xref: /linux/mm/swapfile.c (revision c01044cc819160323f3ca4acd44fca487c4432e6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46 
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 				 unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51 
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64 
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69 
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75 
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90 
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92 
93 static DEFINE_MUTEX(swapon_mutex);
94 
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98 
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100 
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103 	if (type >= READ_ONCE(nr_swapfiles))
104 		return NULL;
105 
106 	smp_rmb();	/* Pairs with smp_wmb in alloc_swap_info. */
107 	return READ_ONCE(swap_info[type]);
108 }
109 
110 static inline unsigned char swap_count(unsigned char ent)
111 {
112 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
113 }
114 
115 /* Reclaim the swap entry anyway if possible */
116 #define TTRS_ANYWAY		0x1
117 /*
118  * Reclaim the swap entry if there are no more mappings of the
119  * corresponding page
120  */
121 #define TTRS_UNMAPPED		0x2
122 /* Reclaim the swap entry if swap is getting full*/
123 #define TTRS_FULL		0x4
124 
125 /* returns 1 if swap entry is freed */
126 static int __try_to_reclaim_swap(struct swap_info_struct *si,
127 				 unsigned long offset, unsigned long flags)
128 {
129 	swp_entry_t entry = swp_entry(si->type, offset);
130 	struct page *page;
131 	int ret = 0;
132 
133 	page = find_get_page(swap_address_space(entry), offset);
134 	if (!page)
135 		return 0;
136 	/*
137 	 * When this function is called from scan_swap_map_slots() and it's
138 	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
139 	 * here. We have to use trylock for avoiding deadlock. This is a special
140 	 * case and you should use try_to_free_swap() with explicit lock_page()
141 	 * in usual operations.
142 	 */
143 	if (trylock_page(page)) {
144 		if ((flags & TTRS_ANYWAY) ||
145 		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
146 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
147 			ret = try_to_free_swap(page);
148 		unlock_page(page);
149 	}
150 	put_page(page);
151 	return ret;
152 }
153 
154 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
155 {
156 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
157 	return rb_entry(rb, struct swap_extent, rb_node);
158 }
159 
160 static inline struct swap_extent *next_se(struct swap_extent *se)
161 {
162 	struct rb_node *rb = rb_next(&se->rb_node);
163 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
164 }
165 
166 /*
167  * swapon tell device that all the old swap contents can be discarded,
168  * to allow the swap device to optimize its wear-levelling.
169  */
170 static int discard_swap(struct swap_info_struct *si)
171 {
172 	struct swap_extent *se;
173 	sector_t start_block;
174 	sector_t nr_blocks;
175 	int err = 0;
176 
177 	/* Do not discard the swap header page! */
178 	se = first_se(si);
179 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
180 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
181 	if (nr_blocks) {
182 		err = blkdev_issue_discard(si->bdev, start_block,
183 				nr_blocks, GFP_KERNEL, 0);
184 		if (err)
185 			return err;
186 		cond_resched();
187 	}
188 
189 	for (se = next_se(se); se; se = next_se(se)) {
190 		start_block = se->start_block << (PAGE_SHIFT - 9);
191 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
192 
193 		err = blkdev_issue_discard(si->bdev, start_block,
194 				nr_blocks, GFP_KERNEL, 0);
195 		if (err)
196 			break;
197 
198 		cond_resched();
199 	}
200 	return err;		/* That will often be -EOPNOTSUPP */
201 }
202 
203 static struct swap_extent *
204 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
205 {
206 	struct swap_extent *se;
207 	struct rb_node *rb;
208 
209 	rb = sis->swap_extent_root.rb_node;
210 	while (rb) {
211 		se = rb_entry(rb, struct swap_extent, rb_node);
212 		if (offset < se->start_page)
213 			rb = rb->rb_left;
214 		else if (offset >= se->start_page + se->nr_pages)
215 			rb = rb->rb_right;
216 		else
217 			return se;
218 	}
219 	/* It *must* be present */
220 	BUG();
221 }
222 
223 /*
224  * swap allocation tell device that a cluster of swap can now be discarded,
225  * to allow the swap device to optimize its wear-levelling.
226  */
227 static void discard_swap_cluster(struct swap_info_struct *si,
228 				 pgoff_t start_page, pgoff_t nr_pages)
229 {
230 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
231 
232 	while (nr_pages) {
233 		pgoff_t offset = start_page - se->start_page;
234 		sector_t start_block = se->start_block + offset;
235 		sector_t nr_blocks = se->nr_pages - offset;
236 
237 		if (nr_blocks > nr_pages)
238 			nr_blocks = nr_pages;
239 		start_page += nr_blocks;
240 		nr_pages -= nr_blocks;
241 
242 		start_block <<= PAGE_SHIFT - 9;
243 		nr_blocks <<= PAGE_SHIFT - 9;
244 		if (blkdev_issue_discard(si->bdev, start_block,
245 					nr_blocks, GFP_NOIO, 0))
246 			break;
247 
248 		se = next_se(se);
249 	}
250 }
251 
252 #ifdef CONFIG_THP_SWAP
253 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
254 
255 #define swap_entry_size(size)	(size)
256 #else
257 #define SWAPFILE_CLUSTER	256
258 
259 /*
260  * Define swap_entry_size() as constant to let compiler to optimize
261  * out some code if !CONFIG_THP_SWAP
262  */
263 #define swap_entry_size(size)	1
264 #endif
265 #define LATENCY_LIMIT		256
266 
267 static inline void cluster_set_flag(struct swap_cluster_info *info,
268 	unsigned int flag)
269 {
270 	info->flags = flag;
271 }
272 
273 static inline unsigned int cluster_count(struct swap_cluster_info *info)
274 {
275 	return info->data;
276 }
277 
278 static inline void cluster_set_count(struct swap_cluster_info *info,
279 				     unsigned int c)
280 {
281 	info->data = c;
282 }
283 
284 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
285 					 unsigned int c, unsigned int f)
286 {
287 	info->flags = f;
288 	info->data = c;
289 }
290 
291 static inline unsigned int cluster_next(struct swap_cluster_info *info)
292 {
293 	return info->data;
294 }
295 
296 static inline void cluster_set_next(struct swap_cluster_info *info,
297 				    unsigned int n)
298 {
299 	info->data = n;
300 }
301 
302 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
303 					 unsigned int n, unsigned int f)
304 {
305 	info->flags = f;
306 	info->data = n;
307 }
308 
309 static inline bool cluster_is_free(struct swap_cluster_info *info)
310 {
311 	return info->flags & CLUSTER_FLAG_FREE;
312 }
313 
314 static inline bool cluster_is_null(struct swap_cluster_info *info)
315 {
316 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
317 }
318 
319 static inline void cluster_set_null(struct swap_cluster_info *info)
320 {
321 	info->flags = CLUSTER_FLAG_NEXT_NULL;
322 	info->data = 0;
323 }
324 
325 static inline bool cluster_is_huge(struct swap_cluster_info *info)
326 {
327 	if (IS_ENABLED(CONFIG_THP_SWAP))
328 		return info->flags & CLUSTER_FLAG_HUGE;
329 	return false;
330 }
331 
332 static inline void cluster_clear_huge(struct swap_cluster_info *info)
333 {
334 	info->flags &= ~CLUSTER_FLAG_HUGE;
335 }
336 
337 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
338 						     unsigned long offset)
339 {
340 	struct swap_cluster_info *ci;
341 
342 	ci = si->cluster_info;
343 	if (ci) {
344 		ci += offset / SWAPFILE_CLUSTER;
345 		spin_lock(&ci->lock);
346 	}
347 	return ci;
348 }
349 
350 static inline void unlock_cluster(struct swap_cluster_info *ci)
351 {
352 	if (ci)
353 		spin_unlock(&ci->lock);
354 }
355 
356 /*
357  * Determine the locking method in use for this device.  Return
358  * swap_cluster_info if SSD-style cluster-based locking is in place.
359  */
360 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
361 		struct swap_info_struct *si, unsigned long offset)
362 {
363 	struct swap_cluster_info *ci;
364 
365 	/* Try to use fine-grained SSD-style locking if available: */
366 	ci = lock_cluster(si, offset);
367 	/* Otherwise, fall back to traditional, coarse locking: */
368 	if (!ci)
369 		spin_lock(&si->lock);
370 
371 	return ci;
372 }
373 
374 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
375 					       struct swap_cluster_info *ci)
376 {
377 	if (ci)
378 		unlock_cluster(ci);
379 	else
380 		spin_unlock(&si->lock);
381 }
382 
383 static inline bool cluster_list_empty(struct swap_cluster_list *list)
384 {
385 	return cluster_is_null(&list->head);
386 }
387 
388 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
389 {
390 	return cluster_next(&list->head);
391 }
392 
393 static void cluster_list_init(struct swap_cluster_list *list)
394 {
395 	cluster_set_null(&list->head);
396 	cluster_set_null(&list->tail);
397 }
398 
399 static void cluster_list_add_tail(struct swap_cluster_list *list,
400 				  struct swap_cluster_info *ci,
401 				  unsigned int idx)
402 {
403 	if (cluster_list_empty(list)) {
404 		cluster_set_next_flag(&list->head, idx, 0);
405 		cluster_set_next_flag(&list->tail, idx, 0);
406 	} else {
407 		struct swap_cluster_info *ci_tail;
408 		unsigned int tail = cluster_next(&list->tail);
409 
410 		/*
411 		 * Nested cluster lock, but both cluster locks are
412 		 * only acquired when we held swap_info_struct->lock
413 		 */
414 		ci_tail = ci + tail;
415 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
416 		cluster_set_next(ci_tail, idx);
417 		spin_unlock(&ci_tail->lock);
418 		cluster_set_next_flag(&list->tail, idx, 0);
419 	}
420 }
421 
422 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
423 					   struct swap_cluster_info *ci)
424 {
425 	unsigned int idx;
426 
427 	idx = cluster_next(&list->head);
428 	if (cluster_next(&list->tail) == idx) {
429 		cluster_set_null(&list->head);
430 		cluster_set_null(&list->tail);
431 	} else
432 		cluster_set_next_flag(&list->head,
433 				      cluster_next(&ci[idx]), 0);
434 
435 	return idx;
436 }
437 
438 /* Add a cluster to discard list and schedule it to do discard */
439 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
440 		unsigned int idx)
441 {
442 	/*
443 	 * If scan_swap_map() can't find a free cluster, it will check
444 	 * si->swap_map directly. To make sure the discarding cluster isn't
445 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
446 	 * will be cleared after discard
447 	 */
448 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
449 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
450 
451 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
452 
453 	schedule_work(&si->discard_work);
454 }
455 
456 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
457 {
458 	struct swap_cluster_info *ci = si->cluster_info;
459 
460 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
461 	cluster_list_add_tail(&si->free_clusters, ci, idx);
462 }
463 
464 /*
465  * Doing discard actually. After a cluster discard is finished, the cluster
466  * will be added to free cluster list. caller should hold si->lock.
467 */
468 static void swap_do_scheduled_discard(struct swap_info_struct *si)
469 {
470 	struct swap_cluster_info *info, *ci;
471 	unsigned int idx;
472 
473 	info = si->cluster_info;
474 
475 	while (!cluster_list_empty(&si->discard_clusters)) {
476 		idx = cluster_list_del_first(&si->discard_clusters, info);
477 		spin_unlock(&si->lock);
478 
479 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
480 				SWAPFILE_CLUSTER);
481 
482 		spin_lock(&si->lock);
483 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
484 		__free_cluster(si, idx);
485 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
486 				0, SWAPFILE_CLUSTER);
487 		unlock_cluster(ci);
488 	}
489 }
490 
491 static void swap_discard_work(struct work_struct *work)
492 {
493 	struct swap_info_struct *si;
494 
495 	si = container_of(work, struct swap_info_struct, discard_work);
496 
497 	spin_lock(&si->lock);
498 	swap_do_scheduled_discard(si);
499 	spin_unlock(&si->lock);
500 }
501 
502 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
503 {
504 	struct swap_cluster_info *ci = si->cluster_info;
505 
506 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
507 	cluster_list_del_first(&si->free_clusters, ci);
508 	cluster_set_count_flag(ci + idx, 0, 0);
509 }
510 
511 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
512 {
513 	struct swap_cluster_info *ci = si->cluster_info + idx;
514 
515 	VM_BUG_ON(cluster_count(ci) != 0);
516 	/*
517 	 * If the swap is discardable, prepare discard the cluster
518 	 * instead of free it immediately. The cluster will be freed
519 	 * after discard.
520 	 */
521 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
522 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
523 		swap_cluster_schedule_discard(si, idx);
524 		return;
525 	}
526 
527 	__free_cluster(si, idx);
528 }
529 
530 /*
531  * The cluster corresponding to page_nr will be used. The cluster will be
532  * removed from free cluster list and its usage counter will be increased.
533  */
534 static void inc_cluster_info_page(struct swap_info_struct *p,
535 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
536 {
537 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
538 
539 	if (!cluster_info)
540 		return;
541 	if (cluster_is_free(&cluster_info[idx]))
542 		alloc_cluster(p, idx);
543 
544 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
545 	cluster_set_count(&cluster_info[idx],
546 		cluster_count(&cluster_info[idx]) + 1);
547 }
548 
549 /*
550  * The cluster corresponding to page_nr decreases one usage. If the usage
551  * counter becomes 0, which means no page in the cluster is in using, we can
552  * optionally discard the cluster and add it to free cluster list.
553  */
554 static void dec_cluster_info_page(struct swap_info_struct *p,
555 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
556 {
557 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558 
559 	if (!cluster_info)
560 		return;
561 
562 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
563 	cluster_set_count(&cluster_info[idx],
564 		cluster_count(&cluster_info[idx]) - 1);
565 
566 	if (cluster_count(&cluster_info[idx]) == 0)
567 		free_cluster(p, idx);
568 }
569 
570 /*
571  * It's possible scan_swap_map() uses a free cluster in the middle of free
572  * cluster list. Avoiding such abuse to avoid list corruption.
573  */
574 static bool
575 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
576 	unsigned long offset)
577 {
578 	struct percpu_cluster *percpu_cluster;
579 	bool conflict;
580 
581 	offset /= SWAPFILE_CLUSTER;
582 	conflict = !cluster_list_empty(&si->free_clusters) &&
583 		offset != cluster_list_first(&si->free_clusters) &&
584 		cluster_is_free(&si->cluster_info[offset]);
585 
586 	if (!conflict)
587 		return false;
588 
589 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
590 	cluster_set_null(&percpu_cluster->index);
591 	return true;
592 }
593 
594 /*
595  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
596  * might involve allocating a new cluster for current CPU too.
597  */
598 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
599 	unsigned long *offset, unsigned long *scan_base)
600 {
601 	struct percpu_cluster *cluster;
602 	struct swap_cluster_info *ci;
603 	unsigned long tmp, max;
604 
605 new_cluster:
606 	cluster = this_cpu_ptr(si->percpu_cluster);
607 	if (cluster_is_null(&cluster->index)) {
608 		if (!cluster_list_empty(&si->free_clusters)) {
609 			cluster->index = si->free_clusters.head;
610 			cluster->next = cluster_next(&cluster->index) *
611 					SWAPFILE_CLUSTER;
612 		} else if (!cluster_list_empty(&si->discard_clusters)) {
613 			/*
614 			 * we don't have free cluster but have some clusters in
615 			 * discarding, do discard now and reclaim them, then
616 			 * reread cluster_next_cpu since we dropped si->lock
617 			 */
618 			swap_do_scheduled_discard(si);
619 			*scan_base = this_cpu_read(*si->cluster_next_cpu);
620 			*offset = *scan_base;
621 			goto new_cluster;
622 		} else
623 			return false;
624 	}
625 
626 	/*
627 	 * Other CPUs can use our cluster if they can't find a free cluster,
628 	 * check if there is still free entry in the cluster
629 	 */
630 	tmp = cluster->next;
631 	max = min_t(unsigned long, si->max,
632 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
633 	if (tmp < max) {
634 		ci = lock_cluster(si, tmp);
635 		while (tmp < max) {
636 			if (!si->swap_map[tmp])
637 				break;
638 			tmp++;
639 		}
640 		unlock_cluster(ci);
641 	}
642 	if (tmp >= max) {
643 		cluster_set_null(&cluster->index);
644 		goto new_cluster;
645 	}
646 	cluster->next = tmp + 1;
647 	*offset = tmp;
648 	*scan_base = tmp;
649 	return true;
650 }
651 
652 static void __del_from_avail_list(struct swap_info_struct *p)
653 {
654 	int nid;
655 
656 	for_each_node(nid)
657 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
658 }
659 
660 static void del_from_avail_list(struct swap_info_struct *p)
661 {
662 	spin_lock(&swap_avail_lock);
663 	__del_from_avail_list(p);
664 	spin_unlock(&swap_avail_lock);
665 }
666 
667 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
668 			     unsigned int nr_entries)
669 {
670 	unsigned int end = offset + nr_entries - 1;
671 
672 	if (offset == si->lowest_bit)
673 		si->lowest_bit += nr_entries;
674 	if (end == si->highest_bit)
675 		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
676 	si->inuse_pages += nr_entries;
677 	if (si->inuse_pages == si->pages) {
678 		si->lowest_bit = si->max;
679 		si->highest_bit = 0;
680 		del_from_avail_list(si);
681 	}
682 }
683 
684 static void add_to_avail_list(struct swap_info_struct *p)
685 {
686 	int nid;
687 
688 	spin_lock(&swap_avail_lock);
689 	for_each_node(nid) {
690 		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
691 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
692 	}
693 	spin_unlock(&swap_avail_lock);
694 }
695 
696 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
697 			    unsigned int nr_entries)
698 {
699 	unsigned long begin = offset;
700 	unsigned long end = offset + nr_entries - 1;
701 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
702 
703 	if (offset < si->lowest_bit)
704 		si->lowest_bit = offset;
705 	if (end > si->highest_bit) {
706 		bool was_full = !si->highest_bit;
707 
708 		WRITE_ONCE(si->highest_bit, end);
709 		if (was_full && (si->flags & SWP_WRITEOK))
710 			add_to_avail_list(si);
711 	}
712 	atomic_long_add(nr_entries, &nr_swap_pages);
713 	si->inuse_pages -= nr_entries;
714 	if (si->flags & SWP_BLKDEV)
715 		swap_slot_free_notify =
716 			si->bdev->bd_disk->fops->swap_slot_free_notify;
717 	else
718 		swap_slot_free_notify = NULL;
719 	while (offset <= end) {
720 		arch_swap_invalidate_page(si->type, offset);
721 		frontswap_invalidate_page(si->type, offset);
722 		if (swap_slot_free_notify)
723 			swap_slot_free_notify(si->bdev, offset);
724 		offset++;
725 	}
726 	clear_shadow_from_swap_cache(si->type, begin, end);
727 }
728 
729 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
730 {
731 	unsigned long prev;
732 
733 	if (!(si->flags & SWP_SOLIDSTATE)) {
734 		si->cluster_next = next;
735 		return;
736 	}
737 
738 	prev = this_cpu_read(*si->cluster_next_cpu);
739 	/*
740 	 * Cross the swap address space size aligned trunk, choose
741 	 * another trunk randomly to avoid lock contention on swap
742 	 * address space if possible.
743 	 */
744 	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
745 	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
746 		/* No free swap slots available */
747 		if (si->highest_bit <= si->lowest_bit)
748 			return;
749 		next = si->lowest_bit +
750 			prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
751 		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
752 		next = max_t(unsigned int, next, si->lowest_bit);
753 	}
754 	this_cpu_write(*si->cluster_next_cpu, next);
755 }
756 
757 static int scan_swap_map_slots(struct swap_info_struct *si,
758 			       unsigned char usage, int nr,
759 			       swp_entry_t slots[])
760 {
761 	struct swap_cluster_info *ci;
762 	unsigned long offset;
763 	unsigned long scan_base;
764 	unsigned long last_in_cluster = 0;
765 	int latency_ration = LATENCY_LIMIT;
766 	int n_ret = 0;
767 	bool scanned_many = false;
768 
769 	/*
770 	 * We try to cluster swap pages by allocating them sequentially
771 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
772 	 * way, however, we resort to first-free allocation, starting
773 	 * a new cluster.  This prevents us from scattering swap pages
774 	 * all over the entire swap partition, so that we reduce
775 	 * overall disk seek times between swap pages.  -- sct
776 	 * But we do now try to find an empty cluster.  -Andrea
777 	 * And we let swap pages go all over an SSD partition.  Hugh
778 	 */
779 
780 	si->flags += SWP_SCANNING;
781 	/*
782 	 * Use percpu scan base for SSD to reduce lock contention on
783 	 * cluster and swap cache.  For HDD, sequential access is more
784 	 * important.
785 	 */
786 	if (si->flags & SWP_SOLIDSTATE)
787 		scan_base = this_cpu_read(*si->cluster_next_cpu);
788 	else
789 		scan_base = si->cluster_next;
790 	offset = scan_base;
791 
792 	/* SSD algorithm */
793 	if (si->cluster_info) {
794 		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
795 			goto scan;
796 	} else if (unlikely(!si->cluster_nr--)) {
797 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
798 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
799 			goto checks;
800 		}
801 
802 		spin_unlock(&si->lock);
803 
804 		/*
805 		 * If seek is expensive, start searching for new cluster from
806 		 * start of partition, to minimize the span of allocated swap.
807 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
808 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
809 		 */
810 		scan_base = offset = si->lowest_bit;
811 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
812 
813 		/* Locate the first empty (unaligned) cluster */
814 		for (; last_in_cluster <= si->highest_bit; offset++) {
815 			if (si->swap_map[offset])
816 				last_in_cluster = offset + SWAPFILE_CLUSTER;
817 			else if (offset == last_in_cluster) {
818 				spin_lock(&si->lock);
819 				offset -= SWAPFILE_CLUSTER - 1;
820 				si->cluster_next = offset;
821 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
822 				goto checks;
823 			}
824 			if (unlikely(--latency_ration < 0)) {
825 				cond_resched();
826 				latency_ration = LATENCY_LIMIT;
827 			}
828 		}
829 
830 		offset = scan_base;
831 		spin_lock(&si->lock);
832 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
833 	}
834 
835 checks:
836 	if (si->cluster_info) {
837 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
838 		/* take a break if we already got some slots */
839 			if (n_ret)
840 				goto done;
841 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
842 							&scan_base))
843 				goto scan;
844 		}
845 	}
846 	if (!(si->flags & SWP_WRITEOK))
847 		goto no_page;
848 	if (!si->highest_bit)
849 		goto no_page;
850 	if (offset > si->highest_bit)
851 		scan_base = offset = si->lowest_bit;
852 
853 	ci = lock_cluster(si, offset);
854 	/* reuse swap entry of cache-only swap if not busy. */
855 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
856 		int swap_was_freed;
857 		unlock_cluster(ci);
858 		spin_unlock(&si->lock);
859 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
860 		spin_lock(&si->lock);
861 		/* entry was freed successfully, try to use this again */
862 		if (swap_was_freed)
863 			goto checks;
864 		goto scan; /* check next one */
865 	}
866 
867 	if (si->swap_map[offset]) {
868 		unlock_cluster(ci);
869 		if (!n_ret)
870 			goto scan;
871 		else
872 			goto done;
873 	}
874 	WRITE_ONCE(si->swap_map[offset], usage);
875 	inc_cluster_info_page(si, si->cluster_info, offset);
876 	unlock_cluster(ci);
877 
878 	swap_range_alloc(si, offset, 1);
879 	slots[n_ret++] = swp_entry(si->type, offset);
880 
881 	/* got enough slots or reach max slots? */
882 	if ((n_ret == nr) || (offset >= si->highest_bit))
883 		goto done;
884 
885 	/* search for next available slot */
886 
887 	/* time to take a break? */
888 	if (unlikely(--latency_ration < 0)) {
889 		if (n_ret)
890 			goto done;
891 		spin_unlock(&si->lock);
892 		cond_resched();
893 		spin_lock(&si->lock);
894 		latency_ration = LATENCY_LIMIT;
895 	}
896 
897 	/* try to get more slots in cluster */
898 	if (si->cluster_info) {
899 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
900 			goto checks;
901 	} else if (si->cluster_nr && !si->swap_map[++offset]) {
902 		/* non-ssd case, still more slots in cluster? */
903 		--si->cluster_nr;
904 		goto checks;
905 	}
906 
907 	/*
908 	 * Even if there's no free clusters available (fragmented),
909 	 * try to scan a little more quickly with lock held unless we
910 	 * have scanned too many slots already.
911 	 */
912 	if (!scanned_many) {
913 		unsigned long scan_limit;
914 
915 		if (offset < scan_base)
916 			scan_limit = scan_base;
917 		else
918 			scan_limit = si->highest_bit;
919 		for (; offset <= scan_limit && --latency_ration > 0;
920 		     offset++) {
921 			if (!si->swap_map[offset])
922 				goto checks;
923 		}
924 	}
925 
926 done:
927 	set_cluster_next(si, offset + 1);
928 	si->flags -= SWP_SCANNING;
929 	return n_ret;
930 
931 scan:
932 	spin_unlock(&si->lock);
933 	while (++offset <= READ_ONCE(si->highest_bit)) {
934 		if (data_race(!si->swap_map[offset])) {
935 			spin_lock(&si->lock);
936 			goto checks;
937 		}
938 		if (vm_swap_full() &&
939 		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
940 			spin_lock(&si->lock);
941 			goto checks;
942 		}
943 		if (unlikely(--latency_ration < 0)) {
944 			cond_resched();
945 			latency_ration = LATENCY_LIMIT;
946 			scanned_many = true;
947 		}
948 	}
949 	offset = si->lowest_bit;
950 	while (offset < scan_base) {
951 		if (data_race(!si->swap_map[offset])) {
952 			spin_lock(&si->lock);
953 			goto checks;
954 		}
955 		if (vm_swap_full() &&
956 		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
957 			spin_lock(&si->lock);
958 			goto checks;
959 		}
960 		if (unlikely(--latency_ration < 0)) {
961 			cond_resched();
962 			latency_ration = LATENCY_LIMIT;
963 			scanned_many = true;
964 		}
965 		offset++;
966 	}
967 	spin_lock(&si->lock);
968 
969 no_page:
970 	si->flags -= SWP_SCANNING;
971 	return n_ret;
972 }
973 
974 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
975 {
976 	unsigned long idx;
977 	struct swap_cluster_info *ci;
978 	unsigned long offset, i;
979 	unsigned char *map;
980 
981 	/*
982 	 * Should not even be attempting cluster allocations when huge
983 	 * page swap is disabled.  Warn and fail the allocation.
984 	 */
985 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
986 		VM_WARN_ON_ONCE(1);
987 		return 0;
988 	}
989 
990 	if (cluster_list_empty(&si->free_clusters))
991 		return 0;
992 
993 	idx = cluster_list_first(&si->free_clusters);
994 	offset = idx * SWAPFILE_CLUSTER;
995 	ci = lock_cluster(si, offset);
996 	alloc_cluster(si, idx);
997 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
998 
999 	map = si->swap_map + offset;
1000 	for (i = 0; i < SWAPFILE_CLUSTER; i++)
1001 		map[i] = SWAP_HAS_CACHE;
1002 	unlock_cluster(ci);
1003 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1004 	*slot = swp_entry(si->type, offset);
1005 
1006 	return 1;
1007 }
1008 
1009 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1010 {
1011 	unsigned long offset = idx * SWAPFILE_CLUSTER;
1012 	struct swap_cluster_info *ci;
1013 
1014 	ci = lock_cluster(si, offset);
1015 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1016 	cluster_set_count_flag(ci, 0, 0);
1017 	free_cluster(si, idx);
1018 	unlock_cluster(ci);
1019 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1020 }
1021 
1022 static unsigned long scan_swap_map(struct swap_info_struct *si,
1023 				   unsigned char usage)
1024 {
1025 	swp_entry_t entry;
1026 	int n_ret;
1027 
1028 	n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1029 
1030 	if (n_ret)
1031 		return swp_offset(entry);
1032 	else
1033 		return 0;
1034 
1035 }
1036 
1037 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1038 {
1039 	unsigned long size = swap_entry_size(entry_size);
1040 	struct swap_info_struct *si, *next;
1041 	long avail_pgs;
1042 	int n_ret = 0;
1043 	int node;
1044 
1045 	/* Only single cluster request supported */
1046 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1047 
1048 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1049 	if (avail_pgs <= 0)
1050 		goto noswap;
1051 
1052 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1053 
1054 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1055 
1056 	spin_lock(&swap_avail_lock);
1057 
1058 start_over:
1059 	node = numa_node_id();
1060 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1061 		/* requeue si to after same-priority siblings */
1062 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1063 		spin_unlock(&swap_avail_lock);
1064 		spin_lock(&si->lock);
1065 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1066 			spin_lock(&swap_avail_lock);
1067 			if (plist_node_empty(&si->avail_lists[node])) {
1068 				spin_unlock(&si->lock);
1069 				goto nextsi;
1070 			}
1071 			WARN(!si->highest_bit,
1072 			     "swap_info %d in list but !highest_bit\n",
1073 			     si->type);
1074 			WARN(!(si->flags & SWP_WRITEOK),
1075 			     "swap_info %d in list but !SWP_WRITEOK\n",
1076 			     si->type);
1077 			__del_from_avail_list(si);
1078 			spin_unlock(&si->lock);
1079 			goto nextsi;
1080 		}
1081 		if (size == SWAPFILE_CLUSTER) {
1082 			if (si->flags & SWP_BLKDEV)
1083 				n_ret = swap_alloc_cluster(si, swp_entries);
1084 		} else
1085 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1086 						    n_goal, swp_entries);
1087 		spin_unlock(&si->lock);
1088 		if (n_ret || size == SWAPFILE_CLUSTER)
1089 			goto check_out;
1090 		pr_debug("scan_swap_map of si %d failed to find offset\n",
1091 			si->type);
1092 
1093 		spin_lock(&swap_avail_lock);
1094 nextsi:
1095 		/*
1096 		 * if we got here, it's likely that si was almost full before,
1097 		 * and since scan_swap_map() can drop the si->lock, multiple
1098 		 * callers probably all tried to get a page from the same si
1099 		 * and it filled up before we could get one; or, the si filled
1100 		 * up between us dropping swap_avail_lock and taking si->lock.
1101 		 * Since we dropped the swap_avail_lock, the swap_avail_head
1102 		 * list may have been modified; so if next is still in the
1103 		 * swap_avail_head list then try it, otherwise start over
1104 		 * if we have not gotten any slots.
1105 		 */
1106 		if (plist_node_empty(&next->avail_lists[node]))
1107 			goto start_over;
1108 	}
1109 
1110 	spin_unlock(&swap_avail_lock);
1111 
1112 check_out:
1113 	if (n_ret < n_goal)
1114 		atomic_long_add((long)(n_goal - n_ret) * size,
1115 				&nr_swap_pages);
1116 noswap:
1117 	return n_ret;
1118 }
1119 
1120 /* The only caller of this function is now suspend routine */
1121 swp_entry_t get_swap_page_of_type(int type)
1122 {
1123 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1124 	pgoff_t offset;
1125 
1126 	if (!si)
1127 		goto fail;
1128 
1129 	spin_lock(&si->lock);
1130 	if (si->flags & SWP_WRITEOK) {
1131 		atomic_long_dec(&nr_swap_pages);
1132 		/* This is called for allocating swap entry, not cache */
1133 		offset = scan_swap_map(si, 1);
1134 		if (offset) {
1135 			spin_unlock(&si->lock);
1136 			return swp_entry(type, offset);
1137 		}
1138 		atomic_long_inc(&nr_swap_pages);
1139 	}
1140 	spin_unlock(&si->lock);
1141 fail:
1142 	return (swp_entry_t) {0};
1143 }
1144 
1145 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1146 {
1147 	struct swap_info_struct *p;
1148 	unsigned long offset;
1149 
1150 	if (!entry.val)
1151 		goto out;
1152 	p = swp_swap_info(entry);
1153 	if (!p)
1154 		goto bad_nofile;
1155 	if (data_race(!(p->flags & SWP_USED)))
1156 		goto bad_device;
1157 	offset = swp_offset(entry);
1158 	if (offset >= p->max)
1159 		goto bad_offset;
1160 	return p;
1161 
1162 bad_offset:
1163 	pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1164 	goto out;
1165 bad_device:
1166 	pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1167 	goto out;
1168 bad_nofile:
1169 	pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1170 out:
1171 	return NULL;
1172 }
1173 
1174 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1175 {
1176 	struct swap_info_struct *p;
1177 
1178 	p = __swap_info_get(entry);
1179 	if (!p)
1180 		goto out;
1181 	if (data_race(!p->swap_map[swp_offset(entry)]))
1182 		goto bad_free;
1183 	return p;
1184 
1185 bad_free:
1186 	pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1187 	goto out;
1188 out:
1189 	return NULL;
1190 }
1191 
1192 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1193 {
1194 	struct swap_info_struct *p;
1195 
1196 	p = _swap_info_get(entry);
1197 	if (p)
1198 		spin_lock(&p->lock);
1199 	return p;
1200 }
1201 
1202 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1203 					struct swap_info_struct *q)
1204 {
1205 	struct swap_info_struct *p;
1206 
1207 	p = _swap_info_get(entry);
1208 
1209 	if (p != q) {
1210 		if (q != NULL)
1211 			spin_unlock(&q->lock);
1212 		if (p != NULL)
1213 			spin_lock(&p->lock);
1214 	}
1215 	return p;
1216 }
1217 
1218 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1219 					      unsigned long offset,
1220 					      unsigned char usage)
1221 {
1222 	unsigned char count;
1223 	unsigned char has_cache;
1224 
1225 	count = p->swap_map[offset];
1226 
1227 	has_cache = count & SWAP_HAS_CACHE;
1228 	count &= ~SWAP_HAS_CACHE;
1229 
1230 	if (usage == SWAP_HAS_CACHE) {
1231 		VM_BUG_ON(!has_cache);
1232 		has_cache = 0;
1233 	} else if (count == SWAP_MAP_SHMEM) {
1234 		/*
1235 		 * Or we could insist on shmem.c using a special
1236 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1237 		 */
1238 		count = 0;
1239 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1240 		if (count == COUNT_CONTINUED) {
1241 			if (swap_count_continued(p, offset, count))
1242 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1243 			else
1244 				count = SWAP_MAP_MAX;
1245 		} else
1246 			count--;
1247 	}
1248 
1249 	usage = count | has_cache;
1250 	if (usage)
1251 		WRITE_ONCE(p->swap_map[offset], usage);
1252 	else
1253 		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1254 
1255 	return usage;
1256 }
1257 
1258 /*
1259  * Check whether swap entry is valid in the swap device.  If so,
1260  * return pointer to swap_info_struct, and keep the swap entry valid
1261  * via preventing the swap device from being swapoff, until
1262  * put_swap_device() is called.  Otherwise return NULL.
1263  *
1264  * The entirety of the RCU read critical section must come before the
1265  * return from or after the call to synchronize_rcu() in
1266  * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1267  * true, the si->map, si->cluster_info, etc. must be valid in the
1268  * critical section.
1269  *
1270  * Notice that swapoff or swapoff+swapon can still happen before the
1271  * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1272  * in put_swap_device() if there isn't any other way to prevent
1273  * swapoff, such as page lock, page table lock, etc.  The caller must
1274  * be prepared for that.  For example, the following situation is
1275  * possible.
1276  *
1277  *   CPU1				CPU2
1278  *   do_swap_page()
1279  *     ...				swapoff+swapon
1280  *     __read_swap_cache_async()
1281  *       swapcache_prepare()
1282  *         __swap_duplicate()
1283  *           // check swap_map
1284  *     // verify PTE not changed
1285  *
1286  * In __swap_duplicate(), the swap_map need to be checked before
1287  * changing partly because the specified swap entry may be for another
1288  * swap device which has been swapoff.  And in do_swap_page(), after
1289  * the page is read from the swap device, the PTE is verified not
1290  * changed with the page table locked to check whether the swap device
1291  * has been swapoff or swapoff+swapon.
1292  */
1293 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1294 {
1295 	struct swap_info_struct *si;
1296 	unsigned long offset;
1297 
1298 	if (!entry.val)
1299 		goto out;
1300 	si = swp_swap_info(entry);
1301 	if (!si)
1302 		goto bad_nofile;
1303 
1304 	rcu_read_lock();
1305 	if (data_race(!(si->flags & SWP_VALID)))
1306 		goto unlock_out;
1307 	offset = swp_offset(entry);
1308 	if (offset >= si->max)
1309 		goto unlock_out;
1310 
1311 	return si;
1312 bad_nofile:
1313 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1314 out:
1315 	return NULL;
1316 unlock_out:
1317 	rcu_read_unlock();
1318 	return NULL;
1319 }
1320 
1321 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1322 				       swp_entry_t entry)
1323 {
1324 	struct swap_cluster_info *ci;
1325 	unsigned long offset = swp_offset(entry);
1326 	unsigned char usage;
1327 
1328 	ci = lock_cluster_or_swap_info(p, offset);
1329 	usage = __swap_entry_free_locked(p, offset, 1);
1330 	unlock_cluster_or_swap_info(p, ci);
1331 	if (!usage)
1332 		free_swap_slot(entry);
1333 
1334 	return usage;
1335 }
1336 
1337 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1338 {
1339 	struct swap_cluster_info *ci;
1340 	unsigned long offset = swp_offset(entry);
1341 	unsigned char count;
1342 
1343 	ci = lock_cluster(p, offset);
1344 	count = p->swap_map[offset];
1345 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1346 	p->swap_map[offset] = 0;
1347 	dec_cluster_info_page(p, p->cluster_info, offset);
1348 	unlock_cluster(ci);
1349 
1350 	mem_cgroup_uncharge_swap(entry, 1);
1351 	swap_range_free(p, offset, 1);
1352 }
1353 
1354 /*
1355  * Caller has made sure that the swap device corresponding to entry
1356  * is still around or has not been recycled.
1357  */
1358 void swap_free(swp_entry_t entry)
1359 {
1360 	struct swap_info_struct *p;
1361 
1362 	p = _swap_info_get(entry);
1363 	if (p)
1364 		__swap_entry_free(p, entry);
1365 }
1366 
1367 /*
1368  * Called after dropping swapcache to decrease refcnt to swap entries.
1369  */
1370 void put_swap_page(struct page *page, swp_entry_t entry)
1371 {
1372 	unsigned long offset = swp_offset(entry);
1373 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1374 	struct swap_cluster_info *ci;
1375 	struct swap_info_struct *si;
1376 	unsigned char *map;
1377 	unsigned int i, free_entries = 0;
1378 	unsigned char val;
1379 	int size = swap_entry_size(thp_nr_pages(page));
1380 
1381 	si = _swap_info_get(entry);
1382 	if (!si)
1383 		return;
1384 
1385 	ci = lock_cluster_or_swap_info(si, offset);
1386 	if (size == SWAPFILE_CLUSTER) {
1387 		VM_BUG_ON(!cluster_is_huge(ci));
1388 		map = si->swap_map + offset;
1389 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1390 			val = map[i];
1391 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1392 			if (val == SWAP_HAS_CACHE)
1393 				free_entries++;
1394 		}
1395 		cluster_clear_huge(ci);
1396 		if (free_entries == SWAPFILE_CLUSTER) {
1397 			unlock_cluster_or_swap_info(si, ci);
1398 			spin_lock(&si->lock);
1399 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1400 			swap_free_cluster(si, idx);
1401 			spin_unlock(&si->lock);
1402 			return;
1403 		}
1404 	}
1405 	for (i = 0; i < size; i++, entry.val++) {
1406 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1407 			unlock_cluster_or_swap_info(si, ci);
1408 			free_swap_slot(entry);
1409 			if (i == size - 1)
1410 				return;
1411 			lock_cluster_or_swap_info(si, offset);
1412 		}
1413 	}
1414 	unlock_cluster_or_swap_info(si, ci);
1415 }
1416 
1417 #ifdef CONFIG_THP_SWAP
1418 int split_swap_cluster(swp_entry_t entry)
1419 {
1420 	struct swap_info_struct *si;
1421 	struct swap_cluster_info *ci;
1422 	unsigned long offset = swp_offset(entry);
1423 
1424 	si = _swap_info_get(entry);
1425 	if (!si)
1426 		return -EBUSY;
1427 	ci = lock_cluster(si, offset);
1428 	cluster_clear_huge(ci);
1429 	unlock_cluster(ci);
1430 	return 0;
1431 }
1432 #endif
1433 
1434 static int swp_entry_cmp(const void *ent1, const void *ent2)
1435 {
1436 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1437 
1438 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1439 }
1440 
1441 void swapcache_free_entries(swp_entry_t *entries, int n)
1442 {
1443 	struct swap_info_struct *p, *prev;
1444 	int i;
1445 
1446 	if (n <= 0)
1447 		return;
1448 
1449 	prev = NULL;
1450 	p = NULL;
1451 
1452 	/*
1453 	 * Sort swap entries by swap device, so each lock is only taken once.
1454 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1455 	 * so low that it isn't necessary to optimize further.
1456 	 */
1457 	if (nr_swapfiles > 1)
1458 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1459 	for (i = 0; i < n; ++i) {
1460 		p = swap_info_get_cont(entries[i], prev);
1461 		if (p)
1462 			swap_entry_free(p, entries[i]);
1463 		prev = p;
1464 	}
1465 	if (p)
1466 		spin_unlock(&p->lock);
1467 }
1468 
1469 /*
1470  * How many references to page are currently swapped out?
1471  * This does not give an exact answer when swap count is continued,
1472  * but does include the high COUNT_CONTINUED flag to allow for that.
1473  */
1474 int page_swapcount(struct page *page)
1475 {
1476 	int count = 0;
1477 	struct swap_info_struct *p;
1478 	struct swap_cluster_info *ci;
1479 	swp_entry_t entry;
1480 	unsigned long offset;
1481 
1482 	entry.val = page_private(page);
1483 	p = _swap_info_get(entry);
1484 	if (p) {
1485 		offset = swp_offset(entry);
1486 		ci = lock_cluster_or_swap_info(p, offset);
1487 		count = swap_count(p->swap_map[offset]);
1488 		unlock_cluster_or_swap_info(p, ci);
1489 	}
1490 	return count;
1491 }
1492 
1493 int __swap_count(swp_entry_t entry)
1494 {
1495 	struct swap_info_struct *si;
1496 	pgoff_t offset = swp_offset(entry);
1497 	int count = 0;
1498 
1499 	si = get_swap_device(entry);
1500 	if (si) {
1501 		count = swap_count(si->swap_map[offset]);
1502 		put_swap_device(si);
1503 	}
1504 	return count;
1505 }
1506 
1507 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1508 {
1509 	int count = 0;
1510 	pgoff_t offset = swp_offset(entry);
1511 	struct swap_cluster_info *ci;
1512 
1513 	ci = lock_cluster_or_swap_info(si, offset);
1514 	count = swap_count(si->swap_map[offset]);
1515 	unlock_cluster_or_swap_info(si, ci);
1516 	return count;
1517 }
1518 
1519 /*
1520  * How many references to @entry are currently swapped out?
1521  * This does not give an exact answer when swap count is continued,
1522  * but does include the high COUNT_CONTINUED flag to allow for that.
1523  */
1524 int __swp_swapcount(swp_entry_t entry)
1525 {
1526 	int count = 0;
1527 	struct swap_info_struct *si;
1528 
1529 	si = get_swap_device(entry);
1530 	if (si) {
1531 		count = swap_swapcount(si, entry);
1532 		put_swap_device(si);
1533 	}
1534 	return count;
1535 }
1536 
1537 /*
1538  * How many references to @entry are currently swapped out?
1539  * This considers COUNT_CONTINUED so it returns exact answer.
1540  */
1541 int swp_swapcount(swp_entry_t entry)
1542 {
1543 	int count, tmp_count, n;
1544 	struct swap_info_struct *p;
1545 	struct swap_cluster_info *ci;
1546 	struct page *page;
1547 	pgoff_t offset;
1548 	unsigned char *map;
1549 
1550 	p = _swap_info_get(entry);
1551 	if (!p)
1552 		return 0;
1553 
1554 	offset = swp_offset(entry);
1555 
1556 	ci = lock_cluster_or_swap_info(p, offset);
1557 
1558 	count = swap_count(p->swap_map[offset]);
1559 	if (!(count & COUNT_CONTINUED))
1560 		goto out;
1561 
1562 	count &= ~COUNT_CONTINUED;
1563 	n = SWAP_MAP_MAX + 1;
1564 
1565 	page = vmalloc_to_page(p->swap_map + offset);
1566 	offset &= ~PAGE_MASK;
1567 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1568 
1569 	do {
1570 		page = list_next_entry(page, lru);
1571 		map = kmap_atomic(page);
1572 		tmp_count = map[offset];
1573 		kunmap_atomic(map);
1574 
1575 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1576 		n *= (SWAP_CONT_MAX + 1);
1577 	} while (tmp_count & COUNT_CONTINUED);
1578 out:
1579 	unlock_cluster_or_swap_info(p, ci);
1580 	return count;
1581 }
1582 
1583 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1584 					 swp_entry_t entry)
1585 {
1586 	struct swap_cluster_info *ci;
1587 	unsigned char *map = si->swap_map;
1588 	unsigned long roffset = swp_offset(entry);
1589 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1590 	int i;
1591 	bool ret = false;
1592 
1593 	ci = lock_cluster_or_swap_info(si, offset);
1594 	if (!ci || !cluster_is_huge(ci)) {
1595 		if (swap_count(map[roffset]))
1596 			ret = true;
1597 		goto unlock_out;
1598 	}
1599 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1600 		if (swap_count(map[offset + i])) {
1601 			ret = true;
1602 			break;
1603 		}
1604 	}
1605 unlock_out:
1606 	unlock_cluster_or_swap_info(si, ci);
1607 	return ret;
1608 }
1609 
1610 static bool page_swapped(struct page *page)
1611 {
1612 	swp_entry_t entry;
1613 	struct swap_info_struct *si;
1614 
1615 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1616 		return page_swapcount(page) != 0;
1617 
1618 	page = compound_head(page);
1619 	entry.val = page_private(page);
1620 	si = _swap_info_get(entry);
1621 	if (si)
1622 		return swap_page_trans_huge_swapped(si, entry);
1623 	return false;
1624 }
1625 
1626 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1627 					 int *total_swapcount)
1628 {
1629 	int i, map_swapcount, _total_mapcount, _total_swapcount;
1630 	unsigned long offset = 0;
1631 	struct swap_info_struct *si;
1632 	struct swap_cluster_info *ci = NULL;
1633 	unsigned char *map = NULL;
1634 	int mapcount, swapcount = 0;
1635 
1636 	/* hugetlbfs shouldn't call it */
1637 	VM_BUG_ON_PAGE(PageHuge(page), page);
1638 
1639 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1640 		mapcount = page_trans_huge_mapcount(page, total_mapcount);
1641 		if (PageSwapCache(page))
1642 			swapcount = page_swapcount(page);
1643 		if (total_swapcount)
1644 			*total_swapcount = swapcount;
1645 		return mapcount + swapcount;
1646 	}
1647 
1648 	page = compound_head(page);
1649 
1650 	_total_mapcount = _total_swapcount = map_swapcount = 0;
1651 	if (PageSwapCache(page)) {
1652 		swp_entry_t entry;
1653 
1654 		entry.val = page_private(page);
1655 		si = _swap_info_get(entry);
1656 		if (si) {
1657 			map = si->swap_map;
1658 			offset = swp_offset(entry);
1659 		}
1660 	}
1661 	if (map)
1662 		ci = lock_cluster(si, offset);
1663 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1664 		mapcount = atomic_read(&page[i]._mapcount) + 1;
1665 		_total_mapcount += mapcount;
1666 		if (map) {
1667 			swapcount = swap_count(map[offset + i]);
1668 			_total_swapcount += swapcount;
1669 		}
1670 		map_swapcount = max(map_swapcount, mapcount + swapcount);
1671 	}
1672 	unlock_cluster(ci);
1673 	if (PageDoubleMap(page)) {
1674 		map_swapcount -= 1;
1675 		_total_mapcount -= HPAGE_PMD_NR;
1676 	}
1677 	mapcount = compound_mapcount(page);
1678 	map_swapcount += mapcount;
1679 	_total_mapcount += mapcount;
1680 	if (total_mapcount)
1681 		*total_mapcount = _total_mapcount;
1682 	if (total_swapcount)
1683 		*total_swapcount = _total_swapcount;
1684 
1685 	return map_swapcount;
1686 }
1687 
1688 /*
1689  * We can write to an anon page without COW if there are no other references
1690  * to it.  And as a side-effect, free up its swap: because the old content
1691  * on disk will never be read, and seeking back there to write new content
1692  * later would only waste time away from clustering.
1693  *
1694  * NOTE: total_map_swapcount should not be relied upon by the caller if
1695  * reuse_swap_page() returns false, but it may be always overwritten
1696  * (see the other implementation for CONFIG_SWAP=n).
1697  */
1698 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1699 {
1700 	int count, total_mapcount, total_swapcount;
1701 
1702 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1703 	if (unlikely(PageKsm(page)))
1704 		return false;
1705 	count = page_trans_huge_map_swapcount(page, &total_mapcount,
1706 					      &total_swapcount);
1707 	if (total_map_swapcount)
1708 		*total_map_swapcount = total_mapcount + total_swapcount;
1709 	if (count == 1 && PageSwapCache(page) &&
1710 	    (likely(!PageTransCompound(page)) ||
1711 	     /* The remaining swap count will be freed soon */
1712 	     total_swapcount == page_swapcount(page))) {
1713 		if (!PageWriteback(page)) {
1714 			page = compound_head(page);
1715 			delete_from_swap_cache(page);
1716 			SetPageDirty(page);
1717 		} else {
1718 			swp_entry_t entry;
1719 			struct swap_info_struct *p;
1720 
1721 			entry.val = page_private(page);
1722 			p = swap_info_get(entry);
1723 			if (p->flags & SWP_STABLE_WRITES) {
1724 				spin_unlock(&p->lock);
1725 				return false;
1726 			}
1727 			spin_unlock(&p->lock);
1728 		}
1729 	}
1730 
1731 	return count <= 1;
1732 }
1733 
1734 /*
1735  * If swap is getting full, or if there are no more mappings of this page,
1736  * then try_to_free_swap is called to free its swap space.
1737  */
1738 int try_to_free_swap(struct page *page)
1739 {
1740 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1741 
1742 	if (!PageSwapCache(page))
1743 		return 0;
1744 	if (PageWriteback(page))
1745 		return 0;
1746 	if (page_swapped(page))
1747 		return 0;
1748 
1749 	/*
1750 	 * Once hibernation has begun to create its image of memory,
1751 	 * there's a danger that one of the calls to try_to_free_swap()
1752 	 * - most probably a call from __try_to_reclaim_swap() while
1753 	 * hibernation is allocating its own swap pages for the image,
1754 	 * but conceivably even a call from memory reclaim - will free
1755 	 * the swap from a page which has already been recorded in the
1756 	 * image as a clean swapcache page, and then reuse its swap for
1757 	 * another page of the image.  On waking from hibernation, the
1758 	 * original page might be freed under memory pressure, then
1759 	 * later read back in from swap, now with the wrong data.
1760 	 *
1761 	 * Hibernation suspends storage while it is writing the image
1762 	 * to disk so check that here.
1763 	 */
1764 	if (pm_suspended_storage())
1765 		return 0;
1766 
1767 	page = compound_head(page);
1768 	delete_from_swap_cache(page);
1769 	SetPageDirty(page);
1770 	return 1;
1771 }
1772 
1773 /*
1774  * Free the swap entry like above, but also try to
1775  * free the page cache entry if it is the last user.
1776  */
1777 int free_swap_and_cache(swp_entry_t entry)
1778 {
1779 	struct swap_info_struct *p;
1780 	unsigned char count;
1781 
1782 	if (non_swap_entry(entry))
1783 		return 1;
1784 
1785 	p = _swap_info_get(entry);
1786 	if (p) {
1787 		count = __swap_entry_free(p, entry);
1788 		if (count == SWAP_HAS_CACHE &&
1789 		    !swap_page_trans_huge_swapped(p, entry))
1790 			__try_to_reclaim_swap(p, swp_offset(entry),
1791 					      TTRS_UNMAPPED | TTRS_FULL);
1792 	}
1793 	return p != NULL;
1794 }
1795 
1796 #ifdef CONFIG_HIBERNATION
1797 /*
1798  * Find the swap type that corresponds to given device (if any).
1799  *
1800  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1801  * from 0, in which the swap header is expected to be located.
1802  *
1803  * This is needed for the suspend to disk (aka swsusp).
1804  */
1805 int swap_type_of(dev_t device, sector_t offset)
1806 {
1807 	int type;
1808 
1809 	if (!device)
1810 		return -1;
1811 
1812 	spin_lock(&swap_lock);
1813 	for (type = 0; type < nr_swapfiles; type++) {
1814 		struct swap_info_struct *sis = swap_info[type];
1815 
1816 		if (!(sis->flags & SWP_WRITEOK))
1817 			continue;
1818 
1819 		if (device == sis->bdev->bd_dev) {
1820 			struct swap_extent *se = first_se(sis);
1821 
1822 			if (se->start_block == offset) {
1823 				spin_unlock(&swap_lock);
1824 				return type;
1825 			}
1826 		}
1827 	}
1828 	spin_unlock(&swap_lock);
1829 	return -ENODEV;
1830 }
1831 
1832 int find_first_swap(dev_t *device)
1833 {
1834 	int type;
1835 
1836 	spin_lock(&swap_lock);
1837 	for (type = 0; type < nr_swapfiles; type++) {
1838 		struct swap_info_struct *sis = swap_info[type];
1839 
1840 		if (!(sis->flags & SWP_WRITEOK))
1841 			continue;
1842 		*device = sis->bdev->bd_dev;
1843 		spin_unlock(&swap_lock);
1844 		return type;
1845 	}
1846 	spin_unlock(&swap_lock);
1847 	return -ENODEV;
1848 }
1849 
1850 /*
1851  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1852  * corresponding to given index in swap_info (swap type).
1853  */
1854 sector_t swapdev_block(int type, pgoff_t offset)
1855 {
1856 	struct block_device *bdev;
1857 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1858 
1859 	if (!si || !(si->flags & SWP_WRITEOK))
1860 		return 0;
1861 	return map_swap_entry(swp_entry(type, offset), &bdev);
1862 }
1863 
1864 /*
1865  * Return either the total number of swap pages of given type, or the number
1866  * of free pages of that type (depending on @free)
1867  *
1868  * This is needed for software suspend
1869  */
1870 unsigned int count_swap_pages(int type, int free)
1871 {
1872 	unsigned int n = 0;
1873 
1874 	spin_lock(&swap_lock);
1875 	if ((unsigned int)type < nr_swapfiles) {
1876 		struct swap_info_struct *sis = swap_info[type];
1877 
1878 		spin_lock(&sis->lock);
1879 		if (sis->flags & SWP_WRITEOK) {
1880 			n = sis->pages;
1881 			if (free)
1882 				n -= sis->inuse_pages;
1883 		}
1884 		spin_unlock(&sis->lock);
1885 	}
1886 	spin_unlock(&swap_lock);
1887 	return n;
1888 }
1889 #endif /* CONFIG_HIBERNATION */
1890 
1891 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1892 {
1893 	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1894 }
1895 
1896 /*
1897  * No need to decide whether this PTE shares the swap entry with others,
1898  * just let do_wp_page work it out if a write is requested later - to
1899  * force COW, vm_page_prot omits write permission from any private vma.
1900  */
1901 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1902 		unsigned long addr, swp_entry_t entry, struct page *page)
1903 {
1904 	struct page *swapcache;
1905 	spinlock_t *ptl;
1906 	pte_t *pte;
1907 	int ret = 1;
1908 
1909 	swapcache = page;
1910 	page = ksm_might_need_to_copy(page, vma, addr);
1911 	if (unlikely(!page))
1912 		return -ENOMEM;
1913 
1914 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1915 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1916 		ret = 0;
1917 		goto out;
1918 	}
1919 
1920 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1921 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1922 	get_page(page);
1923 	set_pte_at(vma->vm_mm, addr, pte,
1924 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1925 	if (page == swapcache) {
1926 		page_add_anon_rmap(page, vma, addr, false);
1927 	} else { /* ksm created a completely new copy */
1928 		page_add_new_anon_rmap(page, vma, addr, false);
1929 		lru_cache_add_inactive_or_unevictable(page, vma);
1930 	}
1931 	swap_free(entry);
1932 	/*
1933 	 * Move the page to the active list so it is not
1934 	 * immediately swapped out again after swapon.
1935 	 */
1936 	activate_page(page);
1937 out:
1938 	pte_unmap_unlock(pte, ptl);
1939 	if (page != swapcache) {
1940 		unlock_page(page);
1941 		put_page(page);
1942 	}
1943 	return ret;
1944 }
1945 
1946 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1947 			unsigned long addr, unsigned long end,
1948 			unsigned int type, bool frontswap,
1949 			unsigned long *fs_pages_to_unuse)
1950 {
1951 	struct page *page;
1952 	swp_entry_t entry;
1953 	pte_t *pte;
1954 	struct swap_info_struct *si;
1955 	unsigned long offset;
1956 	int ret = 0;
1957 	volatile unsigned char *swap_map;
1958 
1959 	si = swap_info[type];
1960 	pte = pte_offset_map(pmd, addr);
1961 	do {
1962 		struct vm_fault vmf;
1963 
1964 		if (!is_swap_pte(*pte))
1965 			continue;
1966 
1967 		entry = pte_to_swp_entry(*pte);
1968 		if (swp_type(entry) != type)
1969 			continue;
1970 
1971 		offset = swp_offset(entry);
1972 		if (frontswap && !frontswap_test(si, offset))
1973 			continue;
1974 
1975 		pte_unmap(pte);
1976 		swap_map = &si->swap_map[offset];
1977 		page = lookup_swap_cache(entry, vma, addr);
1978 		if (!page) {
1979 			vmf.vma = vma;
1980 			vmf.address = addr;
1981 			vmf.pmd = pmd;
1982 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1983 						&vmf);
1984 		}
1985 		if (!page) {
1986 			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1987 				goto try_next;
1988 			return -ENOMEM;
1989 		}
1990 
1991 		lock_page(page);
1992 		wait_on_page_writeback(page);
1993 		ret = unuse_pte(vma, pmd, addr, entry, page);
1994 		if (ret < 0) {
1995 			unlock_page(page);
1996 			put_page(page);
1997 			goto out;
1998 		}
1999 
2000 		try_to_free_swap(page);
2001 		unlock_page(page);
2002 		put_page(page);
2003 
2004 		if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
2005 			ret = FRONTSWAP_PAGES_UNUSED;
2006 			goto out;
2007 		}
2008 try_next:
2009 		pte = pte_offset_map(pmd, addr);
2010 	} while (pte++, addr += PAGE_SIZE, addr != end);
2011 	pte_unmap(pte - 1);
2012 
2013 	ret = 0;
2014 out:
2015 	return ret;
2016 }
2017 
2018 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2019 				unsigned long addr, unsigned long end,
2020 				unsigned int type, bool frontswap,
2021 				unsigned long *fs_pages_to_unuse)
2022 {
2023 	pmd_t *pmd;
2024 	unsigned long next;
2025 	int ret;
2026 
2027 	pmd = pmd_offset(pud, addr);
2028 	do {
2029 		cond_resched();
2030 		next = pmd_addr_end(addr, end);
2031 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2032 			continue;
2033 		ret = unuse_pte_range(vma, pmd, addr, next, type,
2034 				      frontswap, fs_pages_to_unuse);
2035 		if (ret)
2036 			return ret;
2037 	} while (pmd++, addr = next, addr != end);
2038 	return 0;
2039 }
2040 
2041 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2042 				unsigned long addr, unsigned long end,
2043 				unsigned int type, bool frontswap,
2044 				unsigned long *fs_pages_to_unuse)
2045 {
2046 	pud_t *pud;
2047 	unsigned long next;
2048 	int ret;
2049 
2050 	pud = pud_offset(p4d, addr);
2051 	do {
2052 		next = pud_addr_end(addr, end);
2053 		if (pud_none_or_clear_bad(pud))
2054 			continue;
2055 		ret = unuse_pmd_range(vma, pud, addr, next, type,
2056 				      frontswap, fs_pages_to_unuse);
2057 		if (ret)
2058 			return ret;
2059 	} while (pud++, addr = next, addr != end);
2060 	return 0;
2061 }
2062 
2063 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2064 				unsigned long addr, unsigned long end,
2065 				unsigned int type, bool frontswap,
2066 				unsigned long *fs_pages_to_unuse)
2067 {
2068 	p4d_t *p4d;
2069 	unsigned long next;
2070 	int ret;
2071 
2072 	p4d = p4d_offset(pgd, addr);
2073 	do {
2074 		next = p4d_addr_end(addr, end);
2075 		if (p4d_none_or_clear_bad(p4d))
2076 			continue;
2077 		ret = unuse_pud_range(vma, p4d, addr, next, type,
2078 				      frontswap, fs_pages_to_unuse);
2079 		if (ret)
2080 			return ret;
2081 	} while (p4d++, addr = next, addr != end);
2082 	return 0;
2083 }
2084 
2085 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2086 		     bool frontswap, unsigned long *fs_pages_to_unuse)
2087 {
2088 	pgd_t *pgd;
2089 	unsigned long addr, end, next;
2090 	int ret;
2091 
2092 	addr = vma->vm_start;
2093 	end = vma->vm_end;
2094 
2095 	pgd = pgd_offset(vma->vm_mm, addr);
2096 	do {
2097 		next = pgd_addr_end(addr, end);
2098 		if (pgd_none_or_clear_bad(pgd))
2099 			continue;
2100 		ret = unuse_p4d_range(vma, pgd, addr, next, type,
2101 				      frontswap, fs_pages_to_unuse);
2102 		if (ret)
2103 			return ret;
2104 	} while (pgd++, addr = next, addr != end);
2105 	return 0;
2106 }
2107 
2108 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2109 		    bool frontswap, unsigned long *fs_pages_to_unuse)
2110 {
2111 	struct vm_area_struct *vma;
2112 	int ret = 0;
2113 
2114 	mmap_read_lock(mm);
2115 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2116 		if (vma->anon_vma) {
2117 			ret = unuse_vma(vma, type, frontswap,
2118 					fs_pages_to_unuse);
2119 			if (ret)
2120 				break;
2121 		}
2122 		cond_resched();
2123 	}
2124 	mmap_read_unlock(mm);
2125 	return ret;
2126 }
2127 
2128 /*
2129  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2130  * from current position to next entry still in use. Return 0
2131  * if there are no inuse entries after prev till end of the map.
2132  */
2133 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2134 					unsigned int prev, bool frontswap)
2135 {
2136 	unsigned int i;
2137 	unsigned char count;
2138 
2139 	/*
2140 	 * No need for swap_lock here: we're just looking
2141 	 * for whether an entry is in use, not modifying it; false
2142 	 * hits are okay, and sys_swapoff() has already prevented new
2143 	 * allocations from this area (while holding swap_lock).
2144 	 */
2145 	for (i = prev + 1; i < si->max; i++) {
2146 		count = READ_ONCE(si->swap_map[i]);
2147 		if (count && swap_count(count) != SWAP_MAP_BAD)
2148 			if (!frontswap || frontswap_test(si, i))
2149 				break;
2150 		if ((i % LATENCY_LIMIT) == 0)
2151 			cond_resched();
2152 	}
2153 
2154 	if (i == si->max)
2155 		i = 0;
2156 
2157 	return i;
2158 }
2159 
2160 /*
2161  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2162  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2163  */
2164 int try_to_unuse(unsigned int type, bool frontswap,
2165 		 unsigned long pages_to_unuse)
2166 {
2167 	struct mm_struct *prev_mm;
2168 	struct mm_struct *mm;
2169 	struct list_head *p;
2170 	int retval = 0;
2171 	struct swap_info_struct *si = swap_info[type];
2172 	struct page *page;
2173 	swp_entry_t entry;
2174 	unsigned int i;
2175 
2176 	if (!READ_ONCE(si->inuse_pages))
2177 		return 0;
2178 
2179 	if (!frontswap)
2180 		pages_to_unuse = 0;
2181 
2182 retry:
2183 	retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2184 	if (retval)
2185 		goto out;
2186 
2187 	prev_mm = &init_mm;
2188 	mmget(prev_mm);
2189 
2190 	spin_lock(&mmlist_lock);
2191 	p = &init_mm.mmlist;
2192 	while (READ_ONCE(si->inuse_pages) &&
2193 	       !signal_pending(current) &&
2194 	       (p = p->next) != &init_mm.mmlist) {
2195 
2196 		mm = list_entry(p, struct mm_struct, mmlist);
2197 		if (!mmget_not_zero(mm))
2198 			continue;
2199 		spin_unlock(&mmlist_lock);
2200 		mmput(prev_mm);
2201 		prev_mm = mm;
2202 		retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2203 
2204 		if (retval) {
2205 			mmput(prev_mm);
2206 			goto out;
2207 		}
2208 
2209 		/*
2210 		 * Make sure that we aren't completely killing
2211 		 * interactive performance.
2212 		 */
2213 		cond_resched();
2214 		spin_lock(&mmlist_lock);
2215 	}
2216 	spin_unlock(&mmlist_lock);
2217 
2218 	mmput(prev_mm);
2219 
2220 	i = 0;
2221 	while (READ_ONCE(si->inuse_pages) &&
2222 	       !signal_pending(current) &&
2223 	       (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2224 
2225 		entry = swp_entry(type, i);
2226 		page = find_get_page(swap_address_space(entry), i);
2227 		if (!page)
2228 			continue;
2229 
2230 		/*
2231 		 * It is conceivable that a racing task removed this page from
2232 		 * swap cache just before we acquired the page lock. The page
2233 		 * might even be back in swap cache on another swap area. But
2234 		 * that is okay, try_to_free_swap() only removes stale pages.
2235 		 */
2236 		lock_page(page);
2237 		wait_on_page_writeback(page);
2238 		try_to_free_swap(page);
2239 		unlock_page(page);
2240 		put_page(page);
2241 
2242 		/*
2243 		 * For frontswap, we just need to unuse pages_to_unuse, if
2244 		 * it was specified. Need not check frontswap again here as
2245 		 * we already zeroed out pages_to_unuse if not frontswap.
2246 		 */
2247 		if (pages_to_unuse && --pages_to_unuse == 0)
2248 			goto out;
2249 	}
2250 
2251 	/*
2252 	 * Lets check again to see if there are still swap entries in the map.
2253 	 * If yes, we would need to do retry the unuse logic again.
2254 	 * Under global memory pressure, swap entries can be reinserted back
2255 	 * into process space after the mmlist loop above passes over them.
2256 	 *
2257 	 * Limit the number of retries? No: when mmget_not_zero() above fails,
2258 	 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2259 	 * at its own independent pace; and even shmem_writepage() could have
2260 	 * been preempted after get_swap_page(), temporarily hiding that swap.
2261 	 * It's easy and robust (though cpu-intensive) just to keep retrying.
2262 	 */
2263 	if (READ_ONCE(si->inuse_pages)) {
2264 		if (!signal_pending(current))
2265 			goto retry;
2266 		retval = -EINTR;
2267 	}
2268 out:
2269 	return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2270 }
2271 
2272 /*
2273  * After a successful try_to_unuse, if no swap is now in use, we know
2274  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2275  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2276  * added to the mmlist just after page_duplicate - before would be racy.
2277  */
2278 static void drain_mmlist(void)
2279 {
2280 	struct list_head *p, *next;
2281 	unsigned int type;
2282 
2283 	for (type = 0; type < nr_swapfiles; type++)
2284 		if (swap_info[type]->inuse_pages)
2285 			return;
2286 	spin_lock(&mmlist_lock);
2287 	list_for_each_safe(p, next, &init_mm.mmlist)
2288 		list_del_init(p);
2289 	spin_unlock(&mmlist_lock);
2290 }
2291 
2292 /*
2293  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2294  * corresponds to page offset for the specified swap entry.
2295  * Note that the type of this function is sector_t, but it returns page offset
2296  * into the bdev, not sector offset.
2297  */
2298 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2299 {
2300 	struct swap_info_struct *sis;
2301 	struct swap_extent *se;
2302 	pgoff_t offset;
2303 
2304 	sis = swp_swap_info(entry);
2305 	*bdev = sis->bdev;
2306 
2307 	offset = swp_offset(entry);
2308 	se = offset_to_swap_extent(sis, offset);
2309 	return se->start_block + (offset - se->start_page);
2310 }
2311 
2312 /*
2313  * Returns the page offset into bdev for the specified page's swap entry.
2314  */
2315 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2316 {
2317 	swp_entry_t entry;
2318 	entry.val = page_private(page);
2319 	return map_swap_entry(entry, bdev);
2320 }
2321 
2322 /*
2323  * Free all of a swapdev's extent information
2324  */
2325 static void destroy_swap_extents(struct swap_info_struct *sis)
2326 {
2327 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2328 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2329 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2330 
2331 		rb_erase(rb, &sis->swap_extent_root);
2332 		kfree(se);
2333 	}
2334 
2335 	if (sis->flags & SWP_ACTIVATED) {
2336 		struct file *swap_file = sis->swap_file;
2337 		struct address_space *mapping = swap_file->f_mapping;
2338 
2339 		sis->flags &= ~SWP_ACTIVATED;
2340 		if (mapping->a_ops->swap_deactivate)
2341 			mapping->a_ops->swap_deactivate(swap_file);
2342 	}
2343 }
2344 
2345 /*
2346  * Add a block range (and the corresponding page range) into this swapdev's
2347  * extent tree.
2348  *
2349  * This function rather assumes that it is called in ascending page order.
2350  */
2351 int
2352 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2353 		unsigned long nr_pages, sector_t start_block)
2354 {
2355 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2356 	struct swap_extent *se;
2357 	struct swap_extent *new_se;
2358 
2359 	/*
2360 	 * place the new node at the right most since the
2361 	 * function is called in ascending page order.
2362 	 */
2363 	while (*link) {
2364 		parent = *link;
2365 		link = &parent->rb_right;
2366 	}
2367 
2368 	if (parent) {
2369 		se = rb_entry(parent, struct swap_extent, rb_node);
2370 		BUG_ON(se->start_page + se->nr_pages != start_page);
2371 		if (se->start_block + se->nr_pages == start_block) {
2372 			/* Merge it */
2373 			se->nr_pages += nr_pages;
2374 			return 0;
2375 		}
2376 	}
2377 
2378 	/* No merge, insert a new extent. */
2379 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2380 	if (new_se == NULL)
2381 		return -ENOMEM;
2382 	new_se->start_page = start_page;
2383 	new_se->nr_pages = nr_pages;
2384 	new_se->start_block = start_block;
2385 
2386 	rb_link_node(&new_se->rb_node, parent, link);
2387 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2388 	return 1;
2389 }
2390 EXPORT_SYMBOL_GPL(add_swap_extent);
2391 
2392 /*
2393  * A `swap extent' is a simple thing which maps a contiguous range of pages
2394  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2395  * is built at swapon time and is then used at swap_writepage/swap_readpage
2396  * time for locating where on disk a page belongs.
2397  *
2398  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2399  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2400  * swap files identically.
2401  *
2402  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2403  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2404  * swapfiles are handled *identically* after swapon time.
2405  *
2406  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2407  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2408  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2409  * requirements, they are simply tossed out - we will never use those blocks
2410  * for swapping.
2411  *
2412  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2413  * prevents users from writing to the swap device, which will corrupt memory.
2414  *
2415  * The amount of disk space which a single swap extent represents varies.
2416  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2417  * extents in the list.  To avoid much list walking, we cache the previous
2418  * search location in `curr_swap_extent', and start new searches from there.
2419  * This is extremely effective.  The average number of iterations in
2420  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2421  */
2422 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2423 {
2424 	struct file *swap_file = sis->swap_file;
2425 	struct address_space *mapping = swap_file->f_mapping;
2426 	struct inode *inode = mapping->host;
2427 	int ret;
2428 
2429 	if (S_ISBLK(inode->i_mode)) {
2430 		ret = add_swap_extent(sis, 0, sis->max, 0);
2431 		*span = sis->pages;
2432 		return ret;
2433 	}
2434 
2435 	if (mapping->a_ops->swap_activate) {
2436 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2437 		if (ret >= 0)
2438 			sis->flags |= SWP_ACTIVATED;
2439 		if (!ret) {
2440 			sis->flags |= SWP_FS;
2441 			ret = add_swap_extent(sis, 0, sis->max, 0);
2442 			*span = sis->pages;
2443 		}
2444 		return ret;
2445 	}
2446 
2447 	return generic_swapfile_activate(sis, swap_file, span);
2448 }
2449 
2450 static int swap_node(struct swap_info_struct *p)
2451 {
2452 	struct block_device *bdev;
2453 
2454 	if (p->bdev)
2455 		bdev = p->bdev;
2456 	else
2457 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2458 
2459 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2460 }
2461 
2462 static void setup_swap_info(struct swap_info_struct *p, int prio,
2463 			    unsigned char *swap_map,
2464 			    struct swap_cluster_info *cluster_info)
2465 {
2466 	int i;
2467 
2468 	if (prio >= 0)
2469 		p->prio = prio;
2470 	else
2471 		p->prio = --least_priority;
2472 	/*
2473 	 * the plist prio is negated because plist ordering is
2474 	 * low-to-high, while swap ordering is high-to-low
2475 	 */
2476 	p->list.prio = -p->prio;
2477 	for_each_node(i) {
2478 		if (p->prio >= 0)
2479 			p->avail_lists[i].prio = -p->prio;
2480 		else {
2481 			if (swap_node(p) == i)
2482 				p->avail_lists[i].prio = 1;
2483 			else
2484 				p->avail_lists[i].prio = -p->prio;
2485 		}
2486 	}
2487 	p->swap_map = swap_map;
2488 	p->cluster_info = cluster_info;
2489 }
2490 
2491 static void _enable_swap_info(struct swap_info_struct *p)
2492 {
2493 	p->flags |= SWP_WRITEOK | SWP_VALID;
2494 	atomic_long_add(p->pages, &nr_swap_pages);
2495 	total_swap_pages += p->pages;
2496 
2497 	assert_spin_locked(&swap_lock);
2498 	/*
2499 	 * both lists are plists, and thus priority ordered.
2500 	 * swap_active_head needs to be priority ordered for swapoff(),
2501 	 * which on removal of any swap_info_struct with an auto-assigned
2502 	 * (i.e. negative) priority increments the auto-assigned priority
2503 	 * of any lower-priority swap_info_structs.
2504 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2505 	 * which allocates swap pages from the highest available priority
2506 	 * swap_info_struct.
2507 	 */
2508 	plist_add(&p->list, &swap_active_head);
2509 	add_to_avail_list(p);
2510 }
2511 
2512 static void enable_swap_info(struct swap_info_struct *p, int prio,
2513 				unsigned char *swap_map,
2514 				struct swap_cluster_info *cluster_info,
2515 				unsigned long *frontswap_map)
2516 {
2517 	frontswap_init(p->type, frontswap_map);
2518 	spin_lock(&swap_lock);
2519 	spin_lock(&p->lock);
2520 	setup_swap_info(p, prio, swap_map, cluster_info);
2521 	spin_unlock(&p->lock);
2522 	spin_unlock(&swap_lock);
2523 	/*
2524 	 * Guarantee swap_map, cluster_info, etc. fields are valid
2525 	 * between get/put_swap_device() if SWP_VALID bit is set
2526 	 */
2527 	synchronize_rcu();
2528 	spin_lock(&swap_lock);
2529 	spin_lock(&p->lock);
2530 	_enable_swap_info(p);
2531 	spin_unlock(&p->lock);
2532 	spin_unlock(&swap_lock);
2533 }
2534 
2535 static void reinsert_swap_info(struct swap_info_struct *p)
2536 {
2537 	spin_lock(&swap_lock);
2538 	spin_lock(&p->lock);
2539 	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2540 	_enable_swap_info(p);
2541 	spin_unlock(&p->lock);
2542 	spin_unlock(&swap_lock);
2543 }
2544 
2545 bool has_usable_swap(void)
2546 {
2547 	bool ret = true;
2548 
2549 	spin_lock(&swap_lock);
2550 	if (plist_head_empty(&swap_active_head))
2551 		ret = false;
2552 	spin_unlock(&swap_lock);
2553 	return ret;
2554 }
2555 
2556 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2557 {
2558 	struct swap_info_struct *p = NULL;
2559 	unsigned char *swap_map;
2560 	struct swap_cluster_info *cluster_info;
2561 	unsigned long *frontswap_map;
2562 	struct file *swap_file, *victim;
2563 	struct address_space *mapping;
2564 	struct inode *inode;
2565 	struct filename *pathname;
2566 	int err, found = 0;
2567 	unsigned int old_block_size;
2568 
2569 	if (!capable(CAP_SYS_ADMIN))
2570 		return -EPERM;
2571 
2572 	BUG_ON(!current->mm);
2573 
2574 	pathname = getname(specialfile);
2575 	if (IS_ERR(pathname))
2576 		return PTR_ERR(pathname);
2577 
2578 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2579 	err = PTR_ERR(victim);
2580 	if (IS_ERR(victim))
2581 		goto out;
2582 
2583 	mapping = victim->f_mapping;
2584 	spin_lock(&swap_lock);
2585 	plist_for_each_entry(p, &swap_active_head, list) {
2586 		if (p->flags & SWP_WRITEOK) {
2587 			if (p->swap_file->f_mapping == mapping) {
2588 				found = 1;
2589 				break;
2590 			}
2591 		}
2592 	}
2593 	if (!found) {
2594 		err = -EINVAL;
2595 		spin_unlock(&swap_lock);
2596 		goto out_dput;
2597 	}
2598 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2599 		vm_unacct_memory(p->pages);
2600 	else {
2601 		err = -ENOMEM;
2602 		spin_unlock(&swap_lock);
2603 		goto out_dput;
2604 	}
2605 	del_from_avail_list(p);
2606 	spin_lock(&p->lock);
2607 	if (p->prio < 0) {
2608 		struct swap_info_struct *si = p;
2609 		int nid;
2610 
2611 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2612 			si->prio++;
2613 			si->list.prio--;
2614 			for_each_node(nid) {
2615 				if (si->avail_lists[nid].prio != 1)
2616 					si->avail_lists[nid].prio--;
2617 			}
2618 		}
2619 		least_priority++;
2620 	}
2621 	plist_del(&p->list, &swap_active_head);
2622 	atomic_long_sub(p->pages, &nr_swap_pages);
2623 	total_swap_pages -= p->pages;
2624 	p->flags &= ~SWP_WRITEOK;
2625 	spin_unlock(&p->lock);
2626 	spin_unlock(&swap_lock);
2627 
2628 	disable_swap_slots_cache_lock();
2629 
2630 	set_current_oom_origin();
2631 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2632 	clear_current_oom_origin();
2633 
2634 	if (err) {
2635 		/* re-insert swap space back into swap_list */
2636 		reinsert_swap_info(p);
2637 		reenable_swap_slots_cache_unlock();
2638 		goto out_dput;
2639 	}
2640 
2641 	reenable_swap_slots_cache_unlock();
2642 
2643 	spin_lock(&swap_lock);
2644 	spin_lock(&p->lock);
2645 	p->flags &= ~SWP_VALID;		/* mark swap device as invalid */
2646 	spin_unlock(&p->lock);
2647 	spin_unlock(&swap_lock);
2648 	/*
2649 	 * wait for swap operations protected by get/put_swap_device()
2650 	 * to complete
2651 	 */
2652 	synchronize_rcu();
2653 
2654 	flush_work(&p->discard_work);
2655 
2656 	destroy_swap_extents(p);
2657 	if (p->flags & SWP_CONTINUED)
2658 		free_swap_count_continuations(p);
2659 
2660 	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2661 		atomic_dec(&nr_rotate_swap);
2662 
2663 	mutex_lock(&swapon_mutex);
2664 	spin_lock(&swap_lock);
2665 	spin_lock(&p->lock);
2666 	drain_mmlist();
2667 
2668 	/* wait for anyone still in scan_swap_map */
2669 	p->highest_bit = 0;		/* cuts scans short */
2670 	while (p->flags >= SWP_SCANNING) {
2671 		spin_unlock(&p->lock);
2672 		spin_unlock(&swap_lock);
2673 		schedule_timeout_uninterruptible(1);
2674 		spin_lock(&swap_lock);
2675 		spin_lock(&p->lock);
2676 	}
2677 
2678 	swap_file = p->swap_file;
2679 	old_block_size = p->old_block_size;
2680 	p->swap_file = NULL;
2681 	p->max = 0;
2682 	swap_map = p->swap_map;
2683 	p->swap_map = NULL;
2684 	cluster_info = p->cluster_info;
2685 	p->cluster_info = NULL;
2686 	frontswap_map = frontswap_map_get(p);
2687 	spin_unlock(&p->lock);
2688 	spin_unlock(&swap_lock);
2689 	arch_swap_invalidate_area(p->type);
2690 	frontswap_invalidate_area(p->type);
2691 	frontswap_map_set(p, NULL);
2692 	mutex_unlock(&swapon_mutex);
2693 	free_percpu(p->percpu_cluster);
2694 	p->percpu_cluster = NULL;
2695 	free_percpu(p->cluster_next_cpu);
2696 	p->cluster_next_cpu = NULL;
2697 	vfree(swap_map);
2698 	kvfree(cluster_info);
2699 	kvfree(frontswap_map);
2700 	/* Destroy swap account information */
2701 	swap_cgroup_swapoff(p->type);
2702 	exit_swap_address_space(p->type);
2703 
2704 	inode = mapping->host;
2705 	if (S_ISBLK(inode->i_mode)) {
2706 		struct block_device *bdev = I_BDEV(inode);
2707 
2708 		set_blocksize(bdev, old_block_size);
2709 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2710 	}
2711 
2712 	inode_lock(inode);
2713 	inode->i_flags &= ~S_SWAPFILE;
2714 	inode_unlock(inode);
2715 	filp_close(swap_file, NULL);
2716 
2717 	/*
2718 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2719 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2720 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2721 	 */
2722 	spin_lock(&swap_lock);
2723 	p->flags = 0;
2724 	spin_unlock(&swap_lock);
2725 
2726 	err = 0;
2727 	atomic_inc(&proc_poll_event);
2728 	wake_up_interruptible(&proc_poll_wait);
2729 
2730 out_dput:
2731 	filp_close(victim, NULL);
2732 out:
2733 	putname(pathname);
2734 	return err;
2735 }
2736 
2737 #ifdef CONFIG_PROC_FS
2738 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2739 {
2740 	struct seq_file *seq = file->private_data;
2741 
2742 	poll_wait(file, &proc_poll_wait, wait);
2743 
2744 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2745 		seq->poll_event = atomic_read(&proc_poll_event);
2746 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2747 	}
2748 
2749 	return EPOLLIN | EPOLLRDNORM;
2750 }
2751 
2752 /* iterator */
2753 static void *swap_start(struct seq_file *swap, loff_t *pos)
2754 {
2755 	struct swap_info_struct *si;
2756 	int type;
2757 	loff_t l = *pos;
2758 
2759 	mutex_lock(&swapon_mutex);
2760 
2761 	if (!l)
2762 		return SEQ_START_TOKEN;
2763 
2764 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2765 		if (!(si->flags & SWP_USED) || !si->swap_map)
2766 			continue;
2767 		if (!--l)
2768 			return si;
2769 	}
2770 
2771 	return NULL;
2772 }
2773 
2774 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2775 {
2776 	struct swap_info_struct *si = v;
2777 	int type;
2778 
2779 	if (v == SEQ_START_TOKEN)
2780 		type = 0;
2781 	else
2782 		type = si->type + 1;
2783 
2784 	++(*pos);
2785 	for (; (si = swap_type_to_swap_info(type)); type++) {
2786 		if (!(si->flags & SWP_USED) || !si->swap_map)
2787 			continue;
2788 		return si;
2789 	}
2790 
2791 	return NULL;
2792 }
2793 
2794 static void swap_stop(struct seq_file *swap, void *v)
2795 {
2796 	mutex_unlock(&swapon_mutex);
2797 }
2798 
2799 static int swap_show(struct seq_file *swap, void *v)
2800 {
2801 	struct swap_info_struct *si = v;
2802 	struct file *file;
2803 	int len;
2804 	unsigned int bytes, inuse;
2805 
2806 	if (si == SEQ_START_TOKEN) {
2807 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2808 		return 0;
2809 	}
2810 
2811 	bytes = si->pages << (PAGE_SHIFT - 10);
2812 	inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2813 
2814 	file = si->swap_file;
2815 	len = seq_file_path(swap, file, " \t\n\\");
2816 	seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2817 			len < 40 ? 40 - len : 1, " ",
2818 			S_ISBLK(file_inode(file)->i_mode) ?
2819 				"partition" : "file\t",
2820 			bytes, bytes < 10000000 ? "\t" : "",
2821 			inuse, inuse < 10000000 ? "\t" : "",
2822 			si->prio);
2823 	return 0;
2824 }
2825 
2826 static const struct seq_operations swaps_op = {
2827 	.start =	swap_start,
2828 	.next =		swap_next,
2829 	.stop =		swap_stop,
2830 	.show =		swap_show
2831 };
2832 
2833 static int swaps_open(struct inode *inode, struct file *file)
2834 {
2835 	struct seq_file *seq;
2836 	int ret;
2837 
2838 	ret = seq_open(file, &swaps_op);
2839 	if (ret)
2840 		return ret;
2841 
2842 	seq = file->private_data;
2843 	seq->poll_event = atomic_read(&proc_poll_event);
2844 	return 0;
2845 }
2846 
2847 static const struct proc_ops swaps_proc_ops = {
2848 	.proc_flags	= PROC_ENTRY_PERMANENT,
2849 	.proc_open	= swaps_open,
2850 	.proc_read	= seq_read,
2851 	.proc_lseek	= seq_lseek,
2852 	.proc_release	= seq_release,
2853 	.proc_poll	= swaps_poll,
2854 };
2855 
2856 static int __init procswaps_init(void)
2857 {
2858 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2859 	return 0;
2860 }
2861 __initcall(procswaps_init);
2862 #endif /* CONFIG_PROC_FS */
2863 
2864 #ifdef MAX_SWAPFILES_CHECK
2865 static int __init max_swapfiles_check(void)
2866 {
2867 	MAX_SWAPFILES_CHECK();
2868 	return 0;
2869 }
2870 late_initcall(max_swapfiles_check);
2871 #endif
2872 
2873 static struct swap_info_struct *alloc_swap_info(void)
2874 {
2875 	struct swap_info_struct *p;
2876 	unsigned int type;
2877 	int i;
2878 
2879 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2880 	if (!p)
2881 		return ERR_PTR(-ENOMEM);
2882 
2883 	spin_lock(&swap_lock);
2884 	for (type = 0; type < nr_swapfiles; type++) {
2885 		if (!(swap_info[type]->flags & SWP_USED))
2886 			break;
2887 	}
2888 	if (type >= MAX_SWAPFILES) {
2889 		spin_unlock(&swap_lock);
2890 		kvfree(p);
2891 		return ERR_PTR(-EPERM);
2892 	}
2893 	if (type >= nr_swapfiles) {
2894 		p->type = type;
2895 		WRITE_ONCE(swap_info[type], p);
2896 		/*
2897 		 * Write swap_info[type] before nr_swapfiles, in case a
2898 		 * racing procfs swap_start() or swap_next() is reading them.
2899 		 * (We never shrink nr_swapfiles, we never free this entry.)
2900 		 */
2901 		smp_wmb();
2902 		WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2903 	} else {
2904 		kvfree(p);
2905 		p = swap_info[type];
2906 		/*
2907 		 * Do not memset this entry: a racing procfs swap_next()
2908 		 * would be relying on p->type to remain valid.
2909 		 */
2910 	}
2911 	p->swap_extent_root = RB_ROOT;
2912 	plist_node_init(&p->list, 0);
2913 	for_each_node(i)
2914 		plist_node_init(&p->avail_lists[i], 0);
2915 	p->flags = SWP_USED;
2916 	spin_unlock(&swap_lock);
2917 	spin_lock_init(&p->lock);
2918 	spin_lock_init(&p->cont_lock);
2919 
2920 	return p;
2921 }
2922 
2923 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2924 {
2925 	int error;
2926 
2927 	if (S_ISBLK(inode->i_mode)) {
2928 		p->bdev = blkdev_get_by_dev(inode->i_rdev,
2929 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2930 		if (IS_ERR(p->bdev)) {
2931 			error = PTR_ERR(p->bdev);
2932 			p->bdev = NULL;
2933 			return error;
2934 		}
2935 		p->old_block_size = block_size(p->bdev);
2936 		error = set_blocksize(p->bdev, PAGE_SIZE);
2937 		if (error < 0)
2938 			return error;
2939 		/*
2940 		 * Zoned block devices contain zones that have a sequential
2941 		 * write only restriction.  Hence zoned block devices are not
2942 		 * suitable for swapping.  Disallow them here.
2943 		 */
2944 		if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2945 			return -EINVAL;
2946 		p->flags |= SWP_BLKDEV;
2947 	} else if (S_ISREG(inode->i_mode)) {
2948 		p->bdev = inode->i_sb->s_bdev;
2949 	}
2950 
2951 	return 0;
2952 }
2953 
2954 
2955 /*
2956  * Find out how many pages are allowed for a single swap device. There
2957  * are two limiting factors:
2958  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2959  * 2) the number of bits in the swap pte, as defined by the different
2960  * architectures.
2961  *
2962  * In order to find the largest possible bit mask, a swap entry with
2963  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2964  * decoded to a swp_entry_t again, and finally the swap offset is
2965  * extracted.
2966  *
2967  * This will mask all the bits from the initial ~0UL mask that can't
2968  * be encoded in either the swp_entry_t or the architecture definition
2969  * of a swap pte.
2970  */
2971 unsigned long generic_max_swapfile_size(void)
2972 {
2973 	return swp_offset(pte_to_swp_entry(
2974 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2975 }
2976 
2977 /* Can be overridden by an architecture for additional checks. */
2978 __weak unsigned long max_swapfile_size(void)
2979 {
2980 	return generic_max_swapfile_size();
2981 }
2982 
2983 static unsigned long read_swap_header(struct swap_info_struct *p,
2984 					union swap_header *swap_header,
2985 					struct inode *inode)
2986 {
2987 	int i;
2988 	unsigned long maxpages;
2989 	unsigned long swapfilepages;
2990 	unsigned long last_page;
2991 
2992 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2993 		pr_err("Unable to find swap-space signature\n");
2994 		return 0;
2995 	}
2996 
2997 	/* swap partition endianess hack... */
2998 	if (swab32(swap_header->info.version) == 1) {
2999 		swab32s(&swap_header->info.version);
3000 		swab32s(&swap_header->info.last_page);
3001 		swab32s(&swap_header->info.nr_badpages);
3002 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3003 			return 0;
3004 		for (i = 0; i < swap_header->info.nr_badpages; i++)
3005 			swab32s(&swap_header->info.badpages[i]);
3006 	}
3007 	/* Check the swap header's sub-version */
3008 	if (swap_header->info.version != 1) {
3009 		pr_warn("Unable to handle swap header version %d\n",
3010 			swap_header->info.version);
3011 		return 0;
3012 	}
3013 
3014 	p->lowest_bit  = 1;
3015 	p->cluster_next = 1;
3016 	p->cluster_nr = 0;
3017 
3018 	maxpages = max_swapfile_size();
3019 	last_page = swap_header->info.last_page;
3020 	if (!last_page) {
3021 		pr_warn("Empty swap-file\n");
3022 		return 0;
3023 	}
3024 	if (last_page > maxpages) {
3025 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3026 			maxpages << (PAGE_SHIFT - 10),
3027 			last_page << (PAGE_SHIFT - 10));
3028 	}
3029 	if (maxpages > last_page) {
3030 		maxpages = last_page + 1;
3031 		/* p->max is an unsigned int: don't overflow it */
3032 		if ((unsigned int)maxpages == 0)
3033 			maxpages = UINT_MAX;
3034 	}
3035 	p->highest_bit = maxpages - 1;
3036 
3037 	if (!maxpages)
3038 		return 0;
3039 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3040 	if (swapfilepages && maxpages > swapfilepages) {
3041 		pr_warn("Swap area shorter than signature indicates\n");
3042 		return 0;
3043 	}
3044 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3045 		return 0;
3046 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3047 		return 0;
3048 
3049 	return maxpages;
3050 }
3051 
3052 #define SWAP_CLUSTER_INFO_COLS						\
3053 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3054 #define SWAP_CLUSTER_SPACE_COLS						\
3055 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3056 #define SWAP_CLUSTER_COLS						\
3057 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3058 
3059 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3060 					union swap_header *swap_header,
3061 					unsigned char *swap_map,
3062 					struct swap_cluster_info *cluster_info,
3063 					unsigned long maxpages,
3064 					sector_t *span)
3065 {
3066 	unsigned int j, k;
3067 	unsigned int nr_good_pages;
3068 	int nr_extents;
3069 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3070 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3071 	unsigned long i, idx;
3072 
3073 	nr_good_pages = maxpages - 1;	/* omit header page */
3074 
3075 	cluster_list_init(&p->free_clusters);
3076 	cluster_list_init(&p->discard_clusters);
3077 
3078 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3079 		unsigned int page_nr = swap_header->info.badpages[i];
3080 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3081 			return -EINVAL;
3082 		if (page_nr < maxpages) {
3083 			swap_map[page_nr] = SWAP_MAP_BAD;
3084 			nr_good_pages--;
3085 			/*
3086 			 * Haven't marked the cluster free yet, no list
3087 			 * operation involved
3088 			 */
3089 			inc_cluster_info_page(p, cluster_info, page_nr);
3090 		}
3091 	}
3092 
3093 	/* Haven't marked the cluster free yet, no list operation involved */
3094 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3095 		inc_cluster_info_page(p, cluster_info, i);
3096 
3097 	if (nr_good_pages) {
3098 		swap_map[0] = SWAP_MAP_BAD;
3099 		/*
3100 		 * Not mark the cluster free yet, no list
3101 		 * operation involved
3102 		 */
3103 		inc_cluster_info_page(p, cluster_info, 0);
3104 		p->max = maxpages;
3105 		p->pages = nr_good_pages;
3106 		nr_extents = setup_swap_extents(p, span);
3107 		if (nr_extents < 0)
3108 			return nr_extents;
3109 		nr_good_pages = p->pages;
3110 	}
3111 	if (!nr_good_pages) {
3112 		pr_warn("Empty swap-file\n");
3113 		return -EINVAL;
3114 	}
3115 
3116 	if (!cluster_info)
3117 		return nr_extents;
3118 
3119 
3120 	/*
3121 	 * Reduce false cache line sharing between cluster_info and
3122 	 * sharing same address space.
3123 	 */
3124 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3125 		j = (k + col) % SWAP_CLUSTER_COLS;
3126 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3127 			idx = i * SWAP_CLUSTER_COLS + j;
3128 			if (idx >= nr_clusters)
3129 				continue;
3130 			if (cluster_count(&cluster_info[idx]))
3131 				continue;
3132 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3133 			cluster_list_add_tail(&p->free_clusters, cluster_info,
3134 					      idx);
3135 		}
3136 	}
3137 	return nr_extents;
3138 }
3139 
3140 /*
3141  * Helper to sys_swapon determining if a given swap
3142  * backing device queue supports DISCARD operations.
3143  */
3144 static bool swap_discardable(struct swap_info_struct *si)
3145 {
3146 	struct request_queue *q = bdev_get_queue(si->bdev);
3147 
3148 	if (!q || !blk_queue_discard(q))
3149 		return false;
3150 
3151 	return true;
3152 }
3153 
3154 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3155 {
3156 	struct swap_info_struct *p;
3157 	struct filename *name;
3158 	struct file *swap_file = NULL;
3159 	struct address_space *mapping;
3160 	int prio;
3161 	int error;
3162 	union swap_header *swap_header;
3163 	int nr_extents;
3164 	sector_t span;
3165 	unsigned long maxpages;
3166 	unsigned char *swap_map = NULL;
3167 	struct swap_cluster_info *cluster_info = NULL;
3168 	unsigned long *frontswap_map = NULL;
3169 	struct page *page = NULL;
3170 	struct inode *inode = NULL;
3171 	bool inced_nr_rotate_swap = false;
3172 
3173 	if (swap_flags & ~SWAP_FLAGS_VALID)
3174 		return -EINVAL;
3175 
3176 	if (!capable(CAP_SYS_ADMIN))
3177 		return -EPERM;
3178 
3179 	if (!swap_avail_heads)
3180 		return -ENOMEM;
3181 
3182 	p = alloc_swap_info();
3183 	if (IS_ERR(p))
3184 		return PTR_ERR(p);
3185 
3186 	INIT_WORK(&p->discard_work, swap_discard_work);
3187 
3188 	name = getname(specialfile);
3189 	if (IS_ERR(name)) {
3190 		error = PTR_ERR(name);
3191 		name = NULL;
3192 		goto bad_swap;
3193 	}
3194 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3195 	if (IS_ERR(swap_file)) {
3196 		error = PTR_ERR(swap_file);
3197 		swap_file = NULL;
3198 		goto bad_swap;
3199 	}
3200 
3201 	p->swap_file = swap_file;
3202 	mapping = swap_file->f_mapping;
3203 	inode = mapping->host;
3204 
3205 	error = claim_swapfile(p, inode);
3206 	if (unlikely(error))
3207 		goto bad_swap;
3208 
3209 	inode_lock(inode);
3210 	if (IS_SWAPFILE(inode)) {
3211 		error = -EBUSY;
3212 		goto bad_swap_unlock_inode;
3213 	}
3214 
3215 	/*
3216 	 * Read the swap header.
3217 	 */
3218 	if (!mapping->a_ops->readpage) {
3219 		error = -EINVAL;
3220 		goto bad_swap_unlock_inode;
3221 	}
3222 	page = read_mapping_page(mapping, 0, swap_file);
3223 	if (IS_ERR(page)) {
3224 		error = PTR_ERR(page);
3225 		goto bad_swap_unlock_inode;
3226 	}
3227 	swap_header = kmap(page);
3228 
3229 	maxpages = read_swap_header(p, swap_header, inode);
3230 	if (unlikely(!maxpages)) {
3231 		error = -EINVAL;
3232 		goto bad_swap_unlock_inode;
3233 	}
3234 
3235 	/* OK, set up the swap map and apply the bad block list */
3236 	swap_map = vzalloc(maxpages);
3237 	if (!swap_map) {
3238 		error = -ENOMEM;
3239 		goto bad_swap_unlock_inode;
3240 	}
3241 
3242 	if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3243 		p->flags |= SWP_STABLE_WRITES;
3244 
3245 	if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3246 		p->flags |= SWP_SYNCHRONOUS_IO;
3247 
3248 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3249 		int cpu;
3250 		unsigned long ci, nr_cluster;
3251 
3252 		p->flags |= SWP_SOLIDSTATE;
3253 		p->cluster_next_cpu = alloc_percpu(unsigned int);
3254 		if (!p->cluster_next_cpu) {
3255 			error = -ENOMEM;
3256 			goto bad_swap_unlock_inode;
3257 		}
3258 		/*
3259 		 * select a random position to start with to help wear leveling
3260 		 * SSD
3261 		 */
3262 		for_each_possible_cpu(cpu) {
3263 			per_cpu(*p->cluster_next_cpu, cpu) =
3264 				1 + prandom_u32_max(p->highest_bit);
3265 		}
3266 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3267 
3268 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3269 					GFP_KERNEL);
3270 		if (!cluster_info) {
3271 			error = -ENOMEM;
3272 			goto bad_swap_unlock_inode;
3273 		}
3274 
3275 		for (ci = 0; ci < nr_cluster; ci++)
3276 			spin_lock_init(&((cluster_info + ci)->lock));
3277 
3278 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3279 		if (!p->percpu_cluster) {
3280 			error = -ENOMEM;
3281 			goto bad_swap_unlock_inode;
3282 		}
3283 		for_each_possible_cpu(cpu) {
3284 			struct percpu_cluster *cluster;
3285 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3286 			cluster_set_null(&cluster->index);
3287 		}
3288 	} else {
3289 		atomic_inc(&nr_rotate_swap);
3290 		inced_nr_rotate_swap = true;
3291 	}
3292 
3293 	error = swap_cgroup_swapon(p->type, maxpages);
3294 	if (error)
3295 		goto bad_swap_unlock_inode;
3296 
3297 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3298 		cluster_info, maxpages, &span);
3299 	if (unlikely(nr_extents < 0)) {
3300 		error = nr_extents;
3301 		goto bad_swap_unlock_inode;
3302 	}
3303 	/* frontswap enabled? set up bit-per-page map for frontswap */
3304 	if (IS_ENABLED(CONFIG_FRONTSWAP))
3305 		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3306 					 sizeof(long),
3307 					 GFP_KERNEL);
3308 
3309 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3310 		/*
3311 		 * When discard is enabled for swap with no particular
3312 		 * policy flagged, we set all swap discard flags here in
3313 		 * order to sustain backward compatibility with older
3314 		 * swapon(8) releases.
3315 		 */
3316 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3317 			     SWP_PAGE_DISCARD);
3318 
3319 		/*
3320 		 * By flagging sys_swapon, a sysadmin can tell us to
3321 		 * either do single-time area discards only, or to just
3322 		 * perform discards for released swap page-clusters.
3323 		 * Now it's time to adjust the p->flags accordingly.
3324 		 */
3325 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3326 			p->flags &= ~SWP_PAGE_DISCARD;
3327 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3328 			p->flags &= ~SWP_AREA_DISCARD;
3329 
3330 		/* issue a swapon-time discard if it's still required */
3331 		if (p->flags & SWP_AREA_DISCARD) {
3332 			int err = discard_swap(p);
3333 			if (unlikely(err))
3334 				pr_err("swapon: discard_swap(%p): %d\n",
3335 					p, err);
3336 		}
3337 	}
3338 
3339 	error = init_swap_address_space(p->type, maxpages);
3340 	if (error)
3341 		goto bad_swap_unlock_inode;
3342 
3343 	/*
3344 	 * Flush any pending IO and dirty mappings before we start using this
3345 	 * swap device.
3346 	 */
3347 	inode->i_flags |= S_SWAPFILE;
3348 	error = inode_drain_writes(inode);
3349 	if (error) {
3350 		inode->i_flags &= ~S_SWAPFILE;
3351 		goto bad_swap_unlock_inode;
3352 	}
3353 
3354 	mutex_lock(&swapon_mutex);
3355 	prio = -1;
3356 	if (swap_flags & SWAP_FLAG_PREFER)
3357 		prio =
3358 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3359 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3360 
3361 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3362 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3363 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3364 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3365 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3366 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3367 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3368 		(frontswap_map) ? "FS" : "");
3369 
3370 	mutex_unlock(&swapon_mutex);
3371 	atomic_inc(&proc_poll_event);
3372 	wake_up_interruptible(&proc_poll_wait);
3373 
3374 	error = 0;
3375 	goto out;
3376 bad_swap_unlock_inode:
3377 	inode_unlock(inode);
3378 bad_swap:
3379 	free_percpu(p->percpu_cluster);
3380 	p->percpu_cluster = NULL;
3381 	free_percpu(p->cluster_next_cpu);
3382 	p->cluster_next_cpu = NULL;
3383 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3384 		set_blocksize(p->bdev, p->old_block_size);
3385 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3386 	}
3387 	inode = NULL;
3388 	destroy_swap_extents(p);
3389 	swap_cgroup_swapoff(p->type);
3390 	spin_lock(&swap_lock);
3391 	p->swap_file = NULL;
3392 	p->flags = 0;
3393 	spin_unlock(&swap_lock);
3394 	vfree(swap_map);
3395 	kvfree(cluster_info);
3396 	kvfree(frontswap_map);
3397 	if (inced_nr_rotate_swap)
3398 		atomic_dec(&nr_rotate_swap);
3399 	if (swap_file)
3400 		filp_close(swap_file, NULL);
3401 out:
3402 	if (page && !IS_ERR(page)) {
3403 		kunmap(page);
3404 		put_page(page);
3405 	}
3406 	if (name)
3407 		putname(name);
3408 	if (inode)
3409 		inode_unlock(inode);
3410 	if (!error)
3411 		enable_swap_slots_cache();
3412 	return error;
3413 }
3414 
3415 void si_swapinfo(struct sysinfo *val)
3416 {
3417 	unsigned int type;
3418 	unsigned long nr_to_be_unused = 0;
3419 
3420 	spin_lock(&swap_lock);
3421 	for (type = 0; type < nr_swapfiles; type++) {
3422 		struct swap_info_struct *si = swap_info[type];
3423 
3424 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3425 			nr_to_be_unused += si->inuse_pages;
3426 	}
3427 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3428 	val->totalswap = total_swap_pages + nr_to_be_unused;
3429 	spin_unlock(&swap_lock);
3430 }
3431 
3432 /*
3433  * Verify that a swap entry is valid and increment its swap map count.
3434  *
3435  * Returns error code in following case.
3436  * - success -> 0
3437  * - swp_entry is invalid -> EINVAL
3438  * - swp_entry is migration entry -> EINVAL
3439  * - swap-cache reference is requested but there is already one. -> EEXIST
3440  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3441  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3442  */
3443 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3444 {
3445 	struct swap_info_struct *p;
3446 	struct swap_cluster_info *ci;
3447 	unsigned long offset;
3448 	unsigned char count;
3449 	unsigned char has_cache;
3450 	int err = -EINVAL;
3451 
3452 	p = get_swap_device(entry);
3453 	if (!p)
3454 		goto out;
3455 
3456 	offset = swp_offset(entry);
3457 	ci = lock_cluster_or_swap_info(p, offset);
3458 
3459 	count = p->swap_map[offset];
3460 
3461 	/*
3462 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3463 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3464 	 */
3465 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3466 		err = -ENOENT;
3467 		goto unlock_out;
3468 	}
3469 
3470 	has_cache = count & SWAP_HAS_CACHE;
3471 	count &= ~SWAP_HAS_CACHE;
3472 	err = 0;
3473 
3474 	if (usage == SWAP_HAS_CACHE) {
3475 
3476 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3477 		if (!has_cache && count)
3478 			has_cache = SWAP_HAS_CACHE;
3479 		else if (has_cache)		/* someone else added cache */
3480 			err = -EEXIST;
3481 		else				/* no users remaining */
3482 			err = -ENOENT;
3483 
3484 	} else if (count || has_cache) {
3485 
3486 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3487 			count += usage;
3488 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3489 			err = -EINVAL;
3490 		else if (swap_count_continued(p, offset, count))
3491 			count = COUNT_CONTINUED;
3492 		else
3493 			err = -ENOMEM;
3494 	} else
3495 		err = -ENOENT;			/* unused swap entry */
3496 
3497 	WRITE_ONCE(p->swap_map[offset], count | has_cache);
3498 
3499 unlock_out:
3500 	unlock_cluster_or_swap_info(p, ci);
3501 out:
3502 	if (p)
3503 		put_swap_device(p);
3504 	return err;
3505 }
3506 
3507 /*
3508  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3509  * (in which case its reference count is never incremented).
3510  */
3511 void swap_shmem_alloc(swp_entry_t entry)
3512 {
3513 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3514 }
3515 
3516 /*
3517  * Increase reference count of swap entry by 1.
3518  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3519  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3520  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3521  * might occur if a page table entry has got corrupted.
3522  */
3523 int swap_duplicate(swp_entry_t entry)
3524 {
3525 	int err = 0;
3526 
3527 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3528 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3529 	return err;
3530 }
3531 
3532 /*
3533  * @entry: swap entry for which we allocate swap cache.
3534  *
3535  * Called when allocating swap cache for existing swap entry,
3536  * This can return error codes. Returns 0 at success.
3537  * -EEXIST means there is a swap cache.
3538  * Note: return code is different from swap_duplicate().
3539  */
3540 int swapcache_prepare(swp_entry_t entry)
3541 {
3542 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3543 }
3544 
3545 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3546 {
3547 	return swap_type_to_swap_info(swp_type(entry));
3548 }
3549 
3550 struct swap_info_struct *page_swap_info(struct page *page)
3551 {
3552 	swp_entry_t entry = { .val = page_private(page) };
3553 	return swp_swap_info(entry);
3554 }
3555 
3556 /*
3557  * out-of-line __page_file_ methods to avoid include hell.
3558  */
3559 struct address_space *__page_file_mapping(struct page *page)
3560 {
3561 	return page_swap_info(page)->swap_file->f_mapping;
3562 }
3563 EXPORT_SYMBOL_GPL(__page_file_mapping);
3564 
3565 pgoff_t __page_file_index(struct page *page)
3566 {
3567 	swp_entry_t swap = { .val = page_private(page) };
3568 	return swp_offset(swap);
3569 }
3570 EXPORT_SYMBOL_GPL(__page_file_index);
3571 
3572 /*
3573  * add_swap_count_continuation - called when a swap count is duplicated
3574  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3575  * page of the original vmalloc'ed swap_map, to hold the continuation count
3576  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3577  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3578  *
3579  * These continuation pages are seldom referenced: the common paths all work
3580  * on the original swap_map, only referring to a continuation page when the
3581  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3582  *
3583  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3584  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3585  * can be called after dropping locks.
3586  */
3587 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3588 {
3589 	struct swap_info_struct *si;
3590 	struct swap_cluster_info *ci;
3591 	struct page *head;
3592 	struct page *page;
3593 	struct page *list_page;
3594 	pgoff_t offset;
3595 	unsigned char count;
3596 	int ret = 0;
3597 
3598 	/*
3599 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3600 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3601 	 */
3602 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3603 
3604 	si = get_swap_device(entry);
3605 	if (!si) {
3606 		/*
3607 		 * An acceptable race has occurred since the failing
3608 		 * __swap_duplicate(): the swap device may be swapoff
3609 		 */
3610 		goto outer;
3611 	}
3612 	spin_lock(&si->lock);
3613 
3614 	offset = swp_offset(entry);
3615 
3616 	ci = lock_cluster(si, offset);
3617 
3618 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3619 
3620 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3621 		/*
3622 		 * The higher the swap count, the more likely it is that tasks
3623 		 * will race to add swap count continuation: we need to avoid
3624 		 * over-provisioning.
3625 		 */
3626 		goto out;
3627 	}
3628 
3629 	if (!page) {
3630 		ret = -ENOMEM;
3631 		goto out;
3632 	}
3633 
3634 	/*
3635 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3636 	 * no architecture is using highmem pages for kernel page tables: so it
3637 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3638 	 */
3639 	head = vmalloc_to_page(si->swap_map + offset);
3640 	offset &= ~PAGE_MASK;
3641 
3642 	spin_lock(&si->cont_lock);
3643 	/*
3644 	 * Page allocation does not initialize the page's lru field,
3645 	 * but it does always reset its private field.
3646 	 */
3647 	if (!page_private(head)) {
3648 		BUG_ON(count & COUNT_CONTINUED);
3649 		INIT_LIST_HEAD(&head->lru);
3650 		set_page_private(head, SWP_CONTINUED);
3651 		si->flags |= SWP_CONTINUED;
3652 	}
3653 
3654 	list_for_each_entry(list_page, &head->lru, lru) {
3655 		unsigned char *map;
3656 
3657 		/*
3658 		 * If the previous map said no continuation, but we've found
3659 		 * a continuation page, free our allocation and use this one.
3660 		 */
3661 		if (!(count & COUNT_CONTINUED))
3662 			goto out_unlock_cont;
3663 
3664 		map = kmap_atomic(list_page) + offset;
3665 		count = *map;
3666 		kunmap_atomic(map);
3667 
3668 		/*
3669 		 * If this continuation count now has some space in it,
3670 		 * free our allocation and use this one.
3671 		 */
3672 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3673 			goto out_unlock_cont;
3674 	}
3675 
3676 	list_add_tail(&page->lru, &head->lru);
3677 	page = NULL;			/* now it's attached, don't free it */
3678 out_unlock_cont:
3679 	spin_unlock(&si->cont_lock);
3680 out:
3681 	unlock_cluster(ci);
3682 	spin_unlock(&si->lock);
3683 	put_swap_device(si);
3684 outer:
3685 	if (page)
3686 		__free_page(page);
3687 	return ret;
3688 }
3689 
3690 /*
3691  * swap_count_continued - when the original swap_map count is incremented
3692  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3693  * into, carry if so, or else fail until a new continuation page is allocated;
3694  * when the original swap_map count is decremented from 0 with continuation,
3695  * borrow from the continuation and report whether it still holds more.
3696  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3697  * lock.
3698  */
3699 static bool swap_count_continued(struct swap_info_struct *si,
3700 				 pgoff_t offset, unsigned char count)
3701 {
3702 	struct page *head;
3703 	struct page *page;
3704 	unsigned char *map;
3705 	bool ret;
3706 
3707 	head = vmalloc_to_page(si->swap_map + offset);
3708 	if (page_private(head) != SWP_CONTINUED) {
3709 		BUG_ON(count & COUNT_CONTINUED);
3710 		return false;		/* need to add count continuation */
3711 	}
3712 
3713 	spin_lock(&si->cont_lock);
3714 	offset &= ~PAGE_MASK;
3715 	page = list_next_entry(head, lru);
3716 	map = kmap_atomic(page) + offset;
3717 
3718 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3719 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3720 
3721 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3722 		/*
3723 		 * Think of how you add 1 to 999
3724 		 */
3725 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3726 			kunmap_atomic(map);
3727 			page = list_next_entry(page, lru);
3728 			BUG_ON(page == head);
3729 			map = kmap_atomic(page) + offset;
3730 		}
3731 		if (*map == SWAP_CONT_MAX) {
3732 			kunmap_atomic(map);
3733 			page = list_next_entry(page, lru);
3734 			if (page == head) {
3735 				ret = false;	/* add count continuation */
3736 				goto out;
3737 			}
3738 			map = kmap_atomic(page) + offset;
3739 init_map:		*map = 0;		/* we didn't zero the page */
3740 		}
3741 		*map += 1;
3742 		kunmap_atomic(map);
3743 		while ((page = list_prev_entry(page, lru)) != head) {
3744 			map = kmap_atomic(page) + offset;
3745 			*map = COUNT_CONTINUED;
3746 			kunmap_atomic(map);
3747 		}
3748 		ret = true;			/* incremented */
3749 
3750 	} else {				/* decrementing */
3751 		/*
3752 		 * Think of how you subtract 1 from 1000
3753 		 */
3754 		BUG_ON(count != COUNT_CONTINUED);
3755 		while (*map == COUNT_CONTINUED) {
3756 			kunmap_atomic(map);
3757 			page = list_next_entry(page, lru);
3758 			BUG_ON(page == head);
3759 			map = kmap_atomic(page) + offset;
3760 		}
3761 		BUG_ON(*map == 0);
3762 		*map -= 1;
3763 		if (*map == 0)
3764 			count = 0;
3765 		kunmap_atomic(map);
3766 		while ((page = list_prev_entry(page, lru)) != head) {
3767 			map = kmap_atomic(page) + offset;
3768 			*map = SWAP_CONT_MAX | count;
3769 			count = COUNT_CONTINUED;
3770 			kunmap_atomic(map);
3771 		}
3772 		ret = count == COUNT_CONTINUED;
3773 	}
3774 out:
3775 	spin_unlock(&si->cont_lock);
3776 	return ret;
3777 }
3778 
3779 /*
3780  * free_swap_count_continuations - swapoff free all the continuation pages
3781  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3782  */
3783 static void free_swap_count_continuations(struct swap_info_struct *si)
3784 {
3785 	pgoff_t offset;
3786 
3787 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3788 		struct page *head;
3789 		head = vmalloc_to_page(si->swap_map + offset);
3790 		if (page_private(head)) {
3791 			struct page *page, *next;
3792 
3793 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3794 				list_del(&page->lru);
3795 				__free_page(page);
3796 			}
3797 		}
3798 	}
3799 }
3800 
3801 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3802 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3803 {
3804 	struct swap_info_struct *si, *next;
3805 	int nid = page_to_nid(page);
3806 
3807 	if (!(gfp_mask & __GFP_IO))
3808 		return;
3809 
3810 	if (!blk_cgroup_congested())
3811 		return;
3812 
3813 	/*
3814 	 * We've already scheduled a throttle, avoid taking the global swap
3815 	 * lock.
3816 	 */
3817 	if (current->throttle_queue)
3818 		return;
3819 
3820 	spin_lock(&swap_avail_lock);
3821 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3822 				  avail_lists[nid]) {
3823 		if (si->bdev) {
3824 			blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3825 			break;
3826 		}
3827 	}
3828 	spin_unlock(&swap_avail_lock);
3829 }
3830 #endif
3831 
3832 static int __init swapfile_init(void)
3833 {
3834 	int nid;
3835 
3836 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3837 					 GFP_KERNEL);
3838 	if (!swap_avail_heads) {
3839 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3840 		return -ENOMEM;
3841 	}
3842 
3843 	for_each_node(nid)
3844 		plist_head_init(&swap_avail_heads[nid]);
3845 
3846 	return 0;
3847 }
3848 subsys_initcall(swapfile_init);
3849