xref: /linux/mm/swapfile.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 #include <linux/suspend.h>
44 #include <linux/zswap.h>
45 #include <linux/plist.h>
46 
47 #include <asm/tlbflush.h>
48 #include <linux/swapops.h>
49 #include <linux/swap_cgroup.h>
50 #include "internal.h"
51 #include "swap.h"
52 
53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
54 				 unsigned char);
55 static void free_swap_count_continuations(struct swap_info_struct *);
56 static void swap_entry_range_free(struct swap_info_struct *si, swp_entry_t entry,
57 				  unsigned int nr_pages);
58 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
59 			     unsigned int nr_entries);
60 static bool folio_swapcache_freeable(struct folio *folio);
61 static struct swap_cluster_info *lock_cluster_or_swap_info(
62 		struct swap_info_struct *si, unsigned long offset);
63 static void unlock_cluster_or_swap_info(struct swap_info_struct *si,
64 					struct swap_cluster_info *ci);
65 
66 static DEFINE_SPINLOCK(swap_lock);
67 static unsigned int nr_swapfiles;
68 atomic_long_t nr_swap_pages;
69 /*
70  * Some modules use swappable objects and may try to swap them out under
71  * memory pressure (via the shrinker). Before doing so, they may wish to
72  * check to see if any swap space is available.
73  */
74 EXPORT_SYMBOL_GPL(nr_swap_pages);
75 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
76 long total_swap_pages;
77 static int least_priority = -1;
78 unsigned long swapfile_maximum_size;
79 #ifdef CONFIG_MIGRATION
80 bool swap_migration_ad_supported;
81 #endif	/* CONFIG_MIGRATION */
82 
83 static const char Bad_file[] = "Bad swap file entry ";
84 static const char Unused_file[] = "Unused swap file entry ";
85 static const char Bad_offset[] = "Bad swap offset entry ";
86 static const char Unused_offset[] = "Unused swap offset entry ";
87 
88 /*
89  * all active swap_info_structs
90  * protected with swap_lock, and ordered by priority.
91  */
92 static PLIST_HEAD(swap_active_head);
93 
94 /*
95  * all available (active, not full) swap_info_structs
96  * protected with swap_avail_lock, ordered by priority.
97  * This is used by folio_alloc_swap() instead of swap_active_head
98  * because swap_active_head includes all swap_info_structs,
99  * but folio_alloc_swap() doesn't need to look at full ones.
100  * This uses its own lock instead of swap_lock because when a
101  * swap_info_struct changes between not-full/full, it needs to
102  * add/remove itself to/from this list, but the swap_info_struct->lock
103  * is held and the locking order requires swap_lock to be taken
104  * before any swap_info_struct->lock.
105  */
106 static struct plist_head *swap_avail_heads;
107 static DEFINE_SPINLOCK(swap_avail_lock);
108 
109 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
110 
111 static DEFINE_MUTEX(swapon_mutex);
112 
113 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
114 /* Activity counter to indicate that a swapon or swapoff has occurred */
115 static atomic_t proc_poll_event = ATOMIC_INIT(0);
116 
117 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
118 
119 static struct swap_info_struct *swap_type_to_swap_info(int type)
120 {
121 	if (type >= MAX_SWAPFILES)
122 		return NULL;
123 
124 	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
125 }
126 
127 static inline unsigned char swap_count(unsigned char ent)
128 {
129 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
130 }
131 
132 /* Reclaim the swap entry anyway if possible */
133 #define TTRS_ANYWAY		0x1
134 /*
135  * Reclaim the swap entry if there are no more mappings of the
136  * corresponding page
137  */
138 #define TTRS_UNMAPPED		0x2
139 /* Reclaim the swap entry if swap is getting full */
140 #define TTRS_FULL		0x4
141 /* Reclaim directly, bypass the slot cache and don't touch device lock */
142 #define TTRS_DIRECT		0x8
143 
144 static bool swap_is_has_cache(struct swap_info_struct *si,
145 			      unsigned long offset, int nr_pages)
146 {
147 	unsigned char *map = si->swap_map + offset;
148 	unsigned char *map_end = map + nr_pages;
149 
150 	do {
151 		VM_BUG_ON(!(*map & SWAP_HAS_CACHE));
152 		if (*map != SWAP_HAS_CACHE)
153 			return false;
154 	} while (++map < map_end);
155 
156 	return true;
157 }
158 
159 static bool swap_is_last_map(struct swap_info_struct *si,
160 		unsigned long offset, int nr_pages, bool *has_cache)
161 {
162 	unsigned char *map = si->swap_map + offset;
163 	unsigned char *map_end = map + nr_pages;
164 	unsigned char count = *map;
165 
166 	if (swap_count(count) != 1)
167 		return false;
168 
169 	while (++map < map_end) {
170 		if (*map != count)
171 			return false;
172 	}
173 
174 	*has_cache = !!(count & SWAP_HAS_CACHE);
175 	return true;
176 }
177 
178 /*
179  * returns number of pages in the folio that backs the swap entry. If positive,
180  * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
181  * folio was associated with the swap entry.
182  */
183 static int __try_to_reclaim_swap(struct swap_info_struct *si,
184 				 unsigned long offset, unsigned long flags)
185 {
186 	swp_entry_t entry = swp_entry(si->type, offset);
187 	struct address_space *address_space = swap_address_space(entry);
188 	struct swap_cluster_info *ci;
189 	struct folio *folio;
190 	int ret, nr_pages;
191 	bool need_reclaim;
192 
193 	folio = filemap_get_folio(address_space, swap_cache_index(entry));
194 	if (IS_ERR(folio))
195 		return 0;
196 
197 	nr_pages = folio_nr_pages(folio);
198 	ret = -nr_pages;
199 
200 	/*
201 	 * When this function is called from scan_swap_map_slots() and it's
202 	 * called by vmscan.c at reclaiming folios. So we hold a folio lock
203 	 * here. We have to use trylock for avoiding deadlock. This is a special
204 	 * case and you should use folio_free_swap() with explicit folio_lock()
205 	 * in usual operations.
206 	 */
207 	if (!folio_trylock(folio))
208 		goto out;
209 
210 	/* offset could point to the middle of a large folio */
211 	entry = folio->swap;
212 	offset = swp_offset(entry);
213 
214 	need_reclaim = ((flags & TTRS_ANYWAY) ||
215 			((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
216 			((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)));
217 	if (!need_reclaim || !folio_swapcache_freeable(folio))
218 		goto out_unlock;
219 
220 	/*
221 	 * It's safe to delete the folio from swap cache only if the folio's
222 	 * swap_map is HAS_CACHE only, which means the slots have no page table
223 	 * reference or pending writeback, and can't be allocated to others.
224 	 */
225 	ci = lock_cluster_or_swap_info(si, offset);
226 	need_reclaim = swap_is_has_cache(si, offset, nr_pages);
227 	unlock_cluster_or_swap_info(si, ci);
228 	if (!need_reclaim)
229 		goto out_unlock;
230 
231 	if (!(flags & TTRS_DIRECT)) {
232 		/* Free through slot cache */
233 		delete_from_swap_cache(folio);
234 		folio_set_dirty(folio);
235 		ret = nr_pages;
236 		goto out_unlock;
237 	}
238 
239 	xa_lock_irq(&address_space->i_pages);
240 	__delete_from_swap_cache(folio, entry, NULL);
241 	xa_unlock_irq(&address_space->i_pages);
242 	folio_ref_sub(folio, nr_pages);
243 	folio_set_dirty(folio);
244 
245 	spin_lock(&si->lock);
246 	/* Only sinple page folio can be backed by zswap */
247 	if (nr_pages == 1)
248 		zswap_invalidate(entry);
249 	swap_entry_range_free(si, entry, nr_pages);
250 	spin_unlock(&si->lock);
251 	ret = nr_pages;
252 out_unlock:
253 	folio_unlock(folio);
254 out:
255 	folio_put(folio);
256 	return ret;
257 }
258 
259 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
260 {
261 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
262 	return rb_entry(rb, struct swap_extent, rb_node);
263 }
264 
265 static inline struct swap_extent *next_se(struct swap_extent *se)
266 {
267 	struct rb_node *rb = rb_next(&se->rb_node);
268 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
269 }
270 
271 /*
272  * swapon tell device that all the old swap contents can be discarded,
273  * to allow the swap device to optimize its wear-levelling.
274  */
275 static int discard_swap(struct swap_info_struct *si)
276 {
277 	struct swap_extent *se;
278 	sector_t start_block;
279 	sector_t nr_blocks;
280 	int err = 0;
281 
282 	/* Do not discard the swap header page! */
283 	se = first_se(si);
284 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
285 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
286 	if (nr_blocks) {
287 		err = blkdev_issue_discard(si->bdev, start_block,
288 				nr_blocks, GFP_KERNEL);
289 		if (err)
290 			return err;
291 		cond_resched();
292 	}
293 
294 	for (se = next_se(se); se; se = next_se(se)) {
295 		start_block = se->start_block << (PAGE_SHIFT - 9);
296 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
297 
298 		err = blkdev_issue_discard(si->bdev, start_block,
299 				nr_blocks, GFP_KERNEL);
300 		if (err)
301 			break;
302 
303 		cond_resched();
304 	}
305 	return err;		/* That will often be -EOPNOTSUPP */
306 }
307 
308 static struct swap_extent *
309 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
310 {
311 	struct swap_extent *se;
312 	struct rb_node *rb;
313 
314 	rb = sis->swap_extent_root.rb_node;
315 	while (rb) {
316 		se = rb_entry(rb, struct swap_extent, rb_node);
317 		if (offset < se->start_page)
318 			rb = rb->rb_left;
319 		else if (offset >= se->start_page + se->nr_pages)
320 			rb = rb->rb_right;
321 		else
322 			return se;
323 	}
324 	/* It *must* be present */
325 	BUG();
326 }
327 
328 sector_t swap_folio_sector(struct folio *folio)
329 {
330 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
331 	struct swap_extent *se;
332 	sector_t sector;
333 	pgoff_t offset;
334 
335 	offset = swp_offset(folio->swap);
336 	se = offset_to_swap_extent(sis, offset);
337 	sector = se->start_block + (offset - se->start_page);
338 	return sector << (PAGE_SHIFT - 9);
339 }
340 
341 /*
342  * swap allocation tell device that a cluster of swap can now be discarded,
343  * to allow the swap device to optimize its wear-levelling.
344  */
345 static void discard_swap_cluster(struct swap_info_struct *si,
346 				 pgoff_t start_page, pgoff_t nr_pages)
347 {
348 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
349 
350 	while (nr_pages) {
351 		pgoff_t offset = start_page - se->start_page;
352 		sector_t start_block = se->start_block + offset;
353 		sector_t nr_blocks = se->nr_pages - offset;
354 
355 		if (nr_blocks > nr_pages)
356 			nr_blocks = nr_pages;
357 		start_page += nr_blocks;
358 		nr_pages -= nr_blocks;
359 
360 		start_block <<= PAGE_SHIFT - 9;
361 		nr_blocks <<= PAGE_SHIFT - 9;
362 		if (blkdev_issue_discard(si->bdev, start_block,
363 					nr_blocks, GFP_NOIO))
364 			break;
365 
366 		se = next_se(se);
367 	}
368 }
369 
370 #ifdef CONFIG_THP_SWAP
371 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
372 
373 #define swap_entry_order(order)	(order)
374 #else
375 #define SWAPFILE_CLUSTER	256
376 
377 /*
378  * Define swap_entry_order() as constant to let compiler to optimize
379  * out some code if !CONFIG_THP_SWAP
380  */
381 #define swap_entry_order(order)	0
382 #endif
383 #define LATENCY_LIMIT		256
384 
385 static inline bool cluster_is_free(struct swap_cluster_info *info)
386 {
387 	return info->flags & CLUSTER_FLAG_FREE;
388 }
389 
390 static inline unsigned int cluster_index(struct swap_info_struct *si,
391 					 struct swap_cluster_info *ci)
392 {
393 	return ci - si->cluster_info;
394 }
395 
396 static inline unsigned int cluster_offset(struct swap_info_struct *si,
397 					  struct swap_cluster_info *ci)
398 {
399 	return cluster_index(si, ci) * SWAPFILE_CLUSTER;
400 }
401 
402 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
403 						     unsigned long offset)
404 {
405 	struct swap_cluster_info *ci;
406 
407 	ci = si->cluster_info;
408 	if (ci) {
409 		ci += offset / SWAPFILE_CLUSTER;
410 		spin_lock(&ci->lock);
411 	}
412 	return ci;
413 }
414 
415 static inline void unlock_cluster(struct swap_cluster_info *ci)
416 {
417 	if (ci)
418 		spin_unlock(&ci->lock);
419 }
420 
421 /*
422  * Determine the locking method in use for this device.  Return
423  * swap_cluster_info if SSD-style cluster-based locking is in place.
424  */
425 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
426 		struct swap_info_struct *si, unsigned long offset)
427 {
428 	struct swap_cluster_info *ci;
429 
430 	/* Try to use fine-grained SSD-style locking if available: */
431 	ci = lock_cluster(si, offset);
432 	/* Otherwise, fall back to traditional, coarse locking: */
433 	if (!ci)
434 		spin_lock(&si->lock);
435 
436 	return ci;
437 }
438 
439 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
440 					       struct swap_cluster_info *ci)
441 {
442 	if (ci)
443 		unlock_cluster(ci);
444 	else
445 		spin_unlock(&si->lock);
446 }
447 
448 /* Add a cluster to discard list and schedule it to do discard */
449 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
450 		struct swap_cluster_info *ci)
451 {
452 	unsigned int idx = cluster_index(si, ci);
453 	/*
454 	 * If scan_swap_map_slots() can't find a free cluster, it will check
455 	 * si->swap_map directly. To make sure the discarding cluster isn't
456 	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
457 	 * It will be cleared after discard
458 	 */
459 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
460 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
461 
462 	VM_BUG_ON(ci->flags & CLUSTER_FLAG_FREE);
463 	list_move_tail(&ci->list, &si->discard_clusters);
464 	ci->flags = 0;
465 	schedule_work(&si->discard_work);
466 }
467 
468 static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
469 {
470 	lockdep_assert_held(&si->lock);
471 	lockdep_assert_held(&ci->lock);
472 
473 	if (ci->flags)
474 		list_move_tail(&ci->list, &si->free_clusters);
475 	else
476 		list_add_tail(&ci->list, &si->free_clusters);
477 	ci->flags = CLUSTER_FLAG_FREE;
478 	ci->order = 0;
479 }
480 
481 /*
482  * Doing discard actually. After a cluster discard is finished, the cluster
483  * will be added to free cluster list. caller should hold si->lock.
484 */
485 static void swap_do_scheduled_discard(struct swap_info_struct *si)
486 {
487 	struct swap_cluster_info *ci;
488 	unsigned int idx;
489 
490 	while (!list_empty(&si->discard_clusters)) {
491 		ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list);
492 		list_del(&ci->list);
493 		idx = cluster_index(si, ci);
494 		spin_unlock(&si->lock);
495 
496 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
497 				SWAPFILE_CLUSTER);
498 
499 		spin_lock(&si->lock);
500 		spin_lock(&ci->lock);
501 		__free_cluster(si, ci);
502 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
503 				0, SWAPFILE_CLUSTER);
504 		spin_unlock(&ci->lock);
505 	}
506 }
507 
508 static void swap_discard_work(struct work_struct *work)
509 {
510 	struct swap_info_struct *si;
511 
512 	si = container_of(work, struct swap_info_struct, discard_work);
513 
514 	spin_lock(&si->lock);
515 	swap_do_scheduled_discard(si);
516 	spin_unlock(&si->lock);
517 }
518 
519 static void swap_users_ref_free(struct percpu_ref *ref)
520 {
521 	struct swap_info_struct *si;
522 
523 	si = container_of(ref, struct swap_info_struct, users);
524 	complete(&si->comp);
525 }
526 
527 static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
528 {
529 	VM_BUG_ON(ci->count != 0);
530 	lockdep_assert_held(&si->lock);
531 	lockdep_assert_held(&ci->lock);
532 
533 	if (ci->flags & CLUSTER_FLAG_FRAG)
534 		si->frag_cluster_nr[ci->order]--;
535 
536 	/*
537 	 * If the swap is discardable, prepare discard the cluster
538 	 * instead of free it immediately. The cluster will be freed
539 	 * after discard.
540 	 */
541 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
542 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
543 		swap_cluster_schedule_discard(si, ci);
544 		return;
545 	}
546 
547 	__free_cluster(si, ci);
548 }
549 
550 /*
551  * The cluster corresponding to page_nr will be used. The cluster will not be
552  * added to free cluster list and its usage counter will be increased by 1.
553  * Only used for initialization.
554  */
555 static void inc_cluster_info_page(struct swap_info_struct *si,
556 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
557 {
558 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559 	struct swap_cluster_info *ci;
560 
561 	if (!cluster_info)
562 		return;
563 
564 	ci = cluster_info + idx;
565 	ci->count++;
566 
567 	VM_BUG_ON(ci->count > SWAPFILE_CLUSTER);
568 	VM_BUG_ON(ci->flags);
569 }
570 
571 /*
572  * The cluster ci decreases @nr_pages usage. If the usage counter becomes 0,
573  * which means no page in the cluster is in use, we can optionally discard
574  * the cluster and add it to free cluster list.
575  */
576 static void dec_cluster_info_page(struct swap_info_struct *si,
577 				  struct swap_cluster_info *ci, int nr_pages)
578 {
579 	if (!si->cluster_info)
580 		return;
581 
582 	VM_BUG_ON(ci->count < nr_pages);
583 	VM_BUG_ON(cluster_is_free(ci));
584 	lockdep_assert_held(&si->lock);
585 	lockdep_assert_held(&ci->lock);
586 	ci->count -= nr_pages;
587 
588 	if (!ci->count) {
589 		free_cluster(si, ci);
590 		return;
591 	}
592 
593 	if (!(ci->flags & CLUSTER_FLAG_NONFULL)) {
594 		VM_BUG_ON(ci->flags & CLUSTER_FLAG_FREE);
595 		if (ci->flags & CLUSTER_FLAG_FRAG)
596 			si->frag_cluster_nr[ci->order]--;
597 		list_move_tail(&ci->list, &si->nonfull_clusters[ci->order]);
598 		ci->flags = CLUSTER_FLAG_NONFULL;
599 	}
600 }
601 
602 static bool cluster_reclaim_range(struct swap_info_struct *si,
603 				  struct swap_cluster_info *ci,
604 				  unsigned long start, unsigned long end)
605 {
606 	unsigned char *map = si->swap_map;
607 	unsigned long offset;
608 
609 	spin_unlock(&ci->lock);
610 	spin_unlock(&si->lock);
611 
612 	for (offset = start; offset < end; offset++) {
613 		switch (READ_ONCE(map[offset])) {
614 		case 0:
615 			continue;
616 		case SWAP_HAS_CACHE:
617 			if (__try_to_reclaim_swap(si, offset, TTRS_ANYWAY | TTRS_DIRECT) > 0)
618 				continue;
619 			goto out;
620 		default:
621 			goto out;
622 		}
623 	}
624 out:
625 	spin_lock(&si->lock);
626 	spin_lock(&ci->lock);
627 
628 	/*
629 	 * Recheck the range no matter reclaim succeeded or not, the slot
630 	 * could have been be freed while we are not holding the lock.
631 	 */
632 	for (offset = start; offset < end; offset++)
633 		if (READ_ONCE(map[offset]))
634 			return false;
635 
636 	return true;
637 }
638 
639 static bool cluster_scan_range(struct swap_info_struct *si,
640 			       struct swap_cluster_info *ci,
641 			       unsigned long start, unsigned int nr_pages)
642 {
643 	unsigned long offset, end = start + nr_pages;
644 	unsigned char *map = si->swap_map;
645 	bool need_reclaim = false;
646 
647 	for (offset = start; offset < end; offset++) {
648 		switch (READ_ONCE(map[offset])) {
649 		case 0:
650 			continue;
651 		case SWAP_HAS_CACHE:
652 			if (!vm_swap_full())
653 				return false;
654 			need_reclaim = true;
655 			continue;
656 		default:
657 			return false;
658 		}
659 	}
660 
661 	if (need_reclaim)
662 		return cluster_reclaim_range(si, ci, start, end);
663 
664 	return true;
665 }
666 
667 static void cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci,
668 				unsigned int start, unsigned char usage,
669 				unsigned int order)
670 {
671 	unsigned int nr_pages = 1 << order;
672 
673 	if (cluster_is_free(ci)) {
674 		if (nr_pages < SWAPFILE_CLUSTER) {
675 			list_move_tail(&ci->list, &si->nonfull_clusters[order]);
676 			ci->flags = CLUSTER_FLAG_NONFULL;
677 		}
678 		ci->order = order;
679 	}
680 
681 	memset(si->swap_map + start, usage, nr_pages);
682 	swap_range_alloc(si, start, nr_pages);
683 	ci->count += nr_pages;
684 
685 	if (ci->count == SWAPFILE_CLUSTER) {
686 		VM_BUG_ON(!(ci->flags &
687 			  (CLUSTER_FLAG_FREE | CLUSTER_FLAG_NONFULL | CLUSTER_FLAG_FRAG)));
688 		if (ci->flags & CLUSTER_FLAG_FRAG)
689 			si->frag_cluster_nr[ci->order]--;
690 		list_move_tail(&ci->list, &si->full_clusters);
691 		ci->flags = CLUSTER_FLAG_FULL;
692 	}
693 }
694 
695 static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si, unsigned long offset,
696 					    unsigned int *foundp, unsigned int order,
697 					    unsigned char usage)
698 {
699 	unsigned long start = offset & ~(SWAPFILE_CLUSTER - 1);
700 	unsigned long end = min(start + SWAPFILE_CLUSTER, si->max);
701 	unsigned int nr_pages = 1 << order;
702 	struct swap_cluster_info *ci;
703 
704 	if (end < nr_pages)
705 		return SWAP_NEXT_INVALID;
706 	end -= nr_pages;
707 
708 	ci = lock_cluster(si, offset);
709 	if (ci->count + nr_pages > SWAPFILE_CLUSTER) {
710 		offset = SWAP_NEXT_INVALID;
711 		goto done;
712 	}
713 
714 	while (offset <= end) {
715 		if (cluster_scan_range(si, ci, offset, nr_pages)) {
716 			cluster_alloc_range(si, ci, offset, usage, order);
717 			*foundp = offset;
718 			if (ci->count == SWAPFILE_CLUSTER) {
719 				offset = SWAP_NEXT_INVALID;
720 				goto done;
721 			}
722 			offset += nr_pages;
723 			break;
724 		}
725 		offset += nr_pages;
726 	}
727 	if (offset > end)
728 		offset = SWAP_NEXT_INVALID;
729 done:
730 	unlock_cluster(ci);
731 	return offset;
732 }
733 
734 /* Return true if reclaimed a whole cluster */
735 static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force)
736 {
737 	long to_scan = 1;
738 	unsigned long offset, end;
739 	struct swap_cluster_info *ci;
740 	unsigned char *map = si->swap_map;
741 	int nr_reclaim;
742 
743 	if (force)
744 		to_scan = si->inuse_pages / SWAPFILE_CLUSTER;
745 
746 	while (!list_empty(&si->full_clusters)) {
747 		ci = list_first_entry(&si->full_clusters, struct swap_cluster_info, list);
748 		list_move_tail(&ci->list, &si->full_clusters);
749 		offset = cluster_offset(si, ci);
750 		end = min(si->max, offset + SWAPFILE_CLUSTER);
751 		to_scan--;
752 
753 		spin_unlock(&si->lock);
754 		while (offset < end) {
755 			if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) {
756 				nr_reclaim = __try_to_reclaim_swap(si, offset,
757 								   TTRS_ANYWAY | TTRS_DIRECT);
758 				if (nr_reclaim) {
759 					offset += abs(nr_reclaim);
760 					continue;
761 				}
762 			}
763 			offset++;
764 		}
765 		spin_lock(&si->lock);
766 
767 		if (to_scan <= 0)
768 			break;
769 	}
770 }
771 
772 static void swap_reclaim_work(struct work_struct *work)
773 {
774 	struct swap_info_struct *si;
775 
776 	si = container_of(work, struct swap_info_struct, reclaim_work);
777 
778 	spin_lock(&si->lock);
779 	swap_reclaim_full_clusters(si, true);
780 	spin_unlock(&si->lock);
781 }
782 
783 /*
784  * Try to get swap entries with specified order from current cpu's swap entry
785  * pool (a cluster). This might involve allocating a new cluster for current CPU
786  * too.
787  */
788 static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order,
789 					      unsigned char usage)
790 {
791 	struct percpu_cluster *cluster;
792 	struct swap_cluster_info *ci;
793 	unsigned int offset, found = 0;
794 
795 new_cluster:
796 	lockdep_assert_held(&si->lock);
797 	cluster = this_cpu_ptr(si->percpu_cluster);
798 	offset = cluster->next[order];
799 	if (offset) {
800 		offset = alloc_swap_scan_cluster(si, offset, &found, order, usage);
801 		if (found)
802 			goto done;
803 	}
804 
805 	if (!list_empty(&si->free_clusters)) {
806 		ci = list_first_entry(&si->free_clusters, struct swap_cluster_info, list);
807 		offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci), &found, order, usage);
808 		VM_BUG_ON(!found);
809 		goto done;
810 	}
811 
812 	/* Try reclaim from full clusters if free clusters list is drained */
813 	if (vm_swap_full())
814 		swap_reclaim_full_clusters(si, false);
815 
816 	if (order < PMD_ORDER) {
817 		unsigned int frags = 0;
818 
819 		while (!list_empty(&si->nonfull_clusters[order])) {
820 			ci = list_first_entry(&si->nonfull_clusters[order],
821 					      struct swap_cluster_info, list);
822 			list_move_tail(&ci->list, &si->frag_clusters[order]);
823 			ci->flags = CLUSTER_FLAG_FRAG;
824 			si->frag_cluster_nr[order]++;
825 			offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
826 							 &found, order, usage);
827 			frags++;
828 			if (found)
829 				break;
830 		}
831 
832 		if (!found) {
833 			/*
834 			 * Nonfull clusters are moved to frag tail if we reached
835 			 * here, count them too, don't over scan the frag list.
836 			 */
837 			while (frags < si->frag_cluster_nr[order]) {
838 				ci = list_first_entry(&si->frag_clusters[order],
839 						      struct swap_cluster_info, list);
840 				/*
841 				 * Rotate the frag list to iterate, they were all failing
842 				 * high order allocation or moved here due to per-CPU usage,
843 				 * this help keeping usable cluster ahead.
844 				 */
845 				list_move_tail(&ci->list, &si->frag_clusters[order]);
846 				offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
847 								 &found, order, usage);
848 				frags++;
849 				if (found)
850 					break;
851 			}
852 		}
853 	}
854 
855 	if (found)
856 		goto done;
857 
858 	if (!list_empty(&si->discard_clusters)) {
859 		/*
860 		 * we don't have free cluster but have some clusters in
861 		 * discarding, do discard now and reclaim them, then
862 		 * reread cluster_next_cpu since we dropped si->lock
863 		 */
864 		swap_do_scheduled_discard(si);
865 		goto new_cluster;
866 	}
867 
868 	if (order)
869 		goto done;
870 
871 	/* Order 0 stealing from higher order */
872 	for (int o = 1; o < SWAP_NR_ORDERS; o++) {
873 		/*
874 		 * Clusters here have at least one usable slots and can't fail order 0
875 		 * allocation, but reclaim may drop si->lock and race with another user.
876 		 */
877 		while (!list_empty(&si->frag_clusters[o])) {
878 			ci = list_first_entry(&si->frag_clusters[o],
879 					      struct swap_cluster_info, list);
880 			offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
881 							 &found, 0, usage);
882 			if (found)
883 				goto done;
884 		}
885 
886 		while (!list_empty(&si->nonfull_clusters[o])) {
887 			ci = list_first_entry(&si->nonfull_clusters[o],
888 					      struct swap_cluster_info, list);
889 			offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
890 							 &found, 0, usage);
891 			if (found)
892 				goto done;
893 		}
894 	}
895 
896 done:
897 	cluster->next[order] = offset;
898 	return found;
899 }
900 
901 static void __del_from_avail_list(struct swap_info_struct *si)
902 {
903 	int nid;
904 
905 	assert_spin_locked(&si->lock);
906 	for_each_node(nid)
907 		plist_del(&si->avail_lists[nid], &swap_avail_heads[nid]);
908 }
909 
910 static void del_from_avail_list(struct swap_info_struct *si)
911 {
912 	spin_lock(&swap_avail_lock);
913 	__del_from_avail_list(si);
914 	spin_unlock(&swap_avail_lock);
915 }
916 
917 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
918 			     unsigned int nr_entries)
919 {
920 	unsigned int end = offset + nr_entries - 1;
921 
922 	if (offset == si->lowest_bit)
923 		si->lowest_bit += nr_entries;
924 	if (end == si->highest_bit)
925 		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
926 	WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
927 	if (si->inuse_pages == si->pages) {
928 		si->lowest_bit = si->max;
929 		si->highest_bit = 0;
930 		del_from_avail_list(si);
931 
932 		if (vm_swap_full())
933 			schedule_work(&si->reclaim_work);
934 	}
935 }
936 
937 static void add_to_avail_list(struct swap_info_struct *si)
938 {
939 	int nid;
940 
941 	spin_lock(&swap_avail_lock);
942 	for_each_node(nid)
943 		plist_add(&si->avail_lists[nid], &swap_avail_heads[nid]);
944 	spin_unlock(&swap_avail_lock);
945 }
946 
947 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
948 			    unsigned int nr_entries)
949 {
950 	unsigned long begin = offset;
951 	unsigned long end = offset + nr_entries - 1;
952 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
953 	unsigned int i;
954 
955 	/*
956 	 * Use atomic clear_bit operations only on zeromap instead of non-atomic
957 	 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes.
958 	 */
959 	for (i = 0; i < nr_entries; i++)
960 		clear_bit(offset + i, si->zeromap);
961 
962 	if (offset < si->lowest_bit)
963 		si->lowest_bit = offset;
964 	if (end > si->highest_bit) {
965 		bool was_full = !si->highest_bit;
966 
967 		WRITE_ONCE(si->highest_bit, end);
968 		if (was_full && (si->flags & SWP_WRITEOK))
969 			add_to_avail_list(si);
970 	}
971 	if (si->flags & SWP_BLKDEV)
972 		swap_slot_free_notify =
973 			si->bdev->bd_disk->fops->swap_slot_free_notify;
974 	else
975 		swap_slot_free_notify = NULL;
976 	while (offset <= end) {
977 		arch_swap_invalidate_page(si->type, offset);
978 		if (swap_slot_free_notify)
979 			swap_slot_free_notify(si->bdev, offset);
980 		offset++;
981 	}
982 	clear_shadow_from_swap_cache(si->type, begin, end);
983 
984 	/*
985 	 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
986 	 * only after the above cleanups are done.
987 	 */
988 	smp_wmb();
989 	atomic_long_add(nr_entries, &nr_swap_pages);
990 	WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
991 }
992 
993 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
994 {
995 	unsigned long prev;
996 
997 	if (!(si->flags & SWP_SOLIDSTATE)) {
998 		si->cluster_next = next;
999 		return;
1000 	}
1001 
1002 	prev = this_cpu_read(*si->cluster_next_cpu);
1003 	/*
1004 	 * Cross the swap address space size aligned trunk, choose
1005 	 * another trunk randomly to avoid lock contention on swap
1006 	 * address space if possible.
1007 	 */
1008 	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
1009 	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
1010 		/* No free swap slots available */
1011 		if (si->highest_bit <= si->lowest_bit)
1012 			return;
1013 		next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
1014 		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
1015 		next = max_t(unsigned int, next, si->lowest_bit);
1016 	}
1017 	this_cpu_write(*si->cluster_next_cpu, next);
1018 }
1019 
1020 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
1021 					     unsigned long offset)
1022 {
1023 	if (data_race(!si->swap_map[offset])) {
1024 		spin_lock(&si->lock);
1025 		return true;
1026 	}
1027 
1028 	if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1029 		spin_lock(&si->lock);
1030 		return true;
1031 	}
1032 
1033 	return false;
1034 }
1035 
1036 static int cluster_alloc_swap(struct swap_info_struct *si,
1037 			     unsigned char usage, int nr,
1038 			     swp_entry_t slots[], int order)
1039 {
1040 	int n_ret = 0;
1041 
1042 	VM_BUG_ON(!si->cluster_info);
1043 
1044 	while (n_ret < nr) {
1045 		unsigned long offset = cluster_alloc_swap_entry(si, order, usage);
1046 
1047 		if (!offset)
1048 			break;
1049 		slots[n_ret++] = swp_entry(si->type, offset);
1050 	}
1051 
1052 	return n_ret;
1053 }
1054 
1055 static int scan_swap_map_slots(struct swap_info_struct *si,
1056 			       unsigned char usage, int nr,
1057 			       swp_entry_t slots[], int order)
1058 {
1059 	unsigned long offset;
1060 	unsigned long scan_base;
1061 	unsigned long last_in_cluster = 0;
1062 	int latency_ration = LATENCY_LIMIT;
1063 	unsigned int nr_pages = 1 << order;
1064 	int n_ret = 0;
1065 	bool scanned_many = false;
1066 
1067 	/*
1068 	 * We try to cluster swap pages by allocating them sequentially
1069 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
1070 	 * way, however, we resort to first-free allocation, starting
1071 	 * a new cluster.  This prevents us from scattering swap pages
1072 	 * all over the entire swap partition, so that we reduce
1073 	 * overall disk seek times between swap pages.  -- sct
1074 	 * But we do now try to find an empty cluster.  -Andrea
1075 	 * And we let swap pages go all over an SSD partition.  Hugh
1076 	 */
1077 
1078 	if (order > 0) {
1079 		/*
1080 		 * Should not even be attempting large allocations when huge
1081 		 * page swap is disabled.  Warn and fail the allocation.
1082 		 */
1083 		if (!IS_ENABLED(CONFIG_THP_SWAP) ||
1084 		    nr_pages > SWAPFILE_CLUSTER) {
1085 			VM_WARN_ON_ONCE(1);
1086 			return 0;
1087 		}
1088 
1089 		/*
1090 		 * Swapfile is not block device or not using clusters so unable
1091 		 * to allocate large entries.
1092 		 */
1093 		if (!(si->flags & SWP_BLKDEV) || !si->cluster_info)
1094 			return 0;
1095 	}
1096 
1097 	if (si->cluster_info)
1098 		return cluster_alloc_swap(si, usage, nr, slots, order);
1099 
1100 	si->flags += SWP_SCANNING;
1101 
1102 	/* For HDD, sequential access is more important. */
1103 	scan_base = si->cluster_next;
1104 	offset = scan_base;
1105 
1106 	if (unlikely(!si->cluster_nr--)) {
1107 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
1108 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
1109 			goto checks;
1110 		}
1111 
1112 		spin_unlock(&si->lock);
1113 
1114 		/*
1115 		 * If seek is expensive, start searching for new cluster from
1116 		 * start of partition, to minimize the span of allocated swap.
1117 		 */
1118 		scan_base = offset = si->lowest_bit;
1119 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
1120 
1121 		/* Locate the first empty (unaligned) cluster */
1122 		for (; last_in_cluster <= READ_ONCE(si->highest_bit); offset++) {
1123 			if (si->swap_map[offset])
1124 				last_in_cluster = offset + SWAPFILE_CLUSTER;
1125 			else if (offset == last_in_cluster) {
1126 				spin_lock(&si->lock);
1127 				offset -= SWAPFILE_CLUSTER - 1;
1128 				si->cluster_next = offset;
1129 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
1130 				goto checks;
1131 			}
1132 			if (unlikely(--latency_ration < 0)) {
1133 				cond_resched();
1134 				latency_ration = LATENCY_LIMIT;
1135 			}
1136 		}
1137 
1138 		offset = scan_base;
1139 		spin_lock(&si->lock);
1140 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
1141 	}
1142 
1143 checks:
1144 	if (!(si->flags & SWP_WRITEOK))
1145 		goto no_page;
1146 	if (!si->highest_bit)
1147 		goto no_page;
1148 	if (offset > si->highest_bit)
1149 		scan_base = offset = si->lowest_bit;
1150 
1151 	/* reuse swap entry of cache-only swap if not busy. */
1152 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
1153 		int swap_was_freed;
1154 		spin_unlock(&si->lock);
1155 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY | TTRS_DIRECT);
1156 		spin_lock(&si->lock);
1157 		/* entry was freed successfully, try to use this again */
1158 		if (swap_was_freed > 0)
1159 			goto checks;
1160 		goto scan; /* check next one */
1161 	}
1162 
1163 	if (si->swap_map[offset]) {
1164 		if (!n_ret)
1165 			goto scan;
1166 		else
1167 			goto done;
1168 	}
1169 	memset(si->swap_map + offset, usage, nr_pages);
1170 
1171 	swap_range_alloc(si, offset, nr_pages);
1172 	slots[n_ret++] = swp_entry(si->type, offset);
1173 
1174 	/* got enough slots or reach max slots? */
1175 	if ((n_ret == nr) || (offset >= si->highest_bit))
1176 		goto done;
1177 
1178 	/* search for next available slot */
1179 
1180 	/* time to take a break? */
1181 	if (unlikely(--latency_ration < 0)) {
1182 		if (n_ret)
1183 			goto done;
1184 		spin_unlock(&si->lock);
1185 		cond_resched();
1186 		spin_lock(&si->lock);
1187 		latency_ration = LATENCY_LIMIT;
1188 	}
1189 
1190 	if (si->cluster_nr && !si->swap_map[++offset]) {
1191 		/* non-ssd case, still more slots in cluster? */
1192 		--si->cluster_nr;
1193 		goto checks;
1194 	}
1195 
1196 	/*
1197 	 * Even if there's no free clusters available (fragmented),
1198 	 * try to scan a little more quickly with lock held unless we
1199 	 * have scanned too many slots already.
1200 	 */
1201 	if (!scanned_many) {
1202 		unsigned long scan_limit;
1203 
1204 		if (offset < scan_base)
1205 			scan_limit = scan_base;
1206 		else
1207 			scan_limit = si->highest_bit;
1208 		for (; offset <= scan_limit && --latency_ration > 0;
1209 		     offset++) {
1210 			if (!si->swap_map[offset])
1211 				goto checks;
1212 		}
1213 	}
1214 
1215 done:
1216 	if (order == 0)
1217 		set_cluster_next(si, offset + 1);
1218 	si->flags -= SWP_SCANNING;
1219 	return n_ret;
1220 
1221 scan:
1222 	VM_WARN_ON(order > 0);
1223 	spin_unlock(&si->lock);
1224 	while (++offset <= READ_ONCE(si->highest_bit)) {
1225 		if (unlikely(--latency_ration < 0)) {
1226 			cond_resched();
1227 			latency_ration = LATENCY_LIMIT;
1228 			scanned_many = true;
1229 		}
1230 		if (swap_offset_available_and_locked(si, offset))
1231 			goto checks;
1232 	}
1233 	offset = si->lowest_bit;
1234 	while (offset < scan_base) {
1235 		if (unlikely(--latency_ration < 0)) {
1236 			cond_resched();
1237 			latency_ration = LATENCY_LIMIT;
1238 			scanned_many = true;
1239 		}
1240 		if (swap_offset_available_and_locked(si, offset))
1241 			goto checks;
1242 		offset++;
1243 	}
1244 	spin_lock(&si->lock);
1245 
1246 no_page:
1247 	si->flags -= SWP_SCANNING;
1248 	return n_ret;
1249 }
1250 
1251 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_order)
1252 {
1253 	int order = swap_entry_order(entry_order);
1254 	unsigned long size = 1 << order;
1255 	struct swap_info_struct *si, *next;
1256 	long avail_pgs;
1257 	int n_ret = 0;
1258 	int node;
1259 
1260 	spin_lock(&swap_avail_lock);
1261 
1262 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1263 	if (avail_pgs <= 0) {
1264 		spin_unlock(&swap_avail_lock);
1265 		goto noswap;
1266 	}
1267 
1268 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1269 
1270 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1271 
1272 start_over:
1273 	node = numa_node_id();
1274 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1275 		/* requeue si to after same-priority siblings */
1276 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1277 		spin_unlock(&swap_avail_lock);
1278 		spin_lock(&si->lock);
1279 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1280 			spin_lock(&swap_avail_lock);
1281 			if (plist_node_empty(&si->avail_lists[node])) {
1282 				spin_unlock(&si->lock);
1283 				goto nextsi;
1284 			}
1285 			WARN(!si->highest_bit,
1286 			     "swap_info %d in list but !highest_bit\n",
1287 			     si->type);
1288 			WARN(!(si->flags & SWP_WRITEOK),
1289 			     "swap_info %d in list but !SWP_WRITEOK\n",
1290 			     si->type);
1291 			__del_from_avail_list(si);
1292 			spin_unlock(&si->lock);
1293 			goto nextsi;
1294 		}
1295 		n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1296 					    n_goal, swp_entries, order);
1297 		spin_unlock(&si->lock);
1298 		if (n_ret || size > 1)
1299 			goto check_out;
1300 		cond_resched();
1301 
1302 		spin_lock(&swap_avail_lock);
1303 nextsi:
1304 		/*
1305 		 * if we got here, it's likely that si was almost full before,
1306 		 * and since scan_swap_map_slots() can drop the si->lock,
1307 		 * multiple callers probably all tried to get a page from the
1308 		 * same si and it filled up before we could get one; or, the si
1309 		 * filled up between us dropping swap_avail_lock and taking
1310 		 * si->lock. Since we dropped the swap_avail_lock, the
1311 		 * swap_avail_head list may have been modified; so if next is
1312 		 * still in the swap_avail_head list then try it, otherwise
1313 		 * start over if we have not gotten any slots.
1314 		 */
1315 		if (plist_node_empty(&next->avail_lists[node]))
1316 			goto start_over;
1317 	}
1318 
1319 	spin_unlock(&swap_avail_lock);
1320 
1321 check_out:
1322 	if (n_ret < n_goal)
1323 		atomic_long_add((long)(n_goal - n_ret) * size,
1324 				&nr_swap_pages);
1325 noswap:
1326 	return n_ret;
1327 }
1328 
1329 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1330 {
1331 	struct swap_info_struct *si;
1332 	unsigned long offset;
1333 
1334 	if (!entry.val)
1335 		goto out;
1336 	si = swp_swap_info(entry);
1337 	if (!si)
1338 		goto bad_nofile;
1339 	if (data_race(!(si->flags & SWP_USED)))
1340 		goto bad_device;
1341 	offset = swp_offset(entry);
1342 	if (offset >= si->max)
1343 		goto bad_offset;
1344 	if (data_race(!si->swap_map[swp_offset(entry)]))
1345 		goto bad_free;
1346 	return si;
1347 
1348 bad_free:
1349 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1350 	goto out;
1351 bad_offset:
1352 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1353 	goto out;
1354 bad_device:
1355 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1356 	goto out;
1357 bad_nofile:
1358 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1359 out:
1360 	return NULL;
1361 }
1362 
1363 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1364 					struct swap_info_struct *q)
1365 {
1366 	struct swap_info_struct *p;
1367 
1368 	p = _swap_info_get(entry);
1369 
1370 	if (p != q) {
1371 		if (q != NULL)
1372 			spin_unlock(&q->lock);
1373 		if (p != NULL)
1374 			spin_lock(&p->lock);
1375 	}
1376 	return p;
1377 }
1378 
1379 static unsigned char __swap_entry_free_locked(struct swap_info_struct *si,
1380 					      unsigned long offset,
1381 					      unsigned char usage)
1382 {
1383 	unsigned char count;
1384 	unsigned char has_cache;
1385 
1386 	count = si->swap_map[offset];
1387 
1388 	has_cache = count & SWAP_HAS_CACHE;
1389 	count &= ~SWAP_HAS_CACHE;
1390 
1391 	if (usage == SWAP_HAS_CACHE) {
1392 		VM_BUG_ON(!has_cache);
1393 		has_cache = 0;
1394 	} else if (count == SWAP_MAP_SHMEM) {
1395 		/*
1396 		 * Or we could insist on shmem.c using a special
1397 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1398 		 */
1399 		count = 0;
1400 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1401 		if (count == COUNT_CONTINUED) {
1402 			if (swap_count_continued(si, offset, count))
1403 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1404 			else
1405 				count = SWAP_MAP_MAX;
1406 		} else
1407 			count--;
1408 	}
1409 
1410 	usage = count | has_cache;
1411 	if (usage)
1412 		WRITE_ONCE(si->swap_map[offset], usage);
1413 	else
1414 		WRITE_ONCE(si->swap_map[offset], SWAP_HAS_CACHE);
1415 
1416 	return usage;
1417 }
1418 
1419 /*
1420  * When we get a swap entry, if there aren't some other ways to
1421  * prevent swapoff, such as the folio in swap cache is locked, RCU
1422  * reader side is locked, etc., the swap entry may become invalid
1423  * because of swapoff.  Then, we need to enclose all swap related
1424  * functions with get_swap_device() and put_swap_device(), unless the
1425  * swap functions call get/put_swap_device() by themselves.
1426  *
1427  * RCU reader side lock (including any spinlock) is sufficient to
1428  * prevent swapoff, because synchronize_rcu() is called in swapoff()
1429  * before freeing data structures.
1430  *
1431  * Check whether swap entry is valid in the swap device.  If so,
1432  * return pointer to swap_info_struct, and keep the swap entry valid
1433  * via preventing the swap device from being swapoff, until
1434  * put_swap_device() is called.  Otherwise return NULL.
1435  *
1436  * Notice that swapoff or swapoff+swapon can still happen before the
1437  * percpu_ref_tryget_live() in get_swap_device() or after the
1438  * percpu_ref_put() in put_swap_device() if there isn't any other way
1439  * to prevent swapoff.  The caller must be prepared for that.  For
1440  * example, the following situation is possible.
1441  *
1442  *   CPU1				CPU2
1443  *   do_swap_page()
1444  *     ...				swapoff+swapon
1445  *     __read_swap_cache_async()
1446  *       swapcache_prepare()
1447  *         __swap_duplicate()
1448  *           // check swap_map
1449  *     // verify PTE not changed
1450  *
1451  * In __swap_duplicate(), the swap_map need to be checked before
1452  * changing partly because the specified swap entry may be for another
1453  * swap device which has been swapoff.  And in do_swap_page(), after
1454  * the page is read from the swap device, the PTE is verified not
1455  * changed with the page table locked to check whether the swap device
1456  * has been swapoff or swapoff+swapon.
1457  */
1458 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1459 {
1460 	struct swap_info_struct *si;
1461 	unsigned long offset;
1462 
1463 	if (!entry.val)
1464 		goto out;
1465 	si = swp_swap_info(entry);
1466 	if (!si)
1467 		goto bad_nofile;
1468 	if (!percpu_ref_tryget_live(&si->users))
1469 		goto out;
1470 	/*
1471 	 * Guarantee the si->users are checked before accessing other
1472 	 * fields of swap_info_struct.
1473 	 *
1474 	 * Paired with the spin_unlock() after setup_swap_info() in
1475 	 * enable_swap_info().
1476 	 */
1477 	smp_rmb();
1478 	offset = swp_offset(entry);
1479 	if (offset >= si->max)
1480 		goto put_out;
1481 
1482 	return si;
1483 bad_nofile:
1484 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1485 out:
1486 	return NULL;
1487 put_out:
1488 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1489 	percpu_ref_put(&si->users);
1490 	return NULL;
1491 }
1492 
1493 static unsigned char __swap_entry_free(struct swap_info_struct *si,
1494 				       swp_entry_t entry)
1495 {
1496 	struct swap_cluster_info *ci;
1497 	unsigned long offset = swp_offset(entry);
1498 	unsigned char usage;
1499 
1500 	ci = lock_cluster_or_swap_info(si, offset);
1501 	usage = __swap_entry_free_locked(si, offset, 1);
1502 	unlock_cluster_or_swap_info(si, ci);
1503 	if (!usage)
1504 		free_swap_slot(entry);
1505 
1506 	return usage;
1507 }
1508 
1509 static bool __swap_entries_free(struct swap_info_struct *si,
1510 		swp_entry_t entry, int nr)
1511 {
1512 	unsigned long offset = swp_offset(entry);
1513 	unsigned int type = swp_type(entry);
1514 	struct swap_cluster_info *ci;
1515 	bool has_cache = false;
1516 	unsigned char count;
1517 	int i;
1518 
1519 	if (nr <= 1 || swap_count(data_race(si->swap_map[offset])) != 1)
1520 		goto fallback;
1521 	/* cross into another cluster */
1522 	if (nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER)
1523 		goto fallback;
1524 
1525 	ci = lock_cluster_or_swap_info(si, offset);
1526 	if (!swap_is_last_map(si, offset, nr, &has_cache)) {
1527 		unlock_cluster_or_swap_info(si, ci);
1528 		goto fallback;
1529 	}
1530 	for (i = 0; i < nr; i++)
1531 		WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE);
1532 	unlock_cluster_or_swap_info(si, ci);
1533 
1534 	if (!has_cache) {
1535 		for (i = 0; i < nr; i++)
1536 			zswap_invalidate(swp_entry(si->type, offset + i));
1537 		spin_lock(&si->lock);
1538 		swap_entry_range_free(si, entry, nr);
1539 		spin_unlock(&si->lock);
1540 	}
1541 	return has_cache;
1542 
1543 fallback:
1544 	for (i = 0; i < nr; i++) {
1545 		if (data_race(si->swap_map[offset + i])) {
1546 			count = __swap_entry_free(si, swp_entry(type, offset + i));
1547 			if (count == SWAP_HAS_CACHE)
1548 				has_cache = true;
1549 		} else {
1550 			WARN_ON_ONCE(1);
1551 		}
1552 	}
1553 	return has_cache;
1554 }
1555 
1556 /*
1557  * Drop the last HAS_CACHE flag of swap entries, caller have to
1558  * ensure all entries belong to the same cgroup.
1559  */
1560 static void swap_entry_range_free(struct swap_info_struct *si, swp_entry_t entry,
1561 				  unsigned int nr_pages)
1562 {
1563 	unsigned long offset = swp_offset(entry);
1564 	unsigned char *map = si->swap_map + offset;
1565 	unsigned char *map_end = map + nr_pages;
1566 	struct swap_cluster_info *ci;
1567 
1568 	ci = lock_cluster(si, offset);
1569 	do {
1570 		VM_BUG_ON(*map != SWAP_HAS_CACHE);
1571 		*map = 0;
1572 	} while (++map < map_end);
1573 	dec_cluster_info_page(si, ci, nr_pages);
1574 	unlock_cluster(ci);
1575 
1576 	mem_cgroup_uncharge_swap(entry, nr_pages);
1577 	swap_range_free(si, offset, nr_pages);
1578 }
1579 
1580 static void cluster_swap_free_nr(struct swap_info_struct *si,
1581 		unsigned long offset, int nr_pages,
1582 		unsigned char usage)
1583 {
1584 	struct swap_cluster_info *ci;
1585 	DECLARE_BITMAP(to_free, BITS_PER_LONG) = { 0 };
1586 	int i, nr;
1587 
1588 	ci = lock_cluster_or_swap_info(si, offset);
1589 	while (nr_pages) {
1590 		nr = min(BITS_PER_LONG, nr_pages);
1591 		for (i = 0; i < nr; i++) {
1592 			if (!__swap_entry_free_locked(si, offset + i, usage))
1593 				bitmap_set(to_free, i, 1);
1594 		}
1595 		if (!bitmap_empty(to_free, BITS_PER_LONG)) {
1596 			unlock_cluster_or_swap_info(si, ci);
1597 			for_each_set_bit(i, to_free, BITS_PER_LONG)
1598 				free_swap_slot(swp_entry(si->type, offset + i));
1599 			if (nr == nr_pages)
1600 				return;
1601 			bitmap_clear(to_free, 0, BITS_PER_LONG);
1602 			ci = lock_cluster_or_swap_info(si, offset);
1603 		}
1604 		offset += nr;
1605 		nr_pages -= nr;
1606 	}
1607 	unlock_cluster_or_swap_info(si, ci);
1608 }
1609 
1610 /*
1611  * Caller has made sure that the swap device corresponding to entry
1612  * is still around or has not been recycled.
1613  */
1614 void swap_free_nr(swp_entry_t entry, int nr_pages)
1615 {
1616 	int nr;
1617 	struct swap_info_struct *sis;
1618 	unsigned long offset = swp_offset(entry);
1619 
1620 	sis = _swap_info_get(entry);
1621 	if (!sis)
1622 		return;
1623 
1624 	while (nr_pages) {
1625 		nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
1626 		cluster_swap_free_nr(sis, offset, nr, 1);
1627 		offset += nr;
1628 		nr_pages -= nr;
1629 	}
1630 }
1631 
1632 /*
1633  * Called after dropping swapcache to decrease refcnt to swap entries.
1634  */
1635 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1636 {
1637 	unsigned long offset = swp_offset(entry);
1638 	struct swap_cluster_info *ci;
1639 	struct swap_info_struct *si;
1640 	int size = 1 << swap_entry_order(folio_order(folio));
1641 
1642 	si = _swap_info_get(entry);
1643 	if (!si)
1644 		return;
1645 
1646 	ci = lock_cluster_or_swap_info(si, offset);
1647 	if (size > 1 && swap_is_has_cache(si, offset, size)) {
1648 		unlock_cluster_or_swap_info(si, ci);
1649 		spin_lock(&si->lock);
1650 		swap_entry_range_free(si, entry, size);
1651 		spin_unlock(&si->lock);
1652 		return;
1653 	}
1654 	for (int i = 0; i < size; i++, entry.val++) {
1655 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1656 			unlock_cluster_or_swap_info(si, ci);
1657 			free_swap_slot(entry);
1658 			if (i == size - 1)
1659 				return;
1660 			lock_cluster_or_swap_info(si, offset);
1661 		}
1662 	}
1663 	unlock_cluster_or_swap_info(si, ci);
1664 }
1665 
1666 static int swp_entry_cmp(const void *ent1, const void *ent2)
1667 {
1668 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1669 
1670 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1671 }
1672 
1673 void swapcache_free_entries(swp_entry_t *entries, int n)
1674 {
1675 	struct swap_info_struct *p, *prev;
1676 	int i;
1677 
1678 	if (n <= 0)
1679 		return;
1680 
1681 	prev = NULL;
1682 	p = NULL;
1683 
1684 	/*
1685 	 * Sort swap entries by swap device, so each lock is only taken once.
1686 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1687 	 * so low that it isn't necessary to optimize further.
1688 	 */
1689 	if (nr_swapfiles > 1)
1690 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1691 	for (i = 0; i < n; ++i) {
1692 		p = swap_info_get_cont(entries[i], prev);
1693 		if (p)
1694 			swap_entry_range_free(p, entries[i], 1);
1695 		prev = p;
1696 	}
1697 	if (p)
1698 		spin_unlock(&p->lock);
1699 }
1700 
1701 int __swap_count(swp_entry_t entry)
1702 {
1703 	struct swap_info_struct *si = swp_swap_info(entry);
1704 	pgoff_t offset = swp_offset(entry);
1705 
1706 	return swap_count(si->swap_map[offset]);
1707 }
1708 
1709 /*
1710  * How many references to @entry are currently swapped out?
1711  * This does not give an exact answer when swap count is continued,
1712  * but does include the high COUNT_CONTINUED flag to allow for that.
1713  */
1714 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1715 {
1716 	pgoff_t offset = swp_offset(entry);
1717 	struct swap_cluster_info *ci;
1718 	int count;
1719 
1720 	ci = lock_cluster_or_swap_info(si, offset);
1721 	count = swap_count(si->swap_map[offset]);
1722 	unlock_cluster_or_swap_info(si, ci);
1723 	return count;
1724 }
1725 
1726 /*
1727  * How many references to @entry are currently swapped out?
1728  * This considers COUNT_CONTINUED so it returns exact answer.
1729  */
1730 int swp_swapcount(swp_entry_t entry)
1731 {
1732 	int count, tmp_count, n;
1733 	struct swap_info_struct *si;
1734 	struct swap_cluster_info *ci;
1735 	struct page *page;
1736 	pgoff_t offset;
1737 	unsigned char *map;
1738 
1739 	si = _swap_info_get(entry);
1740 	if (!si)
1741 		return 0;
1742 
1743 	offset = swp_offset(entry);
1744 
1745 	ci = lock_cluster_or_swap_info(si, offset);
1746 
1747 	count = swap_count(si->swap_map[offset]);
1748 	if (!(count & COUNT_CONTINUED))
1749 		goto out;
1750 
1751 	count &= ~COUNT_CONTINUED;
1752 	n = SWAP_MAP_MAX + 1;
1753 
1754 	page = vmalloc_to_page(si->swap_map + offset);
1755 	offset &= ~PAGE_MASK;
1756 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1757 
1758 	do {
1759 		page = list_next_entry(page, lru);
1760 		map = kmap_local_page(page);
1761 		tmp_count = map[offset];
1762 		kunmap_local(map);
1763 
1764 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1765 		n *= (SWAP_CONT_MAX + 1);
1766 	} while (tmp_count & COUNT_CONTINUED);
1767 out:
1768 	unlock_cluster_or_swap_info(si, ci);
1769 	return count;
1770 }
1771 
1772 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1773 					 swp_entry_t entry, int order)
1774 {
1775 	struct swap_cluster_info *ci;
1776 	unsigned char *map = si->swap_map;
1777 	unsigned int nr_pages = 1 << order;
1778 	unsigned long roffset = swp_offset(entry);
1779 	unsigned long offset = round_down(roffset, nr_pages);
1780 	int i;
1781 	bool ret = false;
1782 
1783 	ci = lock_cluster_or_swap_info(si, offset);
1784 	if (!ci || nr_pages == 1) {
1785 		if (swap_count(map[roffset]))
1786 			ret = true;
1787 		goto unlock_out;
1788 	}
1789 	for (i = 0; i < nr_pages; i++) {
1790 		if (swap_count(map[offset + i])) {
1791 			ret = true;
1792 			break;
1793 		}
1794 	}
1795 unlock_out:
1796 	unlock_cluster_or_swap_info(si, ci);
1797 	return ret;
1798 }
1799 
1800 static bool folio_swapped(struct folio *folio)
1801 {
1802 	swp_entry_t entry = folio->swap;
1803 	struct swap_info_struct *si = _swap_info_get(entry);
1804 
1805 	if (!si)
1806 		return false;
1807 
1808 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1809 		return swap_swapcount(si, entry) != 0;
1810 
1811 	return swap_page_trans_huge_swapped(si, entry, folio_order(folio));
1812 }
1813 
1814 static bool folio_swapcache_freeable(struct folio *folio)
1815 {
1816 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1817 
1818 	if (!folio_test_swapcache(folio))
1819 		return false;
1820 	if (folio_test_writeback(folio))
1821 		return false;
1822 
1823 	/*
1824 	 * Once hibernation has begun to create its image of memory,
1825 	 * there's a danger that one of the calls to folio_free_swap()
1826 	 * - most probably a call from __try_to_reclaim_swap() while
1827 	 * hibernation is allocating its own swap pages for the image,
1828 	 * but conceivably even a call from memory reclaim - will free
1829 	 * the swap from a folio which has already been recorded in the
1830 	 * image as a clean swapcache folio, and then reuse its swap for
1831 	 * another page of the image.  On waking from hibernation, the
1832 	 * original folio might be freed under memory pressure, then
1833 	 * later read back in from swap, now with the wrong data.
1834 	 *
1835 	 * Hibernation suspends storage while it is writing the image
1836 	 * to disk so check that here.
1837 	 */
1838 	if (pm_suspended_storage())
1839 		return false;
1840 
1841 	return true;
1842 }
1843 
1844 /**
1845  * folio_free_swap() - Free the swap space used for this folio.
1846  * @folio: The folio to remove.
1847  *
1848  * If swap is getting full, or if there are no more mappings of this folio,
1849  * then call folio_free_swap to free its swap space.
1850  *
1851  * Return: true if we were able to release the swap space.
1852  */
1853 bool folio_free_swap(struct folio *folio)
1854 {
1855 	if (!folio_swapcache_freeable(folio))
1856 		return false;
1857 	if (folio_swapped(folio))
1858 		return false;
1859 
1860 	delete_from_swap_cache(folio);
1861 	folio_set_dirty(folio);
1862 	return true;
1863 }
1864 
1865 /**
1866  * free_swap_and_cache_nr() - Release reference on range of swap entries and
1867  *                            reclaim their cache if no more references remain.
1868  * @entry: First entry of range.
1869  * @nr: Number of entries in range.
1870  *
1871  * For each swap entry in the contiguous range, release a reference. If any swap
1872  * entries become free, try to reclaim their underlying folios, if present. The
1873  * offset range is defined by [entry.offset, entry.offset + nr).
1874  */
1875 void free_swap_and_cache_nr(swp_entry_t entry, int nr)
1876 {
1877 	const unsigned long start_offset = swp_offset(entry);
1878 	const unsigned long end_offset = start_offset + nr;
1879 	struct swap_info_struct *si;
1880 	bool any_only_cache = false;
1881 	unsigned long offset;
1882 
1883 	if (non_swap_entry(entry))
1884 		return;
1885 
1886 	si = get_swap_device(entry);
1887 	if (!si)
1888 		return;
1889 
1890 	if (WARN_ON(end_offset > si->max))
1891 		goto out;
1892 
1893 	/*
1894 	 * First free all entries in the range.
1895 	 */
1896 	any_only_cache = __swap_entries_free(si, entry, nr);
1897 
1898 	/*
1899 	 * Short-circuit the below loop if none of the entries had their
1900 	 * reference drop to zero.
1901 	 */
1902 	if (!any_only_cache)
1903 		goto out;
1904 
1905 	/*
1906 	 * Now go back over the range trying to reclaim the swap cache. This is
1907 	 * more efficient for large folios because we will only try to reclaim
1908 	 * the swap once per folio in the common case. If we do
1909 	 * __swap_entry_free() and __try_to_reclaim_swap() in the same loop, the
1910 	 * latter will get a reference and lock the folio for every individual
1911 	 * page but will only succeed once the swap slot for every subpage is
1912 	 * zero.
1913 	 */
1914 	for (offset = start_offset; offset < end_offset; offset += nr) {
1915 		nr = 1;
1916 		if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1917 			/*
1918 			 * Folios are always naturally aligned in swap so
1919 			 * advance forward to the next boundary. Zero means no
1920 			 * folio was found for the swap entry, so advance by 1
1921 			 * in this case. Negative value means folio was found
1922 			 * but could not be reclaimed. Here we can still advance
1923 			 * to the next boundary.
1924 			 */
1925 			nr = __try_to_reclaim_swap(si, offset,
1926 						   TTRS_UNMAPPED | TTRS_FULL);
1927 			if (nr == 0)
1928 				nr = 1;
1929 			else if (nr < 0)
1930 				nr = -nr;
1931 			nr = ALIGN(offset + 1, nr) - offset;
1932 		}
1933 	}
1934 
1935 out:
1936 	put_swap_device(si);
1937 }
1938 
1939 #ifdef CONFIG_HIBERNATION
1940 
1941 swp_entry_t get_swap_page_of_type(int type)
1942 {
1943 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1944 	swp_entry_t entry = {0};
1945 
1946 	if (!si)
1947 		goto fail;
1948 
1949 	/* This is called for allocating swap entry, not cache */
1950 	spin_lock(&si->lock);
1951 	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry, 0))
1952 		atomic_long_dec(&nr_swap_pages);
1953 	spin_unlock(&si->lock);
1954 fail:
1955 	return entry;
1956 }
1957 
1958 /*
1959  * Find the swap type that corresponds to given device (if any).
1960  *
1961  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1962  * from 0, in which the swap header is expected to be located.
1963  *
1964  * This is needed for the suspend to disk (aka swsusp).
1965  */
1966 int swap_type_of(dev_t device, sector_t offset)
1967 {
1968 	int type;
1969 
1970 	if (!device)
1971 		return -1;
1972 
1973 	spin_lock(&swap_lock);
1974 	for (type = 0; type < nr_swapfiles; type++) {
1975 		struct swap_info_struct *sis = swap_info[type];
1976 
1977 		if (!(sis->flags & SWP_WRITEOK))
1978 			continue;
1979 
1980 		if (device == sis->bdev->bd_dev) {
1981 			struct swap_extent *se = first_se(sis);
1982 
1983 			if (se->start_block == offset) {
1984 				spin_unlock(&swap_lock);
1985 				return type;
1986 			}
1987 		}
1988 	}
1989 	spin_unlock(&swap_lock);
1990 	return -ENODEV;
1991 }
1992 
1993 int find_first_swap(dev_t *device)
1994 {
1995 	int type;
1996 
1997 	spin_lock(&swap_lock);
1998 	for (type = 0; type < nr_swapfiles; type++) {
1999 		struct swap_info_struct *sis = swap_info[type];
2000 
2001 		if (!(sis->flags & SWP_WRITEOK))
2002 			continue;
2003 		*device = sis->bdev->bd_dev;
2004 		spin_unlock(&swap_lock);
2005 		return type;
2006 	}
2007 	spin_unlock(&swap_lock);
2008 	return -ENODEV;
2009 }
2010 
2011 /*
2012  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
2013  * corresponding to given index in swap_info (swap type).
2014  */
2015 sector_t swapdev_block(int type, pgoff_t offset)
2016 {
2017 	struct swap_info_struct *si = swap_type_to_swap_info(type);
2018 	struct swap_extent *se;
2019 
2020 	if (!si || !(si->flags & SWP_WRITEOK))
2021 		return 0;
2022 	se = offset_to_swap_extent(si, offset);
2023 	return se->start_block + (offset - se->start_page);
2024 }
2025 
2026 /*
2027  * Return either the total number of swap pages of given type, or the number
2028  * of free pages of that type (depending on @free)
2029  *
2030  * This is needed for software suspend
2031  */
2032 unsigned int count_swap_pages(int type, int free)
2033 {
2034 	unsigned int n = 0;
2035 
2036 	spin_lock(&swap_lock);
2037 	if ((unsigned int)type < nr_swapfiles) {
2038 		struct swap_info_struct *sis = swap_info[type];
2039 
2040 		spin_lock(&sis->lock);
2041 		if (sis->flags & SWP_WRITEOK) {
2042 			n = sis->pages;
2043 			if (free)
2044 				n -= sis->inuse_pages;
2045 		}
2046 		spin_unlock(&sis->lock);
2047 	}
2048 	spin_unlock(&swap_lock);
2049 	return n;
2050 }
2051 #endif /* CONFIG_HIBERNATION */
2052 
2053 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
2054 {
2055 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
2056 }
2057 
2058 /*
2059  * No need to decide whether this PTE shares the swap entry with others,
2060  * just let do_wp_page work it out if a write is requested later - to
2061  * force COW, vm_page_prot omits write permission from any private vma.
2062  */
2063 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
2064 		unsigned long addr, swp_entry_t entry, struct folio *folio)
2065 {
2066 	struct page *page;
2067 	struct folio *swapcache;
2068 	spinlock_t *ptl;
2069 	pte_t *pte, new_pte, old_pte;
2070 	bool hwpoisoned = false;
2071 	int ret = 1;
2072 
2073 	swapcache = folio;
2074 	folio = ksm_might_need_to_copy(folio, vma, addr);
2075 	if (unlikely(!folio))
2076 		return -ENOMEM;
2077 	else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
2078 		hwpoisoned = true;
2079 		folio = swapcache;
2080 	}
2081 
2082 	page = folio_file_page(folio, swp_offset(entry));
2083 	if (PageHWPoison(page))
2084 		hwpoisoned = true;
2085 
2086 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
2087 	if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
2088 						swp_entry_to_pte(entry)))) {
2089 		ret = 0;
2090 		goto out;
2091 	}
2092 
2093 	old_pte = ptep_get(pte);
2094 
2095 	if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
2096 		swp_entry_t swp_entry;
2097 
2098 		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2099 		if (hwpoisoned) {
2100 			swp_entry = make_hwpoison_entry(page);
2101 		} else {
2102 			swp_entry = make_poisoned_swp_entry();
2103 		}
2104 		new_pte = swp_entry_to_pte(swp_entry);
2105 		ret = 0;
2106 		goto setpte;
2107 	}
2108 
2109 	/*
2110 	 * Some architectures may have to restore extra metadata to the page
2111 	 * when reading from swap. This metadata may be indexed by swap entry
2112 	 * so this must be called before swap_free().
2113 	 */
2114 	arch_swap_restore(folio_swap(entry, folio), folio);
2115 
2116 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2117 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
2118 	folio_get(folio);
2119 	if (folio == swapcache) {
2120 		rmap_t rmap_flags = RMAP_NONE;
2121 
2122 		/*
2123 		 * See do_swap_page(): writeback would be problematic.
2124 		 * However, we do a folio_wait_writeback() just before this
2125 		 * call and have the folio locked.
2126 		 */
2127 		VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
2128 		if (pte_swp_exclusive(old_pte))
2129 			rmap_flags |= RMAP_EXCLUSIVE;
2130 		/*
2131 		 * We currently only expect small !anon folios, which are either
2132 		 * fully exclusive or fully shared. If we ever get large folios
2133 		 * here, we have to be careful.
2134 		 */
2135 		if (!folio_test_anon(folio)) {
2136 			VM_WARN_ON_ONCE(folio_test_large(folio));
2137 			VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
2138 			folio_add_new_anon_rmap(folio, vma, addr, rmap_flags);
2139 		} else {
2140 			folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
2141 		}
2142 	} else { /* ksm created a completely new copy */
2143 		folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
2144 		folio_add_lru_vma(folio, vma);
2145 	}
2146 	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
2147 	if (pte_swp_soft_dirty(old_pte))
2148 		new_pte = pte_mksoft_dirty(new_pte);
2149 	if (pte_swp_uffd_wp(old_pte))
2150 		new_pte = pte_mkuffd_wp(new_pte);
2151 setpte:
2152 	set_pte_at(vma->vm_mm, addr, pte, new_pte);
2153 	swap_free(entry);
2154 out:
2155 	if (pte)
2156 		pte_unmap_unlock(pte, ptl);
2157 	if (folio != swapcache) {
2158 		folio_unlock(folio);
2159 		folio_put(folio);
2160 	}
2161 	return ret;
2162 }
2163 
2164 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
2165 			unsigned long addr, unsigned long end,
2166 			unsigned int type)
2167 {
2168 	pte_t *pte = NULL;
2169 	struct swap_info_struct *si;
2170 
2171 	si = swap_info[type];
2172 	do {
2173 		struct folio *folio;
2174 		unsigned long offset;
2175 		unsigned char swp_count;
2176 		swp_entry_t entry;
2177 		int ret;
2178 		pte_t ptent;
2179 
2180 		if (!pte++) {
2181 			pte = pte_offset_map(pmd, addr);
2182 			if (!pte)
2183 				break;
2184 		}
2185 
2186 		ptent = ptep_get_lockless(pte);
2187 
2188 		if (!is_swap_pte(ptent))
2189 			continue;
2190 
2191 		entry = pte_to_swp_entry(ptent);
2192 		if (swp_type(entry) != type)
2193 			continue;
2194 
2195 		offset = swp_offset(entry);
2196 		pte_unmap(pte);
2197 		pte = NULL;
2198 
2199 		folio = swap_cache_get_folio(entry, vma, addr);
2200 		if (!folio) {
2201 			struct vm_fault vmf = {
2202 				.vma = vma,
2203 				.address = addr,
2204 				.real_address = addr,
2205 				.pmd = pmd,
2206 			};
2207 
2208 			folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2209 						&vmf);
2210 		}
2211 		if (!folio) {
2212 			swp_count = READ_ONCE(si->swap_map[offset]);
2213 			if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
2214 				continue;
2215 			return -ENOMEM;
2216 		}
2217 
2218 		folio_lock(folio);
2219 		folio_wait_writeback(folio);
2220 		ret = unuse_pte(vma, pmd, addr, entry, folio);
2221 		if (ret < 0) {
2222 			folio_unlock(folio);
2223 			folio_put(folio);
2224 			return ret;
2225 		}
2226 
2227 		folio_free_swap(folio);
2228 		folio_unlock(folio);
2229 		folio_put(folio);
2230 	} while (addr += PAGE_SIZE, addr != end);
2231 
2232 	if (pte)
2233 		pte_unmap(pte);
2234 	return 0;
2235 }
2236 
2237 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2238 				unsigned long addr, unsigned long end,
2239 				unsigned int type)
2240 {
2241 	pmd_t *pmd;
2242 	unsigned long next;
2243 	int ret;
2244 
2245 	pmd = pmd_offset(pud, addr);
2246 	do {
2247 		cond_resched();
2248 		next = pmd_addr_end(addr, end);
2249 		ret = unuse_pte_range(vma, pmd, addr, next, type);
2250 		if (ret)
2251 			return ret;
2252 	} while (pmd++, addr = next, addr != end);
2253 	return 0;
2254 }
2255 
2256 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2257 				unsigned long addr, unsigned long end,
2258 				unsigned int type)
2259 {
2260 	pud_t *pud;
2261 	unsigned long next;
2262 	int ret;
2263 
2264 	pud = pud_offset(p4d, addr);
2265 	do {
2266 		next = pud_addr_end(addr, end);
2267 		if (pud_none_or_clear_bad(pud))
2268 			continue;
2269 		ret = unuse_pmd_range(vma, pud, addr, next, type);
2270 		if (ret)
2271 			return ret;
2272 	} while (pud++, addr = next, addr != end);
2273 	return 0;
2274 }
2275 
2276 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2277 				unsigned long addr, unsigned long end,
2278 				unsigned int type)
2279 {
2280 	p4d_t *p4d;
2281 	unsigned long next;
2282 	int ret;
2283 
2284 	p4d = p4d_offset(pgd, addr);
2285 	do {
2286 		next = p4d_addr_end(addr, end);
2287 		if (p4d_none_or_clear_bad(p4d))
2288 			continue;
2289 		ret = unuse_pud_range(vma, p4d, addr, next, type);
2290 		if (ret)
2291 			return ret;
2292 	} while (p4d++, addr = next, addr != end);
2293 	return 0;
2294 }
2295 
2296 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
2297 {
2298 	pgd_t *pgd;
2299 	unsigned long addr, end, next;
2300 	int ret;
2301 
2302 	addr = vma->vm_start;
2303 	end = vma->vm_end;
2304 
2305 	pgd = pgd_offset(vma->vm_mm, addr);
2306 	do {
2307 		next = pgd_addr_end(addr, end);
2308 		if (pgd_none_or_clear_bad(pgd))
2309 			continue;
2310 		ret = unuse_p4d_range(vma, pgd, addr, next, type);
2311 		if (ret)
2312 			return ret;
2313 	} while (pgd++, addr = next, addr != end);
2314 	return 0;
2315 }
2316 
2317 static int unuse_mm(struct mm_struct *mm, unsigned int type)
2318 {
2319 	struct vm_area_struct *vma;
2320 	int ret = 0;
2321 	VMA_ITERATOR(vmi, mm, 0);
2322 
2323 	mmap_read_lock(mm);
2324 	for_each_vma(vmi, vma) {
2325 		if (vma->anon_vma && !is_vm_hugetlb_page(vma)) {
2326 			ret = unuse_vma(vma, type);
2327 			if (ret)
2328 				break;
2329 		}
2330 
2331 		cond_resched();
2332 	}
2333 	mmap_read_unlock(mm);
2334 	return ret;
2335 }
2336 
2337 /*
2338  * Scan swap_map from current position to next entry still in use.
2339  * Return 0 if there are no inuse entries after prev till end of
2340  * the map.
2341  */
2342 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2343 					unsigned int prev)
2344 {
2345 	unsigned int i;
2346 	unsigned char count;
2347 
2348 	/*
2349 	 * No need for swap_lock here: we're just looking
2350 	 * for whether an entry is in use, not modifying it; false
2351 	 * hits are okay, and sys_swapoff() has already prevented new
2352 	 * allocations from this area (while holding swap_lock).
2353 	 */
2354 	for (i = prev + 1; i < si->max; i++) {
2355 		count = READ_ONCE(si->swap_map[i]);
2356 		if (count && swap_count(count) != SWAP_MAP_BAD)
2357 			break;
2358 		if ((i % LATENCY_LIMIT) == 0)
2359 			cond_resched();
2360 	}
2361 
2362 	if (i == si->max)
2363 		i = 0;
2364 
2365 	return i;
2366 }
2367 
2368 static int try_to_unuse(unsigned int type)
2369 {
2370 	struct mm_struct *prev_mm;
2371 	struct mm_struct *mm;
2372 	struct list_head *p;
2373 	int retval = 0;
2374 	struct swap_info_struct *si = swap_info[type];
2375 	struct folio *folio;
2376 	swp_entry_t entry;
2377 	unsigned int i;
2378 
2379 	if (!READ_ONCE(si->inuse_pages))
2380 		goto success;
2381 
2382 retry:
2383 	retval = shmem_unuse(type);
2384 	if (retval)
2385 		return retval;
2386 
2387 	prev_mm = &init_mm;
2388 	mmget(prev_mm);
2389 
2390 	spin_lock(&mmlist_lock);
2391 	p = &init_mm.mmlist;
2392 	while (READ_ONCE(si->inuse_pages) &&
2393 	       !signal_pending(current) &&
2394 	       (p = p->next) != &init_mm.mmlist) {
2395 
2396 		mm = list_entry(p, struct mm_struct, mmlist);
2397 		if (!mmget_not_zero(mm))
2398 			continue;
2399 		spin_unlock(&mmlist_lock);
2400 		mmput(prev_mm);
2401 		prev_mm = mm;
2402 		retval = unuse_mm(mm, type);
2403 		if (retval) {
2404 			mmput(prev_mm);
2405 			return retval;
2406 		}
2407 
2408 		/*
2409 		 * Make sure that we aren't completely killing
2410 		 * interactive performance.
2411 		 */
2412 		cond_resched();
2413 		spin_lock(&mmlist_lock);
2414 	}
2415 	spin_unlock(&mmlist_lock);
2416 
2417 	mmput(prev_mm);
2418 
2419 	i = 0;
2420 	while (READ_ONCE(si->inuse_pages) &&
2421 	       !signal_pending(current) &&
2422 	       (i = find_next_to_unuse(si, i)) != 0) {
2423 
2424 		entry = swp_entry(type, i);
2425 		folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry));
2426 		if (IS_ERR(folio))
2427 			continue;
2428 
2429 		/*
2430 		 * It is conceivable that a racing task removed this folio from
2431 		 * swap cache just before we acquired the page lock. The folio
2432 		 * might even be back in swap cache on another swap area. But
2433 		 * that is okay, folio_free_swap() only removes stale folios.
2434 		 */
2435 		folio_lock(folio);
2436 		folio_wait_writeback(folio);
2437 		folio_free_swap(folio);
2438 		folio_unlock(folio);
2439 		folio_put(folio);
2440 	}
2441 
2442 	/*
2443 	 * Lets check again to see if there are still swap entries in the map.
2444 	 * If yes, we would need to do retry the unuse logic again.
2445 	 * Under global memory pressure, swap entries can be reinserted back
2446 	 * into process space after the mmlist loop above passes over them.
2447 	 *
2448 	 * Limit the number of retries? No: when mmget_not_zero()
2449 	 * above fails, that mm is likely to be freeing swap from
2450 	 * exit_mmap(), which proceeds at its own independent pace;
2451 	 * and even shmem_writepage() could have been preempted after
2452 	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2453 	 * and robust (though cpu-intensive) just to keep retrying.
2454 	 */
2455 	if (READ_ONCE(si->inuse_pages)) {
2456 		if (!signal_pending(current))
2457 			goto retry;
2458 		return -EINTR;
2459 	}
2460 
2461 success:
2462 	/*
2463 	 * Make sure that further cleanups after try_to_unuse() returns happen
2464 	 * after swap_range_free() reduces si->inuse_pages to 0.
2465 	 */
2466 	smp_mb();
2467 	return 0;
2468 }
2469 
2470 /*
2471  * After a successful try_to_unuse, if no swap is now in use, we know
2472  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2473  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2474  * added to the mmlist just after page_duplicate - before would be racy.
2475  */
2476 static void drain_mmlist(void)
2477 {
2478 	struct list_head *p, *next;
2479 	unsigned int type;
2480 
2481 	for (type = 0; type < nr_swapfiles; type++)
2482 		if (swap_info[type]->inuse_pages)
2483 			return;
2484 	spin_lock(&mmlist_lock);
2485 	list_for_each_safe(p, next, &init_mm.mmlist)
2486 		list_del_init(p);
2487 	spin_unlock(&mmlist_lock);
2488 }
2489 
2490 /*
2491  * Free all of a swapdev's extent information
2492  */
2493 static void destroy_swap_extents(struct swap_info_struct *sis)
2494 {
2495 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2496 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2497 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2498 
2499 		rb_erase(rb, &sis->swap_extent_root);
2500 		kfree(se);
2501 	}
2502 
2503 	if (sis->flags & SWP_ACTIVATED) {
2504 		struct file *swap_file = sis->swap_file;
2505 		struct address_space *mapping = swap_file->f_mapping;
2506 
2507 		sis->flags &= ~SWP_ACTIVATED;
2508 		if (mapping->a_ops->swap_deactivate)
2509 			mapping->a_ops->swap_deactivate(swap_file);
2510 	}
2511 }
2512 
2513 /*
2514  * Add a block range (and the corresponding page range) into this swapdev's
2515  * extent tree.
2516  *
2517  * This function rather assumes that it is called in ascending page order.
2518  */
2519 int
2520 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2521 		unsigned long nr_pages, sector_t start_block)
2522 {
2523 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2524 	struct swap_extent *se;
2525 	struct swap_extent *new_se;
2526 
2527 	/*
2528 	 * place the new node at the right most since the
2529 	 * function is called in ascending page order.
2530 	 */
2531 	while (*link) {
2532 		parent = *link;
2533 		link = &parent->rb_right;
2534 	}
2535 
2536 	if (parent) {
2537 		se = rb_entry(parent, struct swap_extent, rb_node);
2538 		BUG_ON(se->start_page + se->nr_pages != start_page);
2539 		if (se->start_block + se->nr_pages == start_block) {
2540 			/* Merge it */
2541 			se->nr_pages += nr_pages;
2542 			return 0;
2543 		}
2544 	}
2545 
2546 	/* No merge, insert a new extent. */
2547 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2548 	if (new_se == NULL)
2549 		return -ENOMEM;
2550 	new_se->start_page = start_page;
2551 	new_se->nr_pages = nr_pages;
2552 	new_se->start_block = start_block;
2553 
2554 	rb_link_node(&new_se->rb_node, parent, link);
2555 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2556 	return 1;
2557 }
2558 EXPORT_SYMBOL_GPL(add_swap_extent);
2559 
2560 /*
2561  * A `swap extent' is a simple thing which maps a contiguous range of pages
2562  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2563  * built at swapon time and is then used at swap_writepage/swap_read_folio
2564  * time for locating where on disk a page belongs.
2565  *
2566  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2567  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2568  * swap files identically.
2569  *
2570  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2571  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2572  * swapfiles are handled *identically* after swapon time.
2573  *
2574  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2575  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2576  * blocks are found which do not fall within the PAGE_SIZE alignment
2577  * requirements, they are simply tossed out - we will never use those blocks
2578  * for swapping.
2579  *
2580  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2581  * prevents users from writing to the swap device, which will corrupt memory.
2582  *
2583  * The amount of disk space which a single swap extent represents varies.
2584  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2585  * extents in the rbtree. - akpm.
2586  */
2587 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2588 {
2589 	struct file *swap_file = sis->swap_file;
2590 	struct address_space *mapping = swap_file->f_mapping;
2591 	struct inode *inode = mapping->host;
2592 	int ret;
2593 
2594 	if (S_ISBLK(inode->i_mode)) {
2595 		ret = add_swap_extent(sis, 0, sis->max, 0);
2596 		*span = sis->pages;
2597 		return ret;
2598 	}
2599 
2600 	if (mapping->a_ops->swap_activate) {
2601 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2602 		if (ret < 0)
2603 			return ret;
2604 		sis->flags |= SWP_ACTIVATED;
2605 		if ((sis->flags & SWP_FS_OPS) &&
2606 		    sio_pool_init() != 0) {
2607 			destroy_swap_extents(sis);
2608 			return -ENOMEM;
2609 		}
2610 		return ret;
2611 	}
2612 
2613 	return generic_swapfile_activate(sis, swap_file, span);
2614 }
2615 
2616 static int swap_node(struct swap_info_struct *si)
2617 {
2618 	struct block_device *bdev;
2619 
2620 	if (si->bdev)
2621 		bdev = si->bdev;
2622 	else
2623 		bdev = si->swap_file->f_inode->i_sb->s_bdev;
2624 
2625 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2626 }
2627 
2628 static void setup_swap_info(struct swap_info_struct *si, int prio,
2629 			    unsigned char *swap_map,
2630 			    struct swap_cluster_info *cluster_info,
2631 			    unsigned long *zeromap)
2632 {
2633 	int i;
2634 
2635 	if (prio >= 0)
2636 		si->prio = prio;
2637 	else
2638 		si->prio = --least_priority;
2639 	/*
2640 	 * the plist prio is negated because plist ordering is
2641 	 * low-to-high, while swap ordering is high-to-low
2642 	 */
2643 	si->list.prio = -si->prio;
2644 	for_each_node(i) {
2645 		if (si->prio >= 0)
2646 			si->avail_lists[i].prio = -si->prio;
2647 		else {
2648 			if (swap_node(si) == i)
2649 				si->avail_lists[i].prio = 1;
2650 			else
2651 				si->avail_lists[i].prio = -si->prio;
2652 		}
2653 	}
2654 	si->swap_map = swap_map;
2655 	si->cluster_info = cluster_info;
2656 	si->zeromap = zeromap;
2657 }
2658 
2659 static void _enable_swap_info(struct swap_info_struct *si)
2660 {
2661 	si->flags |= SWP_WRITEOK;
2662 	atomic_long_add(si->pages, &nr_swap_pages);
2663 	total_swap_pages += si->pages;
2664 
2665 	assert_spin_locked(&swap_lock);
2666 	/*
2667 	 * both lists are plists, and thus priority ordered.
2668 	 * swap_active_head needs to be priority ordered for swapoff(),
2669 	 * which on removal of any swap_info_struct with an auto-assigned
2670 	 * (i.e. negative) priority increments the auto-assigned priority
2671 	 * of any lower-priority swap_info_structs.
2672 	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2673 	 * which allocates swap pages from the highest available priority
2674 	 * swap_info_struct.
2675 	 */
2676 	plist_add(&si->list, &swap_active_head);
2677 
2678 	/* add to available list iff swap device is not full */
2679 	if (si->highest_bit)
2680 		add_to_avail_list(si);
2681 }
2682 
2683 static void enable_swap_info(struct swap_info_struct *si, int prio,
2684 				unsigned char *swap_map,
2685 				struct swap_cluster_info *cluster_info,
2686 				unsigned long *zeromap)
2687 {
2688 	spin_lock(&swap_lock);
2689 	spin_lock(&si->lock);
2690 	setup_swap_info(si, prio, swap_map, cluster_info, zeromap);
2691 	spin_unlock(&si->lock);
2692 	spin_unlock(&swap_lock);
2693 	/*
2694 	 * Finished initializing swap device, now it's safe to reference it.
2695 	 */
2696 	percpu_ref_resurrect(&si->users);
2697 	spin_lock(&swap_lock);
2698 	spin_lock(&si->lock);
2699 	_enable_swap_info(si);
2700 	spin_unlock(&si->lock);
2701 	spin_unlock(&swap_lock);
2702 }
2703 
2704 static void reinsert_swap_info(struct swap_info_struct *si)
2705 {
2706 	spin_lock(&swap_lock);
2707 	spin_lock(&si->lock);
2708 	setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap);
2709 	_enable_swap_info(si);
2710 	spin_unlock(&si->lock);
2711 	spin_unlock(&swap_lock);
2712 }
2713 
2714 static bool __has_usable_swap(void)
2715 {
2716 	return !plist_head_empty(&swap_active_head);
2717 }
2718 
2719 bool has_usable_swap(void)
2720 {
2721 	bool ret;
2722 
2723 	spin_lock(&swap_lock);
2724 	ret = __has_usable_swap();
2725 	spin_unlock(&swap_lock);
2726 	return ret;
2727 }
2728 
2729 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2730 {
2731 	struct swap_info_struct *p = NULL;
2732 	unsigned char *swap_map;
2733 	unsigned long *zeromap;
2734 	struct swap_cluster_info *cluster_info;
2735 	struct file *swap_file, *victim;
2736 	struct address_space *mapping;
2737 	struct inode *inode;
2738 	struct filename *pathname;
2739 	int err, found = 0;
2740 
2741 	if (!capable(CAP_SYS_ADMIN))
2742 		return -EPERM;
2743 
2744 	BUG_ON(!current->mm);
2745 
2746 	pathname = getname(specialfile);
2747 	if (IS_ERR(pathname))
2748 		return PTR_ERR(pathname);
2749 
2750 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2751 	err = PTR_ERR(victim);
2752 	if (IS_ERR(victim))
2753 		goto out;
2754 
2755 	mapping = victim->f_mapping;
2756 	spin_lock(&swap_lock);
2757 	plist_for_each_entry(p, &swap_active_head, list) {
2758 		if (p->flags & SWP_WRITEOK) {
2759 			if (p->swap_file->f_mapping == mapping) {
2760 				found = 1;
2761 				break;
2762 			}
2763 		}
2764 	}
2765 	if (!found) {
2766 		err = -EINVAL;
2767 		spin_unlock(&swap_lock);
2768 		goto out_dput;
2769 	}
2770 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2771 		vm_unacct_memory(p->pages);
2772 	else {
2773 		err = -ENOMEM;
2774 		spin_unlock(&swap_lock);
2775 		goto out_dput;
2776 	}
2777 	spin_lock(&p->lock);
2778 	del_from_avail_list(p);
2779 	if (p->prio < 0) {
2780 		struct swap_info_struct *si = p;
2781 		int nid;
2782 
2783 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2784 			si->prio++;
2785 			si->list.prio--;
2786 			for_each_node(nid) {
2787 				if (si->avail_lists[nid].prio != 1)
2788 					si->avail_lists[nid].prio--;
2789 			}
2790 		}
2791 		least_priority++;
2792 	}
2793 	plist_del(&p->list, &swap_active_head);
2794 	atomic_long_sub(p->pages, &nr_swap_pages);
2795 	total_swap_pages -= p->pages;
2796 	p->flags &= ~SWP_WRITEOK;
2797 	spin_unlock(&p->lock);
2798 	spin_unlock(&swap_lock);
2799 
2800 	disable_swap_slots_cache_lock();
2801 
2802 	set_current_oom_origin();
2803 	err = try_to_unuse(p->type);
2804 	clear_current_oom_origin();
2805 
2806 	if (err) {
2807 		/* re-insert swap space back into swap_list */
2808 		reinsert_swap_info(p);
2809 		reenable_swap_slots_cache_unlock();
2810 		goto out_dput;
2811 	}
2812 
2813 	reenable_swap_slots_cache_unlock();
2814 
2815 	/*
2816 	 * Wait for swap operations protected by get/put_swap_device()
2817 	 * to complete.  Because of synchronize_rcu() here, all swap
2818 	 * operations protected by RCU reader side lock (including any
2819 	 * spinlock) will be waited too.  This makes it easy to
2820 	 * prevent folio_test_swapcache() and the following swap cache
2821 	 * operations from racing with swapoff.
2822 	 */
2823 	percpu_ref_kill(&p->users);
2824 	synchronize_rcu();
2825 	wait_for_completion(&p->comp);
2826 
2827 	flush_work(&p->discard_work);
2828 	flush_work(&p->reclaim_work);
2829 
2830 	destroy_swap_extents(p);
2831 	if (p->flags & SWP_CONTINUED)
2832 		free_swap_count_continuations(p);
2833 
2834 	if (!p->bdev || !bdev_nonrot(p->bdev))
2835 		atomic_dec(&nr_rotate_swap);
2836 
2837 	mutex_lock(&swapon_mutex);
2838 	spin_lock(&swap_lock);
2839 	spin_lock(&p->lock);
2840 	drain_mmlist();
2841 
2842 	/* wait for anyone still in scan_swap_map_slots */
2843 	p->highest_bit = 0;		/* cuts scans short */
2844 	while (p->flags >= SWP_SCANNING) {
2845 		spin_unlock(&p->lock);
2846 		spin_unlock(&swap_lock);
2847 		schedule_timeout_uninterruptible(1);
2848 		spin_lock(&swap_lock);
2849 		spin_lock(&p->lock);
2850 	}
2851 
2852 	swap_file = p->swap_file;
2853 	p->swap_file = NULL;
2854 	p->max = 0;
2855 	swap_map = p->swap_map;
2856 	p->swap_map = NULL;
2857 	zeromap = p->zeromap;
2858 	p->zeromap = NULL;
2859 	cluster_info = p->cluster_info;
2860 	p->cluster_info = NULL;
2861 	spin_unlock(&p->lock);
2862 	spin_unlock(&swap_lock);
2863 	arch_swap_invalidate_area(p->type);
2864 	zswap_swapoff(p->type);
2865 	mutex_unlock(&swapon_mutex);
2866 	free_percpu(p->percpu_cluster);
2867 	p->percpu_cluster = NULL;
2868 	free_percpu(p->cluster_next_cpu);
2869 	p->cluster_next_cpu = NULL;
2870 	vfree(swap_map);
2871 	kvfree(zeromap);
2872 	kvfree(cluster_info);
2873 	/* Destroy swap account information */
2874 	swap_cgroup_swapoff(p->type);
2875 	exit_swap_address_space(p->type);
2876 
2877 	inode = mapping->host;
2878 
2879 	inode_lock(inode);
2880 	inode->i_flags &= ~S_SWAPFILE;
2881 	inode_unlock(inode);
2882 	filp_close(swap_file, NULL);
2883 
2884 	/*
2885 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2886 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2887 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2888 	 */
2889 	spin_lock(&swap_lock);
2890 	p->flags = 0;
2891 	spin_unlock(&swap_lock);
2892 
2893 	err = 0;
2894 	atomic_inc(&proc_poll_event);
2895 	wake_up_interruptible(&proc_poll_wait);
2896 
2897 out_dput:
2898 	filp_close(victim, NULL);
2899 out:
2900 	putname(pathname);
2901 	return err;
2902 }
2903 
2904 #ifdef CONFIG_PROC_FS
2905 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2906 {
2907 	struct seq_file *seq = file->private_data;
2908 
2909 	poll_wait(file, &proc_poll_wait, wait);
2910 
2911 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2912 		seq->poll_event = atomic_read(&proc_poll_event);
2913 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2914 	}
2915 
2916 	return EPOLLIN | EPOLLRDNORM;
2917 }
2918 
2919 /* iterator */
2920 static void *swap_start(struct seq_file *swap, loff_t *pos)
2921 {
2922 	struct swap_info_struct *si;
2923 	int type;
2924 	loff_t l = *pos;
2925 
2926 	mutex_lock(&swapon_mutex);
2927 
2928 	if (!l)
2929 		return SEQ_START_TOKEN;
2930 
2931 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2932 		if (!(si->flags & SWP_USED) || !si->swap_map)
2933 			continue;
2934 		if (!--l)
2935 			return si;
2936 	}
2937 
2938 	return NULL;
2939 }
2940 
2941 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2942 {
2943 	struct swap_info_struct *si = v;
2944 	int type;
2945 
2946 	if (v == SEQ_START_TOKEN)
2947 		type = 0;
2948 	else
2949 		type = si->type + 1;
2950 
2951 	++(*pos);
2952 	for (; (si = swap_type_to_swap_info(type)); type++) {
2953 		if (!(si->flags & SWP_USED) || !si->swap_map)
2954 			continue;
2955 		return si;
2956 	}
2957 
2958 	return NULL;
2959 }
2960 
2961 static void swap_stop(struct seq_file *swap, void *v)
2962 {
2963 	mutex_unlock(&swapon_mutex);
2964 }
2965 
2966 static int swap_show(struct seq_file *swap, void *v)
2967 {
2968 	struct swap_info_struct *si = v;
2969 	struct file *file;
2970 	int len;
2971 	unsigned long bytes, inuse;
2972 
2973 	if (si == SEQ_START_TOKEN) {
2974 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2975 		return 0;
2976 	}
2977 
2978 	bytes = K(si->pages);
2979 	inuse = K(READ_ONCE(si->inuse_pages));
2980 
2981 	file = si->swap_file;
2982 	len = seq_file_path(swap, file, " \t\n\\");
2983 	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2984 			len < 40 ? 40 - len : 1, " ",
2985 			S_ISBLK(file_inode(file)->i_mode) ?
2986 				"partition" : "file\t",
2987 			bytes, bytes < 10000000 ? "\t" : "",
2988 			inuse, inuse < 10000000 ? "\t" : "",
2989 			si->prio);
2990 	return 0;
2991 }
2992 
2993 static const struct seq_operations swaps_op = {
2994 	.start =	swap_start,
2995 	.next =		swap_next,
2996 	.stop =		swap_stop,
2997 	.show =		swap_show
2998 };
2999 
3000 static int swaps_open(struct inode *inode, struct file *file)
3001 {
3002 	struct seq_file *seq;
3003 	int ret;
3004 
3005 	ret = seq_open(file, &swaps_op);
3006 	if (ret)
3007 		return ret;
3008 
3009 	seq = file->private_data;
3010 	seq->poll_event = atomic_read(&proc_poll_event);
3011 	return 0;
3012 }
3013 
3014 static const struct proc_ops swaps_proc_ops = {
3015 	.proc_flags	= PROC_ENTRY_PERMANENT,
3016 	.proc_open	= swaps_open,
3017 	.proc_read	= seq_read,
3018 	.proc_lseek	= seq_lseek,
3019 	.proc_release	= seq_release,
3020 	.proc_poll	= swaps_poll,
3021 };
3022 
3023 static int __init procswaps_init(void)
3024 {
3025 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
3026 	return 0;
3027 }
3028 __initcall(procswaps_init);
3029 #endif /* CONFIG_PROC_FS */
3030 
3031 #ifdef MAX_SWAPFILES_CHECK
3032 static int __init max_swapfiles_check(void)
3033 {
3034 	MAX_SWAPFILES_CHECK();
3035 	return 0;
3036 }
3037 late_initcall(max_swapfiles_check);
3038 #endif
3039 
3040 static struct swap_info_struct *alloc_swap_info(void)
3041 {
3042 	struct swap_info_struct *p;
3043 	struct swap_info_struct *defer = NULL;
3044 	unsigned int type;
3045 	int i;
3046 
3047 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
3048 	if (!p)
3049 		return ERR_PTR(-ENOMEM);
3050 
3051 	if (percpu_ref_init(&p->users, swap_users_ref_free,
3052 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
3053 		kvfree(p);
3054 		return ERR_PTR(-ENOMEM);
3055 	}
3056 
3057 	spin_lock(&swap_lock);
3058 	for (type = 0; type < nr_swapfiles; type++) {
3059 		if (!(swap_info[type]->flags & SWP_USED))
3060 			break;
3061 	}
3062 	if (type >= MAX_SWAPFILES) {
3063 		spin_unlock(&swap_lock);
3064 		percpu_ref_exit(&p->users);
3065 		kvfree(p);
3066 		return ERR_PTR(-EPERM);
3067 	}
3068 	if (type >= nr_swapfiles) {
3069 		p->type = type;
3070 		/*
3071 		 * Publish the swap_info_struct after initializing it.
3072 		 * Note that kvzalloc() above zeroes all its fields.
3073 		 */
3074 		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
3075 		nr_swapfiles++;
3076 	} else {
3077 		defer = p;
3078 		p = swap_info[type];
3079 		/*
3080 		 * Do not memset this entry: a racing procfs swap_next()
3081 		 * would be relying on p->type to remain valid.
3082 		 */
3083 	}
3084 	p->swap_extent_root = RB_ROOT;
3085 	plist_node_init(&p->list, 0);
3086 	for_each_node(i)
3087 		plist_node_init(&p->avail_lists[i], 0);
3088 	p->flags = SWP_USED;
3089 	spin_unlock(&swap_lock);
3090 	if (defer) {
3091 		percpu_ref_exit(&defer->users);
3092 		kvfree(defer);
3093 	}
3094 	spin_lock_init(&p->lock);
3095 	spin_lock_init(&p->cont_lock);
3096 	init_completion(&p->comp);
3097 
3098 	return p;
3099 }
3100 
3101 static int claim_swapfile(struct swap_info_struct *si, struct inode *inode)
3102 {
3103 	if (S_ISBLK(inode->i_mode)) {
3104 		si->bdev = I_BDEV(inode);
3105 		/*
3106 		 * Zoned block devices contain zones that have a sequential
3107 		 * write only restriction.  Hence zoned block devices are not
3108 		 * suitable for swapping.  Disallow them here.
3109 		 */
3110 		if (bdev_is_zoned(si->bdev))
3111 			return -EINVAL;
3112 		si->flags |= SWP_BLKDEV;
3113 	} else if (S_ISREG(inode->i_mode)) {
3114 		si->bdev = inode->i_sb->s_bdev;
3115 	}
3116 
3117 	return 0;
3118 }
3119 
3120 
3121 /*
3122  * Find out how many pages are allowed for a single swap device. There
3123  * are two limiting factors:
3124  * 1) the number of bits for the swap offset in the swp_entry_t type, and
3125  * 2) the number of bits in the swap pte, as defined by the different
3126  * architectures.
3127  *
3128  * In order to find the largest possible bit mask, a swap entry with
3129  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
3130  * decoded to a swp_entry_t again, and finally the swap offset is
3131  * extracted.
3132  *
3133  * This will mask all the bits from the initial ~0UL mask that can't
3134  * be encoded in either the swp_entry_t or the architecture definition
3135  * of a swap pte.
3136  */
3137 unsigned long generic_max_swapfile_size(void)
3138 {
3139 	return swp_offset(pte_to_swp_entry(
3140 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
3141 }
3142 
3143 /* Can be overridden by an architecture for additional checks. */
3144 __weak unsigned long arch_max_swapfile_size(void)
3145 {
3146 	return generic_max_swapfile_size();
3147 }
3148 
3149 static unsigned long read_swap_header(struct swap_info_struct *si,
3150 					union swap_header *swap_header,
3151 					struct inode *inode)
3152 {
3153 	int i;
3154 	unsigned long maxpages;
3155 	unsigned long swapfilepages;
3156 	unsigned long last_page;
3157 
3158 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
3159 		pr_err("Unable to find swap-space signature\n");
3160 		return 0;
3161 	}
3162 
3163 	/* swap partition endianness hack... */
3164 	if (swab32(swap_header->info.version) == 1) {
3165 		swab32s(&swap_header->info.version);
3166 		swab32s(&swap_header->info.last_page);
3167 		swab32s(&swap_header->info.nr_badpages);
3168 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3169 			return 0;
3170 		for (i = 0; i < swap_header->info.nr_badpages; i++)
3171 			swab32s(&swap_header->info.badpages[i]);
3172 	}
3173 	/* Check the swap header's sub-version */
3174 	if (swap_header->info.version != 1) {
3175 		pr_warn("Unable to handle swap header version %d\n",
3176 			swap_header->info.version);
3177 		return 0;
3178 	}
3179 
3180 	si->lowest_bit  = 1;
3181 	si->cluster_next = 1;
3182 	si->cluster_nr = 0;
3183 
3184 	maxpages = swapfile_maximum_size;
3185 	last_page = swap_header->info.last_page;
3186 	if (!last_page) {
3187 		pr_warn("Empty swap-file\n");
3188 		return 0;
3189 	}
3190 	if (last_page > maxpages) {
3191 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3192 			K(maxpages), K(last_page));
3193 	}
3194 	if (maxpages > last_page) {
3195 		maxpages = last_page + 1;
3196 		/* p->max is an unsigned int: don't overflow it */
3197 		if ((unsigned int)maxpages == 0)
3198 			maxpages = UINT_MAX;
3199 	}
3200 	si->highest_bit = maxpages - 1;
3201 
3202 	if (!maxpages)
3203 		return 0;
3204 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3205 	if (swapfilepages && maxpages > swapfilepages) {
3206 		pr_warn("Swap area shorter than signature indicates\n");
3207 		return 0;
3208 	}
3209 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3210 		return 0;
3211 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3212 		return 0;
3213 
3214 	return maxpages;
3215 }
3216 
3217 #define SWAP_CLUSTER_INFO_COLS						\
3218 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3219 #define SWAP_CLUSTER_SPACE_COLS						\
3220 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3221 #define SWAP_CLUSTER_COLS						\
3222 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3223 
3224 static int setup_swap_map_and_extents(struct swap_info_struct *si,
3225 					union swap_header *swap_header,
3226 					unsigned char *swap_map,
3227 					unsigned long maxpages,
3228 					sector_t *span)
3229 {
3230 	unsigned int nr_good_pages;
3231 	unsigned long i;
3232 	int nr_extents;
3233 
3234 	nr_good_pages = maxpages - 1;	/* omit header page */
3235 
3236 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3237 		unsigned int page_nr = swap_header->info.badpages[i];
3238 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3239 			return -EINVAL;
3240 		if (page_nr < maxpages) {
3241 			swap_map[page_nr] = SWAP_MAP_BAD;
3242 			nr_good_pages--;
3243 		}
3244 	}
3245 
3246 	if (nr_good_pages) {
3247 		swap_map[0] = SWAP_MAP_BAD;
3248 		si->max = maxpages;
3249 		si->pages = nr_good_pages;
3250 		nr_extents = setup_swap_extents(si, span);
3251 		if (nr_extents < 0)
3252 			return nr_extents;
3253 		nr_good_pages = si->pages;
3254 	}
3255 	if (!nr_good_pages) {
3256 		pr_warn("Empty swap-file\n");
3257 		return -EINVAL;
3258 	}
3259 
3260 	return nr_extents;
3261 }
3262 
3263 static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si,
3264 						union swap_header *swap_header,
3265 						unsigned long maxpages)
3266 {
3267 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3268 	unsigned long col = si->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3269 	struct swap_cluster_info *cluster_info;
3270 	unsigned long i, j, k, idx;
3271 	int cpu, err = -ENOMEM;
3272 
3273 	cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL);
3274 	if (!cluster_info)
3275 		goto err;
3276 
3277 	for (i = 0; i < nr_clusters; i++)
3278 		spin_lock_init(&cluster_info[i].lock);
3279 
3280 	si->cluster_next_cpu = alloc_percpu(unsigned int);
3281 	if (!si->cluster_next_cpu)
3282 		goto err_free;
3283 
3284 	/* Random start position to help with wear leveling */
3285 	for_each_possible_cpu(cpu)
3286 		per_cpu(*si->cluster_next_cpu, cpu) =
3287 		get_random_u32_inclusive(1, si->highest_bit);
3288 
3289 	si->percpu_cluster = alloc_percpu(struct percpu_cluster);
3290 	if (!si->percpu_cluster)
3291 		goto err_free;
3292 
3293 	for_each_possible_cpu(cpu) {
3294 		struct percpu_cluster *cluster;
3295 
3296 		cluster = per_cpu_ptr(si->percpu_cluster, cpu);
3297 		for (i = 0; i < SWAP_NR_ORDERS; i++)
3298 			cluster->next[i] = SWAP_NEXT_INVALID;
3299 	}
3300 
3301 	/*
3302 	 * Mark unusable pages as unavailable. The clusters aren't
3303 	 * marked free yet, so no list operations are involved yet.
3304 	 *
3305 	 * See setup_swap_map_and_extents(): header page, bad pages,
3306 	 * and the EOF part of the last cluster.
3307 	 */
3308 	inc_cluster_info_page(si, cluster_info, 0);
3309 	for (i = 0; i < swap_header->info.nr_badpages; i++)
3310 		inc_cluster_info_page(si, cluster_info,
3311 				      swap_header->info.badpages[i]);
3312 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3313 		inc_cluster_info_page(si, cluster_info, i);
3314 
3315 	INIT_LIST_HEAD(&si->free_clusters);
3316 	INIT_LIST_HEAD(&si->full_clusters);
3317 	INIT_LIST_HEAD(&si->discard_clusters);
3318 
3319 	for (i = 0; i < SWAP_NR_ORDERS; i++) {
3320 		INIT_LIST_HEAD(&si->nonfull_clusters[i]);
3321 		INIT_LIST_HEAD(&si->frag_clusters[i]);
3322 		si->frag_cluster_nr[i] = 0;
3323 	}
3324 
3325 	/*
3326 	 * Reduce false cache line sharing between cluster_info and
3327 	 * sharing same address space.
3328 	 */
3329 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3330 		j = (k + col) % SWAP_CLUSTER_COLS;
3331 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3332 			struct swap_cluster_info *ci;
3333 			idx = i * SWAP_CLUSTER_COLS + j;
3334 			ci = cluster_info + idx;
3335 			if (idx >= nr_clusters)
3336 				continue;
3337 			if (ci->count) {
3338 				ci->flags = CLUSTER_FLAG_NONFULL;
3339 				list_add_tail(&ci->list, &si->nonfull_clusters[0]);
3340 				continue;
3341 			}
3342 			ci->flags = CLUSTER_FLAG_FREE;
3343 			list_add_tail(&ci->list, &si->free_clusters);
3344 		}
3345 	}
3346 
3347 	return cluster_info;
3348 
3349 err_free:
3350 	kvfree(cluster_info);
3351 err:
3352 	return ERR_PTR(err);
3353 }
3354 
3355 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3356 {
3357 	struct swap_info_struct *si;
3358 	struct filename *name;
3359 	struct file *swap_file = NULL;
3360 	struct address_space *mapping;
3361 	struct dentry *dentry;
3362 	int prio;
3363 	int error;
3364 	union swap_header *swap_header;
3365 	int nr_extents;
3366 	sector_t span;
3367 	unsigned long maxpages;
3368 	unsigned char *swap_map = NULL;
3369 	unsigned long *zeromap = NULL;
3370 	struct swap_cluster_info *cluster_info = NULL;
3371 	struct folio *folio = NULL;
3372 	struct inode *inode = NULL;
3373 	bool inced_nr_rotate_swap = false;
3374 
3375 	if (swap_flags & ~SWAP_FLAGS_VALID)
3376 		return -EINVAL;
3377 
3378 	if (!capable(CAP_SYS_ADMIN))
3379 		return -EPERM;
3380 
3381 	if (!swap_avail_heads)
3382 		return -ENOMEM;
3383 
3384 	si = alloc_swap_info();
3385 	if (IS_ERR(si))
3386 		return PTR_ERR(si);
3387 
3388 	INIT_WORK(&si->discard_work, swap_discard_work);
3389 	INIT_WORK(&si->reclaim_work, swap_reclaim_work);
3390 
3391 	name = getname(specialfile);
3392 	if (IS_ERR(name)) {
3393 		error = PTR_ERR(name);
3394 		name = NULL;
3395 		goto bad_swap;
3396 	}
3397 	swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
3398 	if (IS_ERR(swap_file)) {
3399 		error = PTR_ERR(swap_file);
3400 		swap_file = NULL;
3401 		goto bad_swap;
3402 	}
3403 
3404 	si->swap_file = swap_file;
3405 	mapping = swap_file->f_mapping;
3406 	dentry = swap_file->f_path.dentry;
3407 	inode = mapping->host;
3408 
3409 	error = claim_swapfile(si, inode);
3410 	if (unlikely(error))
3411 		goto bad_swap;
3412 
3413 	inode_lock(inode);
3414 	if (d_unlinked(dentry) || cant_mount(dentry)) {
3415 		error = -ENOENT;
3416 		goto bad_swap_unlock_inode;
3417 	}
3418 	if (IS_SWAPFILE(inode)) {
3419 		error = -EBUSY;
3420 		goto bad_swap_unlock_inode;
3421 	}
3422 
3423 	/*
3424 	 * Read the swap header.
3425 	 */
3426 	if (!mapping->a_ops->read_folio) {
3427 		error = -EINVAL;
3428 		goto bad_swap_unlock_inode;
3429 	}
3430 	folio = read_mapping_folio(mapping, 0, swap_file);
3431 	if (IS_ERR(folio)) {
3432 		error = PTR_ERR(folio);
3433 		goto bad_swap_unlock_inode;
3434 	}
3435 	swap_header = kmap_local_folio(folio, 0);
3436 
3437 	maxpages = read_swap_header(si, swap_header, inode);
3438 	if (unlikely(!maxpages)) {
3439 		error = -EINVAL;
3440 		goto bad_swap_unlock_inode;
3441 	}
3442 
3443 	/* OK, set up the swap map and apply the bad block list */
3444 	swap_map = vzalloc(maxpages);
3445 	if (!swap_map) {
3446 		error = -ENOMEM;
3447 		goto bad_swap_unlock_inode;
3448 	}
3449 
3450 	error = swap_cgroup_swapon(si->type, maxpages);
3451 	if (error)
3452 		goto bad_swap_unlock_inode;
3453 
3454 	nr_extents = setup_swap_map_and_extents(si, swap_header, swap_map,
3455 						maxpages, &span);
3456 	if (unlikely(nr_extents < 0)) {
3457 		error = nr_extents;
3458 		goto bad_swap_unlock_inode;
3459 	}
3460 
3461 	/*
3462 	 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might
3463 	 * be above MAX_PAGE_ORDER incase of a large swap file.
3464 	 */
3465 	zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long),
3466 				    GFP_KERNEL | __GFP_ZERO);
3467 	if (!zeromap) {
3468 		error = -ENOMEM;
3469 		goto bad_swap_unlock_inode;
3470 	}
3471 
3472 	if (si->bdev && bdev_stable_writes(si->bdev))
3473 		si->flags |= SWP_STABLE_WRITES;
3474 
3475 	if (si->bdev && bdev_synchronous(si->bdev))
3476 		si->flags |= SWP_SYNCHRONOUS_IO;
3477 
3478 	if (si->bdev && bdev_nonrot(si->bdev)) {
3479 		si->flags |= SWP_SOLIDSTATE;
3480 
3481 		cluster_info = setup_clusters(si, swap_header, maxpages);
3482 		if (IS_ERR(cluster_info)) {
3483 			error = PTR_ERR(cluster_info);
3484 			cluster_info = NULL;
3485 			goto bad_swap_unlock_inode;
3486 		}
3487 	} else {
3488 		atomic_inc(&nr_rotate_swap);
3489 		inced_nr_rotate_swap = true;
3490 	}
3491 
3492 	if ((swap_flags & SWAP_FLAG_DISCARD) &&
3493 	    si->bdev && bdev_max_discard_sectors(si->bdev)) {
3494 		/*
3495 		 * When discard is enabled for swap with no particular
3496 		 * policy flagged, we set all swap discard flags here in
3497 		 * order to sustain backward compatibility with older
3498 		 * swapon(8) releases.
3499 		 */
3500 		si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3501 			     SWP_PAGE_DISCARD);
3502 
3503 		/*
3504 		 * By flagging sys_swapon, a sysadmin can tell us to
3505 		 * either do single-time area discards only, or to just
3506 		 * perform discards for released swap page-clusters.
3507 		 * Now it's time to adjust the p->flags accordingly.
3508 		 */
3509 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3510 			si->flags &= ~SWP_PAGE_DISCARD;
3511 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3512 			si->flags &= ~SWP_AREA_DISCARD;
3513 
3514 		/* issue a swapon-time discard if it's still required */
3515 		if (si->flags & SWP_AREA_DISCARD) {
3516 			int err = discard_swap(si);
3517 			if (unlikely(err))
3518 				pr_err("swapon: discard_swap(%p): %d\n",
3519 					si, err);
3520 		}
3521 	}
3522 
3523 	error = init_swap_address_space(si->type, maxpages);
3524 	if (error)
3525 		goto bad_swap_unlock_inode;
3526 
3527 	error = zswap_swapon(si->type, maxpages);
3528 	if (error)
3529 		goto free_swap_address_space;
3530 
3531 	/*
3532 	 * Flush any pending IO and dirty mappings before we start using this
3533 	 * swap device.
3534 	 */
3535 	inode->i_flags |= S_SWAPFILE;
3536 	error = inode_drain_writes(inode);
3537 	if (error) {
3538 		inode->i_flags &= ~S_SWAPFILE;
3539 		goto free_swap_zswap;
3540 	}
3541 
3542 	mutex_lock(&swapon_mutex);
3543 	prio = -1;
3544 	if (swap_flags & SWAP_FLAG_PREFER)
3545 		prio =
3546 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3547 	enable_swap_info(si, prio, swap_map, cluster_info, zeromap);
3548 
3549 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3550 		K(si->pages), name->name, si->prio, nr_extents,
3551 		K((unsigned long long)span),
3552 		(si->flags & SWP_SOLIDSTATE) ? "SS" : "",
3553 		(si->flags & SWP_DISCARDABLE) ? "D" : "",
3554 		(si->flags & SWP_AREA_DISCARD) ? "s" : "",
3555 		(si->flags & SWP_PAGE_DISCARD) ? "c" : "");
3556 
3557 	mutex_unlock(&swapon_mutex);
3558 	atomic_inc(&proc_poll_event);
3559 	wake_up_interruptible(&proc_poll_wait);
3560 
3561 	error = 0;
3562 	goto out;
3563 free_swap_zswap:
3564 	zswap_swapoff(si->type);
3565 free_swap_address_space:
3566 	exit_swap_address_space(si->type);
3567 bad_swap_unlock_inode:
3568 	inode_unlock(inode);
3569 bad_swap:
3570 	free_percpu(si->percpu_cluster);
3571 	si->percpu_cluster = NULL;
3572 	free_percpu(si->cluster_next_cpu);
3573 	si->cluster_next_cpu = NULL;
3574 	inode = NULL;
3575 	destroy_swap_extents(si);
3576 	swap_cgroup_swapoff(si->type);
3577 	spin_lock(&swap_lock);
3578 	si->swap_file = NULL;
3579 	si->flags = 0;
3580 	spin_unlock(&swap_lock);
3581 	vfree(swap_map);
3582 	kvfree(zeromap);
3583 	kvfree(cluster_info);
3584 	if (inced_nr_rotate_swap)
3585 		atomic_dec(&nr_rotate_swap);
3586 	if (swap_file)
3587 		filp_close(swap_file, NULL);
3588 out:
3589 	if (!IS_ERR_OR_NULL(folio))
3590 		folio_release_kmap(folio, swap_header);
3591 	if (name)
3592 		putname(name);
3593 	if (inode)
3594 		inode_unlock(inode);
3595 	if (!error)
3596 		enable_swap_slots_cache();
3597 	return error;
3598 }
3599 
3600 void si_swapinfo(struct sysinfo *val)
3601 {
3602 	unsigned int type;
3603 	unsigned long nr_to_be_unused = 0;
3604 
3605 	spin_lock(&swap_lock);
3606 	for (type = 0; type < nr_swapfiles; type++) {
3607 		struct swap_info_struct *si = swap_info[type];
3608 
3609 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3610 			nr_to_be_unused += READ_ONCE(si->inuse_pages);
3611 	}
3612 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3613 	val->totalswap = total_swap_pages + nr_to_be_unused;
3614 	spin_unlock(&swap_lock);
3615 }
3616 
3617 /*
3618  * Verify that nr swap entries are valid and increment their swap map counts.
3619  *
3620  * Returns error code in following case.
3621  * - success -> 0
3622  * - swp_entry is invalid -> EINVAL
3623  * - swp_entry is migration entry -> EINVAL
3624  * - swap-cache reference is requested but there is already one. -> EEXIST
3625  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3626  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3627  */
3628 static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr)
3629 {
3630 	struct swap_info_struct *si;
3631 	struct swap_cluster_info *ci;
3632 	unsigned long offset;
3633 	unsigned char count;
3634 	unsigned char has_cache;
3635 	int err, i;
3636 
3637 	si = swp_swap_info(entry);
3638 
3639 	offset = swp_offset(entry);
3640 	VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
3641 	VM_WARN_ON(usage == 1 && nr > 1);
3642 	ci = lock_cluster_or_swap_info(si, offset);
3643 
3644 	err = 0;
3645 	for (i = 0; i < nr; i++) {
3646 		count = si->swap_map[offset + i];
3647 
3648 		/*
3649 		 * swapin_readahead() doesn't check if a swap entry is valid, so the
3650 		 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3651 		 */
3652 		if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3653 			err = -ENOENT;
3654 			goto unlock_out;
3655 		}
3656 
3657 		has_cache = count & SWAP_HAS_CACHE;
3658 		count &= ~SWAP_HAS_CACHE;
3659 
3660 		if (!count && !has_cache) {
3661 			err = -ENOENT;
3662 		} else if (usage == SWAP_HAS_CACHE) {
3663 			if (has_cache)
3664 				err = -EEXIST;
3665 		} else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) {
3666 			err = -EINVAL;
3667 		}
3668 
3669 		if (err)
3670 			goto unlock_out;
3671 	}
3672 
3673 	for (i = 0; i < nr; i++) {
3674 		count = si->swap_map[offset + i];
3675 		has_cache = count & SWAP_HAS_CACHE;
3676 		count &= ~SWAP_HAS_CACHE;
3677 
3678 		if (usage == SWAP_HAS_CACHE)
3679 			has_cache = SWAP_HAS_CACHE;
3680 		else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3681 			count += usage;
3682 		else if (swap_count_continued(si, offset + i, count))
3683 			count = COUNT_CONTINUED;
3684 		else {
3685 			/*
3686 			 * Don't need to rollback changes, because if
3687 			 * usage == 1, there must be nr == 1.
3688 			 */
3689 			err = -ENOMEM;
3690 			goto unlock_out;
3691 		}
3692 
3693 		WRITE_ONCE(si->swap_map[offset + i], count | has_cache);
3694 	}
3695 
3696 unlock_out:
3697 	unlock_cluster_or_swap_info(si, ci);
3698 	return err;
3699 }
3700 
3701 /*
3702  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3703  * (in which case its reference count is never incremented).
3704  */
3705 void swap_shmem_alloc(swp_entry_t entry, int nr)
3706 {
3707 	__swap_duplicate(entry, SWAP_MAP_SHMEM, nr);
3708 }
3709 
3710 /*
3711  * Increase reference count of swap entry by 1.
3712  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3713  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3714  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3715  * might occur if a page table entry has got corrupted.
3716  */
3717 int swap_duplicate(swp_entry_t entry)
3718 {
3719 	int err = 0;
3720 
3721 	while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM)
3722 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3723 	return err;
3724 }
3725 
3726 /*
3727  * @entry: first swap entry from which we allocate nr swap cache.
3728  *
3729  * Called when allocating swap cache for existing swap entries,
3730  * This can return error codes. Returns 0 at success.
3731  * -EEXIST means there is a swap cache.
3732  * Note: return code is different from swap_duplicate().
3733  */
3734 int swapcache_prepare(swp_entry_t entry, int nr)
3735 {
3736 	return __swap_duplicate(entry, SWAP_HAS_CACHE, nr);
3737 }
3738 
3739 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr)
3740 {
3741 	unsigned long offset = swp_offset(entry);
3742 
3743 	cluster_swap_free_nr(si, offset, nr, SWAP_HAS_CACHE);
3744 }
3745 
3746 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3747 {
3748 	return swap_type_to_swap_info(swp_type(entry));
3749 }
3750 
3751 /*
3752  * out-of-line methods to avoid include hell.
3753  */
3754 struct address_space *swapcache_mapping(struct folio *folio)
3755 {
3756 	return swp_swap_info(folio->swap)->swap_file->f_mapping;
3757 }
3758 EXPORT_SYMBOL_GPL(swapcache_mapping);
3759 
3760 pgoff_t __folio_swap_cache_index(struct folio *folio)
3761 {
3762 	return swap_cache_index(folio->swap);
3763 }
3764 EXPORT_SYMBOL_GPL(__folio_swap_cache_index);
3765 
3766 /*
3767  * add_swap_count_continuation - called when a swap count is duplicated
3768  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3769  * page of the original vmalloc'ed swap_map, to hold the continuation count
3770  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3771  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3772  *
3773  * These continuation pages are seldom referenced: the common paths all work
3774  * on the original swap_map, only referring to a continuation page when the
3775  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3776  *
3777  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3778  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3779  * can be called after dropping locks.
3780  */
3781 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3782 {
3783 	struct swap_info_struct *si;
3784 	struct swap_cluster_info *ci;
3785 	struct page *head;
3786 	struct page *page;
3787 	struct page *list_page;
3788 	pgoff_t offset;
3789 	unsigned char count;
3790 	int ret = 0;
3791 
3792 	/*
3793 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3794 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3795 	 */
3796 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3797 
3798 	si = get_swap_device(entry);
3799 	if (!si) {
3800 		/*
3801 		 * An acceptable race has occurred since the failing
3802 		 * __swap_duplicate(): the swap device may be swapoff
3803 		 */
3804 		goto outer;
3805 	}
3806 	spin_lock(&si->lock);
3807 
3808 	offset = swp_offset(entry);
3809 
3810 	ci = lock_cluster(si, offset);
3811 
3812 	count = swap_count(si->swap_map[offset]);
3813 
3814 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3815 		/*
3816 		 * The higher the swap count, the more likely it is that tasks
3817 		 * will race to add swap count continuation: we need to avoid
3818 		 * over-provisioning.
3819 		 */
3820 		goto out;
3821 	}
3822 
3823 	if (!page) {
3824 		ret = -ENOMEM;
3825 		goto out;
3826 	}
3827 
3828 	head = vmalloc_to_page(si->swap_map + offset);
3829 	offset &= ~PAGE_MASK;
3830 
3831 	spin_lock(&si->cont_lock);
3832 	/*
3833 	 * Page allocation does not initialize the page's lru field,
3834 	 * but it does always reset its private field.
3835 	 */
3836 	if (!page_private(head)) {
3837 		BUG_ON(count & COUNT_CONTINUED);
3838 		INIT_LIST_HEAD(&head->lru);
3839 		set_page_private(head, SWP_CONTINUED);
3840 		si->flags |= SWP_CONTINUED;
3841 	}
3842 
3843 	list_for_each_entry(list_page, &head->lru, lru) {
3844 		unsigned char *map;
3845 
3846 		/*
3847 		 * If the previous map said no continuation, but we've found
3848 		 * a continuation page, free our allocation and use this one.
3849 		 */
3850 		if (!(count & COUNT_CONTINUED))
3851 			goto out_unlock_cont;
3852 
3853 		map = kmap_local_page(list_page) + offset;
3854 		count = *map;
3855 		kunmap_local(map);
3856 
3857 		/*
3858 		 * If this continuation count now has some space in it,
3859 		 * free our allocation and use this one.
3860 		 */
3861 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3862 			goto out_unlock_cont;
3863 	}
3864 
3865 	list_add_tail(&page->lru, &head->lru);
3866 	page = NULL;			/* now it's attached, don't free it */
3867 out_unlock_cont:
3868 	spin_unlock(&si->cont_lock);
3869 out:
3870 	unlock_cluster(ci);
3871 	spin_unlock(&si->lock);
3872 	put_swap_device(si);
3873 outer:
3874 	if (page)
3875 		__free_page(page);
3876 	return ret;
3877 }
3878 
3879 /*
3880  * swap_count_continued - when the original swap_map count is incremented
3881  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3882  * into, carry if so, or else fail until a new continuation page is allocated;
3883  * when the original swap_map count is decremented from 0 with continuation,
3884  * borrow from the continuation and report whether it still holds more.
3885  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3886  * lock.
3887  */
3888 static bool swap_count_continued(struct swap_info_struct *si,
3889 				 pgoff_t offset, unsigned char count)
3890 {
3891 	struct page *head;
3892 	struct page *page;
3893 	unsigned char *map;
3894 	bool ret;
3895 
3896 	head = vmalloc_to_page(si->swap_map + offset);
3897 	if (page_private(head) != SWP_CONTINUED) {
3898 		BUG_ON(count & COUNT_CONTINUED);
3899 		return false;		/* need to add count continuation */
3900 	}
3901 
3902 	spin_lock(&si->cont_lock);
3903 	offset &= ~PAGE_MASK;
3904 	page = list_next_entry(head, lru);
3905 	map = kmap_local_page(page) + offset;
3906 
3907 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3908 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3909 
3910 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3911 		/*
3912 		 * Think of how you add 1 to 999
3913 		 */
3914 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3915 			kunmap_local(map);
3916 			page = list_next_entry(page, lru);
3917 			BUG_ON(page == head);
3918 			map = kmap_local_page(page) + offset;
3919 		}
3920 		if (*map == SWAP_CONT_MAX) {
3921 			kunmap_local(map);
3922 			page = list_next_entry(page, lru);
3923 			if (page == head) {
3924 				ret = false;	/* add count continuation */
3925 				goto out;
3926 			}
3927 			map = kmap_local_page(page) + offset;
3928 init_map:		*map = 0;		/* we didn't zero the page */
3929 		}
3930 		*map += 1;
3931 		kunmap_local(map);
3932 		while ((page = list_prev_entry(page, lru)) != head) {
3933 			map = kmap_local_page(page) + offset;
3934 			*map = COUNT_CONTINUED;
3935 			kunmap_local(map);
3936 		}
3937 		ret = true;			/* incremented */
3938 
3939 	} else {				/* decrementing */
3940 		/*
3941 		 * Think of how you subtract 1 from 1000
3942 		 */
3943 		BUG_ON(count != COUNT_CONTINUED);
3944 		while (*map == COUNT_CONTINUED) {
3945 			kunmap_local(map);
3946 			page = list_next_entry(page, lru);
3947 			BUG_ON(page == head);
3948 			map = kmap_local_page(page) + offset;
3949 		}
3950 		BUG_ON(*map == 0);
3951 		*map -= 1;
3952 		if (*map == 0)
3953 			count = 0;
3954 		kunmap_local(map);
3955 		while ((page = list_prev_entry(page, lru)) != head) {
3956 			map = kmap_local_page(page) + offset;
3957 			*map = SWAP_CONT_MAX | count;
3958 			count = COUNT_CONTINUED;
3959 			kunmap_local(map);
3960 		}
3961 		ret = count == COUNT_CONTINUED;
3962 	}
3963 out:
3964 	spin_unlock(&si->cont_lock);
3965 	return ret;
3966 }
3967 
3968 /*
3969  * free_swap_count_continuations - swapoff free all the continuation pages
3970  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3971  */
3972 static void free_swap_count_continuations(struct swap_info_struct *si)
3973 {
3974 	pgoff_t offset;
3975 
3976 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3977 		struct page *head;
3978 		head = vmalloc_to_page(si->swap_map + offset);
3979 		if (page_private(head)) {
3980 			struct page *page, *next;
3981 
3982 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3983 				list_del(&page->lru);
3984 				__free_page(page);
3985 			}
3986 		}
3987 	}
3988 }
3989 
3990 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3991 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3992 {
3993 	struct swap_info_struct *si, *next;
3994 	int nid = folio_nid(folio);
3995 
3996 	if (!(gfp & __GFP_IO))
3997 		return;
3998 
3999 	if (!__has_usable_swap())
4000 		return;
4001 
4002 	if (!blk_cgroup_congested())
4003 		return;
4004 
4005 	/*
4006 	 * We've already scheduled a throttle, avoid taking the global swap
4007 	 * lock.
4008 	 */
4009 	if (current->throttle_disk)
4010 		return;
4011 
4012 	spin_lock(&swap_avail_lock);
4013 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
4014 				  avail_lists[nid]) {
4015 		if (si->bdev) {
4016 			blkcg_schedule_throttle(si->bdev->bd_disk, true);
4017 			break;
4018 		}
4019 	}
4020 	spin_unlock(&swap_avail_lock);
4021 }
4022 #endif
4023 
4024 static int __init swapfile_init(void)
4025 {
4026 	int nid;
4027 
4028 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
4029 					 GFP_KERNEL);
4030 	if (!swap_avail_heads) {
4031 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
4032 		return -ENOMEM;
4033 	}
4034 
4035 	for_each_node(nid)
4036 		plist_head_init(&swap_avail_heads[nid]);
4037 
4038 	swapfile_maximum_size = arch_max_swapfile_size();
4039 
4040 #ifdef CONFIG_MIGRATION
4041 	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
4042 		swap_migration_ad_supported = true;
4043 #endif	/* CONFIG_MIGRATION */
4044 
4045 	return 0;
4046 }
4047 subsys_initcall(swapfile_init);
4048