1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/config.h> 9 #include <linux/mm.h> 10 #include <linux/hugetlb.h> 11 #include <linux/mman.h> 12 #include <linux/slab.h> 13 #include <linux/kernel_stat.h> 14 #include <linux/swap.h> 15 #include <linux/vmalloc.h> 16 #include <linux/pagemap.h> 17 #include <linux/namei.h> 18 #include <linux/shm.h> 19 #include <linux/blkdev.h> 20 #include <linux/writeback.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/init.h> 24 #include <linux/module.h> 25 #include <linux/rmap.h> 26 #include <linux/security.h> 27 #include <linux/backing-dev.h> 28 #include <linux/syscalls.h> 29 30 #include <asm/pgtable.h> 31 #include <asm/tlbflush.h> 32 #include <linux/swapops.h> 33 34 DEFINE_SPINLOCK(swap_lock); 35 unsigned int nr_swapfiles; 36 long total_swap_pages; 37 static int swap_overflow; 38 39 static const char Bad_file[] = "Bad swap file entry "; 40 static const char Unused_file[] = "Unused swap file entry "; 41 static const char Bad_offset[] = "Bad swap offset entry "; 42 static const char Unused_offset[] = "Unused swap offset entry "; 43 44 struct swap_list_t swap_list = {-1, -1}; 45 46 struct swap_info_struct swap_info[MAX_SWAPFILES]; 47 48 static DECLARE_MUTEX(swapon_sem); 49 50 /* 51 * We need this because the bdev->unplug_fn can sleep and we cannot 52 * hold swap_lock while calling the unplug_fn. And swap_lock 53 * cannot be turned into a semaphore. 54 */ 55 static DECLARE_RWSEM(swap_unplug_sem); 56 57 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page) 58 { 59 swp_entry_t entry; 60 61 down_read(&swap_unplug_sem); 62 entry.val = page_private(page); 63 if (PageSwapCache(page)) { 64 struct block_device *bdev = swap_info[swp_type(entry)].bdev; 65 struct backing_dev_info *bdi; 66 67 /* 68 * If the page is removed from swapcache from under us (with a 69 * racy try_to_unuse/swapoff) we need an additional reference 70 * count to avoid reading garbage from page_private(page) above. 71 * If the WARN_ON triggers during a swapoff it maybe the race 72 * condition and it's harmless. However if it triggers without 73 * swapoff it signals a problem. 74 */ 75 WARN_ON(page_count(page) <= 1); 76 77 bdi = bdev->bd_inode->i_mapping->backing_dev_info; 78 blk_run_backing_dev(bdi, page); 79 } 80 up_read(&swap_unplug_sem); 81 } 82 83 #define SWAPFILE_CLUSTER 256 84 #define LATENCY_LIMIT 256 85 86 static inline unsigned long scan_swap_map(struct swap_info_struct *si) 87 { 88 unsigned long offset, last_in_cluster; 89 int latency_ration = LATENCY_LIMIT; 90 91 /* 92 * We try to cluster swap pages by allocating them sequentially 93 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 94 * way, however, we resort to first-free allocation, starting 95 * a new cluster. This prevents us from scattering swap pages 96 * all over the entire swap partition, so that we reduce 97 * overall disk seek times between swap pages. -- sct 98 * But we do now try to find an empty cluster. -Andrea 99 */ 100 101 si->flags += SWP_SCANNING; 102 if (unlikely(!si->cluster_nr)) { 103 si->cluster_nr = SWAPFILE_CLUSTER - 1; 104 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) 105 goto lowest; 106 spin_unlock(&swap_lock); 107 108 offset = si->lowest_bit; 109 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 110 111 /* Locate the first empty (unaligned) cluster */ 112 for (; last_in_cluster <= si->highest_bit; offset++) { 113 if (si->swap_map[offset]) 114 last_in_cluster = offset + SWAPFILE_CLUSTER; 115 else if (offset == last_in_cluster) { 116 spin_lock(&swap_lock); 117 si->cluster_next = offset-SWAPFILE_CLUSTER-1; 118 goto cluster; 119 } 120 if (unlikely(--latency_ration < 0)) { 121 cond_resched(); 122 latency_ration = LATENCY_LIMIT; 123 } 124 } 125 spin_lock(&swap_lock); 126 goto lowest; 127 } 128 129 si->cluster_nr--; 130 cluster: 131 offset = si->cluster_next; 132 if (offset > si->highest_bit) 133 lowest: offset = si->lowest_bit; 134 checks: if (!(si->flags & SWP_WRITEOK)) 135 goto no_page; 136 if (!si->highest_bit) 137 goto no_page; 138 if (!si->swap_map[offset]) { 139 if (offset == si->lowest_bit) 140 si->lowest_bit++; 141 if (offset == si->highest_bit) 142 si->highest_bit--; 143 si->inuse_pages++; 144 if (si->inuse_pages == si->pages) { 145 si->lowest_bit = si->max; 146 si->highest_bit = 0; 147 } 148 si->swap_map[offset] = 1; 149 si->cluster_next = offset + 1; 150 si->flags -= SWP_SCANNING; 151 return offset; 152 } 153 154 spin_unlock(&swap_lock); 155 while (++offset <= si->highest_bit) { 156 if (!si->swap_map[offset]) { 157 spin_lock(&swap_lock); 158 goto checks; 159 } 160 if (unlikely(--latency_ration < 0)) { 161 cond_resched(); 162 latency_ration = LATENCY_LIMIT; 163 } 164 } 165 spin_lock(&swap_lock); 166 goto lowest; 167 168 no_page: 169 si->flags -= SWP_SCANNING; 170 return 0; 171 } 172 173 swp_entry_t get_swap_page(void) 174 { 175 struct swap_info_struct *si; 176 pgoff_t offset; 177 int type, next; 178 int wrapped = 0; 179 180 spin_lock(&swap_lock); 181 if (nr_swap_pages <= 0) 182 goto noswap; 183 nr_swap_pages--; 184 185 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { 186 si = swap_info + type; 187 next = si->next; 188 if (next < 0 || 189 (!wrapped && si->prio != swap_info[next].prio)) { 190 next = swap_list.head; 191 wrapped++; 192 } 193 194 if (!si->highest_bit) 195 continue; 196 if (!(si->flags & SWP_WRITEOK)) 197 continue; 198 199 swap_list.next = next; 200 offset = scan_swap_map(si); 201 if (offset) { 202 spin_unlock(&swap_lock); 203 return swp_entry(type, offset); 204 } 205 next = swap_list.next; 206 } 207 208 nr_swap_pages++; 209 noswap: 210 spin_unlock(&swap_lock); 211 return (swp_entry_t) {0}; 212 } 213 214 static struct swap_info_struct * swap_info_get(swp_entry_t entry) 215 { 216 struct swap_info_struct * p; 217 unsigned long offset, type; 218 219 if (!entry.val) 220 goto out; 221 type = swp_type(entry); 222 if (type >= nr_swapfiles) 223 goto bad_nofile; 224 p = & swap_info[type]; 225 if (!(p->flags & SWP_USED)) 226 goto bad_device; 227 offset = swp_offset(entry); 228 if (offset >= p->max) 229 goto bad_offset; 230 if (!p->swap_map[offset]) 231 goto bad_free; 232 spin_lock(&swap_lock); 233 return p; 234 235 bad_free: 236 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); 237 goto out; 238 bad_offset: 239 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); 240 goto out; 241 bad_device: 242 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); 243 goto out; 244 bad_nofile: 245 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); 246 out: 247 return NULL; 248 } 249 250 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset) 251 { 252 int count = p->swap_map[offset]; 253 254 if (count < SWAP_MAP_MAX) { 255 count--; 256 p->swap_map[offset] = count; 257 if (!count) { 258 if (offset < p->lowest_bit) 259 p->lowest_bit = offset; 260 if (offset > p->highest_bit) 261 p->highest_bit = offset; 262 if (p->prio > swap_info[swap_list.next].prio) 263 swap_list.next = p - swap_info; 264 nr_swap_pages++; 265 p->inuse_pages--; 266 } 267 } 268 return count; 269 } 270 271 /* 272 * Caller has made sure that the swapdevice corresponding to entry 273 * is still around or has not been recycled. 274 */ 275 void swap_free(swp_entry_t entry) 276 { 277 struct swap_info_struct * p; 278 279 p = swap_info_get(entry); 280 if (p) { 281 swap_entry_free(p, swp_offset(entry)); 282 spin_unlock(&swap_lock); 283 } 284 } 285 286 /* 287 * How many references to page are currently swapped out? 288 */ 289 static inline int page_swapcount(struct page *page) 290 { 291 int count = 0; 292 struct swap_info_struct *p; 293 swp_entry_t entry; 294 295 entry.val = page_private(page); 296 p = swap_info_get(entry); 297 if (p) { 298 /* Subtract the 1 for the swap cache itself */ 299 count = p->swap_map[swp_offset(entry)] - 1; 300 spin_unlock(&swap_lock); 301 } 302 return count; 303 } 304 305 /* 306 * We can use this swap cache entry directly 307 * if there are no other references to it. 308 */ 309 int can_share_swap_page(struct page *page) 310 { 311 int count; 312 313 BUG_ON(!PageLocked(page)); 314 count = page_mapcount(page); 315 if (count <= 1 && PageSwapCache(page)) 316 count += page_swapcount(page); 317 return count == 1; 318 } 319 320 /* 321 * Work out if there are any other processes sharing this 322 * swap cache page. Free it if you can. Return success. 323 */ 324 int remove_exclusive_swap_page(struct page *page) 325 { 326 int retval; 327 struct swap_info_struct * p; 328 swp_entry_t entry; 329 330 BUG_ON(PagePrivate(page)); 331 BUG_ON(!PageLocked(page)); 332 333 if (!PageSwapCache(page)) 334 return 0; 335 if (PageWriteback(page)) 336 return 0; 337 if (page_count(page) != 2) /* 2: us + cache */ 338 return 0; 339 340 entry.val = page_private(page); 341 p = swap_info_get(entry); 342 if (!p) 343 return 0; 344 345 /* Is the only swap cache user the cache itself? */ 346 retval = 0; 347 if (p->swap_map[swp_offset(entry)] == 1) { 348 /* Recheck the page count with the swapcache lock held.. */ 349 write_lock_irq(&swapper_space.tree_lock); 350 if ((page_count(page) == 2) && !PageWriteback(page)) { 351 __delete_from_swap_cache(page); 352 SetPageDirty(page); 353 retval = 1; 354 } 355 write_unlock_irq(&swapper_space.tree_lock); 356 } 357 spin_unlock(&swap_lock); 358 359 if (retval) { 360 swap_free(entry); 361 page_cache_release(page); 362 } 363 364 return retval; 365 } 366 367 /* 368 * Free the swap entry like above, but also try to 369 * free the page cache entry if it is the last user. 370 */ 371 void free_swap_and_cache(swp_entry_t entry) 372 { 373 struct swap_info_struct * p; 374 struct page *page = NULL; 375 376 p = swap_info_get(entry); 377 if (p) { 378 if (swap_entry_free(p, swp_offset(entry)) == 1) 379 page = find_trylock_page(&swapper_space, entry.val); 380 spin_unlock(&swap_lock); 381 } 382 if (page) { 383 int one_user; 384 385 BUG_ON(PagePrivate(page)); 386 page_cache_get(page); 387 one_user = (page_count(page) == 2); 388 /* Only cache user (+us), or swap space full? Free it! */ 389 if (!PageWriteback(page) && (one_user || vm_swap_full())) { 390 delete_from_swap_cache(page); 391 SetPageDirty(page); 392 } 393 unlock_page(page); 394 page_cache_release(page); 395 } 396 } 397 398 /* 399 * No need to decide whether this PTE shares the swap entry with others, 400 * just let do_wp_page work it out if a write is requested later - to 401 * force COW, vm_page_prot omits write permission from any private vma. 402 */ 403 static void unuse_pte(struct vm_area_struct *vma, pte_t *pte, 404 unsigned long addr, swp_entry_t entry, struct page *page) 405 { 406 inc_mm_counter(vma->vm_mm, anon_rss); 407 get_page(page); 408 set_pte_at(vma->vm_mm, addr, pte, 409 pte_mkold(mk_pte(page, vma->vm_page_prot))); 410 page_add_anon_rmap(page, vma, addr); 411 swap_free(entry); 412 /* 413 * Move the page to the active list so it is not 414 * immediately swapped out again after swapon. 415 */ 416 activate_page(page); 417 } 418 419 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 420 unsigned long addr, unsigned long end, 421 swp_entry_t entry, struct page *page) 422 { 423 pte_t swp_pte = swp_entry_to_pte(entry); 424 pte_t *pte; 425 spinlock_t *ptl; 426 int found = 0; 427 428 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 429 do { 430 /* 431 * swapoff spends a _lot_ of time in this loop! 432 * Test inline before going to call unuse_pte. 433 */ 434 if (unlikely(pte_same(*pte, swp_pte))) { 435 unuse_pte(vma, pte++, addr, entry, page); 436 found = 1; 437 break; 438 } 439 } while (pte++, addr += PAGE_SIZE, addr != end); 440 pte_unmap_unlock(pte - 1, ptl); 441 return found; 442 } 443 444 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 445 unsigned long addr, unsigned long end, 446 swp_entry_t entry, struct page *page) 447 { 448 pmd_t *pmd; 449 unsigned long next; 450 451 pmd = pmd_offset(pud, addr); 452 do { 453 next = pmd_addr_end(addr, end); 454 if (pmd_none_or_clear_bad(pmd)) 455 continue; 456 if (unuse_pte_range(vma, pmd, addr, next, entry, page)) 457 return 1; 458 } while (pmd++, addr = next, addr != end); 459 return 0; 460 } 461 462 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 463 unsigned long addr, unsigned long end, 464 swp_entry_t entry, struct page *page) 465 { 466 pud_t *pud; 467 unsigned long next; 468 469 pud = pud_offset(pgd, addr); 470 do { 471 next = pud_addr_end(addr, end); 472 if (pud_none_or_clear_bad(pud)) 473 continue; 474 if (unuse_pmd_range(vma, pud, addr, next, entry, page)) 475 return 1; 476 } while (pud++, addr = next, addr != end); 477 return 0; 478 } 479 480 static int unuse_vma(struct vm_area_struct *vma, 481 swp_entry_t entry, struct page *page) 482 { 483 pgd_t *pgd; 484 unsigned long addr, end, next; 485 486 if (page->mapping) { 487 addr = page_address_in_vma(page, vma); 488 if (addr == -EFAULT) 489 return 0; 490 else 491 end = addr + PAGE_SIZE; 492 } else { 493 addr = vma->vm_start; 494 end = vma->vm_end; 495 } 496 497 pgd = pgd_offset(vma->vm_mm, addr); 498 do { 499 next = pgd_addr_end(addr, end); 500 if (pgd_none_or_clear_bad(pgd)) 501 continue; 502 if (unuse_pud_range(vma, pgd, addr, next, entry, page)) 503 return 1; 504 } while (pgd++, addr = next, addr != end); 505 return 0; 506 } 507 508 static int unuse_mm(struct mm_struct *mm, 509 swp_entry_t entry, struct page *page) 510 { 511 struct vm_area_struct *vma; 512 513 if (!down_read_trylock(&mm->mmap_sem)) { 514 /* 515 * Activate page so shrink_cache is unlikely to unmap its 516 * ptes while lock is dropped, so swapoff can make progress. 517 */ 518 activate_page(page); 519 unlock_page(page); 520 down_read(&mm->mmap_sem); 521 lock_page(page); 522 } 523 for (vma = mm->mmap; vma; vma = vma->vm_next) { 524 if (vma->anon_vma && unuse_vma(vma, entry, page)) 525 break; 526 } 527 up_read(&mm->mmap_sem); 528 /* 529 * Currently unuse_mm cannot fail, but leave error handling 530 * at call sites for now, since we change it from time to time. 531 */ 532 return 0; 533 } 534 535 /* 536 * Scan swap_map from current position to next entry still in use. 537 * Recycle to start on reaching the end, returning 0 when empty. 538 */ 539 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 540 unsigned int prev) 541 { 542 unsigned int max = si->max; 543 unsigned int i = prev; 544 int count; 545 546 /* 547 * No need for swap_lock here: we're just looking 548 * for whether an entry is in use, not modifying it; false 549 * hits are okay, and sys_swapoff() has already prevented new 550 * allocations from this area (while holding swap_lock). 551 */ 552 for (;;) { 553 if (++i >= max) { 554 if (!prev) { 555 i = 0; 556 break; 557 } 558 /* 559 * No entries in use at top of swap_map, 560 * loop back to start and recheck there. 561 */ 562 max = prev + 1; 563 prev = 0; 564 i = 1; 565 } 566 count = si->swap_map[i]; 567 if (count && count != SWAP_MAP_BAD) 568 break; 569 } 570 return i; 571 } 572 573 /* 574 * We completely avoid races by reading each swap page in advance, 575 * and then search for the process using it. All the necessary 576 * page table adjustments can then be made atomically. 577 */ 578 static int try_to_unuse(unsigned int type) 579 { 580 struct swap_info_struct * si = &swap_info[type]; 581 struct mm_struct *start_mm; 582 unsigned short *swap_map; 583 unsigned short swcount; 584 struct page *page; 585 swp_entry_t entry; 586 unsigned int i = 0; 587 int retval = 0; 588 int reset_overflow = 0; 589 int shmem; 590 591 /* 592 * When searching mms for an entry, a good strategy is to 593 * start at the first mm we freed the previous entry from 594 * (though actually we don't notice whether we or coincidence 595 * freed the entry). Initialize this start_mm with a hold. 596 * 597 * A simpler strategy would be to start at the last mm we 598 * freed the previous entry from; but that would take less 599 * advantage of mmlist ordering, which clusters forked mms 600 * together, child after parent. If we race with dup_mmap(), we 601 * prefer to resolve parent before child, lest we miss entries 602 * duplicated after we scanned child: using last mm would invert 603 * that. Though it's only a serious concern when an overflowed 604 * swap count is reset from SWAP_MAP_MAX, preventing a rescan. 605 */ 606 start_mm = &init_mm; 607 atomic_inc(&init_mm.mm_users); 608 609 /* 610 * Keep on scanning until all entries have gone. Usually, 611 * one pass through swap_map is enough, but not necessarily: 612 * there are races when an instance of an entry might be missed. 613 */ 614 while ((i = find_next_to_unuse(si, i)) != 0) { 615 if (signal_pending(current)) { 616 retval = -EINTR; 617 break; 618 } 619 620 /* 621 * Get a page for the entry, using the existing swap 622 * cache page if there is one. Otherwise, get a clean 623 * page and read the swap into it. 624 */ 625 swap_map = &si->swap_map[i]; 626 entry = swp_entry(type, i); 627 page = read_swap_cache_async(entry, NULL, 0); 628 if (!page) { 629 /* 630 * Either swap_duplicate() failed because entry 631 * has been freed independently, and will not be 632 * reused since sys_swapoff() already disabled 633 * allocation from here, or alloc_page() failed. 634 */ 635 if (!*swap_map) 636 continue; 637 retval = -ENOMEM; 638 break; 639 } 640 641 /* 642 * Don't hold on to start_mm if it looks like exiting. 643 */ 644 if (atomic_read(&start_mm->mm_users) == 1) { 645 mmput(start_mm); 646 start_mm = &init_mm; 647 atomic_inc(&init_mm.mm_users); 648 } 649 650 /* 651 * Wait for and lock page. When do_swap_page races with 652 * try_to_unuse, do_swap_page can handle the fault much 653 * faster than try_to_unuse can locate the entry. This 654 * apparently redundant "wait_on_page_locked" lets try_to_unuse 655 * defer to do_swap_page in such a case - in some tests, 656 * do_swap_page and try_to_unuse repeatedly compete. 657 */ 658 wait_on_page_locked(page); 659 wait_on_page_writeback(page); 660 lock_page(page); 661 wait_on_page_writeback(page); 662 663 /* 664 * Remove all references to entry. 665 * Whenever we reach init_mm, there's no address space 666 * to search, but use it as a reminder to search shmem. 667 */ 668 shmem = 0; 669 swcount = *swap_map; 670 if (swcount > 1) { 671 if (start_mm == &init_mm) 672 shmem = shmem_unuse(entry, page); 673 else 674 retval = unuse_mm(start_mm, entry, page); 675 } 676 if (*swap_map > 1) { 677 int set_start_mm = (*swap_map >= swcount); 678 struct list_head *p = &start_mm->mmlist; 679 struct mm_struct *new_start_mm = start_mm; 680 struct mm_struct *prev_mm = start_mm; 681 struct mm_struct *mm; 682 683 atomic_inc(&new_start_mm->mm_users); 684 atomic_inc(&prev_mm->mm_users); 685 spin_lock(&mmlist_lock); 686 while (*swap_map > 1 && !retval && 687 (p = p->next) != &start_mm->mmlist) { 688 mm = list_entry(p, struct mm_struct, mmlist); 689 if (atomic_inc_return(&mm->mm_users) == 1) { 690 atomic_dec(&mm->mm_users); 691 continue; 692 } 693 spin_unlock(&mmlist_lock); 694 mmput(prev_mm); 695 prev_mm = mm; 696 697 cond_resched(); 698 699 swcount = *swap_map; 700 if (swcount <= 1) 701 ; 702 else if (mm == &init_mm) { 703 set_start_mm = 1; 704 shmem = shmem_unuse(entry, page); 705 } else 706 retval = unuse_mm(mm, entry, page); 707 if (set_start_mm && *swap_map < swcount) { 708 mmput(new_start_mm); 709 atomic_inc(&mm->mm_users); 710 new_start_mm = mm; 711 set_start_mm = 0; 712 } 713 spin_lock(&mmlist_lock); 714 } 715 spin_unlock(&mmlist_lock); 716 mmput(prev_mm); 717 mmput(start_mm); 718 start_mm = new_start_mm; 719 } 720 if (retval) { 721 unlock_page(page); 722 page_cache_release(page); 723 break; 724 } 725 726 /* 727 * How could swap count reach 0x7fff when the maximum 728 * pid is 0x7fff, and there's no way to repeat a swap 729 * page within an mm (except in shmem, where it's the 730 * shared object which takes the reference count)? 731 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4. 732 * 733 * If that's wrong, then we should worry more about 734 * exit_mmap() and do_munmap() cases described above: 735 * we might be resetting SWAP_MAP_MAX too early here. 736 * We know "Undead"s can happen, they're okay, so don't 737 * report them; but do report if we reset SWAP_MAP_MAX. 738 */ 739 if (*swap_map == SWAP_MAP_MAX) { 740 spin_lock(&swap_lock); 741 *swap_map = 1; 742 spin_unlock(&swap_lock); 743 reset_overflow = 1; 744 } 745 746 /* 747 * If a reference remains (rare), we would like to leave 748 * the page in the swap cache; but try_to_unmap could 749 * then re-duplicate the entry once we drop page lock, 750 * so we might loop indefinitely; also, that page could 751 * not be swapped out to other storage meanwhile. So: 752 * delete from cache even if there's another reference, 753 * after ensuring that the data has been saved to disk - 754 * since if the reference remains (rarer), it will be 755 * read from disk into another page. Splitting into two 756 * pages would be incorrect if swap supported "shared 757 * private" pages, but they are handled by tmpfs files. 758 * 759 * Note shmem_unuse already deleted a swappage from 760 * the swap cache, unless the move to filepage failed: 761 * in which case it left swappage in cache, lowered its 762 * swap count to pass quickly through the loops above, 763 * and now we must reincrement count to try again later. 764 */ 765 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) { 766 struct writeback_control wbc = { 767 .sync_mode = WB_SYNC_NONE, 768 }; 769 770 swap_writepage(page, &wbc); 771 lock_page(page); 772 wait_on_page_writeback(page); 773 } 774 if (PageSwapCache(page)) { 775 if (shmem) 776 swap_duplicate(entry); 777 else 778 delete_from_swap_cache(page); 779 } 780 781 /* 782 * So we could skip searching mms once swap count went 783 * to 1, we did not mark any present ptes as dirty: must 784 * mark page dirty so shrink_list will preserve it. 785 */ 786 SetPageDirty(page); 787 unlock_page(page); 788 page_cache_release(page); 789 790 /* 791 * Make sure that we aren't completely killing 792 * interactive performance. 793 */ 794 cond_resched(); 795 } 796 797 mmput(start_mm); 798 if (reset_overflow) { 799 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n"); 800 swap_overflow = 0; 801 } 802 return retval; 803 } 804 805 /* 806 * After a successful try_to_unuse, if no swap is now in use, we know 807 * we can empty the mmlist. swap_lock must be held on entry and exit. 808 * Note that mmlist_lock nests inside swap_lock, and an mm must be 809 * added to the mmlist just after page_duplicate - before would be racy. 810 */ 811 static void drain_mmlist(void) 812 { 813 struct list_head *p, *next; 814 unsigned int i; 815 816 for (i = 0; i < nr_swapfiles; i++) 817 if (swap_info[i].inuse_pages) 818 return; 819 spin_lock(&mmlist_lock); 820 list_for_each_safe(p, next, &init_mm.mmlist) 821 list_del_init(p); 822 spin_unlock(&mmlist_lock); 823 } 824 825 /* 826 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 827 * corresponds to page offset `offset'. 828 */ 829 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset) 830 { 831 struct swap_extent *se = sis->curr_swap_extent; 832 struct swap_extent *start_se = se; 833 834 for ( ; ; ) { 835 struct list_head *lh; 836 837 if (se->start_page <= offset && 838 offset < (se->start_page + se->nr_pages)) { 839 return se->start_block + (offset - se->start_page); 840 } 841 lh = se->list.next; 842 if (lh == &sis->extent_list) 843 lh = lh->next; 844 se = list_entry(lh, struct swap_extent, list); 845 sis->curr_swap_extent = se; 846 BUG_ON(se == start_se); /* It *must* be present */ 847 } 848 } 849 850 /* 851 * Free all of a swapdev's extent information 852 */ 853 static void destroy_swap_extents(struct swap_info_struct *sis) 854 { 855 while (!list_empty(&sis->extent_list)) { 856 struct swap_extent *se; 857 858 se = list_entry(sis->extent_list.next, 859 struct swap_extent, list); 860 list_del(&se->list); 861 kfree(se); 862 } 863 } 864 865 /* 866 * Add a block range (and the corresponding page range) into this swapdev's 867 * extent list. The extent list is kept sorted in page order. 868 * 869 * This function rather assumes that it is called in ascending page order. 870 */ 871 static int 872 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 873 unsigned long nr_pages, sector_t start_block) 874 { 875 struct swap_extent *se; 876 struct swap_extent *new_se; 877 struct list_head *lh; 878 879 lh = sis->extent_list.prev; /* The highest page extent */ 880 if (lh != &sis->extent_list) { 881 se = list_entry(lh, struct swap_extent, list); 882 BUG_ON(se->start_page + se->nr_pages != start_page); 883 if (se->start_block + se->nr_pages == start_block) { 884 /* Merge it */ 885 se->nr_pages += nr_pages; 886 return 0; 887 } 888 } 889 890 /* 891 * No merge. Insert a new extent, preserving ordering. 892 */ 893 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 894 if (new_se == NULL) 895 return -ENOMEM; 896 new_se->start_page = start_page; 897 new_se->nr_pages = nr_pages; 898 new_se->start_block = start_block; 899 900 list_add_tail(&new_se->list, &sis->extent_list); 901 return 1; 902 } 903 904 /* 905 * A `swap extent' is a simple thing which maps a contiguous range of pages 906 * onto a contiguous range of disk blocks. An ordered list of swap extents 907 * is built at swapon time and is then used at swap_writepage/swap_readpage 908 * time for locating where on disk a page belongs. 909 * 910 * If the swapfile is an S_ISBLK block device, a single extent is installed. 911 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 912 * swap files identically. 913 * 914 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 915 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 916 * swapfiles are handled *identically* after swapon time. 917 * 918 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 919 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 920 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 921 * requirements, they are simply tossed out - we will never use those blocks 922 * for swapping. 923 * 924 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 925 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 926 * which will scribble on the fs. 927 * 928 * The amount of disk space which a single swap extent represents varies. 929 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 930 * extents in the list. To avoid much list walking, we cache the previous 931 * search location in `curr_swap_extent', and start new searches from there. 932 * This is extremely effective. The average number of iterations in 933 * map_swap_page() has been measured at about 0.3 per page. - akpm. 934 */ 935 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 936 { 937 struct inode *inode; 938 unsigned blocks_per_page; 939 unsigned long page_no; 940 unsigned blkbits; 941 sector_t probe_block; 942 sector_t last_block; 943 sector_t lowest_block = -1; 944 sector_t highest_block = 0; 945 int nr_extents = 0; 946 int ret; 947 948 inode = sis->swap_file->f_mapping->host; 949 if (S_ISBLK(inode->i_mode)) { 950 ret = add_swap_extent(sis, 0, sis->max, 0); 951 *span = sis->pages; 952 goto done; 953 } 954 955 blkbits = inode->i_blkbits; 956 blocks_per_page = PAGE_SIZE >> blkbits; 957 958 /* 959 * Map all the blocks into the extent list. This code doesn't try 960 * to be very smart. 961 */ 962 probe_block = 0; 963 page_no = 0; 964 last_block = i_size_read(inode) >> blkbits; 965 while ((probe_block + blocks_per_page) <= last_block && 966 page_no < sis->max) { 967 unsigned block_in_page; 968 sector_t first_block; 969 970 first_block = bmap(inode, probe_block); 971 if (first_block == 0) 972 goto bad_bmap; 973 974 /* 975 * It must be PAGE_SIZE aligned on-disk 976 */ 977 if (first_block & (blocks_per_page - 1)) { 978 probe_block++; 979 goto reprobe; 980 } 981 982 for (block_in_page = 1; block_in_page < blocks_per_page; 983 block_in_page++) { 984 sector_t block; 985 986 block = bmap(inode, probe_block + block_in_page); 987 if (block == 0) 988 goto bad_bmap; 989 if (block != first_block + block_in_page) { 990 /* Discontiguity */ 991 probe_block++; 992 goto reprobe; 993 } 994 } 995 996 first_block >>= (PAGE_SHIFT - blkbits); 997 if (page_no) { /* exclude the header page */ 998 if (first_block < lowest_block) 999 lowest_block = first_block; 1000 if (first_block > highest_block) 1001 highest_block = first_block; 1002 } 1003 1004 /* 1005 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 1006 */ 1007 ret = add_swap_extent(sis, page_no, 1, first_block); 1008 if (ret < 0) 1009 goto out; 1010 nr_extents += ret; 1011 page_no++; 1012 probe_block += blocks_per_page; 1013 reprobe: 1014 continue; 1015 } 1016 ret = nr_extents; 1017 *span = 1 + highest_block - lowest_block; 1018 if (page_no == 0) 1019 page_no = 1; /* force Empty message */ 1020 sis->max = page_no; 1021 sis->pages = page_no - 1; 1022 sis->highest_bit = page_no - 1; 1023 done: 1024 sis->curr_swap_extent = list_entry(sis->extent_list.prev, 1025 struct swap_extent, list); 1026 goto out; 1027 bad_bmap: 1028 printk(KERN_ERR "swapon: swapfile has holes\n"); 1029 ret = -EINVAL; 1030 out: 1031 return ret; 1032 } 1033 1034 #if 0 /* We don't need this yet */ 1035 #include <linux/backing-dev.h> 1036 int page_queue_congested(struct page *page) 1037 { 1038 struct backing_dev_info *bdi; 1039 1040 BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */ 1041 1042 if (PageSwapCache(page)) { 1043 swp_entry_t entry = { .val = page_private(page) }; 1044 struct swap_info_struct *sis; 1045 1046 sis = get_swap_info_struct(swp_type(entry)); 1047 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info; 1048 } else 1049 bdi = page->mapping->backing_dev_info; 1050 return bdi_write_congested(bdi); 1051 } 1052 #endif 1053 1054 asmlinkage long sys_swapoff(const char __user * specialfile) 1055 { 1056 struct swap_info_struct * p = NULL; 1057 unsigned short *swap_map; 1058 struct file *swap_file, *victim; 1059 struct address_space *mapping; 1060 struct inode *inode; 1061 char * pathname; 1062 int i, type, prev; 1063 int err; 1064 1065 if (!capable(CAP_SYS_ADMIN)) 1066 return -EPERM; 1067 1068 pathname = getname(specialfile); 1069 err = PTR_ERR(pathname); 1070 if (IS_ERR(pathname)) 1071 goto out; 1072 1073 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0); 1074 putname(pathname); 1075 err = PTR_ERR(victim); 1076 if (IS_ERR(victim)) 1077 goto out; 1078 1079 mapping = victim->f_mapping; 1080 prev = -1; 1081 spin_lock(&swap_lock); 1082 for (type = swap_list.head; type >= 0; type = swap_info[type].next) { 1083 p = swap_info + type; 1084 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) { 1085 if (p->swap_file->f_mapping == mapping) 1086 break; 1087 } 1088 prev = type; 1089 } 1090 if (type < 0) { 1091 err = -EINVAL; 1092 spin_unlock(&swap_lock); 1093 goto out_dput; 1094 } 1095 if (!security_vm_enough_memory(p->pages)) 1096 vm_unacct_memory(p->pages); 1097 else { 1098 err = -ENOMEM; 1099 spin_unlock(&swap_lock); 1100 goto out_dput; 1101 } 1102 if (prev < 0) { 1103 swap_list.head = p->next; 1104 } else { 1105 swap_info[prev].next = p->next; 1106 } 1107 if (type == swap_list.next) { 1108 /* just pick something that's safe... */ 1109 swap_list.next = swap_list.head; 1110 } 1111 nr_swap_pages -= p->pages; 1112 total_swap_pages -= p->pages; 1113 p->flags &= ~SWP_WRITEOK; 1114 spin_unlock(&swap_lock); 1115 1116 current->flags |= PF_SWAPOFF; 1117 err = try_to_unuse(type); 1118 current->flags &= ~PF_SWAPOFF; 1119 1120 if (err) { 1121 /* re-insert swap space back into swap_list */ 1122 spin_lock(&swap_lock); 1123 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next) 1124 if (p->prio >= swap_info[i].prio) 1125 break; 1126 p->next = i; 1127 if (prev < 0) 1128 swap_list.head = swap_list.next = p - swap_info; 1129 else 1130 swap_info[prev].next = p - swap_info; 1131 nr_swap_pages += p->pages; 1132 total_swap_pages += p->pages; 1133 p->flags |= SWP_WRITEOK; 1134 spin_unlock(&swap_lock); 1135 goto out_dput; 1136 } 1137 1138 /* wait for any unplug function to finish */ 1139 down_write(&swap_unplug_sem); 1140 up_write(&swap_unplug_sem); 1141 1142 destroy_swap_extents(p); 1143 down(&swapon_sem); 1144 spin_lock(&swap_lock); 1145 drain_mmlist(); 1146 1147 /* wait for anyone still in scan_swap_map */ 1148 p->highest_bit = 0; /* cuts scans short */ 1149 while (p->flags >= SWP_SCANNING) { 1150 spin_unlock(&swap_lock); 1151 schedule_timeout_uninterruptible(1); 1152 spin_lock(&swap_lock); 1153 } 1154 1155 swap_file = p->swap_file; 1156 p->swap_file = NULL; 1157 p->max = 0; 1158 swap_map = p->swap_map; 1159 p->swap_map = NULL; 1160 p->flags = 0; 1161 spin_unlock(&swap_lock); 1162 up(&swapon_sem); 1163 vfree(swap_map); 1164 inode = mapping->host; 1165 if (S_ISBLK(inode->i_mode)) { 1166 struct block_device *bdev = I_BDEV(inode); 1167 set_blocksize(bdev, p->old_block_size); 1168 bd_release(bdev); 1169 } else { 1170 down(&inode->i_sem); 1171 inode->i_flags &= ~S_SWAPFILE; 1172 up(&inode->i_sem); 1173 } 1174 filp_close(swap_file, NULL); 1175 err = 0; 1176 1177 out_dput: 1178 filp_close(victim, NULL); 1179 out: 1180 return err; 1181 } 1182 1183 #ifdef CONFIG_PROC_FS 1184 /* iterator */ 1185 static void *swap_start(struct seq_file *swap, loff_t *pos) 1186 { 1187 struct swap_info_struct *ptr = swap_info; 1188 int i; 1189 loff_t l = *pos; 1190 1191 down(&swapon_sem); 1192 1193 for (i = 0; i < nr_swapfiles; i++, ptr++) { 1194 if (!(ptr->flags & SWP_USED) || !ptr->swap_map) 1195 continue; 1196 if (!l--) 1197 return ptr; 1198 } 1199 1200 return NULL; 1201 } 1202 1203 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 1204 { 1205 struct swap_info_struct *ptr = v; 1206 struct swap_info_struct *endptr = swap_info + nr_swapfiles; 1207 1208 for (++ptr; ptr < endptr; ptr++) { 1209 if (!(ptr->flags & SWP_USED) || !ptr->swap_map) 1210 continue; 1211 ++*pos; 1212 return ptr; 1213 } 1214 1215 return NULL; 1216 } 1217 1218 static void swap_stop(struct seq_file *swap, void *v) 1219 { 1220 up(&swapon_sem); 1221 } 1222 1223 static int swap_show(struct seq_file *swap, void *v) 1224 { 1225 struct swap_info_struct *ptr = v; 1226 struct file *file; 1227 int len; 1228 1229 if (v == swap_info) 1230 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 1231 1232 file = ptr->swap_file; 1233 len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\"); 1234 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 1235 len < 40 ? 40 - len : 1, " ", 1236 S_ISBLK(file->f_dentry->d_inode->i_mode) ? 1237 "partition" : "file\t", 1238 ptr->pages << (PAGE_SHIFT - 10), 1239 ptr->inuse_pages << (PAGE_SHIFT - 10), 1240 ptr->prio); 1241 return 0; 1242 } 1243 1244 static struct seq_operations swaps_op = { 1245 .start = swap_start, 1246 .next = swap_next, 1247 .stop = swap_stop, 1248 .show = swap_show 1249 }; 1250 1251 static int swaps_open(struct inode *inode, struct file *file) 1252 { 1253 return seq_open(file, &swaps_op); 1254 } 1255 1256 static struct file_operations proc_swaps_operations = { 1257 .open = swaps_open, 1258 .read = seq_read, 1259 .llseek = seq_lseek, 1260 .release = seq_release, 1261 }; 1262 1263 static int __init procswaps_init(void) 1264 { 1265 struct proc_dir_entry *entry; 1266 1267 entry = create_proc_entry("swaps", 0, NULL); 1268 if (entry) 1269 entry->proc_fops = &proc_swaps_operations; 1270 return 0; 1271 } 1272 __initcall(procswaps_init); 1273 #endif /* CONFIG_PROC_FS */ 1274 1275 /* 1276 * Written 01/25/92 by Simmule Turner, heavily changed by Linus. 1277 * 1278 * The swapon system call 1279 */ 1280 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) 1281 { 1282 struct swap_info_struct * p; 1283 char *name = NULL; 1284 struct block_device *bdev = NULL; 1285 struct file *swap_file = NULL; 1286 struct address_space *mapping; 1287 unsigned int type; 1288 int i, prev; 1289 int error; 1290 static int least_priority; 1291 union swap_header *swap_header = NULL; 1292 int swap_header_version; 1293 unsigned int nr_good_pages = 0; 1294 int nr_extents = 0; 1295 sector_t span; 1296 unsigned long maxpages = 1; 1297 int swapfilesize; 1298 unsigned short *swap_map; 1299 struct page *page = NULL; 1300 struct inode *inode = NULL; 1301 int did_down = 0; 1302 1303 if (!capable(CAP_SYS_ADMIN)) 1304 return -EPERM; 1305 spin_lock(&swap_lock); 1306 p = swap_info; 1307 for (type = 0 ; type < nr_swapfiles ; type++,p++) 1308 if (!(p->flags & SWP_USED)) 1309 break; 1310 error = -EPERM; 1311 /* 1312 * Test if adding another swap device is possible. There are 1313 * two limiting factors: 1) the number of bits for the swap 1314 * type swp_entry_t definition and 2) the number of bits for 1315 * the swap type in the swap ptes as defined by the different 1316 * architectures. To honor both limitations a swap entry 1317 * with swap offset 0 and swap type ~0UL is created, encoded 1318 * to a swap pte, decoded to a swp_entry_t again and finally 1319 * the swap type part is extracted. This will mask all bits 1320 * from the initial ~0UL that can't be encoded in either the 1321 * swp_entry_t or the architecture definition of a swap pte. 1322 */ 1323 if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) { 1324 spin_unlock(&swap_lock); 1325 goto out; 1326 } 1327 if (type >= nr_swapfiles) 1328 nr_swapfiles = type+1; 1329 INIT_LIST_HEAD(&p->extent_list); 1330 p->flags = SWP_USED; 1331 p->swap_file = NULL; 1332 p->old_block_size = 0; 1333 p->swap_map = NULL; 1334 p->lowest_bit = 0; 1335 p->highest_bit = 0; 1336 p->cluster_nr = 0; 1337 p->inuse_pages = 0; 1338 p->next = -1; 1339 if (swap_flags & SWAP_FLAG_PREFER) { 1340 p->prio = 1341 (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT; 1342 } else { 1343 p->prio = --least_priority; 1344 } 1345 spin_unlock(&swap_lock); 1346 name = getname(specialfile); 1347 error = PTR_ERR(name); 1348 if (IS_ERR(name)) { 1349 name = NULL; 1350 goto bad_swap_2; 1351 } 1352 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0); 1353 error = PTR_ERR(swap_file); 1354 if (IS_ERR(swap_file)) { 1355 swap_file = NULL; 1356 goto bad_swap_2; 1357 } 1358 1359 p->swap_file = swap_file; 1360 mapping = swap_file->f_mapping; 1361 inode = mapping->host; 1362 1363 error = -EBUSY; 1364 for (i = 0; i < nr_swapfiles; i++) { 1365 struct swap_info_struct *q = &swap_info[i]; 1366 1367 if (i == type || !q->swap_file) 1368 continue; 1369 if (mapping == q->swap_file->f_mapping) 1370 goto bad_swap; 1371 } 1372 1373 error = -EINVAL; 1374 if (S_ISBLK(inode->i_mode)) { 1375 bdev = I_BDEV(inode); 1376 error = bd_claim(bdev, sys_swapon); 1377 if (error < 0) { 1378 bdev = NULL; 1379 error = -EINVAL; 1380 goto bad_swap; 1381 } 1382 p->old_block_size = block_size(bdev); 1383 error = set_blocksize(bdev, PAGE_SIZE); 1384 if (error < 0) 1385 goto bad_swap; 1386 p->bdev = bdev; 1387 } else if (S_ISREG(inode->i_mode)) { 1388 p->bdev = inode->i_sb->s_bdev; 1389 down(&inode->i_sem); 1390 did_down = 1; 1391 if (IS_SWAPFILE(inode)) { 1392 error = -EBUSY; 1393 goto bad_swap; 1394 } 1395 } else { 1396 goto bad_swap; 1397 } 1398 1399 swapfilesize = i_size_read(inode) >> PAGE_SHIFT; 1400 1401 /* 1402 * Read the swap header. 1403 */ 1404 if (!mapping->a_ops->readpage) { 1405 error = -EINVAL; 1406 goto bad_swap; 1407 } 1408 page = read_cache_page(mapping, 0, 1409 (filler_t *)mapping->a_ops->readpage, swap_file); 1410 if (IS_ERR(page)) { 1411 error = PTR_ERR(page); 1412 goto bad_swap; 1413 } 1414 wait_on_page_locked(page); 1415 if (!PageUptodate(page)) 1416 goto bad_swap; 1417 kmap(page); 1418 swap_header = page_address(page); 1419 1420 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10)) 1421 swap_header_version = 1; 1422 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10)) 1423 swap_header_version = 2; 1424 else { 1425 printk("Unable to find swap-space signature\n"); 1426 error = -EINVAL; 1427 goto bad_swap; 1428 } 1429 1430 switch (swap_header_version) { 1431 case 1: 1432 printk(KERN_ERR "version 0 swap is no longer supported. " 1433 "Use mkswap -v1 %s\n", name); 1434 error = -EINVAL; 1435 goto bad_swap; 1436 case 2: 1437 /* Check the swap header's sub-version and the size of 1438 the swap file and bad block lists */ 1439 if (swap_header->info.version != 1) { 1440 printk(KERN_WARNING 1441 "Unable to handle swap header version %d\n", 1442 swap_header->info.version); 1443 error = -EINVAL; 1444 goto bad_swap; 1445 } 1446 1447 p->lowest_bit = 1; 1448 p->cluster_next = 1; 1449 1450 /* 1451 * Find out how many pages are allowed for a single swap 1452 * device. There are two limiting factors: 1) the number of 1453 * bits for the swap offset in the swp_entry_t type and 1454 * 2) the number of bits in the a swap pte as defined by 1455 * the different architectures. In order to find the 1456 * largest possible bit mask a swap entry with swap type 0 1457 * and swap offset ~0UL is created, encoded to a swap pte, 1458 * decoded to a swp_entry_t again and finally the swap 1459 * offset is extracted. This will mask all the bits from 1460 * the initial ~0UL mask that can't be encoded in either 1461 * the swp_entry_t or the architecture definition of a 1462 * swap pte. 1463 */ 1464 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1; 1465 if (maxpages > swap_header->info.last_page) 1466 maxpages = swap_header->info.last_page; 1467 p->highest_bit = maxpages - 1; 1468 1469 error = -EINVAL; 1470 if (!maxpages) 1471 goto bad_swap; 1472 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 1473 goto bad_swap; 1474 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 1475 goto bad_swap; 1476 1477 /* OK, set up the swap map and apply the bad block list */ 1478 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) { 1479 error = -ENOMEM; 1480 goto bad_swap; 1481 } 1482 1483 error = 0; 1484 memset(p->swap_map, 0, maxpages * sizeof(short)); 1485 for (i=0; i<swap_header->info.nr_badpages; i++) { 1486 int page = swap_header->info.badpages[i]; 1487 if (page <= 0 || page >= swap_header->info.last_page) 1488 error = -EINVAL; 1489 else 1490 p->swap_map[page] = SWAP_MAP_BAD; 1491 } 1492 nr_good_pages = swap_header->info.last_page - 1493 swap_header->info.nr_badpages - 1494 1 /* header page */; 1495 if (error) 1496 goto bad_swap; 1497 } 1498 1499 if (swapfilesize && maxpages > swapfilesize) { 1500 printk(KERN_WARNING 1501 "Swap area shorter than signature indicates\n"); 1502 error = -EINVAL; 1503 goto bad_swap; 1504 } 1505 if (nr_good_pages) { 1506 p->swap_map[0] = SWAP_MAP_BAD; 1507 p->max = maxpages; 1508 p->pages = nr_good_pages; 1509 nr_extents = setup_swap_extents(p, &span); 1510 if (nr_extents < 0) { 1511 error = nr_extents; 1512 goto bad_swap; 1513 } 1514 nr_good_pages = p->pages; 1515 } 1516 if (!nr_good_pages) { 1517 printk(KERN_WARNING "Empty swap-file\n"); 1518 error = -EINVAL; 1519 goto bad_swap; 1520 } 1521 1522 down(&swapon_sem); 1523 spin_lock(&swap_lock); 1524 p->flags = SWP_ACTIVE; 1525 nr_swap_pages += nr_good_pages; 1526 total_swap_pages += nr_good_pages; 1527 1528 printk(KERN_INFO "Adding %uk swap on %s. " 1529 "Priority:%d extents:%d across:%lluk\n", 1530 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio, 1531 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10)); 1532 1533 /* insert swap space into swap_list: */ 1534 prev = -1; 1535 for (i = swap_list.head; i >= 0; i = swap_info[i].next) { 1536 if (p->prio >= swap_info[i].prio) { 1537 break; 1538 } 1539 prev = i; 1540 } 1541 p->next = i; 1542 if (prev < 0) { 1543 swap_list.head = swap_list.next = p - swap_info; 1544 } else { 1545 swap_info[prev].next = p - swap_info; 1546 } 1547 spin_unlock(&swap_lock); 1548 up(&swapon_sem); 1549 error = 0; 1550 goto out; 1551 bad_swap: 1552 if (bdev) { 1553 set_blocksize(bdev, p->old_block_size); 1554 bd_release(bdev); 1555 } 1556 destroy_swap_extents(p); 1557 bad_swap_2: 1558 spin_lock(&swap_lock); 1559 swap_map = p->swap_map; 1560 p->swap_file = NULL; 1561 p->swap_map = NULL; 1562 p->flags = 0; 1563 if (!(swap_flags & SWAP_FLAG_PREFER)) 1564 ++least_priority; 1565 spin_unlock(&swap_lock); 1566 vfree(swap_map); 1567 if (swap_file) 1568 filp_close(swap_file, NULL); 1569 out: 1570 if (page && !IS_ERR(page)) { 1571 kunmap(page); 1572 page_cache_release(page); 1573 } 1574 if (name) 1575 putname(name); 1576 if (did_down) { 1577 if (!error) 1578 inode->i_flags |= S_SWAPFILE; 1579 up(&inode->i_sem); 1580 } 1581 return error; 1582 } 1583 1584 void si_swapinfo(struct sysinfo *val) 1585 { 1586 unsigned int i; 1587 unsigned long nr_to_be_unused = 0; 1588 1589 spin_lock(&swap_lock); 1590 for (i = 0; i < nr_swapfiles; i++) { 1591 if (!(swap_info[i].flags & SWP_USED) || 1592 (swap_info[i].flags & SWP_WRITEOK)) 1593 continue; 1594 nr_to_be_unused += swap_info[i].inuse_pages; 1595 } 1596 val->freeswap = nr_swap_pages + nr_to_be_unused; 1597 val->totalswap = total_swap_pages + nr_to_be_unused; 1598 spin_unlock(&swap_lock); 1599 } 1600 1601 /* 1602 * Verify that a swap entry is valid and increment its swap map count. 1603 * 1604 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as 1605 * "permanent", but will be reclaimed by the next swapoff. 1606 */ 1607 int swap_duplicate(swp_entry_t entry) 1608 { 1609 struct swap_info_struct * p; 1610 unsigned long offset, type; 1611 int result = 0; 1612 1613 type = swp_type(entry); 1614 if (type >= nr_swapfiles) 1615 goto bad_file; 1616 p = type + swap_info; 1617 offset = swp_offset(entry); 1618 1619 spin_lock(&swap_lock); 1620 if (offset < p->max && p->swap_map[offset]) { 1621 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) { 1622 p->swap_map[offset]++; 1623 result = 1; 1624 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) { 1625 if (swap_overflow++ < 5) 1626 printk(KERN_WARNING "swap_dup: swap entry overflow\n"); 1627 p->swap_map[offset] = SWAP_MAP_MAX; 1628 result = 1; 1629 } 1630 } 1631 spin_unlock(&swap_lock); 1632 out: 1633 return result; 1634 1635 bad_file: 1636 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); 1637 goto out; 1638 } 1639 1640 struct swap_info_struct * 1641 get_swap_info_struct(unsigned type) 1642 { 1643 return &swap_info[type]; 1644 } 1645 1646 /* 1647 * swap_lock prevents swap_map being freed. Don't grab an extra 1648 * reference on the swaphandle, it doesn't matter if it becomes unused. 1649 */ 1650 int valid_swaphandles(swp_entry_t entry, unsigned long *offset) 1651 { 1652 int ret = 0, i = 1 << page_cluster; 1653 unsigned long toff; 1654 struct swap_info_struct *swapdev = swp_type(entry) + swap_info; 1655 1656 if (!page_cluster) /* no readahead */ 1657 return 0; 1658 toff = (swp_offset(entry) >> page_cluster) << page_cluster; 1659 if (!toff) /* first page is swap header */ 1660 toff++, i--; 1661 *offset = toff; 1662 1663 spin_lock(&swap_lock); 1664 do { 1665 /* Don't read-ahead past the end of the swap area */ 1666 if (toff >= swapdev->max) 1667 break; 1668 /* Don't read in free or bad pages */ 1669 if (!swapdev->swap_map[toff]) 1670 break; 1671 if (swapdev->swap_map[toff] == SWAP_MAP_BAD) 1672 break; 1673 toff++; 1674 ret++; 1675 } while (--i); 1676 spin_unlock(&swap_lock); 1677 return ret; 1678 } 1679