages_to_unuse); 2041 if (ret) 2042 return ret; 2043 } while (pmd++, addr = next, addr != end); 2044 return 0; 2045 } 2046 2047 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 2048 unsigned long addr, unsigned long end, 2049 unsigned int type, bool frontswap, 2050 unsigned long *fs_pages_to_unuse) 2051 { 2052 pud_t *pud; 2053 unsigned long next; 2054 int ret; 2055 2056 pud = pud_offset(p4d, addr); 2057 do { 2058 next = pud_addr_end(addr, end); 2059 if (pud_none_or_clear_bad(pud)) 2060 continue; 2061 ret = unuse_pmd_range(vma, pud, addr, next, type, 2062 frontswap, fs_pages_to_unuse); 2063 if (ret) 2064 return ret; 2065 } while (pud++, addr = next, addr != end); 2066 return 0; 2067 } 2068 2069 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 2070 unsigned long addr, unsigned long end, 2071 unsigned int type, bool frontswap, 2072 unsigned long *fs_pages_to_unuse) 2073 { 2074 p4d_t *p4d; 2075 unsigned long next; 2076 int ret; 2077 2078 p4d = p4d_offset(pgd, addr); 2079 do { 2080 next = p4d_addr_end(addr, end); 2081 if (p4d_none_or_clear_bad(p4d)) 2082 continue; 2083 ret = unuse_pud_range(vma, p4d, addr, next, type, 2084 frontswap, fs_pages_to_unuse); 2085 if (ret) 2086 return ret; 2087 } while (p4d++, addr = next, addr != end); 2088 return 0; 2089 } 2090 2091 static int unuse_vma(struct vm_area_struct *vma, unsigned int type, 2092 bool frontswap, unsigned long *fs_pages_to_unuse) 2093 { 2094 pgd_t *pgd; 2095 unsigned long addr, end, next; 2096 int ret; 2097 2098 addr = vma->vm_start; 2099 end = vma->vm_end; 2100 2101 pgd = pgd_offset(vma->vm_mm, addr); 2102 do { 2103 next = pgd_addr_end(addr, end); 2104 if (pgd_none_or_clear_bad(pgd)) 2105 continue; 2106 ret = unuse_p4d_range(vma, pgd, addr, next, type, 2107 frontswap, fs_pages_to_unuse); 2108 if (ret) 2109 return ret; 2110 } while (pgd++, addr = next, addr != end); 2111 return 0; 2112 } 2113 2114 static int unuse_mm(struct mm_struct *mm, unsigned int type, 2115 bool frontswap, unsigned long *fs_pages_to_unuse) 2116 { 2117 struct vm_area_struct *vma; 2118 int ret = 0; 2119 2120 mmap_read_lock(mm); 2121 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2122 if (vma->anon_vma) { 2123 ret = unuse_vma(vma, type, frontswap, 2124 fs_pages_to_unuse); 2125 if (ret) 2126 break; 2127 } 2128 cond_resched(); 2129 } 2130 mmap_read_unlock(mm); 2131 return ret; 2132 } 2133 2134 /* 2135 * Scan swap_map (or frontswap_map if frontswap parameter is true) 2136 * from current position to next entry still in use. Return 0 2137 * if there are no inuse entries after prev till end of the map. 2138 */ 2139 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 2140 unsigned int prev, bool frontswap) 2141 { 2142 unsigned int i; 2143 unsigned char count; 2144 2145 /* 2146 * No need for swap_lock here: we're just looking 2147 * for whether an entry is in use, not modifying it; false 2148 * hits are okay, and sys_swapoff() has already prevented new 2149 * allocations from this area (while holding swap_lock). 2150 */ 2151 for (i = prev + 1; i < si->max; i++) { 2152 count = READ_ONCE(si->swap_map[i]); 2153 if (count && swap_count(count) != SWAP_MAP_BAD) 2154 if (!frontswap || frontswap_test(si, i)) 2155 break; 2156 if ((i % LATENCY_LIMIT) == 0) 2157 cond_resched(); 2158 } 2159 2160 if (i == si->max) 2161 i = 0; 2162 2163 return i; 2164 } 2165 2166 /* 2167 * If the boolean frontswap is true, only unuse pages_to_unuse pages; 2168 * pages_to_unuse==0 means all pages; ignored if frontswap is false 2169 */ 2170 int try_to_unuse(unsigned int type, bool frontswap, 2171 unsigned long pages_to_unuse) 2172 { 2173 struct mm_struct *prev_mm; 2174 struct mm_struct *mm; 2175 struct list_head *p; 2176 int retval = 0; 2177 struct swap_info_struct *si = swap_info[type]; 2178 struct page *page; 2179 swp_entry_t entry; 2180 unsigned int i; 2181 2182 if (!READ_ONCE(si->inuse_pages)) 2183 return 0; 2184 2185 if (!frontswap) 2186 pages_to_unuse = 0; 2187 2188 retry: 2189 retval = shmem_unuse(type, frontswap, &pages_to_unuse); 2190 if (retval) 2191 goto out; 2192 2193 prev_mm = &init_mm; 2194 mmget(prev_mm); 2195 2196 spin_lock(&mmlist_lock); 2197 p = &init_mm.mmlist; 2198 while (READ_ONCE(si->inuse_pages) && 2199 !signal_pending(current) && 2200 (p = p->next) != &init_mm.mmlist) { 2201 2202 mm = list_entry(p, struct mm_struct, mmlist); 2203 if (!mmget_not_zero(mm)) 2204 continue; 2205 spin_unlock(&mmlist_lock); 2206 mmput(prev_mm); 2207 prev_mm = mm; 2208 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse); 2209 2210 if (retval) { 2211 mmput(prev_mm); 2212 goto out; 2213 } 2214 2215 /* 2216 * Make sure that we aren't completely killing 2217 * interactive performance. 2218 */ 2219 cond_resched(); 2220 spin_lock(&mmlist_lock); 2221 } 2222 spin_unlock(&mmlist_lock); 2223 2224 mmput(prev_mm); 2225 2226 i = 0; 2227 while (READ_ONCE(si->inuse_pages) && 2228 !signal_pending(current) && 2229 (i = find_next_to_unuse(si, i, frontswap)) != 0) { 2230 2231 entry = swp_entry(type, i); 2232 page = find_get_page(swap_address_space(entry), i); 2233 if (!page) 2234 continue; 2235 2236 /* 2237 * It is conceivable that a racing task removed this page from 2238 * swap cache just before we acquired the page lock. The page 2239 * might even be back in swap cache on another swap area. But 2240 * that is okay, try_to_free_swap() only removes stale pages. 2241 */ 2242 lock_page(page); 2243 wait_on_page_writeback(page); 2244 try_to_free_swap(page); 2245 unlock_page(page); 2246 put_page(page); 2247 2248 /* 2249 * For frontswap, we just need to unuse pages_to_unuse, if 2250 * it was specified. Need not check frontswap again here as 2251 * we already zeroed out pages_to_unuse if not frontswap. 2252 */ 2253 if (pages_to_unuse && --pages_to_unuse == 0) 2254 goto out; 2255 } 2256 2257 /* 2258 * Lets check again to see if there are still swap entries in the map. 2259 * If yes, we would need to do retry the unuse logic again. 2260 * Under global memory pressure, swap entries can be reinserted back 2261 * into process space after the mmlist loop above passes over them. 2262 * 2263 * Limit the number of retries? No: when mmget_not_zero() above fails, 2264 * that mm is likely to be freeing swap from exit_mmap(), which proceeds 2265 * at its own independent pace; and even shmem_writepage() could have 2266 * been preempted after get_swap_page(), temporarily hiding that swap. 2267 * It's easy and robust (though cpu-intensive) just to keep retrying. 2268 */ 2269 if (READ_ONCE(si->inuse_pages)) { 2270 if (!signal_pending(current)) 2271 goto retry; 2272 retval = -EINTR; 2273 } 2274 out: 2275 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval; 2276 } 2277 2278 /* 2279 * After a successful try_to_unuse, if no swap is now in use, we know 2280 * we can empty the mmlist. swap_lock must be held on entry and exit. 2281 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2282 * added to the mmlist just after page_duplicate - before would be racy. 2283 */ 2284 static void drain_mmlist(void) 2285 { 2286 struct list_head *p, *next; 2287 unsigned int type; 2288 2289 for (type = 0; type < nr_swapfiles; type++) 2290 if (swap_info[type]->inuse_pages) 2291 return; 2292 spin_lock(&mmlist_lock); 2293 list_for_each_safe(p, next, &init_mm.mmlist) 2294 list_del_init(p); 2295 spin_unlock(&mmlist_lock); 2296 } 2297 2298 /* 2299 * Free all of a swapdev's extent information 2300 */ 2301 static void destroy_swap_extents(struct swap_info_struct *sis) 2302 { 2303 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2304 struct rb_node *rb = sis->swap_extent_root.rb_node; 2305 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2306 2307 rb_erase(rb, &sis->swap_extent_root); 2308 kfree(se); 2309 } 2310 2311 if (sis->flags & SWP_ACTIVATED) { 2312 struct file *swap_file = sis->swap_file; 2313 struct address_space *mapping = swap_file->f_mapping; 2314 2315 sis->flags &= ~SWP_ACTIVATED; 2316 if (mapping->a_ops->swap_deactivate) 2317 mapping->a_ops->swap_deactivate(swap_file); 2318 } 2319 } 2320 2321 /* 2322 * Add a block range (and the corresponding page range) into this swapdev's 2323 * extent tree. 2324 * 2325 * This function rather assumes that it is called in ascending page order. 2326 */ 2327 int 2328 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2329 unsigned long nr_pages, sector_t start_block) 2330 { 2331 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2332 struct swap_extent *se; 2333 struct swap_extent *new_se; 2334 2335 /* 2336 * place the new node at the right most since the 2337 * function is called in ascending page order. 2338 */ 2339 while (*link) { 2340 parent = *link; 2341 link = &parent->rb_right; 2342 } 2343 2344 if (parent) { 2345 se = rb_entry(parent, struct swap_extent, rb_node); 2346 BUG_ON(se->start_page + se->nr_pages != start_page); 2347 if (se->start_block + se->nr_pages == start_block) { 2348 /* Merge it */ 2349 se->nr_pages += nr_pages; 2350 return 0; 2351 } 2352 } 2353 2354 /* No merge, insert a new extent. */ 2355 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2356 if (new_se == NULL) 2357 return -ENOMEM; 2358 new_se->start_page = start_page; 2359 new_se->nr_pages = nr_pages; 2360 new_se->start_block = start_block; 2361 2362 rb_link_node(&new_se->rb_node, parent, link); 2363 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2364 return 1; 2365 } 2366 EXPORT_SYMBOL_GPL(add_swap_extent); 2367 2368 /* 2369 * A `swap extent' is a simple thing which maps a contiguous range of pages 2370 * onto a contiguous range of disk blocks. An ordered list of swap extents 2371 * is built at swapon time and is then used at swap_writepage/swap_readpage 2372 * time for locating where on disk a page belongs. 2373 * 2374 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2375 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2376 * swap files identically. 2377 * 2378 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2379 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2380 * swapfiles are handled *identically* after swapon time. 2381 * 2382 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2383 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 2384 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 2385 * requirements, they are simply tossed out - we will never use those blocks 2386 * for swapping. 2387 * 2388 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2389 * prevents users from writing to the swap device, which will corrupt memory. 2390 * 2391 * The amount of disk space which a single swap extent represents varies. 2392 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2393 * extents in the list. To avoid much list walking, we cache the previous 2394 * search location in `curr_swap_extent', and start new searches from there. 2395 * This is extremely effective. The average number of iterations in 2396 * map_swap_page() has been measured at about 0.3 per page. - akpm. 2397 */ 2398 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2399 { 2400 struct file *swap_file = sis->swap_file; 2401 struct address_space *mapping = swap_file->f_mapping; 2402 struct inode *inode = mapping->host; 2403 int ret; 2404 2405 if (S_ISBLK(inode->i_mode)) { 2406 ret = add_swap_extent(sis, 0, sis->max, 0); 2407 *span = sis->pages; 2408 return ret; 2409 } 2410 2411 if (mapping->a_ops->swap_activate) { 2412 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2413 if (ret >= 0) 2414 sis->flags |= SWP_ACTIVATED; 2415 if (!ret) { 2416 sis->flags |= SWP_FS_OPS; 2417 ret = add_swap_extent(sis, 0, sis->max, 0); 2418 *span = sis->pages; 2419 } 2420 return ret; 2421 } 2422 2423 return generic_swapfile_activate(sis, swap_file, span); 2424 } 2425 2426 static int swap_node(struct swap_info_struct *p) 2427 { 2428 struct block_device *bdev; 2429 2430 if (p->bdev) 2431 bdev = p->bdev; 2432 else 2433 bdev = p->swap_file->f_inode->i_sb->s_bdev; 2434 2435 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2436 } 2437 2438 static void setup_swap_info(struct swap_info_struct *p, int prio, 2439 unsigned char *swap_map, 2440 struct swap_cluster_info *cluster_info) 2441 { 2442 int i; 2443 2444 if (prio >= 0) 2445 p->prio = prio; 2446 else 2447 p->prio = --least_priority; 2448 /* 2449 * the plist prio is negated because plist ordering is 2450 * low-to-high, while swap ordering is high-to-low 2451 */ 2452 p->list.prio = -p->prio; 2453 for_each_node(i) { 2454 if (p->prio >= 0) 2455 p->avail_lists[i].prio = -p->prio; 2456 else { 2457 if (swap_node(p) == i) 2458 p->avail_lists[i].prio = 1; 2459 else 2460 p->avail_lists[i].prio = -p->prio; 2461 } 2462 } 2463 p->swap_map = swap_map; 2464 p->cluster_info = cluster_info; 2465 } 2466 2467 static void _enable_swap_info(struct swap_info_struct *p) 2468 { 2469 p->flags |= SWP_WRITEOK | SWP_VALID; 2470 atomic_long_add(p->pages, &nr_swap_pages); 2471 total_swap_pages += p->pages; 2472 2473 assert_spin_locked(&swap_lock); 2474 /* 2475 * both lists are plists, and thus priority ordered. 2476 * swap_active_head needs to be priority ordered for swapoff(), 2477 * which on removal of any swap_info_struct with an auto-assigned 2478 * (i.e. negative) priority increments the auto-assigned priority 2479 * of any lower-priority swap_info_structs. 2480 * swap_avail_head needs to be priority ordered for get_swap_page(), 2481 * which allocates swap pages from the highest available priority 2482 * swap_info_struct. 2483 */ 2484 plist_add(&p->list, &swap_active_head); 2485 add_to_avail_list(p); 2486 } 2487 2488 static void enable_swap_info(struct swap_info_struct *p, int prio, 2489 unsigned char *swap_map, 2490 struct swap_cluster_info *cluster_info, 2491 unsigned long *frontswap_map) 2492 { 2493 frontswap_init(p->type, frontswap_map); 2494 spin_lock(&swap_lock); 2495 spin_lock(&p->lock); 2496 setup_swap_info(p, prio, swap_map, cluster_info); 2497 spin_unlock(&p->lock); 2498 spin_unlock(&swap_lock); 2499 /* 2500 * Guarantee swap_map, cluster_info, etc. fields are valid 2501 * between get/put_swap_device() if SWP_VALID bit is set 2502 */ 2503 synchronize_rcu(); 2504 spin_lock(&swap_lock); 2505 spin_lock(&p->lock); 2506 _enable_swap_info(p); 2507 spin_unlock(&p->lock); 2508 spin_unlock(&swap_lock); 2509 } 2510 2511 static void reinsert_swap_info(struct swap_info_struct *p) 2512 { 2513 spin_lock(&swap_lock); 2514 spin_lock(&p->lock); 2515 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2516 _enable_swap_info(p); 2517 spin_unlock(&p->lock); 2518 spin_unlock(&swap_lock); 2519 } 2520 2521 bool has_usable_swap(void) 2522 { 2523 bool ret = true; 2524 2525 spin_lock(&swap_lock); 2526 if (plist_head_empty(&swap_active_head)) 2527 ret = false; 2528 spin_unlock(&swap_lock); 2529 return ret; 2530 } 2531 2532 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2533 { 2534 struct swap_info_struct *p = NULL; 2535 unsigned char *swap_map; 2536 struct swap_cluster_info *cluster_info; 2537 unsigned long *frontswap_map; 2538 struct file *swap_file, *victim; 2539 struct address_space *mapping; 2540 struct inode *inode; 2541 struct filename *pathname; 2542 int err, found = 0; 2543 unsigned int old_block_size; 2544 2545 if (!capable(CAP_SYS_ADMIN)) 2546 return -EPERM; 2547 2548 BUG_ON(!current->mm); 2549 2550 pathname = getname(specialfile); 2551 if (IS_ERR(pathname)) 2552 return PTR_ERR(pathname); 2553 2554 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2555 err = PTR_ERR(victim); 2556 if (IS_ERR(victim)) 2557 goto out; 2558 2559 mapping = victim->f_mapping; 2560 spin_lock(&swap_lock); 2561 plist_for_each_entry(p, &swap_active_head, list) { 2562 if (p->flags & SWP_WRITEOK) { 2563 if (p->swap_file->f_mapping == mapping) { 2564 found = 1; 2565 break; 2566 } 2567 } 2568 } 2569 if (!found) { 2570 err = -EINVAL; 2571 spin_unlock(&swap_lock); 2572 goto out_dput; 2573 } 2574 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2575 vm_unacct_memory(p->pages); 2576 else { 2577 err = -ENOMEM; 2578 spin_unlock(&swap_lock); 2579 goto out_dput; 2580 } 2581 del_from_avail_list(p); 2582 spin_lock(&p->lock); 2583 if (p->prio < 0) { 2584 struct swap_info_struct *si = p; 2585 int nid; 2586 2587 plist_for_each_entry_continue(si, &swap_active_head, list) { 2588 si->prio++; 2589 si->list.prio--; 2590 for_each_node(nid) { 2591 if (si->avail_lists[nid].prio != 1) 2592 si->avail_lists[nid].prio--; 2593 } 2594 } 2595 least_priority++; 2596 } 2597 plist_del(&p->list, &swap_active_head); 2598 atomic_long_sub(p->pages, &nr_swap_pages); 2599 total_swap_pages -= p->pages; 2600 p->flags &= ~SWP_WRITEOK; 2601 spin_unlock(&p->lock); 2602 spin_unlock(&swap_lock); 2603 2604 disable_swap_slots_cache_lock(); 2605 2606 set_current_oom_origin(); 2607 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */ 2608 clear_current_oom_origin(); 2609 2610 if (err) { 2611 /* re-insert swap space back into swap_list */ 2612 reinsert_swap_info(p); 2613 reenable_swap_slots_cache_unlock(); 2614 goto out_dput; 2615 } 2616 2617 reenable_swap_slots_cache_unlock(); 2618 2619 spin_lock(&swap_lock); 2620 spin_lock(&p->lock); 2621 p->flags &= ~SWP_VALID; /* mark swap device as invalid */ 2622 spin_unlock(&p->lock); 2623 spin_unlock(&swap_lock); 2624 /* 2625 * wait for swap operations protected by get/put_swap_device() 2626 * to complete 2627 */ 2628 synchronize_rcu(); 2629 2630 flush_work(&p->discard_work); 2631 2632 destroy_swap_extents(p); 2633 if (p->flags & SWP_CONTINUED) 2634 free_swap_count_continuations(p); 2635 2636 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev))) 2637 atomic_dec(&nr_rotate_swap); 2638 2639 mutex_lock(&swapon_mutex); 2640 spin_lock(&swap_lock); 2641 spin_lock(&p->lock); 2642 drain_mmlist(); 2643 2644 /* wait for anyone still in scan_swap_map */ 2645 p->highest_bit = 0; /* cuts scans short */ 2646 while (p->flags >= SWP_SCANNING) { 2647 spin_unlock(&p->lock); 2648 spin_unlock(&swap_lock); 2649 schedule_timeout_uninterruptible(1); 2650 spin_lock(&swap_lock); 2651 spin_lock(&p->lock); 2652 } 2653 2654 swap_file = p->swap_file; 2655 old_block_size = p->old_block_size; 2656 p->swap_file = NULL; 2657 p->max = 0; 2658 swap_map = p->swap_map; 2659 p->swap_map = NULL; 2660 cluster_info = p->cluster_info; 2661 p->cluster_info = NULL; 2662 frontswap_map = frontswap_map_get(p); 2663 spin_unlock(&p->lock); 2664 spin_unlock(&swap_lock); 2665 arch_swap_invalidate_area(p->type); 2666 frontswap_invalidate_area(p->type); 2667 frontswap_map_set(p, NULL); 2668 mutex_unlock(&swapon_mutex); 2669 free_percpu(p->percpu_cluster); 2670 p->percpu_cluster = NULL; 2671 free_percpu(p->cluster_next_cpu); 2672 p->cluster_next_cpu = NULL; 2673 vfree(swap_map); 2674 kvfree(cluster_info); 2675 kvfree(frontswap_map); 2676 /* Destroy swap account information */ 2677 swap_cgroup_swapoff(p->type); 2678 exit_swap_address_space(p->type); 2679 2680 inode = mapping->host; 2681 if (S_ISBLK(inode->i_mode)) { 2682 struct block_device *bdev = I_BDEV(inode); 2683 2684 set_blocksize(bdev, old_block_size); 2685 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2686 } 2687 2688 inode_lock(inode); 2689 inode->i_flags &= ~S_SWAPFILE; 2690 inode_unlock(inode); 2691 filp_close(swap_file, NULL); 2692 2693 /* 2694 * Clear the SWP_USED flag after all resources are freed so that swapon 2695 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2696 * not hold p->lock after we cleared its SWP_WRITEOK. 2697 */ 2698 spin_lock(&swap_lock); 2699 p->flags = 0; 2700 spin_unlock(&swap_lock); 2701 2702 err = 0; 2703 atomic_inc(&proc_poll_event); 2704 wake_up_interruptible(&proc_poll_wait); 2705 2706 out_dput: 2707 filp_close(victim, NULL); 2708 out: 2709 putname(pathname); 2710 return err; 2711 } 2712 2713 #ifdef CONFIG_PROC_FS 2714 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2715 { 2716 struct seq_file *seq = file->private_data; 2717 2718 poll_wait(file, &proc_poll_wait, wait); 2719 2720 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2721 seq->poll_event = atomic_read(&proc_poll_event); 2722 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2723 } 2724 2725 return EPOLLIN | EPOLLRDNORM; 2726 } 2727 2728 /* iterator */ 2729 static void *swap_start(struct seq_file *swap, loff_t *pos) 2730 { 2731 struct swap_info_struct *si; 2732 int type; 2733 loff_t l = *pos; 2734 2735 mutex_lock(&swapon_mutex); 2736 2737 if (!l) 2738 return SEQ_START_TOKEN; 2739 2740 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2741 if (!(si->flags & SWP_USED) || !si->swap_map) 2742 continue; 2743 if (!--l) 2744 return si; 2745 } 2746 2747 return NULL; 2748 } 2749 2750 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2751 { 2752 struct swap_info_struct *si = v; 2753 int type; 2754 2755 if (v == SEQ_START_TOKEN) 2756 type = 0; 2757 else 2758 type = si->type + 1; 2759 2760 ++(*pos); 2761 for (; (si = swap_type_to_swap_info(type)); type++) { 2762 if (!(si->flags & SWP_USED) || !si->swap_map) 2763 continue; 2764 return si; 2765 } 2766 2767 return NULL; 2768 } 2769 2770 static void swap_stop(struct seq_file *swap, void *v) 2771 { 2772 mutex_unlock(&swapon_mutex); 2773 } 2774 2775 static int swap_show(struct seq_file *swap, void *v) 2776 { 2777 struct swap_info_struct *si = v; 2778 struct file *file; 2779 int len; 2780 unsigned int bytes, inuse; 2781 2782 if (si == SEQ_START_TOKEN) { 2783 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 2784 return 0; 2785 } 2786 2787 bytes = si->pages << (PAGE_SHIFT - 10); 2788 inuse = si->inuse_pages << (PAGE_SHIFT - 10); 2789 2790 file = si->swap_file; 2791 len = seq_file_path(swap, file, " \t\n\\"); 2792 seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n", 2793 len < 40 ? 40 - len : 1, " ", 2794 S_ISBLK(file_inode(file)->i_mode) ? 2795 "partition" : "file\t", 2796 bytes, bytes < 10000000 ? "\t" : "", 2797 inuse, inuse < 10000000 ? "\t" : "", 2798 si->prio); 2799 return 0; 2800 } 2801 2802 static const struct seq_operations swaps_op = { 2803 .start = swap_start, 2804 .next = swap_next, 2805 .stop = swap_stop, 2806 .show = swap_show 2807 }; 2808 2809 static int swaps_open(struct inode *inode, struct file *file) 2810 { 2811 struct seq_file *seq; 2812 int ret; 2813 2814 ret = seq_open(file, &swaps_op); 2815 if (ret) 2816 return ret; 2817 2818 seq = file->private_data; 2819 seq->poll_event = atomic_read(&proc_poll_event); 2820 return 0; 2821 } 2822 2823 static const struct proc_ops swaps_proc_ops = { 2824 .proc_flags = PROC_ENTRY_PERMANENT, 2825 .proc_open = swaps_open, 2826 .proc_read = seq_read, 2827 .proc_lseek = seq_lseek, 2828 .proc_release = seq_release, 2829 .proc_poll = swaps_poll, 2830 }; 2831 2832 static int __init procswaps_init(void) 2833 { 2834 proc_create("swaps", 0, NULL, &swaps_proc_ops); 2835 return 0; 2836 } 2837 __initcall(procswaps_init); 2838 #endif /* CONFIG_PROC_FS */ 2839 2840 #ifdef MAX_SWAPFILES_CHECK 2841 static int __init max_swapfiles_check(void) 2842 { 2843 MAX_SWAPFILES_CHECK(); 2844 return 0; 2845 } 2846 late_initcall(max_swapfiles_check); 2847 #endif 2848 2849 static struct swap_info_struct *alloc_swap_info(void) 2850 { 2851 struct swap_info_struct *p; 2852 struct swap_info_struct *defer = NULL; 2853 unsigned int type; 2854 int i; 2855 2856 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2857 if (!p) 2858 return ERR_PTR(-ENOMEM); 2859 2860 spin_lock(&swap_lock); 2861 for (type = 0; type < nr_swapfiles; type++) { 2862 if (!(swap_info[type]->flags & SWP_USED)) 2863 break; 2864 } 2865 if (type >= MAX_SWAPFILES) { 2866 spin_unlock(&swap_lock); 2867 kvfree(p); 2868 return ERR_PTR(-EPERM); 2869 } 2870 if (type >= nr_swapfiles) { 2871 p->type = type; 2872 WRITE_ONCE(swap_info[type], p); 2873 /* 2874 * Write swap_info[type] before nr_swapfiles, in case a 2875 * racing procfs swap_start() or swap_next() is reading them. 2876 * (We never shrink nr_swapfiles, we never free this entry.) 2877 */ 2878 smp_wmb(); 2879 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1); 2880 } else { 2881 defer = p; 2882 p = swap_info[type]; 2883 /* 2884 * Do not memset this entry: a racing procfs swap_next() 2885 * would be relying on p->type to remain valid. 2886 */ 2887 } 2888 p->swap_extent_root = RB_ROOT; 2889 plist_node_init(&p->list, 0); 2890 for_each_node(i) 2891 plist_node_init(&p->avail_lists[i], 0); 2892 p->flags = SWP_USED; 2893 spin_unlock(&swap_lock); 2894 kvfree(defer); 2895 spin_lock_init(&p->lock); 2896 spin_lock_init(&p->cont_lock); 2897 2898 return p; 2899 } 2900 2901 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2902 { 2903 int error; 2904 2905 if (S_ISBLK(inode->i_mode)) { 2906 p->bdev = blkdev_get_by_dev(inode->i_rdev, 2907 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); 2908 if (IS_ERR(p->bdev)) { 2909 error = PTR_ERR(p->bdev); 2910 p->bdev = NULL; 2911 return error; 2912 } 2913 p->old_block_size = block_size(p->bdev); 2914 error = set_blocksize(p->bdev, PAGE_SIZE); 2915 if (error < 0) 2916 return error; 2917 /* 2918 * Zoned block devices contain zones that have a sequential 2919 * write only restriction. Hence zoned block devices are not 2920 * suitable for swapping. Disallow them here. 2921 */ 2922 if (blk_queue_is_zoned(p->bdev->bd_disk->queue)) 2923 return -EINVAL; 2924 p->flags |= SWP_BLKDEV; 2925 } else if (S_ISREG(inode->i_mode)) { 2926 p->bdev = inode->i_sb->s_bdev; 2927 } 2928 2929 return 0; 2930 } 2931 2932 2933 /* 2934 * Find out how many pages are allowed for a single swap device. There 2935 * are two limiting factors: 2936 * 1) the number of bits for the swap offset in the swp_entry_t type, and 2937 * 2) the number of bits in the swap pte, as defined by the different 2938 * architectures. 2939 * 2940 * In order to find the largest possible bit mask, a swap entry with 2941 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 2942 * decoded to a swp_entry_t again, and finally the swap offset is 2943 * extracted. 2944 * 2945 * This will mask all the bits from the initial ~0UL mask that can't 2946 * be encoded in either the swp_entry_t or the architecture definition 2947 * of a swap pte. 2948 */ 2949 unsigned long generic_max_swapfile_size(void) 2950 { 2951 return swp_offset(pte_to_swp_entry( 2952 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2953 } 2954 2955 /* Can be overridden by an architecture for additional checks. */ 2956 __weak unsigned long max_swapfile_size(void) 2957 { 2958 return generic_max_swapfile_size(); 2959 } 2960 2961 static unsigned long read_swap_header(struct swap_info_struct *p, 2962 union swap_header *swap_header, 2963 struct inode *inode) 2964 { 2965 int i; 2966 unsigned long maxpages; 2967 unsigned long swapfilepages; 2968 unsigned long last_page; 2969 2970 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2971 pr_err("Unable to find swap-space signature\n"); 2972 return 0; 2973 } 2974 2975 /* swap partition endianess hack... */ 2976 if (swab32(swap_header->info.version) == 1) { 2977 swab32s(&swap_header->info.version); 2978 swab32s(&swap_header->info.last_page); 2979 swab32s(&swap_header->info.nr_badpages); 2980 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2981 return 0; 2982 for (i = 0; i < swap_header->info.nr_badpages; i++) 2983 swab32s(&swap_header->info.badpages[i]); 2984 } 2985 /* Check the swap header's sub-version */ 2986 if (swap_header->info.version != 1) { 2987 pr_warn("Unable to handle swap header version %d\n", 2988 swap_header->info.version); 2989 return 0; 2990 } 2991 2992 p->lowest_bit = 1; 2993 p->cluster_next = 1; 2994 p->cluster_nr = 0; 2995 2996 maxpages = max_swapfile_size(); 2997 last_page = swap_header->info.last_page; 2998 if (!last_page) { 2999 pr_warn("Empty swap-file\n"); 3000 return 0; 3001 } 3002 if (last_page > maxpages) { 3003 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 3004 maxpages << (PAGE_SHIFT - 10), 3005 last_page << (PAGE_SHIFT - 10)); 3006 } 3007 if (maxpages > last_page) { 3008 maxpages = last_page + 1; 3009 /* p->max is an unsigned int: don't overflow it */ 3010 if ((unsigned int)maxpages == 0) 3011 maxpages = UINT_MAX; 3012 } 3013 p->highest_bit = maxpages - 1; 3014 3015 if (!maxpages) 3016 return 0; 3017 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 3018 if (swapfilepages && maxpages > swapfilepages) { 3019 pr_warn("Swap area shorter than signature indicates\n"); 3020 return 0; 3021 } 3022 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 3023 return 0; 3024 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 3025 return 0; 3026 3027 return maxpages; 3028 } 3029 3030 #define SWAP_CLUSTER_INFO_COLS \ 3031 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 3032 #define SWAP_CLUSTER_SPACE_COLS \ 3033 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 3034 #define SWAP_CLUSTER_COLS \ 3035 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 3036 3037 static int setup_swap_map_and_extents(struct swap_info_struct *p, 3038 union swap_header *swap_header, 3039 unsigned char *swap_map, 3040 struct swap_cluster_info *cluster_info, 3041 unsigned long maxpages, 3042 sector_t *span) 3043 { 3044 unsigned int j, k; 3045 unsigned int nr_good_pages; 3046 int nr_extents; 3047 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3048 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 3049 unsigned long i, idx; 3050 3051 nr_good_pages = maxpages - 1; /* omit header page */ 3052 3053 cluster_list_init(&p->free_clusters); 3054 cluster_list_init(&p->discard_clusters); 3055 3056 for (i = 0; i < swap_header->info.nr_badpages; i++) { 3057 unsigned int page_nr = swap_header->info.badpages[i]; 3058 if (page_nr == 0 || page_nr > swap_header->info.last_page) 3059 return -EINVAL; 3060 if (page_nr < maxpages) { 3061 swap_map[page_nr] = SWAP_MAP_BAD; 3062 nr_good_pages--; 3063 /* 3064 * Haven't marked the cluster free yet, no list 3065 * operation involved 3066 */ 3067 inc_cluster_info_page(p, cluster_info, page_nr); 3068 } 3069 } 3070 3071 /* Haven't marked the cluster free yet, no list operation involved */ 3072 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 3073 inc_cluster_info_page(p, cluster_info, i); 3074 3075 if (nr_good_pages) { 3076 swap_map[0] = SWAP_MAP_BAD; 3077 /* 3078 * Not mark the cluster free yet, no list 3079 * operation involved 3080 */ 3081 inc_cluster_info_page(p, cluster_info, 0); 3082 p->max = maxpages; 3083 p->pages = nr_good_pages; 3084 nr_extents = setup_swap_extents(p, span); 3085 if (nr_extents < 0) 3086 return nr_extents; 3087 nr_good_pages = p->pages; 3088 } 3089 if (!nr_good_pages) { 3090 pr_warn("Empty swap-file\n"); 3091 return -EINVAL; 3092 } 3093 3094 if (!cluster_info) 3095 return nr_extents; 3096 3097 3098 /* 3099 * Reduce false cache line sharing between cluster_info and 3100 * sharing same address space. 3101 */ 3102 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 3103 j = (k + col) % SWAP_CLUSTER_COLS; 3104 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 3105 idx = i * SWAP_CLUSTER_COLS + j; 3106 if (idx >= nr_clusters) 3107 continue; 3108 if (cluster_count(&cluster_info[idx])) 3109 continue; 3110 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 3111 cluster_list_add_tail(&p->free_clusters, cluster_info, 3112 idx); 3113 } 3114 } 3115 return nr_extents; 3116 } 3117 3118 /* 3119 * Helper to sys_swapon determining if a given swap 3120 * backing device queue supports DISCARD operations. 3121 */ 3122 static bool swap_discardable(struct swap_info_struct *si) 3123 { 3124 struct request_queue *q = bdev_get_queue(si->bdev); 3125 3126 if (!q || !blk_queue_discard(q)) 3127 return false; 3128 3129 return true; 3130 } 3131 3132 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 3133 { 3134 struct swap_info_struct *p; 3135 struct filename *name; 3136 struct file *swap_file = NULL; 3137 struct address_space *mapping; 3138 int prio; 3139 int error; 3140 union swap_header *swap_header; 3141 int nr_extents; 3142 sector_t span; 3143 unsigned long maxpages; 3144 unsigned char *swap_map = NULL; 3145 struct swap_cluster_info *cluster_info = NULL; 3146 unsigned long *frontswap_map = NULL; 3147 struct page *page = NULL; 3148 struct inode *inode = NULL; 3149 bool inced_nr_rotate_swap = false; 3150 3151 if (swap_flags & ~SWAP_FLAGS_VALID) 3152 return -EINVAL; 3153 3154 if (!capable(CAP_SYS_ADMIN)) 3155 return -EPERM; 3156 3157 if (!swap_avail_heads) 3158 return -ENOMEM; 3159 3160 p = alloc_swap_info(); 3161 if (IS_ERR(p)) 3162 return PTR_ERR(p); 3163 3164 INIT_WORK(&p->discard_work, swap_discard_work); 3165 3166 name = getname(specialfile); 3167 if (IS_ERR(name)) { 3168 error = PTR_ERR(name); 3169 name = NULL; 3170 goto bad_swap; 3171 } 3172 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 3173 if (IS_ERR(swap_file)) { 3174 error = PTR_ERR(swap_file); 3175 swap_file = NULL; 3176 goto bad_swap; 3177 } 3178 3179 p->swap_file = swap_file; 3180 mapping = swap_file->f_mapping; 3181 inode = mapping->host; 3182 3183 error = claim_swapfile(p, inode); 3184 if (unlikely(error)) 3185 goto bad_swap; 3186 3187 inode_lock(inode); 3188 if (IS_SWAPFILE(inode)) { 3189 error = -EBUSY; 3190 goto bad_swap_unlock_inode; 3191 } 3192 3193 /* 3194 * Read the swap header. 3195 */ 3196 if (!mapping->a_ops->readpage) { 3197 error = -EINVAL; 3198 goto bad_swap_unlock_inode; 3199 } 3200 page = read_mapping_page(mapping, 0, swap_file); 3201 if (IS_ERR(page)) { 3202 error = PTR_ERR(page); 3203 goto bad_swap_unlock_inode; 3204 } 3205 swap_header = kmap(page); 3206 3207 maxpages = read_swap_header(p, swap_header, inode); 3208 if (unlikely(!maxpages)) { 3209 error = -EINVAL; 3210 goto bad_swap_unlock_inode; 3211 } 3212 3213 /* OK, set up the swap map and apply the bad block list */ 3214 swap_map = vzalloc(maxpages); 3215 if (!swap_map) { 3216 error = -ENOMEM; 3217 goto bad_swap_unlock_inode; 3218 } 3219 3220 if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue)) 3221 p->flags |= SWP_STABLE_WRITES; 3222 3223 if (p->bdev && p->bdev->bd_disk->fops->rw_page) 3224 p->flags |= SWP_SYNCHRONOUS_IO; 3225 3226 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { 3227 int cpu; 3228 unsigned long ci, nr_cluster; 3229 3230 p->flags |= SWP_SOLIDSTATE; 3231 p->cluster_next_cpu = alloc_percpu(unsigned int); 3232 if (!p->cluster_next_cpu) { 3233 error = -ENOMEM; 3234 goto bad_swap_unlock_inode; 3235 } 3236 /* 3237 * select a random position to start with to help wear leveling 3238 * SSD 3239 */ 3240 for_each_possible_cpu(cpu) { 3241 per_cpu(*p->cluster_next_cpu, cpu) = 3242 1 + prandom_u32_max(p->highest_bit); 3243 } 3244 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3245 3246 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), 3247 GFP_KERNEL); 3248 if (!cluster_info) { 3249 error = -ENOMEM; 3250 goto bad_swap_unlock_inode; 3251 } 3252 3253 for (ci = 0; ci < nr_cluster; ci++) 3254 spin_lock_init(&((cluster_info + ci)->lock)); 3255 3256 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 3257 if (!p->percpu_cluster) { 3258 error = -ENOMEM; 3259 goto bad_swap_unlock_inode; 3260 } 3261 for_each_possible_cpu(cpu) { 3262 struct percpu_cluster *cluster; 3263 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 3264 cluster_set_null(&cluster->index); 3265 } 3266 } else { 3267 atomic_inc(&nr_rotate_swap); 3268 inced_nr_rotate_swap = true; 3269 } 3270 3271 error = swap_cgroup_swapon(p->type, maxpages); 3272 if (error) 3273 goto bad_swap_unlock_inode; 3274 3275 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 3276 cluster_info, maxpages, &span); 3277 if (unlikely(nr_extents < 0)) { 3278 error = nr_extents; 3279 goto bad_swap_unlock_inode; 3280 } 3281 /* frontswap enabled? set up bit-per-page map for frontswap */ 3282 if (IS_ENABLED(CONFIG_FRONTSWAP)) 3283 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages), 3284 sizeof(long), 3285 GFP_KERNEL); 3286 3287 if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { 3288 /* 3289 * When discard is enabled for swap with no particular 3290 * policy flagged, we set all swap discard flags here in 3291 * order to sustain backward compatibility with older 3292 * swapon(8) releases. 3293 */ 3294 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3295 SWP_PAGE_DISCARD); 3296 3297 /* 3298 * By flagging sys_swapon, a sysadmin can tell us to 3299 * either do single-time area discards only, or to just 3300 * perform discards for released swap page-clusters. 3301 * Now it's time to adjust the p->flags accordingly. 3302 */ 3303 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3304 p->flags &= ~SWP_PAGE_DISCARD; 3305 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3306 p->flags &= ~SWP_AREA_DISCARD; 3307 3308 /* issue a swapon-time discard if it's still required */ 3309 if (p->flags & SWP_AREA_DISCARD) { 3310 int err = discard_swap(p); 3311 if (unlikely(err)) 3312 pr_err("swapon: discard_swap(%p): %d\n", 3313 p, err); 3314 } 3315 } 3316 3317 error = init_swap_address_space(p->type, maxpages); 3318 if (error) 3319 goto bad_swap_unlock_inode; 3320 3321 /* 3322 * Flush any pending IO and dirty mappings before we start using this 3323 * swap device. 3324 */ 3325 inode->i_flags |= S_SWAPFILE; 3326 error = inode_drain_writes(inode); 3327 if (error) { 3328 inode->i_flags &= ~S_SWAPFILE; 3329 goto free_swap_address_space; 3330 } 3331 3332 mutex_lock(&swapon_mutex); 3333 prio = -1; 3334 if (swap_flags & SWAP_FLAG_PREFER) 3335 prio = 3336 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3337 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 3338 3339 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 3340 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 3341 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 3342 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 3343 (p->flags & SWP_DISCARDABLE) ? "D" : "", 3344 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 3345 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 3346 (frontswap_map) ? "FS" : ""); 3347 3348 mutex_unlock(&swapon_mutex); 3349 atomic_inc(&proc_poll_event); 3350 wake_up_interruptible(&proc_poll_wait); 3351 3352 error = 0; 3353 goto out; 3354 free_swap_address_space: 3355 exit_swap_address_space(p->type); 3356 bad_swap_unlock_inode: 3357 inode_unlock(inode); 3358 bad_swap: 3359 free_percpu(p->percpu_cluster); 3360 p->percpu_cluster = NULL; 3361 free_percpu(p->cluster_next_cpu); 3362 p->cluster_next_cpu = NULL; 3363 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 3364 set_blocksize(p->bdev, p->old_block_size); 3365 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 3366 } 3367 inode = NULL; 3368 destroy_swap_extents(p); 3369 swap_cgroup_swapoff(p->type); 3370 spin_lock(&swap_lock); 3371 p->swap_file = NULL; 3372 p->flags = 0; 3373 spin_unlock(&swap_lock); 3374 vfree(swap_map); 3375 kvfree(cluster_info); 3376 kvfree(frontswap_map); 3377 if (inced_nr_rotate_swap) 3378 atomic_dec(&nr_rotate_swap); 3379 if (swap_file) 3380 filp_close(swap_file, NULL); 3381 out: 3382 if (page && !IS_ERR(page)) { 3383 kunmap(page); 3384 put_page(page); 3385 } 3386 if (name) 3387 putname(name); 3388 if (inode) 3389 inode_unlock(inode); 3390 if (!error) 3391 enable_swap_slots_cache(); 3392 return error; 3393 } 3394 3395 void si_swapinfo(struct sysinfo *val) 3396 { 3397 unsigned int type; 3398 unsigned long nr_to_be_unused = 0; 3399 3400 spin_lock(&swap_lock); 3401 for (type = 0; type < nr_swapfiles; type++) { 3402 struct swap_info_struct *si = swap_info[type]; 3403 3404 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3405 nr_to_be_unused += si->inuse_pages; 3406 } 3407 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3408 val->totalswap = total_swap_pages + nr_to_be_unused; 3409 spin_unlock(&swap_lock); 3410 } 3411 3412 /* 3413 * Verify that a swap entry is valid and increment its swap map count. 3414 * 3415 * Returns error code in following case. 3416 * - success -> 0 3417 * - swp_entry is invalid -> EINVAL 3418 * - swp_entry is migration entry -> EINVAL 3419 * - swap-cache reference is requested but there is already one. -> EEXIST 3420 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3421 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3422 */ 3423 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 3424 { 3425 struct swap_info_struct *p; 3426 struct swap_cluster_info *ci; 3427 unsigned long offset; 3428 unsigned char count; 3429 unsigned char has_cache; 3430 int err; 3431 3432 p = get_swap_device(entry); 3433 if (!p) 3434 return -EINVAL; 3435 3436 offset = swp_offset(entry); 3437 ci = lock_cluster_or_swap_info(p, offset); 3438 3439 count = p->swap_map[offset]; 3440 3441 /* 3442 * swapin_readahead() doesn't check if a swap entry is valid, so the 3443 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3444 */ 3445 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3446 err = -ENOENT; 3447 goto unlock_out; 3448 } 3449 3450 has_cache = count & SWAP_HAS_CACHE; 3451 count &= ~SWAP_HAS_CACHE; 3452 err = 0; 3453 3454 if (usage == SWAP_HAS_CACHE) { 3455 3456 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 3457 if (!has_cache && count) 3458 has_cache = SWAP_HAS_CACHE; 3459 else if (has_cache) /* someone else added cache */ 3460 err = -EEXIST; 3461 else /* no users remaining */ 3462 err = -ENOENT; 3463 3464 } else if (count || has_cache) { 3465 3466 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3467 count += usage; 3468 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3469 err = -EINVAL; 3470 else if (swap_count_continued(p, offset, count)) 3471 count = COUNT_CONTINUED; 3472 else 3473 err = -ENOMEM; 3474 } else 3475 err = -ENOENT; /* unused swap entry */ 3476 3477 WRITE_ONCE(p->swap_map[offset], count | has_cache); 3478 3479 unlock_out: 3480 unlock_cluster_or_swap_info(p, ci); 3481 if (p) 3482 put_swap_device(p); 3483 return err; 3484 } 3485 3486 /* 3487 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3488 * (in which case its reference count is never incremented). 3489 */ 3490 void swap_shmem_alloc(swp_entry_t entry) 3491 { 3492 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3493 } 3494 3495 /* 3496 * Increase reference count of swap entry by 1. 3497 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3498 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3499 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3500 * might occur if a page table entry has got corrupted. 3501 */ 3502 int swap_duplicate(swp_entry_t entry) 3503 { 3504 int err = 0; 3505 3506 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3507 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3508 return err; 3509 } 3510 3511 /* 3512 * @entry: swap entry for which we allocate swap cache. 3513 * 3514 * Called when allocating swap cache for existing swap entry, 3515 * This can return error codes. Returns 0 at success. 3516 * -EEXIST means there is a swap cache. 3517 * Note: return code is different from swap_duplicate(). 3518 */ 3519 int swapcache_prepare(swp_entry_t entry) 3520 { 3521 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3522 } 3523 3524 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3525 { 3526 return swap_type_to_swap_info(swp_type(entry)); 3527 } 3528 3529 struct swap_info_struct *page_swap_info(struct page *page) 3530 { 3531 swp_entry_t entry = { .val = page_private(page) }; 3532 return swp_swap_info(entry); 3533 } 3534 3535 /* 3536 * out-of-line __page_file_ methods to avoid include hell. 3537 */ 3538 struct address_space *__page_file_mapping(struct page *page) 3539 { 3540 return page_swap_info(page)->swap_file->f_mapping; 3541 } 3542 EXPORT_SYMBOL_GPL(__page_file_mapping); 3543 3544 pgoff_t __page_file_index(struct page *page) 3545 { 3546 swp_entry_t swap = { .val = page_private(page) }; 3547 return swp_offset(swap); 3548 } 3549 EXPORT_SYMBOL_GPL(__page_file_index); 3550 3551 /* 3552 * add_swap_count_continuation - called when a swap count is duplicated 3553 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3554 * page of the original vmalloc'ed swap_map, to hold the continuation count 3555 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3556 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3557 * 3558 * These continuation pages are seldom referenced: the common paths all work 3559 * on the original swap_map, only referring to a continuation page when the 3560 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3561 * 3562 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3563 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3564 * can be called after dropping locks. 3565 */ 3566 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3567 { 3568 struct swap_info_struct *si; 3569 struct swap_cluster_info *ci; 3570 struct page *head; 3571 struct page *page; 3572 struct page *list_page; 3573 pgoff_t offset; 3574 unsigned char count; 3575 int ret = 0; 3576 3577 /* 3578 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3579 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3580 */ 3581 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3582 3583 si = get_swap_device(entry); 3584 if (!si) { 3585 /* 3586 * An acceptable race has occurred since the failing 3587 * __swap_duplicate(): the swap device may be swapoff 3588 */ 3589 goto outer; 3590 } 3591 spin_lock(&si->lock); 3592 3593 offset = swp_offset(entry); 3594 3595 ci = lock_cluster(si, offset); 3596 3597 count = swap_count(si->swap_map[offset]); 3598 3599 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3600 /* 3601 * The higher the swap count, the more likely it is that tasks 3602 * will race to add swap count continuation: we need to avoid 3603 * over-provisioning. 3604 */ 3605 goto out; 3606 } 3607 3608 if (!page) { 3609 ret = -ENOMEM; 3610 goto out; 3611 } 3612 3613 /* 3614 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 3615 * no architecture is using highmem pages for kernel page tables: so it 3616 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 3617 */ 3618 head = vmalloc_to_page(si->swap_map + offset); 3619 offset &= ~PAGE_MASK; 3620 3621 spin_lock(&si->cont_lock); 3622 /* 3623 * Page allocation does not initialize the page's lru field, 3624 * but it does always reset its private field. 3625 */ 3626 if (!page_private(head)) { 3627 BUG_ON(count & COUNT_CONTINUED); 3628 INIT_LIST_HEAD(&head->lru); 3629 set_page_private(head, SWP_CONTINUED); 3630 si->flags |= SWP_CONTINUED; 3631 } 3632 3633 list_for_each_entry(list_page, &head->lru, lru) { 3634 unsigned char *map; 3635 3636 /* 3637 * If the previous map said no continuation, but we've found 3638 * a continuation page, free our allocation and use this one. 3639 */ 3640 if (!(count & COUNT_CONTINUED)) 3641 goto out_unlock_cont; 3642 3643 map = kmap_atomic(list_page) + offset; 3644 count = *map; 3645 kunmap_atomic(map); 3646 3647 /* 3648 * If this continuation count now has some space in it, 3649 * free our allocation and use this one. 3650 */ 3651 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3652 goto out_unlock_cont; 3653 } 3654 3655 list_add_tail(&page->lru, &head->lru); 3656 page = NULL; /* now it's attached, don't free it */ 3657 out_unlock_cont: 3658 spin_unlock(&si->cont_lock); 3659 out: 3660 unlock_cluster(ci); 3661 spin_unlock(&si->lock); 3662 put_swap_device(si); 3663 outer: 3664 if (page) 3665 __free_page(page); 3666 return ret; 3667 } 3668 3669 /* 3670 * swap_count_continued - when the original swap_map count is incremented 3671 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3672 * into, carry if so, or else fail until a new continuation page is allocated; 3673 * when the original swap_map count is decremented from 0 with continuation, 3674 * borrow from the continuation and report whether it still holds more. 3675 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3676 * lock. 3677 */ 3678 static bool swap_count_continued(struct swap_info_struct *si, 3679 pgoff_t offset, unsigned char count) 3680 { 3681 struct page *head; 3682 struct page *page; 3683 unsigned char *map; 3684 bool ret; 3685 3686 head = vmalloc_to_page(si->swap_map + offset); 3687 if (page_private(head) != SWP_CONTINUED) { 3688 BUG_ON(count & COUNT_CONTINUED); 3689 return false; /* need to add count continuation */ 3690 } 3691 3692 spin_lock(&si->cont_lock); 3693 offset &= ~PAGE_MASK; 3694 page = list_next_entry(head, lru); 3695 map = kmap_atomic(page) + offset; 3696 3697 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3698 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3699 3700 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3701 /* 3702 * Think of how you add 1 to 999 3703 */ 3704 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3705 kunmap_atomic(map); 3706 page = list_next_entry(page, lru); 3707 BUG_ON(page == head); 3708 map = kmap_atomic(page) + offset; 3709 } 3710 if (*map == SWAP_CONT_MAX) { 3711 kunmap_atomic(map); 3712 page = list_next_entry(page, lru); 3713 if (page == head) { 3714 ret = false; /* add count continuation */ 3715 goto out; 3716 } 3717 map = kmap_atomic(page) + offset; 3718 init_map: *map = 0; /* we didn't zero the page */ 3719 } 3720 *map += 1; 3721 kunmap_atomic(map); 3722 while ((page = list_prev_entry(page, lru)) != head) { 3723 map = kmap_atomic(page) + offset; 3724 *map = COUNT_CONTINUED; 3725 kunmap_atomic(map); 3726 } 3727 ret = true; /* incremented */ 3728 3729 } else { /* decrementing */ 3730 /* 3731 * Think of how you subtract 1 from 1000 3732 */ 3733 BUG_ON(count != COUNT_CONTINUED); 3734 while (*map == COUNT_CONTINUED) { 3735 kunmap_atomic(map); 3736 page = list_next_entry(page, lru); 3737 BUG_ON(page == head); 3738 map = kmap_atomic(page) + offset; 3739 } 3740 BUG_ON(*map == 0); 3741 *map -= 1; 3742 if (*map == 0) 3743 count = 0; 3744 kunmap_atomic(map); 3745 while ((page = list_prev_entry(page, lru)) != head) { 3746 map = kmap_atomic(page) + offset; 3747 *map = SWAP_CONT_MAX | count; 3748 count = COUNT_CONTINUED; 3749 kunmap_atomic(map); 3750 } 3751 ret = count == COUNT_CONTINUED; 3752 } 3753 out: 3754 spin_unlock(&si->cont_lock); 3755 return ret; 3756 } 3757 3758 /* 3759 * free_swap_count_continuations - swapoff free all the continuation pages 3760 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3761 */ 3762 static void free_swap_count_continuations(struct swap_info_struct *si) 3763 { 3764 pgoff_t offset; 3765 3766 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3767 struct page *head; 3768 head = vmalloc_to_page(si->swap_map + offset); 3769 if (page_private(head)) { 3770 struct page *page, *next; 3771 3772 list_for_each_entry_safe(page, next, &head->lru, lru) { 3773 list_del(&page->lru); 3774 __free_page(page); 3775 } 3776 } 3777 } 3778 } 3779 3780 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3781 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask) 3782 { 3783 struct swap_info_struct *si, *next; 3784 int nid = page_to_nid(page); 3785 3786 if (!(gfp_mask & __GFP_IO)) 3787 return; 3788 3789 if (!blk_cgroup_congested()) 3790 return; 3791 3792 /* 3793 * We've already scheduled a throttle, avoid taking the global swap 3794 * lock. 3795 */ 3796 if (current->throttle_queue) 3797 return; 3798 3799 spin_lock(&swap_avail_lock); 3800 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], 3801 avail_lists[nid]) { 3802 if (si->bdev) { 3803 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true); 3804 break; 3805 } 3806 } 3807 spin_unlock(&swap_avail_lock); 3808 } 3809 #endif 3810 3811 static int __init swapfile_init(void) 3812 { 3813 int nid; 3814 3815 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3816 GFP_KERNEL); 3817 if (!swap_avail_heads) { 3818 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3819 return -ENOMEM; 3820 } 3821 3822 for_each_node(nid) 3823 plist_head_init(&swap_avail_heads[nid]); 3824 3825 return 0; 3826 } 3827 subsys_initcall(swapfile_init); 3828