xref: /linux/mm/swapfile.c (revision 9ce7677cfd7cd871adb457c80bea3b581b839641)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/config.h>
9 #include <linux/mm.h>
10 #include <linux/hugetlb.h>
11 #include <linux/mman.h>
12 #include <linux/slab.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/swap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 #include <linux/shm.h>
19 #include <linux/blkdev.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/syscalls.h>
29 
30 #include <asm/pgtable.h>
31 #include <asm/tlbflush.h>
32 #include <linux/swapops.h>
33 
34 DEFINE_SPINLOCK(swap_lock);
35 unsigned int nr_swapfiles;
36 long total_swap_pages;
37 static int swap_overflow;
38 
39 static const char Bad_file[] = "Bad swap file entry ";
40 static const char Unused_file[] = "Unused swap file entry ";
41 static const char Bad_offset[] = "Bad swap offset entry ";
42 static const char Unused_offset[] = "Unused swap offset entry ";
43 
44 struct swap_list_t swap_list = {-1, -1};
45 
46 struct swap_info_struct swap_info[MAX_SWAPFILES];
47 
48 static DECLARE_MUTEX(swapon_sem);
49 
50 /*
51  * We need this because the bdev->unplug_fn can sleep and we cannot
52  * hold swap_lock while calling the unplug_fn. And swap_lock
53  * cannot be turned into a semaphore.
54  */
55 static DECLARE_RWSEM(swap_unplug_sem);
56 
57 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
58 {
59 	swp_entry_t entry;
60 
61 	down_read(&swap_unplug_sem);
62 	entry.val = page_private(page);
63 	if (PageSwapCache(page)) {
64 		struct block_device *bdev = swap_info[swp_type(entry)].bdev;
65 		struct backing_dev_info *bdi;
66 
67 		/*
68 		 * If the page is removed from swapcache from under us (with a
69 		 * racy try_to_unuse/swapoff) we need an additional reference
70 		 * count to avoid reading garbage from page_private(page) above.
71 		 * If the WARN_ON triggers during a swapoff it maybe the race
72 		 * condition and it's harmless. However if it triggers without
73 		 * swapoff it signals a problem.
74 		 */
75 		WARN_ON(page_count(page) <= 1);
76 
77 		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
78 		blk_run_backing_dev(bdi, page);
79 	}
80 	up_read(&swap_unplug_sem);
81 }
82 
83 #define SWAPFILE_CLUSTER	256
84 #define LATENCY_LIMIT		256
85 
86 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
87 {
88 	unsigned long offset, last_in_cluster;
89 	int latency_ration = LATENCY_LIMIT;
90 
91 	/*
92 	 * We try to cluster swap pages by allocating them sequentially
93 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
94 	 * way, however, we resort to first-free allocation, starting
95 	 * a new cluster.  This prevents us from scattering swap pages
96 	 * all over the entire swap partition, so that we reduce
97 	 * overall disk seek times between swap pages.  -- sct
98 	 * But we do now try to find an empty cluster.  -Andrea
99 	 */
100 
101 	si->flags += SWP_SCANNING;
102 	if (unlikely(!si->cluster_nr)) {
103 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
104 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
105 			goto lowest;
106 		spin_unlock(&swap_lock);
107 
108 		offset = si->lowest_bit;
109 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
110 
111 		/* Locate the first empty (unaligned) cluster */
112 		for (; last_in_cluster <= si->highest_bit; offset++) {
113 			if (si->swap_map[offset])
114 				last_in_cluster = offset + SWAPFILE_CLUSTER;
115 			else if (offset == last_in_cluster) {
116 				spin_lock(&swap_lock);
117 				si->cluster_next = offset-SWAPFILE_CLUSTER-1;
118 				goto cluster;
119 			}
120 			if (unlikely(--latency_ration < 0)) {
121 				cond_resched();
122 				latency_ration = LATENCY_LIMIT;
123 			}
124 		}
125 		spin_lock(&swap_lock);
126 		goto lowest;
127 	}
128 
129 	si->cluster_nr--;
130 cluster:
131 	offset = si->cluster_next;
132 	if (offset > si->highest_bit)
133 lowest:		offset = si->lowest_bit;
134 checks:	if (!(si->flags & SWP_WRITEOK))
135 		goto no_page;
136 	if (!si->highest_bit)
137 		goto no_page;
138 	if (!si->swap_map[offset]) {
139 		if (offset == si->lowest_bit)
140 			si->lowest_bit++;
141 		if (offset == si->highest_bit)
142 			si->highest_bit--;
143 		si->inuse_pages++;
144 		if (si->inuse_pages == si->pages) {
145 			si->lowest_bit = si->max;
146 			si->highest_bit = 0;
147 		}
148 		si->swap_map[offset] = 1;
149 		si->cluster_next = offset + 1;
150 		si->flags -= SWP_SCANNING;
151 		return offset;
152 	}
153 
154 	spin_unlock(&swap_lock);
155 	while (++offset <= si->highest_bit) {
156 		if (!si->swap_map[offset]) {
157 			spin_lock(&swap_lock);
158 			goto checks;
159 		}
160 		if (unlikely(--latency_ration < 0)) {
161 			cond_resched();
162 			latency_ration = LATENCY_LIMIT;
163 		}
164 	}
165 	spin_lock(&swap_lock);
166 	goto lowest;
167 
168 no_page:
169 	si->flags -= SWP_SCANNING;
170 	return 0;
171 }
172 
173 swp_entry_t get_swap_page(void)
174 {
175 	struct swap_info_struct *si;
176 	pgoff_t offset;
177 	int type, next;
178 	int wrapped = 0;
179 
180 	spin_lock(&swap_lock);
181 	if (nr_swap_pages <= 0)
182 		goto noswap;
183 	nr_swap_pages--;
184 
185 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
186 		si = swap_info + type;
187 		next = si->next;
188 		if (next < 0 ||
189 		    (!wrapped && si->prio != swap_info[next].prio)) {
190 			next = swap_list.head;
191 			wrapped++;
192 		}
193 
194 		if (!si->highest_bit)
195 			continue;
196 		if (!(si->flags & SWP_WRITEOK))
197 			continue;
198 
199 		swap_list.next = next;
200 		offset = scan_swap_map(si);
201 		if (offset) {
202 			spin_unlock(&swap_lock);
203 			return swp_entry(type, offset);
204 		}
205 		next = swap_list.next;
206 	}
207 
208 	nr_swap_pages++;
209 noswap:
210 	spin_unlock(&swap_lock);
211 	return (swp_entry_t) {0};
212 }
213 
214 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
215 {
216 	struct swap_info_struct * p;
217 	unsigned long offset, type;
218 
219 	if (!entry.val)
220 		goto out;
221 	type = swp_type(entry);
222 	if (type >= nr_swapfiles)
223 		goto bad_nofile;
224 	p = & swap_info[type];
225 	if (!(p->flags & SWP_USED))
226 		goto bad_device;
227 	offset = swp_offset(entry);
228 	if (offset >= p->max)
229 		goto bad_offset;
230 	if (!p->swap_map[offset])
231 		goto bad_free;
232 	spin_lock(&swap_lock);
233 	return p;
234 
235 bad_free:
236 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
237 	goto out;
238 bad_offset:
239 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
240 	goto out;
241 bad_device:
242 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
243 	goto out;
244 bad_nofile:
245 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
246 out:
247 	return NULL;
248 }
249 
250 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
251 {
252 	int count = p->swap_map[offset];
253 
254 	if (count < SWAP_MAP_MAX) {
255 		count--;
256 		p->swap_map[offset] = count;
257 		if (!count) {
258 			if (offset < p->lowest_bit)
259 				p->lowest_bit = offset;
260 			if (offset > p->highest_bit)
261 				p->highest_bit = offset;
262 			if (p->prio > swap_info[swap_list.next].prio)
263 				swap_list.next = p - swap_info;
264 			nr_swap_pages++;
265 			p->inuse_pages--;
266 		}
267 	}
268 	return count;
269 }
270 
271 /*
272  * Caller has made sure that the swapdevice corresponding to entry
273  * is still around or has not been recycled.
274  */
275 void swap_free(swp_entry_t entry)
276 {
277 	struct swap_info_struct * p;
278 
279 	p = swap_info_get(entry);
280 	if (p) {
281 		swap_entry_free(p, swp_offset(entry));
282 		spin_unlock(&swap_lock);
283 	}
284 }
285 
286 /*
287  * How many references to page are currently swapped out?
288  */
289 static inline int page_swapcount(struct page *page)
290 {
291 	int count = 0;
292 	struct swap_info_struct *p;
293 	swp_entry_t entry;
294 
295 	entry.val = page_private(page);
296 	p = swap_info_get(entry);
297 	if (p) {
298 		/* Subtract the 1 for the swap cache itself */
299 		count = p->swap_map[swp_offset(entry)] - 1;
300 		spin_unlock(&swap_lock);
301 	}
302 	return count;
303 }
304 
305 /*
306  * We can use this swap cache entry directly
307  * if there are no other references to it.
308  */
309 int can_share_swap_page(struct page *page)
310 {
311 	int count;
312 
313 	BUG_ON(!PageLocked(page));
314 	count = page_mapcount(page);
315 	if (count <= 1 && PageSwapCache(page))
316 		count += page_swapcount(page);
317 	return count == 1;
318 }
319 
320 /*
321  * Work out if there are any other processes sharing this
322  * swap cache page. Free it if you can. Return success.
323  */
324 int remove_exclusive_swap_page(struct page *page)
325 {
326 	int retval;
327 	struct swap_info_struct * p;
328 	swp_entry_t entry;
329 
330 	BUG_ON(PagePrivate(page));
331 	BUG_ON(!PageLocked(page));
332 
333 	if (!PageSwapCache(page))
334 		return 0;
335 	if (PageWriteback(page))
336 		return 0;
337 	if (page_count(page) != 2) /* 2: us + cache */
338 		return 0;
339 
340 	entry.val = page_private(page);
341 	p = swap_info_get(entry);
342 	if (!p)
343 		return 0;
344 
345 	/* Is the only swap cache user the cache itself? */
346 	retval = 0;
347 	if (p->swap_map[swp_offset(entry)] == 1) {
348 		/* Recheck the page count with the swapcache lock held.. */
349 		write_lock_irq(&swapper_space.tree_lock);
350 		if ((page_count(page) == 2) && !PageWriteback(page)) {
351 			__delete_from_swap_cache(page);
352 			SetPageDirty(page);
353 			retval = 1;
354 		}
355 		write_unlock_irq(&swapper_space.tree_lock);
356 	}
357 	spin_unlock(&swap_lock);
358 
359 	if (retval) {
360 		swap_free(entry);
361 		page_cache_release(page);
362 	}
363 
364 	return retval;
365 }
366 
367 /*
368  * Free the swap entry like above, but also try to
369  * free the page cache entry if it is the last user.
370  */
371 void free_swap_and_cache(swp_entry_t entry)
372 {
373 	struct swap_info_struct * p;
374 	struct page *page = NULL;
375 
376 	p = swap_info_get(entry);
377 	if (p) {
378 		if (swap_entry_free(p, swp_offset(entry)) == 1)
379 			page = find_trylock_page(&swapper_space, entry.val);
380 		spin_unlock(&swap_lock);
381 	}
382 	if (page) {
383 		int one_user;
384 
385 		BUG_ON(PagePrivate(page));
386 		page_cache_get(page);
387 		one_user = (page_count(page) == 2);
388 		/* Only cache user (+us), or swap space full? Free it! */
389 		if (!PageWriteback(page) && (one_user || vm_swap_full())) {
390 			delete_from_swap_cache(page);
391 			SetPageDirty(page);
392 		}
393 		unlock_page(page);
394 		page_cache_release(page);
395 	}
396 }
397 
398 /*
399  * No need to decide whether this PTE shares the swap entry with others,
400  * just let do_wp_page work it out if a write is requested later - to
401  * force COW, vm_page_prot omits write permission from any private vma.
402  */
403 static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
404 		unsigned long addr, swp_entry_t entry, struct page *page)
405 {
406 	inc_mm_counter(vma->vm_mm, anon_rss);
407 	get_page(page);
408 	set_pte_at(vma->vm_mm, addr, pte,
409 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
410 	page_add_anon_rmap(page, vma, addr);
411 	swap_free(entry);
412 	/*
413 	 * Move the page to the active list so it is not
414 	 * immediately swapped out again after swapon.
415 	 */
416 	activate_page(page);
417 }
418 
419 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
420 				unsigned long addr, unsigned long end,
421 				swp_entry_t entry, struct page *page)
422 {
423 	pte_t swp_pte = swp_entry_to_pte(entry);
424 	pte_t *pte;
425 	spinlock_t *ptl;
426 	int found = 0;
427 
428 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
429 	do {
430 		/*
431 		 * swapoff spends a _lot_ of time in this loop!
432 		 * Test inline before going to call unuse_pte.
433 		 */
434 		if (unlikely(pte_same(*pte, swp_pte))) {
435 			unuse_pte(vma, pte++, addr, entry, page);
436 			found = 1;
437 			break;
438 		}
439 	} while (pte++, addr += PAGE_SIZE, addr != end);
440 	pte_unmap_unlock(pte - 1, ptl);
441 	return found;
442 }
443 
444 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
445 				unsigned long addr, unsigned long end,
446 				swp_entry_t entry, struct page *page)
447 {
448 	pmd_t *pmd;
449 	unsigned long next;
450 
451 	pmd = pmd_offset(pud, addr);
452 	do {
453 		next = pmd_addr_end(addr, end);
454 		if (pmd_none_or_clear_bad(pmd))
455 			continue;
456 		if (unuse_pte_range(vma, pmd, addr, next, entry, page))
457 			return 1;
458 	} while (pmd++, addr = next, addr != end);
459 	return 0;
460 }
461 
462 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
463 				unsigned long addr, unsigned long end,
464 				swp_entry_t entry, struct page *page)
465 {
466 	pud_t *pud;
467 	unsigned long next;
468 
469 	pud = pud_offset(pgd, addr);
470 	do {
471 		next = pud_addr_end(addr, end);
472 		if (pud_none_or_clear_bad(pud))
473 			continue;
474 		if (unuse_pmd_range(vma, pud, addr, next, entry, page))
475 			return 1;
476 	} while (pud++, addr = next, addr != end);
477 	return 0;
478 }
479 
480 static int unuse_vma(struct vm_area_struct *vma,
481 				swp_entry_t entry, struct page *page)
482 {
483 	pgd_t *pgd;
484 	unsigned long addr, end, next;
485 
486 	if (page->mapping) {
487 		addr = page_address_in_vma(page, vma);
488 		if (addr == -EFAULT)
489 			return 0;
490 		else
491 			end = addr + PAGE_SIZE;
492 	} else {
493 		addr = vma->vm_start;
494 		end = vma->vm_end;
495 	}
496 
497 	pgd = pgd_offset(vma->vm_mm, addr);
498 	do {
499 		next = pgd_addr_end(addr, end);
500 		if (pgd_none_or_clear_bad(pgd))
501 			continue;
502 		if (unuse_pud_range(vma, pgd, addr, next, entry, page))
503 			return 1;
504 	} while (pgd++, addr = next, addr != end);
505 	return 0;
506 }
507 
508 static int unuse_mm(struct mm_struct *mm,
509 				swp_entry_t entry, struct page *page)
510 {
511 	struct vm_area_struct *vma;
512 
513 	if (!down_read_trylock(&mm->mmap_sem)) {
514 		/*
515 		 * Activate page so shrink_cache is unlikely to unmap its
516 		 * ptes while lock is dropped, so swapoff can make progress.
517 		 */
518 		activate_page(page);
519 		unlock_page(page);
520 		down_read(&mm->mmap_sem);
521 		lock_page(page);
522 	}
523 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
524 		if (vma->anon_vma && unuse_vma(vma, entry, page))
525 			break;
526 	}
527 	up_read(&mm->mmap_sem);
528 	/*
529 	 * Currently unuse_mm cannot fail, but leave error handling
530 	 * at call sites for now, since we change it from time to time.
531 	 */
532 	return 0;
533 }
534 
535 /*
536  * Scan swap_map from current position to next entry still in use.
537  * Recycle to start on reaching the end, returning 0 when empty.
538  */
539 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
540 					unsigned int prev)
541 {
542 	unsigned int max = si->max;
543 	unsigned int i = prev;
544 	int count;
545 
546 	/*
547 	 * No need for swap_lock here: we're just looking
548 	 * for whether an entry is in use, not modifying it; false
549 	 * hits are okay, and sys_swapoff() has already prevented new
550 	 * allocations from this area (while holding swap_lock).
551 	 */
552 	for (;;) {
553 		if (++i >= max) {
554 			if (!prev) {
555 				i = 0;
556 				break;
557 			}
558 			/*
559 			 * No entries in use at top of swap_map,
560 			 * loop back to start and recheck there.
561 			 */
562 			max = prev + 1;
563 			prev = 0;
564 			i = 1;
565 		}
566 		count = si->swap_map[i];
567 		if (count && count != SWAP_MAP_BAD)
568 			break;
569 	}
570 	return i;
571 }
572 
573 /*
574  * We completely avoid races by reading each swap page in advance,
575  * and then search for the process using it.  All the necessary
576  * page table adjustments can then be made atomically.
577  */
578 static int try_to_unuse(unsigned int type)
579 {
580 	struct swap_info_struct * si = &swap_info[type];
581 	struct mm_struct *start_mm;
582 	unsigned short *swap_map;
583 	unsigned short swcount;
584 	struct page *page;
585 	swp_entry_t entry;
586 	unsigned int i = 0;
587 	int retval = 0;
588 	int reset_overflow = 0;
589 	int shmem;
590 
591 	/*
592 	 * When searching mms for an entry, a good strategy is to
593 	 * start at the first mm we freed the previous entry from
594 	 * (though actually we don't notice whether we or coincidence
595 	 * freed the entry).  Initialize this start_mm with a hold.
596 	 *
597 	 * A simpler strategy would be to start at the last mm we
598 	 * freed the previous entry from; but that would take less
599 	 * advantage of mmlist ordering, which clusters forked mms
600 	 * together, child after parent.  If we race with dup_mmap(), we
601 	 * prefer to resolve parent before child, lest we miss entries
602 	 * duplicated after we scanned child: using last mm would invert
603 	 * that.  Though it's only a serious concern when an overflowed
604 	 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
605 	 */
606 	start_mm = &init_mm;
607 	atomic_inc(&init_mm.mm_users);
608 
609 	/*
610 	 * Keep on scanning until all entries have gone.  Usually,
611 	 * one pass through swap_map is enough, but not necessarily:
612 	 * there are races when an instance of an entry might be missed.
613 	 */
614 	while ((i = find_next_to_unuse(si, i)) != 0) {
615 		if (signal_pending(current)) {
616 			retval = -EINTR;
617 			break;
618 		}
619 
620 		/*
621 		 * Get a page for the entry, using the existing swap
622 		 * cache page if there is one.  Otherwise, get a clean
623 		 * page and read the swap into it.
624 		 */
625 		swap_map = &si->swap_map[i];
626 		entry = swp_entry(type, i);
627 		page = read_swap_cache_async(entry, NULL, 0);
628 		if (!page) {
629 			/*
630 			 * Either swap_duplicate() failed because entry
631 			 * has been freed independently, and will not be
632 			 * reused since sys_swapoff() already disabled
633 			 * allocation from here, or alloc_page() failed.
634 			 */
635 			if (!*swap_map)
636 				continue;
637 			retval = -ENOMEM;
638 			break;
639 		}
640 
641 		/*
642 		 * Don't hold on to start_mm if it looks like exiting.
643 		 */
644 		if (atomic_read(&start_mm->mm_users) == 1) {
645 			mmput(start_mm);
646 			start_mm = &init_mm;
647 			atomic_inc(&init_mm.mm_users);
648 		}
649 
650 		/*
651 		 * Wait for and lock page.  When do_swap_page races with
652 		 * try_to_unuse, do_swap_page can handle the fault much
653 		 * faster than try_to_unuse can locate the entry.  This
654 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
655 		 * defer to do_swap_page in such a case - in some tests,
656 		 * do_swap_page and try_to_unuse repeatedly compete.
657 		 */
658 		wait_on_page_locked(page);
659 		wait_on_page_writeback(page);
660 		lock_page(page);
661 		wait_on_page_writeback(page);
662 
663 		/*
664 		 * Remove all references to entry.
665 		 * Whenever we reach init_mm, there's no address space
666 		 * to search, but use it as a reminder to search shmem.
667 		 */
668 		shmem = 0;
669 		swcount = *swap_map;
670 		if (swcount > 1) {
671 			if (start_mm == &init_mm)
672 				shmem = shmem_unuse(entry, page);
673 			else
674 				retval = unuse_mm(start_mm, entry, page);
675 		}
676 		if (*swap_map > 1) {
677 			int set_start_mm = (*swap_map >= swcount);
678 			struct list_head *p = &start_mm->mmlist;
679 			struct mm_struct *new_start_mm = start_mm;
680 			struct mm_struct *prev_mm = start_mm;
681 			struct mm_struct *mm;
682 
683 			atomic_inc(&new_start_mm->mm_users);
684 			atomic_inc(&prev_mm->mm_users);
685 			spin_lock(&mmlist_lock);
686 			while (*swap_map > 1 && !retval &&
687 					(p = p->next) != &start_mm->mmlist) {
688 				mm = list_entry(p, struct mm_struct, mmlist);
689 				if (atomic_inc_return(&mm->mm_users) == 1) {
690 					atomic_dec(&mm->mm_users);
691 					continue;
692 				}
693 				spin_unlock(&mmlist_lock);
694 				mmput(prev_mm);
695 				prev_mm = mm;
696 
697 				cond_resched();
698 
699 				swcount = *swap_map;
700 				if (swcount <= 1)
701 					;
702 				else if (mm == &init_mm) {
703 					set_start_mm = 1;
704 					shmem = shmem_unuse(entry, page);
705 				} else
706 					retval = unuse_mm(mm, entry, page);
707 				if (set_start_mm && *swap_map < swcount) {
708 					mmput(new_start_mm);
709 					atomic_inc(&mm->mm_users);
710 					new_start_mm = mm;
711 					set_start_mm = 0;
712 				}
713 				spin_lock(&mmlist_lock);
714 			}
715 			spin_unlock(&mmlist_lock);
716 			mmput(prev_mm);
717 			mmput(start_mm);
718 			start_mm = new_start_mm;
719 		}
720 		if (retval) {
721 			unlock_page(page);
722 			page_cache_release(page);
723 			break;
724 		}
725 
726 		/*
727 		 * How could swap count reach 0x7fff when the maximum
728 		 * pid is 0x7fff, and there's no way to repeat a swap
729 		 * page within an mm (except in shmem, where it's the
730 		 * shared object which takes the reference count)?
731 		 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
732 		 *
733 		 * If that's wrong, then we should worry more about
734 		 * exit_mmap() and do_munmap() cases described above:
735 		 * we might be resetting SWAP_MAP_MAX too early here.
736 		 * We know "Undead"s can happen, they're okay, so don't
737 		 * report them; but do report if we reset SWAP_MAP_MAX.
738 		 */
739 		if (*swap_map == SWAP_MAP_MAX) {
740 			spin_lock(&swap_lock);
741 			*swap_map = 1;
742 			spin_unlock(&swap_lock);
743 			reset_overflow = 1;
744 		}
745 
746 		/*
747 		 * If a reference remains (rare), we would like to leave
748 		 * the page in the swap cache; but try_to_unmap could
749 		 * then re-duplicate the entry once we drop page lock,
750 		 * so we might loop indefinitely; also, that page could
751 		 * not be swapped out to other storage meanwhile.  So:
752 		 * delete from cache even if there's another reference,
753 		 * after ensuring that the data has been saved to disk -
754 		 * since if the reference remains (rarer), it will be
755 		 * read from disk into another page.  Splitting into two
756 		 * pages would be incorrect if swap supported "shared
757 		 * private" pages, but they are handled by tmpfs files.
758 		 *
759 		 * Note shmem_unuse already deleted a swappage from
760 		 * the swap cache, unless the move to filepage failed:
761 		 * in which case it left swappage in cache, lowered its
762 		 * swap count to pass quickly through the loops above,
763 		 * and now we must reincrement count to try again later.
764 		 */
765 		if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
766 			struct writeback_control wbc = {
767 				.sync_mode = WB_SYNC_NONE,
768 			};
769 
770 			swap_writepage(page, &wbc);
771 			lock_page(page);
772 			wait_on_page_writeback(page);
773 		}
774 		if (PageSwapCache(page)) {
775 			if (shmem)
776 				swap_duplicate(entry);
777 			else
778 				delete_from_swap_cache(page);
779 		}
780 
781 		/*
782 		 * So we could skip searching mms once swap count went
783 		 * to 1, we did not mark any present ptes as dirty: must
784 		 * mark page dirty so shrink_list will preserve it.
785 		 */
786 		SetPageDirty(page);
787 		unlock_page(page);
788 		page_cache_release(page);
789 
790 		/*
791 		 * Make sure that we aren't completely killing
792 		 * interactive performance.
793 		 */
794 		cond_resched();
795 	}
796 
797 	mmput(start_mm);
798 	if (reset_overflow) {
799 		printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
800 		swap_overflow = 0;
801 	}
802 	return retval;
803 }
804 
805 /*
806  * After a successful try_to_unuse, if no swap is now in use, we know
807  * we can empty the mmlist.  swap_lock must be held on entry and exit.
808  * Note that mmlist_lock nests inside swap_lock, and an mm must be
809  * added to the mmlist just after page_duplicate - before would be racy.
810  */
811 static void drain_mmlist(void)
812 {
813 	struct list_head *p, *next;
814 	unsigned int i;
815 
816 	for (i = 0; i < nr_swapfiles; i++)
817 		if (swap_info[i].inuse_pages)
818 			return;
819 	spin_lock(&mmlist_lock);
820 	list_for_each_safe(p, next, &init_mm.mmlist)
821 		list_del_init(p);
822 	spin_unlock(&mmlist_lock);
823 }
824 
825 /*
826  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
827  * corresponds to page offset `offset'.
828  */
829 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
830 {
831 	struct swap_extent *se = sis->curr_swap_extent;
832 	struct swap_extent *start_se = se;
833 
834 	for ( ; ; ) {
835 		struct list_head *lh;
836 
837 		if (se->start_page <= offset &&
838 				offset < (se->start_page + se->nr_pages)) {
839 			return se->start_block + (offset - se->start_page);
840 		}
841 		lh = se->list.next;
842 		if (lh == &sis->extent_list)
843 			lh = lh->next;
844 		se = list_entry(lh, struct swap_extent, list);
845 		sis->curr_swap_extent = se;
846 		BUG_ON(se == start_se);		/* It *must* be present */
847 	}
848 }
849 
850 /*
851  * Free all of a swapdev's extent information
852  */
853 static void destroy_swap_extents(struct swap_info_struct *sis)
854 {
855 	while (!list_empty(&sis->extent_list)) {
856 		struct swap_extent *se;
857 
858 		se = list_entry(sis->extent_list.next,
859 				struct swap_extent, list);
860 		list_del(&se->list);
861 		kfree(se);
862 	}
863 }
864 
865 /*
866  * Add a block range (and the corresponding page range) into this swapdev's
867  * extent list.  The extent list is kept sorted in page order.
868  *
869  * This function rather assumes that it is called in ascending page order.
870  */
871 static int
872 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
873 		unsigned long nr_pages, sector_t start_block)
874 {
875 	struct swap_extent *se;
876 	struct swap_extent *new_se;
877 	struct list_head *lh;
878 
879 	lh = sis->extent_list.prev;	/* The highest page extent */
880 	if (lh != &sis->extent_list) {
881 		se = list_entry(lh, struct swap_extent, list);
882 		BUG_ON(se->start_page + se->nr_pages != start_page);
883 		if (se->start_block + se->nr_pages == start_block) {
884 			/* Merge it */
885 			se->nr_pages += nr_pages;
886 			return 0;
887 		}
888 	}
889 
890 	/*
891 	 * No merge.  Insert a new extent, preserving ordering.
892 	 */
893 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
894 	if (new_se == NULL)
895 		return -ENOMEM;
896 	new_se->start_page = start_page;
897 	new_se->nr_pages = nr_pages;
898 	new_se->start_block = start_block;
899 
900 	list_add_tail(&new_se->list, &sis->extent_list);
901 	return 1;
902 }
903 
904 /*
905  * A `swap extent' is a simple thing which maps a contiguous range of pages
906  * onto a contiguous range of disk blocks.  An ordered list of swap extents
907  * is built at swapon time and is then used at swap_writepage/swap_readpage
908  * time for locating where on disk a page belongs.
909  *
910  * If the swapfile is an S_ISBLK block device, a single extent is installed.
911  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
912  * swap files identically.
913  *
914  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
915  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
916  * swapfiles are handled *identically* after swapon time.
917  *
918  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
919  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
920  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
921  * requirements, they are simply tossed out - we will never use those blocks
922  * for swapping.
923  *
924  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
925  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
926  * which will scribble on the fs.
927  *
928  * The amount of disk space which a single swap extent represents varies.
929  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
930  * extents in the list.  To avoid much list walking, we cache the previous
931  * search location in `curr_swap_extent', and start new searches from there.
932  * This is extremely effective.  The average number of iterations in
933  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
934  */
935 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
936 {
937 	struct inode *inode;
938 	unsigned blocks_per_page;
939 	unsigned long page_no;
940 	unsigned blkbits;
941 	sector_t probe_block;
942 	sector_t last_block;
943 	sector_t lowest_block = -1;
944 	sector_t highest_block = 0;
945 	int nr_extents = 0;
946 	int ret;
947 
948 	inode = sis->swap_file->f_mapping->host;
949 	if (S_ISBLK(inode->i_mode)) {
950 		ret = add_swap_extent(sis, 0, sis->max, 0);
951 		*span = sis->pages;
952 		goto done;
953 	}
954 
955 	blkbits = inode->i_blkbits;
956 	blocks_per_page = PAGE_SIZE >> blkbits;
957 
958 	/*
959 	 * Map all the blocks into the extent list.  This code doesn't try
960 	 * to be very smart.
961 	 */
962 	probe_block = 0;
963 	page_no = 0;
964 	last_block = i_size_read(inode) >> blkbits;
965 	while ((probe_block + blocks_per_page) <= last_block &&
966 			page_no < sis->max) {
967 		unsigned block_in_page;
968 		sector_t first_block;
969 
970 		first_block = bmap(inode, probe_block);
971 		if (first_block == 0)
972 			goto bad_bmap;
973 
974 		/*
975 		 * It must be PAGE_SIZE aligned on-disk
976 		 */
977 		if (first_block & (blocks_per_page - 1)) {
978 			probe_block++;
979 			goto reprobe;
980 		}
981 
982 		for (block_in_page = 1; block_in_page < blocks_per_page;
983 					block_in_page++) {
984 			sector_t block;
985 
986 			block = bmap(inode, probe_block + block_in_page);
987 			if (block == 0)
988 				goto bad_bmap;
989 			if (block != first_block + block_in_page) {
990 				/* Discontiguity */
991 				probe_block++;
992 				goto reprobe;
993 			}
994 		}
995 
996 		first_block >>= (PAGE_SHIFT - blkbits);
997 		if (page_no) {	/* exclude the header page */
998 			if (first_block < lowest_block)
999 				lowest_block = first_block;
1000 			if (first_block > highest_block)
1001 				highest_block = first_block;
1002 		}
1003 
1004 		/*
1005 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1006 		 */
1007 		ret = add_swap_extent(sis, page_no, 1, first_block);
1008 		if (ret < 0)
1009 			goto out;
1010 		nr_extents += ret;
1011 		page_no++;
1012 		probe_block += blocks_per_page;
1013 reprobe:
1014 		continue;
1015 	}
1016 	ret = nr_extents;
1017 	*span = 1 + highest_block - lowest_block;
1018 	if (page_no == 0)
1019 		page_no = 1;	/* force Empty message */
1020 	sis->max = page_no;
1021 	sis->pages = page_no - 1;
1022 	sis->highest_bit = page_no - 1;
1023 done:
1024 	sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1025 					struct swap_extent, list);
1026 	goto out;
1027 bad_bmap:
1028 	printk(KERN_ERR "swapon: swapfile has holes\n");
1029 	ret = -EINVAL;
1030 out:
1031 	return ret;
1032 }
1033 
1034 #if 0	/* We don't need this yet */
1035 #include <linux/backing-dev.h>
1036 int page_queue_congested(struct page *page)
1037 {
1038 	struct backing_dev_info *bdi;
1039 
1040 	BUG_ON(!PageLocked(page));	/* It pins the swap_info_struct */
1041 
1042 	if (PageSwapCache(page)) {
1043 		swp_entry_t entry = { .val = page_private(page) };
1044 		struct swap_info_struct *sis;
1045 
1046 		sis = get_swap_info_struct(swp_type(entry));
1047 		bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1048 	} else
1049 		bdi = page->mapping->backing_dev_info;
1050 	return bdi_write_congested(bdi);
1051 }
1052 #endif
1053 
1054 asmlinkage long sys_swapoff(const char __user * specialfile)
1055 {
1056 	struct swap_info_struct * p = NULL;
1057 	unsigned short *swap_map;
1058 	struct file *swap_file, *victim;
1059 	struct address_space *mapping;
1060 	struct inode *inode;
1061 	char * pathname;
1062 	int i, type, prev;
1063 	int err;
1064 
1065 	if (!capable(CAP_SYS_ADMIN))
1066 		return -EPERM;
1067 
1068 	pathname = getname(specialfile);
1069 	err = PTR_ERR(pathname);
1070 	if (IS_ERR(pathname))
1071 		goto out;
1072 
1073 	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1074 	putname(pathname);
1075 	err = PTR_ERR(victim);
1076 	if (IS_ERR(victim))
1077 		goto out;
1078 
1079 	mapping = victim->f_mapping;
1080 	prev = -1;
1081 	spin_lock(&swap_lock);
1082 	for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1083 		p = swap_info + type;
1084 		if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1085 			if (p->swap_file->f_mapping == mapping)
1086 				break;
1087 		}
1088 		prev = type;
1089 	}
1090 	if (type < 0) {
1091 		err = -EINVAL;
1092 		spin_unlock(&swap_lock);
1093 		goto out_dput;
1094 	}
1095 	if (!security_vm_enough_memory(p->pages))
1096 		vm_unacct_memory(p->pages);
1097 	else {
1098 		err = -ENOMEM;
1099 		spin_unlock(&swap_lock);
1100 		goto out_dput;
1101 	}
1102 	if (prev < 0) {
1103 		swap_list.head = p->next;
1104 	} else {
1105 		swap_info[prev].next = p->next;
1106 	}
1107 	if (type == swap_list.next) {
1108 		/* just pick something that's safe... */
1109 		swap_list.next = swap_list.head;
1110 	}
1111 	nr_swap_pages -= p->pages;
1112 	total_swap_pages -= p->pages;
1113 	p->flags &= ~SWP_WRITEOK;
1114 	spin_unlock(&swap_lock);
1115 
1116 	current->flags |= PF_SWAPOFF;
1117 	err = try_to_unuse(type);
1118 	current->flags &= ~PF_SWAPOFF;
1119 
1120 	if (err) {
1121 		/* re-insert swap space back into swap_list */
1122 		spin_lock(&swap_lock);
1123 		for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1124 			if (p->prio >= swap_info[i].prio)
1125 				break;
1126 		p->next = i;
1127 		if (prev < 0)
1128 			swap_list.head = swap_list.next = p - swap_info;
1129 		else
1130 			swap_info[prev].next = p - swap_info;
1131 		nr_swap_pages += p->pages;
1132 		total_swap_pages += p->pages;
1133 		p->flags |= SWP_WRITEOK;
1134 		spin_unlock(&swap_lock);
1135 		goto out_dput;
1136 	}
1137 
1138 	/* wait for any unplug function to finish */
1139 	down_write(&swap_unplug_sem);
1140 	up_write(&swap_unplug_sem);
1141 
1142 	destroy_swap_extents(p);
1143 	down(&swapon_sem);
1144 	spin_lock(&swap_lock);
1145 	drain_mmlist();
1146 
1147 	/* wait for anyone still in scan_swap_map */
1148 	p->highest_bit = 0;		/* cuts scans short */
1149 	while (p->flags >= SWP_SCANNING) {
1150 		spin_unlock(&swap_lock);
1151 		schedule_timeout_uninterruptible(1);
1152 		spin_lock(&swap_lock);
1153 	}
1154 
1155 	swap_file = p->swap_file;
1156 	p->swap_file = NULL;
1157 	p->max = 0;
1158 	swap_map = p->swap_map;
1159 	p->swap_map = NULL;
1160 	p->flags = 0;
1161 	spin_unlock(&swap_lock);
1162 	up(&swapon_sem);
1163 	vfree(swap_map);
1164 	inode = mapping->host;
1165 	if (S_ISBLK(inode->i_mode)) {
1166 		struct block_device *bdev = I_BDEV(inode);
1167 		set_blocksize(bdev, p->old_block_size);
1168 		bd_release(bdev);
1169 	} else {
1170 		down(&inode->i_sem);
1171 		inode->i_flags &= ~S_SWAPFILE;
1172 		up(&inode->i_sem);
1173 	}
1174 	filp_close(swap_file, NULL);
1175 	err = 0;
1176 
1177 out_dput:
1178 	filp_close(victim, NULL);
1179 out:
1180 	return err;
1181 }
1182 
1183 #ifdef CONFIG_PROC_FS
1184 /* iterator */
1185 static void *swap_start(struct seq_file *swap, loff_t *pos)
1186 {
1187 	struct swap_info_struct *ptr = swap_info;
1188 	int i;
1189 	loff_t l = *pos;
1190 
1191 	down(&swapon_sem);
1192 
1193 	for (i = 0; i < nr_swapfiles; i++, ptr++) {
1194 		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1195 			continue;
1196 		if (!l--)
1197 			return ptr;
1198 	}
1199 
1200 	return NULL;
1201 }
1202 
1203 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1204 {
1205 	struct swap_info_struct *ptr = v;
1206 	struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1207 
1208 	for (++ptr; ptr < endptr; ptr++) {
1209 		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1210 			continue;
1211 		++*pos;
1212 		return ptr;
1213 	}
1214 
1215 	return NULL;
1216 }
1217 
1218 static void swap_stop(struct seq_file *swap, void *v)
1219 {
1220 	up(&swapon_sem);
1221 }
1222 
1223 static int swap_show(struct seq_file *swap, void *v)
1224 {
1225 	struct swap_info_struct *ptr = v;
1226 	struct file *file;
1227 	int len;
1228 
1229 	if (v == swap_info)
1230 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1231 
1232 	file = ptr->swap_file;
1233 	len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
1234 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1235 		       len < 40 ? 40 - len : 1, " ",
1236 		       S_ISBLK(file->f_dentry->d_inode->i_mode) ?
1237 				"partition" : "file\t",
1238 		       ptr->pages << (PAGE_SHIFT - 10),
1239 		       ptr->inuse_pages << (PAGE_SHIFT - 10),
1240 		       ptr->prio);
1241 	return 0;
1242 }
1243 
1244 static struct seq_operations swaps_op = {
1245 	.start =	swap_start,
1246 	.next =		swap_next,
1247 	.stop =		swap_stop,
1248 	.show =		swap_show
1249 };
1250 
1251 static int swaps_open(struct inode *inode, struct file *file)
1252 {
1253 	return seq_open(file, &swaps_op);
1254 }
1255 
1256 static struct file_operations proc_swaps_operations = {
1257 	.open		= swaps_open,
1258 	.read		= seq_read,
1259 	.llseek		= seq_lseek,
1260 	.release	= seq_release,
1261 };
1262 
1263 static int __init procswaps_init(void)
1264 {
1265 	struct proc_dir_entry *entry;
1266 
1267 	entry = create_proc_entry("swaps", 0, NULL);
1268 	if (entry)
1269 		entry->proc_fops = &proc_swaps_operations;
1270 	return 0;
1271 }
1272 __initcall(procswaps_init);
1273 #endif /* CONFIG_PROC_FS */
1274 
1275 /*
1276  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1277  *
1278  * The swapon system call
1279  */
1280 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1281 {
1282 	struct swap_info_struct * p;
1283 	char *name = NULL;
1284 	struct block_device *bdev = NULL;
1285 	struct file *swap_file = NULL;
1286 	struct address_space *mapping;
1287 	unsigned int type;
1288 	int i, prev;
1289 	int error;
1290 	static int least_priority;
1291 	union swap_header *swap_header = NULL;
1292 	int swap_header_version;
1293 	unsigned int nr_good_pages = 0;
1294 	int nr_extents = 0;
1295 	sector_t span;
1296 	unsigned long maxpages = 1;
1297 	int swapfilesize;
1298 	unsigned short *swap_map;
1299 	struct page *page = NULL;
1300 	struct inode *inode = NULL;
1301 	int did_down = 0;
1302 
1303 	if (!capable(CAP_SYS_ADMIN))
1304 		return -EPERM;
1305 	spin_lock(&swap_lock);
1306 	p = swap_info;
1307 	for (type = 0 ; type < nr_swapfiles ; type++,p++)
1308 		if (!(p->flags & SWP_USED))
1309 			break;
1310 	error = -EPERM;
1311 	/*
1312 	 * Test if adding another swap device is possible. There are
1313 	 * two limiting factors: 1) the number of bits for the swap
1314 	 * type swp_entry_t definition and 2) the number of bits for
1315 	 * the swap type in the swap ptes as defined by the different
1316 	 * architectures. To honor both limitations a swap entry
1317 	 * with swap offset 0 and swap type ~0UL is created, encoded
1318 	 * to a swap pte, decoded to a swp_entry_t again and finally
1319 	 * the swap type part is extracted. This will mask all bits
1320 	 * from the initial ~0UL that can't be encoded in either the
1321 	 * swp_entry_t or the architecture definition of a swap pte.
1322 	 */
1323 	if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) {
1324 		spin_unlock(&swap_lock);
1325 		goto out;
1326 	}
1327 	if (type >= nr_swapfiles)
1328 		nr_swapfiles = type+1;
1329 	INIT_LIST_HEAD(&p->extent_list);
1330 	p->flags = SWP_USED;
1331 	p->swap_file = NULL;
1332 	p->old_block_size = 0;
1333 	p->swap_map = NULL;
1334 	p->lowest_bit = 0;
1335 	p->highest_bit = 0;
1336 	p->cluster_nr = 0;
1337 	p->inuse_pages = 0;
1338 	p->next = -1;
1339 	if (swap_flags & SWAP_FLAG_PREFER) {
1340 		p->prio =
1341 		  (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1342 	} else {
1343 		p->prio = --least_priority;
1344 	}
1345 	spin_unlock(&swap_lock);
1346 	name = getname(specialfile);
1347 	error = PTR_ERR(name);
1348 	if (IS_ERR(name)) {
1349 		name = NULL;
1350 		goto bad_swap_2;
1351 	}
1352 	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1353 	error = PTR_ERR(swap_file);
1354 	if (IS_ERR(swap_file)) {
1355 		swap_file = NULL;
1356 		goto bad_swap_2;
1357 	}
1358 
1359 	p->swap_file = swap_file;
1360 	mapping = swap_file->f_mapping;
1361 	inode = mapping->host;
1362 
1363 	error = -EBUSY;
1364 	for (i = 0; i < nr_swapfiles; i++) {
1365 		struct swap_info_struct *q = &swap_info[i];
1366 
1367 		if (i == type || !q->swap_file)
1368 			continue;
1369 		if (mapping == q->swap_file->f_mapping)
1370 			goto bad_swap;
1371 	}
1372 
1373 	error = -EINVAL;
1374 	if (S_ISBLK(inode->i_mode)) {
1375 		bdev = I_BDEV(inode);
1376 		error = bd_claim(bdev, sys_swapon);
1377 		if (error < 0) {
1378 			bdev = NULL;
1379 			error = -EINVAL;
1380 			goto bad_swap;
1381 		}
1382 		p->old_block_size = block_size(bdev);
1383 		error = set_blocksize(bdev, PAGE_SIZE);
1384 		if (error < 0)
1385 			goto bad_swap;
1386 		p->bdev = bdev;
1387 	} else if (S_ISREG(inode->i_mode)) {
1388 		p->bdev = inode->i_sb->s_bdev;
1389 		down(&inode->i_sem);
1390 		did_down = 1;
1391 		if (IS_SWAPFILE(inode)) {
1392 			error = -EBUSY;
1393 			goto bad_swap;
1394 		}
1395 	} else {
1396 		goto bad_swap;
1397 	}
1398 
1399 	swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1400 
1401 	/*
1402 	 * Read the swap header.
1403 	 */
1404 	if (!mapping->a_ops->readpage) {
1405 		error = -EINVAL;
1406 		goto bad_swap;
1407 	}
1408 	page = read_cache_page(mapping, 0,
1409 			(filler_t *)mapping->a_ops->readpage, swap_file);
1410 	if (IS_ERR(page)) {
1411 		error = PTR_ERR(page);
1412 		goto bad_swap;
1413 	}
1414 	wait_on_page_locked(page);
1415 	if (!PageUptodate(page))
1416 		goto bad_swap;
1417 	kmap(page);
1418 	swap_header = page_address(page);
1419 
1420 	if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1421 		swap_header_version = 1;
1422 	else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1423 		swap_header_version = 2;
1424 	else {
1425 		printk("Unable to find swap-space signature\n");
1426 		error = -EINVAL;
1427 		goto bad_swap;
1428 	}
1429 
1430 	switch (swap_header_version) {
1431 	case 1:
1432 		printk(KERN_ERR "version 0 swap is no longer supported. "
1433 			"Use mkswap -v1 %s\n", name);
1434 		error = -EINVAL;
1435 		goto bad_swap;
1436 	case 2:
1437 		/* Check the swap header's sub-version and the size of
1438                    the swap file and bad block lists */
1439 		if (swap_header->info.version != 1) {
1440 			printk(KERN_WARNING
1441 			       "Unable to handle swap header version %d\n",
1442 			       swap_header->info.version);
1443 			error = -EINVAL;
1444 			goto bad_swap;
1445 		}
1446 
1447 		p->lowest_bit  = 1;
1448 		p->cluster_next = 1;
1449 
1450 		/*
1451 		 * Find out how many pages are allowed for a single swap
1452 		 * device. There are two limiting factors: 1) the number of
1453 		 * bits for the swap offset in the swp_entry_t type and
1454 		 * 2) the number of bits in the a swap pte as defined by
1455 		 * the different architectures. In order to find the
1456 		 * largest possible bit mask a swap entry with swap type 0
1457 		 * and swap offset ~0UL is created, encoded to a swap pte,
1458 		 * decoded to a swp_entry_t again and finally the swap
1459 		 * offset is extracted. This will mask all the bits from
1460 		 * the initial ~0UL mask that can't be encoded in either
1461 		 * the swp_entry_t or the architecture definition of a
1462 		 * swap pte.
1463 		 */
1464 		maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1465 		if (maxpages > swap_header->info.last_page)
1466 			maxpages = swap_header->info.last_page;
1467 		p->highest_bit = maxpages - 1;
1468 
1469 		error = -EINVAL;
1470 		if (!maxpages)
1471 			goto bad_swap;
1472 		if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1473 			goto bad_swap;
1474 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1475 			goto bad_swap;
1476 
1477 		/* OK, set up the swap map and apply the bad block list */
1478 		if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1479 			error = -ENOMEM;
1480 			goto bad_swap;
1481 		}
1482 
1483 		error = 0;
1484 		memset(p->swap_map, 0, maxpages * sizeof(short));
1485 		for (i=0; i<swap_header->info.nr_badpages; i++) {
1486 			int page = swap_header->info.badpages[i];
1487 			if (page <= 0 || page >= swap_header->info.last_page)
1488 				error = -EINVAL;
1489 			else
1490 				p->swap_map[page] = SWAP_MAP_BAD;
1491 		}
1492 		nr_good_pages = swap_header->info.last_page -
1493 				swap_header->info.nr_badpages -
1494 				1 /* header page */;
1495 		if (error)
1496 			goto bad_swap;
1497 	}
1498 
1499 	if (swapfilesize && maxpages > swapfilesize) {
1500 		printk(KERN_WARNING
1501 		       "Swap area shorter than signature indicates\n");
1502 		error = -EINVAL;
1503 		goto bad_swap;
1504 	}
1505 	if (nr_good_pages) {
1506 		p->swap_map[0] = SWAP_MAP_BAD;
1507 		p->max = maxpages;
1508 		p->pages = nr_good_pages;
1509 		nr_extents = setup_swap_extents(p, &span);
1510 		if (nr_extents < 0) {
1511 			error = nr_extents;
1512 			goto bad_swap;
1513 		}
1514 		nr_good_pages = p->pages;
1515 	}
1516 	if (!nr_good_pages) {
1517 		printk(KERN_WARNING "Empty swap-file\n");
1518 		error = -EINVAL;
1519 		goto bad_swap;
1520 	}
1521 
1522 	down(&swapon_sem);
1523 	spin_lock(&swap_lock);
1524 	p->flags = SWP_ACTIVE;
1525 	nr_swap_pages += nr_good_pages;
1526 	total_swap_pages += nr_good_pages;
1527 
1528 	printk(KERN_INFO "Adding %uk swap on %s.  "
1529 			"Priority:%d extents:%d across:%lluk\n",
1530 		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1531 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1532 
1533 	/* insert swap space into swap_list: */
1534 	prev = -1;
1535 	for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1536 		if (p->prio >= swap_info[i].prio) {
1537 			break;
1538 		}
1539 		prev = i;
1540 	}
1541 	p->next = i;
1542 	if (prev < 0) {
1543 		swap_list.head = swap_list.next = p - swap_info;
1544 	} else {
1545 		swap_info[prev].next = p - swap_info;
1546 	}
1547 	spin_unlock(&swap_lock);
1548 	up(&swapon_sem);
1549 	error = 0;
1550 	goto out;
1551 bad_swap:
1552 	if (bdev) {
1553 		set_blocksize(bdev, p->old_block_size);
1554 		bd_release(bdev);
1555 	}
1556 	destroy_swap_extents(p);
1557 bad_swap_2:
1558 	spin_lock(&swap_lock);
1559 	swap_map = p->swap_map;
1560 	p->swap_file = NULL;
1561 	p->swap_map = NULL;
1562 	p->flags = 0;
1563 	if (!(swap_flags & SWAP_FLAG_PREFER))
1564 		++least_priority;
1565 	spin_unlock(&swap_lock);
1566 	vfree(swap_map);
1567 	if (swap_file)
1568 		filp_close(swap_file, NULL);
1569 out:
1570 	if (page && !IS_ERR(page)) {
1571 		kunmap(page);
1572 		page_cache_release(page);
1573 	}
1574 	if (name)
1575 		putname(name);
1576 	if (did_down) {
1577 		if (!error)
1578 			inode->i_flags |= S_SWAPFILE;
1579 		up(&inode->i_sem);
1580 	}
1581 	return error;
1582 }
1583 
1584 void si_swapinfo(struct sysinfo *val)
1585 {
1586 	unsigned int i;
1587 	unsigned long nr_to_be_unused = 0;
1588 
1589 	spin_lock(&swap_lock);
1590 	for (i = 0; i < nr_swapfiles; i++) {
1591 		if (!(swap_info[i].flags & SWP_USED) ||
1592 		     (swap_info[i].flags & SWP_WRITEOK))
1593 			continue;
1594 		nr_to_be_unused += swap_info[i].inuse_pages;
1595 	}
1596 	val->freeswap = nr_swap_pages + nr_to_be_unused;
1597 	val->totalswap = total_swap_pages + nr_to_be_unused;
1598 	spin_unlock(&swap_lock);
1599 }
1600 
1601 /*
1602  * Verify that a swap entry is valid and increment its swap map count.
1603  *
1604  * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1605  * "permanent", but will be reclaimed by the next swapoff.
1606  */
1607 int swap_duplicate(swp_entry_t entry)
1608 {
1609 	struct swap_info_struct * p;
1610 	unsigned long offset, type;
1611 	int result = 0;
1612 
1613 	type = swp_type(entry);
1614 	if (type >= nr_swapfiles)
1615 		goto bad_file;
1616 	p = type + swap_info;
1617 	offset = swp_offset(entry);
1618 
1619 	spin_lock(&swap_lock);
1620 	if (offset < p->max && p->swap_map[offset]) {
1621 		if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1622 			p->swap_map[offset]++;
1623 			result = 1;
1624 		} else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1625 			if (swap_overflow++ < 5)
1626 				printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1627 			p->swap_map[offset] = SWAP_MAP_MAX;
1628 			result = 1;
1629 		}
1630 	}
1631 	spin_unlock(&swap_lock);
1632 out:
1633 	return result;
1634 
1635 bad_file:
1636 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1637 	goto out;
1638 }
1639 
1640 struct swap_info_struct *
1641 get_swap_info_struct(unsigned type)
1642 {
1643 	return &swap_info[type];
1644 }
1645 
1646 /*
1647  * swap_lock prevents swap_map being freed. Don't grab an extra
1648  * reference on the swaphandle, it doesn't matter if it becomes unused.
1649  */
1650 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1651 {
1652 	int ret = 0, i = 1 << page_cluster;
1653 	unsigned long toff;
1654 	struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1655 
1656 	if (!page_cluster)	/* no readahead */
1657 		return 0;
1658 	toff = (swp_offset(entry) >> page_cluster) << page_cluster;
1659 	if (!toff)		/* first page is swap header */
1660 		toff++, i--;
1661 	*offset = toff;
1662 
1663 	spin_lock(&swap_lock);
1664 	do {
1665 		/* Don't read-ahead past the end of the swap area */
1666 		if (toff >= swapdev->max)
1667 			break;
1668 		/* Don't read in free or bad pages */
1669 		if (!swapdev->swap_map[toff])
1670 			break;
1671 		if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1672 			break;
1673 		toff++;
1674 		ret++;
1675 	} while (--i);
1676 	spin_unlock(&swap_lock);
1677 	return ret;
1678 }
1679