1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/blkdev.h> 10 #include <linux/mm.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/task.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mman.h> 15 #include <linux/slab.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/swap.h> 18 #include <linux/vmalloc.h> 19 #include <linux/pagemap.h> 20 #include <linux/namei.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/blk-cgroup.h> 23 #include <linux/random.h> 24 #include <linux/writeback.h> 25 #include <linux/proc_fs.h> 26 #include <linux/seq_file.h> 27 #include <linux/init.h> 28 #include <linux/ksm.h> 29 #include <linux/rmap.h> 30 #include <linux/security.h> 31 #include <linux/backing-dev.h> 32 #include <linux/mutex.h> 33 #include <linux/capability.h> 34 #include <linux/syscalls.h> 35 #include <linux/memcontrol.h> 36 #include <linux/poll.h> 37 #include <linux/oom.h> 38 #include <linux/swapfile.h> 39 #include <linux/export.h> 40 #include <linux/sort.h> 41 #include <linux/completion.h> 42 #include <linux/suspend.h> 43 #include <linux/zswap.h> 44 #include <linux/plist.h> 45 46 #include <asm/tlbflush.h> 47 #include <linux/leafops.h> 48 #include <linux/swap_cgroup.h> 49 #include "swap_table.h" 50 #include "internal.h" 51 #include "swap.h" 52 53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 54 unsigned char); 55 static void free_swap_count_continuations(struct swap_info_struct *); 56 static void swap_entries_free(struct swap_info_struct *si, 57 struct swap_cluster_info *ci, 58 swp_entry_t entry, unsigned int nr_pages); 59 static void swap_range_alloc(struct swap_info_struct *si, 60 unsigned int nr_entries); 61 static bool folio_swapcache_freeable(struct folio *folio); 62 static void move_cluster(struct swap_info_struct *si, 63 struct swap_cluster_info *ci, struct list_head *list, 64 enum swap_cluster_flags new_flags); 65 66 static DEFINE_SPINLOCK(swap_lock); 67 static unsigned int nr_swapfiles; 68 atomic_long_t nr_swap_pages; 69 /* 70 * Some modules use swappable objects and may try to swap them out under 71 * memory pressure (via the shrinker). Before doing so, they may wish to 72 * check to see if any swap space is available. 73 */ 74 EXPORT_SYMBOL_GPL(nr_swap_pages); 75 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 76 long total_swap_pages; 77 #define DEF_SWAP_PRIO -1 78 unsigned long swapfile_maximum_size; 79 #ifdef CONFIG_MIGRATION 80 bool swap_migration_ad_supported; 81 #endif /* CONFIG_MIGRATION */ 82 83 static const char Bad_file[] = "Bad swap file entry "; 84 static const char Unused_file[] = "Unused swap file entry "; 85 static const char Bad_offset[] = "Bad swap offset entry "; 86 static const char Unused_offset[] = "Unused swap offset entry "; 87 88 /* 89 * all active swap_info_structs 90 * protected with swap_lock, and ordered by priority. 91 */ 92 static PLIST_HEAD(swap_active_head); 93 94 /* 95 * all available (active, not full) swap_info_structs 96 * protected with swap_avail_lock, ordered by priority. 97 * This is used by folio_alloc_swap() instead of swap_active_head 98 * because swap_active_head includes all swap_info_structs, 99 * but folio_alloc_swap() doesn't need to look at full ones. 100 * This uses its own lock instead of swap_lock because when a 101 * swap_info_struct changes between not-full/full, it needs to 102 * add/remove itself to/from this list, but the swap_info_struct->lock 103 * is held and the locking order requires swap_lock to be taken 104 * before any swap_info_struct->lock. 105 */ 106 static PLIST_HEAD(swap_avail_head); 107 static DEFINE_SPINLOCK(swap_avail_lock); 108 109 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 110 111 static struct kmem_cache *swap_table_cachep; 112 113 static DEFINE_MUTEX(swapon_mutex); 114 115 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 116 /* Activity counter to indicate that a swapon or swapoff has occurred */ 117 static atomic_t proc_poll_event = ATOMIC_INIT(0); 118 119 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 120 121 struct percpu_swap_cluster { 122 struct swap_info_struct *si[SWAP_NR_ORDERS]; 123 unsigned long offset[SWAP_NR_ORDERS]; 124 local_lock_t lock; 125 }; 126 127 static DEFINE_PER_CPU(struct percpu_swap_cluster, percpu_swap_cluster) = { 128 .si = { NULL }, 129 .offset = { SWAP_ENTRY_INVALID }, 130 .lock = INIT_LOCAL_LOCK(), 131 }; 132 133 /* May return NULL on invalid type, caller must check for NULL return */ 134 static struct swap_info_struct *swap_type_to_info(int type) 135 { 136 if (type >= MAX_SWAPFILES) 137 return NULL; 138 return READ_ONCE(swap_info[type]); /* rcu_dereference() */ 139 } 140 141 /* May return NULL on invalid entry, caller must check for NULL return */ 142 static struct swap_info_struct *swap_entry_to_info(swp_entry_t entry) 143 { 144 return swap_type_to_info(swp_type(entry)); 145 } 146 147 static inline unsigned char swap_count(unsigned char ent) 148 { 149 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 150 } 151 152 /* 153 * Use the second highest bit of inuse_pages counter as the indicator 154 * if one swap device is on the available plist, so the atomic can 155 * still be updated arithmetically while having special data embedded. 156 * 157 * inuse_pages counter is the only thing indicating if a device should 158 * be on avail_lists or not (except swapon / swapoff). By embedding the 159 * off-list bit in the atomic counter, updates no longer need any lock 160 * to check the list status. 161 * 162 * This bit will be set if the device is not on the plist and not 163 * usable, will be cleared if the device is on the plist. 164 */ 165 #define SWAP_USAGE_OFFLIST_BIT (1UL << (BITS_PER_TYPE(atomic_t) - 2)) 166 #define SWAP_USAGE_COUNTER_MASK (~SWAP_USAGE_OFFLIST_BIT) 167 static long swap_usage_in_pages(struct swap_info_struct *si) 168 { 169 return atomic_long_read(&si->inuse_pages) & SWAP_USAGE_COUNTER_MASK; 170 } 171 172 /* Reclaim the swap entry anyway if possible */ 173 #define TTRS_ANYWAY 0x1 174 /* 175 * Reclaim the swap entry if there are no more mappings of the 176 * corresponding page 177 */ 178 #define TTRS_UNMAPPED 0x2 179 /* Reclaim the swap entry if swap is getting full */ 180 #define TTRS_FULL 0x4 181 182 static bool swap_only_has_cache(struct swap_info_struct *si, 183 unsigned long offset, int nr_pages) 184 { 185 unsigned char *map = si->swap_map + offset; 186 unsigned char *map_end = map + nr_pages; 187 188 do { 189 VM_BUG_ON(!(*map & SWAP_HAS_CACHE)); 190 if (*map != SWAP_HAS_CACHE) 191 return false; 192 } while (++map < map_end); 193 194 return true; 195 } 196 197 static bool swap_is_last_map(struct swap_info_struct *si, 198 unsigned long offset, int nr_pages, bool *has_cache) 199 { 200 unsigned char *map = si->swap_map + offset; 201 unsigned char *map_end = map + nr_pages; 202 unsigned char count = *map; 203 204 if (swap_count(count) != 1 && swap_count(count) != SWAP_MAP_SHMEM) 205 return false; 206 207 while (++map < map_end) { 208 if (*map != count) 209 return false; 210 } 211 212 *has_cache = !!(count & SWAP_HAS_CACHE); 213 return true; 214 } 215 216 /* 217 * returns number of pages in the folio that backs the swap entry. If positive, 218 * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no 219 * folio was associated with the swap entry. 220 */ 221 static int __try_to_reclaim_swap(struct swap_info_struct *si, 222 unsigned long offset, unsigned long flags) 223 { 224 const swp_entry_t entry = swp_entry(si->type, offset); 225 struct swap_cluster_info *ci; 226 struct folio *folio; 227 int ret, nr_pages; 228 bool need_reclaim; 229 230 again: 231 folio = swap_cache_get_folio(entry); 232 if (!folio) 233 return 0; 234 235 nr_pages = folio_nr_pages(folio); 236 ret = -nr_pages; 237 238 /* 239 * We hold a folio lock here. We have to use trylock for 240 * avoiding deadlock. This is a special case and you should 241 * use folio_free_swap() with explicit folio_lock() in usual 242 * operations. 243 */ 244 if (!folio_trylock(folio)) 245 goto out; 246 247 /* 248 * Offset could point to the middle of a large folio, or folio 249 * may no longer point to the expected offset before it's locked. 250 */ 251 if (!folio_matches_swap_entry(folio, entry)) { 252 folio_unlock(folio); 253 folio_put(folio); 254 goto again; 255 } 256 offset = swp_offset(folio->swap); 257 258 need_reclaim = ((flags & TTRS_ANYWAY) || 259 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) || 260 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio))); 261 if (!need_reclaim || !folio_swapcache_freeable(folio)) 262 goto out_unlock; 263 264 /* 265 * It's safe to delete the folio from swap cache only if the folio's 266 * swap_map is HAS_CACHE only, which means the slots have no page table 267 * reference or pending writeback, and can't be allocated to others. 268 */ 269 ci = swap_cluster_lock(si, offset); 270 need_reclaim = swap_only_has_cache(si, offset, nr_pages); 271 swap_cluster_unlock(ci); 272 if (!need_reclaim) 273 goto out_unlock; 274 275 swap_cache_del_folio(folio); 276 folio_set_dirty(folio); 277 ret = nr_pages; 278 out_unlock: 279 folio_unlock(folio); 280 out: 281 folio_put(folio); 282 return ret; 283 } 284 285 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 286 { 287 struct rb_node *rb = rb_first(&sis->swap_extent_root); 288 return rb_entry(rb, struct swap_extent, rb_node); 289 } 290 291 static inline struct swap_extent *next_se(struct swap_extent *se) 292 { 293 struct rb_node *rb = rb_next(&se->rb_node); 294 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 295 } 296 297 /* 298 * swapon tell device that all the old swap contents can be discarded, 299 * to allow the swap device to optimize its wear-levelling. 300 */ 301 static int discard_swap(struct swap_info_struct *si) 302 { 303 struct swap_extent *se; 304 sector_t start_block; 305 sector_t nr_blocks; 306 int err = 0; 307 308 /* Do not discard the swap header page! */ 309 se = first_se(si); 310 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 311 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 312 if (nr_blocks) { 313 err = blkdev_issue_discard(si->bdev, start_block, 314 nr_blocks, GFP_KERNEL); 315 if (err) 316 return err; 317 cond_resched(); 318 } 319 320 for (se = next_se(se); se; se = next_se(se)) { 321 start_block = se->start_block << (PAGE_SHIFT - 9); 322 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 323 324 err = blkdev_issue_discard(si->bdev, start_block, 325 nr_blocks, GFP_KERNEL); 326 if (err) 327 break; 328 329 cond_resched(); 330 } 331 return err; /* That will often be -EOPNOTSUPP */ 332 } 333 334 static struct swap_extent * 335 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 336 { 337 struct swap_extent *se; 338 struct rb_node *rb; 339 340 rb = sis->swap_extent_root.rb_node; 341 while (rb) { 342 se = rb_entry(rb, struct swap_extent, rb_node); 343 if (offset < se->start_page) 344 rb = rb->rb_left; 345 else if (offset >= se->start_page + se->nr_pages) 346 rb = rb->rb_right; 347 else 348 return se; 349 } 350 /* It *must* be present */ 351 BUG(); 352 } 353 354 sector_t swap_folio_sector(struct folio *folio) 355 { 356 struct swap_info_struct *sis = __swap_entry_to_info(folio->swap); 357 struct swap_extent *se; 358 sector_t sector; 359 pgoff_t offset; 360 361 offset = swp_offset(folio->swap); 362 se = offset_to_swap_extent(sis, offset); 363 sector = se->start_block + (offset - se->start_page); 364 return sector << (PAGE_SHIFT - 9); 365 } 366 367 /* 368 * swap allocation tell device that a cluster of swap can now be discarded, 369 * to allow the swap device to optimize its wear-levelling. 370 */ 371 static void discard_swap_cluster(struct swap_info_struct *si, 372 pgoff_t start_page, pgoff_t nr_pages) 373 { 374 struct swap_extent *se = offset_to_swap_extent(si, start_page); 375 376 while (nr_pages) { 377 pgoff_t offset = start_page - se->start_page; 378 sector_t start_block = se->start_block + offset; 379 sector_t nr_blocks = se->nr_pages - offset; 380 381 if (nr_blocks > nr_pages) 382 nr_blocks = nr_pages; 383 start_page += nr_blocks; 384 nr_pages -= nr_blocks; 385 386 start_block <<= PAGE_SHIFT - 9; 387 nr_blocks <<= PAGE_SHIFT - 9; 388 if (blkdev_issue_discard(si->bdev, start_block, 389 nr_blocks, GFP_NOIO)) 390 break; 391 392 se = next_se(se); 393 } 394 } 395 396 #define LATENCY_LIMIT 256 397 398 static inline bool cluster_is_empty(struct swap_cluster_info *info) 399 { 400 return info->count == 0; 401 } 402 403 static inline bool cluster_is_discard(struct swap_cluster_info *info) 404 { 405 return info->flags == CLUSTER_FLAG_DISCARD; 406 } 407 408 static inline bool cluster_table_is_alloced(struct swap_cluster_info *ci) 409 { 410 return rcu_dereference_protected(ci->table, lockdep_is_held(&ci->lock)); 411 } 412 413 static inline bool cluster_is_usable(struct swap_cluster_info *ci, int order) 414 { 415 if (unlikely(ci->flags > CLUSTER_FLAG_USABLE)) 416 return false; 417 if (!cluster_table_is_alloced(ci)) 418 return false; 419 if (!order) 420 return true; 421 return cluster_is_empty(ci) || order == ci->order; 422 } 423 424 static inline unsigned int cluster_index(struct swap_info_struct *si, 425 struct swap_cluster_info *ci) 426 { 427 return ci - si->cluster_info; 428 } 429 430 static inline unsigned int cluster_offset(struct swap_info_struct *si, 431 struct swap_cluster_info *ci) 432 { 433 return cluster_index(si, ci) * SWAPFILE_CLUSTER; 434 } 435 436 static struct swap_table *swap_table_alloc(gfp_t gfp) 437 { 438 struct folio *folio; 439 440 if (!SWP_TABLE_USE_PAGE) 441 return kmem_cache_zalloc(swap_table_cachep, gfp); 442 443 folio = folio_alloc(gfp | __GFP_ZERO, 0); 444 if (folio) 445 return folio_address(folio); 446 return NULL; 447 } 448 449 static void swap_table_free_folio_rcu_cb(struct rcu_head *head) 450 { 451 struct folio *folio; 452 453 folio = page_folio(container_of(head, struct page, rcu_head)); 454 folio_put(folio); 455 } 456 457 static void swap_table_free(struct swap_table *table) 458 { 459 if (!SWP_TABLE_USE_PAGE) { 460 kmem_cache_free(swap_table_cachep, table); 461 return; 462 } 463 464 call_rcu(&(folio_page(virt_to_folio(table), 0)->rcu_head), 465 swap_table_free_folio_rcu_cb); 466 } 467 468 static void swap_cluster_free_table(struct swap_cluster_info *ci) 469 { 470 unsigned int ci_off; 471 struct swap_table *table; 472 473 /* Only empty cluster's table is allow to be freed */ 474 lockdep_assert_held(&ci->lock); 475 VM_WARN_ON_ONCE(!cluster_is_empty(ci)); 476 for (ci_off = 0; ci_off < SWAPFILE_CLUSTER; ci_off++) 477 VM_WARN_ON_ONCE(!swp_tb_is_null(__swap_table_get(ci, ci_off))); 478 table = (void *)rcu_dereference_protected(ci->table, true); 479 rcu_assign_pointer(ci->table, NULL); 480 481 swap_table_free(table); 482 } 483 484 /* 485 * Allocate swap table for one cluster. Attempt an atomic allocation first, 486 * then fallback to sleeping allocation. 487 */ 488 static struct swap_cluster_info * 489 swap_cluster_alloc_table(struct swap_info_struct *si, 490 struct swap_cluster_info *ci) 491 { 492 struct swap_table *table; 493 494 /* 495 * Only cluster isolation from the allocator does table allocation. 496 * Swap allocator uses percpu clusters and holds the local lock. 497 */ 498 lockdep_assert_held(&ci->lock); 499 lockdep_assert_held(&this_cpu_ptr(&percpu_swap_cluster)->lock); 500 501 /* The cluster must be free and was just isolated from the free list. */ 502 VM_WARN_ON_ONCE(ci->flags || !cluster_is_empty(ci)); 503 504 table = swap_table_alloc(__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 505 if (table) { 506 rcu_assign_pointer(ci->table, table); 507 return ci; 508 } 509 510 /* 511 * Try a sleep allocation. Each isolated free cluster may cause 512 * a sleep allocation, but there is a limited number of them, so 513 * the potential recursive allocation is limited. 514 */ 515 spin_unlock(&ci->lock); 516 if (!(si->flags & SWP_SOLIDSTATE)) 517 spin_unlock(&si->global_cluster_lock); 518 local_unlock(&percpu_swap_cluster.lock); 519 520 table = swap_table_alloc(__GFP_HIGH | __GFP_NOMEMALLOC | GFP_KERNEL); 521 522 /* 523 * Back to atomic context. We might have migrated to a new CPU with a 524 * usable percpu cluster. But just keep using the isolated cluster to 525 * make things easier. Migration indicates a slight change of workload 526 * so using a new free cluster might not be a bad idea, and the worst 527 * could happen with ignoring the percpu cluster is fragmentation, 528 * which is acceptable since this fallback and race is rare. 529 */ 530 local_lock(&percpu_swap_cluster.lock); 531 if (!(si->flags & SWP_SOLIDSTATE)) 532 spin_lock(&si->global_cluster_lock); 533 spin_lock(&ci->lock); 534 535 /* Nothing except this helper should touch a dangling empty cluster. */ 536 if (WARN_ON_ONCE(cluster_table_is_alloced(ci))) { 537 if (table) 538 swap_table_free(table); 539 return ci; 540 } 541 542 if (!table) { 543 move_cluster(si, ci, &si->free_clusters, CLUSTER_FLAG_FREE); 544 spin_unlock(&ci->lock); 545 return NULL; 546 } 547 548 rcu_assign_pointer(ci->table, table); 549 return ci; 550 } 551 552 static void move_cluster(struct swap_info_struct *si, 553 struct swap_cluster_info *ci, struct list_head *list, 554 enum swap_cluster_flags new_flags) 555 { 556 VM_WARN_ON(ci->flags == new_flags); 557 558 BUILD_BUG_ON(1 << sizeof(ci->flags) * BITS_PER_BYTE < CLUSTER_FLAG_MAX); 559 lockdep_assert_held(&ci->lock); 560 561 spin_lock(&si->lock); 562 if (ci->flags == CLUSTER_FLAG_NONE) 563 list_add_tail(&ci->list, list); 564 else 565 list_move_tail(&ci->list, list); 566 spin_unlock(&si->lock); 567 ci->flags = new_flags; 568 } 569 570 /* Add a cluster to discard list and schedule it to do discard */ 571 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 572 struct swap_cluster_info *ci) 573 { 574 VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE); 575 move_cluster(si, ci, &si->discard_clusters, CLUSTER_FLAG_DISCARD); 576 schedule_work(&si->discard_work); 577 } 578 579 static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci) 580 { 581 swap_cluster_free_table(ci); 582 move_cluster(si, ci, &si->free_clusters, CLUSTER_FLAG_FREE); 583 ci->order = 0; 584 } 585 586 /* 587 * Isolate and lock the first cluster that is not contented on a list, 588 * clean its flag before taken off-list. Cluster flag must be in sync 589 * with list status, so cluster updaters can always know the cluster 590 * list status without touching si lock. 591 * 592 * Note it's possible that all clusters on a list are contented so 593 * this returns NULL for an non-empty list. 594 */ 595 static struct swap_cluster_info *isolate_lock_cluster( 596 struct swap_info_struct *si, struct list_head *list) 597 { 598 struct swap_cluster_info *ci, *found = NULL; 599 600 spin_lock(&si->lock); 601 list_for_each_entry(ci, list, list) { 602 if (!spin_trylock(&ci->lock)) 603 continue; 604 605 /* We may only isolate and clear flags of following lists */ 606 VM_BUG_ON(!ci->flags); 607 VM_BUG_ON(ci->flags > CLUSTER_FLAG_USABLE && 608 ci->flags != CLUSTER_FLAG_FULL); 609 610 list_del(&ci->list); 611 ci->flags = CLUSTER_FLAG_NONE; 612 found = ci; 613 break; 614 } 615 spin_unlock(&si->lock); 616 617 if (found && !cluster_table_is_alloced(found)) { 618 /* Only an empty free cluster's swap table can be freed. */ 619 VM_WARN_ON_ONCE(list != &si->free_clusters); 620 VM_WARN_ON_ONCE(!cluster_is_empty(found)); 621 return swap_cluster_alloc_table(si, found); 622 } 623 624 return found; 625 } 626 627 /* 628 * Doing discard actually. After a cluster discard is finished, the cluster 629 * will be added to free cluster list. Discard cluster is a bit special as 630 * they don't participate in allocation or reclaim, so clusters marked as 631 * CLUSTER_FLAG_DISCARD must remain off-list or on discard list. 632 */ 633 static bool swap_do_scheduled_discard(struct swap_info_struct *si) 634 { 635 struct swap_cluster_info *ci; 636 bool ret = false; 637 unsigned int idx; 638 639 spin_lock(&si->lock); 640 while (!list_empty(&si->discard_clusters)) { 641 ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list); 642 /* 643 * Delete the cluster from list to prepare for discard, but keep 644 * the CLUSTER_FLAG_DISCARD flag, percpu_swap_cluster could be 645 * pointing to it, or ran into by relocate_cluster. 646 */ 647 list_del(&ci->list); 648 idx = cluster_index(si, ci); 649 spin_unlock(&si->lock); 650 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 651 SWAPFILE_CLUSTER); 652 653 spin_lock(&ci->lock); 654 /* 655 * Discard is done, clear its flags as it's off-list, then 656 * return the cluster to allocation list. 657 */ 658 ci->flags = CLUSTER_FLAG_NONE; 659 __free_cluster(si, ci); 660 spin_unlock(&ci->lock); 661 ret = true; 662 spin_lock(&si->lock); 663 } 664 spin_unlock(&si->lock); 665 return ret; 666 } 667 668 static void swap_discard_work(struct work_struct *work) 669 { 670 struct swap_info_struct *si; 671 672 si = container_of(work, struct swap_info_struct, discard_work); 673 674 swap_do_scheduled_discard(si); 675 } 676 677 static void swap_users_ref_free(struct percpu_ref *ref) 678 { 679 struct swap_info_struct *si; 680 681 si = container_of(ref, struct swap_info_struct, users); 682 complete(&si->comp); 683 } 684 685 /* 686 * Must be called after freeing if ci->count == 0, moves the cluster to free 687 * or discard list. 688 */ 689 static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci) 690 { 691 VM_BUG_ON(ci->count != 0); 692 VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE); 693 lockdep_assert_held(&ci->lock); 694 695 /* 696 * If the swap is discardable, prepare discard the cluster 697 * instead of free it immediately. The cluster will be freed 698 * after discard. 699 */ 700 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 701 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 702 swap_cluster_schedule_discard(si, ci); 703 return; 704 } 705 706 __free_cluster(si, ci); 707 } 708 709 /* 710 * Must be called after freeing if ci->count != 0, moves the cluster to 711 * nonfull list. 712 */ 713 static void partial_free_cluster(struct swap_info_struct *si, 714 struct swap_cluster_info *ci) 715 { 716 VM_BUG_ON(!ci->count || ci->count == SWAPFILE_CLUSTER); 717 lockdep_assert_held(&ci->lock); 718 719 if (ci->flags != CLUSTER_FLAG_NONFULL) 720 move_cluster(si, ci, &si->nonfull_clusters[ci->order], 721 CLUSTER_FLAG_NONFULL); 722 } 723 724 /* 725 * Must be called after allocation, moves the cluster to full or frag list. 726 * Note: allocation doesn't acquire si lock, and may drop the ci lock for 727 * reclaim, so the cluster could be any where when called. 728 */ 729 static void relocate_cluster(struct swap_info_struct *si, 730 struct swap_cluster_info *ci) 731 { 732 lockdep_assert_held(&ci->lock); 733 734 /* Discard cluster must remain off-list or on discard list */ 735 if (cluster_is_discard(ci)) 736 return; 737 738 if (!ci->count) { 739 if (ci->flags != CLUSTER_FLAG_FREE) 740 free_cluster(si, ci); 741 } else if (ci->count != SWAPFILE_CLUSTER) { 742 if (ci->flags != CLUSTER_FLAG_FRAG) 743 move_cluster(si, ci, &si->frag_clusters[ci->order], 744 CLUSTER_FLAG_FRAG); 745 } else { 746 if (ci->flags != CLUSTER_FLAG_FULL) 747 move_cluster(si, ci, &si->full_clusters, 748 CLUSTER_FLAG_FULL); 749 } 750 } 751 752 /* 753 * The cluster corresponding to @offset will be accounted as having one bad 754 * slot. The cluster will not be added to the free cluster list, and its 755 * usage counter will be increased by 1. Only used for initialization. 756 */ 757 static int swap_cluster_setup_bad_slot(struct swap_cluster_info *cluster_info, 758 unsigned long offset) 759 { 760 unsigned long idx = offset / SWAPFILE_CLUSTER; 761 struct swap_table *table; 762 struct swap_cluster_info *ci; 763 764 ci = cluster_info + idx; 765 if (!ci->table) { 766 table = swap_table_alloc(GFP_KERNEL); 767 if (!table) 768 return -ENOMEM; 769 rcu_assign_pointer(ci->table, table); 770 } 771 772 ci->count++; 773 774 WARN_ON(ci->count > SWAPFILE_CLUSTER); 775 WARN_ON(ci->flags); 776 777 return 0; 778 } 779 780 static bool cluster_reclaim_range(struct swap_info_struct *si, 781 struct swap_cluster_info *ci, 782 unsigned long start, unsigned long end) 783 { 784 unsigned char *map = si->swap_map; 785 unsigned long offset = start; 786 int nr_reclaim; 787 788 spin_unlock(&ci->lock); 789 do { 790 switch (READ_ONCE(map[offset])) { 791 case 0: 792 offset++; 793 break; 794 case SWAP_HAS_CACHE: 795 nr_reclaim = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 796 if (nr_reclaim > 0) 797 offset += nr_reclaim; 798 else 799 goto out; 800 break; 801 default: 802 goto out; 803 } 804 } while (offset < end); 805 out: 806 spin_lock(&ci->lock); 807 /* 808 * Recheck the range no matter reclaim succeeded or not, the slot 809 * could have been be freed while we are not holding the lock. 810 */ 811 for (offset = start; offset < end; offset++) 812 if (READ_ONCE(map[offset])) 813 return false; 814 815 return true; 816 } 817 818 static bool cluster_scan_range(struct swap_info_struct *si, 819 struct swap_cluster_info *ci, 820 unsigned long start, unsigned int nr_pages, 821 bool *need_reclaim) 822 { 823 unsigned long offset, end = start + nr_pages; 824 unsigned char *map = si->swap_map; 825 826 if (cluster_is_empty(ci)) 827 return true; 828 829 for (offset = start; offset < end; offset++) { 830 switch (READ_ONCE(map[offset])) { 831 case 0: 832 continue; 833 case SWAP_HAS_CACHE: 834 if (!vm_swap_full()) 835 return false; 836 *need_reclaim = true; 837 continue; 838 default: 839 return false; 840 } 841 } 842 843 return true; 844 } 845 846 /* 847 * Currently, the swap table is not used for count tracking, just 848 * do a sanity check here to ensure nothing leaked, so the swap 849 * table should be empty upon freeing. 850 */ 851 static void swap_cluster_assert_table_empty(struct swap_cluster_info *ci, 852 unsigned int start, unsigned int nr) 853 { 854 unsigned int ci_off = start % SWAPFILE_CLUSTER; 855 unsigned int ci_end = ci_off + nr; 856 unsigned long swp_tb; 857 858 if (IS_ENABLED(CONFIG_DEBUG_VM)) { 859 do { 860 swp_tb = __swap_table_get(ci, ci_off); 861 VM_WARN_ON_ONCE(!swp_tb_is_null(swp_tb)); 862 } while (++ci_off < ci_end); 863 } 864 } 865 866 static bool cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci, 867 unsigned int start, unsigned char usage, 868 unsigned int order) 869 { 870 unsigned int nr_pages = 1 << order; 871 872 lockdep_assert_held(&ci->lock); 873 874 if (!(si->flags & SWP_WRITEOK)) 875 return false; 876 877 /* 878 * The first allocation in a cluster makes the 879 * cluster exclusive to this order 880 */ 881 if (cluster_is_empty(ci)) 882 ci->order = order; 883 884 memset(si->swap_map + start, usage, nr_pages); 885 swap_cluster_assert_table_empty(ci, start, nr_pages); 886 swap_range_alloc(si, nr_pages); 887 ci->count += nr_pages; 888 889 return true; 890 } 891 892 /* Try use a new cluster for current CPU and allocate from it. */ 893 static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si, 894 struct swap_cluster_info *ci, 895 unsigned long offset, 896 unsigned int order, 897 unsigned char usage) 898 { 899 unsigned int next = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID; 900 unsigned long start = ALIGN_DOWN(offset, SWAPFILE_CLUSTER); 901 unsigned long end = min(start + SWAPFILE_CLUSTER, si->max); 902 unsigned int nr_pages = 1 << order; 903 bool need_reclaim, ret; 904 905 lockdep_assert_held(&ci->lock); 906 907 if (end < nr_pages || ci->count + nr_pages > SWAPFILE_CLUSTER) 908 goto out; 909 910 for (end -= nr_pages; offset <= end; offset += nr_pages) { 911 need_reclaim = false; 912 if (!cluster_scan_range(si, ci, offset, nr_pages, &need_reclaim)) 913 continue; 914 if (need_reclaim) { 915 ret = cluster_reclaim_range(si, ci, offset, offset + nr_pages); 916 /* 917 * Reclaim drops ci->lock and cluster could be used 918 * by another order. Not checking flag as off-list 919 * cluster has no flag set, and change of list 920 * won't cause fragmentation. 921 */ 922 if (!cluster_is_usable(ci, order)) 923 goto out; 924 if (cluster_is_empty(ci)) 925 offset = start; 926 /* Reclaim failed but cluster is usable, try next */ 927 if (!ret) 928 continue; 929 } 930 if (!cluster_alloc_range(si, ci, offset, usage, order)) 931 break; 932 found = offset; 933 offset += nr_pages; 934 if (ci->count < SWAPFILE_CLUSTER && offset <= end) 935 next = offset; 936 break; 937 } 938 out: 939 relocate_cluster(si, ci); 940 swap_cluster_unlock(ci); 941 if (si->flags & SWP_SOLIDSTATE) { 942 this_cpu_write(percpu_swap_cluster.offset[order], next); 943 this_cpu_write(percpu_swap_cluster.si[order], si); 944 } else { 945 si->global_cluster->next[order] = next; 946 } 947 return found; 948 } 949 950 static unsigned int alloc_swap_scan_list(struct swap_info_struct *si, 951 struct list_head *list, 952 unsigned int order, 953 unsigned char usage, 954 bool scan_all) 955 { 956 unsigned int found = SWAP_ENTRY_INVALID; 957 958 do { 959 struct swap_cluster_info *ci = isolate_lock_cluster(si, list); 960 unsigned long offset; 961 962 if (!ci) 963 break; 964 offset = cluster_offset(si, ci); 965 found = alloc_swap_scan_cluster(si, ci, offset, order, usage); 966 if (found) 967 break; 968 } while (scan_all); 969 970 return found; 971 } 972 973 static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force) 974 { 975 long to_scan = 1; 976 unsigned long offset, end; 977 struct swap_cluster_info *ci; 978 unsigned char *map = si->swap_map; 979 int nr_reclaim; 980 981 if (force) 982 to_scan = swap_usage_in_pages(si) / SWAPFILE_CLUSTER; 983 984 while ((ci = isolate_lock_cluster(si, &si->full_clusters))) { 985 offset = cluster_offset(si, ci); 986 end = min(si->max, offset + SWAPFILE_CLUSTER); 987 to_scan--; 988 989 while (offset < end) { 990 if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) { 991 spin_unlock(&ci->lock); 992 nr_reclaim = __try_to_reclaim_swap(si, offset, 993 TTRS_ANYWAY); 994 spin_lock(&ci->lock); 995 if (nr_reclaim) { 996 offset += abs(nr_reclaim); 997 continue; 998 } 999 } 1000 offset++; 1001 } 1002 1003 /* in case no swap cache is reclaimed */ 1004 if (ci->flags == CLUSTER_FLAG_NONE) 1005 relocate_cluster(si, ci); 1006 1007 swap_cluster_unlock(ci); 1008 if (to_scan <= 0) 1009 break; 1010 } 1011 } 1012 1013 static void swap_reclaim_work(struct work_struct *work) 1014 { 1015 struct swap_info_struct *si; 1016 1017 si = container_of(work, struct swap_info_struct, reclaim_work); 1018 1019 swap_reclaim_full_clusters(si, true); 1020 } 1021 1022 /* 1023 * Try to allocate swap entries with specified order and try set a new 1024 * cluster for current CPU too. 1025 */ 1026 static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order, 1027 unsigned char usage) 1028 { 1029 struct swap_cluster_info *ci; 1030 unsigned int offset = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID; 1031 1032 /* 1033 * Swapfile is not block device so unable 1034 * to allocate large entries. 1035 */ 1036 if (order && !(si->flags & SWP_BLKDEV)) 1037 return 0; 1038 1039 if (!(si->flags & SWP_SOLIDSTATE)) { 1040 /* Serialize HDD SWAP allocation for each device. */ 1041 spin_lock(&si->global_cluster_lock); 1042 offset = si->global_cluster->next[order]; 1043 if (offset == SWAP_ENTRY_INVALID) 1044 goto new_cluster; 1045 1046 ci = swap_cluster_lock(si, offset); 1047 /* Cluster could have been used by another order */ 1048 if (cluster_is_usable(ci, order)) { 1049 if (cluster_is_empty(ci)) 1050 offset = cluster_offset(si, ci); 1051 found = alloc_swap_scan_cluster(si, ci, offset, 1052 order, usage); 1053 } else { 1054 swap_cluster_unlock(ci); 1055 } 1056 if (found) 1057 goto done; 1058 } 1059 1060 new_cluster: 1061 /* 1062 * If the device need discard, prefer new cluster over nonfull 1063 * to spread out the writes. 1064 */ 1065 if (si->flags & SWP_PAGE_DISCARD) { 1066 found = alloc_swap_scan_list(si, &si->free_clusters, order, usage, 1067 false); 1068 if (found) 1069 goto done; 1070 } 1071 1072 if (order < PMD_ORDER) { 1073 found = alloc_swap_scan_list(si, &si->nonfull_clusters[order], 1074 order, usage, true); 1075 if (found) 1076 goto done; 1077 } 1078 1079 if (!(si->flags & SWP_PAGE_DISCARD)) { 1080 found = alloc_swap_scan_list(si, &si->free_clusters, order, usage, 1081 false); 1082 if (found) 1083 goto done; 1084 } 1085 1086 /* Try reclaim full clusters if free and nonfull lists are drained */ 1087 if (vm_swap_full()) 1088 swap_reclaim_full_clusters(si, false); 1089 1090 if (order < PMD_ORDER) { 1091 /* 1092 * Scan only one fragment cluster is good enough. Order 0 1093 * allocation will surely success, and large allocation 1094 * failure is not critical. Scanning one cluster still 1095 * keeps the list rotated and reclaimed (for HAS_CACHE). 1096 */ 1097 found = alloc_swap_scan_list(si, &si->frag_clusters[order], order, 1098 usage, false); 1099 if (found) 1100 goto done; 1101 } 1102 1103 if (order) 1104 goto done; 1105 1106 /* Order 0 stealing from higher order */ 1107 for (int o = 1; o < SWAP_NR_ORDERS; o++) { 1108 /* 1109 * Clusters here have at least one usable slots and can't fail order 0 1110 * allocation, but reclaim may drop si->lock and race with another user. 1111 */ 1112 found = alloc_swap_scan_list(si, &si->frag_clusters[o], 1113 0, usage, true); 1114 if (found) 1115 goto done; 1116 1117 found = alloc_swap_scan_list(si, &si->nonfull_clusters[o], 1118 0, usage, true); 1119 if (found) 1120 goto done; 1121 } 1122 done: 1123 if (!(si->flags & SWP_SOLIDSTATE)) 1124 spin_unlock(&si->global_cluster_lock); 1125 1126 return found; 1127 } 1128 1129 /* SWAP_USAGE_OFFLIST_BIT can only be set by this helper. */ 1130 static void del_from_avail_list(struct swap_info_struct *si, bool swapoff) 1131 { 1132 unsigned long pages; 1133 1134 spin_lock(&swap_avail_lock); 1135 1136 if (swapoff) { 1137 /* 1138 * Forcefully remove it. Clear the SWP_WRITEOK flags for 1139 * swapoff here so it's synchronized by both si->lock and 1140 * swap_avail_lock, to ensure the result can be seen by 1141 * add_to_avail_list. 1142 */ 1143 lockdep_assert_held(&si->lock); 1144 si->flags &= ~SWP_WRITEOK; 1145 atomic_long_or(SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages); 1146 } else { 1147 /* 1148 * If not called by swapoff, take it off-list only if it's 1149 * full and SWAP_USAGE_OFFLIST_BIT is not set (strictly 1150 * si->inuse_pages == pages), any concurrent slot freeing, 1151 * or device already removed from plist by someone else 1152 * will make this return false. 1153 */ 1154 pages = si->pages; 1155 if (!atomic_long_try_cmpxchg(&si->inuse_pages, &pages, 1156 pages | SWAP_USAGE_OFFLIST_BIT)) 1157 goto skip; 1158 } 1159 1160 plist_del(&si->avail_list, &swap_avail_head); 1161 1162 skip: 1163 spin_unlock(&swap_avail_lock); 1164 } 1165 1166 /* SWAP_USAGE_OFFLIST_BIT can only be cleared by this helper. */ 1167 static void add_to_avail_list(struct swap_info_struct *si, bool swapon) 1168 { 1169 long val; 1170 unsigned long pages; 1171 1172 spin_lock(&swap_avail_lock); 1173 1174 /* Corresponding to SWP_WRITEOK clearing in del_from_avail_list */ 1175 if (swapon) { 1176 lockdep_assert_held(&si->lock); 1177 si->flags |= SWP_WRITEOK; 1178 } else { 1179 if (!(READ_ONCE(si->flags) & SWP_WRITEOK)) 1180 goto skip; 1181 } 1182 1183 if (!(atomic_long_read(&si->inuse_pages) & SWAP_USAGE_OFFLIST_BIT)) 1184 goto skip; 1185 1186 val = atomic_long_fetch_and_relaxed(~SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages); 1187 1188 /* 1189 * When device is full and device is on the plist, only one updater will 1190 * see (inuse_pages == si->pages) and will call del_from_avail_list. If 1191 * that updater happen to be here, just skip adding. 1192 */ 1193 pages = si->pages; 1194 if (val == pages) { 1195 /* Just like the cmpxchg in del_from_avail_list */ 1196 if (atomic_long_try_cmpxchg(&si->inuse_pages, &pages, 1197 pages | SWAP_USAGE_OFFLIST_BIT)) 1198 goto skip; 1199 } 1200 1201 plist_add(&si->avail_list, &swap_avail_head); 1202 1203 skip: 1204 spin_unlock(&swap_avail_lock); 1205 } 1206 1207 /* 1208 * swap_usage_add / swap_usage_sub of each slot are serialized by ci->lock 1209 * within each cluster, so the total contribution to the global counter should 1210 * always be positive and cannot exceed the total number of usable slots. 1211 */ 1212 static bool swap_usage_add(struct swap_info_struct *si, unsigned int nr_entries) 1213 { 1214 long val = atomic_long_add_return_relaxed(nr_entries, &si->inuse_pages); 1215 1216 /* 1217 * If device is full, and SWAP_USAGE_OFFLIST_BIT is not set, 1218 * remove it from the plist. 1219 */ 1220 if (unlikely(val == si->pages)) { 1221 del_from_avail_list(si, false); 1222 return true; 1223 } 1224 1225 return false; 1226 } 1227 1228 static void swap_usage_sub(struct swap_info_struct *si, unsigned int nr_entries) 1229 { 1230 long val = atomic_long_sub_return_relaxed(nr_entries, &si->inuse_pages); 1231 1232 /* 1233 * If device is not full, and SWAP_USAGE_OFFLIST_BIT is set, 1234 * add it to the plist. 1235 */ 1236 if (unlikely(val & SWAP_USAGE_OFFLIST_BIT)) 1237 add_to_avail_list(si, false); 1238 } 1239 1240 static void swap_range_alloc(struct swap_info_struct *si, 1241 unsigned int nr_entries) 1242 { 1243 if (swap_usage_add(si, nr_entries)) { 1244 if (vm_swap_full()) 1245 schedule_work(&si->reclaim_work); 1246 } 1247 atomic_long_sub(nr_entries, &nr_swap_pages); 1248 } 1249 1250 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 1251 unsigned int nr_entries) 1252 { 1253 unsigned long begin = offset; 1254 unsigned long end = offset + nr_entries - 1; 1255 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 1256 unsigned int i; 1257 1258 /* 1259 * Use atomic clear_bit operations only on zeromap instead of non-atomic 1260 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes. 1261 */ 1262 for (i = 0; i < nr_entries; i++) { 1263 clear_bit(offset + i, si->zeromap); 1264 zswap_invalidate(swp_entry(si->type, offset + i)); 1265 } 1266 1267 if (si->flags & SWP_BLKDEV) 1268 swap_slot_free_notify = 1269 si->bdev->bd_disk->fops->swap_slot_free_notify; 1270 else 1271 swap_slot_free_notify = NULL; 1272 while (offset <= end) { 1273 arch_swap_invalidate_page(si->type, offset); 1274 if (swap_slot_free_notify) 1275 swap_slot_free_notify(si->bdev, offset); 1276 offset++; 1277 } 1278 __swap_cache_clear_shadow(swp_entry(si->type, begin), nr_entries); 1279 1280 /* 1281 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0 1282 * only after the above cleanups are done. 1283 */ 1284 smp_wmb(); 1285 atomic_long_add(nr_entries, &nr_swap_pages); 1286 swap_usage_sub(si, nr_entries); 1287 } 1288 1289 static bool get_swap_device_info(struct swap_info_struct *si) 1290 { 1291 if (!percpu_ref_tryget_live(&si->users)) 1292 return false; 1293 /* 1294 * Guarantee the si->users are checked before accessing other 1295 * fields of swap_info_struct, and si->flags (SWP_WRITEOK) is 1296 * up to dated. 1297 * 1298 * Paired with the spin_unlock() after setup_swap_info() in 1299 * enable_swap_info(), and smp_wmb() in swapoff. 1300 */ 1301 smp_rmb(); 1302 return true; 1303 } 1304 1305 /* 1306 * Fast path try to get swap entries with specified order from current 1307 * CPU's swap entry pool (a cluster). 1308 */ 1309 static bool swap_alloc_fast(swp_entry_t *entry, 1310 int order) 1311 { 1312 struct swap_cluster_info *ci; 1313 struct swap_info_struct *si; 1314 unsigned int offset, found = SWAP_ENTRY_INVALID; 1315 1316 /* 1317 * Once allocated, swap_info_struct will never be completely freed, 1318 * so checking it's liveness by get_swap_device_info is enough. 1319 */ 1320 si = this_cpu_read(percpu_swap_cluster.si[order]); 1321 offset = this_cpu_read(percpu_swap_cluster.offset[order]); 1322 if (!si || !offset || !get_swap_device_info(si)) 1323 return false; 1324 1325 ci = swap_cluster_lock(si, offset); 1326 if (cluster_is_usable(ci, order)) { 1327 if (cluster_is_empty(ci)) 1328 offset = cluster_offset(si, ci); 1329 found = alloc_swap_scan_cluster(si, ci, offset, order, SWAP_HAS_CACHE); 1330 if (found) 1331 *entry = swp_entry(si->type, found); 1332 } else { 1333 swap_cluster_unlock(ci); 1334 } 1335 1336 put_swap_device(si); 1337 return !!found; 1338 } 1339 1340 /* Rotate the device and switch to a new cluster */ 1341 static void swap_alloc_slow(swp_entry_t *entry, 1342 int order) 1343 { 1344 unsigned long offset; 1345 struct swap_info_struct *si, *next; 1346 1347 spin_lock(&swap_avail_lock); 1348 start_over: 1349 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) { 1350 /* Rotate the device and switch to a new cluster */ 1351 plist_requeue(&si->avail_list, &swap_avail_head); 1352 spin_unlock(&swap_avail_lock); 1353 if (get_swap_device_info(si)) { 1354 offset = cluster_alloc_swap_entry(si, order, SWAP_HAS_CACHE); 1355 put_swap_device(si); 1356 if (offset) { 1357 *entry = swp_entry(si->type, offset); 1358 return; 1359 } 1360 if (order) 1361 return; 1362 } 1363 1364 spin_lock(&swap_avail_lock); 1365 /* 1366 * if we got here, it's likely that si was almost full before, 1367 * multiple callers probably all tried to get a page from the 1368 * same si and it filled up before we could get one; or, the si 1369 * filled up between us dropping swap_avail_lock. 1370 * Since we dropped the swap_avail_lock, the swap_avail_list 1371 * may have been modified; so if next is still in the 1372 * swap_avail_head list then try it, otherwise start over if we 1373 * have not gotten any slots. 1374 */ 1375 if (plist_node_empty(&next->avail_list)) 1376 goto start_over; 1377 } 1378 spin_unlock(&swap_avail_lock); 1379 } 1380 1381 /* 1382 * Discard pending clusters in a synchronized way when under high pressure. 1383 * Return: true if any cluster is discarded. 1384 */ 1385 static bool swap_sync_discard(void) 1386 { 1387 bool ret = false; 1388 struct swap_info_struct *si, *next; 1389 1390 spin_lock(&swap_lock); 1391 start_over: 1392 plist_for_each_entry_safe(si, next, &swap_active_head, list) { 1393 spin_unlock(&swap_lock); 1394 if (get_swap_device_info(si)) { 1395 if (si->flags & SWP_PAGE_DISCARD) 1396 ret = swap_do_scheduled_discard(si); 1397 put_swap_device(si); 1398 } 1399 if (ret) 1400 return true; 1401 1402 spin_lock(&swap_lock); 1403 if (plist_node_empty(&next->list)) 1404 goto start_over; 1405 } 1406 spin_unlock(&swap_lock); 1407 1408 return false; 1409 } 1410 1411 /** 1412 * folio_alloc_swap - allocate swap space for a folio 1413 * @folio: folio we want to move to swap 1414 * 1415 * Allocate swap space for the folio and add the folio to the 1416 * swap cache. 1417 * 1418 * Context: Caller needs to hold the folio lock. 1419 * Return: Whether the folio was added to the swap cache. 1420 */ 1421 int folio_alloc_swap(struct folio *folio) 1422 { 1423 unsigned int order = folio_order(folio); 1424 unsigned int size = 1 << order; 1425 swp_entry_t entry = {}; 1426 1427 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1428 VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio); 1429 1430 if (order) { 1431 /* 1432 * Reject large allocation when THP_SWAP is disabled, 1433 * the caller should split the folio and try again. 1434 */ 1435 if (!IS_ENABLED(CONFIG_THP_SWAP)) 1436 return -EAGAIN; 1437 1438 /* 1439 * Allocation size should never exceed cluster size 1440 * (HPAGE_PMD_SIZE). 1441 */ 1442 if (size > SWAPFILE_CLUSTER) { 1443 VM_WARN_ON_ONCE(1); 1444 return -EINVAL; 1445 } 1446 } 1447 1448 again: 1449 local_lock(&percpu_swap_cluster.lock); 1450 if (!swap_alloc_fast(&entry, order)) 1451 swap_alloc_slow(&entry, order); 1452 local_unlock(&percpu_swap_cluster.lock); 1453 1454 if (unlikely(!order && !entry.val)) { 1455 if (swap_sync_discard()) 1456 goto again; 1457 } 1458 1459 /* Need to call this even if allocation failed, for MEMCG_SWAP_FAIL. */ 1460 if (mem_cgroup_try_charge_swap(folio, entry)) 1461 goto out_free; 1462 1463 if (!entry.val) 1464 return -ENOMEM; 1465 1466 swap_cache_add_folio(folio, entry, NULL); 1467 1468 return 0; 1469 1470 out_free: 1471 put_swap_folio(folio, entry); 1472 return -ENOMEM; 1473 } 1474 1475 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1476 { 1477 struct swap_info_struct *si; 1478 unsigned long offset; 1479 1480 if (!entry.val) 1481 goto out; 1482 si = swap_entry_to_info(entry); 1483 if (!si) 1484 goto bad_nofile; 1485 if (data_race(!(si->flags & SWP_USED))) 1486 goto bad_device; 1487 offset = swp_offset(entry); 1488 if (offset >= si->max) 1489 goto bad_offset; 1490 if (data_race(!si->swap_map[swp_offset(entry)])) 1491 goto bad_free; 1492 return si; 1493 1494 bad_free: 1495 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); 1496 goto out; 1497 bad_offset: 1498 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1499 goto out; 1500 bad_device: 1501 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); 1502 goto out; 1503 bad_nofile: 1504 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1505 out: 1506 return NULL; 1507 } 1508 1509 static unsigned char swap_entry_put_locked(struct swap_info_struct *si, 1510 struct swap_cluster_info *ci, 1511 swp_entry_t entry, 1512 unsigned char usage) 1513 { 1514 unsigned long offset = swp_offset(entry); 1515 unsigned char count; 1516 unsigned char has_cache; 1517 1518 count = si->swap_map[offset]; 1519 1520 has_cache = count & SWAP_HAS_CACHE; 1521 count &= ~SWAP_HAS_CACHE; 1522 1523 if (usage == SWAP_HAS_CACHE) { 1524 VM_BUG_ON(!has_cache); 1525 has_cache = 0; 1526 } else if (count == SWAP_MAP_SHMEM) { 1527 /* 1528 * Or we could insist on shmem.c using a special 1529 * swap_shmem_free() and free_shmem_swap_and_cache()... 1530 */ 1531 count = 0; 1532 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1533 if (count == COUNT_CONTINUED) { 1534 if (swap_count_continued(si, offset, count)) 1535 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1536 else 1537 count = SWAP_MAP_MAX; 1538 } else 1539 count--; 1540 } 1541 1542 usage = count | has_cache; 1543 if (usage) 1544 WRITE_ONCE(si->swap_map[offset], usage); 1545 else 1546 swap_entries_free(si, ci, entry, 1); 1547 1548 return usage; 1549 } 1550 1551 /* 1552 * When we get a swap entry, if there aren't some other ways to 1553 * prevent swapoff, such as the folio in swap cache is locked, RCU 1554 * reader side is locked, etc., the swap entry may become invalid 1555 * because of swapoff. Then, we need to enclose all swap related 1556 * functions with get_swap_device() and put_swap_device(), unless the 1557 * swap functions call get/put_swap_device() by themselves. 1558 * 1559 * RCU reader side lock (including any spinlock) is sufficient to 1560 * prevent swapoff, because synchronize_rcu() is called in swapoff() 1561 * before freeing data structures. 1562 * 1563 * Check whether swap entry is valid in the swap device. If so, 1564 * return pointer to swap_info_struct, and keep the swap entry valid 1565 * via preventing the swap device from being swapoff, until 1566 * put_swap_device() is called. Otherwise return NULL. 1567 * 1568 * Notice that swapoff or swapoff+swapon can still happen before the 1569 * percpu_ref_tryget_live() in get_swap_device() or after the 1570 * percpu_ref_put() in put_swap_device() if there isn't any other way 1571 * to prevent swapoff. The caller must be prepared for that. For 1572 * example, the following situation is possible. 1573 * 1574 * CPU1 CPU2 1575 * do_swap_page() 1576 * ... swapoff+swapon 1577 * __read_swap_cache_async() 1578 * swapcache_prepare() 1579 * __swap_duplicate() 1580 * // check swap_map 1581 * // verify PTE not changed 1582 * 1583 * In __swap_duplicate(), the swap_map need to be checked before 1584 * changing partly because the specified swap entry may be for another 1585 * swap device which has been swapoff. And in do_swap_page(), after 1586 * the page is read from the swap device, the PTE is verified not 1587 * changed with the page table locked to check whether the swap device 1588 * has been swapoff or swapoff+swapon. 1589 */ 1590 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1591 { 1592 struct swap_info_struct *si; 1593 unsigned long offset; 1594 1595 if (!entry.val) 1596 goto out; 1597 si = swap_entry_to_info(entry); 1598 if (!si) 1599 goto bad_nofile; 1600 if (!get_swap_device_info(si)) 1601 goto out; 1602 offset = swp_offset(entry); 1603 if (offset >= si->max) 1604 goto put_out; 1605 1606 return si; 1607 bad_nofile: 1608 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1609 out: 1610 return NULL; 1611 put_out: 1612 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1613 percpu_ref_put(&si->users); 1614 return NULL; 1615 } 1616 1617 static void swap_entries_put_cache(struct swap_info_struct *si, 1618 swp_entry_t entry, int nr) 1619 { 1620 unsigned long offset = swp_offset(entry); 1621 struct swap_cluster_info *ci; 1622 1623 ci = swap_cluster_lock(si, offset); 1624 if (swap_only_has_cache(si, offset, nr)) { 1625 swap_entries_free(si, ci, entry, nr); 1626 } else { 1627 for (int i = 0; i < nr; i++, entry.val++) 1628 swap_entry_put_locked(si, ci, entry, SWAP_HAS_CACHE); 1629 } 1630 swap_cluster_unlock(ci); 1631 } 1632 1633 static bool swap_entries_put_map(struct swap_info_struct *si, 1634 swp_entry_t entry, int nr) 1635 { 1636 unsigned long offset = swp_offset(entry); 1637 struct swap_cluster_info *ci; 1638 bool has_cache = false; 1639 unsigned char count; 1640 int i; 1641 1642 if (nr <= 1) 1643 goto fallback; 1644 count = swap_count(data_race(si->swap_map[offset])); 1645 if (count != 1 && count != SWAP_MAP_SHMEM) 1646 goto fallback; 1647 1648 ci = swap_cluster_lock(si, offset); 1649 if (!swap_is_last_map(si, offset, nr, &has_cache)) { 1650 goto locked_fallback; 1651 } 1652 if (!has_cache) 1653 swap_entries_free(si, ci, entry, nr); 1654 else 1655 for (i = 0; i < nr; i++) 1656 WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE); 1657 swap_cluster_unlock(ci); 1658 1659 return has_cache; 1660 1661 fallback: 1662 ci = swap_cluster_lock(si, offset); 1663 locked_fallback: 1664 for (i = 0; i < nr; i++, entry.val++) { 1665 count = swap_entry_put_locked(si, ci, entry, 1); 1666 if (count == SWAP_HAS_CACHE) 1667 has_cache = true; 1668 } 1669 swap_cluster_unlock(ci); 1670 return has_cache; 1671 } 1672 1673 /* 1674 * Only functions with "_nr" suffix are able to free entries spanning 1675 * cross multi clusters, so ensure the range is within a single cluster 1676 * when freeing entries with functions without "_nr" suffix. 1677 */ 1678 static bool swap_entries_put_map_nr(struct swap_info_struct *si, 1679 swp_entry_t entry, int nr) 1680 { 1681 int cluster_nr, cluster_rest; 1682 unsigned long offset = swp_offset(entry); 1683 bool has_cache = false; 1684 1685 cluster_rest = SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER; 1686 while (nr) { 1687 cluster_nr = min(nr, cluster_rest); 1688 has_cache |= swap_entries_put_map(si, entry, cluster_nr); 1689 cluster_rest = SWAPFILE_CLUSTER; 1690 nr -= cluster_nr; 1691 entry.val += cluster_nr; 1692 } 1693 1694 return has_cache; 1695 } 1696 1697 /* 1698 * Check if it's the last ref of swap entry in the freeing path. 1699 * Qualified value includes 1, SWAP_HAS_CACHE or SWAP_MAP_SHMEM. 1700 */ 1701 static inline bool __maybe_unused swap_is_last_ref(unsigned char count) 1702 { 1703 return (count == SWAP_HAS_CACHE) || (count == 1) || 1704 (count == SWAP_MAP_SHMEM); 1705 } 1706 1707 /* 1708 * Drop the last ref of swap entries, caller have to ensure all entries 1709 * belong to the same cgroup and cluster. 1710 */ 1711 static void swap_entries_free(struct swap_info_struct *si, 1712 struct swap_cluster_info *ci, 1713 swp_entry_t entry, unsigned int nr_pages) 1714 { 1715 unsigned long offset = swp_offset(entry); 1716 unsigned char *map = si->swap_map + offset; 1717 unsigned char *map_end = map + nr_pages; 1718 1719 /* It should never free entries across different clusters */ 1720 VM_BUG_ON(ci != __swap_offset_to_cluster(si, offset + nr_pages - 1)); 1721 VM_BUG_ON(cluster_is_empty(ci)); 1722 VM_BUG_ON(ci->count < nr_pages); 1723 1724 ci->count -= nr_pages; 1725 do { 1726 VM_BUG_ON(!swap_is_last_ref(*map)); 1727 *map = 0; 1728 } while (++map < map_end); 1729 1730 mem_cgroup_uncharge_swap(entry, nr_pages); 1731 swap_range_free(si, offset, nr_pages); 1732 swap_cluster_assert_table_empty(ci, offset, nr_pages); 1733 1734 if (!ci->count) 1735 free_cluster(si, ci); 1736 else 1737 partial_free_cluster(si, ci); 1738 } 1739 1740 /* 1741 * Caller has made sure that the swap device corresponding to entry 1742 * is still around or has not been recycled. 1743 */ 1744 void swap_free_nr(swp_entry_t entry, int nr_pages) 1745 { 1746 int nr; 1747 struct swap_info_struct *sis; 1748 unsigned long offset = swp_offset(entry); 1749 1750 sis = _swap_info_get(entry); 1751 if (!sis) 1752 return; 1753 1754 while (nr_pages) { 1755 nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER); 1756 swap_entries_put_map(sis, swp_entry(sis->type, offset), nr); 1757 offset += nr; 1758 nr_pages -= nr; 1759 } 1760 } 1761 1762 /* 1763 * Called after dropping swapcache to decrease refcnt to swap entries. 1764 */ 1765 void put_swap_folio(struct folio *folio, swp_entry_t entry) 1766 { 1767 struct swap_info_struct *si; 1768 int size = 1 << swap_entry_order(folio_order(folio)); 1769 1770 si = _swap_info_get(entry); 1771 if (!si) 1772 return; 1773 1774 swap_entries_put_cache(si, entry, size); 1775 } 1776 1777 int __swap_count(swp_entry_t entry) 1778 { 1779 struct swap_info_struct *si = __swap_entry_to_info(entry); 1780 pgoff_t offset = swp_offset(entry); 1781 1782 return swap_count(si->swap_map[offset]); 1783 } 1784 1785 /* 1786 * How many references to @entry are currently swapped out? 1787 * This does not give an exact answer when swap count is continued, 1788 * but does include the high COUNT_CONTINUED flag to allow for that. 1789 */ 1790 bool swap_entry_swapped(struct swap_info_struct *si, swp_entry_t entry) 1791 { 1792 pgoff_t offset = swp_offset(entry); 1793 struct swap_cluster_info *ci; 1794 int count; 1795 1796 ci = swap_cluster_lock(si, offset); 1797 count = swap_count(si->swap_map[offset]); 1798 swap_cluster_unlock(ci); 1799 return !!count; 1800 } 1801 1802 /* 1803 * How many references to @entry are currently swapped out? 1804 * This considers COUNT_CONTINUED so it returns exact answer. 1805 */ 1806 int swp_swapcount(swp_entry_t entry) 1807 { 1808 int count, tmp_count, n; 1809 struct swap_info_struct *si; 1810 struct swap_cluster_info *ci; 1811 struct page *page; 1812 pgoff_t offset; 1813 unsigned char *map; 1814 1815 si = _swap_info_get(entry); 1816 if (!si) 1817 return 0; 1818 1819 offset = swp_offset(entry); 1820 1821 ci = swap_cluster_lock(si, offset); 1822 1823 count = swap_count(si->swap_map[offset]); 1824 if (!(count & COUNT_CONTINUED)) 1825 goto out; 1826 1827 count &= ~COUNT_CONTINUED; 1828 n = SWAP_MAP_MAX + 1; 1829 1830 page = vmalloc_to_page(si->swap_map + offset); 1831 offset &= ~PAGE_MASK; 1832 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1833 1834 do { 1835 page = list_next_entry(page, lru); 1836 map = kmap_local_page(page); 1837 tmp_count = map[offset]; 1838 kunmap_local(map); 1839 1840 count += (tmp_count & ~COUNT_CONTINUED) * n; 1841 n *= (SWAP_CONT_MAX + 1); 1842 } while (tmp_count & COUNT_CONTINUED); 1843 out: 1844 swap_cluster_unlock(ci); 1845 return count; 1846 } 1847 1848 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1849 swp_entry_t entry, int order) 1850 { 1851 struct swap_cluster_info *ci; 1852 unsigned char *map = si->swap_map; 1853 unsigned int nr_pages = 1 << order; 1854 unsigned long roffset = swp_offset(entry); 1855 unsigned long offset = round_down(roffset, nr_pages); 1856 int i; 1857 bool ret = false; 1858 1859 ci = swap_cluster_lock(si, offset); 1860 if (nr_pages == 1) { 1861 if (swap_count(map[roffset])) 1862 ret = true; 1863 goto unlock_out; 1864 } 1865 for (i = 0; i < nr_pages; i++) { 1866 if (swap_count(map[offset + i])) { 1867 ret = true; 1868 break; 1869 } 1870 } 1871 unlock_out: 1872 swap_cluster_unlock(ci); 1873 return ret; 1874 } 1875 1876 static bool folio_swapped(struct folio *folio) 1877 { 1878 swp_entry_t entry = folio->swap; 1879 struct swap_info_struct *si = _swap_info_get(entry); 1880 1881 if (!si) 1882 return false; 1883 1884 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio))) 1885 return swap_entry_swapped(si, entry); 1886 1887 return swap_page_trans_huge_swapped(si, entry, folio_order(folio)); 1888 } 1889 1890 static bool folio_swapcache_freeable(struct folio *folio) 1891 { 1892 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1893 1894 if (!folio_test_swapcache(folio)) 1895 return false; 1896 if (folio_test_writeback(folio)) 1897 return false; 1898 1899 /* 1900 * Once hibernation has begun to create its image of memory, 1901 * there's a danger that one of the calls to folio_free_swap() 1902 * - most probably a call from __try_to_reclaim_swap() while 1903 * hibernation is allocating its own swap pages for the image, 1904 * but conceivably even a call from memory reclaim - will free 1905 * the swap from a folio which has already been recorded in the 1906 * image as a clean swapcache folio, and then reuse its swap for 1907 * another page of the image. On waking from hibernation, the 1908 * original folio might be freed under memory pressure, then 1909 * later read back in from swap, now with the wrong data. 1910 * 1911 * Hibernation suspends storage while it is writing the image 1912 * to disk so check that here. 1913 */ 1914 if (pm_suspended_storage()) 1915 return false; 1916 1917 return true; 1918 } 1919 1920 /** 1921 * folio_free_swap() - Free the swap space used for this folio. 1922 * @folio: The folio to remove. 1923 * 1924 * If swap is getting full, or if there are no more mappings of this folio, 1925 * then call folio_free_swap to free its swap space. 1926 * 1927 * Return: true if we were able to release the swap space. 1928 */ 1929 bool folio_free_swap(struct folio *folio) 1930 { 1931 if (!folio_swapcache_freeable(folio)) 1932 return false; 1933 if (folio_swapped(folio)) 1934 return false; 1935 1936 swap_cache_del_folio(folio); 1937 folio_set_dirty(folio); 1938 return true; 1939 } 1940 1941 /** 1942 * free_swap_and_cache_nr() - Release reference on range of swap entries and 1943 * reclaim their cache if no more references remain. 1944 * @entry: First entry of range. 1945 * @nr: Number of entries in range. 1946 * 1947 * For each swap entry in the contiguous range, release a reference. If any swap 1948 * entries become free, try to reclaim their underlying folios, if present. The 1949 * offset range is defined by [entry.offset, entry.offset + nr). 1950 */ 1951 void free_swap_and_cache_nr(swp_entry_t entry, int nr) 1952 { 1953 const unsigned long start_offset = swp_offset(entry); 1954 const unsigned long end_offset = start_offset + nr; 1955 struct swap_info_struct *si; 1956 bool any_only_cache = false; 1957 unsigned long offset; 1958 1959 si = get_swap_device(entry); 1960 if (!si) 1961 return; 1962 1963 if (WARN_ON(end_offset > si->max)) 1964 goto out; 1965 1966 /* 1967 * First free all entries in the range. 1968 */ 1969 any_only_cache = swap_entries_put_map_nr(si, entry, nr); 1970 1971 /* 1972 * Short-circuit the below loop if none of the entries had their 1973 * reference drop to zero. 1974 */ 1975 if (!any_only_cache) 1976 goto out; 1977 1978 /* 1979 * Now go back over the range trying to reclaim the swap cache. 1980 */ 1981 for (offset = start_offset; offset < end_offset; offset += nr) { 1982 nr = 1; 1983 if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 1984 /* 1985 * Folios are always naturally aligned in swap so 1986 * advance forward to the next boundary. Zero means no 1987 * folio was found for the swap entry, so advance by 1 1988 * in this case. Negative value means folio was found 1989 * but could not be reclaimed. Here we can still advance 1990 * to the next boundary. 1991 */ 1992 nr = __try_to_reclaim_swap(si, offset, 1993 TTRS_UNMAPPED | TTRS_FULL); 1994 if (nr == 0) 1995 nr = 1; 1996 else if (nr < 0) 1997 nr = -nr; 1998 nr = ALIGN(offset + 1, nr) - offset; 1999 } 2000 } 2001 2002 out: 2003 put_swap_device(si); 2004 } 2005 2006 #ifdef CONFIG_HIBERNATION 2007 2008 swp_entry_t get_swap_page_of_type(int type) 2009 { 2010 struct swap_info_struct *si = swap_type_to_info(type); 2011 unsigned long offset; 2012 swp_entry_t entry = {0}; 2013 2014 if (!si) 2015 goto fail; 2016 2017 /* This is called for allocating swap entry, not cache */ 2018 if (get_swap_device_info(si)) { 2019 if (si->flags & SWP_WRITEOK) { 2020 /* 2021 * Grab the local lock to be complaint 2022 * with swap table allocation. 2023 */ 2024 local_lock(&percpu_swap_cluster.lock); 2025 offset = cluster_alloc_swap_entry(si, 0, 1); 2026 local_unlock(&percpu_swap_cluster.lock); 2027 if (offset) 2028 entry = swp_entry(si->type, offset); 2029 } 2030 put_swap_device(si); 2031 } 2032 fail: 2033 return entry; 2034 } 2035 2036 /* 2037 * Find the swap type that corresponds to given device (if any). 2038 * 2039 * @offset - number of the PAGE_SIZE-sized block of the device, starting 2040 * from 0, in which the swap header is expected to be located. 2041 * 2042 * This is needed for the suspend to disk (aka swsusp). 2043 */ 2044 int swap_type_of(dev_t device, sector_t offset) 2045 { 2046 int type; 2047 2048 if (!device) 2049 return -1; 2050 2051 spin_lock(&swap_lock); 2052 for (type = 0; type < nr_swapfiles; type++) { 2053 struct swap_info_struct *sis = swap_info[type]; 2054 2055 if (!(sis->flags & SWP_WRITEOK)) 2056 continue; 2057 2058 if (device == sis->bdev->bd_dev) { 2059 struct swap_extent *se = first_se(sis); 2060 2061 if (se->start_block == offset) { 2062 spin_unlock(&swap_lock); 2063 return type; 2064 } 2065 } 2066 } 2067 spin_unlock(&swap_lock); 2068 return -ENODEV; 2069 } 2070 2071 int find_first_swap(dev_t *device) 2072 { 2073 int type; 2074 2075 spin_lock(&swap_lock); 2076 for (type = 0; type < nr_swapfiles; type++) { 2077 struct swap_info_struct *sis = swap_info[type]; 2078 2079 if (!(sis->flags & SWP_WRITEOK)) 2080 continue; 2081 *device = sis->bdev->bd_dev; 2082 spin_unlock(&swap_lock); 2083 return type; 2084 } 2085 spin_unlock(&swap_lock); 2086 return -ENODEV; 2087 } 2088 2089 /* 2090 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 2091 * corresponding to given index in swap_info (swap type). 2092 */ 2093 sector_t swapdev_block(int type, pgoff_t offset) 2094 { 2095 struct swap_info_struct *si = swap_type_to_info(type); 2096 struct swap_extent *se; 2097 2098 if (!si || !(si->flags & SWP_WRITEOK)) 2099 return 0; 2100 se = offset_to_swap_extent(si, offset); 2101 return se->start_block + (offset - se->start_page); 2102 } 2103 2104 /* 2105 * Return either the total number of swap pages of given type, or the number 2106 * of free pages of that type (depending on @free) 2107 * 2108 * This is needed for software suspend 2109 */ 2110 unsigned int count_swap_pages(int type, int free) 2111 { 2112 unsigned int n = 0; 2113 2114 spin_lock(&swap_lock); 2115 if ((unsigned int)type < nr_swapfiles) { 2116 struct swap_info_struct *sis = swap_info[type]; 2117 2118 spin_lock(&sis->lock); 2119 if (sis->flags & SWP_WRITEOK) { 2120 n = sis->pages; 2121 if (free) 2122 n -= swap_usage_in_pages(sis); 2123 } 2124 spin_unlock(&sis->lock); 2125 } 2126 spin_unlock(&swap_lock); 2127 return n; 2128 } 2129 #endif /* CONFIG_HIBERNATION */ 2130 2131 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 2132 { 2133 return pte_same(pte_swp_clear_flags(pte), swp_pte); 2134 } 2135 2136 /* 2137 * No need to decide whether this PTE shares the swap entry with others, 2138 * just let do_wp_page work it out if a write is requested later - to 2139 * force COW, vm_page_prot omits write permission from any private vma. 2140 */ 2141 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 2142 unsigned long addr, swp_entry_t entry, struct folio *folio) 2143 { 2144 struct page *page; 2145 struct folio *swapcache; 2146 spinlock_t *ptl; 2147 pte_t *pte, new_pte, old_pte; 2148 bool hwpoisoned = false; 2149 int ret = 1; 2150 2151 /* 2152 * If the folio is removed from swap cache by others, continue to 2153 * unuse other PTEs. try_to_unuse may try again if we missed this one. 2154 */ 2155 if (!folio_matches_swap_entry(folio, entry)) 2156 return 0; 2157 2158 swapcache = folio; 2159 folio = ksm_might_need_to_copy(folio, vma, addr); 2160 if (unlikely(!folio)) 2161 return -ENOMEM; 2162 else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 2163 hwpoisoned = true; 2164 folio = swapcache; 2165 } 2166 2167 page = folio_file_page(folio, swp_offset(entry)); 2168 if (PageHWPoison(page)) 2169 hwpoisoned = true; 2170 2171 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 2172 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte), 2173 swp_entry_to_pte(entry)))) { 2174 ret = 0; 2175 goto out; 2176 } 2177 2178 old_pte = ptep_get(pte); 2179 2180 if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) { 2181 swp_entry_t swp_entry; 2182 2183 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 2184 if (hwpoisoned) { 2185 swp_entry = make_hwpoison_entry(page); 2186 } else { 2187 swp_entry = make_poisoned_swp_entry(); 2188 } 2189 new_pte = swp_entry_to_pte(swp_entry); 2190 ret = 0; 2191 goto setpte; 2192 } 2193 2194 /* 2195 * Some architectures may have to restore extra metadata to the page 2196 * when reading from swap. This metadata may be indexed by swap entry 2197 * so this must be called before swap_free(). 2198 */ 2199 arch_swap_restore(folio_swap(entry, folio), folio); 2200 2201 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 2202 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 2203 folio_get(folio); 2204 if (folio == swapcache) { 2205 rmap_t rmap_flags = RMAP_NONE; 2206 2207 /* 2208 * See do_swap_page(): writeback would be problematic. 2209 * However, we do a folio_wait_writeback() just before this 2210 * call and have the folio locked. 2211 */ 2212 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 2213 if (pte_swp_exclusive(old_pte)) 2214 rmap_flags |= RMAP_EXCLUSIVE; 2215 /* 2216 * We currently only expect small !anon folios, which are either 2217 * fully exclusive or fully shared. If we ever get large folios 2218 * here, we have to be careful. 2219 */ 2220 if (!folio_test_anon(folio)) { 2221 VM_WARN_ON_ONCE(folio_test_large(folio)); 2222 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 2223 folio_add_new_anon_rmap(folio, vma, addr, rmap_flags); 2224 } else { 2225 folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags); 2226 } 2227 } else { /* ksm created a completely new copy */ 2228 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 2229 folio_add_lru_vma(folio, vma); 2230 } 2231 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot)); 2232 if (pte_swp_soft_dirty(old_pte)) 2233 new_pte = pte_mksoft_dirty(new_pte); 2234 if (pte_swp_uffd_wp(old_pte)) 2235 new_pte = pte_mkuffd_wp(new_pte); 2236 setpte: 2237 set_pte_at(vma->vm_mm, addr, pte, new_pte); 2238 swap_free(entry); 2239 out: 2240 if (pte) 2241 pte_unmap_unlock(pte, ptl); 2242 if (folio != swapcache) { 2243 folio_unlock(folio); 2244 folio_put(folio); 2245 } 2246 return ret; 2247 } 2248 2249 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 2250 unsigned long addr, unsigned long end, 2251 unsigned int type) 2252 { 2253 pte_t *pte = NULL; 2254 struct swap_info_struct *si; 2255 2256 si = swap_info[type]; 2257 do { 2258 struct folio *folio; 2259 unsigned long offset; 2260 unsigned char swp_count; 2261 softleaf_t entry; 2262 int ret; 2263 pte_t ptent; 2264 2265 if (!pte++) { 2266 pte = pte_offset_map(pmd, addr); 2267 if (!pte) 2268 break; 2269 } 2270 2271 ptent = ptep_get_lockless(pte); 2272 entry = softleaf_from_pte(ptent); 2273 2274 if (!softleaf_is_swap(entry)) 2275 continue; 2276 if (swp_type(entry) != type) 2277 continue; 2278 2279 offset = swp_offset(entry); 2280 pte_unmap(pte); 2281 pte = NULL; 2282 2283 folio = swap_cache_get_folio(entry); 2284 if (!folio) { 2285 struct vm_fault vmf = { 2286 .vma = vma, 2287 .address = addr, 2288 .real_address = addr, 2289 .pmd = pmd, 2290 }; 2291 2292 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 2293 &vmf); 2294 } 2295 if (!folio) { 2296 swp_count = READ_ONCE(si->swap_map[offset]); 2297 if (swp_count == 0 || swp_count == SWAP_MAP_BAD) 2298 continue; 2299 return -ENOMEM; 2300 } 2301 2302 folio_lock(folio); 2303 folio_wait_writeback(folio); 2304 ret = unuse_pte(vma, pmd, addr, entry, folio); 2305 if (ret < 0) { 2306 folio_unlock(folio); 2307 folio_put(folio); 2308 return ret; 2309 } 2310 2311 folio_free_swap(folio); 2312 folio_unlock(folio); 2313 folio_put(folio); 2314 } while (addr += PAGE_SIZE, addr != end); 2315 2316 if (pte) 2317 pte_unmap(pte); 2318 return 0; 2319 } 2320 2321 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 2322 unsigned long addr, unsigned long end, 2323 unsigned int type) 2324 { 2325 pmd_t *pmd; 2326 unsigned long next; 2327 int ret; 2328 2329 pmd = pmd_offset(pud, addr); 2330 do { 2331 cond_resched(); 2332 next = pmd_addr_end(addr, end); 2333 ret = unuse_pte_range(vma, pmd, addr, next, type); 2334 if (ret) 2335 return ret; 2336 } while (pmd++, addr = next, addr != end); 2337 return 0; 2338 } 2339 2340 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 2341 unsigned long addr, unsigned long end, 2342 unsigned int type) 2343 { 2344 pud_t *pud; 2345 unsigned long next; 2346 int ret; 2347 2348 pud = pud_offset(p4d, addr); 2349 do { 2350 next = pud_addr_end(addr, end); 2351 if (pud_none_or_clear_bad(pud)) 2352 continue; 2353 ret = unuse_pmd_range(vma, pud, addr, next, type); 2354 if (ret) 2355 return ret; 2356 } while (pud++, addr = next, addr != end); 2357 return 0; 2358 } 2359 2360 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 2361 unsigned long addr, unsigned long end, 2362 unsigned int type) 2363 { 2364 p4d_t *p4d; 2365 unsigned long next; 2366 int ret; 2367 2368 p4d = p4d_offset(pgd, addr); 2369 do { 2370 next = p4d_addr_end(addr, end); 2371 if (p4d_none_or_clear_bad(p4d)) 2372 continue; 2373 ret = unuse_pud_range(vma, p4d, addr, next, type); 2374 if (ret) 2375 return ret; 2376 } while (p4d++, addr = next, addr != end); 2377 return 0; 2378 } 2379 2380 static int unuse_vma(struct vm_area_struct *vma, unsigned int type) 2381 { 2382 pgd_t *pgd; 2383 unsigned long addr, end, next; 2384 int ret; 2385 2386 addr = vma->vm_start; 2387 end = vma->vm_end; 2388 2389 pgd = pgd_offset(vma->vm_mm, addr); 2390 do { 2391 next = pgd_addr_end(addr, end); 2392 if (pgd_none_or_clear_bad(pgd)) 2393 continue; 2394 ret = unuse_p4d_range(vma, pgd, addr, next, type); 2395 if (ret) 2396 return ret; 2397 } while (pgd++, addr = next, addr != end); 2398 return 0; 2399 } 2400 2401 static int unuse_mm(struct mm_struct *mm, unsigned int type) 2402 { 2403 struct vm_area_struct *vma; 2404 int ret = 0; 2405 VMA_ITERATOR(vmi, mm, 0); 2406 2407 mmap_read_lock(mm); 2408 if (check_stable_address_space(mm)) 2409 goto unlock; 2410 for_each_vma(vmi, vma) { 2411 if (vma->anon_vma && !is_vm_hugetlb_page(vma)) { 2412 ret = unuse_vma(vma, type); 2413 if (ret) 2414 break; 2415 } 2416 2417 cond_resched(); 2418 } 2419 unlock: 2420 mmap_read_unlock(mm); 2421 return ret; 2422 } 2423 2424 /* 2425 * Scan swap_map from current position to next entry still in use. 2426 * Return 0 if there are no inuse entries after prev till end of 2427 * the map. 2428 */ 2429 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 2430 unsigned int prev) 2431 { 2432 unsigned int i; 2433 unsigned char count; 2434 2435 /* 2436 * No need for swap_lock here: we're just looking 2437 * for whether an entry is in use, not modifying it; false 2438 * hits are okay, and sys_swapoff() has already prevented new 2439 * allocations from this area (while holding swap_lock). 2440 */ 2441 for (i = prev + 1; i < si->max; i++) { 2442 count = READ_ONCE(si->swap_map[i]); 2443 if (count && swap_count(count) != SWAP_MAP_BAD) 2444 break; 2445 if ((i % LATENCY_LIMIT) == 0) 2446 cond_resched(); 2447 } 2448 2449 if (i == si->max) 2450 i = 0; 2451 2452 return i; 2453 } 2454 2455 static int try_to_unuse(unsigned int type) 2456 { 2457 struct mm_struct *prev_mm; 2458 struct mm_struct *mm; 2459 struct list_head *p; 2460 int retval = 0; 2461 struct swap_info_struct *si = swap_info[type]; 2462 struct folio *folio; 2463 swp_entry_t entry; 2464 unsigned int i; 2465 2466 if (!swap_usage_in_pages(si)) 2467 goto success; 2468 2469 retry: 2470 retval = shmem_unuse(type); 2471 if (retval) 2472 return retval; 2473 2474 prev_mm = &init_mm; 2475 mmget(prev_mm); 2476 2477 spin_lock(&mmlist_lock); 2478 p = &init_mm.mmlist; 2479 while (swap_usage_in_pages(si) && 2480 !signal_pending(current) && 2481 (p = p->next) != &init_mm.mmlist) { 2482 2483 mm = list_entry(p, struct mm_struct, mmlist); 2484 if (!mmget_not_zero(mm)) 2485 continue; 2486 spin_unlock(&mmlist_lock); 2487 mmput(prev_mm); 2488 prev_mm = mm; 2489 retval = unuse_mm(mm, type); 2490 if (retval) { 2491 mmput(prev_mm); 2492 return retval; 2493 } 2494 2495 /* 2496 * Make sure that we aren't completely killing 2497 * interactive performance. 2498 */ 2499 cond_resched(); 2500 spin_lock(&mmlist_lock); 2501 } 2502 spin_unlock(&mmlist_lock); 2503 2504 mmput(prev_mm); 2505 2506 i = 0; 2507 while (swap_usage_in_pages(si) && 2508 !signal_pending(current) && 2509 (i = find_next_to_unuse(si, i)) != 0) { 2510 2511 entry = swp_entry(type, i); 2512 folio = swap_cache_get_folio(entry); 2513 if (!folio) 2514 continue; 2515 2516 /* 2517 * It is conceivable that a racing task removed this folio from 2518 * swap cache just before we acquired the page lock. The folio 2519 * might even be back in swap cache on another swap area. But 2520 * that is okay, folio_free_swap() only removes stale folios. 2521 */ 2522 folio_lock(folio); 2523 folio_wait_writeback(folio); 2524 folio_free_swap(folio); 2525 folio_unlock(folio); 2526 folio_put(folio); 2527 } 2528 2529 /* 2530 * Lets check again to see if there are still swap entries in the map. 2531 * If yes, we would need to do retry the unuse logic again. 2532 * Under global memory pressure, swap entries can be reinserted back 2533 * into process space after the mmlist loop above passes over them. 2534 * 2535 * Limit the number of retries? No: when mmget_not_zero() 2536 * above fails, that mm is likely to be freeing swap from 2537 * exit_mmap(), which proceeds at its own independent pace; 2538 * and even shmem_writeout() could have been preempted after 2539 * folio_alloc_swap(), temporarily hiding that swap. It's easy 2540 * and robust (though cpu-intensive) just to keep retrying. 2541 */ 2542 if (swap_usage_in_pages(si)) { 2543 if (!signal_pending(current)) 2544 goto retry; 2545 return -EINTR; 2546 } 2547 2548 success: 2549 /* 2550 * Make sure that further cleanups after try_to_unuse() returns happen 2551 * after swap_range_free() reduces si->inuse_pages to 0. 2552 */ 2553 smp_mb(); 2554 return 0; 2555 } 2556 2557 /* 2558 * After a successful try_to_unuse, if no swap is now in use, we know 2559 * we can empty the mmlist. swap_lock must be held on entry and exit. 2560 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2561 * added to the mmlist just after page_duplicate - before would be racy. 2562 */ 2563 static void drain_mmlist(void) 2564 { 2565 struct list_head *p, *next; 2566 unsigned int type; 2567 2568 for (type = 0; type < nr_swapfiles; type++) 2569 if (swap_usage_in_pages(swap_info[type])) 2570 return; 2571 spin_lock(&mmlist_lock); 2572 list_for_each_safe(p, next, &init_mm.mmlist) 2573 list_del_init(p); 2574 spin_unlock(&mmlist_lock); 2575 } 2576 2577 /* 2578 * Free all of a swapdev's extent information 2579 */ 2580 static void destroy_swap_extents(struct swap_info_struct *sis) 2581 { 2582 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2583 struct rb_node *rb = sis->swap_extent_root.rb_node; 2584 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2585 2586 rb_erase(rb, &sis->swap_extent_root); 2587 kfree(se); 2588 } 2589 2590 if (sis->flags & SWP_ACTIVATED) { 2591 struct file *swap_file = sis->swap_file; 2592 struct address_space *mapping = swap_file->f_mapping; 2593 2594 sis->flags &= ~SWP_ACTIVATED; 2595 if (mapping->a_ops->swap_deactivate) 2596 mapping->a_ops->swap_deactivate(swap_file); 2597 } 2598 } 2599 2600 /* 2601 * Add a block range (and the corresponding page range) into this swapdev's 2602 * extent tree. 2603 * 2604 * This function rather assumes that it is called in ascending page order. 2605 */ 2606 int 2607 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2608 unsigned long nr_pages, sector_t start_block) 2609 { 2610 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2611 struct swap_extent *se; 2612 struct swap_extent *new_se; 2613 2614 /* 2615 * place the new node at the right most since the 2616 * function is called in ascending page order. 2617 */ 2618 while (*link) { 2619 parent = *link; 2620 link = &parent->rb_right; 2621 } 2622 2623 if (parent) { 2624 se = rb_entry(parent, struct swap_extent, rb_node); 2625 BUG_ON(se->start_page + se->nr_pages != start_page); 2626 if (se->start_block + se->nr_pages == start_block) { 2627 /* Merge it */ 2628 se->nr_pages += nr_pages; 2629 return 0; 2630 } 2631 } 2632 2633 /* No merge, insert a new extent. */ 2634 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2635 if (new_se == NULL) 2636 return -ENOMEM; 2637 new_se->start_page = start_page; 2638 new_se->nr_pages = nr_pages; 2639 new_se->start_block = start_block; 2640 2641 rb_link_node(&new_se->rb_node, parent, link); 2642 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2643 return 1; 2644 } 2645 EXPORT_SYMBOL_GPL(add_swap_extent); 2646 2647 /* 2648 * A `swap extent' is a simple thing which maps a contiguous range of pages 2649 * onto a contiguous range of disk blocks. A rbtree of swap extents is 2650 * built at swapon time and is then used at swap_writepage/swap_read_folio 2651 * time for locating where on disk a page belongs. 2652 * 2653 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2654 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2655 * swap files identically. 2656 * 2657 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2658 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2659 * swapfiles are handled *identically* after swapon time. 2660 * 2661 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2662 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray 2663 * blocks are found which do not fall within the PAGE_SIZE alignment 2664 * requirements, they are simply tossed out - we will never use those blocks 2665 * for swapping. 2666 * 2667 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2668 * prevents users from writing to the swap device, which will corrupt memory. 2669 * 2670 * The amount of disk space which a single swap extent represents varies. 2671 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2672 * extents in the rbtree. - akpm. 2673 */ 2674 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2675 { 2676 struct file *swap_file = sis->swap_file; 2677 struct address_space *mapping = swap_file->f_mapping; 2678 struct inode *inode = mapping->host; 2679 int ret; 2680 2681 if (S_ISBLK(inode->i_mode)) { 2682 ret = add_swap_extent(sis, 0, sis->max, 0); 2683 *span = sis->pages; 2684 return ret; 2685 } 2686 2687 if (mapping->a_ops->swap_activate) { 2688 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2689 if (ret < 0) 2690 return ret; 2691 sis->flags |= SWP_ACTIVATED; 2692 if ((sis->flags & SWP_FS_OPS) && 2693 sio_pool_init() != 0) { 2694 destroy_swap_extents(sis); 2695 return -ENOMEM; 2696 } 2697 return ret; 2698 } 2699 2700 return generic_swapfile_activate(sis, swap_file, span); 2701 } 2702 2703 static void setup_swap_info(struct swap_info_struct *si, int prio, 2704 unsigned char *swap_map, 2705 struct swap_cluster_info *cluster_info, 2706 unsigned long *zeromap) 2707 { 2708 si->prio = prio; 2709 /* 2710 * the plist prio is negated because plist ordering is 2711 * low-to-high, while swap ordering is high-to-low 2712 */ 2713 si->list.prio = -si->prio; 2714 si->avail_list.prio = -si->prio; 2715 si->swap_map = swap_map; 2716 si->cluster_info = cluster_info; 2717 si->zeromap = zeromap; 2718 } 2719 2720 static void _enable_swap_info(struct swap_info_struct *si) 2721 { 2722 atomic_long_add(si->pages, &nr_swap_pages); 2723 total_swap_pages += si->pages; 2724 2725 assert_spin_locked(&swap_lock); 2726 2727 plist_add(&si->list, &swap_active_head); 2728 2729 /* Add back to available list */ 2730 add_to_avail_list(si, true); 2731 } 2732 2733 static void enable_swap_info(struct swap_info_struct *si, int prio, 2734 unsigned char *swap_map, 2735 struct swap_cluster_info *cluster_info, 2736 unsigned long *zeromap) 2737 { 2738 spin_lock(&swap_lock); 2739 spin_lock(&si->lock); 2740 setup_swap_info(si, prio, swap_map, cluster_info, zeromap); 2741 spin_unlock(&si->lock); 2742 spin_unlock(&swap_lock); 2743 /* 2744 * Finished initializing swap device, now it's safe to reference it. 2745 */ 2746 percpu_ref_resurrect(&si->users); 2747 spin_lock(&swap_lock); 2748 spin_lock(&si->lock); 2749 _enable_swap_info(si); 2750 spin_unlock(&si->lock); 2751 spin_unlock(&swap_lock); 2752 } 2753 2754 static void reinsert_swap_info(struct swap_info_struct *si) 2755 { 2756 spin_lock(&swap_lock); 2757 spin_lock(&si->lock); 2758 setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap); 2759 _enable_swap_info(si); 2760 spin_unlock(&si->lock); 2761 spin_unlock(&swap_lock); 2762 } 2763 2764 /* 2765 * Called after clearing SWP_WRITEOK, ensures cluster_alloc_range 2766 * see the updated flags, so there will be no more allocations. 2767 */ 2768 static void wait_for_allocation(struct swap_info_struct *si) 2769 { 2770 unsigned long offset; 2771 unsigned long end = ALIGN(si->max, SWAPFILE_CLUSTER); 2772 struct swap_cluster_info *ci; 2773 2774 BUG_ON(si->flags & SWP_WRITEOK); 2775 2776 for (offset = 0; offset < end; offset += SWAPFILE_CLUSTER) { 2777 ci = swap_cluster_lock(si, offset); 2778 swap_cluster_unlock(ci); 2779 } 2780 } 2781 2782 static void free_cluster_info(struct swap_cluster_info *cluster_info, 2783 unsigned long maxpages) 2784 { 2785 struct swap_cluster_info *ci; 2786 int i, nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2787 2788 if (!cluster_info) 2789 return; 2790 for (i = 0; i < nr_clusters; i++) { 2791 ci = cluster_info + i; 2792 /* Cluster with bad marks count will have a remaining table */ 2793 spin_lock(&ci->lock); 2794 if (rcu_dereference_protected(ci->table, true)) { 2795 ci->count = 0; 2796 swap_cluster_free_table(ci); 2797 } 2798 spin_unlock(&ci->lock); 2799 } 2800 kvfree(cluster_info); 2801 } 2802 2803 /* 2804 * Called after swap device's reference count is dead, so 2805 * neither scan nor allocation will use it. 2806 */ 2807 static void flush_percpu_swap_cluster(struct swap_info_struct *si) 2808 { 2809 int cpu, i; 2810 struct swap_info_struct **pcp_si; 2811 2812 for_each_possible_cpu(cpu) { 2813 pcp_si = per_cpu_ptr(percpu_swap_cluster.si, cpu); 2814 /* 2815 * Invalidate the percpu swap cluster cache, si->users 2816 * is dead, so no new user will point to it, just flush 2817 * any existing user. 2818 */ 2819 for (i = 0; i < SWAP_NR_ORDERS; i++) 2820 cmpxchg(&pcp_si[i], si, NULL); 2821 } 2822 } 2823 2824 2825 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2826 { 2827 struct swap_info_struct *p = NULL; 2828 unsigned char *swap_map; 2829 unsigned long *zeromap; 2830 struct swap_cluster_info *cluster_info; 2831 struct file *swap_file, *victim; 2832 struct address_space *mapping; 2833 struct inode *inode; 2834 struct filename *pathname; 2835 unsigned int maxpages; 2836 int err, found = 0; 2837 2838 if (!capable(CAP_SYS_ADMIN)) 2839 return -EPERM; 2840 2841 BUG_ON(!current->mm); 2842 2843 pathname = getname(specialfile); 2844 if (IS_ERR(pathname)) 2845 return PTR_ERR(pathname); 2846 2847 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2848 err = PTR_ERR(victim); 2849 if (IS_ERR(victim)) 2850 goto out; 2851 2852 mapping = victim->f_mapping; 2853 spin_lock(&swap_lock); 2854 plist_for_each_entry(p, &swap_active_head, list) { 2855 if (p->flags & SWP_WRITEOK) { 2856 if (p->swap_file->f_mapping == mapping) { 2857 found = 1; 2858 break; 2859 } 2860 } 2861 } 2862 if (!found) { 2863 err = -EINVAL; 2864 spin_unlock(&swap_lock); 2865 goto out_dput; 2866 } 2867 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2868 vm_unacct_memory(p->pages); 2869 else { 2870 err = -ENOMEM; 2871 spin_unlock(&swap_lock); 2872 goto out_dput; 2873 } 2874 spin_lock(&p->lock); 2875 del_from_avail_list(p, true); 2876 plist_del(&p->list, &swap_active_head); 2877 atomic_long_sub(p->pages, &nr_swap_pages); 2878 total_swap_pages -= p->pages; 2879 spin_unlock(&p->lock); 2880 spin_unlock(&swap_lock); 2881 2882 wait_for_allocation(p); 2883 2884 set_current_oom_origin(); 2885 err = try_to_unuse(p->type); 2886 clear_current_oom_origin(); 2887 2888 if (err) { 2889 /* re-insert swap space back into swap_list */ 2890 reinsert_swap_info(p); 2891 goto out_dput; 2892 } 2893 2894 /* 2895 * Wait for swap operations protected by get/put_swap_device() 2896 * to complete. Because of synchronize_rcu() here, all swap 2897 * operations protected by RCU reader side lock (including any 2898 * spinlock) will be waited too. This makes it easy to 2899 * prevent folio_test_swapcache() and the following swap cache 2900 * operations from racing with swapoff. 2901 */ 2902 percpu_ref_kill(&p->users); 2903 synchronize_rcu(); 2904 wait_for_completion(&p->comp); 2905 2906 flush_work(&p->discard_work); 2907 flush_work(&p->reclaim_work); 2908 flush_percpu_swap_cluster(p); 2909 2910 destroy_swap_extents(p); 2911 if (p->flags & SWP_CONTINUED) 2912 free_swap_count_continuations(p); 2913 2914 if (!(p->flags & SWP_SOLIDSTATE)) 2915 atomic_dec(&nr_rotate_swap); 2916 2917 mutex_lock(&swapon_mutex); 2918 spin_lock(&swap_lock); 2919 spin_lock(&p->lock); 2920 drain_mmlist(); 2921 2922 swap_file = p->swap_file; 2923 p->swap_file = NULL; 2924 swap_map = p->swap_map; 2925 p->swap_map = NULL; 2926 zeromap = p->zeromap; 2927 p->zeromap = NULL; 2928 maxpages = p->max; 2929 cluster_info = p->cluster_info; 2930 p->max = 0; 2931 p->cluster_info = NULL; 2932 spin_unlock(&p->lock); 2933 spin_unlock(&swap_lock); 2934 arch_swap_invalidate_area(p->type); 2935 zswap_swapoff(p->type); 2936 mutex_unlock(&swapon_mutex); 2937 kfree(p->global_cluster); 2938 p->global_cluster = NULL; 2939 vfree(swap_map); 2940 kvfree(zeromap); 2941 free_cluster_info(cluster_info, maxpages); 2942 /* Destroy swap account information */ 2943 swap_cgroup_swapoff(p->type); 2944 2945 inode = mapping->host; 2946 2947 inode_lock(inode); 2948 inode->i_flags &= ~S_SWAPFILE; 2949 inode_unlock(inode); 2950 filp_close(swap_file, NULL); 2951 2952 /* 2953 * Clear the SWP_USED flag after all resources are freed so that swapon 2954 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2955 * not hold p->lock after we cleared its SWP_WRITEOK. 2956 */ 2957 spin_lock(&swap_lock); 2958 p->flags = 0; 2959 spin_unlock(&swap_lock); 2960 2961 err = 0; 2962 atomic_inc(&proc_poll_event); 2963 wake_up_interruptible(&proc_poll_wait); 2964 2965 out_dput: 2966 filp_close(victim, NULL); 2967 out: 2968 putname(pathname); 2969 return err; 2970 } 2971 2972 #ifdef CONFIG_PROC_FS 2973 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2974 { 2975 struct seq_file *seq = file->private_data; 2976 2977 poll_wait(file, &proc_poll_wait, wait); 2978 2979 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2980 seq->poll_event = atomic_read(&proc_poll_event); 2981 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2982 } 2983 2984 return EPOLLIN | EPOLLRDNORM; 2985 } 2986 2987 /* iterator */ 2988 static void *swap_start(struct seq_file *swap, loff_t *pos) 2989 { 2990 struct swap_info_struct *si; 2991 int type; 2992 loff_t l = *pos; 2993 2994 mutex_lock(&swapon_mutex); 2995 2996 if (!l) 2997 return SEQ_START_TOKEN; 2998 2999 for (type = 0; (si = swap_type_to_info(type)); type++) { 3000 if (!(si->flags & SWP_USED) || !si->swap_map) 3001 continue; 3002 if (!--l) 3003 return si; 3004 } 3005 3006 return NULL; 3007 } 3008 3009 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 3010 { 3011 struct swap_info_struct *si = v; 3012 int type; 3013 3014 if (v == SEQ_START_TOKEN) 3015 type = 0; 3016 else 3017 type = si->type + 1; 3018 3019 ++(*pos); 3020 for (; (si = swap_type_to_info(type)); type++) { 3021 if (!(si->flags & SWP_USED) || !si->swap_map) 3022 continue; 3023 return si; 3024 } 3025 3026 return NULL; 3027 } 3028 3029 static void swap_stop(struct seq_file *swap, void *v) 3030 { 3031 mutex_unlock(&swapon_mutex); 3032 } 3033 3034 static int swap_show(struct seq_file *swap, void *v) 3035 { 3036 struct swap_info_struct *si = v; 3037 struct file *file; 3038 int len; 3039 unsigned long bytes, inuse; 3040 3041 if (si == SEQ_START_TOKEN) { 3042 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 3043 return 0; 3044 } 3045 3046 bytes = K(si->pages); 3047 inuse = K(swap_usage_in_pages(si)); 3048 3049 file = si->swap_file; 3050 len = seq_file_path(swap, file, " \t\n\\"); 3051 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n", 3052 len < 40 ? 40 - len : 1, " ", 3053 S_ISBLK(file_inode(file)->i_mode) ? 3054 "partition" : "file\t", 3055 bytes, bytes < 10000000 ? "\t" : "", 3056 inuse, inuse < 10000000 ? "\t" : "", 3057 si->prio); 3058 return 0; 3059 } 3060 3061 static const struct seq_operations swaps_op = { 3062 .start = swap_start, 3063 .next = swap_next, 3064 .stop = swap_stop, 3065 .show = swap_show 3066 }; 3067 3068 static int swaps_open(struct inode *inode, struct file *file) 3069 { 3070 struct seq_file *seq; 3071 int ret; 3072 3073 ret = seq_open(file, &swaps_op); 3074 if (ret) 3075 return ret; 3076 3077 seq = file->private_data; 3078 seq->poll_event = atomic_read(&proc_poll_event); 3079 return 0; 3080 } 3081 3082 static const struct proc_ops swaps_proc_ops = { 3083 .proc_flags = PROC_ENTRY_PERMANENT, 3084 .proc_open = swaps_open, 3085 .proc_read = seq_read, 3086 .proc_lseek = seq_lseek, 3087 .proc_release = seq_release, 3088 .proc_poll = swaps_poll, 3089 }; 3090 3091 static int __init procswaps_init(void) 3092 { 3093 proc_create("swaps", 0, NULL, &swaps_proc_ops); 3094 return 0; 3095 } 3096 __initcall(procswaps_init); 3097 #endif /* CONFIG_PROC_FS */ 3098 3099 #ifdef MAX_SWAPFILES_CHECK 3100 static int __init max_swapfiles_check(void) 3101 { 3102 MAX_SWAPFILES_CHECK(); 3103 return 0; 3104 } 3105 late_initcall(max_swapfiles_check); 3106 #endif 3107 3108 static struct swap_info_struct *alloc_swap_info(void) 3109 { 3110 struct swap_info_struct *p; 3111 struct swap_info_struct *defer = NULL; 3112 unsigned int type; 3113 3114 p = kvzalloc(sizeof(struct swap_info_struct), GFP_KERNEL); 3115 if (!p) 3116 return ERR_PTR(-ENOMEM); 3117 3118 if (percpu_ref_init(&p->users, swap_users_ref_free, 3119 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { 3120 kvfree(p); 3121 return ERR_PTR(-ENOMEM); 3122 } 3123 3124 spin_lock(&swap_lock); 3125 for (type = 0; type < nr_swapfiles; type++) { 3126 if (!(swap_info[type]->flags & SWP_USED)) 3127 break; 3128 } 3129 if (type >= MAX_SWAPFILES) { 3130 spin_unlock(&swap_lock); 3131 percpu_ref_exit(&p->users); 3132 kvfree(p); 3133 return ERR_PTR(-EPERM); 3134 } 3135 if (type >= nr_swapfiles) { 3136 p->type = type; 3137 /* 3138 * Publish the swap_info_struct after initializing it. 3139 * Note that kvzalloc() above zeroes all its fields. 3140 */ 3141 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ 3142 nr_swapfiles++; 3143 } else { 3144 defer = p; 3145 p = swap_info[type]; 3146 /* 3147 * Do not memset this entry: a racing procfs swap_next() 3148 * would be relying on p->type to remain valid. 3149 */ 3150 } 3151 p->swap_extent_root = RB_ROOT; 3152 plist_node_init(&p->list, 0); 3153 plist_node_init(&p->avail_list, 0); 3154 p->flags = SWP_USED; 3155 spin_unlock(&swap_lock); 3156 if (defer) { 3157 percpu_ref_exit(&defer->users); 3158 kvfree(defer); 3159 } 3160 spin_lock_init(&p->lock); 3161 spin_lock_init(&p->cont_lock); 3162 atomic_long_set(&p->inuse_pages, SWAP_USAGE_OFFLIST_BIT); 3163 init_completion(&p->comp); 3164 3165 return p; 3166 } 3167 3168 static int claim_swapfile(struct swap_info_struct *si, struct inode *inode) 3169 { 3170 if (S_ISBLK(inode->i_mode)) { 3171 si->bdev = I_BDEV(inode); 3172 /* 3173 * Zoned block devices contain zones that have a sequential 3174 * write only restriction. Hence zoned block devices are not 3175 * suitable for swapping. Disallow them here. 3176 */ 3177 if (bdev_is_zoned(si->bdev)) 3178 return -EINVAL; 3179 si->flags |= SWP_BLKDEV; 3180 } else if (S_ISREG(inode->i_mode)) { 3181 si->bdev = inode->i_sb->s_bdev; 3182 } 3183 3184 return 0; 3185 } 3186 3187 3188 /* 3189 * Find out how many pages are allowed for a single swap device. There 3190 * are two limiting factors: 3191 * 1) the number of bits for the swap offset in the swp_entry_t type, and 3192 * 2) the number of bits in the swap pte, as defined by the different 3193 * architectures. 3194 * 3195 * In order to find the largest possible bit mask, a swap entry with 3196 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 3197 * decoded to a swp_entry_t again, and finally the swap offset is 3198 * extracted. 3199 * 3200 * This will mask all the bits from the initial ~0UL mask that can't 3201 * be encoded in either the swp_entry_t or the architecture definition 3202 * of a swap pte. 3203 */ 3204 unsigned long generic_max_swapfile_size(void) 3205 { 3206 swp_entry_t entry = swp_entry(0, ~0UL); 3207 const pte_t pte = softleaf_to_pte(entry); 3208 3209 /* 3210 * Since the PTE can be an invalid softleaf entry (e.g. the none PTE), 3211 * we need to do this manually. 3212 */ 3213 entry = __pte_to_swp_entry(pte); 3214 entry = swp_entry(__swp_type(entry), __swp_offset(entry)); 3215 3216 return swp_offset(entry) + 1; 3217 } 3218 3219 /* Can be overridden by an architecture for additional checks. */ 3220 __weak unsigned long arch_max_swapfile_size(void) 3221 { 3222 return generic_max_swapfile_size(); 3223 } 3224 3225 static unsigned long read_swap_header(struct swap_info_struct *si, 3226 union swap_header *swap_header, 3227 struct inode *inode) 3228 { 3229 int i; 3230 unsigned long maxpages; 3231 unsigned long swapfilepages; 3232 unsigned long last_page; 3233 3234 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 3235 pr_err("Unable to find swap-space signature\n"); 3236 return 0; 3237 } 3238 3239 /* swap partition endianness hack... */ 3240 if (swab32(swap_header->info.version) == 1) { 3241 swab32s(&swap_header->info.version); 3242 swab32s(&swap_header->info.last_page); 3243 swab32s(&swap_header->info.nr_badpages); 3244 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 3245 return 0; 3246 for (i = 0; i < swap_header->info.nr_badpages; i++) 3247 swab32s(&swap_header->info.badpages[i]); 3248 } 3249 /* Check the swap header's sub-version */ 3250 if (swap_header->info.version != 1) { 3251 pr_warn("Unable to handle swap header version %d\n", 3252 swap_header->info.version); 3253 return 0; 3254 } 3255 3256 maxpages = swapfile_maximum_size; 3257 last_page = swap_header->info.last_page; 3258 if (!last_page) { 3259 pr_warn("Empty swap-file\n"); 3260 return 0; 3261 } 3262 if (last_page > maxpages) { 3263 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 3264 K(maxpages), K(last_page)); 3265 } 3266 if (maxpages > last_page) { 3267 maxpages = last_page + 1; 3268 /* p->max is an unsigned int: don't overflow it */ 3269 if ((unsigned int)maxpages == 0) 3270 maxpages = UINT_MAX; 3271 } 3272 3273 if (!maxpages) 3274 return 0; 3275 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 3276 if (swapfilepages && maxpages > swapfilepages) { 3277 pr_warn("Swap area shorter than signature indicates\n"); 3278 return 0; 3279 } 3280 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 3281 return 0; 3282 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 3283 return 0; 3284 3285 return maxpages; 3286 } 3287 3288 static int setup_swap_map(struct swap_info_struct *si, 3289 union swap_header *swap_header, 3290 unsigned char *swap_map, 3291 unsigned long maxpages) 3292 { 3293 unsigned long i; 3294 3295 swap_map[0] = SWAP_MAP_BAD; /* omit header page */ 3296 for (i = 0; i < swap_header->info.nr_badpages; i++) { 3297 unsigned int page_nr = swap_header->info.badpages[i]; 3298 if (page_nr == 0 || page_nr > swap_header->info.last_page) 3299 return -EINVAL; 3300 if (page_nr < maxpages) { 3301 swap_map[page_nr] = SWAP_MAP_BAD; 3302 si->pages--; 3303 } 3304 } 3305 3306 if (!si->pages) { 3307 pr_warn("Empty swap-file\n"); 3308 return -EINVAL; 3309 } 3310 3311 return 0; 3312 } 3313 3314 static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si, 3315 union swap_header *swap_header, 3316 unsigned long maxpages) 3317 { 3318 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3319 struct swap_cluster_info *cluster_info; 3320 int err = -ENOMEM; 3321 unsigned long i; 3322 3323 cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL); 3324 if (!cluster_info) 3325 goto err; 3326 3327 for (i = 0; i < nr_clusters; i++) 3328 spin_lock_init(&cluster_info[i].lock); 3329 3330 if (!(si->flags & SWP_SOLIDSTATE)) { 3331 si->global_cluster = kmalloc(sizeof(*si->global_cluster), 3332 GFP_KERNEL); 3333 if (!si->global_cluster) 3334 goto err; 3335 for (i = 0; i < SWAP_NR_ORDERS; i++) 3336 si->global_cluster->next[i] = SWAP_ENTRY_INVALID; 3337 spin_lock_init(&si->global_cluster_lock); 3338 } 3339 3340 /* 3341 * Mark unusable pages as unavailable. The clusters aren't 3342 * marked free yet, so no list operations are involved yet. 3343 * 3344 * See setup_swap_map(): header page, bad pages, 3345 * and the EOF part of the last cluster. 3346 */ 3347 err = swap_cluster_setup_bad_slot(cluster_info, 0); 3348 if (err) 3349 goto err; 3350 for (i = 0; i < swap_header->info.nr_badpages; i++) { 3351 unsigned int page_nr = swap_header->info.badpages[i]; 3352 3353 if (page_nr >= maxpages) 3354 continue; 3355 err = swap_cluster_setup_bad_slot(cluster_info, page_nr); 3356 if (err) 3357 goto err; 3358 } 3359 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) { 3360 err = swap_cluster_setup_bad_slot(cluster_info, i); 3361 if (err) 3362 goto err; 3363 } 3364 3365 INIT_LIST_HEAD(&si->free_clusters); 3366 INIT_LIST_HEAD(&si->full_clusters); 3367 INIT_LIST_HEAD(&si->discard_clusters); 3368 3369 for (i = 0; i < SWAP_NR_ORDERS; i++) { 3370 INIT_LIST_HEAD(&si->nonfull_clusters[i]); 3371 INIT_LIST_HEAD(&si->frag_clusters[i]); 3372 } 3373 3374 for (i = 0; i < nr_clusters; i++) { 3375 struct swap_cluster_info *ci = &cluster_info[i]; 3376 3377 if (ci->count) { 3378 ci->flags = CLUSTER_FLAG_NONFULL; 3379 list_add_tail(&ci->list, &si->nonfull_clusters[0]); 3380 } else { 3381 ci->flags = CLUSTER_FLAG_FREE; 3382 list_add_tail(&ci->list, &si->free_clusters); 3383 } 3384 } 3385 3386 return cluster_info; 3387 err: 3388 free_cluster_info(cluster_info, maxpages); 3389 return ERR_PTR(err); 3390 } 3391 3392 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 3393 { 3394 struct swap_info_struct *si; 3395 struct filename *name; 3396 struct file *swap_file = NULL; 3397 struct address_space *mapping; 3398 struct dentry *dentry; 3399 int prio; 3400 int error; 3401 union swap_header *swap_header; 3402 int nr_extents; 3403 sector_t span; 3404 unsigned long maxpages; 3405 unsigned char *swap_map = NULL; 3406 unsigned long *zeromap = NULL; 3407 struct swap_cluster_info *cluster_info = NULL; 3408 struct folio *folio = NULL; 3409 struct inode *inode = NULL; 3410 bool inced_nr_rotate_swap = false; 3411 3412 if (swap_flags & ~SWAP_FLAGS_VALID) 3413 return -EINVAL; 3414 3415 if (!capable(CAP_SYS_ADMIN)) 3416 return -EPERM; 3417 3418 si = alloc_swap_info(); 3419 if (IS_ERR(si)) 3420 return PTR_ERR(si); 3421 3422 INIT_WORK(&si->discard_work, swap_discard_work); 3423 INIT_WORK(&si->reclaim_work, swap_reclaim_work); 3424 3425 name = getname(specialfile); 3426 if (IS_ERR(name)) { 3427 error = PTR_ERR(name); 3428 name = NULL; 3429 goto bad_swap; 3430 } 3431 swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0); 3432 if (IS_ERR(swap_file)) { 3433 error = PTR_ERR(swap_file); 3434 swap_file = NULL; 3435 goto bad_swap; 3436 } 3437 3438 si->swap_file = swap_file; 3439 mapping = swap_file->f_mapping; 3440 dentry = swap_file->f_path.dentry; 3441 inode = mapping->host; 3442 3443 error = claim_swapfile(si, inode); 3444 if (unlikely(error)) 3445 goto bad_swap; 3446 3447 inode_lock(inode); 3448 if (d_unlinked(dentry) || cant_mount(dentry)) { 3449 error = -ENOENT; 3450 goto bad_swap_unlock_inode; 3451 } 3452 if (IS_SWAPFILE(inode)) { 3453 error = -EBUSY; 3454 goto bad_swap_unlock_inode; 3455 } 3456 3457 /* 3458 * The swap subsystem needs a major overhaul to support this. 3459 * It doesn't work yet so just disable it for now. 3460 */ 3461 if (mapping_min_folio_order(mapping) > 0) { 3462 error = -EINVAL; 3463 goto bad_swap_unlock_inode; 3464 } 3465 3466 /* 3467 * Read the swap header. 3468 */ 3469 if (!mapping->a_ops->read_folio) { 3470 error = -EINVAL; 3471 goto bad_swap_unlock_inode; 3472 } 3473 folio = read_mapping_folio(mapping, 0, swap_file); 3474 if (IS_ERR(folio)) { 3475 error = PTR_ERR(folio); 3476 goto bad_swap_unlock_inode; 3477 } 3478 swap_header = kmap_local_folio(folio, 0); 3479 3480 maxpages = read_swap_header(si, swap_header, inode); 3481 if (unlikely(!maxpages)) { 3482 error = -EINVAL; 3483 goto bad_swap_unlock_inode; 3484 } 3485 3486 si->max = maxpages; 3487 si->pages = maxpages - 1; 3488 nr_extents = setup_swap_extents(si, &span); 3489 if (nr_extents < 0) { 3490 error = nr_extents; 3491 goto bad_swap_unlock_inode; 3492 } 3493 if (si->pages != si->max - 1) { 3494 pr_err("swap:%u != (max:%u - 1)\n", si->pages, si->max); 3495 error = -EINVAL; 3496 goto bad_swap_unlock_inode; 3497 } 3498 3499 maxpages = si->max; 3500 3501 /* OK, set up the swap map and apply the bad block list */ 3502 swap_map = vzalloc(maxpages); 3503 if (!swap_map) { 3504 error = -ENOMEM; 3505 goto bad_swap_unlock_inode; 3506 } 3507 3508 error = swap_cgroup_swapon(si->type, maxpages); 3509 if (error) 3510 goto bad_swap_unlock_inode; 3511 3512 error = setup_swap_map(si, swap_header, swap_map, maxpages); 3513 if (error) 3514 goto bad_swap_unlock_inode; 3515 3516 /* 3517 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might 3518 * be above MAX_PAGE_ORDER incase of a large swap file. 3519 */ 3520 zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long), 3521 GFP_KERNEL | __GFP_ZERO); 3522 if (!zeromap) { 3523 error = -ENOMEM; 3524 goto bad_swap_unlock_inode; 3525 } 3526 3527 if (si->bdev && bdev_stable_writes(si->bdev)) 3528 si->flags |= SWP_STABLE_WRITES; 3529 3530 if (si->bdev && bdev_synchronous(si->bdev)) 3531 si->flags |= SWP_SYNCHRONOUS_IO; 3532 3533 if (si->bdev && bdev_nonrot(si->bdev)) { 3534 si->flags |= SWP_SOLIDSTATE; 3535 } else { 3536 atomic_inc(&nr_rotate_swap); 3537 inced_nr_rotate_swap = true; 3538 } 3539 3540 cluster_info = setup_clusters(si, swap_header, maxpages); 3541 if (IS_ERR(cluster_info)) { 3542 error = PTR_ERR(cluster_info); 3543 cluster_info = NULL; 3544 goto bad_swap_unlock_inode; 3545 } 3546 3547 if ((swap_flags & SWAP_FLAG_DISCARD) && 3548 si->bdev && bdev_max_discard_sectors(si->bdev)) { 3549 /* 3550 * When discard is enabled for swap with no particular 3551 * policy flagged, we set all swap discard flags here in 3552 * order to sustain backward compatibility with older 3553 * swapon(8) releases. 3554 */ 3555 si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3556 SWP_PAGE_DISCARD); 3557 3558 /* 3559 * By flagging sys_swapon, a sysadmin can tell us to 3560 * either do single-time area discards only, or to just 3561 * perform discards for released swap page-clusters. 3562 * Now it's time to adjust the p->flags accordingly. 3563 */ 3564 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3565 si->flags &= ~SWP_PAGE_DISCARD; 3566 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3567 si->flags &= ~SWP_AREA_DISCARD; 3568 3569 /* issue a swapon-time discard if it's still required */ 3570 if (si->flags & SWP_AREA_DISCARD) { 3571 int err = discard_swap(si); 3572 if (unlikely(err)) 3573 pr_err("swapon: discard_swap(%p): %d\n", 3574 si, err); 3575 } 3576 } 3577 3578 error = zswap_swapon(si->type, maxpages); 3579 if (error) 3580 goto bad_swap_unlock_inode; 3581 3582 /* 3583 * Flush any pending IO and dirty mappings before we start using this 3584 * swap device. 3585 */ 3586 inode->i_flags |= S_SWAPFILE; 3587 error = inode_drain_writes(inode); 3588 if (error) { 3589 inode->i_flags &= ~S_SWAPFILE; 3590 goto free_swap_zswap; 3591 } 3592 3593 mutex_lock(&swapon_mutex); 3594 prio = DEF_SWAP_PRIO; 3595 if (swap_flags & SWAP_FLAG_PREFER) 3596 prio = swap_flags & SWAP_FLAG_PRIO_MASK; 3597 enable_swap_info(si, prio, swap_map, cluster_info, zeromap); 3598 3599 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n", 3600 K(si->pages), name->name, si->prio, nr_extents, 3601 K((unsigned long long)span), 3602 (si->flags & SWP_SOLIDSTATE) ? "SS" : "", 3603 (si->flags & SWP_DISCARDABLE) ? "D" : "", 3604 (si->flags & SWP_AREA_DISCARD) ? "s" : "", 3605 (si->flags & SWP_PAGE_DISCARD) ? "c" : ""); 3606 3607 mutex_unlock(&swapon_mutex); 3608 atomic_inc(&proc_poll_event); 3609 wake_up_interruptible(&proc_poll_wait); 3610 3611 error = 0; 3612 goto out; 3613 free_swap_zswap: 3614 zswap_swapoff(si->type); 3615 bad_swap_unlock_inode: 3616 inode_unlock(inode); 3617 bad_swap: 3618 kfree(si->global_cluster); 3619 si->global_cluster = NULL; 3620 inode = NULL; 3621 destroy_swap_extents(si); 3622 swap_cgroup_swapoff(si->type); 3623 spin_lock(&swap_lock); 3624 si->swap_file = NULL; 3625 si->flags = 0; 3626 spin_unlock(&swap_lock); 3627 vfree(swap_map); 3628 kvfree(zeromap); 3629 if (cluster_info) 3630 free_cluster_info(cluster_info, maxpages); 3631 if (inced_nr_rotate_swap) 3632 atomic_dec(&nr_rotate_swap); 3633 if (swap_file) 3634 filp_close(swap_file, NULL); 3635 out: 3636 if (!IS_ERR_OR_NULL(folio)) 3637 folio_release_kmap(folio, swap_header); 3638 if (name) 3639 putname(name); 3640 if (inode) 3641 inode_unlock(inode); 3642 return error; 3643 } 3644 3645 void si_swapinfo(struct sysinfo *val) 3646 { 3647 unsigned int type; 3648 unsigned long nr_to_be_unused = 0; 3649 3650 spin_lock(&swap_lock); 3651 for (type = 0; type < nr_swapfiles; type++) { 3652 struct swap_info_struct *si = swap_info[type]; 3653 3654 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3655 nr_to_be_unused += swap_usage_in_pages(si); 3656 } 3657 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3658 val->totalswap = total_swap_pages + nr_to_be_unused; 3659 spin_unlock(&swap_lock); 3660 } 3661 3662 /* 3663 * Verify that nr swap entries are valid and increment their swap map counts. 3664 * 3665 * Returns error code in following case. 3666 * - success -> 0 3667 * - swp_entry is invalid -> EINVAL 3668 * - swap-cache reference is requested but there is already one. -> EEXIST 3669 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3670 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3671 */ 3672 static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr) 3673 { 3674 struct swap_info_struct *si; 3675 struct swap_cluster_info *ci; 3676 unsigned long offset; 3677 unsigned char count; 3678 unsigned char has_cache; 3679 int err, i; 3680 3681 si = swap_entry_to_info(entry); 3682 if (WARN_ON_ONCE(!si)) { 3683 pr_err("%s%08lx\n", Bad_file, entry.val); 3684 return -EINVAL; 3685 } 3686 3687 offset = swp_offset(entry); 3688 VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER); 3689 VM_WARN_ON(usage == 1 && nr > 1); 3690 ci = swap_cluster_lock(si, offset); 3691 3692 err = 0; 3693 for (i = 0; i < nr; i++) { 3694 count = si->swap_map[offset + i]; 3695 3696 /* 3697 * swapin_readahead() doesn't check if a swap entry is valid, so the 3698 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3699 */ 3700 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3701 err = -ENOENT; 3702 goto unlock_out; 3703 } 3704 3705 has_cache = count & SWAP_HAS_CACHE; 3706 count &= ~SWAP_HAS_CACHE; 3707 3708 if (!count && !has_cache) { 3709 err = -ENOENT; 3710 } else if (usage == SWAP_HAS_CACHE) { 3711 if (has_cache) 3712 err = -EEXIST; 3713 } else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) { 3714 err = -EINVAL; 3715 } 3716 3717 if (err) 3718 goto unlock_out; 3719 } 3720 3721 for (i = 0; i < nr; i++) { 3722 count = si->swap_map[offset + i]; 3723 has_cache = count & SWAP_HAS_CACHE; 3724 count &= ~SWAP_HAS_CACHE; 3725 3726 if (usage == SWAP_HAS_CACHE) 3727 has_cache = SWAP_HAS_CACHE; 3728 else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3729 count += usage; 3730 else if (swap_count_continued(si, offset + i, count)) 3731 count = COUNT_CONTINUED; 3732 else { 3733 /* 3734 * Don't need to rollback changes, because if 3735 * usage == 1, there must be nr == 1. 3736 */ 3737 err = -ENOMEM; 3738 goto unlock_out; 3739 } 3740 3741 WRITE_ONCE(si->swap_map[offset + i], count | has_cache); 3742 } 3743 3744 unlock_out: 3745 swap_cluster_unlock(ci); 3746 return err; 3747 } 3748 3749 /* 3750 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3751 * (in which case its reference count is never incremented). 3752 */ 3753 void swap_shmem_alloc(swp_entry_t entry, int nr) 3754 { 3755 __swap_duplicate(entry, SWAP_MAP_SHMEM, nr); 3756 } 3757 3758 /* 3759 * Increase reference count of swap entry by 1. 3760 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3761 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3762 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3763 * might occur if a page table entry has got corrupted. 3764 */ 3765 int swap_duplicate(swp_entry_t entry) 3766 { 3767 int err = 0; 3768 3769 while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM) 3770 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3771 return err; 3772 } 3773 3774 /* 3775 * @entry: first swap entry from which we allocate nr swap cache. 3776 * 3777 * Called when allocating swap cache for existing swap entries, 3778 * This can return error codes. Returns 0 at success. 3779 * -EEXIST means there is a swap cache. 3780 * Note: return code is different from swap_duplicate(). 3781 */ 3782 int swapcache_prepare(swp_entry_t entry, int nr) 3783 { 3784 return __swap_duplicate(entry, SWAP_HAS_CACHE, nr); 3785 } 3786 3787 /* 3788 * Caller should ensure entries belong to the same folio so 3789 * the entries won't span cross cluster boundary. 3790 */ 3791 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr) 3792 { 3793 swap_entries_put_cache(si, entry, nr); 3794 } 3795 3796 /* 3797 * add_swap_count_continuation - called when a swap count is duplicated 3798 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3799 * page of the original vmalloc'ed swap_map, to hold the continuation count 3800 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3801 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3802 * 3803 * These continuation pages are seldom referenced: the common paths all work 3804 * on the original swap_map, only referring to a continuation page when the 3805 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3806 * 3807 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3808 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3809 * can be called after dropping locks. 3810 */ 3811 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3812 { 3813 struct swap_info_struct *si; 3814 struct swap_cluster_info *ci; 3815 struct page *head; 3816 struct page *page; 3817 struct page *list_page; 3818 pgoff_t offset; 3819 unsigned char count; 3820 int ret = 0; 3821 3822 /* 3823 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3824 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3825 */ 3826 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3827 3828 si = get_swap_device(entry); 3829 if (!si) { 3830 /* 3831 * An acceptable race has occurred since the failing 3832 * __swap_duplicate(): the swap device may be swapoff 3833 */ 3834 goto outer; 3835 } 3836 3837 offset = swp_offset(entry); 3838 3839 ci = swap_cluster_lock(si, offset); 3840 3841 count = swap_count(si->swap_map[offset]); 3842 3843 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3844 /* 3845 * The higher the swap count, the more likely it is that tasks 3846 * will race to add swap count continuation: we need to avoid 3847 * over-provisioning. 3848 */ 3849 goto out; 3850 } 3851 3852 if (!page) { 3853 ret = -ENOMEM; 3854 goto out; 3855 } 3856 3857 head = vmalloc_to_page(si->swap_map + offset); 3858 offset &= ~PAGE_MASK; 3859 3860 spin_lock(&si->cont_lock); 3861 /* 3862 * Page allocation does not initialize the page's lru field, 3863 * but it does always reset its private field. 3864 */ 3865 if (!page_private(head)) { 3866 BUG_ON(count & COUNT_CONTINUED); 3867 INIT_LIST_HEAD(&head->lru); 3868 set_page_private(head, SWP_CONTINUED); 3869 si->flags |= SWP_CONTINUED; 3870 } 3871 3872 list_for_each_entry(list_page, &head->lru, lru) { 3873 unsigned char *map; 3874 3875 /* 3876 * If the previous map said no continuation, but we've found 3877 * a continuation page, free our allocation and use this one. 3878 */ 3879 if (!(count & COUNT_CONTINUED)) 3880 goto out_unlock_cont; 3881 3882 map = kmap_local_page(list_page) + offset; 3883 count = *map; 3884 kunmap_local(map); 3885 3886 /* 3887 * If this continuation count now has some space in it, 3888 * free our allocation and use this one. 3889 */ 3890 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3891 goto out_unlock_cont; 3892 } 3893 3894 list_add_tail(&page->lru, &head->lru); 3895 page = NULL; /* now it's attached, don't free it */ 3896 out_unlock_cont: 3897 spin_unlock(&si->cont_lock); 3898 out: 3899 swap_cluster_unlock(ci); 3900 put_swap_device(si); 3901 outer: 3902 if (page) 3903 __free_page(page); 3904 return ret; 3905 } 3906 3907 /* 3908 * swap_count_continued - when the original swap_map count is incremented 3909 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3910 * into, carry if so, or else fail until a new continuation page is allocated; 3911 * when the original swap_map count is decremented from 0 with continuation, 3912 * borrow from the continuation and report whether it still holds more. 3913 * Called while __swap_duplicate() or caller of swap_entry_put_locked() 3914 * holds cluster lock. 3915 */ 3916 static bool swap_count_continued(struct swap_info_struct *si, 3917 pgoff_t offset, unsigned char count) 3918 { 3919 struct page *head; 3920 struct page *page; 3921 unsigned char *map; 3922 bool ret; 3923 3924 head = vmalloc_to_page(si->swap_map + offset); 3925 if (page_private(head) != SWP_CONTINUED) { 3926 BUG_ON(count & COUNT_CONTINUED); 3927 return false; /* need to add count continuation */ 3928 } 3929 3930 spin_lock(&si->cont_lock); 3931 offset &= ~PAGE_MASK; 3932 page = list_next_entry(head, lru); 3933 map = kmap_local_page(page) + offset; 3934 3935 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3936 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3937 3938 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3939 /* 3940 * Think of how you add 1 to 999 3941 */ 3942 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3943 kunmap_local(map); 3944 page = list_next_entry(page, lru); 3945 BUG_ON(page == head); 3946 map = kmap_local_page(page) + offset; 3947 } 3948 if (*map == SWAP_CONT_MAX) { 3949 kunmap_local(map); 3950 page = list_next_entry(page, lru); 3951 if (page == head) { 3952 ret = false; /* add count continuation */ 3953 goto out; 3954 } 3955 map = kmap_local_page(page) + offset; 3956 init_map: *map = 0; /* we didn't zero the page */ 3957 } 3958 *map += 1; 3959 kunmap_local(map); 3960 while ((page = list_prev_entry(page, lru)) != head) { 3961 map = kmap_local_page(page) + offset; 3962 *map = COUNT_CONTINUED; 3963 kunmap_local(map); 3964 } 3965 ret = true; /* incremented */ 3966 3967 } else { /* decrementing */ 3968 /* 3969 * Think of how you subtract 1 from 1000 3970 */ 3971 BUG_ON(count != COUNT_CONTINUED); 3972 while (*map == COUNT_CONTINUED) { 3973 kunmap_local(map); 3974 page = list_next_entry(page, lru); 3975 BUG_ON(page == head); 3976 map = kmap_local_page(page) + offset; 3977 } 3978 BUG_ON(*map == 0); 3979 *map -= 1; 3980 if (*map == 0) 3981 count = 0; 3982 kunmap_local(map); 3983 while ((page = list_prev_entry(page, lru)) != head) { 3984 map = kmap_local_page(page) + offset; 3985 *map = SWAP_CONT_MAX | count; 3986 count = COUNT_CONTINUED; 3987 kunmap_local(map); 3988 } 3989 ret = count == COUNT_CONTINUED; 3990 } 3991 out: 3992 spin_unlock(&si->cont_lock); 3993 return ret; 3994 } 3995 3996 /* 3997 * free_swap_count_continuations - swapoff free all the continuation pages 3998 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3999 */ 4000 static void free_swap_count_continuations(struct swap_info_struct *si) 4001 { 4002 pgoff_t offset; 4003 4004 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 4005 struct page *head; 4006 head = vmalloc_to_page(si->swap_map + offset); 4007 if (page_private(head)) { 4008 struct page *page, *next; 4009 4010 list_for_each_entry_safe(page, next, &head->lru, lru) { 4011 list_del(&page->lru); 4012 __free_page(page); 4013 } 4014 } 4015 } 4016 } 4017 4018 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 4019 static bool __has_usable_swap(void) 4020 { 4021 return !plist_head_empty(&swap_active_head); 4022 } 4023 4024 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp) 4025 { 4026 struct swap_info_struct *si; 4027 4028 if (!(gfp & __GFP_IO)) 4029 return; 4030 4031 if (!__has_usable_swap()) 4032 return; 4033 4034 if (!blk_cgroup_congested()) 4035 return; 4036 4037 /* 4038 * We've already scheduled a throttle, avoid taking the global swap 4039 * lock. 4040 */ 4041 if (current->throttle_disk) 4042 return; 4043 4044 spin_lock(&swap_avail_lock); 4045 plist_for_each_entry(si, &swap_avail_head, avail_list) { 4046 if (si->bdev) { 4047 blkcg_schedule_throttle(si->bdev->bd_disk, true); 4048 break; 4049 } 4050 } 4051 spin_unlock(&swap_avail_lock); 4052 } 4053 #endif 4054 4055 static int __init swapfile_init(void) 4056 { 4057 swapfile_maximum_size = arch_max_swapfile_size(); 4058 4059 /* 4060 * Once a cluster is freed, it's swap table content is read 4061 * only, and all swap cache readers (swap_cache_*) verifies 4062 * the content before use. So it's safe to use RCU slab here. 4063 */ 4064 if (!SWP_TABLE_USE_PAGE) 4065 swap_table_cachep = kmem_cache_create("swap_table", 4066 sizeof(struct swap_table), 4067 0, SLAB_PANIC | SLAB_TYPESAFE_BY_RCU, NULL); 4068 4069 #ifdef CONFIG_MIGRATION 4070 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS)) 4071 swap_migration_ad_supported = true; 4072 #endif /* CONFIG_MIGRATION */ 4073 4074 return 0; 4075 } 4076 subsys_initcall(swapfile_init); 4077