xref: /linux/mm/swapfile.c (revision 9907e1df31c0f4bdcebe16de809121baa754e5b5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/sort.h>
41 #include <linux/completion.h>
42 #include <linux/suspend.h>
43 #include <linux/zswap.h>
44 #include <linux/plist.h>
45 
46 #include <asm/tlbflush.h>
47 #include <linux/swapops.h>
48 #include <linux/swap_cgroup.h>
49 #include "internal.h"
50 #include "swap.h"
51 
52 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
53 				 unsigned char);
54 static void free_swap_count_continuations(struct swap_info_struct *);
55 static void swap_entries_free(struct swap_info_struct *si,
56 			      struct swap_cluster_info *ci,
57 			      swp_entry_t entry, unsigned int nr_pages);
58 static void swap_range_alloc(struct swap_info_struct *si,
59 			     unsigned int nr_entries);
60 static bool folio_swapcache_freeable(struct folio *folio);
61 static struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
62 					      unsigned long offset);
63 static inline void unlock_cluster(struct swap_cluster_info *ci);
64 
65 static DEFINE_SPINLOCK(swap_lock);
66 static unsigned int nr_swapfiles;
67 atomic_long_t nr_swap_pages;
68 /*
69  * Some modules use swappable objects and may try to swap them out under
70  * memory pressure (via the shrinker). Before doing so, they may wish to
71  * check to see if any swap space is available.
72  */
73 EXPORT_SYMBOL_GPL(nr_swap_pages);
74 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
75 long total_swap_pages;
76 static int least_priority = -1;
77 unsigned long swapfile_maximum_size;
78 #ifdef CONFIG_MIGRATION
79 bool swap_migration_ad_supported;
80 #endif	/* CONFIG_MIGRATION */
81 
82 static const char Bad_file[] = "Bad swap file entry ";
83 static const char Unused_file[] = "Unused swap file entry ";
84 static const char Bad_offset[] = "Bad swap offset entry ";
85 static const char Unused_offset[] = "Unused swap offset entry ";
86 
87 /*
88  * all active swap_info_structs
89  * protected with swap_lock, and ordered by priority.
90  */
91 static PLIST_HEAD(swap_active_head);
92 
93 /*
94  * all available (active, not full) swap_info_structs
95  * protected with swap_avail_lock, ordered by priority.
96  * This is used by folio_alloc_swap() instead of swap_active_head
97  * because swap_active_head includes all swap_info_structs,
98  * but folio_alloc_swap() doesn't need to look at full ones.
99  * This uses its own lock instead of swap_lock because when a
100  * swap_info_struct changes between not-full/full, it needs to
101  * add/remove itself to/from this list, but the swap_info_struct->lock
102  * is held and the locking order requires swap_lock to be taken
103  * before any swap_info_struct->lock.
104  */
105 static struct plist_head *swap_avail_heads;
106 static DEFINE_SPINLOCK(swap_avail_lock);
107 
108 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
109 
110 static DEFINE_MUTEX(swapon_mutex);
111 
112 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
113 /* Activity counter to indicate that a swapon or swapoff has occurred */
114 static atomic_t proc_poll_event = ATOMIC_INIT(0);
115 
116 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
117 
118 struct percpu_swap_cluster {
119 	struct swap_info_struct *si[SWAP_NR_ORDERS];
120 	unsigned long offset[SWAP_NR_ORDERS];
121 	local_lock_t lock;
122 };
123 
124 static DEFINE_PER_CPU(struct percpu_swap_cluster, percpu_swap_cluster) = {
125 	.si = { NULL },
126 	.offset = { SWAP_ENTRY_INVALID },
127 	.lock = INIT_LOCAL_LOCK(),
128 };
129 
130 static struct swap_info_struct *swap_type_to_swap_info(int type)
131 {
132 	if (type >= MAX_SWAPFILES)
133 		return NULL;
134 
135 	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
136 }
137 
138 static inline unsigned char swap_count(unsigned char ent)
139 {
140 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
141 }
142 
143 /*
144  * Use the second highest bit of inuse_pages counter as the indicator
145  * if one swap device is on the available plist, so the atomic can
146  * still be updated arithmetically while having special data embedded.
147  *
148  * inuse_pages counter is the only thing indicating if a device should
149  * be on avail_lists or not (except swapon / swapoff). By embedding the
150  * off-list bit in the atomic counter, updates no longer need any lock
151  * to check the list status.
152  *
153  * This bit will be set if the device is not on the plist and not
154  * usable, will be cleared if the device is on the plist.
155  */
156 #define SWAP_USAGE_OFFLIST_BIT (1UL << (BITS_PER_TYPE(atomic_t) - 2))
157 #define SWAP_USAGE_COUNTER_MASK (~SWAP_USAGE_OFFLIST_BIT)
158 static long swap_usage_in_pages(struct swap_info_struct *si)
159 {
160 	return atomic_long_read(&si->inuse_pages) & SWAP_USAGE_COUNTER_MASK;
161 }
162 
163 /* Reclaim the swap entry anyway if possible */
164 #define TTRS_ANYWAY		0x1
165 /*
166  * Reclaim the swap entry if there are no more mappings of the
167  * corresponding page
168  */
169 #define TTRS_UNMAPPED		0x2
170 /* Reclaim the swap entry if swap is getting full */
171 #define TTRS_FULL		0x4
172 
173 static bool swap_only_has_cache(struct swap_info_struct *si,
174 			      unsigned long offset, int nr_pages)
175 {
176 	unsigned char *map = si->swap_map + offset;
177 	unsigned char *map_end = map + nr_pages;
178 
179 	do {
180 		VM_BUG_ON(!(*map & SWAP_HAS_CACHE));
181 		if (*map != SWAP_HAS_CACHE)
182 			return false;
183 	} while (++map < map_end);
184 
185 	return true;
186 }
187 
188 static bool swap_is_last_map(struct swap_info_struct *si,
189 		unsigned long offset, int nr_pages, bool *has_cache)
190 {
191 	unsigned char *map = si->swap_map + offset;
192 	unsigned char *map_end = map + nr_pages;
193 	unsigned char count = *map;
194 
195 	if (swap_count(count) != 1 && swap_count(count) != SWAP_MAP_SHMEM)
196 		return false;
197 
198 	while (++map < map_end) {
199 		if (*map != count)
200 			return false;
201 	}
202 
203 	*has_cache = !!(count & SWAP_HAS_CACHE);
204 	return true;
205 }
206 
207 /*
208  * returns number of pages in the folio that backs the swap entry. If positive,
209  * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
210  * folio was associated with the swap entry.
211  */
212 static int __try_to_reclaim_swap(struct swap_info_struct *si,
213 				 unsigned long offset, unsigned long flags)
214 {
215 	swp_entry_t entry = swp_entry(si->type, offset);
216 	struct address_space *address_space = swap_address_space(entry);
217 	struct swap_cluster_info *ci;
218 	struct folio *folio;
219 	int ret, nr_pages;
220 	bool need_reclaim;
221 
222 again:
223 	folio = filemap_get_folio(address_space, swap_cache_index(entry));
224 	if (IS_ERR(folio))
225 		return 0;
226 
227 	nr_pages = folio_nr_pages(folio);
228 	ret = -nr_pages;
229 
230 	/*
231 	 * When this function is called from scan_swap_map_slots() and it's
232 	 * called by vmscan.c at reclaiming folios. So we hold a folio lock
233 	 * here. We have to use trylock for avoiding deadlock. This is a special
234 	 * case and you should use folio_free_swap() with explicit folio_lock()
235 	 * in usual operations.
236 	 */
237 	if (!folio_trylock(folio))
238 		goto out;
239 
240 	/*
241 	 * Offset could point to the middle of a large folio, or folio
242 	 * may no longer point to the expected offset before it's locked.
243 	 */
244 	entry = folio->swap;
245 	if (offset < swp_offset(entry) || offset >= swp_offset(entry) + nr_pages) {
246 		folio_unlock(folio);
247 		folio_put(folio);
248 		goto again;
249 	}
250 	offset = swp_offset(entry);
251 
252 	need_reclaim = ((flags & TTRS_ANYWAY) ||
253 			((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
254 			((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)));
255 	if (!need_reclaim || !folio_swapcache_freeable(folio))
256 		goto out_unlock;
257 
258 	/*
259 	 * It's safe to delete the folio from swap cache only if the folio's
260 	 * swap_map is HAS_CACHE only, which means the slots have no page table
261 	 * reference or pending writeback, and can't be allocated to others.
262 	 */
263 	ci = lock_cluster(si, offset);
264 	need_reclaim = swap_only_has_cache(si, offset, nr_pages);
265 	unlock_cluster(ci);
266 	if (!need_reclaim)
267 		goto out_unlock;
268 
269 	delete_from_swap_cache(folio);
270 	folio_set_dirty(folio);
271 	ret = nr_pages;
272 out_unlock:
273 	folio_unlock(folio);
274 out:
275 	folio_put(folio);
276 	return ret;
277 }
278 
279 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
280 {
281 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
282 	return rb_entry(rb, struct swap_extent, rb_node);
283 }
284 
285 static inline struct swap_extent *next_se(struct swap_extent *se)
286 {
287 	struct rb_node *rb = rb_next(&se->rb_node);
288 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
289 }
290 
291 /*
292  * swapon tell device that all the old swap contents can be discarded,
293  * to allow the swap device to optimize its wear-levelling.
294  */
295 static int discard_swap(struct swap_info_struct *si)
296 {
297 	struct swap_extent *se;
298 	sector_t start_block;
299 	sector_t nr_blocks;
300 	int err = 0;
301 
302 	/* Do not discard the swap header page! */
303 	se = first_se(si);
304 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
305 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
306 	if (nr_blocks) {
307 		err = blkdev_issue_discard(si->bdev, start_block,
308 				nr_blocks, GFP_KERNEL);
309 		if (err)
310 			return err;
311 		cond_resched();
312 	}
313 
314 	for (se = next_se(se); se; se = next_se(se)) {
315 		start_block = se->start_block << (PAGE_SHIFT - 9);
316 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
317 
318 		err = blkdev_issue_discard(si->bdev, start_block,
319 				nr_blocks, GFP_KERNEL);
320 		if (err)
321 			break;
322 
323 		cond_resched();
324 	}
325 	return err;		/* That will often be -EOPNOTSUPP */
326 }
327 
328 static struct swap_extent *
329 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
330 {
331 	struct swap_extent *se;
332 	struct rb_node *rb;
333 
334 	rb = sis->swap_extent_root.rb_node;
335 	while (rb) {
336 		se = rb_entry(rb, struct swap_extent, rb_node);
337 		if (offset < se->start_page)
338 			rb = rb->rb_left;
339 		else if (offset >= se->start_page + se->nr_pages)
340 			rb = rb->rb_right;
341 		else
342 			return se;
343 	}
344 	/* It *must* be present */
345 	BUG();
346 }
347 
348 sector_t swap_folio_sector(struct folio *folio)
349 {
350 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
351 	struct swap_extent *se;
352 	sector_t sector;
353 	pgoff_t offset;
354 
355 	offset = swp_offset(folio->swap);
356 	se = offset_to_swap_extent(sis, offset);
357 	sector = se->start_block + (offset - se->start_page);
358 	return sector << (PAGE_SHIFT - 9);
359 }
360 
361 /*
362  * swap allocation tell device that a cluster of swap can now be discarded,
363  * to allow the swap device to optimize its wear-levelling.
364  */
365 static void discard_swap_cluster(struct swap_info_struct *si,
366 				 pgoff_t start_page, pgoff_t nr_pages)
367 {
368 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
369 
370 	while (nr_pages) {
371 		pgoff_t offset = start_page - se->start_page;
372 		sector_t start_block = se->start_block + offset;
373 		sector_t nr_blocks = se->nr_pages - offset;
374 
375 		if (nr_blocks > nr_pages)
376 			nr_blocks = nr_pages;
377 		start_page += nr_blocks;
378 		nr_pages -= nr_blocks;
379 
380 		start_block <<= PAGE_SHIFT - 9;
381 		nr_blocks <<= PAGE_SHIFT - 9;
382 		if (blkdev_issue_discard(si->bdev, start_block,
383 					nr_blocks, GFP_NOIO))
384 			break;
385 
386 		se = next_se(se);
387 	}
388 }
389 
390 #ifdef CONFIG_THP_SWAP
391 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
392 
393 #define swap_entry_order(order)	(order)
394 #else
395 #define SWAPFILE_CLUSTER	256
396 
397 /*
398  * Define swap_entry_order() as constant to let compiler to optimize
399  * out some code if !CONFIG_THP_SWAP
400  */
401 #define swap_entry_order(order)	0
402 #endif
403 #define LATENCY_LIMIT		256
404 
405 static inline bool cluster_is_empty(struct swap_cluster_info *info)
406 {
407 	return info->count == 0;
408 }
409 
410 static inline bool cluster_is_discard(struct swap_cluster_info *info)
411 {
412 	return info->flags == CLUSTER_FLAG_DISCARD;
413 }
414 
415 static inline bool cluster_is_usable(struct swap_cluster_info *ci, int order)
416 {
417 	if (unlikely(ci->flags > CLUSTER_FLAG_USABLE))
418 		return false;
419 	if (!order)
420 		return true;
421 	return cluster_is_empty(ci) || order == ci->order;
422 }
423 
424 static inline unsigned int cluster_index(struct swap_info_struct *si,
425 					 struct swap_cluster_info *ci)
426 {
427 	return ci - si->cluster_info;
428 }
429 
430 static inline struct swap_cluster_info *offset_to_cluster(struct swap_info_struct *si,
431 							  unsigned long offset)
432 {
433 	return &si->cluster_info[offset / SWAPFILE_CLUSTER];
434 }
435 
436 static inline unsigned int cluster_offset(struct swap_info_struct *si,
437 					  struct swap_cluster_info *ci)
438 {
439 	return cluster_index(si, ci) * SWAPFILE_CLUSTER;
440 }
441 
442 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
443 						     unsigned long offset)
444 {
445 	struct swap_cluster_info *ci;
446 
447 	ci = offset_to_cluster(si, offset);
448 	spin_lock(&ci->lock);
449 
450 	return ci;
451 }
452 
453 static inline void unlock_cluster(struct swap_cluster_info *ci)
454 {
455 	spin_unlock(&ci->lock);
456 }
457 
458 static void move_cluster(struct swap_info_struct *si,
459 			 struct swap_cluster_info *ci, struct list_head *list,
460 			 enum swap_cluster_flags new_flags)
461 {
462 	VM_WARN_ON(ci->flags == new_flags);
463 
464 	BUILD_BUG_ON(1 << sizeof(ci->flags) * BITS_PER_BYTE < CLUSTER_FLAG_MAX);
465 	lockdep_assert_held(&ci->lock);
466 
467 	spin_lock(&si->lock);
468 	if (ci->flags == CLUSTER_FLAG_NONE)
469 		list_add_tail(&ci->list, list);
470 	else
471 		list_move_tail(&ci->list, list);
472 	spin_unlock(&si->lock);
473 	ci->flags = new_flags;
474 }
475 
476 /* Add a cluster to discard list and schedule it to do discard */
477 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
478 		struct swap_cluster_info *ci)
479 {
480 	VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);
481 	move_cluster(si, ci, &si->discard_clusters, CLUSTER_FLAG_DISCARD);
482 	schedule_work(&si->discard_work);
483 }
484 
485 static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
486 {
487 	lockdep_assert_held(&ci->lock);
488 	move_cluster(si, ci, &si->free_clusters, CLUSTER_FLAG_FREE);
489 	ci->order = 0;
490 }
491 
492 /*
493  * Isolate and lock the first cluster that is not contented on a list,
494  * clean its flag before taken off-list. Cluster flag must be in sync
495  * with list status, so cluster updaters can always know the cluster
496  * list status without touching si lock.
497  *
498  * Note it's possible that all clusters on a list are contented so
499  * this returns NULL for an non-empty list.
500  */
501 static struct swap_cluster_info *isolate_lock_cluster(
502 		struct swap_info_struct *si, struct list_head *list)
503 {
504 	struct swap_cluster_info *ci, *ret = NULL;
505 
506 	spin_lock(&si->lock);
507 
508 	if (unlikely(!(si->flags & SWP_WRITEOK)))
509 		goto out;
510 
511 	list_for_each_entry(ci, list, list) {
512 		if (!spin_trylock(&ci->lock))
513 			continue;
514 
515 		/* We may only isolate and clear flags of following lists */
516 		VM_BUG_ON(!ci->flags);
517 		VM_BUG_ON(ci->flags > CLUSTER_FLAG_USABLE &&
518 			  ci->flags != CLUSTER_FLAG_FULL);
519 
520 		list_del(&ci->list);
521 		ci->flags = CLUSTER_FLAG_NONE;
522 		ret = ci;
523 		break;
524 	}
525 out:
526 	spin_unlock(&si->lock);
527 
528 	return ret;
529 }
530 
531 /*
532  * Doing discard actually. After a cluster discard is finished, the cluster
533  * will be added to free cluster list. Discard cluster is a bit special as
534  * they don't participate in allocation or reclaim, so clusters marked as
535  * CLUSTER_FLAG_DISCARD must remain off-list or on discard list.
536  */
537 static bool swap_do_scheduled_discard(struct swap_info_struct *si)
538 {
539 	struct swap_cluster_info *ci;
540 	bool ret = false;
541 	unsigned int idx;
542 
543 	spin_lock(&si->lock);
544 	while (!list_empty(&si->discard_clusters)) {
545 		ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list);
546 		/*
547 		 * Delete the cluster from list to prepare for discard, but keep
548 		 * the CLUSTER_FLAG_DISCARD flag, percpu_swap_cluster could be
549 		 * pointing to it, or ran into by relocate_cluster.
550 		 */
551 		list_del(&ci->list);
552 		idx = cluster_index(si, ci);
553 		spin_unlock(&si->lock);
554 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
555 				SWAPFILE_CLUSTER);
556 
557 		spin_lock(&ci->lock);
558 		/*
559 		 * Discard is done, clear its flags as it's off-list, then
560 		 * return the cluster to allocation list.
561 		 */
562 		ci->flags = CLUSTER_FLAG_NONE;
563 		__free_cluster(si, ci);
564 		spin_unlock(&ci->lock);
565 		ret = true;
566 		spin_lock(&si->lock);
567 	}
568 	spin_unlock(&si->lock);
569 	return ret;
570 }
571 
572 static void swap_discard_work(struct work_struct *work)
573 {
574 	struct swap_info_struct *si;
575 
576 	si = container_of(work, struct swap_info_struct, discard_work);
577 
578 	swap_do_scheduled_discard(si);
579 }
580 
581 static void swap_users_ref_free(struct percpu_ref *ref)
582 {
583 	struct swap_info_struct *si;
584 
585 	si = container_of(ref, struct swap_info_struct, users);
586 	complete(&si->comp);
587 }
588 
589 /*
590  * Must be called after freeing if ci->count == 0, moves the cluster to free
591  * or discard list.
592  */
593 static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
594 {
595 	VM_BUG_ON(ci->count != 0);
596 	VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);
597 	lockdep_assert_held(&ci->lock);
598 
599 	/*
600 	 * If the swap is discardable, prepare discard the cluster
601 	 * instead of free it immediately. The cluster will be freed
602 	 * after discard.
603 	 */
604 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
605 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
606 		swap_cluster_schedule_discard(si, ci);
607 		return;
608 	}
609 
610 	__free_cluster(si, ci);
611 }
612 
613 /*
614  * Must be called after freeing if ci->count != 0, moves the cluster to
615  * nonfull list.
616  */
617 static void partial_free_cluster(struct swap_info_struct *si,
618 				 struct swap_cluster_info *ci)
619 {
620 	VM_BUG_ON(!ci->count || ci->count == SWAPFILE_CLUSTER);
621 	lockdep_assert_held(&ci->lock);
622 
623 	if (ci->flags != CLUSTER_FLAG_NONFULL)
624 		move_cluster(si, ci, &si->nonfull_clusters[ci->order],
625 			     CLUSTER_FLAG_NONFULL);
626 }
627 
628 /*
629  * Must be called after allocation, moves the cluster to full or frag list.
630  * Note: allocation doesn't acquire si lock, and may drop the ci lock for
631  * reclaim, so the cluster could be any where when called.
632  */
633 static void relocate_cluster(struct swap_info_struct *si,
634 			     struct swap_cluster_info *ci)
635 {
636 	lockdep_assert_held(&ci->lock);
637 
638 	/* Discard cluster must remain off-list or on discard list */
639 	if (cluster_is_discard(ci))
640 		return;
641 
642 	if (!ci->count) {
643 		if (ci->flags != CLUSTER_FLAG_FREE)
644 			free_cluster(si, ci);
645 	} else if (ci->count != SWAPFILE_CLUSTER) {
646 		if (ci->flags != CLUSTER_FLAG_FRAG)
647 			move_cluster(si, ci, &si->frag_clusters[ci->order],
648 				     CLUSTER_FLAG_FRAG);
649 	} else {
650 		if (ci->flags != CLUSTER_FLAG_FULL)
651 			move_cluster(si, ci, &si->full_clusters,
652 				     CLUSTER_FLAG_FULL);
653 	}
654 }
655 
656 /*
657  * The cluster corresponding to page_nr will be used. The cluster will not be
658  * added to free cluster list and its usage counter will be increased by 1.
659  * Only used for initialization.
660  */
661 static void inc_cluster_info_page(struct swap_info_struct *si,
662 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
663 {
664 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
665 	struct swap_cluster_info *ci;
666 
667 	ci = cluster_info + idx;
668 	ci->count++;
669 
670 	VM_BUG_ON(ci->count > SWAPFILE_CLUSTER);
671 	VM_BUG_ON(ci->flags);
672 }
673 
674 static bool cluster_reclaim_range(struct swap_info_struct *si,
675 				  struct swap_cluster_info *ci,
676 				  unsigned long start, unsigned long end)
677 {
678 	unsigned char *map = si->swap_map;
679 	unsigned long offset = start;
680 	int nr_reclaim;
681 
682 	spin_unlock(&ci->lock);
683 	do {
684 		switch (READ_ONCE(map[offset])) {
685 		case 0:
686 			offset++;
687 			break;
688 		case SWAP_HAS_CACHE:
689 			nr_reclaim = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
690 			if (nr_reclaim > 0)
691 				offset += nr_reclaim;
692 			else
693 				goto out;
694 			break;
695 		default:
696 			goto out;
697 		}
698 	} while (offset < end);
699 out:
700 	spin_lock(&ci->lock);
701 	/*
702 	 * Recheck the range no matter reclaim succeeded or not, the slot
703 	 * could have been be freed while we are not holding the lock.
704 	 */
705 	for (offset = start; offset < end; offset++)
706 		if (READ_ONCE(map[offset]))
707 			return false;
708 
709 	return true;
710 }
711 
712 static bool cluster_scan_range(struct swap_info_struct *si,
713 			       struct swap_cluster_info *ci,
714 			       unsigned long start, unsigned int nr_pages,
715 			       bool *need_reclaim)
716 {
717 	unsigned long offset, end = start + nr_pages;
718 	unsigned char *map = si->swap_map;
719 
720 	if (cluster_is_empty(ci))
721 		return true;
722 
723 	for (offset = start; offset < end; offset++) {
724 		switch (READ_ONCE(map[offset])) {
725 		case 0:
726 			continue;
727 		case SWAP_HAS_CACHE:
728 			if (!vm_swap_full())
729 				return false;
730 			*need_reclaim = true;
731 			continue;
732 		default:
733 			return false;
734 		}
735 	}
736 
737 	return true;
738 }
739 
740 static bool cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci,
741 				unsigned int start, unsigned char usage,
742 				unsigned int order)
743 {
744 	unsigned int nr_pages = 1 << order;
745 
746 	lockdep_assert_held(&ci->lock);
747 
748 	if (!(si->flags & SWP_WRITEOK))
749 		return false;
750 
751 	/*
752 	 * The first allocation in a cluster makes the
753 	 * cluster exclusive to this order
754 	 */
755 	if (cluster_is_empty(ci))
756 		ci->order = order;
757 
758 	memset(si->swap_map + start, usage, nr_pages);
759 	swap_range_alloc(si, nr_pages);
760 	ci->count += nr_pages;
761 
762 	return true;
763 }
764 
765 /* Try use a new cluster for current CPU and allocate from it. */
766 static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si,
767 					    struct swap_cluster_info *ci,
768 					    unsigned long offset,
769 					    unsigned int order,
770 					    unsigned char usage)
771 {
772 	unsigned int next = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID;
773 	unsigned long start = ALIGN_DOWN(offset, SWAPFILE_CLUSTER);
774 	unsigned long end = min(start + SWAPFILE_CLUSTER, si->max);
775 	unsigned int nr_pages = 1 << order;
776 	bool need_reclaim, ret;
777 
778 	lockdep_assert_held(&ci->lock);
779 
780 	if (end < nr_pages || ci->count + nr_pages > SWAPFILE_CLUSTER)
781 		goto out;
782 
783 	for (end -= nr_pages; offset <= end; offset += nr_pages) {
784 		need_reclaim = false;
785 		if (!cluster_scan_range(si, ci, offset, nr_pages, &need_reclaim))
786 			continue;
787 		if (need_reclaim) {
788 			ret = cluster_reclaim_range(si, ci, offset, offset + nr_pages);
789 			/*
790 			 * Reclaim drops ci->lock and cluster could be used
791 			 * by another order. Not checking flag as off-list
792 			 * cluster has no flag set, and change of list
793 			 * won't cause fragmentation.
794 			 */
795 			if (!cluster_is_usable(ci, order))
796 				goto out;
797 			if (cluster_is_empty(ci))
798 				offset = start;
799 			/* Reclaim failed but cluster is usable, try next */
800 			if (!ret)
801 				continue;
802 		}
803 		if (!cluster_alloc_range(si, ci, offset, usage, order))
804 			break;
805 		found = offset;
806 		offset += nr_pages;
807 		if (ci->count < SWAPFILE_CLUSTER && offset <= end)
808 			next = offset;
809 		break;
810 	}
811 out:
812 	relocate_cluster(si, ci);
813 	unlock_cluster(ci);
814 	if (si->flags & SWP_SOLIDSTATE) {
815 		this_cpu_write(percpu_swap_cluster.offset[order], next);
816 		this_cpu_write(percpu_swap_cluster.si[order], si);
817 	} else {
818 		si->global_cluster->next[order] = next;
819 	}
820 	return found;
821 }
822 
823 static unsigned int alloc_swap_scan_list(struct swap_info_struct *si,
824 					 struct list_head *list,
825 					 unsigned int order,
826 					 unsigned char usage,
827 					 bool scan_all)
828 {
829 	unsigned int found = SWAP_ENTRY_INVALID;
830 
831 	do {
832 		struct swap_cluster_info *ci = isolate_lock_cluster(si, list);
833 		unsigned long offset;
834 
835 		if (!ci)
836 			break;
837 		offset = cluster_offset(si, ci);
838 		found = alloc_swap_scan_cluster(si, ci, offset, order, usage);
839 		if (found)
840 			break;
841 	} while (scan_all);
842 
843 	return found;
844 }
845 
846 static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force)
847 {
848 	long to_scan = 1;
849 	unsigned long offset, end;
850 	struct swap_cluster_info *ci;
851 	unsigned char *map = si->swap_map;
852 	int nr_reclaim;
853 
854 	if (force)
855 		to_scan = swap_usage_in_pages(si) / SWAPFILE_CLUSTER;
856 
857 	while ((ci = isolate_lock_cluster(si, &si->full_clusters))) {
858 		offset = cluster_offset(si, ci);
859 		end = min(si->max, offset + SWAPFILE_CLUSTER);
860 		to_scan--;
861 
862 		while (offset < end) {
863 			if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) {
864 				spin_unlock(&ci->lock);
865 				nr_reclaim = __try_to_reclaim_swap(si, offset,
866 								   TTRS_ANYWAY);
867 				spin_lock(&ci->lock);
868 				if (nr_reclaim) {
869 					offset += abs(nr_reclaim);
870 					continue;
871 				}
872 			}
873 			offset++;
874 		}
875 
876 		/* in case no swap cache is reclaimed */
877 		if (ci->flags == CLUSTER_FLAG_NONE)
878 			relocate_cluster(si, ci);
879 
880 		unlock_cluster(ci);
881 		if (to_scan <= 0)
882 			break;
883 	}
884 }
885 
886 static void swap_reclaim_work(struct work_struct *work)
887 {
888 	struct swap_info_struct *si;
889 
890 	si = container_of(work, struct swap_info_struct, reclaim_work);
891 
892 	swap_reclaim_full_clusters(si, true);
893 }
894 
895 /*
896  * Try to allocate swap entries with specified order and try set a new
897  * cluster for current CPU too.
898  */
899 static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order,
900 					      unsigned char usage)
901 {
902 	struct swap_cluster_info *ci;
903 	unsigned int offset = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID;
904 
905 	/*
906 	 * Swapfile is not block device so unable
907 	 * to allocate large entries.
908 	 */
909 	if (order && !(si->flags & SWP_BLKDEV))
910 		return 0;
911 
912 	if (!(si->flags & SWP_SOLIDSTATE)) {
913 		/* Serialize HDD SWAP allocation for each device. */
914 		spin_lock(&si->global_cluster_lock);
915 		offset = si->global_cluster->next[order];
916 		if (offset == SWAP_ENTRY_INVALID)
917 			goto new_cluster;
918 
919 		ci = lock_cluster(si, offset);
920 		/* Cluster could have been used by another order */
921 		if (cluster_is_usable(ci, order)) {
922 			if (cluster_is_empty(ci))
923 				offset = cluster_offset(si, ci);
924 			found = alloc_swap_scan_cluster(si, ci, offset,
925 							order, usage);
926 		} else {
927 			unlock_cluster(ci);
928 		}
929 		if (found)
930 			goto done;
931 	}
932 
933 new_cluster:
934 	/*
935 	 * If the device need discard, prefer new cluster over nonfull
936 	 * to spread out the writes.
937 	 */
938 	if (si->flags & SWP_PAGE_DISCARD) {
939 		found = alloc_swap_scan_list(si, &si->free_clusters, order, usage,
940 					     false);
941 		if (found)
942 			goto done;
943 	}
944 
945 	if (order < PMD_ORDER) {
946 		found = alloc_swap_scan_list(si, &si->nonfull_clusters[order],
947 					     order, usage, true);
948 		if (found)
949 			goto done;
950 	}
951 
952 	if (!(si->flags & SWP_PAGE_DISCARD)) {
953 		found = alloc_swap_scan_list(si, &si->free_clusters, order, usage,
954 					     false);
955 		if (found)
956 			goto done;
957 	}
958 
959 	/* Try reclaim full clusters if free and nonfull lists are drained */
960 	if (vm_swap_full())
961 		swap_reclaim_full_clusters(si, false);
962 
963 	if (order < PMD_ORDER) {
964 		/*
965 		 * Scan only one fragment cluster is good enough. Order 0
966 		 * allocation will surely success, and large allocation
967 		 * failure is not critical. Scanning one cluster still
968 		 * keeps the list rotated and reclaimed (for HAS_CACHE).
969 		 */
970 		found = alloc_swap_scan_list(si, &si->frag_clusters[order], order,
971 					     usage, false);
972 		if (found)
973 			goto done;
974 	}
975 
976 	/*
977 	 * We don't have free cluster but have some clusters in discarding,
978 	 * do discard now and reclaim them.
979 	 */
980 	if ((si->flags & SWP_PAGE_DISCARD) && swap_do_scheduled_discard(si))
981 		goto new_cluster;
982 
983 	if (order)
984 		goto done;
985 
986 	/* Order 0 stealing from higher order */
987 	for (int o = 1; o < SWAP_NR_ORDERS; o++) {
988 		/*
989 		 * Clusters here have at least one usable slots and can't fail order 0
990 		 * allocation, but reclaim may drop si->lock and race with another user.
991 		 */
992 		found = alloc_swap_scan_list(si, &si->frag_clusters[o],
993 					     0, usage, true);
994 		if (found)
995 			goto done;
996 
997 		found = alloc_swap_scan_list(si, &si->nonfull_clusters[o],
998 					     0, usage, true);
999 		if (found)
1000 			goto done;
1001 	}
1002 done:
1003 	if (!(si->flags & SWP_SOLIDSTATE))
1004 		spin_unlock(&si->global_cluster_lock);
1005 	return found;
1006 }
1007 
1008 /* SWAP_USAGE_OFFLIST_BIT can only be set by this helper. */
1009 static void del_from_avail_list(struct swap_info_struct *si, bool swapoff)
1010 {
1011 	int nid;
1012 	unsigned long pages;
1013 
1014 	spin_lock(&swap_avail_lock);
1015 
1016 	if (swapoff) {
1017 		/*
1018 		 * Forcefully remove it. Clear the SWP_WRITEOK flags for
1019 		 * swapoff here so it's synchronized by both si->lock and
1020 		 * swap_avail_lock, to ensure the result can be seen by
1021 		 * add_to_avail_list.
1022 		 */
1023 		lockdep_assert_held(&si->lock);
1024 		si->flags &= ~SWP_WRITEOK;
1025 		atomic_long_or(SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages);
1026 	} else {
1027 		/*
1028 		 * If not called by swapoff, take it off-list only if it's
1029 		 * full and SWAP_USAGE_OFFLIST_BIT is not set (strictly
1030 		 * si->inuse_pages == pages), any concurrent slot freeing,
1031 		 * or device already removed from plist by someone else
1032 		 * will make this return false.
1033 		 */
1034 		pages = si->pages;
1035 		if (!atomic_long_try_cmpxchg(&si->inuse_pages, &pages,
1036 					     pages | SWAP_USAGE_OFFLIST_BIT))
1037 			goto skip;
1038 	}
1039 
1040 	for_each_node(nid)
1041 		plist_del(&si->avail_lists[nid], &swap_avail_heads[nid]);
1042 
1043 skip:
1044 	spin_unlock(&swap_avail_lock);
1045 }
1046 
1047 /* SWAP_USAGE_OFFLIST_BIT can only be cleared by this helper. */
1048 static void add_to_avail_list(struct swap_info_struct *si, bool swapon)
1049 {
1050 	int nid;
1051 	long val;
1052 	unsigned long pages;
1053 
1054 	spin_lock(&swap_avail_lock);
1055 
1056 	/* Corresponding to SWP_WRITEOK clearing in del_from_avail_list */
1057 	if (swapon) {
1058 		lockdep_assert_held(&si->lock);
1059 		si->flags |= SWP_WRITEOK;
1060 	} else {
1061 		if (!(READ_ONCE(si->flags) & SWP_WRITEOK))
1062 			goto skip;
1063 	}
1064 
1065 	if (!(atomic_long_read(&si->inuse_pages) & SWAP_USAGE_OFFLIST_BIT))
1066 		goto skip;
1067 
1068 	val = atomic_long_fetch_and_relaxed(~SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages);
1069 
1070 	/*
1071 	 * When device is full and device is on the plist, only one updater will
1072 	 * see (inuse_pages == si->pages) and will call del_from_avail_list. If
1073 	 * that updater happen to be here, just skip adding.
1074 	 */
1075 	pages = si->pages;
1076 	if (val == pages) {
1077 		/* Just like the cmpxchg in del_from_avail_list */
1078 		if (atomic_long_try_cmpxchg(&si->inuse_pages, &pages,
1079 					    pages | SWAP_USAGE_OFFLIST_BIT))
1080 			goto skip;
1081 	}
1082 
1083 	for_each_node(nid)
1084 		plist_add(&si->avail_lists[nid], &swap_avail_heads[nid]);
1085 
1086 skip:
1087 	spin_unlock(&swap_avail_lock);
1088 }
1089 
1090 /*
1091  * swap_usage_add / swap_usage_sub of each slot are serialized by ci->lock
1092  * within each cluster, so the total contribution to the global counter should
1093  * always be positive and cannot exceed the total number of usable slots.
1094  */
1095 static bool swap_usage_add(struct swap_info_struct *si, unsigned int nr_entries)
1096 {
1097 	long val = atomic_long_add_return_relaxed(nr_entries, &si->inuse_pages);
1098 
1099 	/*
1100 	 * If device is full, and SWAP_USAGE_OFFLIST_BIT is not set,
1101 	 * remove it from the plist.
1102 	 */
1103 	if (unlikely(val == si->pages)) {
1104 		del_from_avail_list(si, false);
1105 		return true;
1106 	}
1107 
1108 	return false;
1109 }
1110 
1111 static void swap_usage_sub(struct swap_info_struct *si, unsigned int nr_entries)
1112 {
1113 	long val = atomic_long_sub_return_relaxed(nr_entries, &si->inuse_pages);
1114 
1115 	/*
1116 	 * If device is not full, and SWAP_USAGE_OFFLIST_BIT is set,
1117 	 * add it to the plist.
1118 	 */
1119 	if (unlikely(val & SWAP_USAGE_OFFLIST_BIT))
1120 		add_to_avail_list(si, false);
1121 }
1122 
1123 static void swap_range_alloc(struct swap_info_struct *si,
1124 			     unsigned int nr_entries)
1125 {
1126 	if (swap_usage_add(si, nr_entries)) {
1127 		if (vm_swap_full())
1128 			schedule_work(&si->reclaim_work);
1129 	}
1130 	atomic_long_sub(nr_entries, &nr_swap_pages);
1131 }
1132 
1133 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
1134 			    unsigned int nr_entries)
1135 {
1136 	unsigned long begin = offset;
1137 	unsigned long end = offset + nr_entries - 1;
1138 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
1139 	unsigned int i;
1140 
1141 	/*
1142 	 * Use atomic clear_bit operations only on zeromap instead of non-atomic
1143 	 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes.
1144 	 */
1145 	for (i = 0; i < nr_entries; i++) {
1146 		clear_bit(offset + i, si->zeromap);
1147 		zswap_invalidate(swp_entry(si->type, offset + i));
1148 	}
1149 
1150 	if (si->flags & SWP_BLKDEV)
1151 		swap_slot_free_notify =
1152 			si->bdev->bd_disk->fops->swap_slot_free_notify;
1153 	else
1154 		swap_slot_free_notify = NULL;
1155 	while (offset <= end) {
1156 		arch_swap_invalidate_page(si->type, offset);
1157 		if (swap_slot_free_notify)
1158 			swap_slot_free_notify(si->bdev, offset);
1159 		offset++;
1160 	}
1161 	clear_shadow_from_swap_cache(si->type, begin, end);
1162 
1163 	/*
1164 	 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
1165 	 * only after the above cleanups are done.
1166 	 */
1167 	smp_wmb();
1168 	atomic_long_add(nr_entries, &nr_swap_pages);
1169 	swap_usage_sub(si, nr_entries);
1170 }
1171 
1172 static bool get_swap_device_info(struct swap_info_struct *si)
1173 {
1174 	if (!percpu_ref_tryget_live(&si->users))
1175 		return false;
1176 	/*
1177 	 * Guarantee the si->users are checked before accessing other
1178 	 * fields of swap_info_struct, and si->flags (SWP_WRITEOK) is
1179 	 * up to dated.
1180 	 *
1181 	 * Paired with the spin_unlock() after setup_swap_info() in
1182 	 * enable_swap_info(), and smp_wmb() in swapoff.
1183 	 */
1184 	smp_rmb();
1185 	return true;
1186 }
1187 
1188 /*
1189  * Fast path try to get swap entries with specified order from current
1190  * CPU's swap entry pool (a cluster).
1191  */
1192 static bool swap_alloc_fast(swp_entry_t *entry,
1193 			    int order)
1194 {
1195 	struct swap_cluster_info *ci;
1196 	struct swap_info_struct *si;
1197 	unsigned int offset, found = SWAP_ENTRY_INVALID;
1198 
1199 	/*
1200 	 * Once allocated, swap_info_struct will never be completely freed,
1201 	 * so checking it's liveness by get_swap_device_info is enough.
1202 	 */
1203 	si = this_cpu_read(percpu_swap_cluster.si[order]);
1204 	offset = this_cpu_read(percpu_swap_cluster.offset[order]);
1205 	if (!si || !offset || !get_swap_device_info(si))
1206 		return false;
1207 
1208 	ci = lock_cluster(si, offset);
1209 	if (cluster_is_usable(ci, order)) {
1210 		if (cluster_is_empty(ci))
1211 			offset = cluster_offset(si, ci);
1212 		found = alloc_swap_scan_cluster(si, ci, offset, order, SWAP_HAS_CACHE);
1213 		if (found)
1214 			*entry = swp_entry(si->type, found);
1215 	} else {
1216 		unlock_cluster(ci);
1217 	}
1218 
1219 	put_swap_device(si);
1220 	return !!found;
1221 }
1222 
1223 /* Rotate the device and switch to a new cluster */
1224 static bool swap_alloc_slow(swp_entry_t *entry,
1225 			    int order)
1226 {
1227 	int node;
1228 	unsigned long offset;
1229 	struct swap_info_struct *si, *next;
1230 
1231 	node = numa_node_id();
1232 	spin_lock(&swap_avail_lock);
1233 start_over:
1234 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1235 		/* Rotate the device and switch to a new cluster */
1236 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1237 		spin_unlock(&swap_avail_lock);
1238 		if (get_swap_device_info(si)) {
1239 			offset = cluster_alloc_swap_entry(si, order, SWAP_HAS_CACHE);
1240 			put_swap_device(si);
1241 			if (offset) {
1242 				*entry = swp_entry(si->type, offset);
1243 				return true;
1244 			}
1245 			if (order)
1246 				return false;
1247 		}
1248 
1249 		spin_lock(&swap_avail_lock);
1250 		/*
1251 		 * if we got here, it's likely that si was almost full before,
1252 		 * and since scan_swap_map_slots() can drop the si->lock,
1253 		 * multiple callers probably all tried to get a page from the
1254 		 * same si and it filled up before we could get one; or, the si
1255 		 * filled up between us dropping swap_avail_lock and taking
1256 		 * si->lock. Since we dropped the swap_avail_lock, the
1257 		 * swap_avail_head list may have been modified; so if next is
1258 		 * still in the swap_avail_head list then try it, otherwise
1259 		 * start over if we have not gotten any slots.
1260 		 */
1261 		if (plist_node_empty(&next->avail_lists[node]))
1262 			goto start_over;
1263 	}
1264 	spin_unlock(&swap_avail_lock);
1265 	return false;
1266 }
1267 
1268 /**
1269  * folio_alloc_swap - allocate swap space for a folio
1270  * @folio: folio we want to move to swap
1271  * @gfp: gfp mask for shadow nodes
1272  *
1273  * Allocate swap space for the folio and add the folio to the
1274  * swap cache.
1275  *
1276  * Context: Caller needs to hold the folio lock.
1277  * Return: Whether the folio was added to the swap cache.
1278  */
1279 int folio_alloc_swap(struct folio *folio, gfp_t gfp)
1280 {
1281 	unsigned int order = folio_order(folio);
1282 	unsigned int size = 1 << order;
1283 	swp_entry_t entry = {};
1284 
1285 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1286 	VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
1287 
1288 	if (order) {
1289 		/*
1290 		 * Reject large allocation when THP_SWAP is disabled,
1291 		 * the caller should split the folio and try again.
1292 		 */
1293 		if (!IS_ENABLED(CONFIG_THP_SWAP))
1294 			return -EAGAIN;
1295 
1296 		/*
1297 		 * Allocation size should never exceed cluster size
1298 		 * (HPAGE_PMD_SIZE).
1299 		 */
1300 		if (size > SWAPFILE_CLUSTER) {
1301 			VM_WARN_ON_ONCE(1);
1302 			return -EINVAL;
1303 		}
1304 	}
1305 
1306 	local_lock(&percpu_swap_cluster.lock);
1307 	if (!swap_alloc_fast(&entry, order))
1308 		swap_alloc_slow(&entry, order);
1309 	local_unlock(&percpu_swap_cluster.lock);
1310 
1311 	/* Need to call this even if allocation failed, for MEMCG_SWAP_FAIL. */
1312 	if (mem_cgroup_try_charge_swap(folio, entry))
1313 		goto out_free;
1314 
1315 	if (!entry.val)
1316 		return -ENOMEM;
1317 
1318 	/*
1319 	 * XArray node allocations from PF_MEMALLOC contexts could
1320 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
1321 	 * stops emergency reserves from being allocated.
1322 	 *
1323 	 * TODO: this could cause a theoretical memory reclaim
1324 	 * deadlock in the swap out path.
1325 	 */
1326 	if (add_to_swap_cache(folio, entry, gfp | __GFP_NOMEMALLOC, NULL))
1327 		goto out_free;
1328 
1329 	return 0;
1330 
1331 out_free:
1332 	put_swap_folio(folio, entry);
1333 	return -ENOMEM;
1334 }
1335 
1336 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1337 {
1338 	struct swap_info_struct *si;
1339 	unsigned long offset;
1340 
1341 	if (!entry.val)
1342 		goto out;
1343 	si = swp_swap_info(entry);
1344 	if (!si)
1345 		goto bad_nofile;
1346 	if (data_race(!(si->flags & SWP_USED)))
1347 		goto bad_device;
1348 	offset = swp_offset(entry);
1349 	if (offset >= si->max)
1350 		goto bad_offset;
1351 	if (data_race(!si->swap_map[swp_offset(entry)]))
1352 		goto bad_free;
1353 	return si;
1354 
1355 bad_free:
1356 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1357 	goto out;
1358 bad_offset:
1359 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1360 	goto out;
1361 bad_device:
1362 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1363 	goto out;
1364 bad_nofile:
1365 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1366 out:
1367 	return NULL;
1368 }
1369 
1370 static unsigned char swap_entry_put_locked(struct swap_info_struct *si,
1371 					   struct swap_cluster_info *ci,
1372 					   swp_entry_t entry,
1373 					   unsigned char usage)
1374 {
1375 	unsigned long offset = swp_offset(entry);
1376 	unsigned char count;
1377 	unsigned char has_cache;
1378 
1379 	count = si->swap_map[offset];
1380 
1381 	has_cache = count & SWAP_HAS_CACHE;
1382 	count &= ~SWAP_HAS_CACHE;
1383 
1384 	if (usage == SWAP_HAS_CACHE) {
1385 		VM_BUG_ON(!has_cache);
1386 		has_cache = 0;
1387 	} else if (count == SWAP_MAP_SHMEM) {
1388 		/*
1389 		 * Or we could insist on shmem.c using a special
1390 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1391 		 */
1392 		count = 0;
1393 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1394 		if (count == COUNT_CONTINUED) {
1395 			if (swap_count_continued(si, offset, count))
1396 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1397 			else
1398 				count = SWAP_MAP_MAX;
1399 		} else
1400 			count--;
1401 	}
1402 
1403 	usage = count | has_cache;
1404 	if (usage)
1405 		WRITE_ONCE(si->swap_map[offset], usage);
1406 	else
1407 		swap_entries_free(si, ci, entry, 1);
1408 
1409 	return usage;
1410 }
1411 
1412 /*
1413  * When we get a swap entry, if there aren't some other ways to
1414  * prevent swapoff, such as the folio in swap cache is locked, RCU
1415  * reader side is locked, etc., the swap entry may become invalid
1416  * because of swapoff.  Then, we need to enclose all swap related
1417  * functions with get_swap_device() and put_swap_device(), unless the
1418  * swap functions call get/put_swap_device() by themselves.
1419  *
1420  * RCU reader side lock (including any spinlock) is sufficient to
1421  * prevent swapoff, because synchronize_rcu() is called in swapoff()
1422  * before freeing data structures.
1423  *
1424  * Check whether swap entry is valid in the swap device.  If so,
1425  * return pointer to swap_info_struct, and keep the swap entry valid
1426  * via preventing the swap device from being swapoff, until
1427  * put_swap_device() is called.  Otherwise return NULL.
1428  *
1429  * Notice that swapoff or swapoff+swapon can still happen before the
1430  * percpu_ref_tryget_live() in get_swap_device() or after the
1431  * percpu_ref_put() in put_swap_device() if there isn't any other way
1432  * to prevent swapoff.  The caller must be prepared for that.  For
1433  * example, the following situation is possible.
1434  *
1435  *   CPU1				CPU2
1436  *   do_swap_page()
1437  *     ...				swapoff+swapon
1438  *     __read_swap_cache_async()
1439  *       swapcache_prepare()
1440  *         __swap_duplicate()
1441  *           // check swap_map
1442  *     // verify PTE not changed
1443  *
1444  * In __swap_duplicate(), the swap_map need to be checked before
1445  * changing partly because the specified swap entry may be for another
1446  * swap device which has been swapoff.  And in do_swap_page(), after
1447  * the page is read from the swap device, the PTE is verified not
1448  * changed with the page table locked to check whether the swap device
1449  * has been swapoff or swapoff+swapon.
1450  */
1451 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1452 {
1453 	struct swap_info_struct *si;
1454 	unsigned long offset;
1455 
1456 	if (!entry.val)
1457 		goto out;
1458 	si = swp_swap_info(entry);
1459 	if (!si)
1460 		goto bad_nofile;
1461 	if (!get_swap_device_info(si))
1462 		goto out;
1463 	offset = swp_offset(entry);
1464 	if (offset >= si->max)
1465 		goto put_out;
1466 
1467 	return si;
1468 bad_nofile:
1469 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1470 out:
1471 	return NULL;
1472 put_out:
1473 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1474 	percpu_ref_put(&si->users);
1475 	return NULL;
1476 }
1477 
1478 static void swap_entries_put_cache(struct swap_info_struct *si,
1479 				   swp_entry_t entry, int nr)
1480 {
1481 	unsigned long offset = swp_offset(entry);
1482 	struct swap_cluster_info *ci;
1483 
1484 	ci = lock_cluster(si, offset);
1485 	if (swap_only_has_cache(si, offset, nr))
1486 		swap_entries_free(si, ci, entry, nr);
1487 	else {
1488 		for (int i = 0; i < nr; i++, entry.val++)
1489 			swap_entry_put_locked(si, ci, entry, SWAP_HAS_CACHE);
1490 	}
1491 	unlock_cluster(ci);
1492 }
1493 
1494 static bool swap_entries_put_map(struct swap_info_struct *si,
1495 				 swp_entry_t entry, int nr)
1496 {
1497 	unsigned long offset = swp_offset(entry);
1498 	struct swap_cluster_info *ci;
1499 	bool has_cache = false;
1500 	unsigned char count;
1501 	int i;
1502 
1503 	if (nr <= 1)
1504 		goto fallback;
1505 	count = swap_count(data_race(si->swap_map[offset]));
1506 	if (count != 1 && count != SWAP_MAP_SHMEM)
1507 		goto fallback;
1508 
1509 	ci = lock_cluster(si, offset);
1510 	if (!swap_is_last_map(si, offset, nr, &has_cache)) {
1511 		goto locked_fallback;
1512 	}
1513 	if (!has_cache)
1514 		swap_entries_free(si, ci, entry, nr);
1515 	else
1516 		for (i = 0; i < nr; i++)
1517 			WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE);
1518 	unlock_cluster(ci);
1519 
1520 	return has_cache;
1521 
1522 fallback:
1523 	ci = lock_cluster(si, offset);
1524 locked_fallback:
1525 	for (i = 0; i < nr; i++, entry.val++) {
1526 		count = swap_entry_put_locked(si, ci, entry, 1);
1527 		if (count == SWAP_HAS_CACHE)
1528 			has_cache = true;
1529 	}
1530 	unlock_cluster(ci);
1531 	return has_cache;
1532 
1533 }
1534 
1535 /*
1536  * Only functions with "_nr" suffix are able to free entries spanning
1537  * cross multi clusters, so ensure the range is within a single cluster
1538  * when freeing entries with functions without "_nr" suffix.
1539  */
1540 static bool swap_entries_put_map_nr(struct swap_info_struct *si,
1541 				    swp_entry_t entry, int nr)
1542 {
1543 	int cluster_nr, cluster_rest;
1544 	unsigned long offset = swp_offset(entry);
1545 	bool has_cache = false;
1546 
1547 	cluster_rest = SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER;
1548 	while (nr) {
1549 		cluster_nr = min(nr, cluster_rest);
1550 		has_cache |= swap_entries_put_map(si, entry, cluster_nr);
1551 		cluster_rest = SWAPFILE_CLUSTER;
1552 		nr -= cluster_nr;
1553 		entry.val += cluster_nr;
1554 	}
1555 
1556 	return has_cache;
1557 }
1558 
1559 /*
1560  * Check if it's the last ref of swap entry in the freeing path.
1561  * Qualified vlaue includes 1, SWAP_HAS_CACHE or SWAP_MAP_SHMEM.
1562  */
1563 static inline bool __maybe_unused swap_is_last_ref(unsigned char count)
1564 {
1565 	return (count == SWAP_HAS_CACHE) || (count == 1) ||
1566 	       (count == SWAP_MAP_SHMEM);
1567 }
1568 
1569 /*
1570  * Drop the last ref of swap entries, caller have to ensure all entries
1571  * belong to the same cgroup and cluster.
1572  */
1573 static void swap_entries_free(struct swap_info_struct *si,
1574 			      struct swap_cluster_info *ci,
1575 			      swp_entry_t entry, unsigned int nr_pages)
1576 {
1577 	unsigned long offset = swp_offset(entry);
1578 	unsigned char *map = si->swap_map + offset;
1579 	unsigned char *map_end = map + nr_pages;
1580 
1581 	/* It should never free entries across different clusters */
1582 	VM_BUG_ON(ci != offset_to_cluster(si, offset + nr_pages - 1));
1583 	VM_BUG_ON(cluster_is_empty(ci));
1584 	VM_BUG_ON(ci->count < nr_pages);
1585 
1586 	ci->count -= nr_pages;
1587 	do {
1588 		VM_BUG_ON(!swap_is_last_ref(*map));
1589 		*map = 0;
1590 	} while (++map < map_end);
1591 
1592 	mem_cgroup_uncharge_swap(entry, nr_pages);
1593 	swap_range_free(si, offset, nr_pages);
1594 
1595 	if (!ci->count)
1596 		free_cluster(si, ci);
1597 	else
1598 		partial_free_cluster(si, ci);
1599 }
1600 
1601 /*
1602  * Caller has made sure that the swap device corresponding to entry
1603  * is still around or has not been recycled.
1604  */
1605 void swap_free_nr(swp_entry_t entry, int nr_pages)
1606 {
1607 	int nr;
1608 	struct swap_info_struct *sis;
1609 	unsigned long offset = swp_offset(entry);
1610 
1611 	sis = _swap_info_get(entry);
1612 	if (!sis)
1613 		return;
1614 
1615 	while (nr_pages) {
1616 		nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
1617 		swap_entries_put_map(sis, swp_entry(sis->type, offset), nr);
1618 		offset += nr;
1619 		nr_pages -= nr;
1620 	}
1621 }
1622 
1623 /*
1624  * Called after dropping swapcache to decrease refcnt to swap entries.
1625  */
1626 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1627 {
1628 	struct swap_info_struct *si;
1629 	int size = 1 << swap_entry_order(folio_order(folio));
1630 
1631 	si = _swap_info_get(entry);
1632 	if (!si)
1633 		return;
1634 
1635 	swap_entries_put_cache(si, entry, size);
1636 }
1637 
1638 int __swap_count(swp_entry_t entry)
1639 {
1640 	struct swap_info_struct *si = swp_swap_info(entry);
1641 	pgoff_t offset = swp_offset(entry);
1642 
1643 	return swap_count(si->swap_map[offset]);
1644 }
1645 
1646 /*
1647  * How many references to @entry are currently swapped out?
1648  * This does not give an exact answer when swap count is continued,
1649  * but does include the high COUNT_CONTINUED flag to allow for that.
1650  */
1651 bool swap_entry_swapped(struct swap_info_struct *si, swp_entry_t entry)
1652 {
1653 	pgoff_t offset = swp_offset(entry);
1654 	struct swap_cluster_info *ci;
1655 	int count;
1656 
1657 	ci = lock_cluster(si, offset);
1658 	count = swap_count(si->swap_map[offset]);
1659 	unlock_cluster(ci);
1660 	return !!count;
1661 }
1662 
1663 /*
1664  * How many references to @entry are currently swapped out?
1665  * This considers COUNT_CONTINUED so it returns exact answer.
1666  */
1667 int swp_swapcount(swp_entry_t entry)
1668 {
1669 	int count, tmp_count, n;
1670 	struct swap_info_struct *si;
1671 	struct swap_cluster_info *ci;
1672 	struct page *page;
1673 	pgoff_t offset;
1674 	unsigned char *map;
1675 
1676 	si = _swap_info_get(entry);
1677 	if (!si)
1678 		return 0;
1679 
1680 	offset = swp_offset(entry);
1681 
1682 	ci = lock_cluster(si, offset);
1683 
1684 	count = swap_count(si->swap_map[offset]);
1685 	if (!(count & COUNT_CONTINUED))
1686 		goto out;
1687 
1688 	count &= ~COUNT_CONTINUED;
1689 	n = SWAP_MAP_MAX + 1;
1690 
1691 	page = vmalloc_to_page(si->swap_map + offset);
1692 	offset &= ~PAGE_MASK;
1693 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1694 
1695 	do {
1696 		page = list_next_entry(page, lru);
1697 		map = kmap_local_page(page);
1698 		tmp_count = map[offset];
1699 		kunmap_local(map);
1700 
1701 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1702 		n *= (SWAP_CONT_MAX + 1);
1703 	} while (tmp_count & COUNT_CONTINUED);
1704 out:
1705 	unlock_cluster(ci);
1706 	return count;
1707 }
1708 
1709 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1710 					 swp_entry_t entry, int order)
1711 {
1712 	struct swap_cluster_info *ci;
1713 	unsigned char *map = si->swap_map;
1714 	unsigned int nr_pages = 1 << order;
1715 	unsigned long roffset = swp_offset(entry);
1716 	unsigned long offset = round_down(roffset, nr_pages);
1717 	int i;
1718 	bool ret = false;
1719 
1720 	ci = lock_cluster(si, offset);
1721 	if (nr_pages == 1) {
1722 		if (swap_count(map[roffset]))
1723 			ret = true;
1724 		goto unlock_out;
1725 	}
1726 	for (i = 0; i < nr_pages; i++) {
1727 		if (swap_count(map[offset + i])) {
1728 			ret = true;
1729 			break;
1730 		}
1731 	}
1732 unlock_out:
1733 	unlock_cluster(ci);
1734 	return ret;
1735 }
1736 
1737 static bool folio_swapped(struct folio *folio)
1738 {
1739 	swp_entry_t entry = folio->swap;
1740 	struct swap_info_struct *si = _swap_info_get(entry);
1741 
1742 	if (!si)
1743 		return false;
1744 
1745 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1746 		return swap_entry_swapped(si, entry);
1747 
1748 	return swap_page_trans_huge_swapped(si, entry, folio_order(folio));
1749 }
1750 
1751 static bool folio_swapcache_freeable(struct folio *folio)
1752 {
1753 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1754 
1755 	if (!folio_test_swapcache(folio))
1756 		return false;
1757 	if (folio_test_writeback(folio))
1758 		return false;
1759 
1760 	/*
1761 	 * Once hibernation has begun to create its image of memory,
1762 	 * there's a danger that one of the calls to folio_free_swap()
1763 	 * - most probably a call from __try_to_reclaim_swap() while
1764 	 * hibernation is allocating its own swap pages for the image,
1765 	 * but conceivably even a call from memory reclaim - will free
1766 	 * the swap from a folio which has already been recorded in the
1767 	 * image as a clean swapcache folio, and then reuse its swap for
1768 	 * another page of the image.  On waking from hibernation, the
1769 	 * original folio might be freed under memory pressure, then
1770 	 * later read back in from swap, now with the wrong data.
1771 	 *
1772 	 * Hibernation suspends storage while it is writing the image
1773 	 * to disk so check that here.
1774 	 */
1775 	if (pm_suspended_storage())
1776 		return false;
1777 
1778 	return true;
1779 }
1780 
1781 /**
1782  * folio_free_swap() - Free the swap space used for this folio.
1783  * @folio: The folio to remove.
1784  *
1785  * If swap is getting full, or if there are no more mappings of this folio,
1786  * then call folio_free_swap to free its swap space.
1787  *
1788  * Return: true if we were able to release the swap space.
1789  */
1790 bool folio_free_swap(struct folio *folio)
1791 {
1792 	if (!folio_swapcache_freeable(folio))
1793 		return false;
1794 	if (folio_swapped(folio))
1795 		return false;
1796 
1797 	delete_from_swap_cache(folio);
1798 	folio_set_dirty(folio);
1799 	return true;
1800 }
1801 
1802 /**
1803  * free_swap_and_cache_nr() - Release reference on range of swap entries and
1804  *                            reclaim their cache if no more references remain.
1805  * @entry: First entry of range.
1806  * @nr: Number of entries in range.
1807  *
1808  * For each swap entry in the contiguous range, release a reference. If any swap
1809  * entries become free, try to reclaim their underlying folios, if present. The
1810  * offset range is defined by [entry.offset, entry.offset + nr).
1811  */
1812 void free_swap_and_cache_nr(swp_entry_t entry, int nr)
1813 {
1814 	const unsigned long start_offset = swp_offset(entry);
1815 	const unsigned long end_offset = start_offset + nr;
1816 	struct swap_info_struct *si;
1817 	bool any_only_cache = false;
1818 	unsigned long offset;
1819 
1820 	si = get_swap_device(entry);
1821 	if (!si)
1822 		return;
1823 
1824 	if (WARN_ON(end_offset > si->max))
1825 		goto out;
1826 
1827 	/*
1828 	 * First free all entries in the range.
1829 	 */
1830 	any_only_cache = swap_entries_put_map_nr(si, entry, nr);
1831 
1832 	/*
1833 	 * Short-circuit the below loop if none of the entries had their
1834 	 * reference drop to zero.
1835 	 */
1836 	if (!any_only_cache)
1837 		goto out;
1838 
1839 	/*
1840 	 * Now go back over the range trying to reclaim the swap cache.
1841 	 */
1842 	for (offset = start_offset; offset < end_offset; offset += nr) {
1843 		nr = 1;
1844 		if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1845 			/*
1846 			 * Folios are always naturally aligned in swap so
1847 			 * advance forward to the next boundary. Zero means no
1848 			 * folio was found for the swap entry, so advance by 1
1849 			 * in this case. Negative value means folio was found
1850 			 * but could not be reclaimed. Here we can still advance
1851 			 * to the next boundary.
1852 			 */
1853 			nr = __try_to_reclaim_swap(si, offset,
1854 						   TTRS_UNMAPPED | TTRS_FULL);
1855 			if (nr == 0)
1856 				nr = 1;
1857 			else if (nr < 0)
1858 				nr = -nr;
1859 			nr = ALIGN(offset + 1, nr) - offset;
1860 		}
1861 	}
1862 
1863 out:
1864 	put_swap_device(si);
1865 }
1866 
1867 #ifdef CONFIG_HIBERNATION
1868 
1869 swp_entry_t get_swap_page_of_type(int type)
1870 {
1871 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1872 	unsigned long offset;
1873 	swp_entry_t entry = {0};
1874 
1875 	if (!si)
1876 		goto fail;
1877 
1878 	/* This is called for allocating swap entry, not cache */
1879 	if (get_swap_device_info(si)) {
1880 		if (si->flags & SWP_WRITEOK) {
1881 			offset = cluster_alloc_swap_entry(si, 0, 1);
1882 			if (offset) {
1883 				entry = swp_entry(si->type, offset);
1884 				atomic_long_dec(&nr_swap_pages);
1885 			}
1886 		}
1887 		put_swap_device(si);
1888 	}
1889 fail:
1890 	return entry;
1891 }
1892 
1893 /*
1894  * Find the swap type that corresponds to given device (if any).
1895  *
1896  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1897  * from 0, in which the swap header is expected to be located.
1898  *
1899  * This is needed for the suspend to disk (aka swsusp).
1900  */
1901 int swap_type_of(dev_t device, sector_t offset)
1902 {
1903 	int type;
1904 
1905 	if (!device)
1906 		return -1;
1907 
1908 	spin_lock(&swap_lock);
1909 	for (type = 0; type < nr_swapfiles; type++) {
1910 		struct swap_info_struct *sis = swap_info[type];
1911 
1912 		if (!(sis->flags & SWP_WRITEOK))
1913 			continue;
1914 
1915 		if (device == sis->bdev->bd_dev) {
1916 			struct swap_extent *se = first_se(sis);
1917 
1918 			if (se->start_block == offset) {
1919 				spin_unlock(&swap_lock);
1920 				return type;
1921 			}
1922 		}
1923 	}
1924 	spin_unlock(&swap_lock);
1925 	return -ENODEV;
1926 }
1927 
1928 int find_first_swap(dev_t *device)
1929 {
1930 	int type;
1931 
1932 	spin_lock(&swap_lock);
1933 	for (type = 0; type < nr_swapfiles; type++) {
1934 		struct swap_info_struct *sis = swap_info[type];
1935 
1936 		if (!(sis->flags & SWP_WRITEOK))
1937 			continue;
1938 		*device = sis->bdev->bd_dev;
1939 		spin_unlock(&swap_lock);
1940 		return type;
1941 	}
1942 	spin_unlock(&swap_lock);
1943 	return -ENODEV;
1944 }
1945 
1946 /*
1947  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1948  * corresponding to given index in swap_info (swap type).
1949  */
1950 sector_t swapdev_block(int type, pgoff_t offset)
1951 {
1952 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1953 	struct swap_extent *se;
1954 
1955 	if (!si || !(si->flags & SWP_WRITEOK))
1956 		return 0;
1957 	se = offset_to_swap_extent(si, offset);
1958 	return se->start_block + (offset - se->start_page);
1959 }
1960 
1961 /*
1962  * Return either the total number of swap pages of given type, or the number
1963  * of free pages of that type (depending on @free)
1964  *
1965  * This is needed for software suspend
1966  */
1967 unsigned int count_swap_pages(int type, int free)
1968 {
1969 	unsigned int n = 0;
1970 
1971 	spin_lock(&swap_lock);
1972 	if ((unsigned int)type < nr_swapfiles) {
1973 		struct swap_info_struct *sis = swap_info[type];
1974 
1975 		spin_lock(&sis->lock);
1976 		if (sis->flags & SWP_WRITEOK) {
1977 			n = sis->pages;
1978 			if (free)
1979 				n -= swap_usage_in_pages(sis);
1980 		}
1981 		spin_unlock(&sis->lock);
1982 	}
1983 	spin_unlock(&swap_lock);
1984 	return n;
1985 }
1986 #endif /* CONFIG_HIBERNATION */
1987 
1988 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1989 {
1990 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1991 }
1992 
1993 /*
1994  * No need to decide whether this PTE shares the swap entry with others,
1995  * just let do_wp_page work it out if a write is requested later - to
1996  * force COW, vm_page_prot omits write permission from any private vma.
1997  */
1998 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1999 		unsigned long addr, swp_entry_t entry, struct folio *folio)
2000 {
2001 	struct page *page;
2002 	struct folio *swapcache;
2003 	spinlock_t *ptl;
2004 	pte_t *pte, new_pte, old_pte;
2005 	bool hwpoisoned = false;
2006 	int ret = 1;
2007 
2008 	swapcache = folio;
2009 	folio = ksm_might_need_to_copy(folio, vma, addr);
2010 	if (unlikely(!folio))
2011 		return -ENOMEM;
2012 	else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
2013 		hwpoisoned = true;
2014 		folio = swapcache;
2015 	}
2016 
2017 	page = folio_file_page(folio, swp_offset(entry));
2018 	if (PageHWPoison(page))
2019 		hwpoisoned = true;
2020 
2021 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
2022 	if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
2023 						swp_entry_to_pte(entry)))) {
2024 		ret = 0;
2025 		goto out;
2026 	}
2027 
2028 	old_pte = ptep_get(pte);
2029 
2030 	if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
2031 		swp_entry_t swp_entry;
2032 
2033 		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2034 		if (hwpoisoned) {
2035 			swp_entry = make_hwpoison_entry(page);
2036 		} else {
2037 			swp_entry = make_poisoned_swp_entry();
2038 		}
2039 		new_pte = swp_entry_to_pte(swp_entry);
2040 		ret = 0;
2041 		goto setpte;
2042 	}
2043 
2044 	/*
2045 	 * Some architectures may have to restore extra metadata to the page
2046 	 * when reading from swap. This metadata may be indexed by swap entry
2047 	 * so this must be called before swap_free().
2048 	 */
2049 	arch_swap_restore(folio_swap(entry, folio), folio);
2050 
2051 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2052 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
2053 	folio_get(folio);
2054 	if (folio == swapcache) {
2055 		rmap_t rmap_flags = RMAP_NONE;
2056 
2057 		/*
2058 		 * See do_swap_page(): writeback would be problematic.
2059 		 * However, we do a folio_wait_writeback() just before this
2060 		 * call and have the folio locked.
2061 		 */
2062 		VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
2063 		if (pte_swp_exclusive(old_pte))
2064 			rmap_flags |= RMAP_EXCLUSIVE;
2065 		/*
2066 		 * We currently only expect small !anon folios, which are either
2067 		 * fully exclusive or fully shared. If we ever get large folios
2068 		 * here, we have to be careful.
2069 		 */
2070 		if (!folio_test_anon(folio)) {
2071 			VM_WARN_ON_ONCE(folio_test_large(folio));
2072 			VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
2073 			folio_add_new_anon_rmap(folio, vma, addr, rmap_flags);
2074 		} else {
2075 			folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
2076 		}
2077 	} else { /* ksm created a completely new copy */
2078 		folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
2079 		folio_add_lru_vma(folio, vma);
2080 	}
2081 	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
2082 	if (pte_swp_soft_dirty(old_pte))
2083 		new_pte = pte_mksoft_dirty(new_pte);
2084 	if (pte_swp_uffd_wp(old_pte))
2085 		new_pte = pte_mkuffd_wp(new_pte);
2086 setpte:
2087 	set_pte_at(vma->vm_mm, addr, pte, new_pte);
2088 	swap_free(entry);
2089 out:
2090 	if (pte)
2091 		pte_unmap_unlock(pte, ptl);
2092 	if (folio != swapcache) {
2093 		folio_unlock(folio);
2094 		folio_put(folio);
2095 	}
2096 	return ret;
2097 }
2098 
2099 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
2100 			unsigned long addr, unsigned long end,
2101 			unsigned int type)
2102 {
2103 	pte_t *pte = NULL;
2104 	struct swap_info_struct *si;
2105 
2106 	si = swap_info[type];
2107 	do {
2108 		struct folio *folio;
2109 		unsigned long offset;
2110 		unsigned char swp_count;
2111 		swp_entry_t entry;
2112 		int ret;
2113 		pte_t ptent;
2114 
2115 		if (!pte++) {
2116 			pte = pte_offset_map(pmd, addr);
2117 			if (!pte)
2118 				break;
2119 		}
2120 
2121 		ptent = ptep_get_lockless(pte);
2122 
2123 		if (!is_swap_pte(ptent))
2124 			continue;
2125 
2126 		entry = pte_to_swp_entry(ptent);
2127 		if (swp_type(entry) != type)
2128 			continue;
2129 
2130 		offset = swp_offset(entry);
2131 		pte_unmap(pte);
2132 		pte = NULL;
2133 
2134 		folio = swap_cache_get_folio(entry, vma, addr);
2135 		if (!folio) {
2136 			struct vm_fault vmf = {
2137 				.vma = vma,
2138 				.address = addr,
2139 				.real_address = addr,
2140 				.pmd = pmd,
2141 			};
2142 
2143 			folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2144 						&vmf);
2145 		}
2146 		if (!folio) {
2147 			swp_count = READ_ONCE(si->swap_map[offset]);
2148 			if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
2149 				continue;
2150 			return -ENOMEM;
2151 		}
2152 
2153 		folio_lock(folio);
2154 		folio_wait_writeback(folio);
2155 		ret = unuse_pte(vma, pmd, addr, entry, folio);
2156 		if (ret < 0) {
2157 			folio_unlock(folio);
2158 			folio_put(folio);
2159 			return ret;
2160 		}
2161 
2162 		folio_free_swap(folio);
2163 		folio_unlock(folio);
2164 		folio_put(folio);
2165 	} while (addr += PAGE_SIZE, addr != end);
2166 
2167 	if (pte)
2168 		pte_unmap(pte);
2169 	return 0;
2170 }
2171 
2172 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2173 				unsigned long addr, unsigned long end,
2174 				unsigned int type)
2175 {
2176 	pmd_t *pmd;
2177 	unsigned long next;
2178 	int ret;
2179 
2180 	pmd = pmd_offset(pud, addr);
2181 	do {
2182 		cond_resched();
2183 		next = pmd_addr_end(addr, end);
2184 		ret = unuse_pte_range(vma, pmd, addr, next, type);
2185 		if (ret)
2186 			return ret;
2187 	} while (pmd++, addr = next, addr != end);
2188 	return 0;
2189 }
2190 
2191 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2192 				unsigned long addr, unsigned long end,
2193 				unsigned int type)
2194 {
2195 	pud_t *pud;
2196 	unsigned long next;
2197 	int ret;
2198 
2199 	pud = pud_offset(p4d, addr);
2200 	do {
2201 		next = pud_addr_end(addr, end);
2202 		if (pud_none_or_clear_bad(pud))
2203 			continue;
2204 		ret = unuse_pmd_range(vma, pud, addr, next, type);
2205 		if (ret)
2206 			return ret;
2207 	} while (pud++, addr = next, addr != end);
2208 	return 0;
2209 }
2210 
2211 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2212 				unsigned long addr, unsigned long end,
2213 				unsigned int type)
2214 {
2215 	p4d_t *p4d;
2216 	unsigned long next;
2217 	int ret;
2218 
2219 	p4d = p4d_offset(pgd, addr);
2220 	do {
2221 		next = p4d_addr_end(addr, end);
2222 		if (p4d_none_or_clear_bad(p4d))
2223 			continue;
2224 		ret = unuse_pud_range(vma, p4d, addr, next, type);
2225 		if (ret)
2226 			return ret;
2227 	} while (p4d++, addr = next, addr != end);
2228 	return 0;
2229 }
2230 
2231 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
2232 {
2233 	pgd_t *pgd;
2234 	unsigned long addr, end, next;
2235 	int ret;
2236 
2237 	addr = vma->vm_start;
2238 	end = vma->vm_end;
2239 
2240 	pgd = pgd_offset(vma->vm_mm, addr);
2241 	do {
2242 		next = pgd_addr_end(addr, end);
2243 		if (pgd_none_or_clear_bad(pgd))
2244 			continue;
2245 		ret = unuse_p4d_range(vma, pgd, addr, next, type);
2246 		if (ret)
2247 			return ret;
2248 	} while (pgd++, addr = next, addr != end);
2249 	return 0;
2250 }
2251 
2252 static int unuse_mm(struct mm_struct *mm, unsigned int type)
2253 {
2254 	struct vm_area_struct *vma;
2255 	int ret = 0;
2256 	VMA_ITERATOR(vmi, mm, 0);
2257 
2258 	mmap_read_lock(mm);
2259 	for_each_vma(vmi, vma) {
2260 		if (vma->anon_vma && !is_vm_hugetlb_page(vma)) {
2261 			ret = unuse_vma(vma, type);
2262 			if (ret)
2263 				break;
2264 		}
2265 
2266 		cond_resched();
2267 	}
2268 	mmap_read_unlock(mm);
2269 	return ret;
2270 }
2271 
2272 /*
2273  * Scan swap_map from current position to next entry still in use.
2274  * Return 0 if there are no inuse entries after prev till end of
2275  * the map.
2276  */
2277 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2278 					unsigned int prev)
2279 {
2280 	unsigned int i;
2281 	unsigned char count;
2282 
2283 	/*
2284 	 * No need for swap_lock here: we're just looking
2285 	 * for whether an entry is in use, not modifying it; false
2286 	 * hits are okay, and sys_swapoff() has already prevented new
2287 	 * allocations from this area (while holding swap_lock).
2288 	 */
2289 	for (i = prev + 1; i < si->max; i++) {
2290 		count = READ_ONCE(si->swap_map[i]);
2291 		if (count && swap_count(count) != SWAP_MAP_BAD)
2292 			break;
2293 		if ((i % LATENCY_LIMIT) == 0)
2294 			cond_resched();
2295 	}
2296 
2297 	if (i == si->max)
2298 		i = 0;
2299 
2300 	return i;
2301 }
2302 
2303 static int try_to_unuse(unsigned int type)
2304 {
2305 	struct mm_struct *prev_mm;
2306 	struct mm_struct *mm;
2307 	struct list_head *p;
2308 	int retval = 0;
2309 	struct swap_info_struct *si = swap_info[type];
2310 	struct folio *folio;
2311 	swp_entry_t entry;
2312 	unsigned int i;
2313 
2314 	if (!swap_usage_in_pages(si))
2315 		goto success;
2316 
2317 retry:
2318 	retval = shmem_unuse(type);
2319 	if (retval)
2320 		return retval;
2321 
2322 	prev_mm = &init_mm;
2323 	mmget(prev_mm);
2324 
2325 	spin_lock(&mmlist_lock);
2326 	p = &init_mm.mmlist;
2327 	while (swap_usage_in_pages(si) &&
2328 	       !signal_pending(current) &&
2329 	       (p = p->next) != &init_mm.mmlist) {
2330 
2331 		mm = list_entry(p, struct mm_struct, mmlist);
2332 		if (!mmget_not_zero(mm))
2333 			continue;
2334 		spin_unlock(&mmlist_lock);
2335 		mmput(prev_mm);
2336 		prev_mm = mm;
2337 		retval = unuse_mm(mm, type);
2338 		if (retval) {
2339 			mmput(prev_mm);
2340 			return retval;
2341 		}
2342 
2343 		/*
2344 		 * Make sure that we aren't completely killing
2345 		 * interactive performance.
2346 		 */
2347 		cond_resched();
2348 		spin_lock(&mmlist_lock);
2349 	}
2350 	spin_unlock(&mmlist_lock);
2351 
2352 	mmput(prev_mm);
2353 
2354 	i = 0;
2355 	while (swap_usage_in_pages(si) &&
2356 	       !signal_pending(current) &&
2357 	       (i = find_next_to_unuse(si, i)) != 0) {
2358 
2359 		entry = swp_entry(type, i);
2360 		folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry));
2361 		if (IS_ERR(folio))
2362 			continue;
2363 
2364 		/*
2365 		 * It is conceivable that a racing task removed this folio from
2366 		 * swap cache just before we acquired the page lock. The folio
2367 		 * might even be back in swap cache on another swap area. But
2368 		 * that is okay, folio_free_swap() only removes stale folios.
2369 		 */
2370 		folio_lock(folio);
2371 		folio_wait_writeback(folio);
2372 		folio_free_swap(folio);
2373 		folio_unlock(folio);
2374 		folio_put(folio);
2375 	}
2376 
2377 	/*
2378 	 * Lets check again to see if there are still swap entries in the map.
2379 	 * If yes, we would need to do retry the unuse logic again.
2380 	 * Under global memory pressure, swap entries can be reinserted back
2381 	 * into process space after the mmlist loop above passes over them.
2382 	 *
2383 	 * Limit the number of retries? No: when mmget_not_zero()
2384 	 * above fails, that mm is likely to be freeing swap from
2385 	 * exit_mmap(), which proceeds at its own independent pace;
2386 	 * and even shmem_writeout() could have been preempted after
2387 	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2388 	 * and robust (though cpu-intensive) just to keep retrying.
2389 	 */
2390 	if (swap_usage_in_pages(si)) {
2391 		if (!signal_pending(current))
2392 			goto retry;
2393 		return -EINTR;
2394 	}
2395 
2396 success:
2397 	/*
2398 	 * Make sure that further cleanups after try_to_unuse() returns happen
2399 	 * after swap_range_free() reduces si->inuse_pages to 0.
2400 	 */
2401 	smp_mb();
2402 	return 0;
2403 }
2404 
2405 /*
2406  * After a successful try_to_unuse, if no swap is now in use, we know
2407  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2408  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2409  * added to the mmlist just after page_duplicate - before would be racy.
2410  */
2411 static void drain_mmlist(void)
2412 {
2413 	struct list_head *p, *next;
2414 	unsigned int type;
2415 
2416 	for (type = 0; type < nr_swapfiles; type++)
2417 		if (swap_usage_in_pages(swap_info[type]))
2418 			return;
2419 	spin_lock(&mmlist_lock);
2420 	list_for_each_safe(p, next, &init_mm.mmlist)
2421 		list_del_init(p);
2422 	spin_unlock(&mmlist_lock);
2423 }
2424 
2425 /*
2426  * Free all of a swapdev's extent information
2427  */
2428 static void destroy_swap_extents(struct swap_info_struct *sis)
2429 {
2430 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2431 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2432 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2433 
2434 		rb_erase(rb, &sis->swap_extent_root);
2435 		kfree(se);
2436 	}
2437 
2438 	if (sis->flags & SWP_ACTIVATED) {
2439 		struct file *swap_file = sis->swap_file;
2440 		struct address_space *mapping = swap_file->f_mapping;
2441 
2442 		sis->flags &= ~SWP_ACTIVATED;
2443 		if (mapping->a_ops->swap_deactivate)
2444 			mapping->a_ops->swap_deactivate(swap_file);
2445 	}
2446 }
2447 
2448 /*
2449  * Add a block range (and the corresponding page range) into this swapdev's
2450  * extent tree.
2451  *
2452  * This function rather assumes that it is called in ascending page order.
2453  */
2454 int
2455 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2456 		unsigned long nr_pages, sector_t start_block)
2457 {
2458 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2459 	struct swap_extent *se;
2460 	struct swap_extent *new_se;
2461 
2462 	/*
2463 	 * place the new node at the right most since the
2464 	 * function is called in ascending page order.
2465 	 */
2466 	while (*link) {
2467 		parent = *link;
2468 		link = &parent->rb_right;
2469 	}
2470 
2471 	if (parent) {
2472 		se = rb_entry(parent, struct swap_extent, rb_node);
2473 		BUG_ON(se->start_page + se->nr_pages != start_page);
2474 		if (se->start_block + se->nr_pages == start_block) {
2475 			/* Merge it */
2476 			se->nr_pages += nr_pages;
2477 			return 0;
2478 		}
2479 	}
2480 
2481 	/* No merge, insert a new extent. */
2482 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2483 	if (new_se == NULL)
2484 		return -ENOMEM;
2485 	new_se->start_page = start_page;
2486 	new_se->nr_pages = nr_pages;
2487 	new_se->start_block = start_block;
2488 
2489 	rb_link_node(&new_se->rb_node, parent, link);
2490 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2491 	return 1;
2492 }
2493 EXPORT_SYMBOL_GPL(add_swap_extent);
2494 
2495 /*
2496  * A `swap extent' is a simple thing which maps a contiguous range of pages
2497  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2498  * built at swapon time and is then used at swap_writepage/swap_read_folio
2499  * time for locating where on disk a page belongs.
2500  *
2501  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2502  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2503  * swap files identically.
2504  *
2505  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2506  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2507  * swapfiles are handled *identically* after swapon time.
2508  *
2509  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2510  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2511  * blocks are found which do not fall within the PAGE_SIZE alignment
2512  * requirements, they are simply tossed out - we will never use those blocks
2513  * for swapping.
2514  *
2515  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2516  * prevents users from writing to the swap device, which will corrupt memory.
2517  *
2518  * The amount of disk space which a single swap extent represents varies.
2519  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2520  * extents in the rbtree. - akpm.
2521  */
2522 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2523 {
2524 	struct file *swap_file = sis->swap_file;
2525 	struct address_space *mapping = swap_file->f_mapping;
2526 	struct inode *inode = mapping->host;
2527 	int ret;
2528 
2529 	if (S_ISBLK(inode->i_mode)) {
2530 		ret = add_swap_extent(sis, 0, sis->max, 0);
2531 		*span = sis->pages;
2532 		return ret;
2533 	}
2534 
2535 	if (mapping->a_ops->swap_activate) {
2536 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2537 		if (ret < 0)
2538 			return ret;
2539 		sis->flags |= SWP_ACTIVATED;
2540 		if ((sis->flags & SWP_FS_OPS) &&
2541 		    sio_pool_init() != 0) {
2542 			destroy_swap_extents(sis);
2543 			return -ENOMEM;
2544 		}
2545 		return ret;
2546 	}
2547 
2548 	return generic_swapfile_activate(sis, swap_file, span);
2549 }
2550 
2551 static int swap_node(struct swap_info_struct *si)
2552 {
2553 	struct block_device *bdev;
2554 
2555 	if (si->bdev)
2556 		bdev = si->bdev;
2557 	else
2558 		bdev = si->swap_file->f_inode->i_sb->s_bdev;
2559 
2560 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2561 }
2562 
2563 static void setup_swap_info(struct swap_info_struct *si, int prio,
2564 			    unsigned char *swap_map,
2565 			    struct swap_cluster_info *cluster_info,
2566 			    unsigned long *zeromap)
2567 {
2568 	int i;
2569 
2570 	if (prio >= 0)
2571 		si->prio = prio;
2572 	else
2573 		si->prio = --least_priority;
2574 	/*
2575 	 * the plist prio is negated because plist ordering is
2576 	 * low-to-high, while swap ordering is high-to-low
2577 	 */
2578 	si->list.prio = -si->prio;
2579 	for_each_node(i) {
2580 		if (si->prio >= 0)
2581 			si->avail_lists[i].prio = -si->prio;
2582 		else {
2583 			if (swap_node(si) == i)
2584 				si->avail_lists[i].prio = 1;
2585 			else
2586 				si->avail_lists[i].prio = -si->prio;
2587 		}
2588 	}
2589 	si->swap_map = swap_map;
2590 	si->cluster_info = cluster_info;
2591 	si->zeromap = zeromap;
2592 }
2593 
2594 static void _enable_swap_info(struct swap_info_struct *si)
2595 {
2596 	atomic_long_add(si->pages, &nr_swap_pages);
2597 	total_swap_pages += si->pages;
2598 
2599 	assert_spin_locked(&swap_lock);
2600 	/*
2601 	 * both lists are plists, and thus priority ordered.
2602 	 * swap_active_head needs to be priority ordered for swapoff(),
2603 	 * which on removal of any swap_info_struct with an auto-assigned
2604 	 * (i.e. negative) priority increments the auto-assigned priority
2605 	 * of any lower-priority swap_info_structs.
2606 	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2607 	 * which allocates swap pages from the highest available priority
2608 	 * swap_info_struct.
2609 	 */
2610 	plist_add(&si->list, &swap_active_head);
2611 
2612 	/* Add back to available list */
2613 	add_to_avail_list(si, true);
2614 }
2615 
2616 static void enable_swap_info(struct swap_info_struct *si, int prio,
2617 				unsigned char *swap_map,
2618 				struct swap_cluster_info *cluster_info,
2619 				unsigned long *zeromap)
2620 {
2621 	spin_lock(&swap_lock);
2622 	spin_lock(&si->lock);
2623 	setup_swap_info(si, prio, swap_map, cluster_info, zeromap);
2624 	spin_unlock(&si->lock);
2625 	spin_unlock(&swap_lock);
2626 	/*
2627 	 * Finished initializing swap device, now it's safe to reference it.
2628 	 */
2629 	percpu_ref_resurrect(&si->users);
2630 	spin_lock(&swap_lock);
2631 	spin_lock(&si->lock);
2632 	_enable_swap_info(si);
2633 	spin_unlock(&si->lock);
2634 	spin_unlock(&swap_lock);
2635 }
2636 
2637 static void reinsert_swap_info(struct swap_info_struct *si)
2638 {
2639 	spin_lock(&swap_lock);
2640 	spin_lock(&si->lock);
2641 	setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap);
2642 	_enable_swap_info(si);
2643 	spin_unlock(&si->lock);
2644 	spin_unlock(&swap_lock);
2645 }
2646 
2647 /*
2648  * Called after clearing SWP_WRITEOK, ensures cluster_alloc_range
2649  * see the updated flags, so there will be no more allocations.
2650  */
2651 static void wait_for_allocation(struct swap_info_struct *si)
2652 {
2653 	unsigned long offset;
2654 	unsigned long end = ALIGN(si->max, SWAPFILE_CLUSTER);
2655 	struct swap_cluster_info *ci;
2656 
2657 	BUG_ON(si->flags & SWP_WRITEOK);
2658 
2659 	for (offset = 0; offset < end; offset += SWAPFILE_CLUSTER) {
2660 		ci = lock_cluster(si, offset);
2661 		unlock_cluster(ci);
2662 	}
2663 }
2664 
2665 /*
2666  * Called after swap device's reference count is dead, so
2667  * neither scan nor allocation will use it.
2668  */
2669 static void flush_percpu_swap_cluster(struct swap_info_struct *si)
2670 {
2671 	int cpu, i;
2672 	struct swap_info_struct **pcp_si;
2673 
2674 	for_each_possible_cpu(cpu) {
2675 		pcp_si = per_cpu_ptr(percpu_swap_cluster.si, cpu);
2676 		/*
2677 		 * Invalidate the percpu swap cluster cache, si->users
2678 		 * is dead, so no new user will point to it, just flush
2679 		 * any existing user.
2680 		 */
2681 		for (i = 0; i < SWAP_NR_ORDERS; i++)
2682 			cmpxchg(&pcp_si[i], si, NULL);
2683 	}
2684 }
2685 
2686 
2687 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2688 {
2689 	struct swap_info_struct *p = NULL;
2690 	unsigned char *swap_map;
2691 	unsigned long *zeromap;
2692 	struct swap_cluster_info *cluster_info;
2693 	struct file *swap_file, *victim;
2694 	struct address_space *mapping;
2695 	struct inode *inode;
2696 	struct filename *pathname;
2697 	int err, found = 0;
2698 
2699 	if (!capable(CAP_SYS_ADMIN))
2700 		return -EPERM;
2701 
2702 	BUG_ON(!current->mm);
2703 
2704 	pathname = getname(specialfile);
2705 	if (IS_ERR(pathname))
2706 		return PTR_ERR(pathname);
2707 
2708 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2709 	err = PTR_ERR(victim);
2710 	if (IS_ERR(victim))
2711 		goto out;
2712 
2713 	mapping = victim->f_mapping;
2714 	spin_lock(&swap_lock);
2715 	plist_for_each_entry(p, &swap_active_head, list) {
2716 		if (p->flags & SWP_WRITEOK) {
2717 			if (p->swap_file->f_mapping == mapping) {
2718 				found = 1;
2719 				break;
2720 			}
2721 		}
2722 	}
2723 	if (!found) {
2724 		err = -EINVAL;
2725 		spin_unlock(&swap_lock);
2726 		goto out_dput;
2727 	}
2728 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2729 		vm_unacct_memory(p->pages);
2730 	else {
2731 		err = -ENOMEM;
2732 		spin_unlock(&swap_lock);
2733 		goto out_dput;
2734 	}
2735 	spin_lock(&p->lock);
2736 	del_from_avail_list(p, true);
2737 	if (p->prio < 0) {
2738 		struct swap_info_struct *si = p;
2739 		int nid;
2740 
2741 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2742 			si->prio++;
2743 			si->list.prio--;
2744 			for_each_node(nid) {
2745 				if (si->avail_lists[nid].prio != 1)
2746 					si->avail_lists[nid].prio--;
2747 			}
2748 		}
2749 		least_priority++;
2750 	}
2751 	plist_del(&p->list, &swap_active_head);
2752 	atomic_long_sub(p->pages, &nr_swap_pages);
2753 	total_swap_pages -= p->pages;
2754 	spin_unlock(&p->lock);
2755 	spin_unlock(&swap_lock);
2756 
2757 	wait_for_allocation(p);
2758 
2759 	set_current_oom_origin();
2760 	err = try_to_unuse(p->type);
2761 	clear_current_oom_origin();
2762 
2763 	if (err) {
2764 		/* re-insert swap space back into swap_list */
2765 		reinsert_swap_info(p);
2766 		goto out_dput;
2767 	}
2768 
2769 	/*
2770 	 * Wait for swap operations protected by get/put_swap_device()
2771 	 * to complete.  Because of synchronize_rcu() here, all swap
2772 	 * operations protected by RCU reader side lock (including any
2773 	 * spinlock) will be waited too.  This makes it easy to
2774 	 * prevent folio_test_swapcache() and the following swap cache
2775 	 * operations from racing with swapoff.
2776 	 */
2777 	percpu_ref_kill(&p->users);
2778 	synchronize_rcu();
2779 	wait_for_completion(&p->comp);
2780 
2781 	flush_work(&p->discard_work);
2782 	flush_work(&p->reclaim_work);
2783 	flush_percpu_swap_cluster(p);
2784 
2785 	destroy_swap_extents(p);
2786 	if (p->flags & SWP_CONTINUED)
2787 		free_swap_count_continuations(p);
2788 
2789 	if (!p->bdev || !bdev_nonrot(p->bdev))
2790 		atomic_dec(&nr_rotate_swap);
2791 
2792 	mutex_lock(&swapon_mutex);
2793 	spin_lock(&swap_lock);
2794 	spin_lock(&p->lock);
2795 	drain_mmlist();
2796 
2797 	swap_file = p->swap_file;
2798 	p->swap_file = NULL;
2799 	p->max = 0;
2800 	swap_map = p->swap_map;
2801 	p->swap_map = NULL;
2802 	zeromap = p->zeromap;
2803 	p->zeromap = NULL;
2804 	cluster_info = p->cluster_info;
2805 	p->cluster_info = NULL;
2806 	spin_unlock(&p->lock);
2807 	spin_unlock(&swap_lock);
2808 	arch_swap_invalidate_area(p->type);
2809 	zswap_swapoff(p->type);
2810 	mutex_unlock(&swapon_mutex);
2811 	kfree(p->global_cluster);
2812 	p->global_cluster = NULL;
2813 	vfree(swap_map);
2814 	kvfree(zeromap);
2815 	kvfree(cluster_info);
2816 	/* Destroy swap account information */
2817 	swap_cgroup_swapoff(p->type);
2818 	exit_swap_address_space(p->type);
2819 
2820 	inode = mapping->host;
2821 
2822 	inode_lock(inode);
2823 	inode->i_flags &= ~S_SWAPFILE;
2824 	inode_unlock(inode);
2825 	filp_close(swap_file, NULL);
2826 
2827 	/*
2828 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2829 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2830 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2831 	 */
2832 	spin_lock(&swap_lock);
2833 	p->flags = 0;
2834 	spin_unlock(&swap_lock);
2835 
2836 	err = 0;
2837 	atomic_inc(&proc_poll_event);
2838 	wake_up_interruptible(&proc_poll_wait);
2839 
2840 out_dput:
2841 	filp_close(victim, NULL);
2842 out:
2843 	putname(pathname);
2844 	return err;
2845 }
2846 
2847 #ifdef CONFIG_PROC_FS
2848 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2849 {
2850 	struct seq_file *seq = file->private_data;
2851 
2852 	poll_wait(file, &proc_poll_wait, wait);
2853 
2854 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2855 		seq->poll_event = atomic_read(&proc_poll_event);
2856 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2857 	}
2858 
2859 	return EPOLLIN | EPOLLRDNORM;
2860 }
2861 
2862 /* iterator */
2863 static void *swap_start(struct seq_file *swap, loff_t *pos)
2864 {
2865 	struct swap_info_struct *si;
2866 	int type;
2867 	loff_t l = *pos;
2868 
2869 	mutex_lock(&swapon_mutex);
2870 
2871 	if (!l)
2872 		return SEQ_START_TOKEN;
2873 
2874 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2875 		if (!(si->flags & SWP_USED) || !si->swap_map)
2876 			continue;
2877 		if (!--l)
2878 			return si;
2879 	}
2880 
2881 	return NULL;
2882 }
2883 
2884 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2885 {
2886 	struct swap_info_struct *si = v;
2887 	int type;
2888 
2889 	if (v == SEQ_START_TOKEN)
2890 		type = 0;
2891 	else
2892 		type = si->type + 1;
2893 
2894 	++(*pos);
2895 	for (; (si = swap_type_to_swap_info(type)); type++) {
2896 		if (!(si->flags & SWP_USED) || !si->swap_map)
2897 			continue;
2898 		return si;
2899 	}
2900 
2901 	return NULL;
2902 }
2903 
2904 static void swap_stop(struct seq_file *swap, void *v)
2905 {
2906 	mutex_unlock(&swapon_mutex);
2907 }
2908 
2909 static int swap_show(struct seq_file *swap, void *v)
2910 {
2911 	struct swap_info_struct *si = v;
2912 	struct file *file;
2913 	int len;
2914 	unsigned long bytes, inuse;
2915 
2916 	if (si == SEQ_START_TOKEN) {
2917 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2918 		return 0;
2919 	}
2920 
2921 	bytes = K(si->pages);
2922 	inuse = K(swap_usage_in_pages(si));
2923 
2924 	file = si->swap_file;
2925 	len = seq_file_path(swap, file, " \t\n\\");
2926 	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2927 			len < 40 ? 40 - len : 1, " ",
2928 			S_ISBLK(file_inode(file)->i_mode) ?
2929 				"partition" : "file\t",
2930 			bytes, bytes < 10000000 ? "\t" : "",
2931 			inuse, inuse < 10000000 ? "\t" : "",
2932 			si->prio);
2933 	return 0;
2934 }
2935 
2936 static const struct seq_operations swaps_op = {
2937 	.start =	swap_start,
2938 	.next =		swap_next,
2939 	.stop =		swap_stop,
2940 	.show =		swap_show
2941 };
2942 
2943 static int swaps_open(struct inode *inode, struct file *file)
2944 {
2945 	struct seq_file *seq;
2946 	int ret;
2947 
2948 	ret = seq_open(file, &swaps_op);
2949 	if (ret)
2950 		return ret;
2951 
2952 	seq = file->private_data;
2953 	seq->poll_event = atomic_read(&proc_poll_event);
2954 	return 0;
2955 }
2956 
2957 static const struct proc_ops swaps_proc_ops = {
2958 	.proc_flags	= PROC_ENTRY_PERMANENT,
2959 	.proc_open	= swaps_open,
2960 	.proc_read	= seq_read,
2961 	.proc_lseek	= seq_lseek,
2962 	.proc_release	= seq_release,
2963 	.proc_poll	= swaps_poll,
2964 };
2965 
2966 static int __init procswaps_init(void)
2967 {
2968 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2969 	return 0;
2970 }
2971 __initcall(procswaps_init);
2972 #endif /* CONFIG_PROC_FS */
2973 
2974 #ifdef MAX_SWAPFILES_CHECK
2975 static int __init max_swapfiles_check(void)
2976 {
2977 	MAX_SWAPFILES_CHECK();
2978 	return 0;
2979 }
2980 late_initcall(max_swapfiles_check);
2981 #endif
2982 
2983 static struct swap_info_struct *alloc_swap_info(void)
2984 {
2985 	struct swap_info_struct *p;
2986 	struct swap_info_struct *defer = NULL;
2987 	unsigned int type;
2988 	int i;
2989 
2990 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2991 	if (!p)
2992 		return ERR_PTR(-ENOMEM);
2993 
2994 	if (percpu_ref_init(&p->users, swap_users_ref_free,
2995 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2996 		kvfree(p);
2997 		return ERR_PTR(-ENOMEM);
2998 	}
2999 
3000 	spin_lock(&swap_lock);
3001 	for (type = 0; type < nr_swapfiles; type++) {
3002 		if (!(swap_info[type]->flags & SWP_USED))
3003 			break;
3004 	}
3005 	if (type >= MAX_SWAPFILES) {
3006 		spin_unlock(&swap_lock);
3007 		percpu_ref_exit(&p->users);
3008 		kvfree(p);
3009 		return ERR_PTR(-EPERM);
3010 	}
3011 	if (type >= nr_swapfiles) {
3012 		p->type = type;
3013 		/*
3014 		 * Publish the swap_info_struct after initializing it.
3015 		 * Note that kvzalloc() above zeroes all its fields.
3016 		 */
3017 		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
3018 		nr_swapfiles++;
3019 	} else {
3020 		defer = p;
3021 		p = swap_info[type];
3022 		/*
3023 		 * Do not memset this entry: a racing procfs swap_next()
3024 		 * would be relying on p->type to remain valid.
3025 		 */
3026 	}
3027 	p->swap_extent_root = RB_ROOT;
3028 	plist_node_init(&p->list, 0);
3029 	for_each_node(i)
3030 		plist_node_init(&p->avail_lists[i], 0);
3031 	p->flags = SWP_USED;
3032 	spin_unlock(&swap_lock);
3033 	if (defer) {
3034 		percpu_ref_exit(&defer->users);
3035 		kvfree(defer);
3036 	}
3037 	spin_lock_init(&p->lock);
3038 	spin_lock_init(&p->cont_lock);
3039 	atomic_long_set(&p->inuse_pages, SWAP_USAGE_OFFLIST_BIT);
3040 	init_completion(&p->comp);
3041 
3042 	return p;
3043 }
3044 
3045 static int claim_swapfile(struct swap_info_struct *si, struct inode *inode)
3046 {
3047 	if (S_ISBLK(inode->i_mode)) {
3048 		si->bdev = I_BDEV(inode);
3049 		/*
3050 		 * Zoned block devices contain zones that have a sequential
3051 		 * write only restriction.  Hence zoned block devices are not
3052 		 * suitable for swapping.  Disallow them here.
3053 		 */
3054 		if (bdev_is_zoned(si->bdev))
3055 			return -EINVAL;
3056 		si->flags |= SWP_BLKDEV;
3057 	} else if (S_ISREG(inode->i_mode)) {
3058 		si->bdev = inode->i_sb->s_bdev;
3059 	}
3060 
3061 	return 0;
3062 }
3063 
3064 
3065 /*
3066  * Find out how many pages are allowed for a single swap device. There
3067  * are two limiting factors:
3068  * 1) the number of bits for the swap offset in the swp_entry_t type, and
3069  * 2) the number of bits in the swap pte, as defined by the different
3070  * architectures.
3071  *
3072  * In order to find the largest possible bit mask, a swap entry with
3073  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
3074  * decoded to a swp_entry_t again, and finally the swap offset is
3075  * extracted.
3076  *
3077  * This will mask all the bits from the initial ~0UL mask that can't
3078  * be encoded in either the swp_entry_t or the architecture definition
3079  * of a swap pte.
3080  */
3081 unsigned long generic_max_swapfile_size(void)
3082 {
3083 	return swp_offset(pte_to_swp_entry(
3084 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
3085 }
3086 
3087 /* Can be overridden by an architecture for additional checks. */
3088 __weak unsigned long arch_max_swapfile_size(void)
3089 {
3090 	return generic_max_swapfile_size();
3091 }
3092 
3093 static unsigned long read_swap_header(struct swap_info_struct *si,
3094 					union swap_header *swap_header,
3095 					struct inode *inode)
3096 {
3097 	int i;
3098 	unsigned long maxpages;
3099 	unsigned long swapfilepages;
3100 	unsigned long last_page;
3101 
3102 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
3103 		pr_err("Unable to find swap-space signature\n");
3104 		return 0;
3105 	}
3106 
3107 	/* swap partition endianness hack... */
3108 	if (swab32(swap_header->info.version) == 1) {
3109 		swab32s(&swap_header->info.version);
3110 		swab32s(&swap_header->info.last_page);
3111 		swab32s(&swap_header->info.nr_badpages);
3112 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3113 			return 0;
3114 		for (i = 0; i < swap_header->info.nr_badpages; i++)
3115 			swab32s(&swap_header->info.badpages[i]);
3116 	}
3117 	/* Check the swap header's sub-version */
3118 	if (swap_header->info.version != 1) {
3119 		pr_warn("Unable to handle swap header version %d\n",
3120 			swap_header->info.version);
3121 		return 0;
3122 	}
3123 
3124 	maxpages = swapfile_maximum_size;
3125 	last_page = swap_header->info.last_page;
3126 	if (!last_page) {
3127 		pr_warn("Empty swap-file\n");
3128 		return 0;
3129 	}
3130 	if (last_page > maxpages) {
3131 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3132 			K(maxpages), K(last_page));
3133 	}
3134 	if (maxpages > last_page) {
3135 		maxpages = last_page + 1;
3136 		/* p->max is an unsigned int: don't overflow it */
3137 		if ((unsigned int)maxpages == 0)
3138 			maxpages = UINT_MAX;
3139 	}
3140 
3141 	if (!maxpages)
3142 		return 0;
3143 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3144 	if (swapfilepages && maxpages > swapfilepages) {
3145 		pr_warn("Swap area shorter than signature indicates\n");
3146 		return 0;
3147 	}
3148 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3149 		return 0;
3150 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3151 		return 0;
3152 
3153 	return maxpages;
3154 }
3155 
3156 static int setup_swap_map(struct swap_info_struct *si,
3157 			  union swap_header *swap_header,
3158 			  unsigned char *swap_map,
3159 			  unsigned long maxpages)
3160 {
3161 	unsigned long i;
3162 
3163 	swap_map[0] = SWAP_MAP_BAD; /* omit header page */
3164 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3165 		unsigned int page_nr = swap_header->info.badpages[i];
3166 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3167 			return -EINVAL;
3168 		if (page_nr < maxpages) {
3169 			swap_map[page_nr] = SWAP_MAP_BAD;
3170 			si->pages--;
3171 		}
3172 	}
3173 
3174 	if (!si->pages) {
3175 		pr_warn("Empty swap-file\n");
3176 		return -EINVAL;
3177 	}
3178 
3179 	return 0;
3180 }
3181 
3182 #define SWAP_CLUSTER_INFO_COLS						\
3183 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3184 #define SWAP_CLUSTER_SPACE_COLS						\
3185 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3186 #define SWAP_CLUSTER_COLS						\
3187 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3188 
3189 static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si,
3190 						union swap_header *swap_header,
3191 						unsigned long maxpages)
3192 {
3193 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3194 	struct swap_cluster_info *cluster_info;
3195 	unsigned long i, j, idx;
3196 	int err = -ENOMEM;
3197 
3198 	cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL);
3199 	if (!cluster_info)
3200 		goto err;
3201 
3202 	for (i = 0; i < nr_clusters; i++)
3203 		spin_lock_init(&cluster_info[i].lock);
3204 
3205 	if (!(si->flags & SWP_SOLIDSTATE)) {
3206 		si->global_cluster = kmalloc(sizeof(*si->global_cluster),
3207 				     GFP_KERNEL);
3208 		if (!si->global_cluster)
3209 			goto err_free;
3210 		for (i = 0; i < SWAP_NR_ORDERS; i++)
3211 			si->global_cluster->next[i] = SWAP_ENTRY_INVALID;
3212 		spin_lock_init(&si->global_cluster_lock);
3213 	}
3214 
3215 	/*
3216 	 * Mark unusable pages as unavailable. The clusters aren't
3217 	 * marked free yet, so no list operations are involved yet.
3218 	 *
3219 	 * See setup_swap_map(): header page, bad pages,
3220 	 * and the EOF part of the last cluster.
3221 	 */
3222 	inc_cluster_info_page(si, cluster_info, 0);
3223 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3224 		unsigned int page_nr = swap_header->info.badpages[i];
3225 
3226 		if (page_nr >= maxpages)
3227 			continue;
3228 		inc_cluster_info_page(si, cluster_info, page_nr);
3229 	}
3230 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3231 		inc_cluster_info_page(si, cluster_info, i);
3232 
3233 	INIT_LIST_HEAD(&si->free_clusters);
3234 	INIT_LIST_HEAD(&si->full_clusters);
3235 	INIT_LIST_HEAD(&si->discard_clusters);
3236 
3237 	for (i = 0; i < SWAP_NR_ORDERS; i++) {
3238 		INIT_LIST_HEAD(&si->nonfull_clusters[i]);
3239 		INIT_LIST_HEAD(&si->frag_clusters[i]);
3240 	}
3241 
3242 	/*
3243 	 * Reduce false cache line sharing between cluster_info and
3244 	 * sharing same address space.
3245 	 */
3246 	for (j = 0; j < SWAP_CLUSTER_COLS; j++) {
3247 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3248 			struct swap_cluster_info *ci;
3249 			idx = i * SWAP_CLUSTER_COLS + j;
3250 			ci = cluster_info + idx;
3251 			if (idx >= nr_clusters)
3252 				continue;
3253 			if (ci->count) {
3254 				ci->flags = CLUSTER_FLAG_NONFULL;
3255 				list_add_tail(&ci->list, &si->nonfull_clusters[0]);
3256 				continue;
3257 			}
3258 			ci->flags = CLUSTER_FLAG_FREE;
3259 			list_add_tail(&ci->list, &si->free_clusters);
3260 		}
3261 	}
3262 
3263 	return cluster_info;
3264 
3265 err_free:
3266 	kvfree(cluster_info);
3267 err:
3268 	return ERR_PTR(err);
3269 }
3270 
3271 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3272 {
3273 	struct swap_info_struct *si;
3274 	struct filename *name;
3275 	struct file *swap_file = NULL;
3276 	struct address_space *mapping;
3277 	struct dentry *dentry;
3278 	int prio;
3279 	int error;
3280 	union swap_header *swap_header;
3281 	int nr_extents;
3282 	sector_t span;
3283 	unsigned long maxpages;
3284 	unsigned char *swap_map = NULL;
3285 	unsigned long *zeromap = NULL;
3286 	struct swap_cluster_info *cluster_info = NULL;
3287 	struct folio *folio = NULL;
3288 	struct inode *inode = NULL;
3289 	bool inced_nr_rotate_swap = false;
3290 
3291 	if (swap_flags & ~SWAP_FLAGS_VALID)
3292 		return -EINVAL;
3293 
3294 	if (!capable(CAP_SYS_ADMIN))
3295 		return -EPERM;
3296 
3297 	if (!swap_avail_heads)
3298 		return -ENOMEM;
3299 
3300 	si = alloc_swap_info();
3301 	if (IS_ERR(si))
3302 		return PTR_ERR(si);
3303 
3304 	INIT_WORK(&si->discard_work, swap_discard_work);
3305 	INIT_WORK(&si->reclaim_work, swap_reclaim_work);
3306 
3307 	name = getname(specialfile);
3308 	if (IS_ERR(name)) {
3309 		error = PTR_ERR(name);
3310 		name = NULL;
3311 		goto bad_swap;
3312 	}
3313 	swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
3314 	if (IS_ERR(swap_file)) {
3315 		error = PTR_ERR(swap_file);
3316 		swap_file = NULL;
3317 		goto bad_swap;
3318 	}
3319 
3320 	si->swap_file = swap_file;
3321 	mapping = swap_file->f_mapping;
3322 	dentry = swap_file->f_path.dentry;
3323 	inode = mapping->host;
3324 
3325 	error = claim_swapfile(si, inode);
3326 	if (unlikely(error))
3327 		goto bad_swap;
3328 
3329 	inode_lock(inode);
3330 	if (d_unlinked(dentry) || cant_mount(dentry)) {
3331 		error = -ENOENT;
3332 		goto bad_swap_unlock_inode;
3333 	}
3334 	if (IS_SWAPFILE(inode)) {
3335 		error = -EBUSY;
3336 		goto bad_swap_unlock_inode;
3337 	}
3338 
3339 	/*
3340 	 * The swap subsystem needs a major overhaul to support this.
3341 	 * It doesn't work yet so just disable it for now.
3342 	 */
3343 	if (mapping_min_folio_order(mapping) > 0) {
3344 		error = -EINVAL;
3345 		goto bad_swap_unlock_inode;
3346 	}
3347 
3348 	/*
3349 	 * Read the swap header.
3350 	 */
3351 	if (!mapping->a_ops->read_folio) {
3352 		error = -EINVAL;
3353 		goto bad_swap_unlock_inode;
3354 	}
3355 	folio = read_mapping_folio(mapping, 0, swap_file);
3356 	if (IS_ERR(folio)) {
3357 		error = PTR_ERR(folio);
3358 		goto bad_swap_unlock_inode;
3359 	}
3360 	swap_header = kmap_local_folio(folio, 0);
3361 
3362 	maxpages = read_swap_header(si, swap_header, inode);
3363 	if (unlikely(!maxpages)) {
3364 		error = -EINVAL;
3365 		goto bad_swap_unlock_inode;
3366 	}
3367 
3368 	si->max = maxpages;
3369 	si->pages = maxpages - 1;
3370 	nr_extents = setup_swap_extents(si, &span);
3371 	if (nr_extents < 0) {
3372 		error = nr_extents;
3373 		goto bad_swap_unlock_inode;
3374 	}
3375 	if (si->pages != si->max - 1) {
3376 		pr_err("swap:%u != (max:%u - 1)\n", si->pages, si->max);
3377 		error = -EINVAL;
3378 		goto bad_swap_unlock_inode;
3379 	}
3380 
3381 	maxpages = si->max;
3382 
3383 	/* OK, set up the swap map and apply the bad block list */
3384 	swap_map = vzalloc(maxpages);
3385 	if (!swap_map) {
3386 		error = -ENOMEM;
3387 		goto bad_swap_unlock_inode;
3388 	}
3389 
3390 	error = swap_cgroup_swapon(si->type, maxpages);
3391 	if (error)
3392 		goto bad_swap_unlock_inode;
3393 
3394 	error = setup_swap_map(si, swap_header, swap_map, maxpages);
3395 	if (error)
3396 		goto bad_swap_unlock_inode;
3397 
3398 	/*
3399 	 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might
3400 	 * be above MAX_PAGE_ORDER incase of a large swap file.
3401 	 */
3402 	zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long),
3403 				    GFP_KERNEL | __GFP_ZERO);
3404 	if (!zeromap) {
3405 		error = -ENOMEM;
3406 		goto bad_swap_unlock_inode;
3407 	}
3408 
3409 	if (si->bdev && bdev_stable_writes(si->bdev))
3410 		si->flags |= SWP_STABLE_WRITES;
3411 
3412 	if (si->bdev && bdev_synchronous(si->bdev))
3413 		si->flags |= SWP_SYNCHRONOUS_IO;
3414 
3415 	if (si->bdev && bdev_nonrot(si->bdev)) {
3416 		si->flags |= SWP_SOLIDSTATE;
3417 	} else {
3418 		atomic_inc(&nr_rotate_swap);
3419 		inced_nr_rotate_swap = true;
3420 	}
3421 
3422 	cluster_info = setup_clusters(si, swap_header, maxpages);
3423 	if (IS_ERR(cluster_info)) {
3424 		error = PTR_ERR(cluster_info);
3425 		cluster_info = NULL;
3426 		goto bad_swap_unlock_inode;
3427 	}
3428 
3429 	if ((swap_flags & SWAP_FLAG_DISCARD) &&
3430 	    si->bdev && bdev_max_discard_sectors(si->bdev)) {
3431 		/*
3432 		 * When discard is enabled for swap with no particular
3433 		 * policy flagged, we set all swap discard flags here in
3434 		 * order to sustain backward compatibility with older
3435 		 * swapon(8) releases.
3436 		 */
3437 		si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3438 			     SWP_PAGE_DISCARD);
3439 
3440 		/*
3441 		 * By flagging sys_swapon, a sysadmin can tell us to
3442 		 * either do single-time area discards only, or to just
3443 		 * perform discards for released swap page-clusters.
3444 		 * Now it's time to adjust the p->flags accordingly.
3445 		 */
3446 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3447 			si->flags &= ~SWP_PAGE_DISCARD;
3448 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3449 			si->flags &= ~SWP_AREA_DISCARD;
3450 
3451 		/* issue a swapon-time discard if it's still required */
3452 		if (si->flags & SWP_AREA_DISCARD) {
3453 			int err = discard_swap(si);
3454 			if (unlikely(err))
3455 				pr_err("swapon: discard_swap(%p): %d\n",
3456 					si, err);
3457 		}
3458 	}
3459 
3460 	error = init_swap_address_space(si->type, maxpages);
3461 	if (error)
3462 		goto bad_swap_unlock_inode;
3463 
3464 	error = zswap_swapon(si->type, maxpages);
3465 	if (error)
3466 		goto free_swap_address_space;
3467 
3468 	/*
3469 	 * Flush any pending IO and dirty mappings before we start using this
3470 	 * swap device.
3471 	 */
3472 	inode->i_flags |= S_SWAPFILE;
3473 	error = inode_drain_writes(inode);
3474 	if (error) {
3475 		inode->i_flags &= ~S_SWAPFILE;
3476 		goto free_swap_zswap;
3477 	}
3478 
3479 	mutex_lock(&swapon_mutex);
3480 	prio = -1;
3481 	if (swap_flags & SWAP_FLAG_PREFER)
3482 		prio = swap_flags & SWAP_FLAG_PRIO_MASK;
3483 	enable_swap_info(si, prio, swap_map, cluster_info, zeromap);
3484 
3485 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3486 		K(si->pages), name->name, si->prio, nr_extents,
3487 		K((unsigned long long)span),
3488 		(si->flags & SWP_SOLIDSTATE) ? "SS" : "",
3489 		(si->flags & SWP_DISCARDABLE) ? "D" : "",
3490 		(si->flags & SWP_AREA_DISCARD) ? "s" : "",
3491 		(si->flags & SWP_PAGE_DISCARD) ? "c" : "");
3492 
3493 	mutex_unlock(&swapon_mutex);
3494 	atomic_inc(&proc_poll_event);
3495 	wake_up_interruptible(&proc_poll_wait);
3496 
3497 	error = 0;
3498 	goto out;
3499 free_swap_zswap:
3500 	zswap_swapoff(si->type);
3501 free_swap_address_space:
3502 	exit_swap_address_space(si->type);
3503 bad_swap_unlock_inode:
3504 	inode_unlock(inode);
3505 bad_swap:
3506 	kfree(si->global_cluster);
3507 	si->global_cluster = NULL;
3508 	inode = NULL;
3509 	destroy_swap_extents(si);
3510 	swap_cgroup_swapoff(si->type);
3511 	spin_lock(&swap_lock);
3512 	si->swap_file = NULL;
3513 	si->flags = 0;
3514 	spin_unlock(&swap_lock);
3515 	vfree(swap_map);
3516 	kvfree(zeromap);
3517 	kvfree(cluster_info);
3518 	if (inced_nr_rotate_swap)
3519 		atomic_dec(&nr_rotate_swap);
3520 	if (swap_file)
3521 		filp_close(swap_file, NULL);
3522 out:
3523 	if (!IS_ERR_OR_NULL(folio))
3524 		folio_release_kmap(folio, swap_header);
3525 	if (name)
3526 		putname(name);
3527 	if (inode)
3528 		inode_unlock(inode);
3529 	return error;
3530 }
3531 
3532 void si_swapinfo(struct sysinfo *val)
3533 {
3534 	unsigned int type;
3535 	unsigned long nr_to_be_unused = 0;
3536 
3537 	spin_lock(&swap_lock);
3538 	for (type = 0; type < nr_swapfiles; type++) {
3539 		struct swap_info_struct *si = swap_info[type];
3540 
3541 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3542 			nr_to_be_unused += swap_usage_in_pages(si);
3543 	}
3544 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3545 	val->totalswap = total_swap_pages + nr_to_be_unused;
3546 	spin_unlock(&swap_lock);
3547 }
3548 
3549 /*
3550  * Verify that nr swap entries are valid and increment their swap map counts.
3551  *
3552  * Returns error code in following case.
3553  * - success -> 0
3554  * - swp_entry is invalid -> EINVAL
3555  * - swap-cache reference is requested but there is already one. -> EEXIST
3556  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3557  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3558  */
3559 static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr)
3560 {
3561 	struct swap_info_struct *si;
3562 	struct swap_cluster_info *ci;
3563 	unsigned long offset;
3564 	unsigned char count;
3565 	unsigned char has_cache;
3566 	int err, i;
3567 
3568 	si = swp_swap_info(entry);
3569 	if (WARN_ON_ONCE(!si)) {
3570 		pr_err("%s%08lx\n", Bad_file, entry.val);
3571 		return -EINVAL;
3572 	}
3573 
3574 	offset = swp_offset(entry);
3575 	VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
3576 	VM_WARN_ON(usage == 1 && nr > 1);
3577 	ci = lock_cluster(si, offset);
3578 
3579 	err = 0;
3580 	for (i = 0; i < nr; i++) {
3581 		count = si->swap_map[offset + i];
3582 
3583 		/*
3584 		 * swapin_readahead() doesn't check if a swap entry is valid, so the
3585 		 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3586 		 */
3587 		if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3588 			err = -ENOENT;
3589 			goto unlock_out;
3590 		}
3591 
3592 		has_cache = count & SWAP_HAS_CACHE;
3593 		count &= ~SWAP_HAS_CACHE;
3594 
3595 		if (!count && !has_cache) {
3596 			err = -ENOENT;
3597 		} else if (usage == SWAP_HAS_CACHE) {
3598 			if (has_cache)
3599 				err = -EEXIST;
3600 		} else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) {
3601 			err = -EINVAL;
3602 		}
3603 
3604 		if (err)
3605 			goto unlock_out;
3606 	}
3607 
3608 	for (i = 0; i < nr; i++) {
3609 		count = si->swap_map[offset + i];
3610 		has_cache = count & SWAP_HAS_CACHE;
3611 		count &= ~SWAP_HAS_CACHE;
3612 
3613 		if (usage == SWAP_HAS_CACHE)
3614 			has_cache = SWAP_HAS_CACHE;
3615 		else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3616 			count += usage;
3617 		else if (swap_count_continued(si, offset + i, count))
3618 			count = COUNT_CONTINUED;
3619 		else {
3620 			/*
3621 			 * Don't need to rollback changes, because if
3622 			 * usage == 1, there must be nr == 1.
3623 			 */
3624 			err = -ENOMEM;
3625 			goto unlock_out;
3626 		}
3627 
3628 		WRITE_ONCE(si->swap_map[offset + i], count | has_cache);
3629 	}
3630 
3631 unlock_out:
3632 	unlock_cluster(ci);
3633 	return err;
3634 }
3635 
3636 /*
3637  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3638  * (in which case its reference count is never incremented).
3639  */
3640 void swap_shmem_alloc(swp_entry_t entry, int nr)
3641 {
3642 	__swap_duplicate(entry, SWAP_MAP_SHMEM, nr);
3643 }
3644 
3645 /*
3646  * Increase reference count of swap entry by 1.
3647  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3648  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3649  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3650  * might occur if a page table entry has got corrupted.
3651  */
3652 int swap_duplicate(swp_entry_t entry)
3653 {
3654 	int err = 0;
3655 
3656 	while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM)
3657 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3658 	return err;
3659 }
3660 
3661 /*
3662  * @entry: first swap entry from which we allocate nr swap cache.
3663  *
3664  * Called when allocating swap cache for existing swap entries,
3665  * This can return error codes. Returns 0 at success.
3666  * -EEXIST means there is a swap cache.
3667  * Note: return code is different from swap_duplicate().
3668  */
3669 int swapcache_prepare(swp_entry_t entry, int nr)
3670 {
3671 	return __swap_duplicate(entry, SWAP_HAS_CACHE, nr);
3672 }
3673 
3674 /*
3675  * Caller should ensure entries belong to the same folio so
3676  * the entries won't span cross cluster boundary.
3677  */
3678 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr)
3679 {
3680 	swap_entries_put_cache(si, entry, nr);
3681 }
3682 
3683 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3684 {
3685 	return swap_type_to_swap_info(swp_type(entry));
3686 }
3687 
3688 /*
3689  * add_swap_count_continuation - called when a swap count is duplicated
3690  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3691  * page of the original vmalloc'ed swap_map, to hold the continuation count
3692  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3693  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3694  *
3695  * These continuation pages are seldom referenced: the common paths all work
3696  * on the original swap_map, only referring to a continuation page when the
3697  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3698  *
3699  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3700  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3701  * can be called after dropping locks.
3702  */
3703 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3704 {
3705 	struct swap_info_struct *si;
3706 	struct swap_cluster_info *ci;
3707 	struct page *head;
3708 	struct page *page;
3709 	struct page *list_page;
3710 	pgoff_t offset;
3711 	unsigned char count;
3712 	int ret = 0;
3713 
3714 	/*
3715 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3716 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3717 	 */
3718 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3719 
3720 	si = get_swap_device(entry);
3721 	if (!si) {
3722 		/*
3723 		 * An acceptable race has occurred since the failing
3724 		 * __swap_duplicate(): the swap device may be swapoff
3725 		 */
3726 		goto outer;
3727 	}
3728 
3729 	offset = swp_offset(entry);
3730 
3731 	ci = lock_cluster(si, offset);
3732 
3733 	count = swap_count(si->swap_map[offset]);
3734 
3735 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3736 		/*
3737 		 * The higher the swap count, the more likely it is that tasks
3738 		 * will race to add swap count continuation: we need to avoid
3739 		 * over-provisioning.
3740 		 */
3741 		goto out;
3742 	}
3743 
3744 	if (!page) {
3745 		ret = -ENOMEM;
3746 		goto out;
3747 	}
3748 
3749 	head = vmalloc_to_page(si->swap_map + offset);
3750 	offset &= ~PAGE_MASK;
3751 
3752 	spin_lock(&si->cont_lock);
3753 	/*
3754 	 * Page allocation does not initialize the page's lru field,
3755 	 * but it does always reset its private field.
3756 	 */
3757 	if (!page_private(head)) {
3758 		BUG_ON(count & COUNT_CONTINUED);
3759 		INIT_LIST_HEAD(&head->lru);
3760 		set_page_private(head, SWP_CONTINUED);
3761 		si->flags |= SWP_CONTINUED;
3762 	}
3763 
3764 	list_for_each_entry(list_page, &head->lru, lru) {
3765 		unsigned char *map;
3766 
3767 		/*
3768 		 * If the previous map said no continuation, but we've found
3769 		 * a continuation page, free our allocation and use this one.
3770 		 */
3771 		if (!(count & COUNT_CONTINUED))
3772 			goto out_unlock_cont;
3773 
3774 		map = kmap_local_page(list_page) + offset;
3775 		count = *map;
3776 		kunmap_local(map);
3777 
3778 		/*
3779 		 * If this continuation count now has some space in it,
3780 		 * free our allocation and use this one.
3781 		 */
3782 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3783 			goto out_unlock_cont;
3784 	}
3785 
3786 	list_add_tail(&page->lru, &head->lru);
3787 	page = NULL;			/* now it's attached, don't free it */
3788 out_unlock_cont:
3789 	spin_unlock(&si->cont_lock);
3790 out:
3791 	unlock_cluster(ci);
3792 	put_swap_device(si);
3793 outer:
3794 	if (page)
3795 		__free_page(page);
3796 	return ret;
3797 }
3798 
3799 /*
3800  * swap_count_continued - when the original swap_map count is incremented
3801  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3802  * into, carry if so, or else fail until a new continuation page is allocated;
3803  * when the original swap_map count is decremented from 0 with continuation,
3804  * borrow from the continuation and report whether it still holds more.
3805  * Called while __swap_duplicate() or caller of swap_entry_put_locked()
3806  * holds cluster lock.
3807  */
3808 static bool swap_count_continued(struct swap_info_struct *si,
3809 				 pgoff_t offset, unsigned char count)
3810 {
3811 	struct page *head;
3812 	struct page *page;
3813 	unsigned char *map;
3814 	bool ret;
3815 
3816 	head = vmalloc_to_page(si->swap_map + offset);
3817 	if (page_private(head) != SWP_CONTINUED) {
3818 		BUG_ON(count & COUNT_CONTINUED);
3819 		return false;		/* need to add count continuation */
3820 	}
3821 
3822 	spin_lock(&si->cont_lock);
3823 	offset &= ~PAGE_MASK;
3824 	page = list_next_entry(head, lru);
3825 	map = kmap_local_page(page) + offset;
3826 
3827 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3828 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3829 
3830 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3831 		/*
3832 		 * Think of how you add 1 to 999
3833 		 */
3834 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3835 			kunmap_local(map);
3836 			page = list_next_entry(page, lru);
3837 			BUG_ON(page == head);
3838 			map = kmap_local_page(page) + offset;
3839 		}
3840 		if (*map == SWAP_CONT_MAX) {
3841 			kunmap_local(map);
3842 			page = list_next_entry(page, lru);
3843 			if (page == head) {
3844 				ret = false;	/* add count continuation */
3845 				goto out;
3846 			}
3847 			map = kmap_local_page(page) + offset;
3848 init_map:		*map = 0;		/* we didn't zero the page */
3849 		}
3850 		*map += 1;
3851 		kunmap_local(map);
3852 		while ((page = list_prev_entry(page, lru)) != head) {
3853 			map = kmap_local_page(page) + offset;
3854 			*map = COUNT_CONTINUED;
3855 			kunmap_local(map);
3856 		}
3857 		ret = true;			/* incremented */
3858 
3859 	} else {				/* decrementing */
3860 		/*
3861 		 * Think of how you subtract 1 from 1000
3862 		 */
3863 		BUG_ON(count != COUNT_CONTINUED);
3864 		while (*map == COUNT_CONTINUED) {
3865 			kunmap_local(map);
3866 			page = list_next_entry(page, lru);
3867 			BUG_ON(page == head);
3868 			map = kmap_local_page(page) + offset;
3869 		}
3870 		BUG_ON(*map == 0);
3871 		*map -= 1;
3872 		if (*map == 0)
3873 			count = 0;
3874 		kunmap_local(map);
3875 		while ((page = list_prev_entry(page, lru)) != head) {
3876 			map = kmap_local_page(page) + offset;
3877 			*map = SWAP_CONT_MAX | count;
3878 			count = COUNT_CONTINUED;
3879 			kunmap_local(map);
3880 		}
3881 		ret = count == COUNT_CONTINUED;
3882 	}
3883 out:
3884 	spin_unlock(&si->cont_lock);
3885 	return ret;
3886 }
3887 
3888 /*
3889  * free_swap_count_continuations - swapoff free all the continuation pages
3890  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3891  */
3892 static void free_swap_count_continuations(struct swap_info_struct *si)
3893 {
3894 	pgoff_t offset;
3895 
3896 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3897 		struct page *head;
3898 		head = vmalloc_to_page(si->swap_map + offset);
3899 		if (page_private(head)) {
3900 			struct page *page, *next;
3901 
3902 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3903 				list_del(&page->lru);
3904 				__free_page(page);
3905 			}
3906 		}
3907 	}
3908 }
3909 
3910 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3911 static bool __has_usable_swap(void)
3912 {
3913 	return !plist_head_empty(&swap_active_head);
3914 }
3915 
3916 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3917 {
3918 	struct swap_info_struct *si, *next;
3919 	int nid = folio_nid(folio);
3920 
3921 	if (!(gfp & __GFP_IO))
3922 		return;
3923 
3924 	if (!__has_usable_swap())
3925 		return;
3926 
3927 	if (!blk_cgroup_congested())
3928 		return;
3929 
3930 	/*
3931 	 * We've already scheduled a throttle, avoid taking the global swap
3932 	 * lock.
3933 	 */
3934 	if (current->throttle_disk)
3935 		return;
3936 
3937 	spin_lock(&swap_avail_lock);
3938 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3939 				  avail_lists[nid]) {
3940 		if (si->bdev) {
3941 			blkcg_schedule_throttle(si->bdev->bd_disk, true);
3942 			break;
3943 		}
3944 	}
3945 	spin_unlock(&swap_avail_lock);
3946 }
3947 #endif
3948 
3949 static int __init swapfile_init(void)
3950 {
3951 	int nid;
3952 
3953 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3954 					 GFP_KERNEL);
3955 	if (!swap_avail_heads) {
3956 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3957 		return -ENOMEM;
3958 	}
3959 
3960 	for_each_node(nid)
3961 		plist_head_init(&swap_avail_heads[nid]);
3962 
3963 	swapfile_maximum_size = arch_max_swapfile_size();
3964 
3965 #ifdef CONFIG_MIGRATION
3966 	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3967 		swap_migration_ad_supported = true;
3968 #endif	/* CONFIG_MIGRATION */
3969 
3970 	return 0;
3971 }
3972 subsys_initcall(swapfile_init);
3973