1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/blkdev.h> 10 #include <linux/mm.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/task.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mman.h> 15 #include <linux/slab.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/swap.h> 18 #include <linux/vmalloc.h> 19 #include <linux/pagemap.h> 20 #include <linux/namei.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/blk-cgroup.h> 23 #include <linux/random.h> 24 #include <linux/writeback.h> 25 #include <linux/proc_fs.h> 26 #include <linux/seq_file.h> 27 #include <linux/init.h> 28 #include <linux/ksm.h> 29 #include <linux/rmap.h> 30 #include <linux/security.h> 31 #include <linux/backing-dev.h> 32 #include <linux/mutex.h> 33 #include <linux/capability.h> 34 #include <linux/syscalls.h> 35 #include <linux/memcontrol.h> 36 #include <linux/poll.h> 37 #include <linux/oom.h> 38 #include <linux/swapfile.h> 39 #include <linux/export.h> 40 #include <linux/swap_slots.h> 41 #include <linux/sort.h> 42 #include <linux/completion.h> 43 #include <linux/suspend.h> 44 #include <linux/zswap.h> 45 #include <linux/plist.h> 46 47 #include <asm/tlbflush.h> 48 #include <linux/swapops.h> 49 #include <linux/swap_cgroup.h> 50 #include "internal.h" 51 #include "swap.h" 52 53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 54 unsigned char); 55 static void free_swap_count_continuations(struct swap_info_struct *); 56 static void swap_entry_range_free(struct swap_info_struct *si, swp_entry_t entry, 57 unsigned int nr_pages); 58 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 59 unsigned int nr_entries); 60 static bool folio_swapcache_freeable(struct folio *folio); 61 static struct swap_cluster_info *lock_cluster_or_swap_info( 62 struct swap_info_struct *si, unsigned long offset); 63 static void unlock_cluster_or_swap_info(struct swap_info_struct *si, 64 struct swap_cluster_info *ci); 65 66 static DEFINE_SPINLOCK(swap_lock); 67 static unsigned int nr_swapfiles; 68 atomic_long_t nr_swap_pages; 69 /* 70 * Some modules use swappable objects and may try to swap them out under 71 * memory pressure (via the shrinker). Before doing so, they may wish to 72 * check to see if any swap space is available. 73 */ 74 EXPORT_SYMBOL_GPL(nr_swap_pages); 75 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 76 long total_swap_pages; 77 static int least_priority = -1; 78 unsigned long swapfile_maximum_size; 79 #ifdef CONFIG_MIGRATION 80 bool swap_migration_ad_supported; 81 #endif /* CONFIG_MIGRATION */ 82 83 static const char Bad_file[] = "Bad swap file entry "; 84 static const char Unused_file[] = "Unused swap file entry "; 85 static const char Bad_offset[] = "Bad swap offset entry "; 86 static const char Unused_offset[] = "Unused swap offset entry "; 87 88 /* 89 * all active swap_info_structs 90 * protected with swap_lock, and ordered by priority. 91 */ 92 static PLIST_HEAD(swap_active_head); 93 94 /* 95 * all available (active, not full) swap_info_structs 96 * protected with swap_avail_lock, ordered by priority. 97 * This is used by folio_alloc_swap() instead of swap_active_head 98 * because swap_active_head includes all swap_info_structs, 99 * but folio_alloc_swap() doesn't need to look at full ones. 100 * This uses its own lock instead of swap_lock because when a 101 * swap_info_struct changes between not-full/full, it needs to 102 * add/remove itself to/from this list, but the swap_info_struct->lock 103 * is held and the locking order requires swap_lock to be taken 104 * before any swap_info_struct->lock. 105 */ 106 static struct plist_head *swap_avail_heads; 107 static DEFINE_SPINLOCK(swap_avail_lock); 108 109 static struct swap_info_struct *swap_info[MAX_SWAPFILES]; 110 111 static DEFINE_MUTEX(swapon_mutex); 112 113 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 114 /* Activity counter to indicate that a swapon or swapoff has occurred */ 115 static atomic_t proc_poll_event = ATOMIC_INIT(0); 116 117 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 118 119 static struct swap_info_struct *swap_type_to_swap_info(int type) 120 { 121 if (type >= MAX_SWAPFILES) 122 return NULL; 123 124 return READ_ONCE(swap_info[type]); /* rcu_dereference() */ 125 } 126 127 static inline unsigned char swap_count(unsigned char ent) 128 { 129 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 130 } 131 132 /* Reclaim the swap entry anyway if possible */ 133 #define TTRS_ANYWAY 0x1 134 /* 135 * Reclaim the swap entry if there are no more mappings of the 136 * corresponding page 137 */ 138 #define TTRS_UNMAPPED 0x2 139 /* Reclaim the swap entry if swap is getting full */ 140 #define TTRS_FULL 0x4 141 /* Reclaim directly, bypass the slot cache and don't touch device lock */ 142 #define TTRS_DIRECT 0x8 143 144 static bool swap_is_has_cache(struct swap_info_struct *si, 145 unsigned long offset, int nr_pages) 146 { 147 unsigned char *map = si->swap_map + offset; 148 unsigned char *map_end = map + nr_pages; 149 150 do { 151 VM_BUG_ON(!(*map & SWAP_HAS_CACHE)); 152 if (*map != SWAP_HAS_CACHE) 153 return false; 154 } while (++map < map_end); 155 156 return true; 157 } 158 159 static bool swap_is_last_map(struct swap_info_struct *si, 160 unsigned long offset, int nr_pages, bool *has_cache) 161 { 162 unsigned char *map = si->swap_map + offset; 163 unsigned char *map_end = map + nr_pages; 164 unsigned char count = *map; 165 166 if (swap_count(count) != 1) 167 return false; 168 169 while (++map < map_end) { 170 if (*map != count) 171 return false; 172 } 173 174 *has_cache = !!(count & SWAP_HAS_CACHE); 175 return true; 176 } 177 178 /* 179 * returns number of pages in the folio that backs the swap entry. If positive, 180 * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no 181 * folio was associated with the swap entry. 182 */ 183 static int __try_to_reclaim_swap(struct swap_info_struct *si, 184 unsigned long offset, unsigned long flags) 185 { 186 swp_entry_t entry = swp_entry(si->type, offset); 187 struct address_space *address_space = swap_address_space(entry); 188 struct swap_cluster_info *ci; 189 struct folio *folio; 190 int ret, nr_pages; 191 bool need_reclaim; 192 193 folio = filemap_get_folio(address_space, swap_cache_index(entry)); 194 if (IS_ERR(folio)) 195 return 0; 196 197 nr_pages = folio_nr_pages(folio); 198 ret = -nr_pages; 199 200 /* 201 * When this function is called from scan_swap_map_slots() and it's 202 * called by vmscan.c at reclaiming folios. So we hold a folio lock 203 * here. We have to use trylock for avoiding deadlock. This is a special 204 * case and you should use folio_free_swap() with explicit folio_lock() 205 * in usual operations. 206 */ 207 if (!folio_trylock(folio)) 208 goto out; 209 210 /* offset could point to the middle of a large folio */ 211 entry = folio->swap; 212 offset = swp_offset(entry); 213 214 need_reclaim = ((flags & TTRS_ANYWAY) || 215 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) || 216 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio))); 217 if (!need_reclaim || !folio_swapcache_freeable(folio)) 218 goto out_unlock; 219 220 /* 221 * It's safe to delete the folio from swap cache only if the folio's 222 * swap_map is HAS_CACHE only, which means the slots have no page table 223 * reference or pending writeback, and can't be allocated to others. 224 */ 225 ci = lock_cluster_or_swap_info(si, offset); 226 need_reclaim = swap_is_has_cache(si, offset, nr_pages); 227 unlock_cluster_or_swap_info(si, ci); 228 if (!need_reclaim) 229 goto out_unlock; 230 231 if (!(flags & TTRS_DIRECT)) { 232 /* Free through slot cache */ 233 delete_from_swap_cache(folio); 234 folio_set_dirty(folio); 235 ret = nr_pages; 236 goto out_unlock; 237 } 238 239 xa_lock_irq(&address_space->i_pages); 240 __delete_from_swap_cache(folio, entry, NULL); 241 xa_unlock_irq(&address_space->i_pages); 242 folio_ref_sub(folio, nr_pages); 243 folio_set_dirty(folio); 244 245 spin_lock(&si->lock); 246 /* Only sinple page folio can be backed by zswap */ 247 if (nr_pages == 1) 248 zswap_invalidate(entry); 249 swap_entry_range_free(si, entry, nr_pages); 250 spin_unlock(&si->lock); 251 ret = nr_pages; 252 out_unlock: 253 folio_unlock(folio); 254 out: 255 folio_put(folio); 256 return ret; 257 } 258 259 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 260 { 261 struct rb_node *rb = rb_first(&sis->swap_extent_root); 262 return rb_entry(rb, struct swap_extent, rb_node); 263 } 264 265 static inline struct swap_extent *next_se(struct swap_extent *se) 266 { 267 struct rb_node *rb = rb_next(&se->rb_node); 268 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 269 } 270 271 /* 272 * swapon tell device that all the old swap contents can be discarded, 273 * to allow the swap device to optimize its wear-levelling. 274 */ 275 static int discard_swap(struct swap_info_struct *si) 276 { 277 struct swap_extent *se; 278 sector_t start_block; 279 sector_t nr_blocks; 280 int err = 0; 281 282 /* Do not discard the swap header page! */ 283 se = first_se(si); 284 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 285 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 286 if (nr_blocks) { 287 err = blkdev_issue_discard(si->bdev, start_block, 288 nr_blocks, GFP_KERNEL); 289 if (err) 290 return err; 291 cond_resched(); 292 } 293 294 for (se = next_se(se); se; se = next_se(se)) { 295 start_block = se->start_block << (PAGE_SHIFT - 9); 296 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 297 298 err = blkdev_issue_discard(si->bdev, start_block, 299 nr_blocks, GFP_KERNEL); 300 if (err) 301 break; 302 303 cond_resched(); 304 } 305 return err; /* That will often be -EOPNOTSUPP */ 306 } 307 308 static struct swap_extent * 309 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 310 { 311 struct swap_extent *se; 312 struct rb_node *rb; 313 314 rb = sis->swap_extent_root.rb_node; 315 while (rb) { 316 se = rb_entry(rb, struct swap_extent, rb_node); 317 if (offset < se->start_page) 318 rb = rb->rb_left; 319 else if (offset >= se->start_page + se->nr_pages) 320 rb = rb->rb_right; 321 else 322 return se; 323 } 324 /* It *must* be present */ 325 BUG(); 326 } 327 328 sector_t swap_folio_sector(struct folio *folio) 329 { 330 struct swap_info_struct *sis = swp_swap_info(folio->swap); 331 struct swap_extent *se; 332 sector_t sector; 333 pgoff_t offset; 334 335 offset = swp_offset(folio->swap); 336 se = offset_to_swap_extent(sis, offset); 337 sector = se->start_block + (offset - se->start_page); 338 return sector << (PAGE_SHIFT - 9); 339 } 340 341 /* 342 * swap allocation tell device that a cluster of swap can now be discarded, 343 * to allow the swap device to optimize its wear-levelling. 344 */ 345 static void discard_swap_cluster(struct swap_info_struct *si, 346 pgoff_t start_page, pgoff_t nr_pages) 347 { 348 struct swap_extent *se = offset_to_swap_extent(si, start_page); 349 350 while (nr_pages) { 351 pgoff_t offset = start_page - se->start_page; 352 sector_t start_block = se->start_block + offset; 353 sector_t nr_blocks = se->nr_pages - offset; 354 355 if (nr_blocks > nr_pages) 356 nr_blocks = nr_pages; 357 start_page += nr_blocks; 358 nr_pages -= nr_blocks; 359 360 start_block <<= PAGE_SHIFT - 9; 361 nr_blocks <<= PAGE_SHIFT - 9; 362 if (blkdev_issue_discard(si->bdev, start_block, 363 nr_blocks, GFP_NOIO)) 364 break; 365 366 se = next_se(se); 367 } 368 } 369 370 #ifdef CONFIG_THP_SWAP 371 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 372 373 #define swap_entry_order(order) (order) 374 #else 375 #define SWAPFILE_CLUSTER 256 376 377 /* 378 * Define swap_entry_order() as constant to let compiler to optimize 379 * out some code if !CONFIG_THP_SWAP 380 */ 381 #define swap_entry_order(order) 0 382 #endif 383 #define LATENCY_LIMIT 256 384 385 static inline bool cluster_is_free(struct swap_cluster_info *info) 386 { 387 return info->flags & CLUSTER_FLAG_FREE; 388 } 389 390 static inline unsigned int cluster_index(struct swap_info_struct *si, 391 struct swap_cluster_info *ci) 392 { 393 return ci - si->cluster_info; 394 } 395 396 static inline unsigned int cluster_offset(struct swap_info_struct *si, 397 struct swap_cluster_info *ci) 398 { 399 return cluster_index(si, ci) * SWAPFILE_CLUSTER; 400 } 401 402 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 403 unsigned long offset) 404 { 405 struct swap_cluster_info *ci; 406 407 ci = si->cluster_info; 408 if (ci) { 409 ci += offset / SWAPFILE_CLUSTER; 410 spin_lock(&ci->lock); 411 } 412 return ci; 413 } 414 415 static inline void unlock_cluster(struct swap_cluster_info *ci) 416 { 417 if (ci) 418 spin_unlock(&ci->lock); 419 } 420 421 /* 422 * Determine the locking method in use for this device. Return 423 * swap_cluster_info if SSD-style cluster-based locking is in place. 424 */ 425 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 426 struct swap_info_struct *si, unsigned long offset) 427 { 428 struct swap_cluster_info *ci; 429 430 /* Try to use fine-grained SSD-style locking if available: */ 431 ci = lock_cluster(si, offset); 432 /* Otherwise, fall back to traditional, coarse locking: */ 433 if (!ci) 434 spin_lock(&si->lock); 435 436 return ci; 437 } 438 439 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 440 struct swap_cluster_info *ci) 441 { 442 if (ci) 443 unlock_cluster(ci); 444 else 445 spin_unlock(&si->lock); 446 } 447 448 /* Add a cluster to discard list and schedule it to do discard */ 449 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 450 struct swap_cluster_info *ci) 451 { 452 unsigned int idx = cluster_index(si, ci); 453 /* 454 * If scan_swap_map_slots() can't find a free cluster, it will check 455 * si->swap_map directly. To make sure the discarding cluster isn't 456 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied). 457 * It will be cleared after discard 458 */ 459 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 460 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 461 462 VM_BUG_ON(ci->flags & CLUSTER_FLAG_FREE); 463 list_move_tail(&ci->list, &si->discard_clusters); 464 ci->flags = 0; 465 schedule_work(&si->discard_work); 466 } 467 468 static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci) 469 { 470 lockdep_assert_held(&si->lock); 471 lockdep_assert_held(&ci->lock); 472 473 if (ci->flags) 474 list_move_tail(&ci->list, &si->free_clusters); 475 else 476 list_add_tail(&ci->list, &si->free_clusters); 477 ci->flags = CLUSTER_FLAG_FREE; 478 ci->order = 0; 479 } 480 481 /* 482 * Doing discard actually. After a cluster discard is finished, the cluster 483 * will be added to free cluster list. caller should hold si->lock. 484 */ 485 static void swap_do_scheduled_discard(struct swap_info_struct *si) 486 { 487 struct swap_cluster_info *ci; 488 unsigned int idx; 489 490 while (!list_empty(&si->discard_clusters)) { 491 ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list); 492 list_del(&ci->list); 493 idx = cluster_index(si, ci); 494 spin_unlock(&si->lock); 495 496 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 497 SWAPFILE_CLUSTER); 498 499 spin_lock(&si->lock); 500 spin_lock(&ci->lock); 501 __free_cluster(si, ci); 502 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 503 0, SWAPFILE_CLUSTER); 504 spin_unlock(&ci->lock); 505 } 506 } 507 508 static void swap_discard_work(struct work_struct *work) 509 { 510 struct swap_info_struct *si; 511 512 si = container_of(work, struct swap_info_struct, discard_work); 513 514 spin_lock(&si->lock); 515 swap_do_scheduled_discard(si); 516 spin_unlock(&si->lock); 517 } 518 519 static void swap_users_ref_free(struct percpu_ref *ref) 520 { 521 struct swap_info_struct *si; 522 523 si = container_of(ref, struct swap_info_struct, users); 524 complete(&si->comp); 525 } 526 527 static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci) 528 { 529 VM_BUG_ON(ci->count != 0); 530 lockdep_assert_held(&si->lock); 531 lockdep_assert_held(&ci->lock); 532 533 if (ci->flags & CLUSTER_FLAG_FRAG) 534 si->frag_cluster_nr[ci->order]--; 535 536 /* 537 * If the swap is discardable, prepare discard the cluster 538 * instead of free it immediately. The cluster will be freed 539 * after discard. 540 */ 541 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 542 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 543 swap_cluster_schedule_discard(si, ci); 544 return; 545 } 546 547 __free_cluster(si, ci); 548 } 549 550 /* 551 * The cluster corresponding to page_nr will be used. The cluster will not be 552 * added to free cluster list and its usage counter will be increased by 1. 553 * Only used for initialization. 554 */ 555 static void inc_cluster_info_page(struct swap_info_struct *si, 556 struct swap_cluster_info *cluster_info, unsigned long page_nr) 557 { 558 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 559 struct swap_cluster_info *ci; 560 561 if (!cluster_info) 562 return; 563 564 ci = cluster_info + idx; 565 ci->count++; 566 567 VM_BUG_ON(ci->count > SWAPFILE_CLUSTER); 568 VM_BUG_ON(ci->flags); 569 } 570 571 /* 572 * The cluster ci decreases @nr_pages usage. If the usage counter becomes 0, 573 * which means no page in the cluster is in use, we can optionally discard 574 * the cluster and add it to free cluster list. 575 */ 576 static void dec_cluster_info_page(struct swap_info_struct *si, 577 struct swap_cluster_info *ci, int nr_pages) 578 { 579 if (!si->cluster_info) 580 return; 581 582 VM_BUG_ON(ci->count < nr_pages); 583 VM_BUG_ON(cluster_is_free(ci)); 584 lockdep_assert_held(&si->lock); 585 lockdep_assert_held(&ci->lock); 586 ci->count -= nr_pages; 587 588 if (!ci->count) { 589 free_cluster(si, ci); 590 return; 591 } 592 593 if (!(ci->flags & CLUSTER_FLAG_NONFULL)) { 594 VM_BUG_ON(ci->flags & CLUSTER_FLAG_FREE); 595 if (ci->flags & CLUSTER_FLAG_FRAG) 596 si->frag_cluster_nr[ci->order]--; 597 list_move_tail(&ci->list, &si->nonfull_clusters[ci->order]); 598 ci->flags = CLUSTER_FLAG_NONFULL; 599 } 600 } 601 602 static bool cluster_reclaim_range(struct swap_info_struct *si, 603 struct swap_cluster_info *ci, 604 unsigned long start, unsigned long end) 605 { 606 unsigned char *map = si->swap_map; 607 unsigned long offset; 608 609 spin_unlock(&ci->lock); 610 spin_unlock(&si->lock); 611 612 for (offset = start; offset < end; offset++) { 613 switch (READ_ONCE(map[offset])) { 614 case 0: 615 continue; 616 case SWAP_HAS_CACHE: 617 if (__try_to_reclaim_swap(si, offset, TTRS_ANYWAY | TTRS_DIRECT) > 0) 618 continue; 619 goto out; 620 default: 621 goto out; 622 } 623 } 624 out: 625 spin_lock(&si->lock); 626 spin_lock(&ci->lock); 627 628 /* 629 * Recheck the range no matter reclaim succeeded or not, the slot 630 * could have been be freed while we are not holding the lock. 631 */ 632 for (offset = start; offset < end; offset++) 633 if (READ_ONCE(map[offset])) 634 return false; 635 636 return true; 637 } 638 639 static bool cluster_scan_range(struct swap_info_struct *si, 640 struct swap_cluster_info *ci, 641 unsigned long start, unsigned int nr_pages) 642 { 643 unsigned long offset, end = start + nr_pages; 644 unsigned char *map = si->swap_map; 645 bool need_reclaim = false; 646 647 for (offset = start; offset < end; offset++) { 648 switch (READ_ONCE(map[offset])) { 649 case 0: 650 continue; 651 case SWAP_HAS_CACHE: 652 if (!vm_swap_full()) 653 return false; 654 need_reclaim = true; 655 continue; 656 default: 657 return false; 658 } 659 } 660 661 if (need_reclaim) 662 return cluster_reclaim_range(si, ci, start, end); 663 664 return true; 665 } 666 667 static void cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci, 668 unsigned int start, unsigned char usage, 669 unsigned int order) 670 { 671 unsigned int nr_pages = 1 << order; 672 673 if (cluster_is_free(ci)) { 674 if (nr_pages < SWAPFILE_CLUSTER) { 675 list_move_tail(&ci->list, &si->nonfull_clusters[order]); 676 ci->flags = CLUSTER_FLAG_NONFULL; 677 } 678 ci->order = order; 679 } 680 681 memset(si->swap_map + start, usage, nr_pages); 682 swap_range_alloc(si, start, nr_pages); 683 ci->count += nr_pages; 684 685 if (ci->count == SWAPFILE_CLUSTER) { 686 VM_BUG_ON(!(ci->flags & 687 (CLUSTER_FLAG_FREE | CLUSTER_FLAG_NONFULL | CLUSTER_FLAG_FRAG))); 688 if (ci->flags & CLUSTER_FLAG_FRAG) 689 si->frag_cluster_nr[ci->order]--; 690 list_move_tail(&ci->list, &si->full_clusters); 691 ci->flags = CLUSTER_FLAG_FULL; 692 } 693 } 694 695 static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si, unsigned long offset, 696 unsigned int *foundp, unsigned int order, 697 unsigned char usage) 698 { 699 unsigned long start = offset & ~(SWAPFILE_CLUSTER - 1); 700 unsigned long end = min(start + SWAPFILE_CLUSTER, si->max); 701 unsigned int nr_pages = 1 << order; 702 struct swap_cluster_info *ci; 703 704 if (end < nr_pages) 705 return SWAP_NEXT_INVALID; 706 end -= nr_pages; 707 708 ci = lock_cluster(si, offset); 709 if (ci->count + nr_pages > SWAPFILE_CLUSTER) { 710 offset = SWAP_NEXT_INVALID; 711 goto done; 712 } 713 714 while (offset <= end) { 715 if (cluster_scan_range(si, ci, offset, nr_pages)) { 716 cluster_alloc_range(si, ci, offset, usage, order); 717 *foundp = offset; 718 if (ci->count == SWAPFILE_CLUSTER) { 719 offset = SWAP_NEXT_INVALID; 720 goto done; 721 } 722 offset += nr_pages; 723 break; 724 } 725 offset += nr_pages; 726 } 727 if (offset > end) 728 offset = SWAP_NEXT_INVALID; 729 done: 730 unlock_cluster(ci); 731 return offset; 732 } 733 734 /* Return true if reclaimed a whole cluster */ 735 static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force) 736 { 737 long to_scan = 1; 738 unsigned long offset, end; 739 struct swap_cluster_info *ci; 740 unsigned char *map = si->swap_map; 741 int nr_reclaim; 742 743 if (force) 744 to_scan = si->inuse_pages / SWAPFILE_CLUSTER; 745 746 while (!list_empty(&si->full_clusters)) { 747 ci = list_first_entry(&si->full_clusters, struct swap_cluster_info, list); 748 list_move_tail(&ci->list, &si->full_clusters); 749 offset = cluster_offset(si, ci); 750 end = min(si->max, offset + SWAPFILE_CLUSTER); 751 to_scan--; 752 753 spin_unlock(&si->lock); 754 while (offset < end) { 755 if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) { 756 nr_reclaim = __try_to_reclaim_swap(si, offset, 757 TTRS_ANYWAY | TTRS_DIRECT); 758 if (nr_reclaim) { 759 offset += abs(nr_reclaim); 760 continue; 761 } 762 } 763 offset++; 764 } 765 spin_lock(&si->lock); 766 767 if (to_scan <= 0) 768 break; 769 } 770 } 771 772 static void swap_reclaim_work(struct work_struct *work) 773 { 774 struct swap_info_struct *si; 775 776 si = container_of(work, struct swap_info_struct, reclaim_work); 777 778 spin_lock(&si->lock); 779 swap_reclaim_full_clusters(si, true); 780 spin_unlock(&si->lock); 781 } 782 783 /* 784 * Try to get swap entries with specified order from current cpu's swap entry 785 * pool (a cluster). This might involve allocating a new cluster for current CPU 786 * too. 787 */ 788 static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order, 789 unsigned char usage) 790 { 791 struct percpu_cluster *cluster; 792 struct swap_cluster_info *ci; 793 unsigned int offset, found = 0; 794 795 new_cluster: 796 lockdep_assert_held(&si->lock); 797 cluster = this_cpu_ptr(si->percpu_cluster); 798 offset = cluster->next[order]; 799 if (offset) { 800 offset = alloc_swap_scan_cluster(si, offset, &found, order, usage); 801 if (found) 802 goto done; 803 } 804 805 if (!list_empty(&si->free_clusters)) { 806 ci = list_first_entry(&si->free_clusters, struct swap_cluster_info, list); 807 offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci), &found, order, usage); 808 VM_BUG_ON(!found); 809 goto done; 810 } 811 812 /* Try reclaim from full clusters if free clusters list is drained */ 813 if (vm_swap_full()) 814 swap_reclaim_full_clusters(si, false); 815 816 if (order < PMD_ORDER) { 817 unsigned int frags = 0; 818 819 while (!list_empty(&si->nonfull_clusters[order])) { 820 ci = list_first_entry(&si->nonfull_clusters[order], 821 struct swap_cluster_info, list); 822 list_move_tail(&ci->list, &si->frag_clusters[order]); 823 ci->flags = CLUSTER_FLAG_FRAG; 824 si->frag_cluster_nr[order]++; 825 offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci), 826 &found, order, usage); 827 frags++; 828 if (found) 829 break; 830 } 831 832 if (!found) { 833 /* 834 * Nonfull clusters are moved to frag tail if we reached 835 * here, count them too, don't over scan the frag list. 836 */ 837 while (frags < si->frag_cluster_nr[order]) { 838 ci = list_first_entry(&si->frag_clusters[order], 839 struct swap_cluster_info, list); 840 /* 841 * Rotate the frag list to iterate, they were all failing 842 * high order allocation or moved here due to per-CPU usage, 843 * this help keeping usable cluster ahead. 844 */ 845 list_move_tail(&ci->list, &si->frag_clusters[order]); 846 offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci), 847 &found, order, usage); 848 frags++; 849 if (found) 850 break; 851 } 852 } 853 } 854 855 if (found) 856 goto done; 857 858 if (!list_empty(&si->discard_clusters)) { 859 /* 860 * we don't have free cluster but have some clusters in 861 * discarding, do discard now and reclaim them, then 862 * reread cluster_next_cpu since we dropped si->lock 863 */ 864 swap_do_scheduled_discard(si); 865 goto new_cluster; 866 } 867 868 if (order) 869 goto done; 870 871 /* Order 0 stealing from higher order */ 872 for (int o = 1; o < SWAP_NR_ORDERS; o++) { 873 /* 874 * Clusters here have at least one usable slots and can't fail order 0 875 * allocation, but reclaim may drop si->lock and race with another user. 876 */ 877 while (!list_empty(&si->frag_clusters[o])) { 878 ci = list_first_entry(&si->frag_clusters[o], 879 struct swap_cluster_info, list); 880 offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci), 881 &found, 0, usage); 882 if (found) 883 goto done; 884 } 885 886 while (!list_empty(&si->nonfull_clusters[o])) { 887 ci = list_first_entry(&si->nonfull_clusters[o], 888 struct swap_cluster_info, list); 889 offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci), 890 &found, 0, usage); 891 if (found) 892 goto done; 893 } 894 } 895 896 done: 897 cluster->next[order] = offset; 898 return found; 899 } 900 901 static void __del_from_avail_list(struct swap_info_struct *si) 902 { 903 int nid; 904 905 assert_spin_locked(&si->lock); 906 for_each_node(nid) 907 plist_del(&si->avail_lists[nid], &swap_avail_heads[nid]); 908 } 909 910 static void del_from_avail_list(struct swap_info_struct *si) 911 { 912 spin_lock(&swap_avail_lock); 913 __del_from_avail_list(si); 914 spin_unlock(&swap_avail_lock); 915 } 916 917 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 918 unsigned int nr_entries) 919 { 920 unsigned int end = offset + nr_entries - 1; 921 922 if (offset == si->lowest_bit) 923 si->lowest_bit += nr_entries; 924 if (end == si->highest_bit) 925 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries); 926 WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries); 927 if (si->inuse_pages == si->pages) { 928 si->lowest_bit = si->max; 929 si->highest_bit = 0; 930 del_from_avail_list(si); 931 932 if (vm_swap_full()) 933 schedule_work(&si->reclaim_work); 934 } 935 } 936 937 static void add_to_avail_list(struct swap_info_struct *si) 938 { 939 int nid; 940 941 spin_lock(&swap_avail_lock); 942 for_each_node(nid) 943 plist_add(&si->avail_lists[nid], &swap_avail_heads[nid]); 944 spin_unlock(&swap_avail_lock); 945 } 946 947 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 948 unsigned int nr_entries) 949 { 950 unsigned long begin = offset; 951 unsigned long end = offset + nr_entries - 1; 952 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 953 unsigned int i; 954 955 /* 956 * Use atomic clear_bit operations only on zeromap instead of non-atomic 957 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes. 958 */ 959 for (i = 0; i < nr_entries; i++) 960 clear_bit(offset + i, si->zeromap); 961 962 if (offset < si->lowest_bit) 963 si->lowest_bit = offset; 964 if (end > si->highest_bit) { 965 bool was_full = !si->highest_bit; 966 967 WRITE_ONCE(si->highest_bit, end); 968 if (was_full && (si->flags & SWP_WRITEOK)) 969 add_to_avail_list(si); 970 } 971 if (si->flags & SWP_BLKDEV) 972 swap_slot_free_notify = 973 si->bdev->bd_disk->fops->swap_slot_free_notify; 974 else 975 swap_slot_free_notify = NULL; 976 while (offset <= end) { 977 arch_swap_invalidate_page(si->type, offset); 978 if (swap_slot_free_notify) 979 swap_slot_free_notify(si->bdev, offset); 980 offset++; 981 } 982 clear_shadow_from_swap_cache(si->type, begin, end); 983 984 /* 985 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0 986 * only after the above cleanups are done. 987 */ 988 smp_wmb(); 989 atomic_long_add(nr_entries, &nr_swap_pages); 990 WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries); 991 } 992 993 static void set_cluster_next(struct swap_info_struct *si, unsigned long next) 994 { 995 unsigned long prev; 996 997 if (!(si->flags & SWP_SOLIDSTATE)) { 998 si->cluster_next = next; 999 return; 1000 } 1001 1002 prev = this_cpu_read(*si->cluster_next_cpu); 1003 /* 1004 * Cross the swap address space size aligned trunk, choose 1005 * another trunk randomly to avoid lock contention on swap 1006 * address space if possible. 1007 */ 1008 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) != 1009 (next >> SWAP_ADDRESS_SPACE_SHIFT)) { 1010 /* No free swap slots available */ 1011 if (si->highest_bit <= si->lowest_bit) 1012 return; 1013 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit); 1014 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES); 1015 next = max_t(unsigned int, next, si->lowest_bit); 1016 } 1017 this_cpu_write(*si->cluster_next_cpu, next); 1018 } 1019 1020 static bool swap_offset_available_and_locked(struct swap_info_struct *si, 1021 unsigned long offset) 1022 { 1023 if (data_race(!si->swap_map[offset])) { 1024 spin_lock(&si->lock); 1025 return true; 1026 } 1027 1028 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 1029 spin_lock(&si->lock); 1030 return true; 1031 } 1032 1033 return false; 1034 } 1035 1036 static int cluster_alloc_swap(struct swap_info_struct *si, 1037 unsigned char usage, int nr, 1038 swp_entry_t slots[], int order) 1039 { 1040 int n_ret = 0; 1041 1042 VM_BUG_ON(!si->cluster_info); 1043 1044 while (n_ret < nr) { 1045 unsigned long offset = cluster_alloc_swap_entry(si, order, usage); 1046 1047 if (!offset) 1048 break; 1049 slots[n_ret++] = swp_entry(si->type, offset); 1050 } 1051 1052 return n_ret; 1053 } 1054 1055 static int scan_swap_map_slots(struct swap_info_struct *si, 1056 unsigned char usage, int nr, 1057 swp_entry_t slots[], int order) 1058 { 1059 unsigned long offset; 1060 unsigned long scan_base; 1061 unsigned long last_in_cluster = 0; 1062 int latency_ration = LATENCY_LIMIT; 1063 unsigned int nr_pages = 1 << order; 1064 int n_ret = 0; 1065 bool scanned_many = false; 1066 1067 /* 1068 * We try to cluster swap pages by allocating them sequentially 1069 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 1070 * way, however, we resort to first-free allocation, starting 1071 * a new cluster. This prevents us from scattering swap pages 1072 * all over the entire swap partition, so that we reduce 1073 * overall disk seek times between swap pages. -- sct 1074 * But we do now try to find an empty cluster. -Andrea 1075 * And we let swap pages go all over an SSD partition. Hugh 1076 */ 1077 1078 if (order > 0) { 1079 /* 1080 * Should not even be attempting large allocations when huge 1081 * page swap is disabled. Warn and fail the allocation. 1082 */ 1083 if (!IS_ENABLED(CONFIG_THP_SWAP) || 1084 nr_pages > SWAPFILE_CLUSTER) { 1085 VM_WARN_ON_ONCE(1); 1086 return 0; 1087 } 1088 1089 /* 1090 * Swapfile is not block device or not using clusters so unable 1091 * to allocate large entries. 1092 */ 1093 if (!(si->flags & SWP_BLKDEV) || !si->cluster_info) 1094 return 0; 1095 } 1096 1097 if (si->cluster_info) 1098 return cluster_alloc_swap(si, usage, nr, slots, order); 1099 1100 si->flags += SWP_SCANNING; 1101 1102 /* For HDD, sequential access is more important. */ 1103 scan_base = si->cluster_next; 1104 offset = scan_base; 1105 1106 if (unlikely(!si->cluster_nr--)) { 1107 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 1108 si->cluster_nr = SWAPFILE_CLUSTER - 1; 1109 goto checks; 1110 } 1111 1112 spin_unlock(&si->lock); 1113 1114 /* 1115 * If seek is expensive, start searching for new cluster from 1116 * start of partition, to minimize the span of allocated swap. 1117 */ 1118 scan_base = offset = si->lowest_bit; 1119 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 1120 1121 /* Locate the first empty (unaligned) cluster */ 1122 for (; last_in_cluster <= READ_ONCE(si->highest_bit); offset++) { 1123 if (si->swap_map[offset]) 1124 last_in_cluster = offset + SWAPFILE_CLUSTER; 1125 else if (offset == last_in_cluster) { 1126 spin_lock(&si->lock); 1127 offset -= SWAPFILE_CLUSTER - 1; 1128 si->cluster_next = offset; 1129 si->cluster_nr = SWAPFILE_CLUSTER - 1; 1130 goto checks; 1131 } 1132 if (unlikely(--latency_ration < 0)) { 1133 cond_resched(); 1134 latency_ration = LATENCY_LIMIT; 1135 } 1136 } 1137 1138 offset = scan_base; 1139 spin_lock(&si->lock); 1140 si->cluster_nr = SWAPFILE_CLUSTER - 1; 1141 } 1142 1143 checks: 1144 if (!(si->flags & SWP_WRITEOK)) 1145 goto no_page; 1146 if (!si->highest_bit) 1147 goto no_page; 1148 if (offset > si->highest_bit) 1149 scan_base = offset = si->lowest_bit; 1150 1151 /* reuse swap entry of cache-only swap if not busy. */ 1152 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 1153 int swap_was_freed; 1154 spin_unlock(&si->lock); 1155 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY | TTRS_DIRECT); 1156 spin_lock(&si->lock); 1157 /* entry was freed successfully, try to use this again */ 1158 if (swap_was_freed > 0) 1159 goto checks; 1160 goto scan; /* check next one */ 1161 } 1162 1163 if (si->swap_map[offset]) { 1164 if (!n_ret) 1165 goto scan; 1166 else 1167 goto done; 1168 } 1169 memset(si->swap_map + offset, usage, nr_pages); 1170 1171 swap_range_alloc(si, offset, nr_pages); 1172 slots[n_ret++] = swp_entry(si->type, offset); 1173 1174 /* got enough slots or reach max slots? */ 1175 if ((n_ret == nr) || (offset >= si->highest_bit)) 1176 goto done; 1177 1178 /* search for next available slot */ 1179 1180 /* time to take a break? */ 1181 if (unlikely(--latency_ration < 0)) { 1182 if (n_ret) 1183 goto done; 1184 spin_unlock(&si->lock); 1185 cond_resched(); 1186 spin_lock(&si->lock); 1187 latency_ration = LATENCY_LIMIT; 1188 } 1189 1190 if (si->cluster_nr && !si->swap_map[++offset]) { 1191 /* non-ssd case, still more slots in cluster? */ 1192 --si->cluster_nr; 1193 goto checks; 1194 } 1195 1196 /* 1197 * Even if there's no free clusters available (fragmented), 1198 * try to scan a little more quickly with lock held unless we 1199 * have scanned too many slots already. 1200 */ 1201 if (!scanned_many) { 1202 unsigned long scan_limit; 1203 1204 if (offset < scan_base) 1205 scan_limit = scan_base; 1206 else 1207 scan_limit = si->highest_bit; 1208 for (; offset <= scan_limit && --latency_ration > 0; 1209 offset++) { 1210 if (!si->swap_map[offset]) 1211 goto checks; 1212 } 1213 } 1214 1215 done: 1216 if (order == 0) 1217 set_cluster_next(si, offset + 1); 1218 si->flags -= SWP_SCANNING; 1219 return n_ret; 1220 1221 scan: 1222 VM_WARN_ON(order > 0); 1223 spin_unlock(&si->lock); 1224 while (++offset <= READ_ONCE(si->highest_bit)) { 1225 if (unlikely(--latency_ration < 0)) { 1226 cond_resched(); 1227 latency_ration = LATENCY_LIMIT; 1228 scanned_many = true; 1229 } 1230 if (swap_offset_available_and_locked(si, offset)) 1231 goto checks; 1232 } 1233 offset = si->lowest_bit; 1234 while (offset < scan_base) { 1235 if (unlikely(--latency_ration < 0)) { 1236 cond_resched(); 1237 latency_ration = LATENCY_LIMIT; 1238 scanned_many = true; 1239 } 1240 if (swap_offset_available_and_locked(si, offset)) 1241 goto checks; 1242 offset++; 1243 } 1244 spin_lock(&si->lock); 1245 1246 no_page: 1247 si->flags -= SWP_SCANNING; 1248 return n_ret; 1249 } 1250 1251 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_order) 1252 { 1253 int order = swap_entry_order(entry_order); 1254 unsigned long size = 1 << order; 1255 struct swap_info_struct *si, *next; 1256 long avail_pgs; 1257 int n_ret = 0; 1258 int node; 1259 1260 spin_lock(&swap_avail_lock); 1261 1262 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 1263 if (avail_pgs <= 0) { 1264 spin_unlock(&swap_avail_lock); 1265 goto noswap; 1266 } 1267 1268 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs); 1269 1270 atomic_long_sub(n_goal * size, &nr_swap_pages); 1271 1272 start_over: 1273 node = numa_node_id(); 1274 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1275 /* requeue si to after same-priority siblings */ 1276 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1277 spin_unlock(&swap_avail_lock); 1278 spin_lock(&si->lock); 1279 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 1280 spin_lock(&swap_avail_lock); 1281 if (plist_node_empty(&si->avail_lists[node])) { 1282 spin_unlock(&si->lock); 1283 goto nextsi; 1284 } 1285 WARN(!si->highest_bit, 1286 "swap_info %d in list but !highest_bit\n", 1287 si->type); 1288 WARN(!(si->flags & SWP_WRITEOK), 1289 "swap_info %d in list but !SWP_WRITEOK\n", 1290 si->type); 1291 __del_from_avail_list(si); 1292 spin_unlock(&si->lock); 1293 goto nextsi; 1294 } 1295 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 1296 n_goal, swp_entries, order); 1297 spin_unlock(&si->lock); 1298 if (n_ret || size > 1) 1299 goto check_out; 1300 cond_resched(); 1301 1302 spin_lock(&swap_avail_lock); 1303 nextsi: 1304 /* 1305 * if we got here, it's likely that si was almost full before, 1306 * and since scan_swap_map_slots() can drop the si->lock, 1307 * multiple callers probably all tried to get a page from the 1308 * same si and it filled up before we could get one; or, the si 1309 * filled up between us dropping swap_avail_lock and taking 1310 * si->lock. Since we dropped the swap_avail_lock, the 1311 * swap_avail_head list may have been modified; so if next is 1312 * still in the swap_avail_head list then try it, otherwise 1313 * start over if we have not gotten any slots. 1314 */ 1315 if (plist_node_empty(&next->avail_lists[node])) 1316 goto start_over; 1317 } 1318 1319 spin_unlock(&swap_avail_lock); 1320 1321 check_out: 1322 if (n_ret < n_goal) 1323 atomic_long_add((long)(n_goal - n_ret) * size, 1324 &nr_swap_pages); 1325 noswap: 1326 return n_ret; 1327 } 1328 1329 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1330 { 1331 struct swap_info_struct *si; 1332 unsigned long offset; 1333 1334 if (!entry.val) 1335 goto out; 1336 si = swp_swap_info(entry); 1337 if (!si) 1338 goto bad_nofile; 1339 if (data_race(!(si->flags & SWP_USED))) 1340 goto bad_device; 1341 offset = swp_offset(entry); 1342 if (offset >= si->max) 1343 goto bad_offset; 1344 if (data_race(!si->swap_map[swp_offset(entry)])) 1345 goto bad_free; 1346 return si; 1347 1348 bad_free: 1349 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); 1350 goto out; 1351 bad_offset: 1352 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1353 goto out; 1354 bad_device: 1355 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); 1356 goto out; 1357 bad_nofile: 1358 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1359 out: 1360 return NULL; 1361 } 1362 1363 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1364 struct swap_info_struct *q) 1365 { 1366 struct swap_info_struct *p; 1367 1368 p = _swap_info_get(entry); 1369 1370 if (p != q) { 1371 if (q != NULL) 1372 spin_unlock(&q->lock); 1373 if (p != NULL) 1374 spin_lock(&p->lock); 1375 } 1376 return p; 1377 } 1378 1379 static unsigned char __swap_entry_free_locked(struct swap_info_struct *si, 1380 unsigned long offset, 1381 unsigned char usage) 1382 { 1383 unsigned char count; 1384 unsigned char has_cache; 1385 1386 count = si->swap_map[offset]; 1387 1388 has_cache = count & SWAP_HAS_CACHE; 1389 count &= ~SWAP_HAS_CACHE; 1390 1391 if (usage == SWAP_HAS_CACHE) { 1392 VM_BUG_ON(!has_cache); 1393 has_cache = 0; 1394 } else if (count == SWAP_MAP_SHMEM) { 1395 /* 1396 * Or we could insist on shmem.c using a special 1397 * swap_shmem_free() and free_shmem_swap_and_cache()... 1398 */ 1399 count = 0; 1400 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1401 if (count == COUNT_CONTINUED) { 1402 if (swap_count_continued(si, offset, count)) 1403 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1404 else 1405 count = SWAP_MAP_MAX; 1406 } else 1407 count--; 1408 } 1409 1410 usage = count | has_cache; 1411 if (usage) 1412 WRITE_ONCE(si->swap_map[offset], usage); 1413 else 1414 WRITE_ONCE(si->swap_map[offset], SWAP_HAS_CACHE); 1415 1416 return usage; 1417 } 1418 1419 /* 1420 * When we get a swap entry, if there aren't some other ways to 1421 * prevent swapoff, such as the folio in swap cache is locked, RCU 1422 * reader side is locked, etc., the swap entry may become invalid 1423 * because of swapoff. Then, we need to enclose all swap related 1424 * functions with get_swap_device() and put_swap_device(), unless the 1425 * swap functions call get/put_swap_device() by themselves. 1426 * 1427 * RCU reader side lock (including any spinlock) is sufficient to 1428 * prevent swapoff, because synchronize_rcu() is called in swapoff() 1429 * before freeing data structures. 1430 * 1431 * Check whether swap entry is valid in the swap device. If so, 1432 * return pointer to swap_info_struct, and keep the swap entry valid 1433 * via preventing the swap device from being swapoff, until 1434 * put_swap_device() is called. Otherwise return NULL. 1435 * 1436 * Notice that swapoff or swapoff+swapon can still happen before the 1437 * percpu_ref_tryget_live() in get_swap_device() or after the 1438 * percpu_ref_put() in put_swap_device() if there isn't any other way 1439 * to prevent swapoff. The caller must be prepared for that. For 1440 * example, the following situation is possible. 1441 * 1442 * CPU1 CPU2 1443 * do_swap_page() 1444 * ... swapoff+swapon 1445 * __read_swap_cache_async() 1446 * swapcache_prepare() 1447 * __swap_duplicate() 1448 * // check swap_map 1449 * // verify PTE not changed 1450 * 1451 * In __swap_duplicate(), the swap_map need to be checked before 1452 * changing partly because the specified swap entry may be for another 1453 * swap device which has been swapoff. And in do_swap_page(), after 1454 * the page is read from the swap device, the PTE is verified not 1455 * changed with the page table locked to check whether the swap device 1456 * has been swapoff or swapoff+swapon. 1457 */ 1458 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1459 { 1460 struct swap_info_struct *si; 1461 unsigned long offset; 1462 1463 if (!entry.val) 1464 goto out; 1465 si = swp_swap_info(entry); 1466 if (!si) 1467 goto bad_nofile; 1468 if (!percpu_ref_tryget_live(&si->users)) 1469 goto out; 1470 /* 1471 * Guarantee the si->users are checked before accessing other 1472 * fields of swap_info_struct. 1473 * 1474 * Paired with the spin_unlock() after setup_swap_info() in 1475 * enable_swap_info(). 1476 */ 1477 smp_rmb(); 1478 offset = swp_offset(entry); 1479 if (offset >= si->max) 1480 goto put_out; 1481 1482 return si; 1483 bad_nofile: 1484 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1485 out: 1486 return NULL; 1487 put_out: 1488 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1489 percpu_ref_put(&si->users); 1490 return NULL; 1491 } 1492 1493 static unsigned char __swap_entry_free(struct swap_info_struct *si, 1494 swp_entry_t entry) 1495 { 1496 struct swap_cluster_info *ci; 1497 unsigned long offset = swp_offset(entry); 1498 unsigned char usage; 1499 1500 ci = lock_cluster_or_swap_info(si, offset); 1501 usage = __swap_entry_free_locked(si, offset, 1); 1502 unlock_cluster_or_swap_info(si, ci); 1503 if (!usage) 1504 free_swap_slot(entry); 1505 1506 return usage; 1507 } 1508 1509 static bool __swap_entries_free(struct swap_info_struct *si, 1510 swp_entry_t entry, int nr) 1511 { 1512 unsigned long offset = swp_offset(entry); 1513 unsigned int type = swp_type(entry); 1514 struct swap_cluster_info *ci; 1515 bool has_cache = false; 1516 unsigned char count; 1517 int i; 1518 1519 if (nr <= 1 || swap_count(data_race(si->swap_map[offset])) != 1) 1520 goto fallback; 1521 /* cross into another cluster */ 1522 if (nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER) 1523 goto fallback; 1524 1525 ci = lock_cluster_or_swap_info(si, offset); 1526 if (!swap_is_last_map(si, offset, nr, &has_cache)) { 1527 unlock_cluster_or_swap_info(si, ci); 1528 goto fallback; 1529 } 1530 for (i = 0; i < nr; i++) 1531 WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE); 1532 unlock_cluster_or_swap_info(si, ci); 1533 1534 if (!has_cache) { 1535 for (i = 0; i < nr; i++) 1536 zswap_invalidate(swp_entry(si->type, offset + i)); 1537 spin_lock(&si->lock); 1538 swap_entry_range_free(si, entry, nr); 1539 spin_unlock(&si->lock); 1540 } 1541 return has_cache; 1542 1543 fallback: 1544 for (i = 0; i < nr; i++) { 1545 if (data_race(si->swap_map[offset + i])) { 1546 count = __swap_entry_free(si, swp_entry(type, offset + i)); 1547 if (count == SWAP_HAS_CACHE) 1548 has_cache = true; 1549 } else { 1550 WARN_ON_ONCE(1); 1551 } 1552 } 1553 return has_cache; 1554 } 1555 1556 /* 1557 * Drop the last HAS_CACHE flag of swap entries, caller have to 1558 * ensure all entries belong to the same cgroup. 1559 */ 1560 static void swap_entry_range_free(struct swap_info_struct *si, swp_entry_t entry, 1561 unsigned int nr_pages) 1562 { 1563 unsigned long offset = swp_offset(entry); 1564 unsigned char *map = si->swap_map + offset; 1565 unsigned char *map_end = map + nr_pages; 1566 struct swap_cluster_info *ci; 1567 1568 ci = lock_cluster(si, offset); 1569 do { 1570 VM_BUG_ON(*map != SWAP_HAS_CACHE); 1571 *map = 0; 1572 } while (++map < map_end); 1573 dec_cluster_info_page(si, ci, nr_pages); 1574 unlock_cluster(ci); 1575 1576 mem_cgroup_uncharge_swap(entry, nr_pages); 1577 swap_range_free(si, offset, nr_pages); 1578 } 1579 1580 static void cluster_swap_free_nr(struct swap_info_struct *si, 1581 unsigned long offset, int nr_pages, 1582 unsigned char usage) 1583 { 1584 struct swap_cluster_info *ci; 1585 DECLARE_BITMAP(to_free, BITS_PER_LONG) = { 0 }; 1586 int i, nr; 1587 1588 ci = lock_cluster_or_swap_info(si, offset); 1589 while (nr_pages) { 1590 nr = min(BITS_PER_LONG, nr_pages); 1591 for (i = 0; i < nr; i++) { 1592 if (!__swap_entry_free_locked(si, offset + i, usage)) 1593 bitmap_set(to_free, i, 1); 1594 } 1595 if (!bitmap_empty(to_free, BITS_PER_LONG)) { 1596 unlock_cluster_or_swap_info(si, ci); 1597 for_each_set_bit(i, to_free, BITS_PER_LONG) 1598 free_swap_slot(swp_entry(si->type, offset + i)); 1599 if (nr == nr_pages) 1600 return; 1601 bitmap_clear(to_free, 0, BITS_PER_LONG); 1602 ci = lock_cluster_or_swap_info(si, offset); 1603 } 1604 offset += nr; 1605 nr_pages -= nr; 1606 } 1607 unlock_cluster_or_swap_info(si, ci); 1608 } 1609 1610 /* 1611 * Caller has made sure that the swap device corresponding to entry 1612 * is still around or has not been recycled. 1613 */ 1614 void swap_free_nr(swp_entry_t entry, int nr_pages) 1615 { 1616 int nr; 1617 struct swap_info_struct *sis; 1618 unsigned long offset = swp_offset(entry); 1619 1620 sis = _swap_info_get(entry); 1621 if (!sis) 1622 return; 1623 1624 while (nr_pages) { 1625 nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER); 1626 cluster_swap_free_nr(sis, offset, nr, 1); 1627 offset += nr; 1628 nr_pages -= nr; 1629 } 1630 } 1631 1632 /* 1633 * Called after dropping swapcache to decrease refcnt to swap entries. 1634 */ 1635 void put_swap_folio(struct folio *folio, swp_entry_t entry) 1636 { 1637 unsigned long offset = swp_offset(entry); 1638 struct swap_cluster_info *ci; 1639 struct swap_info_struct *si; 1640 int size = 1 << swap_entry_order(folio_order(folio)); 1641 1642 si = _swap_info_get(entry); 1643 if (!si) 1644 return; 1645 1646 ci = lock_cluster_or_swap_info(si, offset); 1647 if (size > 1 && swap_is_has_cache(si, offset, size)) { 1648 unlock_cluster_or_swap_info(si, ci); 1649 spin_lock(&si->lock); 1650 swap_entry_range_free(si, entry, size); 1651 spin_unlock(&si->lock); 1652 return; 1653 } 1654 for (int i = 0; i < size; i++, entry.val++) { 1655 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { 1656 unlock_cluster_or_swap_info(si, ci); 1657 free_swap_slot(entry); 1658 if (i == size - 1) 1659 return; 1660 lock_cluster_or_swap_info(si, offset); 1661 } 1662 } 1663 unlock_cluster_or_swap_info(si, ci); 1664 } 1665 1666 static int swp_entry_cmp(const void *ent1, const void *ent2) 1667 { 1668 const swp_entry_t *e1 = ent1, *e2 = ent2; 1669 1670 return (int)swp_type(*e1) - (int)swp_type(*e2); 1671 } 1672 1673 void swapcache_free_entries(swp_entry_t *entries, int n) 1674 { 1675 struct swap_info_struct *p, *prev; 1676 int i; 1677 1678 if (n <= 0) 1679 return; 1680 1681 prev = NULL; 1682 p = NULL; 1683 1684 /* 1685 * Sort swap entries by swap device, so each lock is only taken once. 1686 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1687 * so low that it isn't necessary to optimize further. 1688 */ 1689 if (nr_swapfiles > 1) 1690 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1691 for (i = 0; i < n; ++i) { 1692 p = swap_info_get_cont(entries[i], prev); 1693 if (p) 1694 swap_entry_range_free(p, entries[i], 1); 1695 prev = p; 1696 } 1697 if (p) 1698 spin_unlock(&p->lock); 1699 } 1700 1701 int __swap_count(swp_entry_t entry) 1702 { 1703 struct swap_info_struct *si = swp_swap_info(entry); 1704 pgoff_t offset = swp_offset(entry); 1705 1706 return swap_count(si->swap_map[offset]); 1707 } 1708 1709 /* 1710 * How many references to @entry are currently swapped out? 1711 * This does not give an exact answer when swap count is continued, 1712 * but does include the high COUNT_CONTINUED flag to allow for that. 1713 */ 1714 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1715 { 1716 pgoff_t offset = swp_offset(entry); 1717 struct swap_cluster_info *ci; 1718 int count; 1719 1720 ci = lock_cluster_or_swap_info(si, offset); 1721 count = swap_count(si->swap_map[offset]); 1722 unlock_cluster_or_swap_info(si, ci); 1723 return count; 1724 } 1725 1726 /* 1727 * How many references to @entry are currently swapped out? 1728 * This considers COUNT_CONTINUED so it returns exact answer. 1729 */ 1730 int swp_swapcount(swp_entry_t entry) 1731 { 1732 int count, tmp_count, n; 1733 struct swap_info_struct *si; 1734 struct swap_cluster_info *ci; 1735 struct page *page; 1736 pgoff_t offset; 1737 unsigned char *map; 1738 1739 si = _swap_info_get(entry); 1740 if (!si) 1741 return 0; 1742 1743 offset = swp_offset(entry); 1744 1745 ci = lock_cluster_or_swap_info(si, offset); 1746 1747 count = swap_count(si->swap_map[offset]); 1748 if (!(count & COUNT_CONTINUED)) 1749 goto out; 1750 1751 count &= ~COUNT_CONTINUED; 1752 n = SWAP_MAP_MAX + 1; 1753 1754 page = vmalloc_to_page(si->swap_map + offset); 1755 offset &= ~PAGE_MASK; 1756 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1757 1758 do { 1759 page = list_next_entry(page, lru); 1760 map = kmap_local_page(page); 1761 tmp_count = map[offset]; 1762 kunmap_local(map); 1763 1764 count += (tmp_count & ~COUNT_CONTINUED) * n; 1765 n *= (SWAP_CONT_MAX + 1); 1766 } while (tmp_count & COUNT_CONTINUED); 1767 out: 1768 unlock_cluster_or_swap_info(si, ci); 1769 return count; 1770 } 1771 1772 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1773 swp_entry_t entry, int order) 1774 { 1775 struct swap_cluster_info *ci; 1776 unsigned char *map = si->swap_map; 1777 unsigned int nr_pages = 1 << order; 1778 unsigned long roffset = swp_offset(entry); 1779 unsigned long offset = round_down(roffset, nr_pages); 1780 int i; 1781 bool ret = false; 1782 1783 ci = lock_cluster_or_swap_info(si, offset); 1784 if (!ci || nr_pages == 1) { 1785 if (swap_count(map[roffset])) 1786 ret = true; 1787 goto unlock_out; 1788 } 1789 for (i = 0; i < nr_pages; i++) { 1790 if (swap_count(map[offset + i])) { 1791 ret = true; 1792 break; 1793 } 1794 } 1795 unlock_out: 1796 unlock_cluster_or_swap_info(si, ci); 1797 return ret; 1798 } 1799 1800 static bool folio_swapped(struct folio *folio) 1801 { 1802 swp_entry_t entry = folio->swap; 1803 struct swap_info_struct *si = _swap_info_get(entry); 1804 1805 if (!si) 1806 return false; 1807 1808 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio))) 1809 return swap_swapcount(si, entry) != 0; 1810 1811 return swap_page_trans_huge_swapped(si, entry, folio_order(folio)); 1812 } 1813 1814 static bool folio_swapcache_freeable(struct folio *folio) 1815 { 1816 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1817 1818 if (!folio_test_swapcache(folio)) 1819 return false; 1820 if (folio_test_writeback(folio)) 1821 return false; 1822 1823 /* 1824 * Once hibernation has begun to create its image of memory, 1825 * there's a danger that one of the calls to folio_free_swap() 1826 * - most probably a call from __try_to_reclaim_swap() while 1827 * hibernation is allocating its own swap pages for the image, 1828 * but conceivably even a call from memory reclaim - will free 1829 * the swap from a folio which has already been recorded in the 1830 * image as a clean swapcache folio, and then reuse its swap for 1831 * another page of the image. On waking from hibernation, the 1832 * original folio might be freed under memory pressure, then 1833 * later read back in from swap, now with the wrong data. 1834 * 1835 * Hibernation suspends storage while it is writing the image 1836 * to disk so check that here. 1837 */ 1838 if (pm_suspended_storage()) 1839 return false; 1840 1841 return true; 1842 } 1843 1844 /** 1845 * folio_free_swap() - Free the swap space used for this folio. 1846 * @folio: The folio to remove. 1847 * 1848 * If swap is getting full, or if there are no more mappings of this folio, 1849 * then call folio_free_swap to free its swap space. 1850 * 1851 * Return: true if we were able to release the swap space. 1852 */ 1853 bool folio_free_swap(struct folio *folio) 1854 { 1855 if (!folio_swapcache_freeable(folio)) 1856 return false; 1857 if (folio_swapped(folio)) 1858 return false; 1859 1860 delete_from_swap_cache(folio); 1861 folio_set_dirty(folio); 1862 return true; 1863 } 1864 1865 /** 1866 * free_swap_and_cache_nr() - Release reference on range of swap entries and 1867 * reclaim their cache if no more references remain. 1868 * @entry: First entry of range. 1869 * @nr: Number of entries in range. 1870 * 1871 * For each swap entry in the contiguous range, release a reference. If any swap 1872 * entries become free, try to reclaim their underlying folios, if present. The 1873 * offset range is defined by [entry.offset, entry.offset + nr). 1874 */ 1875 void free_swap_and_cache_nr(swp_entry_t entry, int nr) 1876 { 1877 const unsigned long start_offset = swp_offset(entry); 1878 const unsigned long end_offset = start_offset + nr; 1879 struct swap_info_struct *si; 1880 bool any_only_cache = false; 1881 unsigned long offset; 1882 1883 if (non_swap_entry(entry)) 1884 return; 1885 1886 si = get_swap_device(entry); 1887 if (!si) 1888 return; 1889 1890 if (WARN_ON(end_offset > si->max)) 1891 goto out; 1892 1893 /* 1894 * First free all entries in the range. 1895 */ 1896 any_only_cache = __swap_entries_free(si, entry, nr); 1897 1898 /* 1899 * Short-circuit the below loop if none of the entries had their 1900 * reference drop to zero. 1901 */ 1902 if (!any_only_cache) 1903 goto out; 1904 1905 /* 1906 * Now go back over the range trying to reclaim the swap cache. This is 1907 * more efficient for large folios because we will only try to reclaim 1908 * the swap once per folio in the common case. If we do 1909 * __swap_entry_free() and __try_to_reclaim_swap() in the same loop, the 1910 * latter will get a reference and lock the folio for every individual 1911 * page but will only succeed once the swap slot for every subpage is 1912 * zero. 1913 */ 1914 for (offset = start_offset; offset < end_offset; offset += nr) { 1915 nr = 1; 1916 if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 1917 /* 1918 * Folios are always naturally aligned in swap so 1919 * advance forward to the next boundary. Zero means no 1920 * folio was found for the swap entry, so advance by 1 1921 * in this case. Negative value means folio was found 1922 * but could not be reclaimed. Here we can still advance 1923 * to the next boundary. 1924 */ 1925 nr = __try_to_reclaim_swap(si, offset, 1926 TTRS_UNMAPPED | TTRS_FULL); 1927 if (nr == 0) 1928 nr = 1; 1929 else if (nr < 0) 1930 nr = -nr; 1931 nr = ALIGN(offset + 1, nr) - offset; 1932 } 1933 } 1934 1935 out: 1936 put_swap_device(si); 1937 } 1938 1939 #ifdef CONFIG_HIBERNATION 1940 1941 swp_entry_t get_swap_page_of_type(int type) 1942 { 1943 struct swap_info_struct *si = swap_type_to_swap_info(type); 1944 swp_entry_t entry = {0}; 1945 1946 if (!si) 1947 goto fail; 1948 1949 /* This is called for allocating swap entry, not cache */ 1950 spin_lock(&si->lock); 1951 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry, 0)) 1952 atomic_long_dec(&nr_swap_pages); 1953 spin_unlock(&si->lock); 1954 fail: 1955 return entry; 1956 } 1957 1958 /* 1959 * Find the swap type that corresponds to given device (if any). 1960 * 1961 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1962 * from 0, in which the swap header is expected to be located. 1963 * 1964 * This is needed for the suspend to disk (aka swsusp). 1965 */ 1966 int swap_type_of(dev_t device, sector_t offset) 1967 { 1968 int type; 1969 1970 if (!device) 1971 return -1; 1972 1973 spin_lock(&swap_lock); 1974 for (type = 0; type < nr_swapfiles; type++) { 1975 struct swap_info_struct *sis = swap_info[type]; 1976 1977 if (!(sis->flags & SWP_WRITEOK)) 1978 continue; 1979 1980 if (device == sis->bdev->bd_dev) { 1981 struct swap_extent *se = first_se(sis); 1982 1983 if (se->start_block == offset) { 1984 spin_unlock(&swap_lock); 1985 return type; 1986 } 1987 } 1988 } 1989 spin_unlock(&swap_lock); 1990 return -ENODEV; 1991 } 1992 1993 int find_first_swap(dev_t *device) 1994 { 1995 int type; 1996 1997 spin_lock(&swap_lock); 1998 for (type = 0; type < nr_swapfiles; type++) { 1999 struct swap_info_struct *sis = swap_info[type]; 2000 2001 if (!(sis->flags & SWP_WRITEOK)) 2002 continue; 2003 *device = sis->bdev->bd_dev; 2004 spin_unlock(&swap_lock); 2005 return type; 2006 } 2007 spin_unlock(&swap_lock); 2008 return -ENODEV; 2009 } 2010 2011 /* 2012 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 2013 * corresponding to given index in swap_info (swap type). 2014 */ 2015 sector_t swapdev_block(int type, pgoff_t offset) 2016 { 2017 struct swap_info_struct *si = swap_type_to_swap_info(type); 2018 struct swap_extent *se; 2019 2020 if (!si || !(si->flags & SWP_WRITEOK)) 2021 return 0; 2022 se = offset_to_swap_extent(si, offset); 2023 return se->start_block + (offset - se->start_page); 2024 } 2025 2026 /* 2027 * Return either the total number of swap pages of given type, or the number 2028 * of free pages of that type (depending on @free) 2029 * 2030 * This is needed for software suspend 2031 */ 2032 unsigned int count_swap_pages(int type, int free) 2033 { 2034 unsigned int n = 0; 2035 2036 spin_lock(&swap_lock); 2037 if ((unsigned int)type < nr_swapfiles) { 2038 struct swap_info_struct *sis = swap_info[type]; 2039 2040 spin_lock(&sis->lock); 2041 if (sis->flags & SWP_WRITEOK) { 2042 n = sis->pages; 2043 if (free) 2044 n -= sis->inuse_pages; 2045 } 2046 spin_unlock(&sis->lock); 2047 } 2048 spin_unlock(&swap_lock); 2049 return n; 2050 } 2051 #endif /* CONFIG_HIBERNATION */ 2052 2053 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 2054 { 2055 return pte_same(pte_swp_clear_flags(pte), swp_pte); 2056 } 2057 2058 /* 2059 * No need to decide whether this PTE shares the swap entry with others, 2060 * just let do_wp_page work it out if a write is requested later - to 2061 * force COW, vm_page_prot omits write permission from any private vma. 2062 */ 2063 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 2064 unsigned long addr, swp_entry_t entry, struct folio *folio) 2065 { 2066 struct page *page; 2067 struct folio *swapcache; 2068 spinlock_t *ptl; 2069 pte_t *pte, new_pte, old_pte; 2070 bool hwpoisoned = false; 2071 int ret = 1; 2072 2073 swapcache = folio; 2074 folio = ksm_might_need_to_copy(folio, vma, addr); 2075 if (unlikely(!folio)) 2076 return -ENOMEM; 2077 else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 2078 hwpoisoned = true; 2079 folio = swapcache; 2080 } 2081 2082 page = folio_file_page(folio, swp_offset(entry)); 2083 if (PageHWPoison(page)) 2084 hwpoisoned = true; 2085 2086 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 2087 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte), 2088 swp_entry_to_pte(entry)))) { 2089 ret = 0; 2090 goto out; 2091 } 2092 2093 old_pte = ptep_get(pte); 2094 2095 if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) { 2096 swp_entry_t swp_entry; 2097 2098 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 2099 if (hwpoisoned) { 2100 swp_entry = make_hwpoison_entry(page); 2101 } else { 2102 swp_entry = make_poisoned_swp_entry(); 2103 } 2104 new_pte = swp_entry_to_pte(swp_entry); 2105 ret = 0; 2106 goto setpte; 2107 } 2108 2109 /* 2110 * Some architectures may have to restore extra metadata to the page 2111 * when reading from swap. This metadata may be indexed by swap entry 2112 * so this must be called before swap_free(). 2113 */ 2114 arch_swap_restore(folio_swap(entry, folio), folio); 2115 2116 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 2117 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 2118 folio_get(folio); 2119 if (folio == swapcache) { 2120 rmap_t rmap_flags = RMAP_NONE; 2121 2122 /* 2123 * See do_swap_page(): writeback would be problematic. 2124 * However, we do a folio_wait_writeback() just before this 2125 * call and have the folio locked. 2126 */ 2127 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 2128 if (pte_swp_exclusive(old_pte)) 2129 rmap_flags |= RMAP_EXCLUSIVE; 2130 /* 2131 * We currently only expect small !anon folios, which are either 2132 * fully exclusive or fully shared. If we ever get large folios 2133 * here, we have to be careful. 2134 */ 2135 if (!folio_test_anon(folio)) { 2136 VM_WARN_ON_ONCE(folio_test_large(folio)); 2137 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 2138 folio_add_new_anon_rmap(folio, vma, addr, rmap_flags); 2139 } else { 2140 folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags); 2141 } 2142 } else { /* ksm created a completely new copy */ 2143 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 2144 folio_add_lru_vma(folio, vma); 2145 } 2146 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot)); 2147 if (pte_swp_soft_dirty(old_pte)) 2148 new_pte = pte_mksoft_dirty(new_pte); 2149 if (pte_swp_uffd_wp(old_pte)) 2150 new_pte = pte_mkuffd_wp(new_pte); 2151 setpte: 2152 set_pte_at(vma->vm_mm, addr, pte, new_pte); 2153 swap_free(entry); 2154 out: 2155 if (pte) 2156 pte_unmap_unlock(pte, ptl); 2157 if (folio != swapcache) { 2158 folio_unlock(folio); 2159 folio_put(folio); 2160 } 2161 return ret; 2162 } 2163 2164 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 2165 unsigned long addr, unsigned long end, 2166 unsigned int type) 2167 { 2168 pte_t *pte = NULL; 2169 struct swap_info_struct *si; 2170 2171 si = swap_info[type]; 2172 do { 2173 struct folio *folio; 2174 unsigned long offset; 2175 unsigned char swp_count; 2176 swp_entry_t entry; 2177 int ret; 2178 pte_t ptent; 2179 2180 if (!pte++) { 2181 pte = pte_offset_map(pmd, addr); 2182 if (!pte) 2183 break; 2184 } 2185 2186 ptent = ptep_get_lockless(pte); 2187 2188 if (!is_swap_pte(ptent)) 2189 continue; 2190 2191 entry = pte_to_swp_entry(ptent); 2192 if (swp_type(entry) != type) 2193 continue; 2194 2195 offset = swp_offset(entry); 2196 pte_unmap(pte); 2197 pte = NULL; 2198 2199 folio = swap_cache_get_folio(entry, vma, addr); 2200 if (!folio) { 2201 struct vm_fault vmf = { 2202 .vma = vma, 2203 .address = addr, 2204 .real_address = addr, 2205 .pmd = pmd, 2206 }; 2207 2208 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 2209 &vmf); 2210 } 2211 if (!folio) { 2212 swp_count = READ_ONCE(si->swap_map[offset]); 2213 if (swp_count == 0 || swp_count == SWAP_MAP_BAD) 2214 continue; 2215 return -ENOMEM; 2216 } 2217 2218 folio_lock(folio); 2219 folio_wait_writeback(folio); 2220 ret = unuse_pte(vma, pmd, addr, entry, folio); 2221 if (ret < 0) { 2222 folio_unlock(folio); 2223 folio_put(folio); 2224 return ret; 2225 } 2226 2227 folio_free_swap(folio); 2228 folio_unlock(folio); 2229 folio_put(folio); 2230 } while (addr += PAGE_SIZE, addr != end); 2231 2232 if (pte) 2233 pte_unmap(pte); 2234 return 0; 2235 } 2236 2237 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 2238 unsigned long addr, unsigned long end, 2239 unsigned int type) 2240 { 2241 pmd_t *pmd; 2242 unsigned long next; 2243 int ret; 2244 2245 pmd = pmd_offset(pud, addr); 2246 do { 2247 cond_resched(); 2248 next = pmd_addr_end(addr, end); 2249 ret = unuse_pte_range(vma, pmd, addr, next, type); 2250 if (ret) 2251 return ret; 2252 } while (pmd++, addr = next, addr != end); 2253 return 0; 2254 } 2255 2256 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 2257 unsigned long addr, unsigned long end, 2258 unsigned int type) 2259 { 2260 pud_t *pud; 2261 unsigned long next; 2262 int ret; 2263 2264 pud = pud_offset(p4d, addr); 2265 do { 2266 next = pud_addr_end(addr, end); 2267 if (pud_none_or_clear_bad(pud)) 2268 continue; 2269 ret = unuse_pmd_range(vma, pud, addr, next, type); 2270 if (ret) 2271 return ret; 2272 } while (pud++, addr = next, addr != end); 2273 return 0; 2274 } 2275 2276 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 2277 unsigned long addr, unsigned long end, 2278 unsigned int type) 2279 { 2280 p4d_t *p4d; 2281 unsigned long next; 2282 int ret; 2283 2284 p4d = p4d_offset(pgd, addr); 2285 do { 2286 next = p4d_addr_end(addr, end); 2287 if (p4d_none_or_clear_bad(p4d)) 2288 continue; 2289 ret = unuse_pud_range(vma, p4d, addr, next, type); 2290 if (ret) 2291 return ret; 2292 } while (p4d++, addr = next, addr != end); 2293 return 0; 2294 } 2295 2296 static int unuse_vma(struct vm_area_struct *vma, unsigned int type) 2297 { 2298 pgd_t *pgd; 2299 unsigned long addr, end, next; 2300 int ret; 2301 2302 addr = vma->vm_start; 2303 end = vma->vm_end; 2304 2305 pgd = pgd_offset(vma->vm_mm, addr); 2306 do { 2307 next = pgd_addr_end(addr, end); 2308 if (pgd_none_or_clear_bad(pgd)) 2309 continue; 2310 ret = unuse_p4d_range(vma, pgd, addr, next, type); 2311 if (ret) 2312 return ret; 2313 } while (pgd++, addr = next, addr != end); 2314 return 0; 2315 } 2316 2317 static int unuse_mm(struct mm_struct *mm, unsigned int type) 2318 { 2319 struct vm_area_struct *vma; 2320 int ret = 0; 2321 VMA_ITERATOR(vmi, mm, 0); 2322 2323 mmap_read_lock(mm); 2324 for_each_vma(vmi, vma) { 2325 if (vma->anon_vma && !is_vm_hugetlb_page(vma)) { 2326 ret = unuse_vma(vma, type); 2327 if (ret) 2328 break; 2329 } 2330 2331 cond_resched(); 2332 } 2333 mmap_read_unlock(mm); 2334 return ret; 2335 } 2336 2337 /* 2338 * Scan swap_map from current position to next entry still in use. 2339 * Return 0 if there are no inuse entries after prev till end of 2340 * the map. 2341 */ 2342 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 2343 unsigned int prev) 2344 { 2345 unsigned int i; 2346 unsigned char count; 2347 2348 /* 2349 * No need for swap_lock here: we're just looking 2350 * for whether an entry is in use, not modifying it; false 2351 * hits are okay, and sys_swapoff() has already prevented new 2352 * allocations from this area (while holding swap_lock). 2353 */ 2354 for (i = prev + 1; i < si->max; i++) { 2355 count = READ_ONCE(si->swap_map[i]); 2356 if (count && swap_count(count) != SWAP_MAP_BAD) 2357 break; 2358 if ((i % LATENCY_LIMIT) == 0) 2359 cond_resched(); 2360 } 2361 2362 if (i == si->max) 2363 i = 0; 2364 2365 return i; 2366 } 2367 2368 static int try_to_unuse(unsigned int type) 2369 { 2370 struct mm_struct *prev_mm; 2371 struct mm_struct *mm; 2372 struct list_head *p; 2373 int retval = 0; 2374 struct swap_info_struct *si = swap_info[type]; 2375 struct folio *folio; 2376 swp_entry_t entry; 2377 unsigned int i; 2378 2379 if (!READ_ONCE(si->inuse_pages)) 2380 goto success; 2381 2382 retry: 2383 retval = shmem_unuse(type); 2384 if (retval) 2385 return retval; 2386 2387 prev_mm = &init_mm; 2388 mmget(prev_mm); 2389 2390 spin_lock(&mmlist_lock); 2391 p = &init_mm.mmlist; 2392 while (READ_ONCE(si->inuse_pages) && 2393 !signal_pending(current) && 2394 (p = p->next) != &init_mm.mmlist) { 2395 2396 mm = list_entry(p, struct mm_struct, mmlist); 2397 if (!mmget_not_zero(mm)) 2398 continue; 2399 spin_unlock(&mmlist_lock); 2400 mmput(prev_mm); 2401 prev_mm = mm; 2402 retval = unuse_mm(mm, type); 2403 if (retval) { 2404 mmput(prev_mm); 2405 return retval; 2406 } 2407 2408 /* 2409 * Make sure that we aren't completely killing 2410 * interactive performance. 2411 */ 2412 cond_resched(); 2413 spin_lock(&mmlist_lock); 2414 } 2415 spin_unlock(&mmlist_lock); 2416 2417 mmput(prev_mm); 2418 2419 i = 0; 2420 while (READ_ONCE(si->inuse_pages) && 2421 !signal_pending(current) && 2422 (i = find_next_to_unuse(si, i)) != 0) { 2423 2424 entry = swp_entry(type, i); 2425 folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry)); 2426 if (IS_ERR(folio)) 2427 continue; 2428 2429 /* 2430 * It is conceivable that a racing task removed this folio from 2431 * swap cache just before we acquired the page lock. The folio 2432 * might even be back in swap cache on another swap area. But 2433 * that is okay, folio_free_swap() only removes stale folios. 2434 */ 2435 folio_lock(folio); 2436 folio_wait_writeback(folio); 2437 folio_free_swap(folio); 2438 folio_unlock(folio); 2439 folio_put(folio); 2440 } 2441 2442 /* 2443 * Lets check again to see if there are still swap entries in the map. 2444 * If yes, we would need to do retry the unuse logic again. 2445 * Under global memory pressure, swap entries can be reinserted back 2446 * into process space after the mmlist loop above passes over them. 2447 * 2448 * Limit the number of retries? No: when mmget_not_zero() 2449 * above fails, that mm is likely to be freeing swap from 2450 * exit_mmap(), which proceeds at its own independent pace; 2451 * and even shmem_writepage() could have been preempted after 2452 * folio_alloc_swap(), temporarily hiding that swap. It's easy 2453 * and robust (though cpu-intensive) just to keep retrying. 2454 */ 2455 if (READ_ONCE(si->inuse_pages)) { 2456 if (!signal_pending(current)) 2457 goto retry; 2458 return -EINTR; 2459 } 2460 2461 success: 2462 /* 2463 * Make sure that further cleanups after try_to_unuse() returns happen 2464 * after swap_range_free() reduces si->inuse_pages to 0. 2465 */ 2466 smp_mb(); 2467 return 0; 2468 } 2469 2470 /* 2471 * After a successful try_to_unuse, if no swap is now in use, we know 2472 * we can empty the mmlist. swap_lock must be held on entry and exit. 2473 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2474 * added to the mmlist just after page_duplicate - before would be racy. 2475 */ 2476 static void drain_mmlist(void) 2477 { 2478 struct list_head *p, *next; 2479 unsigned int type; 2480 2481 for (type = 0; type < nr_swapfiles; type++) 2482 if (swap_info[type]->inuse_pages) 2483 return; 2484 spin_lock(&mmlist_lock); 2485 list_for_each_safe(p, next, &init_mm.mmlist) 2486 list_del_init(p); 2487 spin_unlock(&mmlist_lock); 2488 } 2489 2490 /* 2491 * Free all of a swapdev's extent information 2492 */ 2493 static void destroy_swap_extents(struct swap_info_struct *sis) 2494 { 2495 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2496 struct rb_node *rb = sis->swap_extent_root.rb_node; 2497 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2498 2499 rb_erase(rb, &sis->swap_extent_root); 2500 kfree(se); 2501 } 2502 2503 if (sis->flags & SWP_ACTIVATED) { 2504 struct file *swap_file = sis->swap_file; 2505 struct address_space *mapping = swap_file->f_mapping; 2506 2507 sis->flags &= ~SWP_ACTIVATED; 2508 if (mapping->a_ops->swap_deactivate) 2509 mapping->a_ops->swap_deactivate(swap_file); 2510 } 2511 } 2512 2513 /* 2514 * Add a block range (and the corresponding page range) into this swapdev's 2515 * extent tree. 2516 * 2517 * This function rather assumes that it is called in ascending page order. 2518 */ 2519 int 2520 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2521 unsigned long nr_pages, sector_t start_block) 2522 { 2523 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2524 struct swap_extent *se; 2525 struct swap_extent *new_se; 2526 2527 /* 2528 * place the new node at the right most since the 2529 * function is called in ascending page order. 2530 */ 2531 while (*link) { 2532 parent = *link; 2533 link = &parent->rb_right; 2534 } 2535 2536 if (parent) { 2537 se = rb_entry(parent, struct swap_extent, rb_node); 2538 BUG_ON(se->start_page + se->nr_pages != start_page); 2539 if (se->start_block + se->nr_pages == start_block) { 2540 /* Merge it */ 2541 se->nr_pages += nr_pages; 2542 return 0; 2543 } 2544 } 2545 2546 /* No merge, insert a new extent. */ 2547 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2548 if (new_se == NULL) 2549 return -ENOMEM; 2550 new_se->start_page = start_page; 2551 new_se->nr_pages = nr_pages; 2552 new_se->start_block = start_block; 2553 2554 rb_link_node(&new_se->rb_node, parent, link); 2555 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2556 return 1; 2557 } 2558 EXPORT_SYMBOL_GPL(add_swap_extent); 2559 2560 /* 2561 * A `swap extent' is a simple thing which maps a contiguous range of pages 2562 * onto a contiguous range of disk blocks. A rbtree of swap extents is 2563 * built at swapon time and is then used at swap_writepage/swap_read_folio 2564 * time for locating where on disk a page belongs. 2565 * 2566 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2567 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2568 * swap files identically. 2569 * 2570 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2571 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2572 * swapfiles are handled *identically* after swapon time. 2573 * 2574 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2575 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray 2576 * blocks are found which do not fall within the PAGE_SIZE alignment 2577 * requirements, they are simply tossed out - we will never use those blocks 2578 * for swapping. 2579 * 2580 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2581 * prevents users from writing to the swap device, which will corrupt memory. 2582 * 2583 * The amount of disk space which a single swap extent represents varies. 2584 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2585 * extents in the rbtree. - akpm. 2586 */ 2587 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2588 { 2589 struct file *swap_file = sis->swap_file; 2590 struct address_space *mapping = swap_file->f_mapping; 2591 struct inode *inode = mapping->host; 2592 int ret; 2593 2594 if (S_ISBLK(inode->i_mode)) { 2595 ret = add_swap_extent(sis, 0, sis->max, 0); 2596 *span = sis->pages; 2597 return ret; 2598 } 2599 2600 if (mapping->a_ops->swap_activate) { 2601 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2602 if (ret < 0) 2603 return ret; 2604 sis->flags |= SWP_ACTIVATED; 2605 if ((sis->flags & SWP_FS_OPS) && 2606 sio_pool_init() != 0) { 2607 destroy_swap_extents(sis); 2608 return -ENOMEM; 2609 } 2610 return ret; 2611 } 2612 2613 return generic_swapfile_activate(sis, swap_file, span); 2614 } 2615 2616 static int swap_node(struct swap_info_struct *si) 2617 { 2618 struct block_device *bdev; 2619 2620 if (si->bdev) 2621 bdev = si->bdev; 2622 else 2623 bdev = si->swap_file->f_inode->i_sb->s_bdev; 2624 2625 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2626 } 2627 2628 static void setup_swap_info(struct swap_info_struct *si, int prio, 2629 unsigned char *swap_map, 2630 struct swap_cluster_info *cluster_info, 2631 unsigned long *zeromap) 2632 { 2633 int i; 2634 2635 if (prio >= 0) 2636 si->prio = prio; 2637 else 2638 si->prio = --least_priority; 2639 /* 2640 * the plist prio is negated because plist ordering is 2641 * low-to-high, while swap ordering is high-to-low 2642 */ 2643 si->list.prio = -si->prio; 2644 for_each_node(i) { 2645 if (si->prio >= 0) 2646 si->avail_lists[i].prio = -si->prio; 2647 else { 2648 if (swap_node(si) == i) 2649 si->avail_lists[i].prio = 1; 2650 else 2651 si->avail_lists[i].prio = -si->prio; 2652 } 2653 } 2654 si->swap_map = swap_map; 2655 si->cluster_info = cluster_info; 2656 si->zeromap = zeromap; 2657 } 2658 2659 static void _enable_swap_info(struct swap_info_struct *si) 2660 { 2661 si->flags |= SWP_WRITEOK; 2662 atomic_long_add(si->pages, &nr_swap_pages); 2663 total_swap_pages += si->pages; 2664 2665 assert_spin_locked(&swap_lock); 2666 /* 2667 * both lists are plists, and thus priority ordered. 2668 * swap_active_head needs to be priority ordered for swapoff(), 2669 * which on removal of any swap_info_struct with an auto-assigned 2670 * (i.e. negative) priority increments the auto-assigned priority 2671 * of any lower-priority swap_info_structs. 2672 * swap_avail_head needs to be priority ordered for folio_alloc_swap(), 2673 * which allocates swap pages from the highest available priority 2674 * swap_info_struct. 2675 */ 2676 plist_add(&si->list, &swap_active_head); 2677 2678 /* add to available list iff swap device is not full */ 2679 if (si->highest_bit) 2680 add_to_avail_list(si); 2681 } 2682 2683 static void enable_swap_info(struct swap_info_struct *si, int prio, 2684 unsigned char *swap_map, 2685 struct swap_cluster_info *cluster_info, 2686 unsigned long *zeromap) 2687 { 2688 spin_lock(&swap_lock); 2689 spin_lock(&si->lock); 2690 setup_swap_info(si, prio, swap_map, cluster_info, zeromap); 2691 spin_unlock(&si->lock); 2692 spin_unlock(&swap_lock); 2693 /* 2694 * Finished initializing swap device, now it's safe to reference it. 2695 */ 2696 percpu_ref_resurrect(&si->users); 2697 spin_lock(&swap_lock); 2698 spin_lock(&si->lock); 2699 _enable_swap_info(si); 2700 spin_unlock(&si->lock); 2701 spin_unlock(&swap_lock); 2702 } 2703 2704 static void reinsert_swap_info(struct swap_info_struct *si) 2705 { 2706 spin_lock(&swap_lock); 2707 spin_lock(&si->lock); 2708 setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap); 2709 _enable_swap_info(si); 2710 spin_unlock(&si->lock); 2711 spin_unlock(&swap_lock); 2712 } 2713 2714 static bool __has_usable_swap(void) 2715 { 2716 return !plist_head_empty(&swap_active_head); 2717 } 2718 2719 bool has_usable_swap(void) 2720 { 2721 bool ret; 2722 2723 spin_lock(&swap_lock); 2724 ret = __has_usable_swap(); 2725 spin_unlock(&swap_lock); 2726 return ret; 2727 } 2728 2729 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2730 { 2731 struct swap_info_struct *p = NULL; 2732 unsigned char *swap_map; 2733 unsigned long *zeromap; 2734 struct swap_cluster_info *cluster_info; 2735 struct file *swap_file, *victim; 2736 struct address_space *mapping; 2737 struct inode *inode; 2738 struct filename *pathname; 2739 int err, found = 0; 2740 2741 if (!capable(CAP_SYS_ADMIN)) 2742 return -EPERM; 2743 2744 BUG_ON(!current->mm); 2745 2746 pathname = getname(specialfile); 2747 if (IS_ERR(pathname)) 2748 return PTR_ERR(pathname); 2749 2750 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2751 err = PTR_ERR(victim); 2752 if (IS_ERR(victim)) 2753 goto out; 2754 2755 mapping = victim->f_mapping; 2756 spin_lock(&swap_lock); 2757 plist_for_each_entry(p, &swap_active_head, list) { 2758 if (p->flags & SWP_WRITEOK) { 2759 if (p->swap_file->f_mapping == mapping) { 2760 found = 1; 2761 break; 2762 } 2763 } 2764 } 2765 if (!found) { 2766 err = -EINVAL; 2767 spin_unlock(&swap_lock); 2768 goto out_dput; 2769 } 2770 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2771 vm_unacct_memory(p->pages); 2772 else { 2773 err = -ENOMEM; 2774 spin_unlock(&swap_lock); 2775 goto out_dput; 2776 } 2777 spin_lock(&p->lock); 2778 del_from_avail_list(p); 2779 if (p->prio < 0) { 2780 struct swap_info_struct *si = p; 2781 int nid; 2782 2783 plist_for_each_entry_continue(si, &swap_active_head, list) { 2784 si->prio++; 2785 si->list.prio--; 2786 for_each_node(nid) { 2787 if (si->avail_lists[nid].prio != 1) 2788 si->avail_lists[nid].prio--; 2789 } 2790 } 2791 least_priority++; 2792 } 2793 plist_del(&p->list, &swap_active_head); 2794 atomic_long_sub(p->pages, &nr_swap_pages); 2795 total_swap_pages -= p->pages; 2796 p->flags &= ~SWP_WRITEOK; 2797 spin_unlock(&p->lock); 2798 spin_unlock(&swap_lock); 2799 2800 disable_swap_slots_cache_lock(); 2801 2802 set_current_oom_origin(); 2803 err = try_to_unuse(p->type); 2804 clear_current_oom_origin(); 2805 2806 if (err) { 2807 /* re-insert swap space back into swap_list */ 2808 reinsert_swap_info(p); 2809 reenable_swap_slots_cache_unlock(); 2810 goto out_dput; 2811 } 2812 2813 reenable_swap_slots_cache_unlock(); 2814 2815 /* 2816 * Wait for swap operations protected by get/put_swap_device() 2817 * to complete. Because of synchronize_rcu() here, all swap 2818 * operations protected by RCU reader side lock (including any 2819 * spinlock) will be waited too. This makes it easy to 2820 * prevent folio_test_swapcache() and the following swap cache 2821 * operations from racing with swapoff. 2822 */ 2823 percpu_ref_kill(&p->users); 2824 synchronize_rcu(); 2825 wait_for_completion(&p->comp); 2826 2827 flush_work(&p->discard_work); 2828 flush_work(&p->reclaim_work); 2829 2830 destroy_swap_extents(p); 2831 if (p->flags & SWP_CONTINUED) 2832 free_swap_count_continuations(p); 2833 2834 if (!p->bdev || !bdev_nonrot(p->bdev)) 2835 atomic_dec(&nr_rotate_swap); 2836 2837 mutex_lock(&swapon_mutex); 2838 spin_lock(&swap_lock); 2839 spin_lock(&p->lock); 2840 drain_mmlist(); 2841 2842 /* wait for anyone still in scan_swap_map_slots */ 2843 p->highest_bit = 0; /* cuts scans short */ 2844 while (p->flags >= SWP_SCANNING) { 2845 spin_unlock(&p->lock); 2846 spin_unlock(&swap_lock); 2847 schedule_timeout_uninterruptible(1); 2848 spin_lock(&swap_lock); 2849 spin_lock(&p->lock); 2850 } 2851 2852 swap_file = p->swap_file; 2853 p->swap_file = NULL; 2854 p->max = 0; 2855 swap_map = p->swap_map; 2856 p->swap_map = NULL; 2857 zeromap = p->zeromap; 2858 p->zeromap = NULL; 2859 cluster_info = p->cluster_info; 2860 p->cluster_info = NULL; 2861 spin_unlock(&p->lock); 2862 spin_unlock(&swap_lock); 2863 arch_swap_invalidate_area(p->type); 2864 zswap_swapoff(p->type); 2865 mutex_unlock(&swapon_mutex); 2866 free_percpu(p->percpu_cluster); 2867 p->percpu_cluster = NULL; 2868 free_percpu(p->cluster_next_cpu); 2869 p->cluster_next_cpu = NULL; 2870 vfree(swap_map); 2871 kvfree(zeromap); 2872 kvfree(cluster_info); 2873 /* Destroy swap account information */ 2874 swap_cgroup_swapoff(p->type); 2875 exit_swap_address_space(p->type); 2876 2877 inode = mapping->host; 2878 2879 inode_lock(inode); 2880 inode->i_flags &= ~S_SWAPFILE; 2881 inode_unlock(inode); 2882 filp_close(swap_file, NULL); 2883 2884 /* 2885 * Clear the SWP_USED flag after all resources are freed so that swapon 2886 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2887 * not hold p->lock after we cleared its SWP_WRITEOK. 2888 */ 2889 spin_lock(&swap_lock); 2890 p->flags = 0; 2891 spin_unlock(&swap_lock); 2892 2893 err = 0; 2894 atomic_inc(&proc_poll_event); 2895 wake_up_interruptible(&proc_poll_wait); 2896 2897 out_dput: 2898 filp_close(victim, NULL); 2899 out: 2900 putname(pathname); 2901 return err; 2902 } 2903 2904 #ifdef CONFIG_PROC_FS 2905 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2906 { 2907 struct seq_file *seq = file->private_data; 2908 2909 poll_wait(file, &proc_poll_wait, wait); 2910 2911 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2912 seq->poll_event = atomic_read(&proc_poll_event); 2913 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2914 } 2915 2916 return EPOLLIN | EPOLLRDNORM; 2917 } 2918 2919 /* iterator */ 2920 static void *swap_start(struct seq_file *swap, loff_t *pos) 2921 { 2922 struct swap_info_struct *si; 2923 int type; 2924 loff_t l = *pos; 2925 2926 mutex_lock(&swapon_mutex); 2927 2928 if (!l) 2929 return SEQ_START_TOKEN; 2930 2931 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2932 if (!(si->flags & SWP_USED) || !si->swap_map) 2933 continue; 2934 if (!--l) 2935 return si; 2936 } 2937 2938 return NULL; 2939 } 2940 2941 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2942 { 2943 struct swap_info_struct *si = v; 2944 int type; 2945 2946 if (v == SEQ_START_TOKEN) 2947 type = 0; 2948 else 2949 type = si->type + 1; 2950 2951 ++(*pos); 2952 for (; (si = swap_type_to_swap_info(type)); type++) { 2953 if (!(si->flags & SWP_USED) || !si->swap_map) 2954 continue; 2955 return si; 2956 } 2957 2958 return NULL; 2959 } 2960 2961 static void swap_stop(struct seq_file *swap, void *v) 2962 { 2963 mutex_unlock(&swapon_mutex); 2964 } 2965 2966 static int swap_show(struct seq_file *swap, void *v) 2967 { 2968 struct swap_info_struct *si = v; 2969 struct file *file; 2970 int len; 2971 unsigned long bytes, inuse; 2972 2973 if (si == SEQ_START_TOKEN) { 2974 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 2975 return 0; 2976 } 2977 2978 bytes = K(si->pages); 2979 inuse = K(READ_ONCE(si->inuse_pages)); 2980 2981 file = si->swap_file; 2982 len = seq_file_path(swap, file, " \t\n\\"); 2983 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n", 2984 len < 40 ? 40 - len : 1, " ", 2985 S_ISBLK(file_inode(file)->i_mode) ? 2986 "partition" : "file\t", 2987 bytes, bytes < 10000000 ? "\t" : "", 2988 inuse, inuse < 10000000 ? "\t" : "", 2989 si->prio); 2990 return 0; 2991 } 2992 2993 static const struct seq_operations swaps_op = { 2994 .start = swap_start, 2995 .next = swap_next, 2996 .stop = swap_stop, 2997 .show = swap_show 2998 }; 2999 3000 static int swaps_open(struct inode *inode, struct file *file) 3001 { 3002 struct seq_file *seq; 3003 int ret; 3004 3005 ret = seq_open(file, &swaps_op); 3006 if (ret) 3007 return ret; 3008 3009 seq = file->private_data; 3010 seq->poll_event = atomic_read(&proc_poll_event); 3011 return 0; 3012 } 3013 3014 static const struct proc_ops swaps_proc_ops = { 3015 .proc_flags = PROC_ENTRY_PERMANENT, 3016 .proc_open = swaps_open, 3017 .proc_read = seq_read, 3018 .proc_lseek = seq_lseek, 3019 .proc_release = seq_release, 3020 .proc_poll = swaps_poll, 3021 }; 3022 3023 static int __init procswaps_init(void) 3024 { 3025 proc_create("swaps", 0, NULL, &swaps_proc_ops); 3026 return 0; 3027 } 3028 __initcall(procswaps_init); 3029 #endif /* CONFIG_PROC_FS */ 3030 3031 #ifdef MAX_SWAPFILES_CHECK 3032 static int __init max_swapfiles_check(void) 3033 { 3034 MAX_SWAPFILES_CHECK(); 3035 return 0; 3036 } 3037 late_initcall(max_swapfiles_check); 3038 #endif 3039 3040 static struct swap_info_struct *alloc_swap_info(void) 3041 { 3042 struct swap_info_struct *p; 3043 struct swap_info_struct *defer = NULL; 3044 unsigned int type; 3045 int i; 3046 3047 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 3048 if (!p) 3049 return ERR_PTR(-ENOMEM); 3050 3051 if (percpu_ref_init(&p->users, swap_users_ref_free, 3052 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { 3053 kvfree(p); 3054 return ERR_PTR(-ENOMEM); 3055 } 3056 3057 spin_lock(&swap_lock); 3058 for (type = 0; type < nr_swapfiles; type++) { 3059 if (!(swap_info[type]->flags & SWP_USED)) 3060 break; 3061 } 3062 if (type >= MAX_SWAPFILES) { 3063 spin_unlock(&swap_lock); 3064 percpu_ref_exit(&p->users); 3065 kvfree(p); 3066 return ERR_PTR(-EPERM); 3067 } 3068 if (type >= nr_swapfiles) { 3069 p->type = type; 3070 /* 3071 * Publish the swap_info_struct after initializing it. 3072 * Note that kvzalloc() above zeroes all its fields. 3073 */ 3074 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ 3075 nr_swapfiles++; 3076 } else { 3077 defer = p; 3078 p = swap_info[type]; 3079 /* 3080 * Do not memset this entry: a racing procfs swap_next() 3081 * would be relying on p->type to remain valid. 3082 */ 3083 } 3084 p->swap_extent_root = RB_ROOT; 3085 plist_node_init(&p->list, 0); 3086 for_each_node(i) 3087 plist_node_init(&p->avail_lists[i], 0); 3088 p->flags = SWP_USED; 3089 spin_unlock(&swap_lock); 3090 if (defer) { 3091 percpu_ref_exit(&defer->users); 3092 kvfree(defer); 3093 } 3094 spin_lock_init(&p->lock); 3095 spin_lock_init(&p->cont_lock); 3096 init_completion(&p->comp); 3097 3098 return p; 3099 } 3100 3101 static int claim_swapfile(struct swap_info_struct *si, struct inode *inode) 3102 { 3103 if (S_ISBLK(inode->i_mode)) { 3104 si->bdev = I_BDEV(inode); 3105 /* 3106 * Zoned block devices contain zones that have a sequential 3107 * write only restriction. Hence zoned block devices are not 3108 * suitable for swapping. Disallow them here. 3109 */ 3110 if (bdev_is_zoned(si->bdev)) 3111 return -EINVAL; 3112 si->flags |= SWP_BLKDEV; 3113 } else if (S_ISREG(inode->i_mode)) { 3114 si->bdev = inode->i_sb->s_bdev; 3115 } 3116 3117 return 0; 3118 } 3119 3120 3121 /* 3122 * Find out how many pages are allowed for a single swap device. There 3123 * are two limiting factors: 3124 * 1) the number of bits for the swap offset in the swp_entry_t type, and 3125 * 2) the number of bits in the swap pte, as defined by the different 3126 * architectures. 3127 * 3128 * In order to find the largest possible bit mask, a swap entry with 3129 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 3130 * decoded to a swp_entry_t again, and finally the swap offset is 3131 * extracted. 3132 * 3133 * This will mask all the bits from the initial ~0UL mask that can't 3134 * be encoded in either the swp_entry_t or the architecture definition 3135 * of a swap pte. 3136 */ 3137 unsigned long generic_max_swapfile_size(void) 3138 { 3139 return swp_offset(pte_to_swp_entry( 3140 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 3141 } 3142 3143 /* Can be overridden by an architecture for additional checks. */ 3144 __weak unsigned long arch_max_swapfile_size(void) 3145 { 3146 return generic_max_swapfile_size(); 3147 } 3148 3149 static unsigned long read_swap_header(struct swap_info_struct *si, 3150 union swap_header *swap_header, 3151 struct inode *inode) 3152 { 3153 int i; 3154 unsigned long maxpages; 3155 unsigned long swapfilepages; 3156 unsigned long last_page; 3157 3158 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 3159 pr_err("Unable to find swap-space signature\n"); 3160 return 0; 3161 } 3162 3163 /* swap partition endianness hack... */ 3164 if (swab32(swap_header->info.version) == 1) { 3165 swab32s(&swap_header->info.version); 3166 swab32s(&swap_header->info.last_page); 3167 swab32s(&swap_header->info.nr_badpages); 3168 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 3169 return 0; 3170 for (i = 0; i < swap_header->info.nr_badpages; i++) 3171 swab32s(&swap_header->info.badpages[i]); 3172 } 3173 /* Check the swap header's sub-version */ 3174 if (swap_header->info.version != 1) { 3175 pr_warn("Unable to handle swap header version %d\n", 3176 swap_header->info.version); 3177 return 0; 3178 } 3179 3180 si->lowest_bit = 1; 3181 si->cluster_next = 1; 3182 si->cluster_nr = 0; 3183 3184 maxpages = swapfile_maximum_size; 3185 last_page = swap_header->info.last_page; 3186 if (!last_page) { 3187 pr_warn("Empty swap-file\n"); 3188 return 0; 3189 } 3190 if (last_page > maxpages) { 3191 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 3192 K(maxpages), K(last_page)); 3193 } 3194 if (maxpages > last_page) { 3195 maxpages = last_page + 1; 3196 /* p->max is an unsigned int: don't overflow it */ 3197 if ((unsigned int)maxpages == 0) 3198 maxpages = UINT_MAX; 3199 } 3200 si->highest_bit = maxpages - 1; 3201 3202 if (!maxpages) 3203 return 0; 3204 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 3205 if (swapfilepages && maxpages > swapfilepages) { 3206 pr_warn("Swap area shorter than signature indicates\n"); 3207 return 0; 3208 } 3209 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 3210 return 0; 3211 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 3212 return 0; 3213 3214 return maxpages; 3215 } 3216 3217 #define SWAP_CLUSTER_INFO_COLS \ 3218 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 3219 #define SWAP_CLUSTER_SPACE_COLS \ 3220 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 3221 #define SWAP_CLUSTER_COLS \ 3222 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 3223 3224 static int setup_swap_map_and_extents(struct swap_info_struct *si, 3225 union swap_header *swap_header, 3226 unsigned char *swap_map, 3227 unsigned long maxpages, 3228 sector_t *span) 3229 { 3230 unsigned int nr_good_pages; 3231 unsigned long i; 3232 int nr_extents; 3233 3234 nr_good_pages = maxpages - 1; /* omit header page */ 3235 3236 for (i = 0; i < swap_header->info.nr_badpages; i++) { 3237 unsigned int page_nr = swap_header->info.badpages[i]; 3238 if (page_nr == 0 || page_nr > swap_header->info.last_page) 3239 return -EINVAL; 3240 if (page_nr < maxpages) { 3241 swap_map[page_nr] = SWAP_MAP_BAD; 3242 nr_good_pages--; 3243 } 3244 } 3245 3246 if (nr_good_pages) { 3247 swap_map[0] = SWAP_MAP_BAD; 3248 si->max = maxpages; 3249 si->pages = nr_good_pages; 3250 nr_extents = setup_swap_extents(si, span); 3251 if (nr_extents < 0) 3252 return nr_extents; 3253 nr_good_pages = si->pages; 3254 } 3255 if (!nr_good_pages) { 3256 pr_warn("Empty swap-file\n"); 3257 return -EINVAL; 3258 } 3259 3260 return nr_extents; 3261 } 3262 3263 static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si, 3264 union swap_header *swap_header, 3265 unsigned long maxpages) 3266 { 3267 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3268 unsigned long col = si->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 3269 struct swap_cluster_info *cluster_info; 3270 unsigned long i, j, k, idx; 3271 int cpu, err = -ENOMEM; 3272 3273 cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL); 3274 if (!cluster_info) 3275 goto err; 3276 3277 for (i = 0; i < nr_clusters; i++) 3278 spin_lock_init(&cluster_info[i].lock); 3279 3280 si->cluster_next_cpu = alloc_percpu(unsigned int); 3281 if (!si->cluster_next_cpu) 3282 goto err_free; 3283 3284 /* Random start position to help with wear leveling */ 3285 for_each_possible_cpu(cpu) 3286 per_cpu(*si->cluster_next_cpu, cpu) = 3287 get_random_u32_inclusive(1, si->highest_bit); 3288 3289 si->percpu_cluster = alloc_percpu(struct percpu_cluster); 3290 if (!si->percpu_cluster) 3291 goto err_free; 3292 3293 for_each_possible_cpu(cpu) { 3294 struct percpu_cluster *cluster; 3295 3296 cluster = per_cpu_ptr(si->percpu_cluster, cpu); 3297 for (i = 0; i < SWAP_NR_ORDERS; i++) 3298 cluster->next[i] = SWAP_NEXT_INVALID; 3299 } 3300 3301 /* 3302 * Mark unusable pages as unavailable. The clusters aren't 3303 * marked free yet, so no list operations are involved yet. 3304 * 3305 * See setup_swap_map_and_extents(): header page, bad pages, 3306 * and the EOF part of the last cluster. 3307 */ 3308 inc_cluster_info_page(si, cluster_info, 0); 3309 for (i = 0; i < swap_header->info.nr_badpages; i++) 3310 inc_cluster_info_page(si, cluster_info, 3311 swap_header->info.badpages[i]); 3312 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 3313 inc_cluster_info_page(si, cluster_info, i); 3314 3315 INIT_LIST_HEAD(&si->free_clusters); 3316 INIT_LIST_HEAD(&si->full_clusters); 3317 INIT_LIST_HEAD(&si->discard_clusters); 3318 3319 for (i = 0; i < SWAP_NR_ORDERS; i++) { 3320 INIT_LIST_HEAD(&si->nonfull_clusters[i]); 3321 INIT_LIST_HEAD(&si->frag_clusters[i]); 3322 si->frag_cluster_nr[i] = 0; 3323 } 3324 3325 /* 3326 * Reduce false cache line sharing between cluster_info and 3327 * sharing same address space. 3328 */ 3329 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 3330 j = (k + col) % SWAP_CLUSTER_COLS; 3331 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 3332 struct swap_cluster_info *ci; 3333 idx = i * SWAP_CLUSTER_COLS + j; 3334 ci = cluster_info + idx; 3335 if (idx >= nr_clusters) 3336 continue; 3337 if (ci->count) { 3338 ci->flags = CLUSTER_FLAG_NONFULL; 3339 list_add_tail(&ci->list, &si->nonfull_clusters[0]); 3340 continue; 3341 } 3342 ci->flags = CLUSTER_FLAG_FREE; 3343 list_add_tail(&ci->list, &si->free_clusters); 3344 } 3345 } 3346 3347 return cluster_info; 3348 3349 err_free: 3350 kvfree(cluster_info); 3351 err: 3352 return ERR_PTR(err); 3353 } 3354 3355 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 3356 { 3357 struct swap_info_struct *si; 3358 struct filename *name; 3359 struct file *swap_file = NULL; 3360 struct address_space *mapping; 3361 struct dentry *dentry; 3362 int prio; 3363 int error; 3364 union swap_header *swap_header; 3365 int nr_extents; 3366 sector_t span; 3367 unsigned long maxpages; 3368 unsigned char *swap_map = NULL; 3369 unsigned long *zeromap = NULL; 3370 struct swap_cluster_info *cluster_info = NULL; 3371 struct folio *folio = NULL; 3372 struct inode *inode = NULL; 3373 bool inced_nr_rotate_swap = false; 3374 3375 if (swap_flags & ~SWAP_FLAGS_VALID) 3376 return -EINVAL; 3377 3378 if (!capable(CAP_SYS_ADMIN)) 3379 return -EPERM; 3380 3381 if (!swap_avail_heads) 3382 return -ENOMEM; 3383 3384 si = alloc_swap_info(); 3385 if (IS_ERR(si)) 3386 return PTR_ERR(si); 3387 3388 INIT_WORK(&si->discard_work, swap_discard_work); 3389 INIT_WORK(&si->reclaim_work, swap_reclaim_work); 3390 3391 name = getname(specialfile); 3392 if (IS_ERR(name)) { 3393 error = PTR_ERR(name); 3394 name = NULL; 3395 goto bad_swap; 3396 } 3397 swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0); 3398 if (IS_ERR(swap_file)) { 3399 error = PTR_ERR(swap_file); 3400 swap_file = NULL; 3401 goto bad_swap; 3402 } 3403 3404 si->swap_file = swap_file; 3405 mapping = swap_file->f_mapping; 3406 dentry = swap_file->f_path.dentry; 3407 inode = mapping->host; 3408 3409 error = claim_swapfile(si, inode); 3410 if (unlikely(error)) 3411 goto bad_swap; 3412 3413 inode_lock(inode); 3414 if (d_unlinked(dentry) || cant_mount(dentry)) { 3415 error = -ENOENT; 3416 goto bad_swap_unlock_inode; 3417 } 3418 if (IS_SWAPFILE(inode)) { 3419 error = -EBUSY; 3420 goto bad_swap_unlock_inode; 3421 } 3422 3423 /* 3424 * Read the swap header. 3425 */ 3426 if (!mapping->a_ops->read_folio) { 3427 error = -EINVAL; 3428 goto bad_swap_unlock_inode; 3429 } 3430 folio = read_mapping_folio(mapping, 0, swap_file); 3431 if (IS_ERR(folio)) { 3432 error = PTR_ERR(folio); 3433 goto bad_swap_unlock_inode; 3434 } 3435 swap_header = kmap_local_folio(folio, 0); 3436 3437 maxpages = read_swap_header(si, swap_header, inode); 3438 if (unlikely(!maxpages)) { 3439 error = -EINVAL; 3440 goto bad_swap_unlock_inode; 3441 } 3442 3443 /* OK, set up the swap map and apply the bad block list */ 3444 swap_map = vzalloc(maxpages); 3445 if (!swap_map) { 3446 error = -ENOMEM; 3447 goto bad_swap_unlock_inode; 3448 } 3449 3450 error = swap_cgroup_swapon(si->type, maxpages); 3451 if (error) 3452 goto bad_swap_unlock_inode; 3453 3454 nr_extents = setup_swap_map_and_extents(si, swap_header, swap_map, 3455 maxpages, &span); 3456 if (unlikely(nr_extents < 0)) { 3457 error = nr_extents; 3458 goto bad_swap_unlock_inode; 3459 } 3460 3461 /* 3462 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might 3463 * be above MAX_PAGE_ORDER incase of a large swap file. 3464 */ 3465 zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long), 3466 GFP_KERNEL | __GFP_ZERO); 3467 if (!zeromap) { 3468 error = -ENOMEM; 3469 goto bad_swap_unlock_inode; 3470 } 3471 3472 if (si->bdev && bdev_stable_writes(si->bdev)) 3473 si->flags |= SWP_STABLE_WRITES; 3474 3475 if (si->bdev && bdev_synchronous(si->bdev)) 3476 si->flags |= SWP_SYNCHRONOUS_IO; 3477 3478 if (si->bdev && bdev_nonrot(si->bdev)) { 3479 si->flags |= SWP_SOLIDSTATE; 3480 3481 cluster_info = setup_clusters(si, swap_header, maxpages); 3482 if (IS_ERR(cluster_info)) { 3483 error = PTR_ERR(cluster_info); 3484 cluster_info = NULL; 3485 goto bad_swap_unlock_inode; 3486 } 3487 } else { 3488 atomic_inc(&nr_rotate_swap); 3489 inced_nr_rotate_swap = true; 3490 } 3491 3492 if ((swap_flags & SWAP_FLAG_DISCARD) && 3493 si->bdev && bdev_max_discard_sectors(si->bdev)) { 3494 /* 3495 * When discard is enabled for swap with no particular 3496 * policy flagged, we set all swap discard flags here in 3497 * order to sustain backward compatibility with older 3498 * swapon(8) releases. 3499 */ 3500 si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3501 SWP_PAGE_DISCARD); 3502 3503 /* 3504 * By flagging sys_swapon, a sysadmin can tell us to 3505 * either do single-time area discards only, or to just 3506 * perform discards for released swap page-clusters. 3507 * Now it's time to adjust the p->flags accordingly. 3508 */ 3509 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3510 si->flags &= ~SWP_PAGE_DISCARD; 3511 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3512 si->flags &= ~SWP_AREA_DISCARD; 3513 3514 /* issue a swapon-time discard if it's still required */ 3515 if (si->flags & SWP_AREA_DISCARD) { 3516 int err = discard_swap(si); 3517 if (unlikely(err)) 3518 pr_err("swapon: discard_swap(%p): %d\n", 3519 si, err); 3520 } 3521 } 3522 3523 error = init_swap_address_space(si->type, maxpages); 3524 if (error) 3525 goto bad_swap_unlock_inode; 3526 3527 error = zswap_swapon(si->type, maxpages); 3528 if (error) 3529 goto free_swap_address_space; 3530 3531 /* 3532 * Flush any pending IO and dirty mappings before we start using this 3533 * swap device. 3534 */ 3535 inode->i_flags |= S_SWAPFILE; 3536 error = inode_drain_writes(inode); 3537 if (error) { 3538 inode->i_flags &= ~S_SWAPFILE; 3539 goto free_swap_zswap; 3540 } 3541 3542 mutex_lock(&swapon_mutex); 3543 prio = -1; 3544 if (swap_flags & SWAP_FLAG_PREFER) 3545 prio = 3546 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3547 enable_swap_info(si, prio, swap_map, cluster_info, zeromap); 3548 3549 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n", 3550 K(si->pages), name->name, si->prio, nr_extents, 3551 K((unsigned long long)span), 3552 (si->flags & SWP_SOLIDSTATE) ? "SS" : "", 3553 (si->flags & SWP_DISCARDABLE) ? "D" : "", 3554 (si->flags & SWP_AREA_DISCARD) ? "s" : "", 3555 (si->flags & SWP_PAGE_DISCARD) ? "c" : ""); 3556 3557 mutex_unlock(&swapon_mutex); 3558 atomic_inc(&proc_poll_event); 3559 wake_up_interruptible(&proc_poll_wait); 3560 3561 error = 0; 3562 goto out; 3563 free_swap_zswap: 3564 zswap_swapoff(si->type); 3565 free_swap_address_space: 3566 exit_swap_address_space(si->type); 3567 bad_swap_unlock_inode: 3568 inode_unlock(inode); 3569 bad_swap: 3570 free_percpu(si->percpu_cluster); 3571 si->percpu_cluster = NULL; 3572 free_percpu(si->cluster_next_cpu); 3573 si->cluster_next_cpu = NULL; 3574 inode = NULL; 3575 destroy_swap_extents(si); 3576 swap_cgroup_swapoff(si->type); 3577 spin_lock(&swap_lock); 3578 si->swap_file = NULL; 3579 si->flags = 0; 3580 spin_unlock(&swap_lock); 3581 vfree(swap_map); 3582 kvfree(zeromap); 3583 kvfree(cluster_info); 3584 if (inced_nr_rotate_swap) 3585 atomic_dec(&nr_rotate_swap); 3586 if (swap_file) 3587 filp_close(swap_file, NULL); 3588 out: 3589 if (!IS_ERR_OR_NULL(folio)) 3590 folio_release_kmap(folio, swap_header); 3591 if (name) 3592 putname(name); 3593 if (inode) 3594 inode_unlock(inode); 3595 if (!error) 3596 enable_swap_slots_cache(); 3597 return error; 3598 } 3599 3600 void si_swapinfo(struct sysinfo *val) 3601 { 3602 unsigned int type; 3603 unsigned long nr_to_be_unused = 0; 3604 3605 spin_lock(&swap_lock); 3606 for (type = 0; type < nr_swapfiles; type++) { 3607 struct swap_info_struct *si = swap_info[type]; 3608 3609 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3610 nr_to_be_unused += READ_ONCE(si->inuse_pages); 3611 } 3612 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3613 val->totalswap = total_swap_pages + nr_to_be_unused; 3614 spin_unlock(&swap_lock); 3615 } 3616 3617 /* 3618 * Verify that nr swap entries are valid and increment their swap map counts. 3619 * 3620 * Returns error code in following case. 3621 * - success -> 0 3622 * - swp_entry is invalid -> EINVAL 3623 * - swp_entry is migration entry -> EINVAL 3624 * - swap-cache reference is requested but there is already one. -> EEXIST 3625 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3626 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3627 */ 3628 static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr) 3629 { 3630 struct swap_info_struct *si; 3631 struct swap_cluster_info *ci; 3632 unsigned long offset; 3633 unsigned char count; 3634 unsigned char has_cache; 3635 int err, i; 3636 3637 si = swp_swap_info(entry); 3638 3639 offset = swp_offset(entry); 3640 VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER); 3641 VM_WARN_ON(usage == 1 && nr > 1); 3642 ci = lock_cluster_or_swap_info(si, offset); 3643 3644 err = 0; 3645 for (i = 0; i < nr; i++) { 3646 count = si->swap_map[offset + i]; 3647 3648 /* 3649 * swapin_readahead() doesn't check if a swap entry is valid, so the 3650 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3651 */ 3652 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3653 err = -ENOENT; 3654 goto unlock_out; 3655 } 3656 3657 has_cache = count & SWAP_HAS_CACHE; 3658 count &= ~SWAP_HAS_CACHE; 3659 3660 if (!count && !has_cache) { 3661 err = -ENOENT; 3662 } else if (usage == SWAP_HAS_CACHE) { 3663 if (has_cache) 3664 err = -EEXIST; 3665 } else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) { 3666 err = -EINVAL; 3667 } 3668 3669 if (err) 3670 goto unlock_out; 3671 } 3672 3673 for (i = 0; i < nr; i++) { 3674 count = si->swap_map[offset + i]; 3675 has_cache = count & SWAP_HAS_CACHE; 3676 count &= ~SWAP_HAS_CACHE; 3677 3678 if (usage == SWAP_HAS_CACHE) 3679 has_cache = SWAP_HAS_CACHE; 3680 else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3681 count += usage; 3682 else if (swap_count_continued(si, offset + i, count)) 3683 count = COUNT_CONTINUED; 3684 else { 3685 /* 3686 * Don't need to rollback changes, because if 3687 * usage == 1, there must be nr == 1. 3688 */ 3689 err = -ENOMEM; 3690 goto unlock_out; 3691 } 3692 3693 WRITE_ONCE(si->swap_map[offset + i], count | has_cache); 3694 } 3695 3696 unlock_out: 3697 unlock_cluster_or_swap_info(si, ci); 3698 return err; 3699 } 3700 3701 /* 3702 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3703 * (in which case its reference count is never incremented). 3704 */ 3705 void swap_shmem_alloc(swp_entry_t entry, int nr) 3706 { 3707 __swap_duplicate(entry, SWAP_MAP_SHMEM, nr); 3708 } 3709 3710 /* 3711 * Increase reference count of swap entry by 1. 3712 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3713 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3714 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3715 * might occur if a page table entry has got corrupted. 3716 */ 3717 int swap_duplicate(swp_entry_t entry) 3718 { 3719 int err = 0; 3720 3721 while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM) 3722 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3723 return err; 3724 } 3725 3726 /* 3727 * @entry: first swap entry from which we allocate nr swap cache. 3728 * 3729 * Called when allocating swap cache for existing swap entries, 3730 * This can return error codes. Returns 0 at success. 3731 * -EEXIST means there is a swap cache. 3732 * Note: return code is different from swap_duplicate(). 3733 */ 3734 int swapcache_prepare(swp_entry_t entry, int nr) 3735 { 3736 return __swap_duplicate(entry, SWAP_HAS_CACHE, nr); 3737 } 3738 3739 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr) 3740 { 3741 unsigned long offset = swp_offset(entry); 3742 3743 cluster_swap_free_nr(si, offset, nr, SWAP_HAS_CACHE); 3744 } 3745 3746 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3747 { 3748 return swap_type_to_swap_info(swp_type(entry)); 3749 } 3750 3751 /* 3752 * out-of-line methods to avoid include hell. 3753 */ 3754 struct address_space *swapcache_mapping(struct folio *folio) 3755 { 3756 return swp_swap_info(folio->swap)->swap_file->f_mapping; 3757 } 3758 EXPORT_SYMBOL_GPL(swapcache_mapping); 3759 3760 pgoff_t __folio_swap_cache_index(struct folio *folio) 3761 { 3762 return swap_cache_index(folio->swap); 3763 } 3764 EXPORT_SYMBOL_GPL(__folio_swap_cache_index); 3765 3766 /* 3767 * add_swap_count_continuation - called when a swap count is duplicated 3768 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3769 * page of the original vmalloc'ed swap_map, to hold the continuation count 3770 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3771 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3772 * 3773 * These continuation pages are seldom referenced: the common paths all work 3774 * on the original swap_map, only referring to a continuation page when the 3775 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3776 * 3777 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3778 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3779 * can be called after dropping locks. 3780 */ 3781 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3782 { 3783 struct swap_info_struct *si; 3784 struct swap_cluster_info *ci; 3785 struct page *head; 3786 struct page *page; 3787 struct page *list_page; 3788 pgoff_t offset; 3789 unsigned char count; 3790 int ret = 0; 3791 3792 /* 3793 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3794 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3795 */ 3796 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3797 3798 si = get_swap_device(entry); 3799 if (!si) { 3800 /* 3801 * An acceptable race has occurred since the failing 3802 * __swap_duplicate(): the swap device may be swapoff 3803 */ 3804 goto outer; 3805 } 3806 spin_lock(&si->lock); 3807 3808 offset = swp_offset(entry); 3809 3810 ci = lock_cluster(si, offset); 3811 3812 count = swap_count(si->swap_map[offset]); 3813 3814 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3815 /* 3816 * The higher the swap count, the more likely it is that tasks 3817 * will race to add swap count continuation: we need to avoid 3818 * over-provisioning. 3819 */ 3820 goto out; 3821 } 3822 3823 if (!page) { 3824 ret = -ENOMEM; 3825 goto out; 3826 } 3827 3828 head = vmalloc_to_page(si->swap_map + offset); 3829 offset &= ~PAGE_MASK; 3830 3831 spin_lock(&si->cont_lock); 3832 /* 3833 * Page allocation does not initialize the page's lru field, 3834 * but it does always reset its private field. 3835 */ 3836 if (!page_private(head)) { 3837 BUG_ON(count & COUNT_CONTINUED); 3838 INIT_LIST_HEAD(&head->lru); 3839 set_page_private(head, SWP_CONTINUED); 3840 si->flags |= SWP_CONTINUED; 3841 } 3842 3843 list_for_each_entry(list_page, &head->lru, lru) { 3844 unsigned char *map; 3845 3846 /* 3847 * If the previous map said no continuation, but we've found 3848 * a continuation page, free our allocation and use this one. 3849 */ 3850 if (!(count & COUNT_CONTINUED)) 3851 goto out_unlock_cont; 3852 3853 map = kmap_local_page(list_page) + offset; 3854 count = *map; 3855 kunmap_local(map); 3856 3857 /* 3858 * If this continuation count now has some space in it, 3859 * free our allocation and use this one. 3860 */ 3861 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3862 goto out_unlock_cont; 3863 } 3864 3865 list_add_tail(&page->lru, &head->lru); 3866 page = NULL; /* now it's attached, don't free it */ 3867 out_unlock_cont: 3868 spin_unlock(&si->cont_lock); 3869 out: 3870 unlock_cluster(ci); 3871 spin_unlock(&si->lock); 3872 put_swap_device(si); 3873 outer: 3874 if (page) 3875 __free_page(page); 3876 return ret; 3877 } 3878 3879 /* 3880 * swap_count_continued - when the original swap_map count is incremented 3881 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3882 * into, carry if so, or else fail until a new continuation page is allocated; 3883 * when the original swap_map count is decremented from 0 with continuation, 3884 * borrow from the continuation and report whether it still holds more. 3885 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3886 * lock. 3887 */ 3888 static bool swap_count_continued(struct swap_info_struct *si, 3889 pgoff_t offset, unsigned char count) 3890 { 3891 struct page *head; 3892 struct page *page; 3893 unsigned char *map; 3894 bool ret; 3895 3896 head = vmalloc_to_page(si->swap_map + offset); 3897 if (page_private(head) != SWP_CONTINUED) { 3898 BUG_ON(count & COUNT_CONTINUED); 3899 return false; /* need to add count continuation */ 3900 } 3901 3902 spin_lock(&si->cont_lock); 3903 offset &= ~PAGE_MASK; 3904 page = list_next_entry(head, lru); 3905 map = kmap_local_page(page) + offset; 3906 3907 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3908 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3909 3910 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3911 /* 3912 * Think of how you add 1 to 999 3913 */ 3914 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3915 kunmap_local(map); 3916 page = list_next_entry(page, lru); 3917 BUG_ON(page == head); 3918 map = kmap_local_page(page) + offset; 3919 } 3920 if (*map == SWAP_CONT_MAX) { 3921 kunmap_local(map); 3922 page = list_next_entry(page, lru); 3923 if (page == head) { 3924 ret = false; /* add count continuation */ 3925 goto out; 3926 } 3927 map = kmap_local_page(page) + offset; 3928 init_map: *map = 0; /* we didn't zero the page */ 3929 } 3930 *map += 1; 3931 kunmap_local(map); 3932 while ((page = list_prev_entry(page, lru)) != head) { 3933 map = kmap_local_page(page) + offset; 3934 *map = COUNT_CONTINUED; 3935 kunmap_local(map); 3936 } 3937 ret = true; /* incremented */ 3938 3939 } else { /* decrementing */ 3940 /* 3941 * Think of how you subtract 1 from 1000 3942 */ 3943 BUG_ON(count != COUNT_CONTINUED); 3944 while (*map == COUNT_CONTINUED) { 3945 kunmap_local(map); 3946 page = list_next_entry(page, lru); 3947 BUG_ON(page == head); 3948 map = kmap_local_page(page) + offset; 3949 } 3950 BUG_ON(*map == 0); 3951 *map -= 1; 3952 if (*map == 0) 3953 count = 0; 3954 kunmap_local(map); 3955 while ((page = list_prev_entry(page, lru)) != head) { 3956 map = kmap_local_page(page) + offset; 3957 *map = SWAP_CONT_MAX | count; 3958 count = COUNT_CONTINUED; 3959 kunmap_local(map); 3960 } 3961 ret = count == COUNT_CONTINUED; 3962 } 3963 out: 3964 spin_unlock(&si->cont_lock); 3965 return ret; 3966 } 3967 3968 /* 3969 * free_swap_count_continuations - swapoff free all the continuation pages 3970 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3971 */ 3972 static void free_swap_count_continuations(struct swap_info_struct *si) 3973 { 3974 pgoff_t offset; 3975 3976 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3977 struct page *head; 3978 head = vmalloc_to_page(si->swap_map + offset); 3979 if (page_private(head)) { 3980 struct page *page, *next; 3981 3982 list_for_each_entry_safe(page, next, &head->lru, lru) { 3983 list_del(&page->lru); 3984 __free_page(page); 3985 } 3986 } 3987 } 3988 } 3989 3990 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3991 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp) 3992 { 3993 struct swap_info_struct *si, *next; 3994 int nid = folio_nid(folio); 3995 3996 if (!(gfp & __GFP_IO)) 3997 return; 3998 3999 if (!__has_usable_swap()) 4000 return; 4001 4002 if (!blk_cgroup_congested()) 4003 return; 4004 4005 /* 4006 * We've already scheduled a throttle, avoid taking the global swap 4007 * lock. 4008 */ 4009 if (current->throttle_disk) 4010 return; 4011 4012 spin_lock(&swap_avail_lock); 4013 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], 4014 avail_lists[nid]) { 4015 if (si->bdev) { 4016 blkcg_schedule_throttle(si->bdev->bd_disk, true); 4017 break; 4018 } 4019 } 4020 spin_unlock(&swap_avail_lock); 4021 } 4022 #endif 4023 4024 static int __init swapfile_init(void) 4025 { 4026 int nid; 4027 4028 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 4029 GFP_KERNEL); 4030 if (!swap_avail_heads) { 4031 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 4032 return -ENOMEM; 4033 } 4034 4035 for_each_node(nid) 4036 plist_head_init(&swap_avail_heads[nid]); 4037 4038 swapfile_maximum_size = arch_max_swapfile_size(); 4039 4040 #ifdef CONFIG_MIGRATION 4041 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS)) 4042 swap_migration_ad_supported = true; 4043 #endif /* CONFIG_MIGRATION */ 4044 4045 return 0; 4046 } 4047 subsys_initcall(swapfile_init); 4048