1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/mm.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/task.h> 12 #include <linux/hugetlb.h> 13 #include <linux/mman.h> 14 #include <linux/slab.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/swap.h> 17 #include <linux/vmalloc.h> 18 #include <linux/pagemap.h> 19 #include <linux/namei.h> 20 #include <linux/shmem_fs.h> 21 #include <linux/blkdev.h> 22 #include <linux/random.h> 23 #include <linux/writeback.h> 24 #include <linux/proc_fs.h> 25 #include <linux/seq_file.h> 26 #include <linux/init.h> 27 #include <linux/ksm.h> 28 #include <linux/rmap.h> 29 #include <linux/security.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mutex.h> 32 #include <linux/capability.h> 33 #include <linux/syscalls.h> 34 #include <linux/memcontrol.h> 35 #include <linux/poll.h> 36 #include <linux/oom.h> 37 #include <linux/frontswap.h> 38 #include <linux/swapfile.h> 39 #include <linux/export.h> 40 #include <linux/swap_slots.h> 41 #include <linux/sort.h> 42 43 #include <asm/tlbflush.h> 44 #include <linux/swapops.h> 45 #include <linux/swap_cgroup.h> 46 47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 48 unsigned char); 49 static void free_swap_count_continuations(struct swap_info_struct *); 50 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 51 52 DEFINE_SPINLOCK(swap_lock); 53 static unsigned int nr_swapfiles; 54 atomic_long_t nr_swap_pages; 55 /* 56 * Some modules use swappable objects and may try to swap them out under 57 * memory pressure (via the shrinker). Before doing so, they may wish to 58 * check to see if any swap space is available. 59 */ 60 EXPORT_SYMBOL_GPL(nr_swap_pages); 61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 62 long total_swap_pages; 63 static int least_priority = -1; 64 65 static const char Bad_file[] = "Bad swap file entry "; 66 static const char Unused_file[] = "Unused swap file entry "; 67 static const char Bad_offset[] = "Bad swap offset entry "; 68 static const char Unused_offset[] = "Unused swap offset entry "; 69 70 /* 71 * all active swap_info_structs 72 * protected with swap_lock, and ordered by priority. 73 */ 74 PLIST_HEAD(swap_active_head); 75 76 /* 77 * all available (active, not full) swap_info_structs 78 * protected with swap_avail_lock, ordered by priority. 79 * This is used by get_swap_page() instead of swap_active_head 80 * because swap_active_head includes all swap_info_structs, 81 * but get_swap_page() doesn't need to look at full ones. 82 * This uses its own lock instead of swap_lock because when a 83 * swap_info_struct changes between not-full/full, it needs to 84 * add/remove itself to/from this list, but the swap_info_struct->lock 85 * is held and the locking order requires swap_lock to be taken 86 * before any swap_info_struct->lock. 87 */ 88 static struct plist_head *swap_avail_heads; 89 static DEFINE_SPINLOCK(swap_avail_lock); 90 91 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 92 93 static DEFINE_MUTEX(swapon_mutex); 94 95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 96 /* Activity counter to indicate that a swapon or swapoff has occurred */ 97 static atomic_t proc_poll_event = ATOMIC_INIT(0); 98 99 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 100 101 static struct swap_info_struct *swap_type_to_swap_info(int type) 102 { 103 if (type >= READ_ONCE(nr_swapfiles)) 104 return NULL; 105 106 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */ 107 return READ_ONCE(swap_info[type]); 108 } 109 110 static inline unsigned char swap_count(unsigned char ent) 111 { 112 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 113 } 114 115 /* Reclaim the swap entry anyway if possible */ 116 #define TTRS_ANYWAY 0x1 117 /* 118 * Reclaim the swap entry if there are no more mappings of the 119 * corresponding page 120 */ 121 #define TTRS_UNMAPPED 0x2 122 /* Reclaim the swap entry if swap is getting full*/ 123 #define TTRS_FULL 0x4 124 125 /* returns 1 if swap entry is freed */ 126 static int __try_to_reclaim_swap(struct swap_info_struct *si, 127 unsigned long offset, unsigned long flags) 128 { 129 swp_entry_t entry = swp_entry(si->type, offset); 130 struct page *page; 131 int ret = 0; 132 133 page = find_get_page(swap_address_space(entry), offset); 134 if (!page) 135 return 0; 136 /* 137 * When this function is called from scan_swap_map_slots() and it's 138 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page, 139 * here. We have to use trylock for avoiding deadlock. This is a special 140 * case and you should use try_to_free_swap() with explicit lock_page() 141 * in usual operations. 142 */ 143 if (trylock_page(page)) { 144 if ((flags & TTRS_ANYWAY) || 145 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) || 146 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page))) 147 ret = try_to_free_swap(page); 148 unlock_page(page); 149 } 150 put_page(page); 151 return ret; 152 } 153 154 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 155 { 156 struct rb_node *rb = rb_first(&sis->swap_extent_root); 157 return rb_entry(rb, struct swap_extent, rb_node); 158 } 159 160 static inline struct swap_extent *next_se(struct swap_extent *se) 161 { 162 struct rb_node *rb = rb_next(&se->rb_node); 163 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 164 } 165 166 /* 167 * swapon tell device that all the old swap contents can be discarded, 168 * to allow the swap device to optimize its wear-levelling. 169 */ 170 static int discard_swap(struct swap_info_struct *si) 171 { 172 struct swap_extent *se; 173 sector_t start_block; 174 sector_t nr_blocks; 175 int err = 0; 176 177 /* Do not discard the swap header page! */ 178 se = first_se(si); 179 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 180 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 181 if (nr_blocks) { 182 err = blkdev_issue_discard(si->bdev, start_block, 183 nr_blocks, GFP_KERNEL, 0); 184 if (err) 185 return err; 186 cond_resched(); 187 } 188 189 for (se = next_se(se); se; se = next_se(se)) { 190 start_block = se->start_block << (PAGE_SHIFT - 9); 191 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 192 193 err = blkdev_issue_discard(si->bdev, start_block, 194 nr_blocks, GFP_KERNEL, 0); 195 if (err) 196 break; 197 198 cond_resched(); 199 } 200 return err; /* That will often be -EOPNOTSUPP */ 201 } 202 203 static struct swap_extent * 204 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 205 { 206 struct swap_extent *se; 207 struct rb_node *rb; 208 209 rb = sis->swap_extent_root.rb_node; 210 while (rb) { 211 se = rb_entry(rb, struct swap_extent, rb_node); 212 if (offset < se->start_page) 213 rb = rb->rb_left; 214 else if (offset >= se->start_page + se->nr_pages) 215 rb = rb->rb_right; 216 else 217 return se; 218 } 219 /* It *must* be present */ 220 BUG(); 221 } 222 223 /* 224 * swap allocation tell device that a cluster of swap can now be discarded, 225 * to allow the swap device to optimize its wear-levelling. 226 */ 227 static void discard_swap_cluster(struct swap_info_struct *si, 228 pgoff_t start_page, pgoff_t nr_pages) 229 { 230 struct swap_extent *se = offset_to_swap_extent(si, start_page); 231 232 while (nr_pages) { 233 pgoff_t offset = start_page - se->start_page; 234 sector_t start_block = se->start_block + offset; 235 sector_t nr_blocks = se->nr_pages - offset; 236 237 if (nr_blocks > nr_pages) 238 nr_blocks = nr_pages; 239 start_page += nr_blocks; 240 nr_pages -= nr_blocks; 241 242 start_block <<= PAGE_SHIFT - 9; 243 nr_blocks <<= PAGE_SHIFT - 9; 244 if (blkdev_issue_discard(si->bdev, start_block, 245 nr_blocks, GFP_NOIO, 0)) 246 break; 247 248 se = next_se(se); 249 } 250 } 251 252 #ifdef CONFIG_THP_SWAP 253 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 254 255 #define swap_entry_size(size) (size) 256 #else 257 #define SWAPFILE_CLUSTER 256 258 259 /* 260 * Define swap_entry_size() as constant to let compiler to optimize 261 * out some code if !CONFIG_THP_SWAP 262 */ 263 #define swap_entry_size(size) 1 264 #endif 265 #define LATENCY_LIMIT 256 266 267 static inline void cluster_set_flag(struct swap_cluster_info *info, 268 unsigned int flag) 269 { 270 info->flags = flag; 271 } 272 273 static inline unsigned int cluster_count(struct swap_cluster_info *info) 274 { 275 return info->data; 276 } 277 278 static inline void cluster_set_count(struct swap_cluster_info *info, 279 unsigned int c) 280 { 281 info->data = c; 282 } 283 284 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 285 unsigned int c, unsigned int f) 286 { 287 info->flags = f; 288 info->data = c; 289 } 290 291 static inline unsigned int cluster_next(struct swap_cluster_info *info) 292 { 293 return info->data; 294 } 295 296 static inline void cluster_set_next(struct swap_cluster_info *info, 297 unsigned int n) 298 { 299 info->data = n; 300 } 301 302 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 303 unsigned int n, unsigned int f) 304 { 305 info->flags = f; 306 info->data = n; 307 } 308 309 static inline bool cluster_is_free(struct swap_cluster_info *info) 310 { 311 return info->flags & CLUSTER_FLAG_FREE; 312 } 313 314 static inline bool cluster_is_null(struct swap_cluster_info *info) 315 { 316 return info->flags & CLUSTER_FLAG_NEXT_NULL; 317 } 318 319 static inline void cluster_set_null(struct swap_cluster_info *info) 320 { 321 info->flags = CLUSTER_FLAG_NEXT_NULL; 322 info->data = 0; 323 } 324 325 static inline bool cluster_is_huge(struct swap_cluster_info *info) 326 { 327 if (IS_ENABLED(CONFIG_THP_SWAP)) 328 return info->flags & CLUSTER_FLAG_HUGE; 329 return false; 330 } 331 332 static inline void cluster_clear_huge(struct swap_cluster_info *info) 333 { 334 info->flags &= ~CLUSTER_FLAG_HUGE; 335 } 336 337 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 338 unsigned long offset) 339 { 340 struct swap_cluster_info *ci; 341 342 ci = si->cluster_info; 343 if (ci) { 344 ci += offset / SWAPFILE_CLUSTER; 345 spin_lock(&ci->lock); 346 } 347 return ci; 348 } 349 350 static inline void unlock_cluster(struct swap_cluster_info *ci) 351 { 352 if (ci) 353 spin_unlock(&ci->lock); 354 } 355 356 /* 357 * Determine the locking method in use for this device. Return 358 * swap_cluster_info if SSD-style cluster-based locking is in place. 359 */ 360 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 361 struct swap_info_struct *si, unsigned long offset) 362 { 363 struct swap_cluster_info *ci; 364 365 /* Try to use fine-grained SSD-style locking if available: */ 366 ci = lock_cluster(si, offset); 367 /* Otherwise, fall back to traditional, coarse locking: */ 368 if (!ci) 369 spin_lock(&si->lock); 370 371 return ci; 372 } 373 374 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 375 struct swap_cluster_info *ci) 376 { 377 if (ci) 378 unlock_cluster(ci); 379 else 380 spin_unlock(&si->lock); 381 } 382 383 static inline bool cluster_list_empty(struct swap_cluster_list *list) 384 { 385 return cluster_is_null(&list->head); 386 } 387 388 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 389 { 390 return cluster_next(&list->head); 391 } 392 393 static void cluster_list_init(struct swap_cluster_list *list) 394 { 395 cluster_set_null(&list->head); 396 cluster_set_null(&list->tail); 397 } 398 399 static void cluster_list_add_tail(struct swap_cluster_list *list, 400 struct swap_cluster_info *ci, 401 unsigned int idx) 402 { 403 if (cluster_list_empty(list)) { 404 cluster_set_next_flag(&list->head, idx, 0); 405 cluster_set_next_flag(&list->tail, idx, 0); 406 } else { 407 struct swap_cluster_info *ci_tail; 408 unsigned int tail = cluster_next(&list->tail); 409 410 /* 411 * Nested cluster lock, but both cluster locks are 412 * only acquired when we held swap_info_struct->lock 413 */ 414 ci_tail = ci + tail; 415 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 416 cluster_set_next(ci_tail, idx); 417 spin_unlock(&ci_tail->lock); 418 cluster_set_next_flag(&list->tail, idx, 0); 419 } 420 } 421 422 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 423 struct swap_cluster_info *ci) 424 { 425 unsigned int idx; 426 427 idx = cluster_next(&list->head); 428 if (cluster_next(&list->tail) == idx) { 429 cluster_set_null(&list->head); 430 cluster_set_null(&list->tail); 431 } else 432 cluster_set_next_flag(&list->head, 433 cluster_next(&ci[idx]), 0); 434 435 return idx; 436 } 437 438 /* Add a cluster to discard list and schedule it to do discard */ 439 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 440 unsigned int idx) 441 { 442 /* 443 * If scan_swap_map() can't find a free cluster, it will check 444 * si->swap_map directly. To make sure the discarding cluster isn't 445 * taken by scan_swap_map(), mark the swap entries bad (occupied). It 446 * will be cleared after discard 447 */ 448 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 449 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 450 451 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 452 453 schedule_work(&si->discard_work); 454 } 455 456 static void __free_cluster(struct swap_info_struct *si, unsigned long idx) 457 { 458 struct swap_cluster_info *ci = si->cluster_info; 459 460 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); 461 cluster_list_add_tail(&si->free_clusters, ci, idx); 462 } 463 464 /* 465 * Doing discard actually. After a cluster discard is finished, the cluster 466 * will be added to free cluster list. caller should hold si->lock. 467 */ 468 static void swap_do_scheduled_discard(struct swap_info_struct *si) 469 { 470 struct swap_cluster_info *info, *ci; 471 unsigned int idx; 472 473 info = si->cluster_info; 474 475 while (!cluster_list_empty(&si->discard_clusters)) { 476 idx = cluster_list_del_first(&si->discard_clusters, info); 477 spin_unlock(&si->lock); 478 479 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 480 SWAPFILE_CLUSTER); 481 482 spin_lock(&si->lock); 483 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 484 __free_cluster(si, idx); 485 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 486 0, SWAPFILE_CLUSTER); 487 unlock_cluster(ci); 488 } 489 } 490 491 static void swap_discard_work(struct work_struct *work) 492 { 493 struct swap_info_struct *si; 494 495 si = container_of(work, struct swap_info_struct, discard_work); 496 497 spin_lock(&si->lock); 498 swap_do_scheduled_discard(si); 499 spin_unlock(&si->lock); 500 } 501 502 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) 503 { 504 struct swap_cluster_info *ci = si->cluster_info; 505 506 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); 507 cluster_list_del_first(&si->free_clusters, ci); 508 cluster_set_count_flag(ci + idx, 0, 0); 509 } 510 511 static void free_cluster(struct swap_info_struct *si, unsigned long idx) 512 { 513 struct swap_cluster_info *ci = si->cluster_info + idx; 514 515 VM_BUG_ON(cluster_count(ci) != 0); 516 /* 517 * If the swap is discardable, prepare discard the cluster 518 * instead of free it immediately. The cluster will be freed 519 * after discard. 520 */ 521 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 522 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 523 swap_cluster_schedule_discard(si, idx); 524 return; 525 } 526 527 __free_cluster(si, idx); 528 } 529 530 /* 531 * The cluster corresponding to page_nr will be used. The cluster will be 532 * removed from free cluster list and its usage counter will be increased. 533 */ 534 static void inc_cluster_info_page(struct swap_info_struct *p, 535 struct swap_cluster_info *cluster_info, unsigned long page_nr) 536 { 537 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 538 539 if (!cluster_info) 540 return; 541 if (cluster_is_free(&cluster_info[idx])) 542 alloc_cluster(p, idx); 543 544 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 545 cluster_set_count(&cluster_info[idx], 546 cluster_count(&cluster_info[idx]) + 1); 547 } 548 549 /* 550 * The cluster corresponding to page_nr decreases one usage. If the usage 551 * counter becomes 0, which means no page in the cluster is in using, we can 552 * optionally discard the cluster and add it to free cluster list. 553 */ 554 static void dec_cluster_info_page(struct swap_info_struct *p, 555 struct swap_cluster_info *cluster_info, unsigned long page_nr) 556 { 557 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 558 559 if (!cluster_info) 560 return; 561 562 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 563 cluster_set_count(&cluster_info[idx], 564 cluster_count(&cluster_info[idx]) - 1); 565 566 if (cluster_count(&cluster_info[idx]) == 0) 567 free_cluster(p, idx); 568 } 569 570 /* 571 * It's possible scan_swap_map() uses a free cluster in the middle of free 572 * cluster list. Avoiding such abuse to avoid list corruption. 573 */ 574 static bool 575 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 576 unsigned long offset) 577 { 578 struct percpu_cluster *percpu_cluster; 579 bool conflict; 580 581 offset /= SWAPFILE_CLUSTER; 582 conflict = !cluster_list_empty(&si->free_clusters) && 583 offset != cluster_list_first(&si->free_clusters) && 584 cluster_is_free(&si->cluster_info[offset]); 585 586 if (!conflict) 587 return false; 588 589 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 590 cluster_set_null(&percpu_cluster->index); 591 return true; 592 } 593 594 /* 595 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 596 * might involve allocating a new cluster for current CPU too. 597 */ 598 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 599 unsigned long *offset, unsigned long *scan_base) 600 { 601 struct percpu_cluster *cluster; 602 struct swap_cluster_info *ci; 603 unsigned long tmp, max; 604 605 new_cluster: 606 cluster = this_cpu_ptr(si->percpu_cluster); 607 if (cluster_is_null(&cluster->index)) { 608 if (!cluster_list_empty(&si->free_clusters)) { 609 cluster->index = si->free_clusters.head; 610 cluster->next = cluster_next(&cluster->index) * 611 SWAPFILE_CLUSTER; 612 } else if (!cluster_list_empty(&si->discard_clusters)) { 613 /* 614 * we don't have free cluster but have some clusters in 615 * discarding, do discard now and reclaim them, then 616 * reread cluster_next_cpu since we dropped si->lock 617 */ 618 swap_do_scheduled_discard(si); 619 *scan_base = this_cpu_read(*si->cluster_next_cpu); 620 *offset = *scan_base; 621 goto new_cluster; 622 } else 623 return false; 624 } 625 626 /* 627 * Other CPUs can use our cluster if they can't find a free cluster, 628 * check if there is still free entry in the cluster 629 */ 630 tmp = cluster->next; 631 max = min_t(unsigned long, si->max, 632 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); 633 if (tmp < max) { 634 ci = lock_cluster(si, tmp); 635 while (tmp < max) { 636 if (!si->swap_map[tmp]) 637 break; 638 tmp++; 639 } 640 unlock_cluster(ci); 641 } 642 if (tmp >= max) { 643 cluster_set_null(&cluster->index); 644 goto new_cluster; 645 } 646 cluster->next = tmp + 1; 647 *offset = tmp; 648 *scan_base = tmp; 649 return true; 650 } 651 652 static void __del_from_avail_list(struct swap_info_struct *p) 653 { 654 int nid; 655 656 for_each_node(nid) 657 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); 658 } 659 660 static void del_from_avail_list(struct swap_info_struct *p) 661 { 662 spin_lock(&swap_avail_lock); 663 __del_from_avail_list(p); 664 spin_unlock(&swap_avail_lock); 665 } 666 667 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 668 unsigned int nr_entries) 669 { 670 unsigned int end = offset + nr_entries - 1; 671 672 if (offset == si->lowest_bit) 673 si->lowest_bit += nr_entries; 674 if (end == si->highest_bit) 675 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries); 676 si->inuse_pages += nr_entries; 677 if (si->inuse_pages == si->pages) { 678 si->lowest_bit = si->max; 679 si->highest_bit = 0; 680 del_from_avail_list(si); 681 } 682 } 683 684 static void add_to_avail_list(struct swap_info_struct *p) 685 { 686 int nid; 687 688 spin_lock(&swap_avail_lock); 689 for_each_node(nid) { 690 WARN_ON(!plist_node_empty(&p->avail_lists[nid])); 691 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); 692 } 693 spin_unlock(&swap_avail_lock); 694 } 695 696 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 697 unsigned int nr_entries) 698 { 699 unsigned long begin = offset; 700 unsigned long end = offset + nr_entries - 1; 701 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 702 703 if (offset < si->lowest_bit) 704 si->lowest_bit = offset; 705 if (end > si->highest_bit) { 706 bool was_full = !si->highest_bit; 707 708 WRITE_ONCE(si->highest_bit, end); 709 if (was_full && (si->flags & SWP_WRITEOK)) 710 add_to_avail_list(si); 711 } 712 atomic_long_add(nr_entries, &nr_swap_pages); 713 si->inuse_pages -= nr_entries; 714 if (si->flags & SWP_BLKDEV) 715 swap_slot_free_notify = 716 si->bdev->bd_disk->fops->swap_slot_free_notify; 717 else 718 swap_slot_free_notify = NULL; 719 while (offset <= end) { 720 frontswap_invalidate_page(si->type, offset); 721 if (swap_slot_free_notify) 722 swap_slot_free_notify(si->bdev, offset); 723 offset++; 724 } 725 clear_shadow_from_swap_cache(si->type, begin, end); 726 } 727 728 static void set_cluster_next(struct swap_info_struct *si, unsigned long next) 729 { 730 unsigned long prev; 731 732 if (!(si->flags & SWP_SOLIDSTATE)) { 733 si->cluster_next = next; 734 return; 735 } 736 737 prev = this_cpu_read(*si->cluster_next_cpu); 738 /* 739 * Cross the swap address space size aligned trunk, choose 740 * another trunk randomly to avoid lock contention on swap 741 * address space if possible. 742 */ 743 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) != 744 (next >> SWAP_ADDRESS_SPACE_SHIFT)) { 745 /* No free swap slots available */ 746 if (si->highest_bit <= si->lowest_bit) 747 return; 748 next = si->lowest_bit + 749 prandom_u32_max(si->highest_bit - si->lowest_bit + 1); 750 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES); 751 next = max_t(unsigned int, next, si->lowest_bit); 752 } 753 this_cpu_write(*si->cluster_next_cpu, next); 754 } 755 756 static int scan_swap_map_slots(struct swap_info_struct *si, 757 unsigned char usage, int nr, 758 swp_entry_t slots[]) 759 { 760 struct swap_cluster_info *ci; 761 unsigned long offset; 762 unsigned long scan_base; 763 unsigned long last_in_cluster = 0; 764 int latency_ration = LATENCY_LIMIT; 765 int n_ret = 0; 766 bool scanned_many = false; 767 768 /* 769 * We try to cluster swap pages by allocating them sequentially 770 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 771 * way, however, we resort to first-free allocation, starting 772 * a new cluster. This prevents us from scattering swap pages 773 * all over the entire swap partition, so that we reduce 774 * overall disk seek times between swap pages. -- sct 775 * But we do now try to find an empty cluster. -Andrea 776 * And we let swap pages go all over an SSD partition. Hugh 777 */ 778 779 si->flags += SWP_SCANNING; 780 /* 781 * Use percpu scan base for SSD to reduce lock contention on 782 * cluster and swap cache. For HDD, sequential access is more 783 * important. 784 */ 785 if (si->flags & SWP_SOLIDSTATE) 786 scan_base = this_cpu_read(*si->cluster_next_cpu); 787 else 788 scan_base = si->cluster_next; 789 offset = scan_base; 790 791 /* SSD algorithm */ 792 if (si->cluster_info) { 793 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 794 goto scan; 795 } else if (unlikely(!si->cluster_nr--)) { 796 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 797 si->cluster_nr = SWAPFILE_CLUSTER - 1; 798 goto checks; 799 } 800 801 spin_unlock(&si->lock); 802 803 /* 804 * If seek is expensive, start searching for new cluster from 805 * start of partition, to minimize the span of allocated swap. 806 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 807 * case, just handled by scan_swap_map_try_ssd_cluster() above. 808 */ 809 scan_base = offset = si->lowest_bit; 810 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 811 812 /* Locate the first empty (unaligned) cluster */ 813 for (; last_in_cluster <= si->highest_bit; offset++) { 814 if (si->swap_map[offset]) 815 last_in_cluster = offset + SWAPFILE_CLUSTER; 816 else if (offset == last_in_cluster) { 817 spin_lock(&si->lock); 818 offset -= SWAPFILE_CLUSTER - 1; 819 si->cluster_next = offset; 820 si->cluster_nr = SWAPFILE_CLUSTER - 1; 821 goto checks; 822 } 823 if (unlikely(--latency_ration < 0)) { 824 cond_resched(); 825 latency_ration = LATENCY_LIMIT; 826 } 827 } 828 829 offset = scan_base; 830 spin_lock(&si->lock); 831 si->cluster_nr = SWAPFILE_CLUSTER - 1; 832 } 833 834 checks: 835 if (si->cluster_info) { 836 while (scan_swap_map_ssd_cluster_conflict(si, offset)) { 837 /* take a break if we already got some slots */ 838 if (n_ret) 839 goto done; 840 if (!scan_swap_map_try_ssd_cluster(si, &offset, 841 &scan_base)) 842 goto scan; 843 } 844 } 845 if (!(si->flags & SWP_WRITEOK)) 846 goto no_page; 847 if (!si->highest_bit) 848 goto no_page; 849 if (offset > si->highest_bit) 850 scan_base = offset = si->lowest_bit; 851 852 ci = lock_cluster(si, offset); 853 /* reuse swap entry of cache-only swap if not busy. */ 854 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 855 int swap_was_freed; 856 unlock_cluster(ci); 857 spin_unlock(&si->lock); 858 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 859 spin_lock(&si->lock); 860 /* entry was freed successfully, try to use this again */ 861 if (swap_was_freed) 862 goto checks; 863 goto scan; /* check next one */ 864 } 865 866 if (si->swap_map[offset]) { 867 unlock_cluster(ci); 868 if (!n_ret) 869 goto scan; 870 else 871 goto done; 872 } 873 WRITE_ONCE(si->swap_map[offset], usage); 874 inc_cluster_info_page(si, si->cluster_info, offset); 875 unlock_cluster(ci); 876 877 swap_range_alloc(si, offset, 1); 878 slots[n_ret++] = swp_entry(si->type, offset); 879 880 /* got enough slots or reach max slots? */ 881 if ((n_ret == nr) || (offset >= si->highest_bit)) 882 goto done; 883 884 /* search for next available slot */ 885 886 /* time to take a break? */ 887 if (unlikely(--latency_ration < 0)) { 888 if (n_ret) 889 goto done; 890 spin_unlock(&si->lock); 891 cond_resched(); 892 spin_lock(&si->lock); 893 latency_ration = LATENCY_LIMIT; 894 } 895 896 /* try to get more slots in cluster */ 897 if (si->cluster_info) { 898 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 899 goto checks; 900 } else if (si->cluster_nr && !si->swap_map[++offset]) { 901 /* non-ssd case, still more slots in cluster? */ 902 --si->cluster_nr; 903 goto checks; 904 } 905 906 /* 907 * Even if there's no free clusters available (fragmented), 908 * try to scan a little more quickly with lock held unless we 909 * have scanned too many slots already. 910 */ 911 if (!scanned_many) { 912 unsigned long scan_limit; 913 914 if (offset < scan_base) 915 scan_limit = scan_base; 916 else 917 scan_limit = si->highest_bit; 918 for (; offset <= scan_limit && --latency_ration > 0; 919 offset++) { 920 if (!si->swap_map[offset]) 921 goto checks; 922 } 923 } 924 925 done: 926 set_cluster_next(si, offset + 1); 927 si->flags -= SWP_SCANNING; 928 return n_ret; 929 930 scan: 931 spin_unlock(&si->lock); 932 while (++offset <= READ_ONCE(si->highest_bit)) { 933 if (data_race(!si->swap_map[offset])) { 934 spin_lock(&si->lock); 935 goto checks; 936 } 937 if (vm_swap_full() && 938 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 939 spin_lock(&si->lock); 940 goto checks; 941 } 942 if (unlikely(--latency_ration < 0)) { 943 cond_resched(); 944 latency_ration = LATENCY_LIMIT; 945 scanned_many = true; 946 } 947 } 948 offset = si->lowest_bit; 949 while (offset < scan_base) { 950 if (data_race(!si->swap_map[offset])) { 951 spin_lock(&si->lock); 952 goto checks; 953 } 954 if (vm_swap_full() && 955 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 956 spin_lock(&si->lock); 957 goto checks; 958 } 959 if (unlikely(--latency_ration < 0)) { 960 cond_resched(); 961 latency_ration = LATENCY_LIMIT; 962 scanned_many = true; 963 } 964 offset++; 965 } 966 spin_lock(&si->lock); 967 968 no_page: 969 si->flags -= SWP_SCANNING; 970 return n_ret; 971 } 972 973 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) 974 { 975 unsigned long idx; 976 struct swap_cluster_info *ci; 977 unsigned long offset, i; 978 unsigned char *map; 979 980 /* 981 * Should not even be attempting cluster allocations when huge 982 * page swap is disabled. Warn and fail the allocation. 983 */ 984 if (!IS_ENABLED(CONFIG_THP_SWAP)) { 985 VM_WARN_ON_ONCE(1); 986 return 0; 987 } 988 989 if (cluster_list_empty(&si->free_clusters)) 990 return 0; 991 992 idx = cluster_list_first(&si->free_clusters); 993 offset = idx * SWAPFILE_CLUSTER; 994 ci = lock_cluster(si, offset); 995 alloc_cluster(si, idx); 996 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); 997 998 map = si->swap_map + offset; 999 for (i = 0; i < SWAPFILE_CLUSTER; i++) 1000 map[i] = SWAP_HAS_CACHE; 1001 unlock_cluster(ci); 1002 swap_range_alloc(si, offset, SWAPFILE_CLUSTER); 1003 *slot = swp_entry(si->type, offset); 1004 1005 return 1; 1006 } 1007 1008 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) 1009 { 1010 unsigned long offset = idx * SWAPFILE_CLUSTER; 1011 struct swap_cluster_info *ci; 1012 1013 ci = lock_cluster(si, offset); 1014 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER); 1015 cluster_set_count_flag(ci, 0, 0); 1016 free_cluster(si, idx); 1017 unlock_cluster(ci); 1018 swap_range_free(si, offset, SWAPFILE_CLUSTER); 1019 } 1020 1021 static unsigned long scan_swap_map(struct swap_info_struct *si, 1022 unsigned char usage) 1023 { 1024 swp_entry_t entry; 1025 int n_ret; 1026 1027 n_ret = scan_swap_map_slots(si, usage, 1, &entry); 1028 1029 if (n_ret) 1030 return swp_offset(entry); 1031 else 1032 return 0; 1033 1034 } 1035 1036 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size) 1037 { 1038 unsigned long size = swap_entry_size(entry_size); 1039 struct swap_info_struct *si, *next; 1040 long avail_pgs; 1041 int n_ret = 0; 1042 int node; 1043 1044 /* Only single cluster request supported */ 1045 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER); 1046 1047 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 1048 if (avail_pgs <= 0) 1049 goto noswap; 1050 1051 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs); 1052 1053 atomic_long_sub(n_goal * size, &nr_swap_pages); 1054 1055 spin_lock(&swap_avail_lock); 1056 1057 start_over: 1058 node = numa_node_id(); 1059 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1060 /* requeue si to after same-priority siblings */ 1061 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1062 spin_unlock(&swap_avail_lock); 1063 spin_lock(&si->lock); 1064 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 1065 spin_lock(&swap_avail_lock); 1066 if (plist_node_empty(&si->avail_lists[node])) { 1067 spin_unlock(&si->lock); 1068 goto nextsi; 1069 } 1070 WARN(!si->highest_bit, 1071 "swap_info %d in list but !highest_bit\n", 1072 si->type); 1073 WARN(!(si->flags & SWP_WRITEOK), 1074 "swap_info %d in list but !SWP_WRITEOK\n", 1075 si->type); 1076 __del_from_avail_list(si); 1077 spin_unlock(&si->lock); 1078 goto nextsi; 1079 } 1080 if (size == SWAPFILE_CLUSTER) { 1081 if (!(si->flags & SWP_FS)) 1082 n_ret = swap_alloc_cluster(si, swp_entries); 1083 } else 1084 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 1085 n_goal, swp_entries); 1086 spin_unlock(&si->lock); 1087 if (n_ret || size == SWAPFILE_CLUSTER) 1088 goto check_out; 1089 pr_debug("scan_swap_map of si %d failed to find offset\n", 1090 si->type); 1091 1092 spin_lock(&swap_avail_lock); 1093 nextsi: 1094 /* 1095 * if we got here, it's likely that si was almost full before, 1096 * and since scan_swap_map() can drop the si->lock, multiple 1097 * callers probably all tried to get a page from the same si 1098 * and it filled up before we could get one; or, the si filled 1099 * up between us dropping swap_avail_lock and taking si->lock. 1100 * Since we dropped the swap_avail_lock, the swap_avail_head 1101 * list may have been modified; so if next is still in the 1102 * swap_avail_head list then try it, otherwise start over 1103 * if we have not gotten any slots. 1104 */ 1105 if (plist_node_empty(&next->avail_lists[node])) 1106 goto start_over; 1107 } 1108 1109 spin_unlock(&swap_avail_lock); 1110 1111 check_out: 1112 if (n_ret < n_goal) 1113 atomic_long_add((long)(n_goal - n_ret) * size, 1114 &nr_swap_pages); 1115 noswap: 1116 return n_ret; 1117 } 1118 1119 /* The only caller of this function is now suspend routine */ 1120 swp_entry_t get_swap_page_of_type(int type) 1121 { 1122 struct swap_info_struct *si = swap_type_to_swap_info(type); 1123 pgoff_t offset; 1124 1125 if (!si) 1126 goto fail; 1127 1128 spin_lock(&si->lock); 1129 if (si->flags & SWP_WRITEOK) { 1130 atomic_long_dec(&nr_swap_pages); 1131 /* This is called for allocating swap entry, not cache */ 1132 offset = scan_swap_map(si, 1); 1133 if (offset) { 1134 spin_unlock(&si->lock); 1135 return swp_entry(type, offset); 1136 } 1137 atomic_long_inc(&nr_swap_pages); 1138 } 1139 spin_unlock(&si->lock); 1140 fail: 1141 return (swp_entry_t) {0}; 1142 } 1143 1144 static struct swap_info_struct *__swap_info_get(swp_entry_t entry) 1145 { 1146 struct swap_info_struct *p; 1147 unsigned long offset; 1148 1149 if (!entry.val) 1150 goto out; 1151 p = swp_swap_info(entry); 1152 if (!p) 1153 goto bad_nofile; 1154 if (data_race(!(p->flags & SWP_USED))) 1155 goto bad_device; 1156 offset = swp_offset(entry); 1157 if (offset >= p->max) 1158 goto bad_offset; 1159 return p; 1160 1161 bad_offset: 1162 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val); 1163 goto out; 1164 bad_device: 1165 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val); 1166 goto out; 1167 bad_nofile: 1168 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val); 1169 out: 1170 return NULL; 1171 } 1172 1173 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1174 { 1175 struct swap_info_struct *p; 1176 1177 p = __swap_info_get(entry); 1178 if (!p) 1179 goto out; 1180 if (data_race(!p->swap_map[swp_offset(entry)])) 1181 goto bad_free; 1182 return p; 1183 1184 bad_free: 1185 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val); 1186 goto out; 1187 out: 1188 return NULL; 1189 } 1190 1191 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 1192 { 1193 struct swap_info_struct *p; 1194 1195 p = _swap_info_get(entry); 1196 if (p) 1197 spin_lock(&p->lock); 1198 return p; 1199 } 1200 1201 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1202 struct swap_info_struct *q) 1203 { 1204 struct swap_info_struct *p; 1205 1206 p = _swap_info_get(entry); 1207 1208 if (p != q) { 1209 if (q != NULL) 1210 spin_unlock(&q->lock); 1211 if (p != NULL) 1212 spin_lock(&p->lock); 1213 } 1214 return p; 1215 } 1216 1217 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, 1218 unsigned long offset, 1219 unsigned char usage) 1220 { 1221 unsigned char count; 1222 unsigned char has_cache; 1223 1224 count = p->swap_map[offset]; 1225 1226 has_cache = count & SWAP_HAS_CACHE; 1227 count &= ~SWAP_HAS_CACHE; 1228 1229 if (usage == SWAP_HAS_CACHE) { 1230 VM_BUG_ON(!has_cache); 1231 has_cache = 0; 1232 } else if (count == SWAP_MAP_SHMEM) { 1233 /* 1234 * Or we could insist on shmem.c using a special 1235 * swap_shmem_free() and free_shmem_swap_and_cache()... 1236 */ 1237 count = 0; 1238 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1239 if (count == COUNT_CONTINUED) { 1240 if (swap_count_continued(p, offset, count)) 1241 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1242 else 1243 count = SWAP_MAP_MAX; 1244 } else 1245 count--; 1246 } 1247 1248 usage = count | has_cache; 1249 if (usage) 1250 WRITE_ONCE(p->swap_map[offset], usage); 1251 else 1252 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE); 1253 1254 return usage; 1255 } 1256 1257 /* 1258 * Check whether swap entry is valid in the swap device. If so, 1259 * return pointer to swap_info_struct, and keep the swap entry valid 1260 * via preventing the swap device from being swapoff, until 1261 * put_swap_device() is called. Otherwise return NULL. 1262 * 1263 * The entirety of the RCU read critical section must come before the 1264 * return from or after the call to synchronize_rcu() in 1265 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is 1266 * true, the si->map, si->cluster_info, etc. must be valid in the 1267 * critical section. 1268 * 1269 * Notice that swapoff or swapoff+swapon can still happen before the 1270 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock() 1271 * in put_swap_device() if there isn't any other way to prevent 1272 * swapoff, such as page lock, page table lock, etc. The caller must 1273 * be prepared for that. For example, the following situation is 1274 * possible. 1275 * 1276 * CPU1 CPU2 1277 * do_swap_page() 1278 * ... swapoff+swapon 1279 * __read_swap_cache_async() 1280 * swapcache_prepare() 1281 * __swap_duplicate() 1282 * // check swap_map 1283 * // verify PTE not changed 1284 * 1285 * In __swap_duplicate(), the swap_map need to be checked before 1286 * changing partly because the specified swap entry may be for another 1287 * swap device which has been swapoff. And in do_swap_page(), after 1288 * the page is read from the swap device, the PTE is verified not 1289 * changed with the page table locked to check whether the swap device 1290 * has been swapoff or swapoff+swapon. 1291 */ 1292 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1293 { 1294 struct swap_info_struct *si; 1295 unsigned long offset; 1296 1297 if (!entry.val) 1298 goto out; 1299 si = swp_swap_info(entry); 1300 if (!si) 1301 goto bad_nofile; 1302 1303 rcu_read_lock(); 1304 if (data_race(!(si->flags & SWP_VALID))) 1305 goto unlock_out; 1306 offset = swp_offset(entry); 1307 if (offset >= si->max) 1308 goto unlock_out; 1309 1310 return si; 1311 bad_nofile: 1312 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1313 out: 1314 return NULL; 1315 unlock_out: 1316 rcu_read_unlock(); 1317 return NULL; 1318 } 1319 1320 static unsigned char __swap_entry_free(struct swap_info_struct *p, 1321 swp_entry_t entry) 1322 { 1323 struct swap_cluster_info *ci; 1324 unsigned long offset = swp_offset(entry); 1325 unsigned char usage; 1326 1327 ci = lock_cluster_or_swap_info(p, offset); 1328 usage = __swap_entry_free_locked(p, offset, 1); 1329 unlock_cluster_or_swap_info(p, ci); 1330 if (!usage) 1331 free_swap_slot(entry); 1332 1333 return usage; 1334 } 1335 1336 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 1337 { 1338 struct swap_cluster_info *ci; 1339 unsigned long offset = swp_offset(entry); 1340 unsigned char count; 1341 1342 ci = lock_cluster(p, offset); 1343 count = p->swap_map[offset]; 1344 VM_BUG_ON(count != SWAP_HAS_CACHE); 1345 p->swap_map[offset] = 0; 1346 dec_cluster_info_page(p, p->cluster_info, offset); 1347 unlock_cluster(ci); 1348 1349 mem_cgroup_uncharge_swap(entry, 1); 1350 swap_range_free(p, offset, 1); 1351 } 1352 1353 /* 1354 * Caller has made sure that the swap device corresponding to entry 1355 * is still around or has not been recycled. 1356 */ 1357 void swap_free(swp_entry_t entry) 1358 { 1359 struct swap_info_struct *p; 1360 1361 p = _swap_info_get(entry); 1362 if (p) 1363 __swap_entry_free(p, entry); 1364 } 1365 1366 /* 1367 * Called after dropping swapcache to decrease refcnt to swap entries. 1368 */ 1369 void put_swap_page(struct page *page, swp_entry_t entry) 1370 { 1371 unsigned long offset = swp_offset(entry); 1372 unsigned long idx = offset / SWAPFILE_CLUSTER; 1373 struct swap_cluster_info *ci; 1374 struct swap_info_struct *si; 1375 unsigned char *map; 1376 unsigned int i, free_entries = 0; 1377 unsigned char val; 1378 int size = swap_entry_size(thp_nr_pages(page)); 1379 1380 si = _swap_info_get(entry); 1381 if (!si) 1382 return; 1383 1384 ci = lock_cluster_or_swap_info(si, offset); 1385 if (size == SWAPFILE_CLUSTER) { 1386 VM_BUG_ON(!cluster_is_huge(ci)); 1387 map = si->swap_map + offset; 1388 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1389 val = map[i]; 1390 VM_BUG_ON(!(val & SWAP_HAS_CACHE)); 1391 if (val == SWAP_HAS_CACHE) 1392 free_entries++; 1393 } 1394 cluster_clear_huge(ci); 1395 if (free_entries == SWAPFILE_CLUSTER) { 1396 unlock_cluster_or_swap_info(si, ci); 1397 spin_lock(&si->lock); 1398 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); 1399 swap_free_cluster(si, idx); 1400 spin_unlock(&si->lock); 1401 return; 1402 } 1403 } 1404 for (i = 0; i < size; i++, entry.val++) { 1405 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { 1406 unlock_cluster_or_swap_info(si, ci); 1407 free_swap_slot(entry); 1408 if (i == size - 1) 1409 return; 1410 lock_cluster_or_swap_info(si, offset); 1411 } 1412 } 1413 unlock_cluster_or_swap_info(si, ci); 1414 } 1415 1416 #ifdef CONFIG_THP_SWAP 1417 int split_swap_cluster(swp_entry_t entry) 1418 { 1419 struct swap_info_struct *si; 1420 struct swap_cluster_info *ci; 1421 unsigned long offset = swp_offset(entry); 1422 1423 si = _swap_info_get(entry); 1424 if (!si) 1425 return -EBUSY; 1426 ci = lock_cluster(si, offset); 1427 cluster_clear_huge(ci); 1428 unlock_cluster(ci); 1429 return 0; 1430 } 1431 #endif 1432 1433 static int swp_entry_cmp(const void *ent1, const void *ent2) 1434 { 1435 const swp_entry_t *e1 = ent1, *e2 = ent2; 1436 1437 return (int)swp_type(*e1) - (int)swp_type(*e2); 1438 } 1439 1440 void swapcache_free_entries(swp_entry_t *entries, int n) 1441 { 1442 struct swap_info_struct *p, *prev; 1443 int i; 1444 1445 if (n <= 0) 1446 return; 1447 1448 prev = NULL; 1449 p = NULL; 1450 1451 /* 1452 * Sort swap entries by swap device, so each lock is only taken once. 1453 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1454 * so low that it isn't necessary to optimize further. 1455 */ 1456 if (nr_swapfiles > 1) 1457 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1458 for (i = 0; i < n; ++i) { 1459 p = swap_info_get_cont(entries[i], prev); 1460 if (p) 1461 swap_entry_free(p, entries[i]); 1462 prev = p; 1463 } 1464 if (p) 1465 spin_unlock(&p->lock); 1466 } 1467 1468 /* 1469 * How many references to page are currently swapped out? 1470 * This does not give an exact answer when swap count is continued, 1471 * but does include the high COUNT_CONTINUED flag to allow for that. 1472 */ 1473 int page_swapcount(struct page *page) 1474 { 1475 int count = 0; 1476 struct swap_info_struct *p; 1477 struct swap_cluster_info *ci; 1478 swp_entry_t entry; 1479 unsigned long offset; 1480 1481 entry.val = page_private(page); 1482 p = _swap_info_get(entry); 1483 if (p) { 1484 offset = swp_offset(entry); 1485 ci = lock_cluster_or_swap_info(p, offset); 1486 count = swap_count(p->swap_map[offset]); 1487 unlock_cluster_or_swap_info(p, ci); 1488 } 1489 return count; 1490 } 1491 1492 int __swap_count(swp_entry_t entry) 1493 { 1494 struct swap_info_struct *si; 1495 pgoff_t offset = swp_offset(entry); 1496 int count = 0; 1497 1498 si = get_swap_device(entry); 1499 if (si) { 1500 count = swap_count(si->swap_map[offset]); 1501 put_swap_device(si); 1502 } 1503 return count; 1504 } 1505 1506 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1507 { 1508 int count = 0; 1509 pgoff_t offset = swp_offset(entry); 1510 struct swap_cluster_info *ci; 1511 1512 ci = lock_cluster_or_swap_info(si, offset); 1513 count = swap_count(si->swap_map[offset]); 1514 unlock_cluster_or_swap_info(si, ci); 1515 return count; 1516 } 1517 1518 /* 1519 * How many references to @entry are currently swapped out? 1520 * This does not give an exact answer when swap count is continued, 1521 * but does include the high COUNT_CONTINUED flag to allow for that. 1522 */ 1523 int __swp_swapcount(swp_entry_t entry) 1524 { 1525 int count = 0; 1526 struct swap_info_struct *si; 1527 1528 si = get_swap_device(entry); 1529 if (si) { 1530 count = swap_swapcount(si, entry); 1531 put_swap_device(si); 1532 } 1533 return count; 1534 } 1535 1536 /* 1537 * How many references to @entry are currently swapped out? 1538 * This considers COUNT_CONTINUED so it returns exact answer. 1539 */ 1540 int swp_swapcount(swp_entry_t entry) 1541 { 1542 int count, tmp_count, n; 1543 struct swap_info_struct *p; 1544 struct swap_cluster_info *ci; 1545 struct page *page; 1546 pgoff_t offset; 1547 unsigned char *map; 1548 1549 p = _swap_info_get(entry); 1550 if (!p) 1551 return 0; 1552 1553 offset = swp_offset(entry); 1554 1555 ci = lock_cluster_or_swap_info(p, offset); 1556 1557 count = swap_count(p->swap_map[offset]); 1558 if (!(count & COUNT_CONTINUED)) 1559 goto out; 1560 1561 count &= ~COUNT_CONTINUED; 1562 n = SWAP_MAP_MAX + 1; 1563 1564 page = vmalloc_to_page(p->swap_map + offset); 1565 offset &= ~PAGE_MASK; 1566 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1567 1568 do { 1569 page = list_next_entry(page, lru); 1570 map = kmap_atomic(page); 1571 tmp_count = map[offset]; 1572 kunmap_atomic(map); 1573 1574 count += (tmp_count & ~COUNT_CONTINUED) * n; 1575 n *= (SWAP_CONT_MAX + 1); 1576 } while (tmp_count & COUNT_CONTINUED); 1577 out: 1578 unlock_cluster_or_swap_info(p, ci); 1579 return count; 1580 } 1581 1582 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1583 swp_entry_t entry) 1584 { 1585 struct swap_cluster_info *ci; 1586 unsigned char *map = si->swap_map; 1587 unsigned long roffset = swp_offset(entry); 1588 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); 1589 int i; 1590 bool ret = false; 1591 1592 ci = lock_cluster_or_swap_info(si, offset); 1593 if (!ci || !cluster_is_huge(ci)) { 1594 if (swap_count(map[roffset])) 1595 ret = true; 1596 goto unlock_out; 1597 } 1598 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1599 if (swap_count(map[offset + i])) { 1600 ret = true; 1601 break; 1602 } 1603 } 1604 unlock_out: 1605 unlock_cluster_or_swap_info(si, ci); 1606 return ret; 1607 } 1608 1609 static bool page_swapped(struct page *page) 1610 { 1611 swp_entry_t entry; 1612 struct swap_info_struct *si; 1613 1614 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) 1615 return page_swapcount(page) != 0; 1616 1617 page = compound_head(page); 1618 entry.val = page_private(page); 1619 si = _swap_info_get(entry); 1620 if (si) 1621 return swap_page_trans_huge_swapped(si, entry); 1622 return false; 1623 } 1624 1625 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount, 1626 int *total_swapcount) 1627 { 1628 int i, map_swapcount, _total_mapcount, _total_swapcount; 1629 unsigned long offset = 0; 1630 struct swap_info_struct *si; 1631 struct swap_cluster_info *ci = NULL; 1632 unsigned char *map = NULL; 1633 int mapcount, swapcount = 0; 1634 1635 /* hugetlbfs shouldn't call it */ 1636 VM_BUG_ON_PAGE(PageHuge(page), page); 1637 1638 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) { 1639 mapcount = page_trans_huge_mapcount(page, total_mapcount); 1640 if (PageSwapCache(page)) 1641 swapcount = page_swapcount(page); 1642 if (total_swapcount) 1643 *total_swapcount = swapcount; 1644 return mapcount + swapcount; 1645 } 1646 1647 page = compound_head(page); 1648 1649 _total_mapcount = _total_swapcount = map_swapcount = 0; 1650 if (PageSwapCache(page)) { 1651 swp_entry_t entry; 1652 1653 entry.val = page_private(page); 1654 si = _swap_info_get(entry); 1655 if (si) { 1656 map = si->swap_map; 1657 offset = swp_offset(entry); 1658 } 1659 } 1660 if (map) 1661 ci = lock_cluster(si, offset); 1662 for (i = 0; i < HPAGE_PMD_NR; i++) { 1663 mapcount = atomic_read(&page[i]._mapcount) + 1; 1664 _total_mapcount += mapcount; 1665 if (map) { 1666 swapcount = swap_count(map[offset + i]); 1667 _total_swapcount += swapcount; 1668 } 1669 map_swapcount = max(map_swapcount, mapcount + swapcount); 1670 } 1671 unlock_cluster(ci); 1672 if (PageDoubleMap(page)) { 1673 map_swapcount -= 1; 1674 _total_mapcount -= HPAGE_PMD_NR; 1675 } 1676 mapcount = compound_mapcount(page); 1677 map_swapcount += mapcount; 1678 _total_mapcount += mapcount; 1679 if (total_mapcount) 1680 *total_mapcount = _total_mapcount; 1681 if (total_swapcount) 1682 *total_swapcount = _total_swapcount; 1683 1684 return map_swapcount; 1685 } 1686 1687 /* 1688 * We can write to an anon page without COW if there are no other references 1689 * to it. And as a side-effect, free up its swap: because the old content 1690 * on disk will never be read, and seeking back there to write new content 1691 * later would only waste time away from clustering. 1692 * 1693 * NOTE: total_map_swapcount should not be relied upon by the caller if 1694 * reuse_swap_page() returns false, but it may be always overwritten 1695 * (see the other implementation for CONFIG_SWAP=n). 1696 */ 1697 bool reuse_swap_page(struct page *page, int *total_map_swapcount) 1698 { 1699 int count, total_mapcount, total_swapcount; 1700 1701 VM_BUG_ON_PAGE(!PageLocked(page), page); 1702 if (unlikely(PageKsm(page))) 1703 return false; 1704 count = page_trans_huge_map_swapcount(page, &total_mapcount, 1705 &total_swapcount); 1706 if (total_map_swapcount) 1707 *total_map_swapcount = total_mapcount + total_swapcount; 1708 if (count == 1 && PageSwapCache(page) && 1709 (likely(!PageTransCompound(page)) || 1710 /* The remaining swap count will be freed soon */ 1711 total_swapcount == page_swapcount(page))) { 1712 if (!PageWriteback(page)) { 1713 page = compound_head(page); 1714 delete_from_swap_cache(page); 1715 SetPageDirty(page); 1716 } else { 1717 swp_entry_t entry; 1718 struct swap_info_struct *p; 1719 1720 entry.val = page_private(page); 1721 p = swap_info_get(entry); 1722 if (p->flags & SWP_STABLE_WRITES) { 1723 spin_unlock(&p->lock); 1724 return false; 1725 } 1726 spin_unlock(&p->lock); 1727 } 1728 } 1729 1730 return count <= 1; 1731 } 1732 1733 /* 1734 * If swap is getting full, or if there are no more mappings of this page, 1735 * then try_to_free_swap is called to free its swap space. 1736 */ 1737 int try_to_free_swap(struct page *page) 1738 { 1739 VM_BUG_ON_PAGE(!PageLocked(page), page); 1740 1741 if (!PageSwapCache(page)) 1742 return 0; 1743 if (PageWriteback(page)) 1744 return 0; 1745 if (page_swapped(page)) 1746 return 0; 1747 1748 /* 1749 * Once hibernation has begun to create its image of memory, 1750 * there's a danger that one of the calls to try_to_free_swap() 1751 * - most probably a call from __try_to_reclaim_swap() while 1752 * hibernation is allocating its own swap pages for the image, 1753 * but conceivably even a call from memory reclaim - will free 1754 * the swap from a page which has already been recorded in the 1755 * image as a clean swapcache page, and then reuse its swap for 1756 * another page of the image. On waking from hibernation, the 1757 * original page might be freed under memory pressure, then 1758 * later read back in from swap, now with the wrong data. 1759 * 1760 * Hibernation suspends storage while it is writing the image 1761 * to disk so check that here. 1762 */ 1763 if (pm_suspended_storage()) 1764 return 0; 1765 1766 page = compound_head(page); 1767 delete_from_swap_cache(page); 1768 SetPageDirty(page); 1769 return 1; 1770 } 1771 1772 /* 1773 * Free the swap entry like above, but also try to 1774 * free the page cache entry if it is the last user. 1775 */ 1776 int free_swap_and_cache(swp_entry_t entry) 1777 { 1778 struct swap_info_struct *p; 1779 unsigned char count; 1780 1781 if (non_swap_entry(entry)) 1782 return 1; 1783 1784 p = _swap_info_get(entry); 1785 if (p) { 1786 count = __swap_entry_free(p, entry); 1787 if (count == SWAP_HAS_CACHE && 1788 !swap_page_trans_huge_swapped(p, entry)) 1789 __try_to_reclaim_swap(p, swp_offset(entry), 1790 TTRS_UNMAPPED | TTRS_FULL); 1791 } 1792 return p != NULL; 1793 } 1794 1795 #ifdef CONFIG_HIBERNATION 1796 /* 1797 * Find the swap type that corresponds to given device (if any). 1798 * 1799 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1800 * from 0, in which the swap header is expected to be located. 1801 * 1802 * This is needed for the suspend to disk (aka swsusp). 1803 */ 1804 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 1805 { 1806 struct block_device *bdev = NULL; 1807 int type; 1808 1809 if (device) 1810 bdev = bdget(device); 1811 1812 spin_lock(&swap_lock); 1813 for (type = 0; type < nr_swapfiles; type++) { 1814 struct swap_info_struct *sis = swap_info[type]; 1815 1816 if (!(sis->flags & SWP_WRITEOK)) 1817 continue; 1818 1819 if (!bdev) { 1820 if (bdev_p) 1821 *bdev_p = bdgrab(sis->bdev); 1822 1823 spin_unlock(&swap_lock); 1824 return type; 1825 } 1826 if (bdev == sis->bdev) { 1827 struct swap_extent *se = first_se(sis); 1828 1829 if (se->start_block == offset) { 1830 if (bdev_p) 1831 *bdev_p = bdgrab(sis->bdev); 1832 1833 spin_unlock(&swap_lock); 1834 bdput(bdev); 1835 return type; 1836 } 1837 } 1838 } 1839 spin_unlock(&swap_lock); 1840 if (bdev) 1841 bdput(bdev); 1842 1843 return -ENODEV; 1844 } 1845 1846 /* 1847 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1848 * corresponding to given index in swap_info (swap type). 1849 */ 1850 sector_t swapdev_block(int type, pgoff_t offset) 1851 { 1852 struct block_device *bdev; 1853 struct swap_info_struct *si = swap_type_to_swap_info(type); 1854 1855 if (!si || !(si->flags & SWP_WRITEOK)) 1856 return 0; 1857 return map_swap_entry(swp_entry(type, offset), &bdev); 1858 } 1859 1860 /* 1861 * Return either the total number of swap pages of given type, or the number 1862 * of free pages of that type (depending on @free) 1863 * 1864 * This is needed for software suspend 1865 */ 1866 unsigned int count_swap_pages(int type, int free) 1867 { 1868 unsigned int n = 0; 1869 1870 spin_lock(&swap_lock); 1871 if ((unsigned int)type < nr_swapfiles) { 1872 struct swap_info_struct *sis = swap_info[type]; 1873 1874 spin_lock(&sis->lock); 1875 if (sis->flags & SWP_WRITEOK) { 1876 n = sis->pages; 1877 if (free) 1878 n -= sis->inuse_pages; 1879 } 1880 spin_unlock(&sis->lock); 1881 } 1882 spin_unlock(&swap_lock); 1883 return n; 1884 } 1885 #endif /* CONFIG_HIBERNATION */ 1886 1887 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1888 { 1889 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte); 1890 } 1891 1892 /* 1893 * No need to decide whether this PTE shares the swap entry with others, 1894 * just let do_wp_page work it out if a write is requested later - to 1895 * force COW, vm_page_prot omits write permission from any private vma. 1896 */ 1897 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1898 unsigned long addr, swp_entry_t entry, struct page *page) 1899 { 1900 struct page *swapcache; 1901 spinlock_t *ptl; 1902 pte_t *pte; 1903 int ret = 1; 1904 1905 swapcache = page; 1906 page = ksm_might_need_to_copy(page, vma, addr); 1907 if (unlikely(!page)) 1908 return -ENOMEM; 1909 1910 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1911 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { 1912 ret = 0; 1913 goto out; 1914 } 1915 1916 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1917 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1918 get_page(page); 1919 set_pte_at(vma->vm_mm, addr, pte, 1920 pte_mkold(mk_pte(page, vma->vm_page_prot))); 1921 if (page == swapcache) { 1922 page_add_anon_rmap(page, vma, addr, false); 1923 } else { /* ksm created a completely new copy */ 1924 page_add_new_anon_rmap(page, vma, addr, false); 1925 lru_cache_add_inactive_or_unevictable(page, vma); 1926 } 1927 swap_free(entry); 1928 /* 1929 * Move the page to the active list so it is not 1930 * immediately swapped out again after swapon. 1931 */ 1932 activate_page(page); 1933 out: 1934 pte_unmap_unlock(pte, ptl); 1935 if (page != swapcache) { 1936 unlock_page(page); 1937 put_page(page); 1938 } 1939 return ret; 1940 } 1941 1942 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1943 unsigned long addr, unsigned long end, 1944 unsigned int type, bool frontswap, 1945 unsigned long *fs_pages_to_unuse) 1946 { 1947 struct page *page; 1948 swp_entry_t entry; 1949 pte_t *pte; 1950 struct swap_info_struct *si; 1951 unsigned long offset; 1952 int ret = 0; 1953 volatile unsigned char *swap_map; 1954 1955 si = swap_info[type]; 1956 pte = pte_offset_map(pmd, addr); 1957 do { 1958 struct vm_fault vmf; 1959 1960 if (!is_swap_pte(*pte)) 1961 continue; 1962 1963 entry = pte_to_swp_entry(*pte); 1964 if (swp_type(entry) != type) 1965 continue; 1966 1967 offset = swp_offset(entry); 1968 if (frontswap && !frontswap_test(si, offset)) 1969 continue; 1970 1971 pte_unmap(pte); 1972 swap_map = &si->swap_map[offset]; 1973 page = lookup_swap_cache(entry, vma, addr); 1974 if (!page) { 1975 vmf.vma = vma; 1976 vmf.address = addr; 1977 vmf.pmd = pmd; 1978 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 1979 &vmf); 1980 } 1981 if (!page) { 1982 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD) 1983 goto try_next; 1984 return -ENOMEM; 1985 } 1986 1987 lock_page(page); 1988 wait_on_page_writeback(page); 1989 ret = unuse_pte(vma, pmd, addr, entry, page); 1990 if (ret < 0) { 1991 unlock_page(page); 1992 put_page(page); 1993 goto out; 1994 } 1995 1996 try_to_free_swap(page); 1997 unlock_page(page); 1998 put_page(page); 1999 2000 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) { 2001 ret = FRONTSWAP_PAGES_UNUSED; 2002 goto out; 2003 } 2004 try_next: 2005 pte = pte_offset_map(pmd, addr); 2006 } while (pte++, addr += PAGE_SIZE, addr != end); 2007 pte_unmap(pte - 1); 2008 2009 ret = 0; 2010 out: 2011 return ret; 2012 } 2013 2014 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 2015 unsigned long addr, unsigned long end, 2016 unsigned int type, bool frontswap, 2017 unsigned long *fs_pages_to_unuse) 2018 { 2019 pmd_t *pmd; 2020 unsigned long next; 2021 int ret; 2022 2023 pmd = pmd_offset(pud, addr); 2024 do { 2025 cond_resched(); 2026 next = pmd_addr_end(addr, end); 2027 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 2028 continue; 2029 ret = unuse_pte_range(vma, pmd, addr, next, type, 2030 frontswap, fs_pages_to_unuse); 2031 if (ret) 2032 return ret; 2033 } while (pmd++, addr = next, addr != end); 2034 return 0; 2035 } 2036 2037 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 2038 unsigned long addr, unsigned long end, 2039 unsigned int type, bool frontswap, 2040 unsigned long *fs_pages_to_unuse) 2041 { 2042 pud_t *pud; 2043 unsigned long next; 2044 int ret; 2045 2046 pud = pud_offset(p4d, addr); 2047 do { 2048 next = pud_addr_end(addr, end); 2049 if (pud_none_or_clear_bad(pud)) 2050 continue; 2051 ret = unuse_pmd_range(vma, pud, addr, next, type, 2052 frontswap, fs_pages_to_unuse); 2053 if (ret) 2054 return ret; 2055 } while (pud++, addr = next, addr != end); 2056 return 0; 2057 } 2058 2059 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 2060 unsigned long addr, unsigned long end, 2061 unsigned int type, bool frontswap, 2062 unsigned long *fs_pages_to_unuse) 2063 { 2064 p4d_t *p4d; 2065 unsigned long next; 2066 int ret; 2067 2068 p4d = p4d_offset(pgd, addr); 2069 do { 2070 next = p4d_addr_end(addr, end); 2071 if (p4d_none_or_clear_bad(p4d)) 2072 continue; 2073 ret = unuse_pud_range(vma, p4d, addr, next, type, 2074 frontswap, fs_pages_to_unuse); 2075 if (ret) 2076 return ret; 2077 } while (p4d++, addr = next, addr != end); 2078 return 0; 2079 } 2080 2081 static int unuse_vma(struct vm_area_struct *vma, unsigned int type, 2082 bool frontswap, unsigned long *fs_pages_to_unuse) 2083 { 2084 pgd_t *pgd; 2085 unsigned long addr, end, next; 2086 int ret; 2087 2088 addr = vma->vm_start; 2089 end = vma->vm_end; 2090 2091 pgd = pgd_offset(vma->vm_mm, addr); 2092 do { 2093 next = pgd_addr_end(addr, end); 2094 if (pgd_none_or_clear_bad(pgd)) 2095 continue; 2096 ret = unuse_p4d_range(vma, pgd, addr, next, type, 2097 frontswap, fs_pages_to_unuse); 2098 if (ret) 2099 return ret; 2100 } while (pgd++, addr = next, addr != end); 2101 return 0; 2102 } 2103 2104 static int unuse_mm(struct mm_struct *mm, unsigned int type, 2105 bool frontswap, unsigned long *fs_pages_to_unuse) 2106 { 2107 struct vm_area_struct *vma; 2108 int ret = 0; 2109 2110 mmap_read_lock(mm); 2111 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2112 if (vma->anon_vma) { 2113 ret = unuse_vma(vma, type, frontswap, 2114 fs_pages_to_unuse); 2115 if (ret) 2116 break; 2117 } 2118 cond_resched(); 2119 } 2120 mmap_read_unlock(mm); 2121 return ret; 2122 } 2123 2124 /* 2125 * Scan swap_map (or frontswap_map if frontswap parameter is true) 2126 * from current position to next entry still in use. Return 0 2127 * if there are no inuse entries after prev till end of the map. 2128 */ 2129 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 2130 unsigned int prev, bool frontswap) 2131 { 2132 unsigned int i; 2133 unsigned char count; 2134 2135 /* 2136 * No need for swap_lock here: we're just looking 2137 * for whether an entry is in use, not modifying it; false 2138 * hits are okay, and sys_swapoff() has already prevented new 2139 * allocations from this area (while holding swap_lock). 2140 */ 2141 for (i = prev + 1; i < si->max; i++) { 2142 count = READ_ONCE(si->swap_map[i]); 2143 if (count && swap_count(count) != SWAP_MAP_BAD) 2144 if (!frontswap || frontswap_test(si, i)) 2145 break; 2146 if ((i % LATENCY_LIMIT) == 0) 2147 cond_resched(); 2148 } 2149 2150 if (i == si->max) 2151 i = 0; 2152 2153 return i; 2154 } 2155 2156 /* 2157 * If the boolean frontswap is true, only unuse pages_to_unuse pages; 2158 * pages_to_unuse==0 means all pages; ignored if frontswap is false 2159 */ 2160 int try_to_unuse(unsigned int type, bool frontswap, 2161 unsigned long pages_to_unuse) 2162 { 2163 struct mm_struct *prev_mm; 2164 struct mm_struct *mm; 2165 struct list_head *p; 2166 int retval = 0; 2167 struct swap_info_struct *si = swap_info[type]; 2168 struct page *page; 2169 swp_entry_t entry; 2170 unsigned int i; 2171 2172 if (!READ_ONCE(si->inuse_pages)) 2173 return 0; 2174 2175 if (!frontswap) 2176 pages_to_unuse = 0; 2177 2178 retry: 2179 retval = shmem_unuse(type, frontswap, &pages_to_unuse); 2180 if (retval) 2181 goto out; 2182 2183 prev_mm = &init_mm; 2184 mmget(prev_mm); 2185 2186 spin_lock(&mmlist_lock); 2187 p = &init_mm.mmlist; 2188 while (READ_ONCE(si->inuse_pages) && 2189 !signal_pending(current) && 2190 (p = p->next) != &init_mm.mmlist) { 2191 2192 mm = list_entry(p, struct mm_struct, mmlist); 2193 if (!mmget_not_zero(mm)) 2194 continue; 2195 spin_unlock(&mmlist_lock); 2196 mmput(prev_mm); 2197 prev_mm = mm; 2198 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse); 2199 2200 if (retval) { 2201 mmput(prev_mm); 2202 goto out; 2203 } 2204 2205 /* 2206 * Make sure that we aren't completely killing 2207 * interactive performance. 2208 */ 2209 cond_resched(); 2210 spin_lock(&mmlist_lock); 2211 } 2212 spin_unlock(&mmlist_lock); 2213 2214 mmput(prev_mm); 2215 2216 i = 0; 2217 while (READ_ONCE(si->inuse_pages) && 2218 !signal_pending(current) && 2219 (i = find_next_to_unuse(si, i, frontswap)) != 0) { 2220 2221 entry = swp_entry(type, i); 2222 page = find_get_page(swap_address_space(entry), i); 2223 if (!page) 2224 continue; 2225 2226 /* 2227 * It is conceivable that a racing task removed this page from 2228 * swap cache just before we acquired the page lock. The page 2229 * might even be back in swap cache on another swap area. But 2230 * that is okay, try_to_free_swap() only removes stale pages. 2231 */ 2232 lock_page(page); 2233 wait_on_page_writeback(page); 2234 try_to_free_swap(page); 2235 unlock_page(page); 2236 put_page(page); 2237 2238 /* 2239 * For frontswap, we just need to unuse pages_to_unuse, if 2240 * it was specified. Need not check frontswap again here as 2241 * we already zeroed out pages_to_unuse if not frontswap. 2242 */ 2243 if (pages_to_unuse && --pages_to_unuse == 0) 2244 goto out; 2245 } 2246 2247 /* 2248 * Lets check again to see if there are still swap entries in the map. 2249 * If yes, we would need to do retry the unuse logic again. 2250 * Under global memory pressure, swap entries can be reinserted back 2251 * into process space after the mmlist loop above passes over them. 2252 * 2253 * Limit the number of retries? No: when mmget_not_zero() above fails, 2254 * that mm is likely to be freeing swap from exit_mmap(), which proceeds 2255 * at its own independent pace; and even shmem_writepage() could have 2256 * been preempted after get_swap_page(), temporarily hiding that swap. 2257 * It's easy and robust (though cpu-intensive) just to keep retrying. 2258 */ 2259 if (READ_ONCE(si->inuse_pages)) { 2260 if (!signal_pending(current)) 2261 goto retry; 2262 retval = -EINTR; 2263 } 2264 out: 2265 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval; 2266 } 2267 2268 /* 2269 * After a successful try_to_unuse, if no swap is now in use, we know 2270 * we can empty the mmlist. swap_lock must be held on entry and exit. 2271 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2272 * added to the mmlist just after page_duplicate - before would be racy. 2273 */ 2274 static void drain_mmlist(void) 2275 { 2276 struct list_head *p, *next; 2277 unsigned int type; 2278 2279 for (type = 0; type < nr_swapfiles; type++) 2280 if (swap_info[type]->inuse_pages) 2281 return; 2282 spin_lock(&mmlist_lock); 2283 list_for_each_safe(p, next, &init_mm.mmlist) 2284 list_del_init(p); 2285 spin_unlock(&mmlist_lock); 2286 } 2287 2288 /* 2289 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 2290 * corresponds to page offset for the specified swap entry. 2291 * Note that the type of this function is sector_t, but it returns page offset 2292 * into the bdev, not sector offset. 2293 */ 2294 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 2295 { 2296 struct swap_info_struct *sis; 2297 struct swap_extent *se; 2298 pgoff_t offset; 2299 2300 sis = swp_swap_info(entry); 2301 *bdev = sis->bdev; 2302 2303 offset = swp_offset(entry); 2304 se = offset_to_swap_extent(sis, offset); 2305 return se->start_block + (offset - se->start_page); 2306 } 2307 2308 /* 2309 * Returns the page offset into bdev for the specified page's swap entry. 2310 */ 2311 sector_t map_swap_page(struct page *page, struct block_device **bdev) 2312 { 2313 swp_entry_t entry; 2314 entry.val = page_private(page); 2315 return map_swap_entry(entry, bdev); 2316 } 2317 2318 /* 2319 * Free all of a swapdev's extent information 2320 */ 2321 static void destroy_swap_extents(struct swap_info_struct *sis) 2322 { 2323 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2324 struct rb_node *rb = sis->swap_extent_root.rb_node; 2325 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2326 2327 rb_erase(rb, &sis->swap_extent_root); 2328 kfree(se); 2329 } 2330 2331 if (sis->flags & SWP_ACTIVATED) { 2332 struct file *swap_file = sis->swap_file; 2333 struct address_space *mapping = swap_file->f_mapping; 2334 2335 sis->flags &= ~SWP_ACTIVATED; 2336 if (mapping->a_ops->swap_deactivate) 2337 mapping->a_ops->swap_deactivate(swap_file); 2338 } 2339 } 2340 2341 /* 2342 * Add a block range (and the corresponding page range) into this swapdev's 2343 * extent tree. 2344 * 2345 * This function rather assumes that it is called in ascending page order. 2346 */ 2347 int 2348 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2349 unsigned long nr_pages, sector_t start_block) 2350 { 2351 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2352 struct swap_extent *se; 2353 struct swap_extent *new_se; 2354 2355 /* 2356 * place the new node at the right most since the 2357 * function is called in ascending page order. 2358 */ 2359 while (*link) { 2360 parent = *link; 2361 link = &parent->rb_right; 2362 } 2363 2364 if (parent) { 2365 se = rb_entry(parent, struct swap_extent, rb_node); 2366 BUG_ON(se->start_page + se->nr_pages != start_page); 2367 if (se->start_block + se->nr_pages == start_block) { 2368 /* Merge it */ 2369 se->nr_pages += nr_pages; 2370 return 0; 2371 } 2372 } 2373 2374 /* No merge, insert a new extent. */ 2375 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2376 if (new_se == NULL) 2377 return -ENOMEM; 2378 new_se->start_page = start_page; 2379 new_se->nr_pages = nr_pages; 2380 new_se->start_block = start_block; 2381 2382 rb_link_node(&new_se->rb_node, parent, link); 2383 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2384 return 1; 2385 } 2386 EXPORT_SYMBOL_GPL(add_swap_extent); 2387 2388 /* 2389 * A `swap extent' is a simple thing which maps a contiguous range of pages 2390 * onto a contiguous range of disk blocks. An ordered list of swap extents 2391 * is built at swapon time and is then used at swap_writepage/swap_readpage 2392 * time for locating where on disk a page belongs. 2393 * 2394 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2395 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2396 * swap files identically. 2397 * 2398 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2399 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2400 * swapfiles are handled *identically* after swapon time. 2401 * 2402 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2403 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 2404 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 2405 * requirements, they are simply tossed out - we will never use those blocks 2406 * for swapping. 2407 * 2408 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2409 * prevents users from writing to the swap device, which will corrupt memory. 2410 * 2411 * The amount of disk space which a single swap extent represents varies. 2412 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2413 * extents in the list. To avoid much list walking, we cache the previous 2414 * search location in `curr_swap_extent', and start new searches from there. 2415 * This is extremely effective. The average number of iterations in 2416 * map_swap_page() has been measured at about 0.3 per page. - akpm. 2417 */ 2418 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2419 { 2420 struct file *swap_file = sis->swap_file; 2421 struct address_space *mapping = swap_file->f_mapping; 2422 struct inode *inode = mapping->host; 2423 int ret; 2424 2425 if (S_ISBLK(inode->i_mode)) { 2426 ret = add_swap_extent(sis, 0, sis->max, 0); 2427 *span = sis->pages; 2428 return ret; 2429 } 2430 2431 if (mapping->a_ops->swap_activate) { 2432 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2433 if (ret >= 0) 2434 sis->flags |= SWP_ACTIVATED; 2435 if (!ret) { 2436 sis->flags |= SWP_FS; 2437 ret = add_swap_extent(sis, 0, sis->max, 0); 2438 *span = sis->pages; 2439 } 2440 return ret; 2441 } 2442 2443 return generic_swapfile_activate(sis, swap_file, span); 2444 } 2445 2446 static int swap_node(struct swap_info_struct *p) 2447 { 2448 struct block_device *bdev; 2449 2450 if (p->bdev) 2451 bdev = p->bdev; 2452 else 2453 bdev = p->swap_file->f_inode->i_sb->s_bdev; 2454 2455 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2456 } 2457 2458 static void setup_swap_info(struct swap_info_struct *p, int prio, 2459 unsigned char *swap_map, 2460 struct swap_cluster_info *cluster_info) 2461 { 2462 int i; 2463 2464 if (prio >= 0) 2465 p->prio = prio; 2466 else 2467 p->prio = --least_priority; 2468 /* 2469 * the plist prio is negated because plist ordering is 2470 * low-to-high, while swap ordering is high-to-low 2471 */ 2472 p->list.prio = -p->prio; 2473 for_each_node(i) { 2474 if (p->prio >= 0) 2475 p->avail_lists[i].prio = -p->prio; 2476 else { 2477 if (swap_node(p) == i) 2478 p->avail_lists[i].prio = 1; 2479 else 2480 p->avail_lists[i].prio = -p->prio; 2481 } 2482 } 2483 p->swap_map = swap_map; 2484 p->cluster_info = cluster_info; 2485 } 2486 2487 static void _enable_swap_info(struct swap_info_struct *p) 2488 { 2489 p->flags |= SWP_WRITEOK | SWP_VALID; 2490 atomic_long_add(p->pages, &nr_swap_pages); 2491 total_swap_pages += p->pages; 2492 2493 assert_spin_locked(&swap_lock); 2494 /* 2495 * both lists are plists, and thus priority ordered. 2496 * swap_active_head needs to be priority ordered for swapoff(), 2497 * which on removal of any swap_info_struct with an auto-assigned 2498 * (i.e. negative) priority increments the auto-assigned priority 2499 * of any lower-priority swap_info_structs. 2500 * swap_avail_head needs to be priority ordered for get_swap_page(), 2501 * which allocates swap pages from the highest available priority 2502 * swap_info_struct. 2503 */ 2504 plist_add(&p->list, &swap_active_head); 2505 add_to_avail_list(p); 2506 } 2507 2508 static void enable_swap_info(struct swap_info_struct *p, int prio, 2509 unsigned char *swap_map, 2510 struct swap_cluster_info *cluster_info, 2511 unsigned long *frontswap_map) 2512 { 2513 frontswap_init(p->type, frontswap_map); 2514 spin_lock(&swap_lock); 2515 spin_lock(&p->lock); 2516 setup_swap_info(p, prio, swap_map, cluster_info); 2517 spin_unlock(&p->lock); 2518 spin_unlock(&swap_lock); 2519 /* 2520 * Guarantee swap_map, cluster_info, etc. fields are valid 2521 * between get/put_swap_device() if SWP_VALID bit is set 2522 */ 2523 synchronize_rcu(); 2524 spin_lock(&swap_lock); 2525 spin_lock(&p->lock); 2526 _enable_swap_info(p); 2527 spin_unlock(&p->lock); 2528 spin_unlock(&swap_lock); 2529 } 2530 2531 static void reinsert_swap_info(struct swap_info_struct *p) 2532 { 2533 spin_lock(&swap_lock); 2534 spin_lock(&p->lock); 2535 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2536 _enable_swap_info(p); 2537 spin_unlock(&p->lock); 2538 spin_unlock(&swap_lock); 2539 } 2540 2541 bool has_usable_swap(void) 2542 { 2543 bool ret = true; 2544 2545 spin_lock(&swap_lock); 2546 if (plist_head_empty(&swap_active_head)) 2547 ret = false; 2548 spin_unlock(&swap_lock); 2549 return ret; 2550 } 2551 2552 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2553 { 2554 struct swap_info_struct *p = NULL; 2555 unsigned char *swap_map; 2556 struct swap_cluster_info *cluster_info; 2557 unsigned long *frontswap_map; 2558 struct file *swap_file, *victim; 2559 struct address_space *mapping; 2560 struct inode *inode; 2561 struct filename *pathname; 2562 int err, found = 0; 2563 unsigned int old_block_size; 2564 2565 if (!capable(CAP_SYS_ADMIN)) 2566 return -EPERM; 2567 2568 BUG_ON(!current->mm); 2569 2570 pathname = getname(specialfile); 2571 if (IS_ERR(pathname)) 2572 return PTR_ERR(pathname); 2573 2574 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2575 err = PTR_ERR(victim); 2576 if (IS_ERR(victim)) 2577 goto out; 2578 2579 mapping = victim->f_mapping; 2580 spin_lock(&swap_lock); 2581 plist_for_each_entry(p, &swap_active_head, list) { 2582 if (p->flags & SWP_WRITEOK) { 2583 if (p->swap_file->f_mapping == mapping) { 2584 found = 1; 2585 break; 2586 } 2587 } 2588 } 2589 if (!found) { 2590 err = -EINVAL; 2591 spin_unlock(&swap_lock); 2592 goto out_dput; 2593 } 2594 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2595 vm_unacct_memory(p->pages); 2596 else { 2597 err = -ENOMEM; 2598 spin_unlock(&swap_lock); 2599 goto out_dput; 2600 } 2601 del_from_avail_list(p); 2602 spin_lock(&p->lock); 2603 if (p->prio < 0) { 2604 struct swap_info_struct *si = p; 2605 int nid; 2606 2607 plist_for_each_entry_continue(si, &swap_active_head, list) { 2608 si->prio++; 2609 si->list.prio--; 2610 for_each_node(nid) { 2611 if (si->avail_lists[nid].prio != 1) 2612 si->avail_lists[nid].prio--; 2613 } 2614 } 2615 least_priority++; 2616 } 2617 plist_del(&p->list, &swap_active_head); 2618 atomic_long_sub(p->pages, &nr_swap_pages); 2619 total_swap_pages -= p->pages; 2620 p->flags &= ~SWP_WRITEOK; 2621 spin_unlock(&p->lock); 2622 spin_unlock(&swap_lock); 2623 2624 disable_swap_slots_cache_lock(); 2625 2626 set_current_oom_origin(); 2627 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */ 2628 clear_current_oom_origin(); 2629 2630 if (err) { 2631 /* re-insert swap space back into swap_list */ 2632 reinsert_swap_info(p); 2633 reenable_swap_slots_cache_unlock(); 2634 goto out_dput; 2635 } 2636 2637 reenable_swap_slots_cache_unlock(); 2638 2639 spin_lock(&swap_lock); 2640 spin_lock(&p->lock); 2641 p->flags &= ~SWP_VALID; /* mark swap device as invalid */ 2642 spin_unlock(&p->lock); 2643 spin_unlock(&swap_lock); 2644 /* 2645 * wait for swap operations protected by get/put_swap_device() 2646 * to complete 2647 */ 2648 synchronize_rcu(); 2649 2650 flush_work(&p->discard_work); 2651 2652 destroy_swap_extents(p); 2653 if (p->flags & SWP_CONTINUED) 2654 free_swap_count_continuations(p); 2655 2656 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev))) 2657 atomic_dec(&nr_rotate_swap); 2658 2659 mutex_lock(&swapon_mutex); 2660 spin_lock(&swap_lock); 2661 spin_lock(&p->lock); 2662 drain_mmlist(); 2663 2664 /* wait for anyone still in scan_swap_map */ 2665 p->highest_bit = 0; /* cuts scans short */ 2666 while (p->flags >= SWP_SCANNING) { 2667 spin_unlock(&p->lock); 2668 spin_unlock(&swap_lock); 2669 schedule_timeout_uninterruptible(1); 2670 spin_lock(&swap_lock); 2671 spin_lock(&p->lock); 2672 } 2673 2674 swap_file = p->swap_file; 2675 old_block_size = p->old_block_size; 2676 p->swap_file = NULL; 2677 p->max = 0; 2678 swap_map = p->swap_map; 2679 p->swap_map = NULL; 2680 cluster_info = p->cluster_info; 2681 p->cluster_info = NULL; 2682 frontswap_map = frontswap_map_get(p); 2683 spin_unlock(&p->lock); 2684 spin_unlock(&swap_lock); 2685 frontswap_invalidate_area(p->type); 2686 frontswap_map_set(p, NULL); 2687 mutex_unlock(&swapon_mutex); 2688 free_percpu(p->percpu_cluster); 2689 p->percpu_cluster = NULL; 2690 free_percpu(p->cluster_next_cpu); 2691 p->cluster_next_cpu = NULL; 2692 vfree(swap_map); 2693 kvfree(cluster_info); 2694 kvfree(frontswap_map); 2695 /* Destroy swap account information */ 2696 swap_cgroup_swapoff(p->type); 2697 exit_swap_address_space(p->type); 2698 2699 inode = mapping->host; 2700 if (S_ISBLK(inode->i_mode)) { 2701 struct block_device *bdev = I_BDEV(inode); 2702 2703 set_blocksize(bdev, old_block_size); 2704 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2705 } 2706 2707 inode_lock(inode); 2708 inode->i_flags &= ~S_SWAPFILE; 2709 inode_unlock(inode); 2710 filp_close(swap_file, NULL); 2711 2712 /* 2713 * Clear the SWP_USED flag after all resources are freed so that swapon 2714 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2715 * not hold p->lock after we cleared its SWP_WRITEOK. 2716 */ 2717 spin_lock(&swap_lock); 2718 p->flags = 0; 2719 spin_unlock(&swap_lock); 2720 2721 err = 0; 2722 atomic_inc(&proc_poll_event); 2723 wake_up_interruptible(&proc_poll_wait); 2724 2725 out_dput: 2726 filp_close(victim, NULL); 2727 out: 2728 putname(pathname); 2729 return err; 2730 } 2731 2732 #ifdef CONFIG_PROC_FS 2733 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2734 { 2735 struct seq_file *seq = file->private_data; 2736 2737 poll_wait(file, &proc_poll_wait, wait); 2738 2739 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2740 seq->poll_event = atomic_read(&proc_poll_event); 2741 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2742 } 2743 2744 return EPOLLIN | EPOLLRDNORM; 2745 } 2746 2747 /* iterator */ 2748 static void *swap_start(struct seq_file *swap, loff_t *pos) 2749 { 2750 struct swap_info_struct *si; 2751 int type; 2752 loff_t l = *pos; 2753 2754 mutex_lock(&swapon_mutex); 2755 2756 if (!l) 2757 return SEQ_START_TOKEN; 2758 2759 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2760 if (!(si->flags & SWP_USED) || !si->swap_map) 2761 continue; 2762 if (!--l) 2763 return si; 2764 } 2765 2766 return NULL; 2767 } 2768 2769 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2770 { 2771 struct swap_info_struct *si = v; 2772 int type; 2773 2774 if (v == SEQ_START_TOKEN) 2775 type = 0; 2776 else 2777 type = si->type + 1; 2778 2779 ++(*pos); 2780 for (; (si = swap_type_to_swap_info(type)); type++) { 2781 if (!(si->flags & SWP_USED) || !si->swap_map) 2782 continue; 2783 return si; 2784 } 2785 2786 return NULL; 2787 } 2788 2789 static void swap_stop(struct seq_file *swap, void *v) 2790 { 2791 mutex_unlock(&swapon_mutex); 2792 } 2793 2794 static int swap_show(struct seq_file *swap, void *v) 2795 { 2796 struct swap_info_struct *si = v; 2797 struct file *file; 2798 int len; 2799 unsigned int bytes, inuse; 2800 2801 if (si == SEQ_START_TOKEN) { 2802 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 2803 return 0; 2804 } 2805 2806 bytes = si->pages << (PAGE_SHIFT - 10); 2807 inuse = si->inuse_pages << (PAGE_SHIFT - 10); 2808 2809 file = si->swap_file; 2810 len = seq_file_path(swap, file, " \t\n\\"); 2811 seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n", 2812 len < 40 ? 40 - len : 1, " ", 2813 S_ISBLK(file_inode(file)->i_mode) ? 2814 "partition" : "file\t", 2815 bytes, bytes < 10000000 ? "\t" : "", 2816 inuse, inuse < 10000000 ? "\t" : "", 2817 si->prio); 2818 return 0; 2819 } 2820 2821 static const struct seq_operations swaps_op = { 2822 .start = swap_start, 2823 .next = swap_next, 2824 .stop = swap_stop, 2825 .show = swap_show 2826 }; 2827 2828 static int swaps_open(struct inode *inode, struct file *file) 2829 { 2830 struct seq_file *seq; 2831 int ret; 2832 2833 ret = seq_open(file, &swaps_op); 2834 if (ret) 2835 return ret; 2836 2837 seq = file->private_data; 2838 seq->poll_event = atomic_read(&proc_poll_event); 2839 return 0; 2840 } 2841 2842 static const struct proc_ops swaps_proc_ops = { 2843 .proc_flags = PROC_ENTRY_PERMANENT, 2844 .proc_open = swaps_open, 2845 .proc_read = seq_read, 2846 .proc_lseek = seq_lseek, 2847 .proc_release = seq_release, 2848 .proc_poll = swaps_poll, 2849 }; 2850 2851 static int __init procswaps_init(void) 2852 { 2853 proc_create("swaps", 0, NULL, &swaps_proc_ops); 2854 return 0; 2855 } 2856 __initcall(procswaps_init); 2857 #endif /* CONFIG_PROC_FS */ 2858 2859 #ifdef MAX_SWAPFILES_CHECK 2860 static int __init max_swapfiles_check(void) 2861 { 2862 MAX_SWAPFILES_CHECK(); 2863 return 0; 2864 } 2865 late_initcall(max_swapfiles_check); 2866 #endif 2867 2868 static struct swap_info_struct *alloc_swap_info(void) 2869 { 2870 struct swap_info_struct *p; 2871 unsigned int type; 2872 int i; 2873 2874 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2875 if (!p) 2876 return ERR_PTR(-ENOMEM); 2877 2878 spin_lock(&swap_lock); 2879 for (type = 0; type < nr_swapfiles; type++) { 2880 if (!(swap_info[type]->flags & SWP_USED)) 2881 break; 2882 } 2883 if (type >= MAX_SWAPFILES) { 2884 spin_unlock(&swap_lock); 2885 kvfree(p); 2886 return ERR_PTR(-EPERM); 2887 } 2888 if (type >= nr_swapfiles) { 2889 p->type = type; 2890 WRITE_ONCE(swap_info[type], p); 2891 /* 2892 * Write swap_info[type] before nr_swapfiles, in case a 2893 * racing procfs swap_start() or swap_next() is reading them. 2894 * (We never shrink nr_swapfiles, we never free this entry.) 2895 */ 2896 smp_wmb(); 2897 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1); 2898 } else { 2899 kvfree(p); 2900 p = swap_info[type]; 2901 /* 2902 * Do not memset this entry: a racing procfs swap_next() 2903 * would be relying on p->type to remain valid. 2904 */ 2905 } 2906 p->swap_extent_root = RB_ROOT; 2907 plist_node_init(&p->list, 0); 2908 for_each_node(i) 2909 plist_node_init(&p->avail_lists[i], 0); 2910 p->flags = SWP_USED; 2911 spin_unlock(&swap_lock); 2912 spin_lock_init(&p->lock); 2913 spin_lock_init(&p->cont_lock); 2914 2915 return p; 2916 } 2917 2918 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2919 { 2920 int error; 2921 2922 if (S_ISBLK(inode->i_mode)) { 2923 p->bdev = bdgrab(I_BDEV(inode)); 2924 error = blkdev_get(p->bdev, 2925 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); 2926 if (error < 0) { 2927 p->bdev = NULL; 2928 return error; 2929 } 2930 p->old_block_size = block_size(p->bdev); 2931 error = set_blocksize(p->bdev, PAGE_SIZE); 2932 if (error < 0) 2933 return error; 2934 /* 2935 * Zoned block devices contain zones that have a sequential 2936 * write only restriction. Hence zoned block devices are not 2937 * suitable for swapping. Disallow them here. 2938 */ 2939 if (blk_queue_is_zoned(p->bdev->bd_disk->queue)) 2940 return -EINVAL; 2941 p->flags |= SWP_BLKDEV; 2942 } else if (S_ISREG(inode->i_mode)) { 2943 p->bdev = inode->i_sb->s_bdev; 2944 } 2945 2946 return 0; 2947 } 2948 2949 2950 /* 2951 * Find out how many pages are allowed for a single swap device. There 2952 * are two limiting factors: 2953 * 1) the number of bits for the swap offset in the swp_entry_t type, and 2954 * 2) the number of bits in the swap pte, as defined by the different 2955 * architectures. 2956 * 2957 * In order to find the largest possible bit mask, a swap entry with 2958 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 2959 * decoded to a swp_entry_t again, and finally the swap offset is 2960 * extracted. 2961 * 2962 * This will mask all the bits from the initial ~0UL mask that can't 2963 * be encoded in either the swp_entry_t or the architecture definition 2964 * of a swap pte. 2965 */ 2966 unsigned long generic_max_swapfile_size(void) 2967 { 2968 return swp_offset(pte_to_swp_entry( 2969 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2970 } 2971 2972 /* Can be overridden by an architecture for additional checks. */ 2973 __weak unsigned long max_swapfile_size(void) 2974 { 2975 return generic_max_swapfile_size(); 2976 } 2977 2978 static unsigned long read_swap_header(struct swap_info_struct *p, 2979 union swap_header *swap_header, 2980 struct inode *inode) 2981 { 2982 int i; 2983 unsigned long maxpages; 2984 unsigned long swapfilepages; 2985 unsigned long last_page; 2986 2987 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2988 pr_err("Unable to find swap-space signature\n"); 2989 return 0; 2990 } 2991 2992 /* swap partition endianess hack... */ 2993 if (swab32(swap_header->info.version) == 1) { 2994 swab32s(&swap_header->info.version); 2995 swab32s(&swap_header->info.last_page); 2996 swab32s(&swap_header->info.nr_badpages); 2997 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2998 return 0; 2999 for (i = 0; i < swap_header->info.nr_badpages; i++) 3000 swab32s(&swap_header->info.badpages[i]); 3001 } 3002 /* Check the swap header's sub-version */ 3003 if (swap_header->info.version != 1) { 3004 pr_warn("Unable to handle swap header version %d\n", 3005 swap_header->info.version); 3006 return 0; 3007 } 3008 3009 p->lowest_bit = 1; 3010 p->cluster_next = 1; 3011 p->cluster_nr = 0; 3012 3013 maxpages = max_swapfile_size(); 3014 last_page = swap_header->info.last_page; 3015 if (!last_page) { 3016 pr_warn("Empty swap-file\n"); 3017 return 0; 3018 } 3019 if (last_page > maxpages) { 3020 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 3021 maxpages << (PAGE_SHIFT - 10), 3022 last_page << (PAGE_SHIFT - 10)); 3023 } 3024 if (maxpages > last_page) { 3025 maxpages = last_page + 1; 3026 /* p->max is an unsigned int: don't overflow it */ 3027 if ((unsigned int)maxpages == 0) 3028 maxpages = UINT_MAX; 3029 } 3030 p->highest_bit = maxpages - 1; 3031 3032 if (!maxpages) 3033 return 0; 3034 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 3035 if (swapfilepages && maxpages > swapfilepages) { 3036 pr_warn("Swap area shorter than signature indicates\n"); 3037 return 0; 3038 } 3039 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 3040 return 0; 3041 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 3042 return 0; 3043 3044 return maxpages; 3045 } 3046 3047 #define SWAP_CLUSTER_INFO_COLS \ 3048 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 3049 #define SWAP_CLUSTER_SPACE_COLS \ 3050 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 3051 #define SWAP_CLUSTER_COLS \ 3052 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 3053 3054 static int setup_swap_map_and_extents(struct swap_info_struct *p, 3055 union swap_header *swap_header, 3056 unsigned char *swap_map, 3057 struct swap_cluster_info *cluster_info, 3058 unsigned long maxpages, 3059 sector_t *span) 3060 { 3061 unsigned int j, k; 3062 unsigned int nr_good_pages; 3063 int nr_extents; 3064 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3065 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 3066 unsigned long i, idx; 3067 3068 nr_good_pages = maxpages - 1; /* omit header page */ 3069 3070 cluster_list_init(&p->free_clusters); 3071 cluster_list_init(&p->discard_clusters); 3072 3073 for (i = 0; i < swap_header->info.nr_badpages; i++) { 3074 unsigned int page_nr = swap_header->info.badpages[i]; 3075 if (page_nr == 0 || page_nr > swap_header->info.last_page) 3076 return -EINVAL; 3077 if (page_nr < maxpages) { 3078 swap_map[page_nr] = SWAP_MAP_BAD; 3079 nr_good_pages--; 3080 /* 3081 * Haven't marked the cluster free yet, no list 3082 * operation involved 3083 */ 3084 inc_cluster_info_page(p, cluster_info, page_nr); 3085 } 3086 } 3087 3088 /* Haven't marked the cluster free yet, no list operation involved */ 3089 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 3090 inc_cluster_info_page(p, cluster_info, i); 3091 3092 if (nr_good_pages) { 3093 swap_map[0] = SWAP_MAP_BAD; 3094 /* 3095 * Not mark the cluster free yet, no list 3096 * operation involved 3097 */ 3098 inc_cluster_info_page(p, cluster_info, 0); 3099 p->max = maxpages; 3100 p->pages = nr_good_pages; 3101 nr_extents = setup_swap_extents(p, span); 3102 if (nr_extents < 0) 3103 return nr_extents; 3104 nr_good_pages = p->pages; 3105 } 3106 if (!nr_good_pages) { 3107 pr_warn("Empty swap-file\n"); 3108 return -EINVAL; 3109 } 3110 3111 if (!cluster_info) 3112 return nr_extents; 3113 3114 3115 /* 3116 * Reduce false cache line sharing between cluster_info and 3117 * sharing same address space. 3118 */ 3119 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 3120 j = (k + col) % SWAP_CLUSTER_COLS; 3121 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 3122 idx = i * SWAP_CLUSTER_COLS + j; 3123 if (idx >= nr_clusters) 3124 continue; 3125 if (cluster_count(&cluster_info[idx])) 3126 continue; 3127 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 3128 cluster_list_add_tail(&p->free_clusters, cluster_info, 3129 idx); 3130 } 3131 } 3132 return nr_extents; 3133 } 3134 3135 /* 3136 * Helper to sys_swapon determining if a given swap 3137 * backing device queue supports DISCARD operations. 3138 */ 3139 static bool swap_discardable(struct swap_info_struct *si) 3140 { 3141 struct request_queue *q = bdev_get_queue(si->bdev); 3142 3143 if (!q || !blk_queue_discard(q)) 3144 return false; 3145 3146 return true; 3147 } 3148 3149 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 3150 { 3151 struct swap_info_struct *p; 3152 struct filename *name; 3153 struct file *swap_file = NULL; 3154 struct address_space *mapping; 3155 int prio; 3156 int error; 3157 union swap_header *swap_header; 3158 int nr_extents; 3159 sector_t span; 3160 unsigned long maxpages; 3161 unsigned char *swap_map = NULL; 3162 struct swap_cluster_info *cluster_info = NULL; 3163 unsigned long *frontswap_map = NULL; 3164 struct page *page = NULL; 3165 struct inode *inode = NULL; 3166 bool inced_nr_rotate_swap = false; 3167 3168 if (swap_flags & ~SWAP_FLAGS_VALID) 3169 return -EINVAL; 3170 3171 if (!capable(CAP_SYS_ADMIN)) 3172 return -EPERM; 3173 3174 if (!swap_avail_heads) 3175 return -ENOMEM; 3176 3177 p = alloc_swap_info(); 3178 if (IS_ERR(p)) 3179 return PTR_ERR(p); 3180 3181 INIT_WORK(&p->discard_work, swap_discard_work); 3182 3183 name = getname(specialfile); 3184 if (IS_ERR(name)) { 3185 error = PTR_ERR(name); 3186 name = NULL; 3187 goto bad_swap; 3188 } 3189 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 3190 if (IS_ERR(swap_file)) { 3191 error = PTR_ERR(swap_file); 3192 swap_file = NULL; 3193 goto bad_swap; 3194 } 3195 3196 p->swap_file = swap_file; 3197 mapping = swap_file->f_mapping; 3198 inode = mapping->host; 3199 3200 error = claim_swapfile(p, inode); 3201 if (unlikely(error)) 3202 goto bad_swap; 3203 3204 inode_lock(inode); 3205 if (IS_SWAPFILE(inode)) { 3206 error = -EBUSY; 3207 goto bad_swap_unlock_inode; 3208 } 3209 3210 /* 3211 * Read the swap header. 3212 */ 3213 if (!mapping->a_ops->readpage) { 3214 error = -EINVAL; 3215 goto bad_swap_unlock_inode; 3216 } 3217 page = read_mapping_page(mapping, 0, swap_file); 3218 if (IS_ERR(page)) { 3219 error = PTR_ERR(page); 3220 goto bad_swap_unlock_inode; 3221 } 3222 swap_header = kmap(page); 3223 3224 maxpages = read_swap_header(p, swap_header, inode); 3225 if (unlikely(!maxpages)) { 3226 error = -EINVAL; 3227 goto bad_swap_unlock_inode; 3228 } 3229 3230 /* OK, set up the swap map and apply the bad block list */ 3231 swap_map = vzalloc(maxpages); 3232 if (!swap_map) { 3233 error = -ENOMEM; 3234 goto bad_swap_unlock_inode; 3235 } 3236 3237 if (bdi_cap_stable_pages_required(inode_to_bdi(inode))) 3238 p->flags |= SWP_STABLE_WRITES; 3239 3240 if (bdi_cap_synchronous_io(inode_to_bdi(inode))) 3241 p->flags |= SWP_SYNCHRONOUS_IO; 3242 3243 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { 3244 int cpu; 3245 unsigned long ci, nr_cluster; 3246 3247 p->flags |= SWP_SOLIDSTATE; 3248 p->cluster_next_cpu = alloc_percpu(unsigned int); 3249 if (!p->cluster_next_cpu) { 3250 error = -ENOMEM; 3251 goto bad_swap_unlock_inode; 3252 } 3253 /* 3254 * select a random position to start with to help wear leveling 3255 * SSD 3256 */ 3257 for_each_possible_cpu(cpu) { 3258 per_cpu(*p->cluster_next_cpu, cpu) = 3259 1 + prandom_u32_max(p->highest_bit); 3260 } 3261 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3262 3263 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), 3264 GFP_KERNEL); 3265 if (!cluster_info) { 3266 error = -ENOMEM; 3267 goto bad_swap_unlock_inode; 3268 } 3269 3270 for (ci = 0; ci < nr_cluster; ci++) 3271 spin_lock_init(&((cluster_info + ci)->lock)); 3272 3273 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 3274 if (!p->percpu_cluster) { 3275 error = -ENOMEM; 3276 goto bad_swap_unlock_inode; 3277 } 3278 for_each_possible_cpu(cpu) { 3279 struct percpu_cluster *cluster; 3280 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 3281 cluster_set_null(&cluster->index); 3282 } 3283 } else { 3284 atomic_inc(&nr_rotate_swap); 3285 inced_nr_rotate_swap = true; 3286 } 3287 3288 error = swap_cgroup_swapon(p->type, maxpages); 3289 if (error) 3290 goto bad_swap_unlock_inode; 3291 3292 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 3293 cluster_info, maxpages, &span); 3294 if (unlikely(nr_extents < 0)) { 3295 error = nr_extents; 3296 goto bad_swap_unlock_inode; 3297 } 3298 /* frontswap enabled? set up bit-per-page map for frontswap */ 3299 if (IS_ENABLED(CONFIG_FRONTSWAP)) 3300 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages), 3301 sizeof(long), 3302 GFP_KERNEL); 3303 3304 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { 3305 /* 3306 * When discard is enabled for swap with no particular 3307 * policy flagged, we set all swap discard flags here in 3308 * order to sustain backward compatibility with older 3309 * swapon(8) releases. 3310 */ 3311 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3312 SWP_PAGE_DISCARD); 3313 3314 /* 3315 * By flagging sys_swapon, a sysadmin can tell us to 3316 * either do single-time area discards only, or to just 3317 * perform discards for released swap page-clusters. 3318 * Now it's time to adjust the p->flags accordingly. 3319 */ 3320 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3321 p->flags &= ~SWP_PAGE_DISCARD; 3322 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3323 p->flags &= ~SWP_AREA_DISCARD; 3324 3325 /* issue a swapon-time discard if it's still required */ 3326 if (p->flags & SWP_AREA_DISCARD) { 3327 int err = discard_swap(p); 3328 if (unlikely(err)) 3329 pr_err("swapon: discard_swap(%p): %d\n", 3330 p, err); 3331 } 3332 } 3333 3334 error = init_swap_address_space(p->type, maxpages); 3335 if (error) 3336 goto bad_swap_unlock_inode; 3337 3338 /* 3339 * Flush any pending IO and dirty mappings before we start using this 3340 * swap device. 3341 */ 3342 inode->i_flags |= S_SWAPFILE; 3343 error = inode_drain_writes(inode); 3344 if (error) { 3345 inode->i_flags &= ~S_SWAPFILE; 3346 goto bad_swap_unlock_inode; 3347 } 3348 3349 mutex_lock(&swapon_mutex); 3350 prio = -1; 3351 if (swap_flags & SWAP_FLAG_PREFER) 3352 prio = 3353 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3354 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 3355 3356 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 3357 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 3358 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 3359 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 3360 (p->flags & SWP_DISCARDABLE) ? "D" : "", 3361 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 3362 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 3363 (frontswap_map) ? "FS" : ""); 3364 3365 mutex_unlock(&swapon_mutex); 3366 atomic_inc(&proc_poll_event); 3367 wake_up_interruptible(&proc_poll_wait); 3368 3369 error = 0; 3370 goto out; 3371 bad_swap_unlock_inode: 3372 inode_unlock(inode); 3373 bad_swap: 3374 free_percpu(p->percpu_cluster); 3375 p->percpu_cluster = NULL; 3376 free_percpu(p->cluster_next_cpu); 3377 p->cluster_next_cpu = NULL; 3378 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 3379 set_blocksize(p->bdev, p->old_block_size); 3380 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 3381 } 3382 inode = NULL; 3383 destroy_swap_extents(p); 3384 swap_cgroup_swapoff(p->type); 3385 spin_lock(&swap_lock); 3386 p->swap_file = NULL; 3387 p->flags = 0; 3388 spin_unlock(&swap_lock); 3389 vfree(swap_map); 3390 kvfree(cluster_info); 3391 kvfree(frontswap_map); 3392 if (inced_nr_rotate_swap) 3393 atomic_dec(&nr_rotate_swap); 3394 if (swap_file) 3395 filp_close(swap_file, NULL); 3396 out: 3397 if (page && !IS_ERR(page)) { 3398 kunmap(page); 3399 put_page(page); 3400 } 3401 if (name) 3402 putname(name); 3403 if (inode) 3404 inode_unlock(inode); 3405 if (!error) 3406 enable_swap_slots_cache(); 3407 return error; 3408 } 3409 3410 void si_swapinfo(struct sysinfo *val) 3411 { 3412 unsigned int type; 3413 unsigned long nr_to_be_unused = 0; 3414 3415 spin_lock(&swap_lock); 3416 for (type = 0; type < nr_swapfiles; type++) { 3417 struct swap_info_struct *si = swap_info[type]; 3418 3419 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3420 nr_to_be_unused += si->inuse_pages; 3421 } 3422 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3423 val->totalswap = total_swap_pages + nr_to_be_unused; 3424 spin_unlock(&swap_lock); 3425 } 3426 3427 /* 3428 * Verify that a swap entry is valid and increment its swap map count. 3429 * 3430 * Returns error code in following case. 3431 * - success -> 0 3432 * - swp_entry is invalid -> EINVAL 3433 * - swp_entry is migration entry -> EINVAL 3434 * - swap-cache reference is requested but there is already one. -> EEXIST 3435 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3436 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3437 */ 3438 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 3439 { 3440 struct swap_info_struct *p; 3441 struct swap_cluster_info *ci; 3442 unsigned long offset; 3443 unsigned char count; 3444 unsigned char has_cache; 3445 int err = -EINVAL; 3446 3447 p = get_swap_device(entry); 3448 if (!p) 3449 goto out; 3450 3451 offset = swp_offset(entry); 3452 ci = lock_cluster_or_swap_info(p, offset); 3453 3454 count = p->swap_map[offset]; 3455 3456 /* 3457 * swapin_readahead() doesn't check if a swap entry is valid, so the 3458 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3459 */ 3460 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3461 err = -ENOENT; 3462 goto unlock_out; 3463 } 3464 3465 has_cache = count & SWAP_HAS_CACHE; 3466 count &= ~SWAP_HAS_CACHE; 3467 err = 0; 3468 3469 if (usage == SWAP_HAS_CACHE) { 3470 3471 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 3472 if (!has_cache && count) 3473 has_cache = SWAP_HAS_CACHE; 3474 else if (has_cache) /* someone else added cache */ 3475 err = -EEXIST; 3476 else /* no users remaining */ 3477 err = -ENOENT; 3478 3479 } else if (count || has_cache) { 3480 3481 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3482 count += usage; 3483 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3484 err = -EINVAL; 3485 else if (swap_count_continued(p, offset, count)) 3486 count = COUNT_CONTINUED; 3487 else 3488 err = -ENOMEM; 3489 } else 3490 err = -ENOENT; /* unused swap entry */ 3491 3492 WRITE_ONCE(p->swap_map[offset], count | has_cache); 3493 3494 unlock_out: 3495 unlock_cluster_or_swap_info(p, ci); 3496 out: 3497 if (p) 3498 put_swap_device(p); 3499 return err; 3500 } 3501 3502 /* 3503 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3504 * (in which case its reference count is never incremented). 3505 */ 3506 void swap_shmem_alloc(swp_entry_t entry) 3507 { 3508 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3509 } 3510 3511 /* 3512 * Increase reference count of swap entry by 1. 3513 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3514 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3515 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3516 * might occur if a page table entry has got corrupted. 3517 */ 3518 int swap_duplicate(swp_entry_t entry) 3519 { 3520 int err = 0; 3521 3522 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3523 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3524 return err; 3525 } 3526 3527 /* 3528 * @entry: swap entry for which we allocate swap cache. 3529 * 3530 * Called when allocating swap cache for existing swap entry, 3531 * This can return error codes. Returns 0 at success. 3532 * -EEXIST means there is a swap cache. 3533 * Note: return code is different from swap_duplicate(). 3534 */ 3535 int swapcache_prepare(swp_entry_t entry) 3536 { 3537 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3538 } 3539 3540 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3541 { 3542 return swap_type_to_swap_info(swp_type(entry)); 3543 } 3544 3545 struct swap_info_struct *page_swap_info(struct page *page) 3546 { 3547 swp_entry_t entry = { .val = page_private(page) }; 3548 return swp_swap_info(entry); 3549 } 3550 3551 /* 3552 * out-of-line __page_file_ methods to avoid include hell. 3553 */ 3554 struct address_space *__page_file_mapping(struct page *page) 3555 { 3556 return page_swap_info(page)->swap_file->f_mapping; 3557 } 3558 EXPORT_SYMBOL_GPL(__page_file_mapping); 3559 3560 pgoff_t __page_file_index(struct page *page) 3561 { 3562 swp_entry_t swap = { .val = page_private(page) }; 3563 return swp_offset(swap); 3564 } 3565 EXPORT_SYMBOL_GPL(__page_file_index); 3566 3567 /* 3568 * add_swap_count_continuation - called when a swap count is duplicated 3569 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3570 * page of the original vmalloc'ed swap_map, to hold the continuation count 3571 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3572 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3573 * 3574 * These continuation pages are seldom referenced: the common paths all work 3575 * on the original swap_map, only referring to a continuation page when the 3576 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3577 * 3578 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3579 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3580 * can be called after dropping locks. 3581 */ 3582 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3583 { 3584 struct swap_info_struct *si; 3585 struct swap_cluster_info *ci; 3586 struct page *head; 3587 struct page *page; 3588 struct page *list_page; 3589 pgoff_t offset; 3590 unsigned char count; 3591 int ret = 0; 3592 3593 /* 3594 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3595 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3596 */ 3597 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3598 3599 si = get_swap_device(entry); 3600 if (!si) { 3601 /* 3602 * An acceptable race has occurred since the failing 3603 * __swap_duplicate(): the swap device may be swapoff 3604 */ 3605 goto outer; 3606 } 3607 spin_lock(&si->lock); 3608 3609 offset = swp_offset(entry); 3610 3611 ci = lock_cluster(si, offset); 3612 3613 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 3614 3615 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3616 /* 3617 * The higher the swap count, the more likely it is that tasks 3618 * will race to add swap count continuation: we need to avoid 3619 * over-provisioning. 3620 */ 3621 goto out; 3622 } 3623 3624 if (!page) { 3625 ret = -ENOMEM; 3626 goto out; 3627 } 3628 3629 /* 3630 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 3631 * no architecture is using highmem pages for kernel page tables: so it 3632 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 3633 */ 3634 head = vmalloc_to_page(si->swap_map + offset); 3635 offset &= ~PAGE_MASK; 3636 3637 spin_lock(&si->cont_lock); 3638 /* 3639 * Page allocation does not initialize the page's lru field, 3640 * but it does always reset its private field. 3641 */ 3642 if (!page_private(head)) { 3643 BUG_ON(count & COUNT_CONTINUED); 3644 INIT_LIST_HEAD(&head->lru); 3645 set_page_private(head, SWP_CONTINUED); 3646 si->flags |= SWP_CONTINUED; 3647 } 3648 3649 list_for_each_entry(list_page, &head->lru, lru) { 3650 unsigned char *map; 3651 3652 /* 3653 * If the previous map said no continuation, but we've found 3654 * a continuation page, free our allocation and use this one. 3655 */ 3656 if (!(count & COUNT_CONTINUED)) 3657 goto out_unlock_cont; 3658 3659 map = kmap_atomic(list_page) + offset; 3660 count = *map; 3661 kunmap_atomic(map); 3662 3663 /* 3664 * If this continuation count now has some space in it, 3665 * free our allocation and use this one. 3666 */ 3667 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3668 goto out_unlock_cont; 3669 } 3670 3671 list_add_tail(&page->lru, &head->lru); 3672 page = NULL; /* now it's attached, don't free it */ 3673 out_unlock_cont: 3674 spin_unlock(&si->cont_lock); 3675 out: 3676 unlock_cluster(ci); 3677 spin_unlock(&si->lock); 3678 put_swap_device(si); 3679 outer: 3680 if (page) 3681 __free_page(page); 3682 return ret; 3683 } 3684 3685 /* 3686 * swap_count_continued - when the original swap_map count is incremented 3687 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3688 * into, carry if so, or else fail until a new continuation page is allocated; 3689 * when the original swap_map count is decremented from 0 with continuation, 3690 * borrow from the continuation and report whether it still holds more. 3691 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3692 * lock. 3693 */ 3694 static bool swap_count_continued(struct swap_info_struct *si, 3695 pgoff_t offset, unsigned char count) 3696 { 3697 struct page *head; 3698 struct page *page; 3699 unsigned char *map; 3700 bool ret; 3701 3702 head = vmalloc_to_page(si->swap_map + offset); 3703 if (page_private(head) != SWP_CONTINUED) { 3704 BUG_ON(count & COUNT_CONTINUED); 3705 return false; /* need to add count continuation */ 3706 } 3707 3708 spin_lock(&si->cont_lock); 3709 offset &= ~PAGE_MASK; 3710 page = list_next_entry(head, lru); 3711 map = kmap_atomic(page) + offset; 3712 3713 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3714 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3715 3716 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3717 /* 3718 * Think of how you add 1 to 999 3719 */ 3720 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3721 kunmap_atomic(map); 3722 page = list_next_entry(page, lru); 3723 BUG_ON(page == head); 3724 map = kmap_atomic(page) + offset; 3725 } 3726 if (*map == SWAP_CONT_MAX) { 3727 kunmap_atomic(map); 3728 page = list_next_entry(page, lru); 3729 if (page == head) { 3730 ret = false; /* add count continuation */ 3731 goto out; 3732 } 3733 map = kmap_atomic(page) + offset; 3734 init_map: *map = 0; /* we didn't zero the page */ 3735 } 3736 *map += 1; 3737 kunmap_atomic(map); 3738 while ((page = list_prev_entry(page, lru)) != head) { 3739 map = kmap_atomic(page) + offset; 3740 *map = COUNT_CONTINUED; 3741 kunmap_atomic(map); 3742 } 3743 ret = true; /* incremented */ 3744 3745 } else { /* decrementing */ 3746 /* 3747 * Think of how you subtract 1 from 1000 3748 */ 3749 BUG_ON(count != COUNT_CONTINUED); 3750 while (*map == COUNT_CONTINUED) { 3751 kunmap_atomic(map); 3752 page = list_next_entry(page, lru); 3753 BUG_ON(page == head); 3754 map = kmap_atomic(page) + offset; 3755 } 3756 BUG_ON(*map == 0); 3757 *map -= 1; 3758 if (*map == 0) 3759 count = 0; 3760 kunmap_atomic(map); 3761 while ((page = list_prev_entry(page, lru)) != head) { 3762 map = kmap_atomic(page) + offset; 3763 *map = SWAP_CONT_MAX | count; 3764 count = COUNT_CONTINUED; 3765 kunmap_atomic(map); 3766 } 3767 ret = count == COUNT_CONTINUED; 3768 } 3769 out: 3770 spin_unlock(&si->cont_lock); 3771 return ret; 3772 } 3773 3774 /* 3775 * free_swap_count_continuations - swapoff free all the continuation pages 3776 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3777 */ 3778 static void free_swap_count_continuations(struct swap_info_struct *si) 3779 { 3780 pgoff_t offset; 3781 3782 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3783 struct page *head; 3784 head = vmalloc_to_page(si->swap_map + offset); 3785 if (page_private(head)) { 3786 struct page *page, *next; 3787 3788 list_for_each_entry_safe(page, next, &head->lru, lru) { 3789 list_del(&page->lru); 3790 __free_page(page); 3791 } 3792 } 3793 } 3794 } 3795 3796 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3797 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask) 3798 { 3799 struct swap_info_struct *si, *next; 3800 int nid = page_to_nid(page); 3801 3802 if (!(gfp_mask & __GFP_IO)) 3803 return; 3804 3805 if (!blk_cgroup_congested()) 3806 return; 3807 3808 /* 3809 * We've already scheduled a throttle, avoid taking the global swap 3810 * lock. 3811 */ 3812 if (current->throttle_queue) 3813 return; 3814 3815 spin_lock(&swap_avail_lock); 3816 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], 3817 avail_lists[nid]) { 3818 if (si->bdev) { 3819 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true); 3820 break; 3821 } 3822 } 3823 spin_unlock(&swap_avail_lock); 3824 } 3825 #endif 3826 3827 static int __init swapfile_init(void) 3828 { 3829 int nid; 3830 3831 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3832 GFP_KERNEL); 3833 if (!swap_avail_heads) { 3834 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3835 return -ENOMEM; 3836 } 3837 3838 for_each_node(nid) 3839 plist_head_init(&swap_avail_heads[nid]); 3840 3841 return 0; 3842 } 3843 subsys_initcall(swapfile_init); 3844