xref: /linux/mm/swapfile.c (revision a234ca0faa65dcd5cc473915bd925130ebb7b74b)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/security.h>
28 #include <linux/backing-dev.h>
29 #include <linux/mutex.h>
30 #include <linux/capability.h>
31 #include <linux/syscalls.h>
32 #include <linux/memcontrol.h>
33 
34 #include <asm/pgtable.h>
35 #include <asm/tlbflush.h>
36 #include <linux/swapops.h>
37 #include <linux/page_cgroup.h>
38 
39 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
40 				 unsigned char);
41 static void free_swap_count_continuations(struct swap_info_struct *);
42 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
43 
44 static DEFINE_SPINLOCK(swap_lock);
45 static unsigned int nr_swapfiles;
46 long nr_swap_pages;
47 long total_swap_pages;
48 static int least_priority;
49 
50 static bool swap_for_hibernation;
51 
52 static const char Bad_file[] = "Bad swap file entry ";
53 static const char Unused_file[] = "Unused swap file entry ";
54 static const char Bad_offset[] = "Bad swap offset entry ";
55 static const char Unused_offset[] = "Unused swap offset entry ";
56 
57 static struct swap_list_t swap_list = {-1, -1};
58 
59 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
60 
61 static DEFINE_MUTEX(swapon_mutex);
62 
63 static inline unsigned char swap_count(unsigned char ent)
64 {
65 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
66 }
67 
68 /* returns 1 if swap entry is freed */
69 static int
70 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
71 {
72 	swp_entry_t entry = swp_entry(si->type, offset);
73 	struct page *page;
74 	int ret = 0;
75 
76 	page = find_get_page(&swapper_space, entry.val);
77 	if (!page)
78 		return 0;
79 	/*
80 	 * This function is called from scan_swap_map() and it's called
81 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
82 	 * We have to use trylock for avoiding deadlock. This is a special
83 	 * case and you should use try_to_free_swap() with explicit lock_page()
84 	 * in usual operations.
85 	 */
86 	if (trylock_page(page)) {
87 		ret = try_to_free_swap(page);
88 		unlock_page(page);
89 	}
90 	page_cache_release(page);
91 	return ret;
92 }
93 
94 /*
95  * We need this because the bdev->unplug_fn can sleep and we cannot
96  * hold swap_lock while calling the unplug_fn. And swap_lock
97  * cannot be turned into a mutex.
98  */
99 static DECLARE_RWSEM(swap_unplug_sem);
100 
101 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
102 {
103 	swp_entry_t entry;
104 
105 	down_read(&swap_unplug_sem);
106 	entry.val = page_private(page);
107 	if (PageSwapCache(page)) {
108 		struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
109 		struct backing_dev_info *bdi;
110 
111 		/*
112 		 * If the page is removed from swapcache from under us (with a
113 		 * racy try_to_unuse/swapoff) we need an additional reference
114 		 * count to avoid reading garbage from page_private(page) above.
115 		 * If the WARN_ON triggers during a swapoff it maybe the race
116 		 * condition and it's harmless. However if it triggers without
117 		 * swapoff it signals a problem.
118 		 */
119 		WARN_ON(page_count(page) <= 1);
120 
121 		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
122 		blk_run_backing_dev(bdi, page);
123 	}
124 	up_read(&swap_unplug_sem);
125 }
126 
127 /*
128  * swapon tell device that all the old swap contents can be discarded,
129  * to allow the swap device to optimize its wear-levelling.
130  */
131 static int discard_swap(struct swap_info_struct *si)
132 {
133 	struct swap_extent *se;
134 	sector_t start_block;
135 	sector_t nr_blocks;
136 	int err = 0;
137 
138 	/* Do not discard the swap header page! */
139 	se = &si->first_swap_extent;
140 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
141 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
142 	if (nr_blocks) {
143 		err = blkdev_issue_discard(si->bdev, start_block,
144 				nr_blocks, GFP_KERNEL,
145 				BLKDEV_IFL_WAIT | BLKDEV_IFL_BARRIER);
146 		if (err)
147 			return err;
148 		cond_resched();
149 	}
150 
151 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
152 		start_block = se->start_block << (PAGE_SHIFT - 9);
153 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
154 
155 		err = blkdev_issue_discard(si->bdev, start_block,
156 				nr_blocks, GFP_KERNEL,
157 				BLKDEV_IFL_WAIT | BLKDEV_IFL_BARRIER);
158 		if (err)
159 			break;
160 
161 		cond_resched();
162 	}
163 	return err;		/* That will often be -EOPNOTSUPP */
164 }
165 
166 /*
167  * swap allocation tell device that a cluster of swap can now be discarded,
168  * to allow the swap device to optimize its wear-levelling.
169  */
170 static void discard_swap_cluster(struct swap_info_struct *si,
171 				 pgoff_t start_page, pgoff_t nr_pages)
172 {
173 	struct swap_extent *se = si->curr_swap_extent;
174 	int found_extent = 0;
175 
176 	while (nr_pages) {
177 		struct list_head *lh;
178 
179 		if (se->start_page <= start_page &&
180 		    start_page < se->start_page + se->nr_pages) {
181 			pgoff_t offset = start_page - se->start_page;
182 			sector_t start_block = se->start_block + offset;
183 			sector_t nr_blocks = se->nr_pages - offset;
184 
185 			if (nr_blocks > nr_pages)
186 				nr_blocks = nr_pages;
187 			start_page += nr_blocks;
188 			nr_pages -= nr_blocks;
189 
190 			if (!found_extent++)
191 				si->curr_swap_extent = se;
192 
193 			start_block <<= PAGE_SHIFT - 9;
194 			nr_blocks <<= PAGE_SHIFT - 9;
195 			if (blkdev_issue_discard(si->bdev, start_block,
196 				    nr_blocks, GFP_NOIO, BLKDEV_IFL_WAIT |
197 							BLKDEV_IFL_BARRIER))
198 				break;
199 		}
200 
201 		lh = se->list.next;
202 		se = list_entry(lh, struct swap_extent, list);
203 	}
204 }
205 
206 static int wait_for_discard(void *word)
207 {
208 	schedule();
209 	return 0;
210 }
211 
212 #define SWAPFILE_CLUSTER	256
213 #define LATENCY_LIMIT		256
214 
215 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
216 					  unsigned char usage)
217 {
218 	unsigned long offset;
219 	unsigned long scan_base;
220 	unsigned long last_in_cluster = 0;
221 	int latency_ration = LATENCY_LIMIT;
222 	int found_free_cluster = 0;
223 
224 	/*
225 	 * We try to cluster swap pages by allocating them sequentially
226 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
227 	 * way, however, we resort to first-free allocation, starting
228 	 * a new cluster.  This prevents us from scattering swap pages
229 	 * all over the entire swap partition, so that we reduce
230 	 * overall disk seek times between swap pages.  -- sct
231 	 * But we do now try to find an empty cluster.  -Andrea
232 	 * And we let swap pages go all over an SSD partition.  Hugh
233 	 */
234 
235 	si->flags += SWP_SCANNING;
236 	scan_base = offset = si->cluster_next;
237 
238 	if (unlikely(!si->cluster_nr--)) {
239 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
240 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
241 			goto checks;
242 		}
243 		if (si->flags & SWP_DISCARDABLE) {
244 			/*
245 			 * Start range check on racing allocations, in case
246 			 * they overlap the cluster we eventually decide on
247 			 * (we scan without swap_lock to allow preemption).
248 			 * It's hardly conceivable that cluster_nr could be
249 			 * wrapped during our scan, but don't depend on it.
250 			 */
251 			if (si->lowest_alloc)
252 				goto checks;
253 			si->lowest_alloc = si->max;
254 			si->highest_alloc = 0;
255 		}
256 		spin_unlock(&swap_lock);
257 
258 		/*
259 		 * If seek is expensive, start searching for new cluster from
260 		 * start of partition, to minimize the span of allocated swap.
261 		 * But if seek is cheap, search from our current position, so
262 		 * that swap is allocated from all over the partition: if the
263 		 * Flash Translation Layer only remaps within limited zones,
264 		 * we don't want to wear out the first zone too quickly.
265 		 */
266 		if (!(si->flags & SWP_SOLIDSTATE))
267 			scan_base = offset = si->lowest_bit;
268 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
269 
270 		/* Locate the first empty (unaligned) cluster */
271 		for (; last_in_cluster <= si->highest_bit; offset++) {
272 			if (si->swap_map[offset])
273 				last_in_cluster = offset + SWAPFILE_CLUSTER;
274 			else if (offset == last_in_cluster) {
275 				spin_lock(&swap_lock);
276 				offset -= SWAPFILE_CLUSTER - 1;
277 				si->cluster_next = offset;
278 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
279 				found_free_cluster = 1;
280 				goto checks;
281 			}
282 			if (unlikely(--latency_ration < 0)) {
283 				cond_resched();
284 				latency_ration = LATENCY_LIMIT;
285 			}
286 		}
287 
288 		offset = si->lowest_bit;
289 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
290 
291 		/* Locate the first empty (unaligned) cluster */
292 		for (; last_in_cluster < scan_base; offset++) {
293 			if (si->swap_map[offset])
294 				last_in_cluster = offset + SWAPFILE_CLUSTER;
295 			else if (offset == last_in_cluster) {
296 				spin_lock(&swap_lock);
297 				offset -= SWAPFILE_CLUSTER - 1;
298 				si->cluster_next = offset;
299 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
300 				found_free_cluster = 1;
301 				goto checks;
302 			}
303 			if (unlikely(--latency_ration < 0)) {
304 				cond_resched();
305 				latency_ration = LATENCY_LIMIT;
306 			}
307 		}
308 
309 		offset = scan_base;
310 		spin_lock(&swap_lock);
311 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
312 		si->lowest_alloc = 0;
313 	}
314 
315 checks:
316 	if (!(si->flags & SWP_WRITEOK))
317 		goto no_page;
318 	if (!si->highest_bit)
319 		goto no_page;
320 	if (offset > si->highest_bit)
321 		scan_base = offset = si->lowest_bit;
322 
323 	/* reuse swap entry of cache-only swap if not hibernation. */
324 	if (vm_swap_full()
325 		&& usage == SWAP_HAS_CACHE
326 		&& si->swap_map[offset] == SWAP_HAS_CACHE) {
327 		int swap_was_freed;
328 		spin_unlock(&swap_lock);
329 		swap_was_freed = __try_to_reclaim_swap(si, offset);
330 		spin_lock(&swap_lock);
331 		/* entry was freed successfully, try to use this again */
332 		if (swap_was_freed)
333 			goto checks;
334 		goto scan; /* check next one */
335 	}
336 
337 	if (si->swap_map[offset])
338 		goto scan;
339 
340 	if (offset == si->lowest_bit)
341 		si->lowest_bit++;
342 	if (offset == si->highest_bit)
343 		si->highest_bit--;
344 	si->inuse_pages++;
345 	if (si->inuse_pages == si->pages) {
346 		si->lowest_bit = si->max;
347 		si->highest_bit = 0;
348 	}
349 	si->swap_map[offset] = usage;
350 	si->cluster_next = offset + 1;
351 	si->flags -= SWP_SCANNING;
352 
353 	if (si->lowest_alloc) {
354 		/*
355 		 * Only set when SWP_DISCARDABLE, and there's a scan
356 		 * for a free cluster in progress or just completed.
357 		 */
358 		if (found_free_cluster) {
359 			/*
360 			 * To optimize wear-levelling, discard the
361 			 * old data of the cluster, taking care not to
362 			 * discard any of its pages that have already
363 			 * been allocated by racing tasks (offset has
364 			 * already stepped over any at the beginning).
365 			 */
366 			if (offset < si->highest_alloc &&
367 			    si->lowest_alloc <= last_in_cluster)
368 				last_in_cluster = si->lowest_alloc - 1;
369 			si->flags |= SWP_DISCARDING;
370 			spin_unlock(&swap_lock);
371 
372 			if (offset < last_in_cluster)
373 				discard_swap_cluster(si, offset,
374 					last_in_cluster - offset + 1);
375 
376 			spin_lock(&swap_lock);
377 			si->lowest_alloc = 0;
378 			si->flags &= ~SWP_DISCARDING;
379 
380 			smp_mb();	/* wake_up_bit advises this */
381 			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
382 
383 		} else if (si->flags & SWP_DISCARDING) {
384 			/*
385 			 * Delay using pages allocated by racing tasks
386 			 * until the whole discard has been issued. We
387 			 * could defer that delay until swap_writepage,
388 			 * but it's easier to keep this self-contained.
389 			 */
390 			spin_unlock(&swap_lock);
391 			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
392 				wait_for_discard, TASK_UNINTERRUPTIBLE);
393 			spin_lock(&swap_lock);
394 		} else {
395 			/*
396 			 * Note pages allocated by racing tasks while
397 			 * scan for a free cluster is in progress, so
398 			 * that its final discard can exclude them.
399 			 */
400 			if (offset < si->lowest_alloc)
401 				si->lowest_alloc = offset;
402 			if (offset > si->highest_alloc)
403 				si->highest_alloc = offset;
404 		}
405 	}
406 	return offset;
407 
408 scan:
409 	spin_unlock(&swap_lock);
410 	while (++offset <= si->highest_bit) {
411 		if (!si->swap_map[offset]) {
412 			spin_lock(&swap_lock);
413 			goto checks;
414 		}
415 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
416 			spin_lock(&swap_lock);
417 			goto checks;
418 		}
419 		if (unlikely(--latency_ration < 0)) {
420 			cond_resched();
421 			latency_ration = LATENCY_LIMIT;
422 		}
423 	}
424 	offset = si->lowest_bit;
425 	while (++offset < scan_base) {
426 		if (!si->swap_map[offset]) {
427 			spin_lock(&swap_lock);
428 			goto checks;
429 		}
430 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
431 			spin_lock(&swap_lock);
432 			goto checks;
433 		}
434 		if (unlikely(--latency_ration < 0)) {
435 			cond_resched();
436 			latency_ration = LATENCY_LIMIT;
437 		}
438 	}
439 	spin_lock(&swap_lock);
440 
441 no_page:
442 	si->flags -= SWP_SCANNING;
443 	return 0;
444 }
445 
446 swp_entry_t get_swap_page(void)
447 {
448 	struct swap_info_struct *si;
449 	pgoff_t offset;
450 	int type, next;
451 	int wrapped = 0;
452 
453 	spin_lock(&swap_lock);
454 	if (nr_swap_pages <= 0)
455 		goto noswap;
456 	if (swap_for_hibernation)
457 		goto noswap;
458 	nr_swap_pages--;
459 
460 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
461 		si = swap_info[type];
462 		next = si->next;
463 		if (next < 0 ||
464 		    (!wrapped && si->prio != swap_info[next]->prio)) {
465 			next = swap_list.head;
466 			wrapped++;
467 		}
468 
469 		if (!si->highest_bit)
470 			continue;
471 		if (!(si->flags & SWP_WRITEOK))
472 			continue;
473 
474 		swap_list.next = next;
475 		/* This is called for allocating swap entry for cache */
476 		offset = scan_swap_map(si, SWAP_HAS_CACHE);
477 		if (offset) {
478 			spin_unlock(&swap_lock);
479 			return swp_entry(type, offset);
480 		}
481 		next = swap_list.next;
482 	}
483 
484 	nr_swap_pages++;
485 noswap:
486 	spin_unlock(&swap_lock);
487 	return (swp_entry_t) {0};
488 }
489 
490 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
491 {
492 	struct swap_info_struct *p;
493 	unsigned long offset, type;
494 
495 	if (!entry.val)
496 		goto out;
497 	type = swp_type(entry);
498 	if (type >= nr_swapfiles)
499 		goto bad_nofile;
500 	p = swap_info[type];
501 	if (!(p->flags & SWP_USED))
502 		goto bad_device;
503 	offset = swp_offset(entry);
504 	if (offset >= p->max)
505 		goto bad_offset;
506 	if (!p->swap_map[offset])
507 		goto bad_free;
508 	spin_lock(&swap_lock);
509 	return p;
510 
511 bad_free:
512 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
513 	goto out;
514 bad_offset:
515 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
516 	goto out;
517 bad_device:
518 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
519 	goto out;
520 bad_nofile:
521 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
522 out:
523 	return NULL;
524 }
525 
526 static unsigned char swap_entry_free(struct swap_info_struct *p,
527 				     swp_entry_t entry, unsigned char usage)
528 {
529 	unsigned long offset = swp_offset(entry);
530 	unsigned char count;
531 	unsigned char has_cache;
532 
533 	count = p->swap_map[offset];
534 	has_cache = count & SWAP_HAS_CACHE;
535 	count &= ~SWAP_HAS_CACHE;
536 
537 	if (usage == SWAP_HAS_CACHE) {
538 		VM_BUG_ON(!has_cache);
539 		has_cache = 0;
540 	} else if (count == SWAP_MAP_SHMEM) {
541 		/*
542 		 * Or we could insist on shmem.c using a special
543 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
544 		 */
545 		count = 0;
546 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
547 		if (count == COUNT_CONTINUED) {
548 			if (swap_count_continued(p, offset, count))
549 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
550 			else
551 				count = SWAP_MAP_MAX;
552 		} else
553 			count--;
554 	}
555 
556 	if (!count)
557 		mem_cgroup_uncharge_swap(entry);
558 
559 	usage = count | has_cache;
560 	p->swap_map[offset] = usage;
561 
562 	/* free if no reference */
563 	if (!usage) {
564 		struct gendisk *disk = p->bdev->bd_disk;
565 		if (offset < p->lowest_bit)
566 			p->lowest_bit = offset;
567 		if (offset > p->highest_bit)
568 			p->highest_bit = offset;
569 		if (swap_list.next >= 0 &&
570 		    p->prio > swap_info[swap_list.next]->prio)
571 			swap_list.next = p->type;
572 		nr_swap_pages++;
573 		p->inuse_pages--;
574 		if ((p->flags & SWP_BLKDEV) &&
575 				disk->fops->swap_slot_free_notify)
576 			disk->fops->swap_slot_free_notify(p->bdev, offset);
577 	}
578 
579 	return usage;
580 }
581 
582 /*
583  * Caller has made sure that the swapdevice corresponding to entry
584  * is still around or has not been recycled.
585  */
586 void swap_free(swp_entry_t entry)
587 {
588 	struct swap_info_struct *p;
589 
590 	p = swap_info_get(entry);
591 	if (p) {
592 		swap_entry_free(p, entry, 1);
593 		spin_unlock(&swap_lock);
594 	}
595 }
596 
597 /*
598  * Called after dropping swapcache to decrease refcnt to swap entries.
599  */
600 void swapcache_free(swp_entry_t entry, struct page *page)
601 {
602 	struct swap_info_struct *p;
603 	unsigned char count;
604 
605 	p = swap_info_get(entry);
606 	if (p) {
607 		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
608 		if (page)
609 			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
610 		spin_unlock(&swap_lock);
611 	}
612 }
613 
614 /*
615  * How many references to page are currently swapped out?
616  * This does not give an exact answer when swap count is continued,
617  * but does include the high COUNT_CONTINUED flag to allow for that.
618  */
619 static inline int page_swapcount(struct page *page)
620 {
621 	int count = 0;
622 	struct swap_info_struct *p;
623 	swp_entry_t entry;
624 
625 	entry.val = page_private(page);
626 	p = swap_info_get(entry);
627 	if (p) {
628 		count = swap_count(p->swap_map[swp_offset(entry)]);
629 		spin_unlock(&swap_lock);
630 	}
631 	return count;
632 }
633 
634 /*
635  * We can write to an anon page without COW if there are no other references
636  * to it.  And as a side-effect, free up its swap: because the old content
637  * on disk will never be read, and seeking back there to write new content
638  * later would only waste time away from clustering.
639  */
640 int reuse_swap_page(struct page *page)
641 {
642 	int count;
643 
644 	VM_BUG_ON(!PageLocked(page));
645 	if (unlikely(PageKsm(page)))
646 		return 0;
647 	count = page_mapcount(page);
648 	if (count <= 1 && PageSwapCache(page)) {
649 		count += page_swapcount(page);
650 		if (count == 1 && !PageWriteback(page)) {
651 			delete_from_swap_cache(page);
652 			SetPageDirty(page);
653 		}
654 	}
655 	return count <= 1;
656 }
657 
658 /*
659  * If swap is getting full, or if there are no more mappings of this page,
660  * then try_to_free_swap is called to free its swap space.
661  */
662 int try_to_free_swap(struct page *page)
663 {
664 	VM_BUG_ON(!PageLocked(page));
665 
666 	if (!PageSwapCache(page))
667 		return 0;
668 	if (PageWriteback(page))
669 		return 0;
670 	if (page_swapcount(page))
671 		return 0;
672 
673 	delete_from_swap_cache(page);
674 	SetPageDirty(page);
675 	return 1;
676 }
677 
678 /*
679  * Free the swap entry like above, but also try to
680  * free the page cache entry if it is the last user.
681  */
682 int free_swap_and_cache(swp_entry_t entry)
683 {
684 	struct swap_info_struct *p;
685 	struct page *page = NULL;
686 
687 	if (non_swap_entry(entry))
688 		return 1;
689 
690 	p = swap_info_get(entry);
691 	if (p) {
692 		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
693 			page = find_get_page(&swapper_space, entry.val);
694 			if (page && !trylock_page(page)) {
695 				page_cache_release(page);
696 				page = NULL;
697 			}
698 		}
699 		spin_unlock(&swap_lock);
700 	}
701 	if (page) {
702 		/*
703 		 * Not mapped elsewhere, or swap space full? Free it!
704 		 * Also recheck PageSwapCache now page is locked (above).
705 		 */
706 		if (PageSwapCache(page) && !PageWriteback(page) &&
707 				(!page_mapped(page) || vm_swap_full())) {
708 			delete_from_swap_cache(page);
709 			SetPageDirty(page);
710 		}
711 		unlock_page(page);
712 		page_cache_release(page);
713 	}
714 	return p != NULL;
715 }
716 
717 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
718 /**
719  * mem_cgroup_count_swap_user - count the user of a swap entry
720  * @ent: the swap entry to be checked
721  * @pagep: the pointer for the swap cache page of the entry to be stored
722  *
723  * Returns the number of the user of the swap entry. The number is valid only
724  * for swaps of anonymous pages.
725  * If the entry is found on swap cache, the page is stored to pagep with
726  * refcount of it being incremented.
727  */
728 int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
729 {
730 	struct page *page;
731 	struct swap_info_struct *p;
732 	int count = 0;
733 
734 	page = find_get_page(&swapper_space, ent.val);
735 	if (page)
736 		count += page_mapcount(page);
737 	p = swap_info_get(ent);
738 	if (p) {
739 		count += swap_count(p->swap_map[swp_offset(ent)]);
740 		spin_unlock(&swap_lock);
741 	}
742 
743 	*pagep = page;
744 	return count;
745 }
746 #endif
747 
748 #ifdef CONFIG_HIBERNATION
749 
750 static pgoff_t hibernation_offset[MAX_SWAPFILES];
751 /*
752  * Once hibernation starts to use swap, we freeze swap_map[]. Otherwise,
753  * saved swap_map[] image to the disk will be an incomplete because it's
754  * changing without synchronization with hibernation snap shot.
755  * At resume, we just make swap_for_hibernation=false. We can forget
756  * used maps easily.
757  */
758 void hibernation_freeze_swap(void)
759 {
760 	int i;
761 
762 	spin_lock(&swap_lock);
763 
764 	printk(KERN_INFO "PM: Freeze Swap\n");
765 	swap_for_hibernation = true;
766 	for (i = 0; i < MAX_SWAPFILES; i++)
767 		hibernation_offset[i] = 1;
768 	spin_unlock(&swap_lock);
769 }
770 
771 void hibernation_thaw_swap(void)
772 {
773 	spin_lock(&swap_lock);
774 	if (swap_for_hibernation) {
775 		printk(KERN_INFO "PM: Thaw Swap\n");
776 		swap_for_hibernation = false;
777 	}
778 	spin_unlock(&swap_lock);
779 }
780 
781 /*
782  * Because updateing swap_map[] can make not-saved-status-change,
783  * we use our own easy allocator.
784  * Please see kernel/power/swap.c, Used swaps are recorded into
785  * RB-tree.
786  */
787 swp_entry_t get_swap_for_hibernation(int type)
788 {
789 	pgoff_t off;
790 	swp_entry_t val = {0};
791 	struct swap_info_struct *si;
792 
793 	spin_lock(&swap_lock);
794 
795 	si = swap_info[type];
796 	if (!si || !(si->flags & SWP_WRITEOK))
797 		goto done;
798 
799 	for (off = hibernation_offset[type]; off < si->max; ++off) {
800 		if (!si->swap_map[off])
801 			break;
802 	}
803 	if (off < si->max) {
804 		val = swp_entry(type, off);
805 		hibernation_offset[type] = off + 1;
806 	}
807 done:
808 	spin_unlock(&swap_lock);
809 	return val;
810 }
811 
812 void swap_free_for_hibernation(swp_entry_t ent)
813 {
814 	/* Nothing to do */
815 }
816 
817 /*
818  * Find the swap type that corresponds to given device (if any).
819  *
820  * @offset - number of the PAGE_SIZE-sized block of the device, starting
821  * from 0, in which the swap header is expected to be located.
822  *
823  * This is needed for the suspend to disk (aka swsusp).
824  */
825 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
826 {
827 	struct block_device *bdev = NULL;
828 	int type;
829 
830 	if (device)
831 		bdev = bdget(device);
832 
833 	spin_lock(&swap_lock);
834 	for (type = 0; type < nr_swapfiles; type++) {
835 		struct swap_info_struct *sis = swap_info[type];
836 
837 		if (!(sis->flags & SWP_WRITEOK))
838 			continue;
839 
840 		if (!bdev) {
841 			if (bdev_p)
842 				*bdev_p = bdgrab(sis->bdev);
843 
844 			spin_unlock(&swap_lock);
845 			return type;
846 		}
847 		if (bdev == sis->bdev) {
848 			struct swap_extent *se = &sis->first_swap_extent;
849 
850 			if (se->start_block == offset) {
851 				if (bdev_p)
852 					*bdev_p = bdgrab(sis->bdev);
853 
854 				spin_unlock(&swap_lock);
855 				bdput(bdev);
856 				return type;
857 			}
858 		}
859 	}
860 	spin_unlock(&swap_lock);
861 	if (bdev)
862 		bdput(bdev);
863 
864 	return -ENODEV;
865 }
866 
867 /*
868  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
869  * corresponding to given index in swap_info (swap type).
870  */
871 sector_t swapdev_block(int type, pgoff_t offset)
872 {
873 	struct block_device *bdev;
874 
875 	if ((unsigned int)type >= nr_swapfiles)
876 		return 0;
877 	if (!(swap_info[type]->flags & SWP_WRITEOK))
878 		return 0;
879 	return map_swap_entry(swp_entry(type, offset), &bdev);
880 }
881 
882 /*
883  * Return either the total number of swap pages of given type, or the number
884  * of free pages of that type (depending on @free)
885  *
886  * This is needed for software suspend
887  */
888 unsigned int count_swap_pages(int type, int free)
889 {
890 	unsigned int n = 0;
891 
892 	spin_lock(&swap_lock);
893 	if ((unsigned int)type < nr_swapfiles) {
894 		struct swap_info_struct *sis = swap_info[type];
895 
896 		if (sis->flags & SWP_WRITEOK) {
897 			n = sis->pages;
898 			if (free)
899 				n -= sis->inuse_pages;
900 		}
901 	}
902 	spin_unlock(&swap_lock);
903 	return n;
904 }
905 #endif /* CONFIG_HIBERNATION */
906 
907 /*
908  * No need to decide whether this PTE shares the swap entry with others,
909  * just let do_wp_page work it out if a write is requested later - to
910  * force COW, vm_page_prot omits write permission from any private vma.
911  */
912 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
913 		unsigned long addr, swp_entry_t entry, struct page *page)
914 {
915 	struct mem_cgroup *ptr = NULL;
916 	spinlock_t *ptl;
917 	pte_t *pte;
918 	int ret = 1;
919 
920 	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
921 		ret = -ENOMEM;
922 		goto out_nolock;
923 	}
924 
925 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
926 	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
927 		if (ret > 0)
928 			mem_cgroup_cancel_charge_swapin(ptr);
929 		ret = 0;
930 		goto out;
931 	}
932 
933 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
934 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
935 	get_page(page);
936 	set_pte_at(vma->vm_mm, addr, pte,
937 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
938 	page_add_anon_rmap(page, vma, addr);
939 	mem_cgroup_commit_charge_swapin(page, ptr);
940 	swap_free(entry);
941 	/*
942 	 * Move the page to the active list so it is not
943 	 * immediately swapped out again after swapon.
944 	 */
945 	activate_page(page);
946 out:
947 	pte_unmap_unlock(pte, ptl);
948 out_nolock:
949 	return ret;
950 }
951 
952 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
953 				unsigned long addr, unsigned long end,
954 				swp_entry_t entry, struct page *page)
955 {
956 	pte_t swp_pte = swp_entry_to_pte(entry);
957 	pte_t *pte;
958 	int ret = 0;
959 
960 	/*
961 	 * We don't actually need pte lock while scanning for swp_pte: since
962 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
963 	 * page table while we're scanning; though it could get zapped, and on
964 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
965 	 * of unmatched parts which look like swp_pte, so unuse_pte must
966 	 * recheck under pte lock.  Scanning without pte lock lets it be
967 	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
968 	 */
969 	pte = pte_offset_map(pmd, addr);
970 	do {
971 		/*
972 		 * swapoff spends a _lot_ of time in this loop!
973 		 * Test inline before going to call unuse_pte.
974 		 */
975 		if (unlikely(pte_same(*pte, swp_pte))) {
976 			pte_unmap(pte);
977 			ret = unuse_pte(vma, pmd, addr, entry, page);
978 			if (ret)
979 				goto out;
980 			pte = pte_offset_map(pmd, addr);
981 		}
982 	} while (pte++, addr += PAGE_SIZE, addr != end);
983 	pte_unmap(pte - 1);
984 out:
985 	return ret;
986 }
987 
988 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
989 				unsigned long addr, unsigned long end,
990 				swp_entry_t entry, struct page *page)
991 {
992 	pmd_t *pmd;
993 	unsigned long next;
994 	int ret;
995 
996 	pmd = pmd_offset(pud, addr);
997 	do {
998 		next = pmd_addr_end(addr, end);
999 		if (pmd_none_or_clear_bad(pmd))
1000 			continue;
1001 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1002 		if (ret)
1003 			return ret;
1004 	} while (pmd++, addr = next, addr != end);
1005 	return 0;
1006 }
1007 
1008 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1009 				unsigned long addr, unsigned long end,
1010 				swp_entry_t entry, struct page *page)
1011 {
1012 	pud_t *pud;
1013 	unsigned long next;
1014 	int ret;
1015 
1016 	pud = pud_offset(pgd, addr);
1017 	do {
1018 		next = pud_addr_end(addr, end);
1019 		if (pud_none_or_clear_bad(pud))
1020 			continue;
1021 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1022 		if (ret)
1023 			return ret;
1024 	} while (pud++, addr = next, addr != end);
1025 	return 0;
1026 }
1027 
1028 static int unuse_vma(struct vm_area_struct *vma,
1029 				swp_entry_t entry, struct page *page)
1030 {
1031 	pgd_t *pgd;
1032 	unsigned long addr, end, next;
1033 	int ret;
1034 
1035 	if (page_anon_vma(page)) {
1036 		addr = page_address_in_vma(page, vma);
1037 		if (addr == -EFAULT)
1038 			return 0;
1039 		else
1040 			end = addr + PAGE_SIZE;
1041 	} else {
1042 		addr = vma->vm_start;
1043 		end = vma->vm_end;
1044 	}
1045 
1046 	pgd = pgd_offset(vma->vm_mm, addr);
1047 	do {
1048 		next = pgd_addr_end(addr, end);
1049 		if (pgd_none_or_clear_bad(pgd))
1050 			continue;
1051 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1052 		if (ret)
1053 			return ret;
1054 	} while (pgd++, addr = next, addr != end);
1055 	return 0;
1056 }
1057 
1058 static int unuse_mm(struct mm_struct *mm,
1059 				swp_entry_t entry, struct page *page)
1060 {
1061 	struct vm_area_struct *vma;
1062 	int ret = 0;
1063 
1064 	if (!down_read_trylock(&mm->mmap_sem)) {
1065 		/*
1066 		 * Activate page so shrink_inactive_list is unlikely to unmap
1067 		 * its ptes while lock is dropped, so swapoff can make progress.
1068 		 */
1069 		activate_page(page);
1070 		unlock_page(page);
1071 		down_read(&mm->mmap_sem);
1072 		lock_page(page);
1073 	}
1074 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1075 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1076 			break;
1077 	}
1078 	up_read(&mm->mmap_sem);
1079 	return (ret < 0)? ret: 0;
1080 }
1081 
1082 /*
1083  * Scan swap_map from current position to next entry still in use.
1084  * Recycle to start on reaching the end, returning 0 when empty.
1085  */
1086 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1087 					unsigned int prev)
1088 {
1089 	unsigned int max = si->max;
1090 	unsigned int i = prev;
1091 	unsigned char count;
1092 
1093 	/*
1094 	 * No need for swap_lock here: we're just looking
1095 	 * for whether an entry is in use, not modifying it; false
1096 	 * hits are okay, and sys_swapoff() has already prevented new
1097 	 * allocations from this area (while holding swap_lock).
1098 	 */
1099 	for (;;) {
1100 		if (++i >= max) {
1101 			if (!prev) {
1102 				i = 0;
1103 				break;
1104 			}
1105 			/*
1106 			 * No entries in use at top of swap_map,
1107 			 * loop back to start and recheck there.
1108 			 */
1109 			max = prev + 1;
1110 			prev = 0;
1111 			i = 1;
1112 		}
1113 		count = si->swap_map[i];
1114 		if (count && swap_count(count) != SWAP_MAP_BAD)
1115 			break;
1116 	}
1117 	return i;
1118 }
1119 
1120 /*
1121  * We completely avoid races by reading each swap page in advance,
1122  * and then search for the process using it.  All the necessary
1123  * page table adjustments can then be made atomically.
1124  */
1125 static int try_to_unuse(unsigned int type)
1126 {
1127 	struct swap_info_struct *si = swap_info[type];
1128 	struct mm_struct *start_mm;
1129 	unsigned char *swap_map;
1130 	unsigned char swcount;
1131 	struct page *page;
1132 	swp_entry_t entry;
1133 	unsigned int i = 0;
1134 	int retval = 0;
1135 
1136 	/*
1137 	 * When searching mms for an entry, a good strategy is to
1138 	 * start at the first mm we freed the previous entry from
1139 	 * (though actually we don't notice whether we or coincidence
1140 	 * freed the entry).  Initialize this start_mm with a hold.
1141 	 *
1142 	 * A simpler strategy would be to start at the last mm we
1143 	 * freed the previous entry from; but that would take less
1144 	 * advantage of mmlist ordering, which clusters forked mms
1145 	 * together, child after parent.  If we race with dup_mmap(), we
1146 	 * prefer to resolve parent before child, lest we miss entries
1147 	 * duplicated after we scanned child: using last mm would invert
1148 	 * that.
1149 	 */
1150 	start_mm = &init_mm;
1151 	atomic_inc(&init_mm.mm_users);
1152 
1153 	/*
1154 	 * Keep on scanning until all entries have gone.  Usually,
1155 	 * one pass through swap_map is enough, but not necessarily:
1156 	 * there are races when an instance of an entry might be missed.
1157 	 */
1158 	while ((i = find_next_to_unuse(si, i)) != 0) {
1159 		if (signal_pending(current)) {
1160 			retval = -EINTR;
1161 			break;
1162 		}
1163 
1164 		/*
1165 		 * Get a page for the entry, using the existing swap
1166 		 * cache page if there is one.  Otherwise, get a clean
1167 		 * page and read the swap into it.
1168 		 */
1169 		swap_map = &si->swap_map[i];
1170 		entry = swp_entry(type, i);
1171 		page = read_swap_cache_async(entry,
1172 					GFP_HIGHUSER_MOVABLE, NULL, 0);
1173 		if (!page) {
1174 			/*
1175 			 * Either swap_duplicate() failed because entry
1176 			 * has been freed independently, and will not be
1177 			 * reused since sys_swapoff() already disabled
1178 			 * allocation from here, or alloc_page() failed.
1179 			 */
1180 			if (!*swap_map)
1181 				continue;
1182 			retval = -ENOMEM;
1183 			break;
1184 		}
1185 
1186 		/*
1187 		 * Don't hold on to start_mm if it looks like exiting.
1188 		 */
1189 		if (atomic_read(&start_mm->mm_users) == 1) {
1190 			mmput(start_mm);
1191 			start_mm = &init_mm;
1192 			atomic_inc(&init_mm.mm_users);
1193 		}
1194 
1195 		/*
1196 		 * Wait for and lock page.  When do_swap_page races with
1197 		 * try_to_unuse, do_swap_page can handle the fault much
1198 		 * faster than try_to_unuse can locate the entry.  This
1199 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1200 		 * defer to do_swap_page in such a case - in some tests,
1201 		 * do_swap_page and try_to_unuse repeatedly compete.
1202 		 */
1203 		wait_on_page_locked(page);
1204 		wait_on_page_writeback(page);
1205 		lock_page(page);
1206 		wait_on_page_writeback(page);
1207 
1208 		/*
1209 		 * Remove all references to entry.
1210 		 */
1211 		swcount = *swap_map;
1212 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1213 			retval = shmem_unuse(entry, page);
1214 			/* page has already been unlocked and released */
1215 			if (retval < 0)
1216 				break;
1217 			continue;
1218 		}
1219 		if (swap_count(swcount) && start_mm != &init_mm)
1220 			retval = unuse_mm(start_mm, entry, page);
1221 
1222 		if (swap_count(*swap_map)) {
1223 			int set_start_mm = (*swap_map >= swcount);
1224 			struct list_head *p = &start_mm->mmlist;
1225 			struct mm_struct *new_start_mm = start_mm;
1226 			struct mm_struct *prev_mm = start_mm;
1227 			struct mm_struct *mm;
1228 
1229 			atomic_inc(&new_start_mm->mm_users);
1230 			atomic_inc(&prev_mm->mm_users);
1231 			spin_lock(&mmlist_lock);
1232 			while (swap_count(*swap_map) && !retval &&
1233 					(p = p->next) != &start_mm->mmlist) {
1234 				mm = list_entry(p, struct mm_struct, mmlist);
1235 				if (!atomic_inc_not_zero(&mm->mm_users))
1236 					continue;
1237 				spin_unlock(&mmlist_lock);
1238 				mmput(prev_mm);
1239 				prev_mm = mm;
1240 
1241 				cond_resched();
1242 
1243 				swcount = *swap_map;
1244 				if (!swap_count(swcount)) /* any usage ? */
1245 					;
1246 				else if (mm == &init_mm)
1247 					set_start_mm = 1;
1248 				else
1249 					retval = unuse_mm(mm, entry, page);
1250 
1251 				if (set_start_mm && *swap_map < swcount) {
1252 					mmput(new_start_mm);
1253 					atomic_inc(&mm->mm_users);
1254 					new_start_mm = mm;
1255 					set_start_mm = 0;
1256 				}
1257 				spin_lock(&mmlist_lock);
1258 			}
1259 			spin_unlock(&mmlist_lock);
1260 			mmput(prev_mm);
1261 			mmput(start_mm);
1262 			start_mm = new_start_mm;
1263 		}
1264 		if (retval) {
1265 			unlock_page(page);
1266 			page_cache_release(page);
1267 			break;
1268 		}
1269 
1270 		/*
1271 		 * If a reference remains (rare), we would like to leave
1272 		 * the page in the swap cache; but try_to_unmap could
1273 		 * then re-duplicate the entry once we drop page lock,
1274 		 * so we might loop indefinitely; also, that page could
1275 		 * not be swapped out to other storage meanwhile.  So:
1276 		 * delete from cache even if there's another reference,
1277 		 * after ensuring that the data has been saved to disk -
1278 		 * since if the reference remains (rarer), it will be
1279 		 * read from disk into another page.  Splitting into two
1280 		 * pages would be incorrect if swap supported "shared
1281 		 * private" pages, but they are handled by tmpfs files.
1282 		 *
1283 		 * Given how unuse_vma() targets one particular offset
1284 		 * in an anon_vma, once the anon_vma has been determined,
1285 		 * this splitting happens to be just what is needed to
1286 		 * handle where KSM pages have been swapped out: re-reading
1287 		 * is unnecessarily slow, but we can fix that later on.
1288 		 */
1289 		if (swap_count(*swap_map) &&
1290 		     PageDirty(page) && PageSwapCache(page)) {
1291 			struct writeback_control wbc = {
1292 				.sync_mode = WB_SYNC_NONE,
1293 			};
1294 
1295 			swap_writepage(page, &wbc);
1296 			lock_page(page);
1297 			wait_on_page_writeback(page);
1298 		}
1299 
1300 		/*
1301 		 * It is conceivable that a racing task removed this page from
1302 		 * swap cache just before we acquired the page lock at the top,
1303 		 * or while we dropped it in unuse_mm().  The page might even
1304 		 * be back in swap cache on another swap area: that we must not
1305 		 * delete, since it may not have been written out to swap yet.
1306 		 */
1307 		if (PageSwapCache(page) &&
1308 		    likely(page_private(page) == entry.val))
1309 			delete_from_swap_cache(page);
1310 
1311 		/*
1312 		 * So we could skip searching mms once swap count went
1313 		 * to 1, we did not mark any present ptes as dirty: must
1314 		 * mark page dirty so shrink_page_list will preserve it.
1315 		 */
1316 		SetPageDirty(page);
1317 		unlock_page(page);
1318 		page_cache_release(page);
1319 
1320 		/*
1321 		 * Make sure that we aren't completely killing
1322 		 * interactive performance.
1323 		 */
1324 		cond_resched();
1325 	}
1326 
1327 	mmput(start_mm);
1328 	return retval;
1329 }
1330 
1331 /*
1332  * After a successful try_to_unuse, if no swap is now in use, we know
1333  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1334  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1335  * added to the mmlist just after page_duplicate - before would be racy.
1336  */
1337 static void drain_mmlist(void)
1338 {
1339 	struct list_head *p, *next;
1340 	unsigned int type;
1341 
1342 	for (type = 0; type < nr_swapfiles; type++)
1343 		if (swap_info[type]->inuse_pages)
1344 			return;
1345 	spin_lock(&mmlist_lock);
1346 	list_for_each_safe(p, next, &init_mm.mmlist)
1347 		list_del_init(p);
1348 	spin_unlock(&mmlist_lock);
1349 }
1350 
1351 /*
1352  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1353  * corresponds to page offset for the specified swap entry.
1354  * Note that the type of this function is sector_t, but it returns page offset
1355  * into the bdev, not sector offset.
1356  */
1357 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1358 {
1359 	struct swap_info_struct *sis;
1360 	struct swap_extent *start_se;
1361 	struct swap_extent *se;
1362 	pgoff_t offset;
1363 
1364 	sis = swap_info[swp_type(entry)];
1365 	*bdev = sis->bdev;
1366 
1367 	offset = swp_offset(entry);
1368 	start_se = sis->curr_swap_extent;
1369 	se = start_se;
1370 
1371 	for ( ; ; ) {
1372 		struct list_head *lh;
1373 
1374 		if (se->start_page <= offset &&
1375 				offset < (se->start_page + se->nr_pages)) {
1376 			return se->start_block + (offset - se->start_page);
1377 		}
1378 		lh = se->list.next;
1379 		se = list_entry(lh, struct swap_extent, list);
1380 		sis->curr_swap_extent = se;
1381 		BUG_ON(se == start_se);		/* It *must* be present */
1382 	}
1383 }
1384 
1385 /*
1386  * Returns the page offset into bdev for the specified page's swap entry.
1387  */
1388 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1389 {
1390 	swp_entry_t entry;
1391 	entry.val = page_private(page);
1392 	return map_swap_entry(entry, bdev);
1393 }
1394 
1395 /*
1396  * Free all of a swapdev's extent information
1397  */
1398 static void destroy_swap_extents(struct swap_info_struct *sis)
1399 {
1400 	while (!list_empty(&sis->first_swap_extent.list)) {
1401 		struct swap_extent *se;
1402 
1403 		se = list_entry(sis->first_swap_extent.list.next,
1404 				struct swap_extent, list);
1405 		list_del(&se->list);
1406 		kfree(se);
1407 	}
1408 }
1409 
1410 /*
1411  * Add a block range (and the corresponding page range) into this swapdev's
1412  * extent list.  The extent list is kept sorted in page order.
1413  *
1414  * This function rather assumes that it is called in ascending page order.
1415  */
1416 static int
1417 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1418 		unsigned long nr_pages, sector_t start_block)
1419 {
1420 	struct swap_extent *se;
1421 	struct swap_extent *new_se;
1422 	struct list_head *lh;
1423 
1424 	if (start_page == 0) {
1425 		se = &sis->first_swap_extent;
1426 		sis->curr_swap_extent = se;
1427 		se->start_page = 0;
1428 		se->nr_pages = nr_pages;
1429 		se->start_block = start_block;
1430 		return 1;
1431 	} else {
1432 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1433 		se = list_entry(lh, struct swap_extent, list);
1434 		BUG_ON(se->start_page + se->nr_pages != start_page);
1435 		if (se->start_block + se->nr_pages == start_block) {
1436 			/* Merge it */
1437 			se->nr_pages += nr_pages;
1438 			return 0;
1439 		}
1440 	}
1441 
1442 	/*
1443 	 * No merge.  Insert a new extent, preserving ordering.
1444 	 */
1445 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1446 	if (new_se == NULL)
1447 		return -ENOMEM;
1448 	new_se->start_page = start_page;
1449 	new_se->nr_pages = nr_pages;
1450 	new_se->start_block = start_block;
1451 
1452 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1453 	return 1;
1454 }
1455 
1456 /*
1457  * A `swap extent' is a simple thing which maps a contiguous range of pages
1458  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1459  * is built at swapon time and is then used at swap_writepage/swap_readpage
1460  * time for locating where on disk a page belongs.
1461  *
1462  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1463  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1464  * swap files identically.
1465  *
1466  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1467  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1468  * swapfiles are handled *identically* after swapon time.
1469  *
1470  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1471  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1472  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1473  * requirements, they are simply tossed out - we will never use those blocks
1474  * for swapping.
1475  *
1476  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1477  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1478  * which will scribble on the fs.
1479  *
1480  * The amount of disk space which a single swap extent represents varies.
1481  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1482  * extents in the list.  To avoid much list walking, we cache the previous
1483  * search location in `curr_swap_extent', and start new searches from there.
1484  * This is extremely effective.  The average number of iterations in
1485  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1486  */
1487 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1488 {
1489 	struct inode *inode;
1490 	unsigned blocks_per_page;
1491 	unsigned long page_no;
1492 	unsigned blkbits;
1493 	sector_t probe_block;
1494 	sector_t last_block;
1495 	sector_t lowest_block = -1;
1496 	sector_t highest_block = 0;
1497 	int nr_extents = 0;
1498 	int ret;
1499 
1500 	inode = sis->swap_file->f_mapping->host;
1501 	if (S_ISBLK(inode->i_mode)) {
1502 		ret = add_swap_extent(sis, 0, sis->max, 0);
1503 		*span = sis->pages;
1504 		goto out;
1505 	}
1506 
1507 	blkbits = inode->i_blkbits;
1508 	blocks_per_page = PAGE_SIZE >> blkbits;
1509 
1510 	/*
1511 	 * Map all the blocks into the extent list.  This code doesn't try
1512 	 * to be very smart.
1513 	 */
1514 	probe_block = 0;
1515 	page_no = 0;
1516 	last_block = i_size_read(inode) >> blkbits;
1517 	while ((probe_block + blocks_per_page) <= last_block &&
1518 			page_no < sis->max) {
1519 		unsigned block_in_page;
1520 		sector_t first_block;
1521 
1522 		first_block = bmap(inode, probe_block);
1523 		if (first_block == 0)
1524 			goto bad_bmap;
1525 
1526 		/*
1527 		 * It must be PAGE_SIZE aligned on-disk
1528 		 */
1529 		if (first_block & (blocks_per_page - 1)) {
1530 			probe_block++;
1531 			goto reprobe;
1532 		}
1533 
1534 		for (block_in_page = 1; block_in_page < blocks_per_page;
1535 					block_in_page++) {
1536 			sector_t block;
1537 
1538 			block = bmap(inode, probe_block + block_in_page);
1539 			if (block == 0)
1540 				goto bad_bmap;
1541 			if (block != first_block + block_in_page) {
1542 				/* Discontiguity */
1543 				probe_block++;
1544 				goto reprobe;
1545 			}
1546 		}
1547 
1548 		first_block >>= (PAGE_SHIFT - blkbits);
1549 		if (page_no) {	/* exclude the header page */
1550 			if (first_block < lowest_block)
1551 				lowest_block = first_block;
1552 			if (first_block > highest_block)
1553 				highest_block = first_block;
1554 		}
1555 
1556 		/*
1557 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1558 		 */
1559 		ret = add_swap_extent(sis, page_no, 1, first_block);
1560 		if (ret < 0)
1561 			goto out;
1562 		nr_extents += ret;
1563 		page_no++;
1564 		probe_block += blocks_per_page;
1565 reprobe:
1566 		continue;
1567 	}
1568 	ret = nr_extents;
1569 	*span = 1 + highest_block - lowest_block;
1570 	if (page_no == 0)
1571 		page_no = 1;	/* force Empty message */
1572 	sis->max = page_no;
1573 	sis->pages = page_no - 1;
1574 	sis->highest_bit = page_no - 1;
1575 out:
1576 	return ret;
1577 bad_bmap:
1578 	printk(KERN_ERR "swapon: swapfile has holes\n");
1579 	ret = -EINVAL;
1580 	goto out;
1581 }
1582 
1583 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1584 {
1585 	struct swap_info_struct *p = NULL;
1586 	unsigned char *swap_map;
1587 	struct file *swap_file, *victim;
1588 	struct address_space *mapping;
1589 	struct inode *inode;
1590 	char *pathname;
1591 	int i, type, prev;
1592 	int err;
1593 
1594 	if (!capable(CAP_SYS_ADMIN))
1595 		return -EPERM;
1596 
1597 	pathname = getname(specialfile);
1598 	err = PTR_ERR(pathname);
1599 	if (IS_ERR(pathname))
1600 		goto out;
1601 
1602 	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1603 	putname(pathname);
1604 	err = PTR_ERR(victim);
1605 	if (IS_ERR(victim))
1606 		goto out;
1607 
1608 	mapping = victim->f_mapping;
1609 	prev = -1;
1610 	spin_lock(&swap_lock);
1611 	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1612 		p = swap_info[type];
1613 		if (p->flags & SWP_WRITEOK) {
1614 			if (p->swap_file->f_mapping == mapping)
1615 				break;
1616 		}
1617 		prev = type;
1618 	}
1619 	if (type < 0) {
1620 		err = -EINVAL;
1621 		spin_unlock(&swap_lock);
1622 		goto out_dput;
1623 	}
1624 	if (!security_vm_enough_memory(p->pages))
1625 		vm_unacct_memory(p->pages);
1626 	else {
1627 		err = -ENOMEM;
1628 		spin_unlock(&swap_lock);
1629 		goto out_dput;
1630 	}
1631 	if (prev < 0)
1632 		swap_list.head = p->next;
1633 	else
1634 		swap_info[prev]->next = p->next;
1635 	if (type == swap_list.next) {
1636 		/* just pick something that's safe... */
1637 		swap_list.next = swap_list.head;
1638 	}
1639 	if (p->prio < 0) {
1640 		for (i = p->next; i >= 0; i = swap_info[i]->next)
1641 			swap_info[i]->prio = p->prio--;
1642 		least_priority++;
1643 	}
1644 	nr_swap_pages -= p->pages;
1645 	total_swap_pages -= p->pages;
1646 	p->flags &= ~SWP_WRITEOK;
1647 	spin_unlock(&swap_lock);
1648 
1649 	current->flags |= PF_OOM_ORIGIN;
1650 	err = try_to_unuse(type);
1651 	current->flags &= ~PF_OOM_ORIGIN;
1652 
1653 	if (err) {
1654 		/* re-insert swap space back into swap_list */
1655 		spin_lock(&swap_lock);
1656 		if (p->prio < 0)
1657 			p->prio = --least_priority;
1658 		prev = -1;
1659 		for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1660 			if (p->prio >= swap_info[i]->prio)
1661 				break;
1662 			prev = i;
1663 		}
1664 		p->next = i;
1665 		if (prev < 0)
1666 			swap_list.head = swap_list.next = type;
1667 		else
1668 			swap_info[prev]->next = type;
1669 		nr_swap_pages += p->pages;
1670 		total_swap_pages += p->pages;
1671 		p->flags |= SWP_WRITEOK;
1672 		spin_unlock(&swap_lock);
1673 		goto out_dput;
1674 	}
1675 
1676 	/* wait for any unplug function to finish */
1677 	down_write(&swap_unplug_sem);
1678 	up_write(&swap_unplug_sem);
1679 
1680 	destroy_swap_extents(p);
1681 	if (p->flags & SWP_CONTINUED)
1682 		free_swap_count_continuations(p);
1683 
1684 	mutex_lock(&swapon_mutex);
1685 	spin_lock(&swap_lock);
1686 	drain_mmlist();
1687 
1688 	/* wait for anyone still in scan_swap_map */
1689 	p->highest_bit = 0;		/* cuts scans short */
1690 	while (p->flags >= SWP_SCANNING) {
1691 		spin_unlock(&swap_lock);
1692 		schedule_timeout_uninterruptible(1);
1693 		spin_lock(&swap_lock);
1694 	}
1695 
1696 	swap_file = p->swap_file;
1697 	p->swap_file = NULL;
1698 	p->max = 0;
1699 	swap_map = p->swap_map;
1700 	p->swap_map = NULL;
1701 	p->flags = 0;
1702 	spin_unlock(&swap_lock);
1703 	mutex_unlock(&swapon_mutex);
1704 	vfree(swap_map);
1705 	/* Destroy swap account informatin */
1706 	swap_cgroup_swapoff(type);
1707 
1708 	inode = mapping->host;
1709 	if (S_ISBLK(inode->i_mode)) {
1710 		struct block_device *bdev = I_BDEV(inode);
1711 		set_blocksize(bdev, p->old_block_size);
1712 		bd_release(bdev);
1713 	} else {
1714 		mutex_lock(&inode->i_mutex);
1715 		inode->i_flags &= ~S_SWAPFILE;
1716 		mutex_unlock(&inode->i_mutex);
1717 	}
1718 	filp_close(swap_file, NULL);
1719 	err = 0;
1720 
1721 out_dput:
1722 	filp_close(victim, NULL);
1723 out:
1724 	return err;
1725 }
1726 
1727 #ifdef CONFIG_PROC_FS
1728 /* iterator */
1729 static void *swap_start(struct seq_file *swap, loff_t *pos)
1730 {
1731 	struct swap_info_struct *si;
1732 	int type;
1733 	loff_t l = *pos;
1734 
1735 	mutex_lock(&swapon_mutex);
1736 
1737 	if (!l)
1738 		return SEQ_START_TOKEN;
1739 
1740 	for (type = 0; type < nr_swapfiles; type++) {
1741 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1742 		si = swap_info[type];
1743 		if (!(si->flags & SWP_USED) || !si->swap_map)
1744 			continue;
1745 		if (!--l)
1746 			return si;
1747 	}
1748 
1749 	return NULL;
1750 }
1751 
1752 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1753 {
1754 	struct swap_info_struct *si = v;
1755 	int type;
1756 
1757 	if (v == SEQ_START_TOKEN)
1758 		type = 0;
1759 	else
1760 		type = si->type + 1;
1761 
1762 	for (; type < nr_swapfiles; type++) {
1763 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1764 		si = swap_info[type];
1765 		if (!(si->flags & SWP_USED) || !si->swap_map)
1766 			continue;
1767 		++*pos;
1768 		return si;
1769 	}
1770 
1771 	return NULL;
1772 }
1773 
1774 static void swap_stop(struct seq_file *swap, void *v)
1775 {
1776 	mutex_unlock(&swapon_mutex);
1777 }
1778 
1779 static int swap_show(struct seq_file *swap, void *v)
1780 {
1781 	struct swap_info_struct *si = v;
1782 	struct file *file;
1783 	int len;
1784 
1785 	if (si == SEQ_START_TOKEN) {
1786 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1787 		return 0;
1788 	}
1789 
1790 	file = si->swap_file;
1791 	len = seq_path(swap, &file->f_path, " \t\n\\");
1792 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1793 			len < 40 ? 40 - len : 1, " ",
1794 			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1795 				"partition" : "file\t",
1796 			si->pages << (PAGE_SHIFT - 10),
1797 			si->inuse_pages << (PAGE_SHIFT - 10),
1798 			si->prio);
1799 	return 0;
1800 }
1801 
1802 static const struct seq_operations swaps_op = {
1803 	.start =	swap_start,
1804 	.next =		swap_next,
1805 	.stop =		swap_stop,
1806 	.show =		swap_show
1807 };
1808 
1809 static int swaps_open(struct inode *inode, struct file *file)
1810 {
1811 	return seq_open(file, &swaps_op);
1812 }
1813 
1814 static const struct file_operations proc_swaps_operations = {
1815 	.open		= swaps_open,
1816 	.read		= seq_read,
1817 	.llseek		= seq_lseek,
1818 	.release	= seq_release,
1819 };
1820 
1821 static int __init procswaps_init(void)
1822 {
1823 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1824 	return 0;
1825 }
1826 __initcall(procswaps_init);
1827 #endif /* CONFIG_PROC_FS */
1828 
1829 #ifdef MAX_SWAPFILES_CHECK
1830 static int __init max_swapfiles_check(void)
1831 {
1832 	MAX_SWAPFILES_CHECK();
1833 	return 0;
1834 }
1835 late_initcall(max_swapfiles_check);
1836 #endif
1837 
1838 /*
1839  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1840  *
1841  * The swapon system call
1842  */
1843 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1844 {
1845 	struct swap_info_struct *p;
1846 	char *name = NULL;
1847 	struct block_device *bdev = NULL;
1848 	struct file *swap_file = NULL;
1849 	struct address_space *mapping;
1850 	unsigned int type;
1851 	int i, prev;
1852 	int error;
1853 	union swap_header *swap_header;
1854 	unsigned int nr_good_pages;
1855 	int nr_extents = 0;
1856 	sector_t span;
1857 	unsigned long maxpages;
1858 	unsigned long swapfilepages;
1859 	unsigned char *swap_map = NULL;
1860 	struct page *page = NULL;
1861 	struct inode *inode = NULL;
1862 	int did_down = 0;
1863 
1864 	if (!capable(CAP_SYS_ADMIN))
1865 		return -EPERM;
1866 
1867 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1868 	if (!p)
1869 		return -ENOMEM;
1870 
1871 	spin_lock(&swap_lock);
1872 	for (type = 0; type < nr_swapfiles; type++) {
1873 		if (!(swap_info[type]->flags & SWP_USED))
1874 			break;
1875 	}
1876 	error = -EPERM;
1877 	if (type >= MAX_SWAPFILES) {
1878 		spin_unlock(&swap_lock);
1879 		kfree(p);
1880 		goto out;
1881 	}
1882 	if (type >= nr_swapfiles) {
1883 		p->type = type;
1884 		swap_info[type] = p;
1885 		/*
1886 		 * Write swap_info[type] before nr_swapfiles, in case a
1887 		 * racing procfs swap_start() or swap_next() is reading them.
1888 		 * (We never shrink nr_swapfiles, we never free this entry.)
1889 		 */
1890 		smp_wmb();
1891 		nr_swapfiles++;
1892 	} else {
1893 		kfree(p);
1894 		p = swap_info[type];
1895 		/*
1896 		 * Do not memset this entry: a racing procfs swap_next()
1897 		 * would be relying on p->type to remain valid.
1898 		 */
1899 	}
1900 	INIT_LIST_HEAD(&p->first_swap_extent.list);
1901 	p->flags = SWP_USED;
1902 	p->next = -1;
1903 	spin_unlock(&swap_lock);
1904 
1905 	name = getname(specialfile);
1906 	error = PTR_ERR(name);
1907 	if (IS_ERR(name)) {
1908 		name = NULL;
1909 		goto bad_swap_2;
1910 	}
1911 	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1912 	error = PTR_ERR(swap_file);
1913 	if (IS_ERR(swap_file)) {
1914 		swap_file = NULL;
1915 		goto bad_swap_2;
1916 	}
1917 
1918 	p->swap_file = swap_file;
1919 	mapping = swap_file->f_mapping;
1920 	inode = mapping->host;
1921 
1922 	error = -EBUSY;
1923 	for (i = 0; i < nr_swapfiles; i++) {
1924 		struct swap_info_struct *q = swap_info[i];
1925 
1926 		if (i == type || !q->swap_file)
1927 			continue;
1928 		if (mapping == q->swap_file->f_mapping)
1929 			goto bad_swap;
1930 	}
1931 
1932 	error = -EINVAL;
1933 	if (S_ISBLK(inode->i_mode)) {
1934 		bdev = I_BDEV(inode);
1935 		error = bd_claim(bdev, sys_swapon);
1936 		if (error < 0) {
1937 			bdev = NULL;
1938 			error = -EINVAL;
1939 			goto bad_swap;
1940 		}
1941 		p->old_block_size = block_size(bdev);
1942 		error = set_blocksize(bdev, PAGE_SIZE);
1943 		if (error < 0)
1944 			goto bad_swap;
1945 		p->bdev = bdev;
1946 		p->flags |= SWP_BLKDEV;
1947 	} else if (S_ISREG(inode->i_mode)) {
1948 		p->bdev = inode->i_sb->s_bdev;
1949 		mutex_lock(&inode->i_mutex);
1950 		did_down = 1;
1951 		if (IS_SWAPFILE(inode)) {
1952 			error = -EBUSY;
1953 			goto bad_swap;
1954 		}
1955 	} else {
1956 		goto bad_swap;
1957 	}
1958 
1959 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1960 
1961 	/*
1962 	 * Read the swap header.
1963 	 */
1964 	if (!mapping->a_ops->readpage) {
1965 		error = -EINVAL;
1966 		goto bad_swap;
1967 	}
1968 	page = read_mapping_page(mapping, 0, swap_file);
1969 	if (IS_ERR(page)) {
1970 		error = PTR_ERR(page);
1971 		goto bad_swap;
1972 	}
1973 	swap_header = kmap(page);
1974 
1975 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1976 		printk(KERN_ERR "Unable to find swap-space signature\n");
1977 		error = -EINVAL;
1978 		goto bad_swap;
1979 	}
1980 
1981 	/* swap partition endianess hack... */
1982 	if (swab32(swap_header->info.version) == 1) {
1983 		swab32s(&swap_header->info.version);
1984 		swab32s(&swap_header->info.last_page);
1985 		swab32s(&swap_header->info.nr_badpages);
1986 		for (i = 0; i < swap_header->info.nr_badpages; i++)
1987 			swab32s(&swap_header->info.badpages[i]);
1988 	}
1989 	/* Check the swap header's sub-version */
1990 	if (swap_header->info.version != 1) {
1991 		printk(KERN_WARNING
1992 		       "Unable to handle swap header version %d\n",
1993 		       swap_header->info.version);
1994 		error = -EINVAL;
1995 		goto bad_swap;
1996 	}
1997 
1998 	p->lowest_bit  = 1;
1999 	p->cluster_next = 1;
2000 	p->cluster_nr = 0;
2001 
2002 	/*
2003 	 * Find out how many pages are allowed for a single swap
2004 	 * device. There are two limiting factors: 1) the number of
2005 	 * bits for the swap offset in the swp_entry_t type and
2006 	 * 2) the number of bits in the a swap pte as defined by
2007 	 * the different architectures. In order to find the
2008 	 * largest possible bit mask a swap entry with swap type 0
2009 	 * and swap offset ~0UL is created, encoded to a swap pte,
2010 	 * decoded to a swp_entry_t again and finally the swap
2011 	 * offset is extracted. This will mask all the bits from
2012 	 * the initial ~0UL mask that can't be encoded in either
2013 	 * the swp_entry_t or the architecture definition of a
2014 	 * swap pte.
2015 	 */
2016 	maxpages = swp_offset(pte_to_swp_entry(
2017 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2018 	if (maxpages > swap_header->info.last_page) {
2019 		maxpages = swap_header->info.last_page + 1;
2020 		/* p->max is an unsigned int: don't overflow it */
2021 		if ((unsigned int)maxpages == 0)
2022 			maxpages = UINT_MAX;
2023 	}
2024 	p->highest_bit = maxpages - 1;
2025 
2026 	error = -EINVAL;
2027 	if (!maxpages)
2028 		goto bad_swap;
2029 	if (swapfilepages && maxpages > swapfilepages) {
2030 		printk(KERN_WARNING
2031 		       "Swap area shorter than signature indicates\n");
2032 		goto bad_swap;
2033 	}
2034 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2035 		goto bad_swap;
2036 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2037 		goto bad_swap;
2038 
2039 	/* OK, set up the swap map and apply the bad block list */
2040 	swap_map = vmalloc(maxpages);
2041 	if (!swap_map) {
2042 		error = -ENOMEM;
2043 		goto bad_swap;
2044 	}
2045 
2046 	memset(swap_map, 0, maxpages);
2047 	nr_good_pages = maxpages - 1;	/* omit header page */
2048 
2049 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2050 		unsigned int page_nr = swap_header->info.badpages[i];
2051 		if (page_nr == 0 || page_nr > swap_header->info.last_page) {
2052 			error = -EINVAL;
2053 			goto bad_swap;
2054 		}
2055 		if (page_nr < maxpages) {
2056 			swap_map[page_nr] = SWAP_MAP_BAD;
2057 			nr_good_pages--;
2058 		}
2059 	}
2060 
2061 	error = swap_cgroup_swapon(type, maxpages);
2062 	if (error)
2063 		goto bad_swap;
2064 
2065 	if (nr_good_pages) {
2066 		swap_map[0] = SWAP_MAP_BAD;
2067 		p->max = maxpages;
2068 		p->pages = nr_good_pages;
2069 		nr_extents = setup_swap_extents(p, &span);
2070 		if (nr_extents < 0) {
2071 			error = nr_extents;
2072 			goto bad_swap;
2073 		}
2074 		nr_good_pages = p->pages;
2075 	}
2076 	if (!nr_good_pages) {
2077 		printk(KERN_WARNING "Empty swap-file\n");
2078 		error = -EINVAL;
2079 		goto bad_swap;
2080 	}
2081 
2082 	if (p->bdev) {
2083 		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2084 			p->flags |= SWP_SOLIDSTATE;
2085 			p->cluster_next = 1 + (random32() % p->highest_bit);
2086 		}
2087 		if (discard_swap(p) == 0)
2088 			p->flags |= SWP_DISCARDABLE;
2089 	}
2090 
2091 	mutex_lock(&swapon_mutex);
2092 	spin_lock(&swap_lock);
2093 	if (swap_flags & SWAP_FLAG_PREFER)
2094 		p->prio =
2095 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2096 	else
2097 		p->prio = --least_priority;
2098 	p->swap_map = swap_map;
2099 	p->flags |= SWP_WRITEOK;
2100 	nr_swap_pages += nr_good_pages;
2101 	total_swap_pages += nr_good_pages;
2102 
2103 	printk(KERN_INFO "Adding %uk swap on %s.  "
2104 			"Priority:%d extents:%d across:%lluk %s%s\n",
2105 		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2106 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2107 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2108 		(p->flags & SWP_DISCARDABLE) ? "D" : "");
2109 
2110 	/* insert swap space into swap_list: */
2111 	prev = -1;
2112 	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2113 		if (p->prio >= swap_info[i]->prio)
2114 			break;
2115 		prev = i;
2116 	}
2117 	p->next = i;
2118 	if (prev < 0)
2119 		swap_list.head = swap_list.next = type;
2120 	else
2121 		swap_info[prev]->next = type;
2122 	spin_unlock(&swap_lock);
2123 	mutex_unlock(&swapon_mutex);
2124 	error = 0;
2125 	goto out;
2126 bad_swap:
2127 	if (bdev) {
2128 		set_blocksize(bdev, p->old_block_size);
2129 		bd_release(bdev);
2130 	}
2131 	destroy_swap_extents(p);
2132 	swap_cgroup_swapoff(type);
2133 bad_swap_2:
2134 	spin_lock(&swap_lock);
2135 	p->swap_file = NULL;
2136 	p->flags = 0;
2137 	spin_unlock(&swap_lock);
2138 	vfree(swap_map);
2139 	if (swap_file)
2140 		filp_close(swap_file, NULL);
2141 out:
2142 	if (page && !IS_ERR(page)) {
2143 		kunmap(page);
2144 		page_cache_release(page);
2145 	}
2146 	if (name)
2147 		putname(name);
2148 	if (did_down) {
2149 		if (!error)
2150 			inode->i_flags |= S_SWAPFILE;
2151 		mutex_unlock(&inode->i_mutex);
2152 	}
2153 	return error;
2154 }
2155 
2156 void si_swapinfo(struct sysinfo *val)
2157 {
2158 	unsigned int type;
2159 	unsigned long nr_to_be_unused = 0;
2160 
2161 	spin_lock(&swap_lock);
2162 	for (type = 0; type < nr_swapfiles; type++) {
2163 		struct swap_info_struct *si = swap_info[type];
2164 
2165 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2166 			nr_to_be_unused += si->inuse_pages;
2167 	}
2168 	val->freeswap = nr_swap_pages + nr_to_be_unused;
2169 	val->totalswap = total_swap_pages + nr_to_be_unused;
2170 	spin_unlock(&swap_lock);
2171 }
2172 
2173 /*
2174  * Verify that a swap entry is valid and increment its swap map count.
2175  *
2176  * Returns error code in following case.
2177  * - success -> 0
2178  * - swp_entry is invalid -> EINVAL
2179  * - swp_entry is migration entry -> EINVAL
2180  * - swap-cache reference is requested but there is already one. -> EEXIST
2181  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2182  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2183  */
2184 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2185 {
2186 	struct swap_info_struct *p;
2187 	unsigned long offset, type;
2188 	unsigned char count;
2189 	unsigned char has_cache;
2190 	int err = -EINVAL;
2191 
2192 	if (non_swap_entry(entry))
2193 		goto out;
2194 
2195 	type = swp_type(entry);
2196 	if (type >= nr_swapfiles)
2197 		goto bad_file;
2198 	p = swap_info[type];
2199 	offset = swp_offset(entry);
2200 
2201 	spin_lock(&swap_lock);
2202 	if (unlikely(offset >= p->max))
2203 		goto unlock_out;
2204 
2205 	count = p->swap_map[offset];
2206 	has_cache = count & SWAP_HAS_CACHE;
2207 	count &= ~SWAP_HAS_CACHE;
2208 	err = 0;
2209 
2210 	if (usage == SWAP_HAS_CACHE) {
2211 
2212 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2213 		if (!has_cache && count)
2214 			has_cache = SWAP_HAS_CACHE;
2215 		else if (has_cache)		/* someone else added cache */
2216 			err = -EEXIST;
2217 		else				/* no users remaining */
2218 			err = -ENOENT;
2219 
2220 	} else if (count || has_cache) {
2221 
2222 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2223 			count += usage;
2224 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2225 			err = -EINVAL;
2226 		else if (swap_count_continued(p, offset, count))
2227 			count = COUNT_CONTINUED;
2228 		else
2229 			err = -ENOMEM;
2230 	} else
2231 		err = -ENOENT;			/* unused swap entry */
2232 
2233 	p->swap_map[offset] = count | has_cache;
2234 
2235 unlock_out:
2236 	spin_unlock(&swap_lock);
2237 out:
2238 	return err;
2239 
2240 bad_file:
2241 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2242 	goto out;
2243 }
2244 
2245 /*
2246  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2247  * (in which case its reference count is never incremented).
2248  */
2249 void swap_shmem_alloc(swp_entry_t entry)
2250 {
2251 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2252 }
2253 
2254 /*
2255  * Increase reference count of swap entry by 1.
2256  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2257  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2258  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2259  * might occur if a page table entry has got corrupted.
2260  */
2261 int swap_duplicate(swp_entry_t entry)
2262 {
2263 	int err = 0;
2264 
2265 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2266 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2267 	return err;
2268 }
2269 
2270 /*
2271  * @entry: swap entry for which we allocate swap cache.
2272  *
2273  * Called when allocating swap cache for existing swap entry,
2274  * This can return error codes. Returns 0 at success.
2275  * -EBUSY means there is a swap cache.
2276  * Note: return code is different from swap_duplicate().
2277  */
2278 int swapcache_prepare(swp_entry_t entry)
2279 {
2280 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2281 }
2282 
2283 /*
2284  * swap_lock prevents swap_map being freed. Don't grab an extra
2285  * reference on the swaphandle, it doesn't matter if it becomes unused.
2286  */
2287 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2288 {
2289 	struct swap_info_struct *si;
2290 	int our_page_cluster = page_cluster;
2291 	pgoff_t target, toff;
2292 	pgoff_t base, end;
2293 	int nr_pages = 0;
2294 
2295 	if (!our_page_cluster)	/* no readahead */
2296 		return 0;
2297 
2298 	si = swap_info[swp_type(entry)];
2299 	target = swp_offset(entry);
2300 	base = (target >> our_page_cluster) << our_page_cluster;
2301 	end = base + (1 << our_page_cluster);
2302 	if (!base)		/* first page is swap header */
2303 		base++;
2304 
2305 	spin_lock(&swap_lock);
2306 	if (end > si->max)	/* don't go beyond end of map */
2307 		end = si->max;
2308 
2309 	/* Count contiguous allocated slots above our target */
2310 	for (toff = target; ++toff < end; nr_pages++) {
2311 		/* Don't read in free or bad pages */
2312 		if (!si->swap_map[toff])
2313 			break;
2314 		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2315 			break;
2316 	}
2317 	/* Count contiguous allocated slots below our target */
2318 	for (toff = target; --toff >= base; nr_pages++) {
2319 		/* Don't read in free or bad pages */
2320 		if (!si->swap_map[toff])
2321 			break;
2322 		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2323 			break;
2324 	}
2325 	spin_unlock(&swap_lock);
2326 
2327 	/*
2328 	 * Indicate starting offset, and return number of pages to get:
2329 	 * if only 1, say 0, since there's then no readahead to be done.
2330 	 */
2331 	*offset = ++toff;
2332 	return nr_pages? ++nr_pages: 0;
2333 }
2334 
2335 /*
2336  * add_swap_count_continuation - called when a swap count is duplicated
2337  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2338  * page of the original vmalloc'ed swap_map, to hold the continuation count
2339  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2340  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2341  *
2342  * These continuation pages are seldom referenced: the common paths all work
2343  * on the original swap_map, only referring to a continuation page when the
2344  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2345  *
2346  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2347  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2348  * can be called after dropping locks.
2349  */
2350 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2351 {
2352 	struct swap_info_struct *si;
2353 	struct page *head;
2354 	struct page *page;
2355 	struct page *list_page;
2356 	pgoff_t offset;
2357 	unsigned char count;
2358 
2359 	/*
2360 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2361 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2362 	 */
2363 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2364 
2365 	si = swap_info_get(entry);
2366 	if (!si) {
2367 		/*
2368 		 * An acceptable race has occurred since the failing
2369 		 * __swap_duplicate(): the swap entry has been freed,
2370 		 * perhaps even the whole swap_map cleared for swapoff.
2371 		 */
2372 		goto outer;
2373 	}
2374 
2375 	offset = swp_offset(entry);
2376 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2377 
2378 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2379 		/*
2380 		 * The higher the swap count, the more likely it is that tasks
2381 		 * will race to add swap count continuation: we need to avoid
2382 		 * over-provisioning.
2383 		 */
2384 		goto out;
2385 	}
2386 
2387 	if (!page) {
2388 		spin_unlock(&swap_lock);
2389 		return -ENOMEM;
2390 	}
2391 
2392 	/*
2393 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2394 	 * no architecture is using highmem pages for kernel pagetables: so it
2395 	 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2396 	 */
2397 	head = vmalloc_to_page(si->swap_map + offset);
2398 	offset &= ~PAGE_MASK;
2399 
2400 	/*
2401 	 * Page allocation does not initialize the page's lru field,
2402 	 * but it does always reset its private field.
2403 	 */
2404 	if (!page_private(head)) {
2405 		BUG_ON(count & COUNT_CONTINUED);
2406 		INIT_LIST_HEAD(&head->lru);
2407 		set_page_private(head, SWP_CONTINUED);
2408 		si->flags |= SWP_CONTINUED;
2409 	}
2410 
2411 	list_for_each_entry(list_page, &head->lru, lru) {
2412 		unsigned char *map;
2413 
2414 		/*
2415 		 * If the previous map said no continuation, but we've found
2416 		 * a continuation page, free our allocation and use this one.
2417 		 */
2418 		if (!(count & COUNT_CONTINUED))
2419 			goto out;
2420 
2421 		map = kmap_atomic(list_page, KM_USER0) + offset;
2422 		count = *map;
2423 		kunmap_atomic(map, KM_USER0);
2424 
2425 		/*
2426 		 * If this continuation count now has some space in it,
2427 		 * free our allocation and use this one.
2428 		 */
2429 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2430 			goto out;
2431 	}
2432 
2433 	list_add_tail(&page->lru, &head->lru);
2434 	page = NULL;			/* now it's attached, don't free it */
2435 out:
2436 	spin_unlock(&swap_lock);
2437 outer:
2438 	if (page)
2439 		__free_page(page);
2440 	return 0;
2441 }
2442 
2443 /*
2444  * swap_count_continued - when the original swap_map count is incremented
2445  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2446  * into, carry if so, or else fail until a new continuation page is allocated;
2447  * when the original swap_map count is decremented from 0 with continuation,
2448  * borrow from the continuation and report whether it still holds more.
2449  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2450  */
2451 static bool swap_count_continued(struct swap_info_struct *si,
2452 				 pgoff_t offset, unsigned char count)
2453 {
2454 	struct page *head;
2455 	struct page *page;
2456 	unsigned char *map;
2457 
2458 	head = vmalloc_to_page(si->swap_map + offset);
2459 	if (page_private(head) != SWP_CONTINUED) {
2460 		BUG_ON(count & COUNT_CONTINUED);
2461 		return false;		/* need to add count continuation */
2462 	}
2463 
2464 	offset &= ~PAGE_MASK;
2465 	page = list_entry(head->lru.next, struct page, lru);
2466 	map = kmap_atomic(page, KM_USER0) + offset;
2467 
2468 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2469 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2470 
2471 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2472 		/*
2473 		 * Think of how you add 1 to 999
2474 		 */
2475 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2476 			kunmap_atomic(map, KM_USER0);
2477 			page = list_entry(page->lru.next, struct page, lru);
2478 			BUG_ON(page == head);
2479 			map = kmap_atomic(page, KM_USER0) + offset;
2480 		}
2481 		if (*map == SWAP_CONT_MAX) {
2482 			kunmap_atomic(map, KM_USER0);
2483 			page = list_entry(page->lru.next, struct page, lru);
2484 			if (page == head)
2485 				return false;	/* add count continuation */
2486 			map = kmap_atomic(page, KM_USER0) + offset;
2487 init_map:		*map = 0;		/* we didn't zero the page */
2488 		}
2489 		*map += 1;
2490 		kunmap_atomic(map, KM_USER0);
2491 		page = list_entry(page->lru.prev, struct page, lru);
2492 		while (page != head) {
2493 			map = kmap_atomic(page, KM_USER0) + offset;
2494 			*map = COUNT_CONTINUED;
2495 			kunmap_atomic(map, KM_USER0);
2496 			page = list_entry(page->lru.prev, struct page, lru);
2497 		}
2498 		return true;			/* incremented */
2499 
2500 	} else {				/* decrementing */
2501 		/*
2502 		 * Think of how you subtract 1 from 1000
2503 		 */
2504 		BUG_ON(count != COUNT_CONTINUED);
2505 		while (*map == COUNT_CONTINUED) {
2506 			kunmap_atomic(map, KM_USER0);
2507 			page = list_entry(page->lru.next, struct page, lru);
2508 			BUG_ON(page == head);
2509 			map = kmap_atomic(page, KM_USER0) + offset;
2510 		}
2511 		BUG_ON(*map == 0);
2512 		*map -= 1;
2513 		if (*map == 0)
2514 			count = 0;
2515 		kunmap_atomic(map, KM_USER0);
2516 		page = list_entry(page->lru.prev, struct page, lru);
2517 		while (page != head) {
2518 			map = kmap_atomic(page, KM_USER0) + offset;
2519 			*map = SWAP_CONT_MAX | count;
2520 			count = COUNT_CONTINUED;
2521 			kunmap_atomic(map, KM_USER0);
2522 			page = list_entry(page->lru.prev, struct page, lru);
2523 		}
2524 		return count == COUNT_CONTINUED;
2525 	}
2526 }
2527 
2528 /*
2529  * free_swap_count_continuations - swapoff free all the continuation pages
2530  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2531  */
2532 static void free_swap_count_continuations(struct swap_info_struct *si)
2533 {
2534 	pgoff_t offset;
2535 
2536 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2537 		struct page *head;
2538 		head = vmalloc_to_page(si->swap_map + offset);
2539 		if (page_private(head)) {
2540 			struct list_head *this, *next;
2541 			list_for_each_safe(this, next, &head->lru) {
2542 				struct page *page;
2543 				page = list_entry(this, struct page, lru);
2544 				list_del(this);
2545 				__free_page(page);
2546 			}
2547 		}
2548 	}
2549 }
2550