1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/hugetlb.h> 10 #include <linux/mman.h> 11 #include <linux/slab.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/shm.h> 18 #include <linux/blkdev.h> 19 #include <linux/random.h> 20 #include <linux/writeback.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/init.h> 24 #include <linux/module.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/security.h> 28 #include <linux/backing-dev.h> 29 #include <linux/mutex.h> 30 #include <linux/capability.h> 31 #include <linux/syscalls.h> 32 #include <linux/memcontrol.h> 33 34 #include <asm/pgtable.h> 35 #include <asm/tlbflush.h> 36 #include <linux/swapops.h> 37 #include <linux/page_cgroup.h> 38 39 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 40 unsigned char); 41 static void free_swap_count_continuations(struct swap_info_struct *); 42 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 43 44 static DEFINE_SPINLOCK(swap_lock); 45 static unsigned int nr_swapfiles; 46 long nr_swap_pages; 47 long total_swap_pages; 48 static int least_priority; 49 50 static bool swap_for_hibernation; 51 52 static const char Bad_file[] = "Bad swap file entry "; 53 static const char Unused_file[] = "Unused swap file entry "; 54 static const char Bad_offset[] = "Bad swap offset entry "; 55 static const char Unused_offset[] = "Unused swap offset entry "; 56 57 static struct swap_list_t swap_list = {-1, -1}; 58 59 static struct swap_info_struct *swap_info[MAX_SWAPFILES]; 60 61 static DEFINE_MUTEX(swapon_mutex); 62 63 static inline unsigned char swap_count(unsigned char ent) 64 { 65 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */ 66 } 67 68 /* returns 1 if swap entry is freed */ 69 static int 70 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) 71 { 72 swp_entry_t entry = swp_entry(si->type, offset); 73 struct page *page; 74 int ret = 0; 75 76 page = find_get_page(&swapper_space, entry.val); 77 if (!page) 78 return 0; 79 /* 80 * This function is called from scan_swap_map() and it's called 81 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. 82 * We have to use trylock for avoiding deadlock. This is a special 83 * case and you should use try_to_free_swap() with explicit lock_page() 84 * in usual operations. 85 */ 86 if (trylock_page(page)) { 87 ret = try_to_free_swap(page); 88 unlock_page(page); 89 } 90 page_cache_release(page); 91 return ret; 92 } 93 94 /* 95 * We need this because the bdev->unplug_fn can sleep and we cannot 96 * hold swap_lock while calling the unplug_fn. And swap_lock 97 * cannot be turned into a mutex. 98 */ 99 static DECLARE_RWSEM(swap_unplug_sem); 100 101 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page) 102 { 103 swp_entry_t entry; 104 105 down_read(&swap_unplug_sem); 106 entry.val = page_private(page); 107 if (PageSwapCache(page)) { 108 struct block_device *bdev = swap_info[swp_type(entry)]->bdev; 109 struct backing_dev_info *bdi; 110 111 /* 112 * If the page is removed from swapcache from under us (with a 113 * racy try_to_unuse/swapoff) we need an additional reference 114 * count to avoid reading garbage from page_private(page) above. 115 * If the WARN_ON triggers during a swapoff it maybe the race 116 * condition and it's harmless. However if it triggers without 117 * swapoff it signals a problem. 118 */ 119 WARN_ON(page_count(page) <= 1); 120 121 bdi = bdev->bd_inode->i_mapping->backing_dev_info; 122 blk_run_backing_dev(bdi, page); 123 } 124 up_read(&swap_unplug_sem); 125 } 126 127 /* 128 * swapon tell device that all the old swap contents can be discarded, 129 * to allow the swap device to optimize its wear-levelling. 130 */ 131 static int discard_swap(struct swap_info_struct *si) 132 { 133 struct swap_extent *se; 134 sector_t start_block; 135 sector_t nr_blocks; 136 int err = 0; 137 138 /* Do not discard the swap header page! */ 139 se = &si->first_swap_extent; 140 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 141 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 142 if (nr_blocks) { 143 err = blkdev_issue_discard(si->bdev, start_block, 144 nr_blocks, GFP_KERNEL, 145 BLKDEV_IFL_WAIT | BLKDEV_IFL_BARRIER); 146 if (err) 147 return err; 148 cond_resched(); 149 } 150 151 list_for_each_entry(se, &si->first_swap_extent.list, list) { 152 start_block = se->start_block << (PAGE_SHIFT - 9); 153 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 154 155 err = blkdev_issue_discard(si->bdev, start_block, 156 nr_blocks, GFP_KERNEL, 157 BLKDEV_IFL_WAIT | BLKDEV_IFL_BARRIER); 158 if (err) 159 break; 160 161 cond_resched(); 162 } 163 return err; /* That will often be -EOPNOTSUPP */ 164 } 165 166 /* 167 * swap allocation tell device that a cluster of swap can now be discarded, 168 * to allow the swap device to optimize its wear-levelling. 169 */ 170 static void discard_swap_cluster(struct swap_info_struct *si, 171 pgoff_t start_page, pgoff_t nr_pages) 172 { 173 struct swap_extent *se = si->curr_swap_extent; 174 int found_extent = 0; 175 176 while (nr_pages) { 177 struct list_head *lh; 178 179 if (se->start_page <= start_page && 180 start_page < se->start_page + se->nr_pages) { 181 pgoff_t offset = start_page - se->start_page; 182 sector_t start_block = se->start_block + offset; 183 sector_t nr_blocks = se->nr_pages - offset; 184 185 if (nr_blocks > nr_pages) 186 nr_blocks = nr_pages; 187 start_page += nr_blocks; 188 nr_pages -= nr_blocks; 189 190 if (!found_extent++) 191 si->curr_swap_extent = se; 192 193 start_block <<= PAGE_SHIFT - 9; 194 nr_blocks <<= PAGE_SHIFT - 9; 195 if (blkdev_issue_discard(si->bdev, start_block, 196 nr_blocks, GFP_NOIO, BLKDEV_IFL_WAIT | 197 BLKDEV_IFL_BARRIER)) 198 break; 199 } 200 201 lh = se->list.next; 202 se = list_entry(lh, struct swap_extent, list); 203 } 204 } 205 206 static int wait_for_discard(void *word) 207 { 208 schedule(); 209 return 0; 210 } 211 212 #define SWAPFILE_CLUSTER 256 213 #define LATENCY_LIMIT 256 214 215 static inline unsigned long scan_swap_map(struct swap_info_struct *si, 216 unsigned char usage) 217 { 218 unsigned long offset; 219 unsigned long scan_base; 220 unsigned long last_in_cluster = 0; 221 int latency_ration = LATENCY_LIMIT; 222 int found_free_cluster = 0; 223 224 /* 225 * We try to cluster swap pages by allocating them sequentially 226 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 227 * way, however, we resort to first-free allocation, starting 228 * a new cluster. This prevents us from scattering swap pages 229 * all over the entire swap partition, so that we reduce 230 * overall disk seek times between swap pages. -- sct 231 * But we do now try to find an empty cluster. -Andrea 232 * And we let swap pages go all over an SSD partition. Hugh 233 */ 234 235 si->flags += SWP_SCANNING; 236 scan_base = offset = si->cluster_next; 237 238 if (unlikely(!si->cluster_nr--)) { 239 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 240 si->cluster_nr = SWAPFILE_CLUSTER - 1; 241 goto checks; 242 } 243 if (si->flags & SWP_DISCARDABLE) { 244 /* 245 * Start range check on racing allocations, in case 246 * they overlap the cluster we eventually decide on 247 * (we scan without swap_lock to allow preemption). 248 * It's hardly conceivable that cluster_nr could be 249 * wrapped during our scan, but don't depend on it. 250 */ 251 if (si->lowest_alloc) 252 goto checks; 253 si->lowest_alloc = si->max; 254 si->highest_alloc = 0; 255 } 256 spin_unlock(&swap_lock); 257 258 /* 259 * If seek is expensive, start searching for new cluster from 260 * start of partition, to minimize the span of allocated swap. 261 * But if seek is cheap, search from our current position, so 262 * that swap is allocated from all over the partition: if the 263 * Flash Translation Layer only remaps within limited zones, 264 * we don't want to wear out the first zone too quickly. 265 */ 266 if (!(si->flags & SWP_SOLIDSTATE)) 267 scan_base = offset = si->lowest_bit; 268 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 269 270 /* Locate the first empty (unaligned) cluster */ 271 for (; last_in_cluster <= si->highest_bit; offset++) { 272 if (si->swap_map[offset]) 273 last_in_cluster = offset + SWAPFILE_CLUSTER; 274 else if (offset == last_in_cluster) { 275 spin_lock(&swap_lock); 276 offset -= SWAPFILE_CLUSTER - 1; 277 si->cluster_next = offset; 278 si->cluster_nr = SWAPFILE_CLUSTER - 1; 279 found_free_cluster = 1; 280 goto checks; 281 } 282 if (unlikely(--latency_ration < 0)) { 283 cond_resched(); 284 latency_ration = LATENCY_LIMIT; 285 } 286 } 287 288 offset = si->lowest_bit; 289 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 290 291 /* Locate the first empty (unaligned) cluster */ 292 for (; last_in_cluster < scan_base; offset++) { 293 if (si->swap_map[offset]) 294 last_in_cluster = offset + SWAPFILE_CLUSTER; 295 else if (offset == last_in_cluster) { 296 spin_lock(&swap_lock); 297 offset -= SWAPFILE_CLUSTER - 1; 298 si->cluster_next = offset; 299 si->cluster_nr = SWAPFILE_CLUSTER - 1; 300 found_free_cluster = 1; 301 goto checks; 302 } 303 if (unlikely(--latency_ration < 0)) { 304 cond_resched(); 305 latency_ration = LATENCY_LIMIT; 306 } 307 } 308 309 offset = scan_base; 310 spin_lock(&swap_lock); 311 si->cluster_nr = SWAPFILE_CLUSTER - 1; 312 si->lowest_alloc = 0; 313 } 314 315 checks: 316 if (!(si->flags & SWP_WRITEOK)) 317 goto no_page; 318 if (!si->highest_bit) 319 goto no_page; 320 if (offset > si->highest_bit) 321 scan_base = offset = si->lowest_bit; 322 323 /* reuse swap entry of cache-only swap if not hibernation. */ 324 if (vm_swap_full() 325 && usage == SWAP_HAS_CACHE 326 && si->swap_map[offset] == SWAP_HAS_CACHE) { 327 int swap_was_freed; 328 spin_unlock(&swap_lock); 329 swap_was_freed = __try_to_reclaim_swap(si, offset); 330 spin_lock(&swap_lock); 331 /* entry was freed successfully, try to use this again */ 332 if (swap_was_freed) 333 goto checks; 334 goto scan; /* check next one */ 335 } 336 337 if (si->swap_map[offset]) 338 goto scan; 339 340 if (offset == si->lowest_bit) 341 si->lowest_bit++; 342 if (offset == si->highest_bit) 343 si->highest_bit--; 344 si->inuse_pages++; 345 if (si->inuse_pages == si->pages) { 346 si->lowest_bit = si->max; 347 si->highest_bit = 0; 348 } 349 si->swap_map[offset] = usage; 350 si->cluster_next = offset + 1; 351 si->flags -= SWP_SCANNING; 352 353 if (si->lowest_alloc) { 354 /* 355 * Only set when SWP_DISCARDABLE, and there's a scan 356 * for a free cluster in progress or just completed. 357 */ 358 if (found_free_cluster) { 359 /* 360 * To optimize wear-levelling, discard the 361 * old data of the cluster, taking care not to 362 * discard any of its pages that have already 363 * been allocated by racing tasks (offset has 364 * already stepped over any at the beginning). 365 */ 366 if (offset < si->highest_alloc && 367 si->lowest_alloc <= last_in_cluster) 368 last_in_cluster = si->lowest_alloc - 1; 369 si->flags |= SWP_DISCARDING; 370 spin_unlock(&swap_lock); 371 372 if (offset < last_in_cluster) 373 discard_swap_cluster(si, offset, 374 last_in_cluster - offset + 1); 375 376 spin_lock(&swap_lock); 377 si->lowest_alloc = 0; 378 si->flags &= ~SWP_DISCARDING; 379 380 smp_mb(); /* wake_up_bit advises this */ 381 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING)); 382 383 } else if (si->flags & SWP_DISCARDING) { 384 /* 385 * Delay using pages allocated by racing tasks 386 * until the whole discard has been issued. We 387 * could defer that delay until swap_writepage, 388 * but it's easier to keep this self-contained. 389 */ 390 spin_unlock(&swap_lock); 391 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING), 392 wait_for_discard, TASK_UNINTERRUPTIBLE); 393 spin_lock(&swap_lock); 394 } else { 395 /* 396 * Note pages allocated by racing tasks while 397 * scan for a free cluster is in progress, so 398 * that its final discard can exclude them. 399 */ 400 if (offset < si->lowest_alloc) 401 si->lowest_alloc = offset; 402 if (offset > si->highest_alloc) 403 si->highest_alloc = offset; 404 } 405 } 406 return offset; 407 408 scan: 409 spin_unlock(&swap_lock); 410 while (++offset <= si->highest_bit) { 411 if (!si->swap_map[offset]) { 412 spin_lock(&swap_lock); 413 goto checks; 414 } 415 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 416 spin_lock(&swap_lock); 417 goto checks; 418 } 419 if (unlikely(--latency_ration < 0)) { 420 cond_resched(); 421 latency_ration = LATENCY_LIMIT; 422 } 423 } 424 offset = si->lowest_bit; 425 while (++offset < scan_base) { 426 if (!si->swap_map[offset]) { 427 spin_lock(&swap_lock); 428 goto checks; 429 } 430 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 431 spin_lock(&swap_lock); 432 goto checks; 433 } 434 if (unlikely(--latency_ration < 0)) { 435 cond_resched(); 436 latency_ration = LATENCY_LIMIT; 437 } 438 } 439 spin_lock(&swap_lock); 440 441 no_page: 442 si->flags -= SWP_SCANNING; 443 return 0; 444 } 445 446 swp_entry_t get_swap_page(void) 447 { 448 struct swap_info_struct *si; 449 pgoff_t offset; 450 int type, next; 451 int wrapped = 0; 452 453 spin_lock(&swap_lock); 454 if (nr_swap_pages <= 0) 455 goto noswap; 456 if (swap_for_hibernation) 457 goto noswap; 458 nr_swap_pages--; 459 460 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { 461 si = swap_info[type]; 462 next = si->next; 463 if (next < 0 || 464 (!wrapped && si->prio != swap_info[next]->prio)) { 465 next = swap_list.head; 466 wrapped++; 467 } 468 469 if (!si->highest_bit) 470 continue; 471 if (!(si->flags & SWP_WRITEOK)) 472 continue; 473 474 swap_list.next = next; 475 /* This is called for allocating swap entry for cache */ 476 offset = scan_swap_map(si, SWAP_HAS_CACHE); 477 if (offset) { 478 spin_unlock(&swap_lock); 479 return swp_entry(type, offset); 480 } 481 next = swap_list.next; 482 } 483 484 nr_swap_pages++; 485 noswap: 486 spin_unlock(&swap_lock); 487 return (swp_entry_t) {0}; 488 } 489 490 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 491 { 492 struct swap_info_struct *p; 493 unsigned long offset, type; 494 495 if (!entry.val) 496 goto out; 497 type = swp_type(entry); 498 if (type >= nr_swapfiles) 499 goto bad_nofile; 500 p = swap_info[type]; 501 if (!(p->flags & SWP_USED)) 502 goto bad_device; 503 offset = swp_offset(entry); 504 if (offset >= p->max) 505 goto bad_offset; 506 if (!p->swap_map[offset]) 507 goto bad_free; 508 spin_lock(&swap_lock); 509 return p; 510 511 bad_free: 512 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); 513 goto out; 514 bad_offset: 515 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); 516 goto out; 517 bad_device: 518 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); 519 goto out; 520 bad_nofile: 521 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); 522 out: 523 return NULL; 524 } 525 526 static unsigned char swap_entry_free(struct swap_info_struct *p, 527 swp_entry_t entry, unsigned char usage) 528 { 529 unsigned long offset = swp_offset(entry); 530 unsigned char count; 531 unsigned char has_cache; 532 533 count = p->swap_map[offset]; 534 has_cache = count & SWAP_HAS_CACHE; 535 count &= ~SWAP_HAS_CACHE; 536 537 if (usage == SWAP_HAS_CACHE) { 538 VM_BUG_ON(!has_cache); 539 has_cache = 0; 540 } else if (count == SWAP_MAP_SHMEM) { 541 /* 542 * Or we could insist on shmem.c using a special 543 * swap_shmem_free() and free_shmem_swap_and_cache()... 544 */ 545 count = 0; 546 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 547 if (count == COUNT_CONTINUED) { 548 if (swap_count_continued(p, offset, count)) 549 count = SWAP_MAP_MAX | COUNT_CONTINUED; 550 else 551 count = SWAP_MAP_MAX; 552 } else 553 count--; 554 } 555 556 if (!count) 557 mem_cgroup_uncharge_swap(entry); 558 559 usage = count | has_cache; 560 p->swap_map[offset] = usage; 561 562 /* free if no reference */ 563 if (!usage) { 564 struct gendisk *disk = p->bdev->bd_disk; 565 if (offset < p->lowest_bit) 566 p->lowest_bit = offset; 567 if (offset > p->highest_bit) 568 p->highest_bit = offset; 569 if (swap_list.next >= 0 && 570 p->prio > swap_info[swap_list.next]->prio) 571 swap_list.next = p->type; 572 nr_swap_pages++; 573 p->inuse_pages--; 574 if ((p->flags & SWP_BLKDEV) && 575 disk->fops->swap_slot_free_notify) 576 disk->fops->swap_slot_free_notify(p->bdev, offset); 577 } 578 579 return usage; 580 } 581 582 /* 583 * Caller has made sure that the swapdevice corresponding to entry 584 * is still around or has not been recycled. 585 */ 586 void swap_free(swp_entry_t entry) 587 { 588 struct swap_info_struct *p; 589 590 p = swap_info_get(entry); 591 if (p) { 592 swap_entry_free(p, entry, 1); 593 spin_unlock(&swap_lock); 594 } 595 } 596 597 /* 598 * Called after dropping swapcache to decrease refcnt to swap entries. 599 */ 600 void swapcache_free(swp_entry_t entry, struct page *page) 601 { 602 struct swap_info_struct *p; 603 unsigned char count; 604 605 p = swap_info_get(entry); 606 if (p) { 607 count = swap_entry_free(p, entry, SWAP_HAS_CACHE); 608 if (page) 609 mem_cgroup_uncharge_swapcache(page, entry, count != 0); 610 spin_unlock(&swap_lock); 611 } 612 } 613 614 /* 615 * How many references to page are currently swapped out? 616 * This does not give an exact answer when swap count is continued, 617 * but does include the high COUNT_CONTINUED flag to allow for that. 618 */ 619 static inline int page_swapcount(struct page *page) 620 { 621 int count = 0; 622 struct swap_info_struct *p; 623 swp_entry_t entry; 624 625 entry.val = page_private(page); 626 p = swap_info_get(entry); 627 if (p) { 628 count = swap_count(p->swap_map[swp_offset(entry)]); 629 spin_unlock(&swap_lock); 630 } 631 return count; 632 } 633 634 /* 635 * We can write to an anon page without COW if there are no other references 636 * to it. And as a side-effect, free up its swap: because the old content 637 * on disk will never be read, and seeking back there to write new content 638 * later would only waste time away from clustering. 639 */ 640 int reuse_swap_page(struct page *page) 641 { 642 int count; 643 644 VM_BUG_ON(!PageLocked(page)); 645 if (unlikely(PageKsm(page))) 646 return 0; 647 count = page_mapcount(page); 648 if (count <= 1 && PageSwapCache(page)) { 649 count += page_swapcount(page); 650 if (count == 1 && !PageWriteback(page)) { 651 delete_from_swap_cache(page); 652 SetPageDirty(page); 653 } 654 } 655 return count <= 1; 656 } 657 658 /* 659 * If swap is getting full, or if there are no more mappings of this page, 660 * then try_to_free_swap is called to free its swap space. 661 */ 662 int try_to_free_swap(struct page *page) 663 { 664 VM_BUG_ON(!PageLocked(page)); 665 666 if (!PageSwapCache(page)) 667 return 0; 668 if (PageWriteback(page)) 669 return 0; 670 if (page_swapcount(page)) 671 return 0; 672 673 delete_from_swap_cache(page); 674 SetPageDirty(page); 675 return 1; 676 } 677 678 /* 679 * Free the swap entry like above, but also try to 680 * free the page cache entry if it is the last user. 681 */ 682 int free_swap_and_cache(swp_entry_t entry) 683 { 684 struct swap_info_struct *p; 685 struct page *page = NULL; 686 687 if (non_swap_entry(entry)) 688 return 1; 689 690 p = swap_info_get(entry); 691 if (p) { 692 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) { 693 page = find_get_page(&swapper_space, entry.val); 694 if (page && !trylock_page(page)) { 695 page_cache_release(page); 696 page = NULL; 697 } 698 } 699 spin_unlock(&swap_lock); 700 } 701 if (page) { 702 /* 703 * Not mapped elsewhere, or swap space full? Free it! 704 * Also recheck PageSwapCache now page is locked (above). 705 */ 706 if (PageSwapCache(page) && !PageWriteback(page) && 707 (!page_mapped(page) || vm_swap_full())) { 708 delete_from_swap_cache(page); 709 SetPageDirty(page); 710 } 711 unlock_page(page); 712 page_cache_release(page); 713 } 714 return p != NULL; 715 } 716 717 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 718 /** 719 * mem_cgroup_count_swap_user - count the user of a swap entry 720 * @ent: the swap entry to be checked 721 * @pagep: the pointer for the swap cache page of the entry to be stored 722 * 723 * Returns the number of the user of the swap entry. The number is valid only 724 * for swaps of anonymous pages. 725 * If the entry is found on swap cache, the page is stored to pagep with 726 * refcount of it being incremented. 727 */ 728 int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep) 729 { 730 struct page *page; 731 struct swap_info_struct *p; 732 int count = 0; 733 734 page = find_get_page(&swapper_space, ent.val); 735 if (page) 736 count += page_mapcount(page); 737 p = swap_info_get(ent); 738 if (p) { 739 count += swap_count(p->swap_map[swp_offset(ent)]); 740 spin_unlock(&swap_lock); 741 } 742 743 *pagep = page; 744 return count; 745 } 746 #endif 747 748 #ifdef CONFIG_HIBERNATION 749 750 static pgoff_t hibernation_offset[MAX_SWAPFILES]; 751 /* 752 * Once hibernation starts to use swap, we freeze swap_map[]. Otherwise, 753 * saved swap_map[] image to the disk will be an incomplete because it's 754 * changing without synchronization with hibernation snap shot. 755 * At resume, we just make swap_for_hibernation=false. We can forget 756 * used maps easily. 757 */ 758 void hibernation_freeze_swap(void) 759 { 760 int i; 761 762 spin_lock(&swap_lock); 763 764 printk(KERN_INFO "PM: Freeze Swap\n"); 765 swap_for_hibernation = true; 766 for (i = 0; i < MAX_SWAPFILES; i++) 767 hibernation_offset[i] = 1; 768 spin_unlock(&swap_lock); 769 } 770 771 void hibernation_thaw_swap(void) 772 { 773 spin_lock(&swap_lock); 774 if (swap_for_hibernation) { 775 printk(KERN_INFO "PM: Thaw Swap\n"); 776 swap_for_hibernation = false; 777 } 778 spin_unlock(&swap_lock); 779 } 780 781 /* 782 * Because updateing swap_map[] can make not-saved-status-change, 783 * we use our own easy allocator. 784 * Please see kernel/power/swap.c, Used swaps are recorded into 785 * RB-tree. 786 */ 787 swp_entry_t get_swap_for_hibernation(int type) 788 { 789 pgoff_t off; 790 swp_entry_t val = {0}; 791 struct swap_info_struct *si; 792 793 spin_lock(&swap_lock); 794 795 si = swap_info[type]; 796 if (!si || !(si->flags & SWP_WRITEOK)) 797 goto done; 798 799 for (off = hibernation_offset[type]; off < si->max; ++off) { 800 if (!si->swap_map[off]) 801 break; 802 } 803 if (off < si->max) { 804 val = swp_entry(type, off); 805 hibernation_offset[type] = off + 1; 806 } 807 done: 808 spin_unlock(&swap_lock); 809 return val; 810 } 811 812 void swap_free_for_hibernation(swp_entry_t ent) 813 { 814 /* Nothing to do */ 815 } 816 817 /* 818 * Find the swap type that corresponds to given device (if any). 819 * 820 * @offset - number of the PAGE_SIZE-sized block of the device, starting 821 * from 0, in which the swap header is expected to be located. 822 * 823 * This is needed for the suspend to disk (aka swsusp). 824 */ 825 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 826 { 827 struct block_device *bdev = NULL; 828 int type; 829 830 if (device) 831 bdev = bdget(device); 832 833 spin_lock(&swap_lock); 834 for (type = 0; type < nr_swapfiles; type++) { 835 struct swap_info_struct *sis = swap_info[type]; 836 837 if (!(sis->flags & SWP_WRITEOK)) 838 continue; 839 840 if (!bdev) { 841 if (bdev_p) 842 *bdev_p = bdgrab(sis->bdev); 843 844 spin_unlock(&swap_lock); 845 return type; 846 } 847 if (bdev == sis->bdev) { 848 struct swap_extent *se = &sis->first_swap_extent; 849 850 if (se->start_block == offset) { 851 if (bdev_p) 852 *bdev_p = bdgrab(sis->bdev); 853 854 spin_unlock(&swap_lock); 855 bdput(bdev); 856 return type; 857 } 858 } 859 } 860 spin_unlock(&swap_lock); 861 if (bdev) 862 bdput(bdev); 863 864 return -ENODEV; 865 } 866 867 /* 868 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 869 * corresponding to given index in swap_info (swap type). 870 */ 871 sector_t swapdev_block(int type, pgoff_t offset) 872 { 873 struct block_device *bdev; 874 875 if ((unsigned int)type >= nr_swapfiles) 876 return 0; 877 if (!(swap_info[type]->flags & SWP_WRITEOK)) 878 return 0; 879 return map_swap_entry(swp_entry(type, offset), &bdev); 880 } 881 882 /* 883 * Return either the total number of swap pages of given type, or the number 884 * of free pages of that type (depending on @free) 885 * 886 * This is needed for software suspend 887 */ 888 unsigned int count_swap_pages(int type, int free) 889 { 890 unsigned int n = 0; 891 892 spin_lock(&swap_lock); 893 if ((unsigned int)type < nr_swapfiles) { 894 struct swap_info_struct *sis = swap_info[type]; 895 896 if (sis->flags & SWP_WRITEOK) { 897 n = sis->pages; 898 if (free) 899 n -= sis->inuse_pages; 900 } 901 } 902 spin_unlock(&swap_lock); 903 return n; 904 } 905 #endif /* CONFIG_HIBERNATION */ 906 907 /* 908 * No need to decide whether this PTE shares the swap entry with others, 909 * just let do_wp_page work it out if a write is requested later - to 910 * force COW, vm_page_prot omits write permission from any private vma. 911 */ 912 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 913 unsigned long addr, swp_entry_t entry, struct page *page) 914 { 915 struct mem_cgroup *ptr = NULL; 916 spinlock_t *ptl; 917 pte_t *pte; 918 int ret = 1; 919 920 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) { 921 ret = -ENOMEM; 922 goto out_nolock; 923 } 924 925 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 926 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) { 927 if (ret > 0) 928 mem_cgroup_cancel_charge_swapin(ptr); 929 ret = 0; 930 goto out; 931 } 932 933 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 934 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 935 get_page(page); 936 set_pte_at(vma->vm_mm, addr, pte, 937 pte_mkold(mk_pte(page, vma->vm_page_prot))); 938 page_add_anon_rmap(page, vma, addr); 939 mem_cgroup_commit_charge_swapin(page, ptr); 940 swap_free(entry); 941 /* 942 * Move the page to the active list so it is not 943 * immediately swapped out again after swapon. 944 */ 945 activate_page(page); 946 out: 947 pte_unmap_unlock(pte, ptl); 948 out_nolock: 949 return ret; 950 } 951 952 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 953 unsigned long addr, unsigned long end, 954 swp_entry_t entry, struct page *page) 955 { 956 pte_t swp_pte = swp_entry_to_pte(entry); 957 pte_t *pte; 958 int ret = 0; 959 960 /* 961 * We don't actually need pte lock while scanning for swp_pte: since 962 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 963 * page table while we're scanning; though it could get zapped, and on 964 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 965 * of unmatched parts which look like swp_pte, so unuse_pte must 966 * recheck under pte lock. Scanning without pte lock lets it be 967 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 968 */ 969 pte = pte_offset_map(pmd, addr); 970 do { 971 /* 972 * swapoff spends a _lot_ of time in this loop! 973 * Test inline before going to call unuse_pte. 974 */ 975 if (unlikely(pte_same(*pte, swp_pte))) { 976 pte_unmap(pte); 977 ret = unuse_pte(vma, pmd, addr, entry, page); 978 if (ret) 979 goto out; 980 pte = pte_offset_map(pmd, addr); 981 } 982 } while (pte++, addr += PAGE_SIZE, addr != end); 983 pte_unmap(pte - 1); 984 out: 985 return ret; 986 } 987 988 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 989 unsigned long addr, unsigned long end, 990 swp_entry_t entry, struct page *page) 991 { 992 pmd_t *pmd; 993 unsigned long next; 994 int ret; 995 996 pmd = pmd_offset(pud, addr); 997 do { 998 next = pmd_addr_end(addr, end); 999 if (pmd_none_or_clear_bad(pmd)) 1000 continue; 1001 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 1002 if (ret) 1003 return ret; 1004 } while (pmd++, addr = next, addr != end); 1005 return 0; 1006 } 1007 1008 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 1009 unsigned long addr, unsigned long end, 1010 swp_entry_t entry, struct page *page) 1011 { 1012 pud_t *pud; 1013 unsigned long next; 1014 int ret; 1015 1016 pud = pud_offset(pgd, addr); 1017 do { 1018 next = pud_addr_end(addr, end); 1019 if (pud_none_or_clear_bad(pud)) 1020 continue; 1021 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 1022 if (ret) 1023 return ret; 1024 } while (pud++, addr = next, addr != end); 1025 return 0; 1026 } 1027 1028 static int unuse_vma(struct vm_area_struct *vma, 1029 swp_entry_t entry, struct page *page) 1030 { 1031 pgd_t *pgd; 1032 unsigned long addr, end, next; 1033 int ret; 1034 1035 if (page_anon_vma(page)) { 1036 addr = page_address_in_vma(page, vma); 1037 if (addr == -EFAULT) 1038 return 0; 1039 else 1040 end = addr + PAGE_SIZE; 1041 } else { 1042 addr = vma->vm_start; 1043 end = vma->vm_end; 1044 } 1045 1046 pgd = pgd_offset(vma->vm_mm, addr); 1047 do { 1048 next = pgd_addr_end(addr, end); 1049 if (pgd_none_or_clear_bad(pgd)) 1050 continue; 1051 ret = unuse_pud_range(vma, pgd, addr, next, entry, page); 1052 if (ret) 1053 return ret; 1054 } while (pgd++, addr = next, addr != end); 1055 return 0; 1056 } 1057 1058 static int unuse_mm(struct mm_struct *mm, 1059 swp_entry_t entry, struct page *page) 1060 { 1061 struct vm_area_struct *vma; 1062 int ret = 0; 1063 1064 if (!down_read_trylock(&mm->mmap_sem)) { 1065 /* 1066 * Activate page so shrink_inactive_list is unlikely to unmap 1067 * its ptes while lock is dropped, so swapoff can make progress. 1068 */ 1069 activate_page(page); 1070 unlock_page(page); 1071 down_read(&mm->mmap_sem); 1072 lock_page(page); 1073 } 1074 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1075 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 1076 break; 1077 } 1078 up_read(&mm->mmap_sem); 1079 return (ret < 0)? ret: 0; 1080 } 1081 1082 /* 1083 * Scan swap_map from current position to next entry still in use. 1084 * Recycle to start on reaching the end, returning 0 when empty. 1085 */ 1086 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 1087 unsigned int prev) 1088 { 1089 unsigned int max = si->max; 1090 unsigned int i = prev; 1091 unsigned char count; 1092 1093 /* 1094 * No need for swap_lock here: we're just looking 1095 * for whether an entry is in use, not modifying it; false 1096 * hits are okay, and sys_swapoff() has already prevented new 1097 * allocations from this area (while holding swap_lock). 1098 */ 1099 for (;;) { 1100 if (++i >= max) { 1101 if (!prev) { 1102 i = 0; 1103 break; 1104 } 1105 /* 1106 * No entries in use at top of swap_map, 1107 * loop back to start and recheck there. 1108 */ 1109 max = prev + 1; 1110 prev = 0; 1111 i = 1; 1112 } 1113 count = si->swap_map[i]; 1114 if (count && swap_count(count) != SWAP_MAP_BAD) 1115 break; 1116 } 1117 return i; 1118 } 1119 1120 /* 1121 * We completely avoid races by reading each swap page in advance, 1122 * and then search for the process using it. All the necessary 1123 * page table adjustments can then be made atomically. 1124 */ 1125 static int try_to_unuse(unsigned int type) 1126 { 1127 struct swap_info_struct *si = swap_info[type]; 1128 struct mm_struct *start_mm; 1129 unsigned char *swap_map; 1130 unsigned char swcount; 1131 struct page *page; 1132 swp_entry_t entry; 1133 unsigned int i = 0; 1134 int retval = 0; 1135 1136 /* 1137 * When searching mms for an entry, a good strategy is to 1138 * start at the first mm we freed the previous entry from 1139 * (though actually we don't notice whether we or coincidence 1140 * freed the entry). Initialize this start_mm with a hold. 1141 * 1142 * A simpler strategy would be to start at the last mm we 1143 * freed the previous entry from; but that would take less 1144 * advantage of mmlist ordering, which clusters forked mms 1145 * together, child after parent. If we race with dup_mmap(), we 1146 * prefer to resolve parent before child, lest we miss entries 1147 * duplicated after we scanned child: using last mm would invert 1148 * that. 1149 */ 1150 start_mm = &init_mm; 1151 atomic_inc(&init_mm.mm_users); 1152 1153 /* 1154 * Keep on scanning until all entries have gone. Usually, 1155 * one pass through swap_map is enough, but not necessarily: 1156 * there are races when an instance of an entry might be missed. 1157 */ 1158 while ((i = find_next_to_unuse(si, i)) != 0) { 1159 if (signal_pending(current)) { 1160 retval = -EINTR; 1161 break; 1162 } 1163 1164 /* 1165 * Get a page for the entry, using the existing swap 1166 * cache page if there is one. Otherwise, get a clean 1167 * page and read the swap into it. 1168 */ 1169 swap_map = &si->swap_map[i]; 1170 entry = swp_entry(type, i); 1171 page = read_swap_cache_async(entry, 1172 GFP_HIGHUSER_MOVABLE, NULL, 0); 1173 if (!page) { 1174 /* 1175 * Either swap_duplicate() failed because entry 1176 * has been freed independently, and will not be 1177 * reused since sys_swapoff() already disabled 1178 * allocation from here, or alloc_page() failed. 1179 */ 1180 if (!*swap_map) 1181 continue; 1182 retval = -ENOMEM; 1183 break; 1184 } 1185 1186 /* 1187 * Don't hold on to start_mm if it looks like exiting. 1188 */ 1189 if (atomic_read(&start_mm->mm_users) == 1) { 1190 mmput(start_mm); 1191 start_mm = &init_mm; 1192 atomic_inc(&init_mm.mm_users); 1193 } 1194 1195 /* 1196 * Wait for and lock page. When do_swap_page races with 1197 * try_to_unuse, do_swap_page can handle the fault much 1198 * faster than try_to_unuse can locate the entry. This 1199 * apparently redundant "wait_on_page_locked" lets try_to_unuse 1200 * defer to do_swap_page in such a case - in some tests, 1201 * do_swap_page and try_to_unuse repeatedly compete. 1202 */ 1203 wait_on_page_locked(page); 1204 wait_on_page_writeback(page); 1205 lock_page(page); 1206 wait_on_page_writeback(page); 1207 1208 /* 1209 * Remove all references to entry. 1210 */ 1211 swcount = *swap_map; 1212 if (swap_count(swcount) == SWAP_MAP_SHMEM) { 1213 retval = shmem_unuse(entry, page); 1214 /* page has already been unlocked and released */ 1215 if (retval < 0) 1216 break; 1217 continue; 1218 } 1219 if (swap_count(swcount) && start_mm != &init_mm) 1220 retval = unuse_mm(start_mm, entry, page); 1221 1222 if (swap_count(*swap_map)) { 1223 int set_start_mm = (*swap_map >= swcount); 1224 struct list_head *p = &start_mm->mmlist; 1225 struct mm_struct *new_start_mm = start_mm; 1226 struct mm_struct *prev_mm = start_mm; 1227 struct mm_struct *mm; 1228 1229 atomic_inc(&new_start_mm->mm_users); 1230 atomic_inc(&prev_mm->mm_users); 1231 spin_lock(&mmlist_lock); 1232 while (swap_count(*swap_map) && !retval && 1233 (p = p->next) != &start_mm->mmlist) { 1234 mm = list_entry(p, struct mm_struct, mmlist); 1235 if (!atomic_inc_not_zero(&mm->mm_users)) 1236 continue; 1237 spin_unlock(&mmlist_lock); 1238 mmput(prev_mm); 1239 prev_mm = mm; 1240 1241 cond_resched(); 1242 1243 swcount = *swap_map; 1244 if (!swap_count(swcount)) /* any usage ? */ 1245 ; 1246 else if (mm == &init_mm) 1247 set_start_mm = 1; 1248 else 1249 retval = unuse_mm(mm, entry, page); 1250 1251 if (set_start_mm && *swap_map < swcount) { 1252 mmput(new_start_mm); 1253 atomic_inc(&mm->mm_users); 1254 new_start_mm = mm; 1255 set_start_mm = 0; 1256 } 1257 spin_lock(&mmlist_lock); 1258 } 1259 spin_unlock(&mmlist_lock); 1260 mmput(prev_mm); 1261 mmput(start_mm); 1262 start_mm = new_start_mm; 1263 } 1264 if (retval) { 1265 unlock_page(page); 1266 page_cache_release(page); 1267 break; 1268 } 1269 1270 /* 1271 * If a reference remains (rare), we would like to leave 1272 * the page in the swap cache; but try_to_unmap could 1273 * then re-duplicate the entry once we drop page lock, 1274 * so we might loop indefinitely; also, that page could 1275 * not be swapped out to other storage meanwhile. So: 1276 * delete from cache even if there's another reference, 1277 * after ensuring that the data has been saved to disk - 1278 * since if the reference remains (rarer), it will be 1279 * read from disk into another page. Splitting into two 1280 * pages would be incorrect if swap supported "shared 1281 * private" pages, but they are handled by tmpfs files. 1282 * 1283 * Given how unuse_vma() targets one particular offset 1284 * in an anon_vma, once the anon_vma has been determined, 1285 * this splitting happens to be just what is needed to 1286 * handle where KSM pages have been swapped out: re-reading 1287 * is unnecessarily slow, but we can fix that later on. 1288 */ 1289 if (swap_count(*swap_map) && 1290 PageDirty(page) && PageSwapCache(page)) { 1291 struct writeback_control wbc = { 1292 .sync_mode = WB_SYNC_NONE, 1293 }; 1294 1295 swap_writepage(page, &wbc); 1296 lock_page(page); 1297 wait_on_page_writeback(page); 1298 } 1299 1300 /* 1301 * It is conceivable that a racing task removed this page from 1302 * swap cache just before we acquired the page lock at the top, 1303 * or while we dropped it in unuse_mm(). The page might even 1304 * be back in swap cache on another swap area: that we must not 1305 * delete, since it may not have been written out to swap yet. 1306 */ 1307 if (PageSwapCache(page) && 1308 likely(page_private(page) == entry.val)) 1309 delete_from_swap_cache(page); 1310 1311 /* 1312 * So we could skip searching mms once swap count went 1313 * to 1, we did not mark any present ptes as dirty: must 1314 * mark page dirty so shrink_page_list will preserve it. 1315 */ 1316 SetPageDirty(page); 1317 unlock_page(page); 1318 page_cache_release(page); 1319 1320 /* 1321 * Make sure that we aren't completely killing 1322 * interactive performance. 1323 */ 1324 cond_resched(); 1325 } 1326 1327 mmput(start_mm); 1328 return retval; 1329 } 1330 1331 /* 1332 * After a successful try_to_unuse, if no swap is now in use, we know 1333 * we can empty the mmlist. swap_lock must be held on entry and exit. 1334 * Note that mmlist_lock nests inside swap_lock, and an mm must be 1335 * added to the mmlist just after page_duplicate - before would be racy. 1336 */ 1337 static void drain_mmlist(void) 1338 { 1339 struct list_head *p, *next; 1340 unsigned int type; 1341 1342 for (type = 0; type < nr_swapfiles; type++) 1343 if (swap_info[type]->inuse_pages) 1344 return; 1345 spin_lock(&mmlist_lock); 1346 list_for_each_safe(p, next, &init_mm.mmlist) 1347 list_del_init(p); 1348 spin_unlock(&mmlist_lock); 1349 } 1350 1351 /* 1352 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 1353 * corresponds to page offset for the specified swap entry. 1354 * Note that the type of this function is sector_t, but it returns page offset 1355 * into the bdev, not sector offset. 1356 */ 1357 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 1358 { 1359 struct swap_info_struct *sis; 1360 struct swap_extent *start_se; 1361 struct swap_extent *se; 1362 pgoff_t offset; 1363 1364 sis = swap_info[swp_type(entry)]; 1365 *bdev = sis->bdev; 1366 1367 offset = swp_offset(entry); 1368 start_se = sis->curr_swap_extent; 1369 se = start_se; 1370 1371 for ( ; ; ) { 1372 struct list_head *lh; 1373 1374 if (se->start_page <= offset && 1375 offset < (se->start_page + se->nr_pages)) { 1376 return se->start_block + (offset - se->start_page); 1377 } 1378 lh = se->list.next; 1379 se = list_entry(lh, struct swap_extent, list); 1380 sis->curr_swap_extent = se; 1381 BUG_ON(se == start_se); /* It *must* be present */ 1382 } 1383 } 1384 1385 /* 1386 * Returns the page offset into bdev for the specified page's swap entry. 1387 */ 1388 sector_t map_swap_page(struct page *page, struct block_device **bdev) 1389 { 1390 swp_entry_t entry; 1391 entry.val = page_private(page); 1392 return map_swap_entry(entry, bdev); 1393 } 1394 1395 /* 1396 * Free all of a swapdev's extent information 1397 */ 1398 static void destroy_swap_extents(struct swap_info_struct *sis) 1399 { 1400 while (!list_empty(&sis->first_swap_extent.list)) { 1401 struct swap_extent *se; 1402 1403 se = list_entry(sis->first_swap_extent.list.next, 1404 struct swap_extent, list); 1405 list_del(&se->list); 1406 kfree(se); 1407 } 1408 } 1409 1410 /* 1411 * Add a block range (and the corresponding page range) into this swapdev's 1412 * extent list. The extent list is kept sorted in page order. 1413 * 1414 * This function rather assumes that it is called in ascending page order. 1415 */ 1416 static int 1417 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 1418 unsigned long nr_pages, sector_t start_block) 1419 { 1420 struct swap_extent *se; 1421 struct swap_extent *new_se; 1422 struct list_head *lh; 1423 1424 if (start_page == 0) { 1425 se = &sis->first_swap_extent; 1426 sis->curr_swap_extent = se; 1427 se->start_page = 0; 1428 se->nr_pages = nr_pages; 1429 se->start_block = start_block; 1430 return 1; 1431 } else { 1432 lh = sis->first_swap_extent.list.prev; /* Highest extent */ 1433 se = list_entry(lh, struct swap_extent, list); 1434 BUG_ON(se->start_page + se->nr_pages != start_page); 1435 if (se->start_block + se->nr_pages == start_block) { 1436 /* Merge it */ 1437 se->nr_pages += nr_pages; 1438 return 0; 1439 } 1440 } 1441 1442 /* 1443 * No merge. Insert a new extent, preserving ordering. 1444 */ 1445 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 1446 if (new_se == NULL) 1447 return -ENOMEM; 1448 new_se->start_page = start_page; 1449 new_se->nr_pages = nr_pages; 1450 new_se->start_block = start_block; 1451 1452 list_add_tail(&new_se->list, &sis->first_swap_extent.list); 1453 return 1; 1454 } 1455 1456 /* 1457 * A `swap extent' is a simple thing which maps a contiguous range of pages 1458 * onto a contiguous range of disk blocks. An ordered list of swap extents 1459 * is built at swapon time and is then used at swap_writepage/swap_readpage 1460 * time for locating where on disk a page belongs. 1461 * 1462 * If the swapfile is an S_ISBLK block device, a single extent is installed. 1463 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 1464 * swap files identically. 1465 * 1466 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 1467 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 1468 * swapfiles are handled *identically* after swapon time. 1469 * 1470 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 1471 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 1472 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 1473 * requirements, they are simply tossed out - we will never use those blocks 1474 * for swapping. 1475 * 1476 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 1477 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 1478 * which will scribble on the fs. 1479 * 1480 * The amount of disk space which a single swap extent represents varies. 1481 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 1482 * extents in the list. To avoid much list walking, we cache the previous 1483 * search location in `curr_swap_extent', and start new searches from there. 1484 * This is extremely effective. The average number of iterations in 1485 * map_swap_page() has been measured at about 0.3 per page. - akpm. 1486 */ 1487 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 1488 { 1489 struct inode *inode; 1490 unsigned blocks_per_page; 1491 unsigned long page_no; 1492 unsigned blkbits; 1493 sector_t probe_block; 1494 sector_t last_block; 1495 sector_t lowest_block = -1; 1496 sector_t highest_block = 0; 1497 int nr_extents = 0; 1498 int ret; 1499 1500 inode = sis->swap_file->f_mapping->host; 1501 if (S_ISBLK(inode->i_mode)) { 1502 ret = add_swap_extent(sis, 0, sis->max, 0); 1503 *span = sis->pages; 1504 goto out; 1505 } 1506 1507 blkbits = inode->i_blkbits; 1508 blocks_per_page = PAGE_SIZE >> blkbits; 1509 1510 /* 1511 * Map all the blocks into the extent list. This code doesn't try 1512 * to be very smart. 1513 */ 1514 probe_block = 0; 1515 page_no = 0; 1516 last_block = i_size_read(inode) >> blkbits; 1517 while ((probe_block + blocks_per_page) <= last_block && 1518 page_no < sis->max) { 1519 unsigned block_in_page; 1520 sector_t first_block; 1521 1522 first_block = bmap(inode, probe_block); 1523 if (first_block == 0) 1524 goto bad_bmap; 1525 1526 /* 1527 * It must be PAGE_SIZE aligned on-disk 1528 */ 1529 if (first_block & (blocks_per_page - 1)) { 1530 probe_block++; 1531 goto reprobe; 1532 } 1533 1534 for (block_in_page = 1; block_in_page < blocks_per_page; 1535 block_in_page++) { 1536 sector_t block; 1537 1538 block = bmap(inode, probe_block + block_in_page); 1539 if (block == 0) 1540 goto bad_bmap; 1541 if (block != first_block + block_in_page) { 1542 /* Discontiguity */ 1543 probe_block++; 1544 goto reprobe; 1545 } 1546 } 1547 1548 first_block >>= (PAGE_SHIFT - blkbits); 1549 if (page_no) { /* exclude the header page */ 1550 if (first_block < lowest_block) 1551 lowest_block = first_block; 1552 if (first_block > highest_block) 1553 highest_block = first_block; 1554 } 1555 1556 /* 1557 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 1558 */ 1559 ret = add_swap_extent(sis, page_no, 1, first_block); 1560 if (ret < 0) 1561 goto out; 1562 nr_extents += ret; 1563 page_no++; 1564 probe_block += blocks_per_page; 1565 reprobe: 1566 continue; 1567 } 1568 ret = nr_extents; 1569 *span = 1 + highest_block - lowest_block; 1570 if (page_no == 0) 1571 page_no = 1; /* force Empty message */ 1572 sis->max = page_no; 1573 sis->pages = page_no - 1; 1574 sis->highest_bit = page_no - 1; 1575 out: 1576 return ret; 1577 bad_bmap: 1578 printk(KERN_ERR "swapon: swapfile has holes\n"); 1579 ret = -EINVAL; 1580 goto out; 1581 } 1582 1583 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 1584 { 1585 struct swap_info_struct *p = NULL; 1586 unsigned char *swap_map; 1587 struct file *swap_file, *victim; 1588 struct address_space *mapping; 1589 struct inode *inode; 1590 char *pathname; 1591 int i, type, prev; 1592 int err; 1593 1594 if (!capable(CAP_SYS_ADMIN)) 1595 return -EPERM; 1596 1597 pathname = getname(specialfile); 1598 err = PTR_ERR(pathname); 1599 if (IS_ERR(pathname)) 1600 goto out; 1601 1602 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0); 1603 putname(pathname); 1604 err = PTR_ERR(victim); 1605 if (IS_ERR(victim)) 1606 goto out; 1607 1608 mapping = victim->f_mapping; 1609 prev = -1; 1610 spin_lock(&swap_lock); 1611 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) { 1612 p = swap_info[type]; 1613 if (p->flags & SWP_WRITEOK) { 1614 if (p->swap_file->f_mapping == mapping) 1615 break; 1616 } 1617 prev = type; 1618 } 1619 if (type < 0) { 1620 err = -EINVAL; 1621 spin_unlock(&swap_lock); 1622 goto out_dput; 1623 } 1624 if (!security_vm_enough_memory(p->pages)) 1625 vm_unacct_memory(p->pages); 1626 else { 1627 err = -ENOMEM; 1628 spin_unlock(&swap_lock); 1629 goto out_dput; 1630 } 1631 if (prev < 0) 1632 swap_list.head = p->next; 1633 else 1634 swap_info[prev]->next = p->next; 1635 if (type == swap_list.next) { 1636 /* just pick something that's safe... */ 1637 swap_list.next = swap_list.head; 1638 } 1639 if (p->prio < 0) { 1640 for (i = p->next; i >= 0; i = swap_info[i]->next) 1641 swap_info[i]->prio = p->prio--; 1642 least_priority++; 1643 } 1644 nr_swap_pages -= p->pages; 1645 total_swap_pages -= p->pages; 1646 p->flags &= ~SWP_WRITEOK; 1647 spin_unlock(&swap_lock); 1648 1649 current->flags |= PF_OOM_ORIGIN; 1650 err = try_to_unuse(type); 1651 current->flags &= ~PF_OOM_ORIGIN; 1652 1653 if (err) { 1654 /* re-insert swap space back into swap_list */ 1655 spin_lock(&swap_lock); 1656 if (p->prio < 0) 1657 p->prio = --least_priority; 1658 prev = -1; 1659 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) { 1660 if (p->prio >= swap_info[i]->prio) 1661 break; 1662 prev = i; 1663 } 1664 p->next = i; 1665 if (prev < 0) 1666 swap_list.head = swap_list.next = type; 1667 else 1668 swap_info[prev]->next = type; 1669 nr_swap_pages += p->pages; 1670 total_swap_pages += p->pages; 1671 p->flags |= SWP_WRITEOK; 1672 spin_unlock(&swap_lock); 1673 goto out_dput; 1674 } 1675 1676 /* wait for any unplug function to finish */ 1677 down_write(&swap_unplug_sem); 1678 up_write(&swap_unplug_sem); 1679 1680 destroy_swap_extents(p); 1681 if (p->flags & SWP_CONTINUED) 1682 free_swap_count_continuations(p); 1683 1684 mutex_lock(&swapon_mutex); 1685 spin_lock(&swap_lock); 1686 drain_mmlist(); 1687 1688 /* wait for anyone still in scan_swap_map */ 1689 p->highest_bit = 0; /* cuts scans short */ 1690 while (p->flags >= SWP_SCANNING) { 1691 spin_unlock(&swap_lock); 1692 schedule_timeout_uninterruptible(1); 1693 spin_lock(&swap_lock); 1694 } 1695 1696 swap_file = p->swap_file; 1697 p->swap_file = NULL; 1698 p->max = 0; 1699 swap_map = p->swap_map; 1700 p->swap_map = NULL; 1701 p->flags = 0; 1702 spin_unlock(&swap_lock); 1703 mutex_unlock(&swapon_mutex); 1704 vfree(swap_map); 1705 /* Destroy swap account informatin */ 1706 swap_cgroup_swapoff(type); 1707 1708 inode = mapping->host; 1709 if (S_ISBLK(inode->i_mode)) { 1710 struct block_device *bdev = I_BDEV(inode); 1711 set_blocksize(bdev, p->old_block_size); 1712 bd_release(bdev); 1713 } else { 1714 mutex_lock(&inode->i_mutex); 1715 inode->i_flags &= ~S_SWAPFILE; 1716 mutex_unlock(&inode->i_mutex); 1717 } 1718 filp_close(swap_file, NULL); 1719 err = 0; 1720 1721 out_dput: 1722 filp_close(victim, NULL); 1723 out: 1724 return err; 1725 } 1726 1727 #ifdef CONFIG_PROC_FS 1728 /* iterator */ 1729 static void *swap_start(struct seq_file *swap, loff_t *pos) 1730 { 1731 struct swap_info_struct *si; 1732 int type; 1733 loff_t l = *pos; 1734 1735 mutex_lock(&swapon_mutex); 1736 1737 if (!l) 1738 return SEQ_START_TOKEN; 1739 1740 for (type = 0; type < nr_swapfiles; type++) { 1741 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 1742 si = swap_info[type]; 1743 if (!(si->flags & SWP_USED) || !si->swap_map) 1744 continue; 1745 if (!--l) 1746 return si; 1747 } 1748 1749 return NULL; 1750 } 1751 1752 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 1753 { 1754 struct swap_info_struct *si = v; 1755 int type; 1756 1757 if (v == SEQ_START_TOKEN) 1758 type = 0; 1759 else 1760 type = si->type + 1; 1761 1762 for (; type < nr_swapfiles; type++) { 1763 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 1764 si = swap_info[type]; 1765 if (!(si->flags & SWP_USED) || !si->swap_map) 1766 continue; 1767 ++*pos; 1768 return si; 1769 } 1770 1771 return NULL; 1772 } 1773 1774 static void swap_stop(struct seq_file *swap, void *v) 1775 { 1776 mutex_unlock(&swapon_mutex); 1777 } 1778 1779 static int swap_show(struct seq_file *swap, void *v) 1780 { 1781 struct swap_info_struct *si = v; 1782 struct file *file; 1783 int len; 1784 1785 if (si == SEQ_START_TOKEN) { 1786 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 1787 return 0; 1788 } 1789 1790 file = si->swap_file; 1791 len = seq_path(swap, &file->f_path, " \t\n\\"); 1792 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 1793 len < 40 ? 40 - len : 1, " ", 1794 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ? 1795 "partition" : "file\t", 1796 si->pages << (PAGE_SHIFT - 10), 1797 si->inuse_pages << (PAGE_SHIFT - 10), 1798 si->prio); 1799 return 0; 1800 } 1801 1802 static const struct seq_operations swaps_op = { 1803 .start = swap_start, 1804 .next = swap_next, 1805 .stop = swap_stop, 1806 .show = swap_show 1807 }; 1808 1809 static int swaps_open(struct inode *inode, struct file *file) 1810 { 1811 return seq_open(file, &swaps_op); 1812 } 1813 1814 static const struct file_operations proc_swaps_operations = { 1815 .open = swaps_open, 1816 .read = seq_read, 1817 .llseek = seq_lseek, 1818 .release = seq_release, 1819 }; 1820 1821 static int __init procswaps_init(void) 1822 { 1823 proc_create("swaps", 0, NULL, &proc_swaps_operations); 1824 return 0; 1825 } 1826 __initcall(procswaps_init); 1827 #endif /* CONFIG_PROC_FS */ 1828 1829 #ifdef MAX_SWAPFILES_CHECK 1830 static int __init max_swapfiles_check(void) 1831 { 1832 MAX_SWAPFILES_CHECK(); 1833 return 0; 1834 } 1835 late_initcall(max_swapfiles_check); 1836 #endif 1837 1838 /* 1839 * Written 01/25/92 by Simmule Turner, heavily changed by Linus. 1840 * 1841 * The swapon system call 1842 */ 1843 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 1844 { 1845 struct swap_info_struct *p; 1846 char *name = NULL; 1847 struct block_device *bdev = NULL; 1848 struct file *swap_file = NULL; 1849 struct address_space *mapping; 1850 unsigned int type; 1851 int i, prev; 1852 int error; 1853 union swap_header *swap_header; 1854 unsigned int nr_good_pages; 1855 int nr_extents = 0; 1856 sector_t span; 1857 unsigned long maxpages; 1858 unsigned long swapfilepages; 1859 unsigned char *swap_map = NULL; 1860 struct page *page = NULL; 1861 struct inode *inode = NULL; 1862 int did_down = 0; 1863 1864 if (!capable(CAP_SYS_ADMIN)) 1865 return -EPERM; 1866 1867 p = kzalloc(sizeof(*p), GFP_KERNEL); 1868 if (!p) 1869 return -ENOMEM; 1870 1871 spin_lock(&swap_lock); 1872 for (type = 0; type < nr_swapfiles; type++) { 1873 if (!(swap_info[type]->flags & SWP_USED)) 1874 break; 1875 } 1876 error = -EPERM; 1877 if (type >= MAX_SWAPFILES) { 1878 spin_unlock(&swap_lock); 1879 kfree(p); 1880 goto out; 1881 } 1882 if (type >= nr_swapfiles) { 1883 p->type = type; 1884 swap_info[type] = p; 1885 /* 1886 * Write swap_info[type] before nr_swapfiles, in case a 1887 * racing procfs swap_start() or swap_next() is reading them. 1888 * (We never shrink nr_swapfiles, we never free this entry.) 1889 */ 1890 smp_wmb(); 1891 nr_swapfiles++; 1892 } else { 1893 kfree(p); 1894 p = swap_info[type]; 1895 /* 1896 * Do not memset this entry: a racing procfs swap_next() 1897 * would be relying on p->type to remain valid. 1898 */ 1899 } 1900 INIT_LIST_HEAD(&p->first_swap_extent.list); 1901 p->flags = SWP_USED; 1902 p->next = -1; 1903 spin_unlock(&swap_lock); 1904 1905 name = getname(specialfile); 1906 error = PTR_ERR(name); 1907 if (IS_ERR(name)) { 1908 name = NULL; 1909 goto bad_swap_2; 1910 } 1911 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0); 1912 error = PTR_ERR(swap_file); 1913 if (IS_ERR(swap_file)) { 1914 swap_file = NULL; 1915 goto bad_swap_2; 1916 } 1917 1918 p->swap_file = swap_file; 1919 mapping = swap_file->f_mapping; 1920 inode = mapping->host; 1921 1922 error = -EBUSY; 1923 for (i = 0; i < nr_swapfiles; i++) { 1924 struct swap_info_struct *q = swap_info[i]; 1925 1926 if (i == type || !q->swap_file) 1927 continue; 1928 if (mapping == q->swap_file->f_mapping) 1929 goto bad_swap; 1930 } 1931 1932 error = -EINVAL; 1933 if (S_ISBLK(inode->i_mode)) { 1934 bdev = I_BDEV(inode); 1935 error = bd_claim(bdev, sys_swapon); 1936 if (error < 0) { 1937 bdev = NULL; 1938 error = -EINVAL; 1939 goto bad_swap; 1940 } 1941 p->old_block_size = block_size(bdev); 1942 error = set_blocksize(bdev, PAGE_SIZE); 1943 if (error < 0) 1944 goto bad_swap; 1945 p->bdev = bdev; 1946 p->flags |= SWP_BLKDEV; 1947 } else if (S_ISREG(inode->i_mode)) { 1948 p->bdev = inode->i_sb->s_bdev; 1949 mutex_lock(&inode->i_mutex); 1950 did_down = 1; 1951 if (IS_SWAPFILE(inode)) { 1952 error = -EBUSY; 1953 goto bad_swap; 1954 } 1955 } else { 1956 goto bad_swap; 1957 } 1958 1959 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 1960 1961 /* 1962 * Read the swap header. 1963 */ 1964 if (!mapping->a_ops->readpage) { 1965 error = -EINVAL; 1966 goto bad_swap; 1967 } 1968 page = read_mapping_page(mapping, 0, swap_file); 1969 if (IS_ERR(page)) { 1970 error = PTR_ERR(page); 1971 goto bad_swap; 1972 } 1973 swap_header = kmap(page); 1974 1975 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 1976 printk(KERN_ERR "Unable to find swap-space signature\n"); 1977 error = -EINVAL; 1978 goto bad_swap; 1979 } 1980 1981 /* swap partition endianess hack... */ 1982 if (swab32(swap_header->info.version) == 1) { 1983 swab32s(&swap_header->info.version); 1984 swab32s(&swap_header->info.last_page); 1985 swab32s(&swap_header->info.nr_badpages); 1986 for (i = 0; i < swap_header->info.nr_badpages; i++) 1987 swab32s(&swap_header->info.badpages[i]); 1988 } 1989 /* Check the swap header's sub-version */ 1990 if (swap_header->info.version != 1) { 1991 printk(KERN_WARNING 1992 "Unable to handle swap header version %d\n", 1993 swap_header->info.version); 1994 error = -EINVAL; 1995 goto bad_swap; 1996 } 1997 1998 p->lowest_bit = 1; 1999 p->cluster_next = 1; 2000 p->cluster_nr = 0; 2001 2002 /* 2003 * Find out how many pages are allowed for a single swap 2004 * device. There are two limiting factors: 1) the number of 2005 * bits for the swap offset in the swp_entry_t type and 2006 * 2) the number of bits in the a swap pte as defined by 2007 * the different architectures. In order to find the 2008 * largest possible bit mask a swap entry with swap type 0 2009 * and swap offset ~0UL is created, encoded to a swap pte, 2010 * decoded to a swp_entry_t again and finally the swap 2011 * offset is extracted. This will mask all the bits from 2012 * the initial ~0UL mask that can't be encoded in either 2013 * the swp_entry_t or the architecture definition of a 2014 * swap pte. 2015 */ 2016 maxpages = swp_offset(pte_to_swp_entry( 2017 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2018 if (maxpages > swap_header->info.last_page) { 2019 maxpages = swap_header->info.last_page + 1; 2020 /* p->max is an unsigned int: don't overflow it */ 2021 if ((unsigned int)maxpages == 0) 2022 maxpages = UINT_MAX; 2023 } 2024 p->highest_bit = maxpages - 1; 2025 2026 error = -EINVAL; 2027 if (!maxpages) 2028 goto bad_swap; 2029 if (swapfilepages && maxpages > swapfilepages) { 2030 printk(KERN_WARNING 2031 "Swap area shorter than signature indicates\n"); 2032 goto bad_swap; 2033 } 2034 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2035 goto bad_swap; 2036 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2037 goto bad_swap; 2038 2039 /* OK, set up the swap map and apply the bad block list */ 2040 swap_map = vmalloc(maxpages); 2041 if (!swap_map) { 2042 error = -ENOMEM; 2043 goto bad_swap; 2044 } 2045 2046 memset(swap_map, 0, maxpages); 2047 nr_good_pages = maxpages - 1; /* omit header page */ 2048 2049 for (i = 0; i < swap_header->info.nr_badpages; i++) { 2050 unsigned int page_nr = swap_header->info.badpages[i]; 2051 if (page_nr == 0 || page_nr > swap_header->info.last_page) { 2052 error = -EINVAL; 2053 goto bad_swap; 2054 } 2055 if (page_nr < maxpages) { 2056 swap_map[page_nr] = SWAP_MAP_BAD; 2057 nr_good_pages--; 2058 } 2059 } 2060 2061 error = swap_cgroup_swapon(type, maxpages); 2062 if (error) 2063 goto bad_swap; 2064 2065 if (nr_good_pages) { 2066 swap_map[0] = SWAP_MAP_BAD; 2067 p->max = maxpages; 2068 p->pages = nr_good_pages; 2069 nr_extents = setup_swap_extents(p, &span); 2070 if (nr_extents < 0) { 2071 error = nr_extents; 2072 goto bad_swap; 2073 } 2074 nr_good_pages = p->pages; 2075 } 2076 if (!nr_good_pages) { 2077 printk(KERN_WARNING "Empty swap-file\n"); 2078 error = -EINVAL; 2079 goto bad_swap; 2080 } 2081 2082 if (p->bdev) { 2083 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) { 2084 p->flags |= SWP_SOLIDSTATE; 2085 p->cluster_next = 1 + (random32() % p->highest_bit); 2086 } 2087 if (discard_swap(p) == 0) 2088 p->flags |= SWP_DISCARDABLE; 2089 } 2090 2091 mutex_lock(&swapon_mutex); 2092 spin_lock(&swap_lock); 2093 if (swap_flags & SWAP_FLAG_PREFER) 2094 p->prio = 2095 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 2096 else 2097 p->prio = --least_priority; 2098 p->swap_map = swap_map; 2099 p->flags |= SWP_WRITEOK; 2100 nr_swap_pages += nr_good_pages; 2101 total_swap_pages += nr_good_pages; 2102 2103 printk(KERN_INFO "Adding %uk swap on %s. " 2104 "Priority:%d extents:%d across:%lluk %s%s\n", 2105 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio, 2106 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 2107 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 2108 (p->flags & SWP_DISCARDABLE) ? "D" : ""); 2109 2110 /* insert swap space into swap_list: */ 2111 prev = -1; 2112 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) { 2113 if (p->prio >= swap_info[i]->prio) 2114 break; 2115 prev = i; 2116 } 2117 p->next = i; 2118 if (prev < 0) 2119 swap_list.head = swap_list.next = type; 2120 else 2121 swap_info[prev]->next = type; 2122 spin_unlock(&swap_lock); 2123 mutex_unlock(&swapon_mutex); 2124 error = 0; 2125 goto out; 2126 bad_swap: 2127 if (bdev) { 2128 set_blocksize(bdev, p->old_block_size); 2129 bd_release(bdev); 2130 } 2131 destroy_swap_extents(p); 2132 swap_cgroup_swapoff(type); 2133 bad_swap_2: 2134 spin_lock(&swap_lock); 2135 p->swap_file = NULL; 2136 p->flags = 0; 2137 spin_unlock(&swap_lock); 2138 vfree(swap_map); 2139 if (swap_file) 2140 filp_close(swap_file, NULL); 2141 out: 2142 if (page && !IS_ERR(page)) { 2143 kunmap(page); 2144 page_cache_release(page); 2145 } 2146 if (name) 2147 putname(name); 2148 if (did_down) { 2149 if (!error) 2150 inode->i_flags |= S_SWAPFILE; 2151 mutex_unlock(&inode->i_mutex); 2152 } 2153 return error; 2154 } 2155 2156 void si_swapinfo(struct sysinfo *val) 2157 { 2158 unsigned int type; 2159 unsigned long nr_to_be_unused = 0; 2160 2161 spin_lock(&swap_lock); 2162 for (type = 0; type < nr_swapfiles; type++) { 2163 struct swap_info_struct *si = swap_info[type]; 2164 2165 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 2166 nr_to_be_unused += si->inuse_pages; 2167 } 2168 val->freeswap = nr_swap_pages + nr_to_be_unused; 2169 val->totalswap = total_swap_pages + nr_to_be_unused; 2170 spin_unlock(&swap_lock); 2171 } 2172 2173 /* 2174 * Verify that a swap entry is valid and increment its swap map count. 2175 * 2176 * Returns error code in following case. 2177 * - success -> 0 2178 * - swp_entry is invalid -> EINVAL 2179 * - swp_entry is migration entry -> EINVAL 2180 * - swap-cache reference is requested but there is already one. -> EEXIST 2181 * - swap-cache reference is requested but the entry is not used. -> ENOENT 2182 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 2183 */ 2184 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 2185 { 2186 struct swap_info_struct *p; 2187 unsigned long offset, type; 2188 unsigned char count; 2189 unsigned char has_cache; 2190 int err = -EINVAL; 2191 2192 if (non_swap_entry(entry)) 2193 goto out; 2194 2195 type = swp_type(entry); 2196 if (type >= nr_swapfiles) 2197 goto bad_file; 2198 p = swap_info[type]; 2199 offset = swp_offset(entry); 2200 2201 spin_lock(&swap_lock); 2202 if (unlikely(offset >= p->max)) 2203 goto unlock_out; 2204 2205 count = p->swap_map[offset]; 2206 has_cache = count & SWAP_HAS_CACHE; 2207 count &= ~SWAP_HAS_CACHE; 2208 err = 0; 2209 2210 if (usage == SWAP_HAS_CACHE) { 2211 2212 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 2213 if (!has_cache && count) 2214 has_cache = SWAP_HAS_CACHE; 2215 else if (has_cache) /* someone else added cache */ 2216 err = -EEXIST; 2217 else /* no users remaining */ 2218 err = -ENOENT; 2219 2220 } else if (count || has_cache) { 2221 2222 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 2223 count += usage; 2224 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 2225 err = -EINVAL; 2226 else if (swap_count_continued(p, offset, count)) 2227 count = COUNT_CONTINUED; 2228 else 2229 err = -ENOMEM; 2230 } else 2231 err = -ENOENT; /* unused swap entry */ 2232 2233 p->swap_map[offset] = count | has_cache; 2234 2235 unlock_out: 2236 spin_unlock(&swap_lock); 2237 out: 2238 return err; 2239 2240 bad_file: 2241 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); 2242 goto out; 2243 } 2244 2245 /* 2246 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 2247 * (in which case its reference count is never incremented). 2248 */ 2249 void swap_shmem_alloc(swp_entry_t entry) 2250 { 2251 __swap_duplicate(entry, SWAP_MAP_SHMEM); 2252 } 2253 2254 /* 2255 * Increase reference count of swap entry by 1. 2256 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 2257 * but could not be atomically allocated. Returns 0, just as if it succeeded, 2258 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 2259 * might occur if a page table entry has got corrupted. 2260 */ 2261 int swap_duplicate(swp_entry_t entry) 2262 { 2263 int err = 0; 2264 2265 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 2266 err = add_swap_count_continuation(entry, GFP_ATOMIC); 2267 return err; 2268 } 2269 2270 /* 2271 * @entry: swap entry for which we allocate swap cache. 2272 * 2273 * Called when allocating swap cache for existing swap entry, 2274 * This can return error codes. Returns 0 at success. 2275 * -EBUSY means there is a swap cache. 2276 * Note: return code is different from swap_duplicate(). 2277 */ 2278 int swapcache_prepare(swp_entry_t entry) 2279 { 2280 return __swap_duplicate(entry, SWAP_HAS_CACHE); 2281 } 2282 2283 /* 2284 * swap_lock prevents swap_map being freed. Don't grab an extra 2285 * reference on the swaphandle, it doesn't matter if it becomes unused. 2286 */ 2287 int valid_swaphandles(swp_entry_t entry, unsigned long *offset) 2288 { 2289 struct swap_info_struct *si; 2290 int our_page_cluster = page_cluster; 2291 pgoff_t target, toff; 2292 pgoff_t base, end; 2293 int nr_pages = 0; 2294 2295 if (!our_page_cluster) /* no readahead */ 2296 return 0; 2297 2298 si = swap_info[swp_type(entry)]; 2299 target = swp_offset(entry); 2300 base = (target >> our_page_cluster) << our_page_cluster; 2301 end = base + (1 << our_page_cluster); 2302 if (!base) /* first page is swap header */ 2303 base++; 2304 2305 spin_lock(&swap_lock); 2306 if (end > si->max) /* don't go beyond end of map */ 2307 end = si->max; 2308 2309 /* Count contiguous allocated slots above our target */ 2310 for (toff = target; ++toff < end; nr_pages++) { 2311 /* Don't read in free or bad pages */ 2312 if (!si->swap_map[toff]) 2313 break; 2314 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD) 2315 break; 2316 } 2317 /* Count contiguous allocated slots below our target */ 2318 for (toff = target; --toff >= base; nr_pages++) { 2319 /* Don't read in free or bad pages */ 2320 if (!si->swap_map[toff]) 2321 break; 2322 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD) 2323 break; 2324 } 2325 spin_unlock(&swap_lock); 2326 2327 /* 2328 * Indicate starting offset, and return number of pages to get: 2329 * if only 1, say 0, since there's then no readahead to be done. 2330 */ 2331 *offset = ++toff; 2332 return nr_pages? ++nr_pages: 0; 2333 } 2334 2335 /* 2336 * add_swap_count_continuation - called when a swap count is duplicated 2337 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 2338 * page of the original vmalloc'ed swap_map, to hold the continuation count 2339 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 2340 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 2341 * 2342 * These continuation pages are seldom referenced: the common paths all work 2343 * on the original swap_map, only referring to a continuation page when the 2344 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 2345 * 2346 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 2347 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 2348 * can be called after dropping locks. 2349 */ 2350 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 2351 { 2352 struct swap_info_struct *si; 2353 struct page *head; 2354 struct page *page; 2355 struct page *list_page; 2356 pgoff_t offset; 2357 unsigned char count; 2358 2359 /* 2360 * When debugging, it's easier to use __GFP_ZERO here; but it's better 2361 * for latency not to zero a page while GFP_ATOMIC and holding locks. 2362 */ 2363 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 2364 2365 si = swap_info_get(entry); 2366 if (!si) { 2367 /* 2368 * An acceptable race has occurred since the failing 2369 * __swap_duplicate(): the swap entry has been freed, 2370 * perhaps even the whole swap_map cleared for swapoff. 2371 */ 2372 goto outer; 2373 } 2374 2375 offset = swp_offset(entry); 2376 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 2377 2378 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 2379 /* 2380 * The higher the swap count, the more likely it is that tasks 2381 * will race to add swap count continuation: we need to avoid 2382 * over-provisioning. 2383 */ 2384 goto out; 2385 } 2386 2387 if (!page) { 2388 spin_unlock(&swap_lock); 2389 return -ENOMEM; 2390 } 2391 2392 /* 2393 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 2394 * no architecture is using highmem pages for kernel pagetables: so it 2395 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps. 2396 */ 2397 head = vmalloc_to_page(si->swap_map + offset); 2398 offset &= ~PAGE_MASK; 2399 2400 /* 2401 * Page allocation does not initialize the page's lru field, 2402 * but it does always reset its private field. 2403 */ 2404 if (!page_private(head)) { 2405 BUG_ON(count & COUNT_CONTINUED); 2406 INIT_LIST_HEAD(&head->lru); 2407 set_page_private(head, SWP_CONTINUED); 2408 si->flags |= SWP_CONTINUED; 2409 } 2410 2411 list_for_each_entry(list_page, &head->lru, lru) { 2412 unsigned char *map; 2413 2414 /* 2415 * If the previous map said no continuation, but we've found 2416 * a continuation page, free our allocation and use this one. 2417 */ 2418 if (!(count & COUNT_CONTINUED)) 2419 goto out; 2420 2421 map = kmap_atomic(list_page, KM_USER0) + offset; 2422 count = *map; 2423 kunmap_atomic(map, KM_USER0); 2424 2425 /* 2426 * If this continuation count now has some space in it, 2427 * free our allocation and use this one. 2428 */ 2429 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 2430 goto out; 2431 } 2432 2433 list_add_tail(&page->lru, &head->lru); 2434 page = NULL; /* now it's attached, don't free it */ 2435 out: 2436 spin_unlock(&swap_lock); 2437 outer: 2438 if (page) 2439 __free_page(page); 2440 return 0; 2441 } 2442 2443 /* 2444 * swap_count_continued - when the original swap_map count is incremented 2445 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 2446 * into, carry if so, or else fail until a new continuation page is allocated; 2447 * when the original swap_map count is decremented from 0 with continuation, 2448 * borrow from the continuation and report whether it still holds more. 2449 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock. 2450 */ 2451 static bool swap_count_continued(struct swap_info_struct *si, 2452 pgoff_t offset, unsigned char count) 2453 { 2454 struct page *head; 2455 struct page *page; 2456 unsigned char *map; 2457 2458 head = vmalloc_to_page(si->swap_map + offset); 2459 if (page_private(head) != SWP_CONTINUED) { 2460 BUG_ON(count & COUNT_CONTINUED); 2461 return false; /* need to add count continuation */ 2462 } 2463 2464 offset &= ~PAGE_MASK; 2465 page = list_entry(head->lru.next, struct page, lru); 2466 map = kmap_atomic(page, KM_USER0) + offset; 2467 2468 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 2469 goto init_map; /* jump over SWAP_CONT_MAX checks */ 2470 2471 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 2472 /* 2473 * Think of how you add 1 to 999 2474 */ 2475 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 2476 kunmap_atomic(map, KM_USER0); 2477 page = list_entry(page->lru.next, struct page, lru); 2478 BUG_ON(page == head); 2479 map = kmap_atomic(page, KM_USER0) + offset; 2480 } 2481 if (*map == SWAP_CONT_MAX) { 2482 kunmap_atomic(map, KM_USER0); 2483 page = list_entry(page->lru.next, struct page, lru); 2484 if (page == head) 2485 return false; /* add count continuation */ 2486 map = kmap_atomic(page, KM_USER0) + offset; 2487 init_map: *map = 0; /* we didn't zero the page */ 2488 } 2489 *map += 1; 2490 kunmap_atomic(map, KM_USER0); 2491 page = list_entry(page->lru.prev, struct page, lru); 2492 while (page != head) { 2493 map = kmap_atomic(page, KM_USER0) + offset; 2494 *map = COUNT_CONTINUED; 2495 kunmap_atomic(map, KM_USER0); 2496 page = list_entry(page->lru.prev, struct page, lru); 2497 } 2498 return true; /* incremented */ 2499 2500 } else { /* decrementing */ 2501 /* 2502 * Think of how you subtract 1 from 1000 2503 */ 2504 BUG_ON(count != COUNT_CONTINUED); 2505 while (*map == COUNT_CONTINUED) { 2506 kunmap_atomic(map, KM_USER0); 2507 page = list_entry(page->lru.next, struct page, lru); 2508 BUG_ON(page == head); 2509 map = kmap_atomic(page, KM_USER0) + offset; 2510 } 2511 BUG_ON(*map == 0); 2512 *map -= 1; 2513 if (*map == 0) 2514 count = 0; 2515 kunmap_atomic(map, KM_USER0); 2516 page = list_entry(page->lru.prev, struct page, lru); 2517 while (page != head) { 2518 map = kmap_atomic(page, KM_USER0) + offset; 2519 *map = SWAP_CONT_MAX | count; 2520 count = COUNT_CONTINUED; 2521 kunmap_atomic(map, KM_USER0); 2522 page = list_entry(page->lru.prev, struct page, lru); 2523 } 2524 return count == COUNT_CONTINUED; 2525 } 2526 } 2527 2528 /* 2529 * free_swap_count_continuations - swapoff free all the continuation pages 2530 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 2531 */ 2532 static void free_swap_count_continuations(struct swap_info_struct *si) 2533 { 2534 pgoff_t offset; 2535 2536 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 2537 struct page *head; 2538 head = vmalloc_to_page(si->swap_map + offset); 2539 if (page_private(head)) { 2540 struct list_head *this, *next; 2541 list_for_each_safe(this, next, &head->lru) { 2542 struct page *page; 2543 page = list_entry(this, struct page, lru); 2544 list_del(this); 2545 __free_page(page); 2546 } 2547 } 2548 } 2549 } 2550