1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/mm.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/task.h> 12 #include <linux/hugetlb.h> 13 #include <linux/mman.h> 14 #include <linux/slab.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/swap.h> 17 #include <linux/vmalloc.h> 18 #include <linux/pagemap.h> 19 #include <linux/namei.h> 20 #include <linux/shmem_fs.h> 21 #include <linux/blkdev.h> 22 #include <linux/random.h> 23 #include <linux/writeback.h> 24 #include <linux/proc_fs.h> 25 #include <linux/seq_file.h> 26 #include <linux/init.h> 27 #include <linux/ksm.h> 28 #include <linux/rmap.h> 29 #include <linux/security.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mutex.h> 32 #include <linux/capability.h> 33 #include <linux/syscalls.h> 34 #include <linux/memcontrol.h> 35 #include <linux/poll.h> 36 #include <linux/oom.h> 37 #include <linux/frontswap.h> 38 #include <linux/swapfile.h> 39 #include <linux/export.h> 40 #include <linux/swap_slots.h> 41 #include <linux/sort.h> 42 #include <linux/completion.h> 43 44 #include <asm/tlbflush.h> 45 #include <linux/swapops.h> 46 #include <linux/swap_cgroup.h> 47 48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 49 unsigned char); 50 static void free_swap_count_continuations(struct swap_info_struct *); 51 52 DEFINE_SPINLOCK(swap_lock); 53 static unsigned int nr_swapfiles; 54 atomic_long_t nr_swap_pages; 55 /* 56 * Some modules use swappable objects and may try to swap them out under 57 * memory pressure (via the shrinker). Before doing so, they may wish to 58 * check to see if any swap space is available. 59 */ 60 EXPORT_SYMBOL_GPL(nr_swap_pages); 61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 62 long total_swap_pages; 63 static int least_priority = -1; 64 65 static const char Bad_file[] = "Bad swap file entry "; 66 static const char Unused_file[] = "Unused swap file entry "; 67 static const char Bad_offset[] = "Bad swap offset entry "; 68 static const char Unused_offset[] = "Unused swap offset entry "; 69 70 /* 71 * all active swap_info_structs 72 * protected with swap_lock, and ordered by priority. 73 */ 74 PLIST_HEAD(swap_active_head); 75 76 /* 77 * all available (active, not full) swap_info_structs 78 * protected with swap_avail_lock, ordered by priority. 79 * This is used by get_swap_page() instead of swap_active_head 80 * because swap_active_head includes all swap_info_structs, 81 * but get_swap_page() doesn't need to look at full ones. 82 * This uses its own lock instead of swap_lock because when a 83 * swap_info_struct changes between not-full/full, it needs to 84 * add/remove itself to/from this list, but the swap_info_struct->lock 85 * is held and the locking order requires swap_lock to be taken 86 * before any swap_info_struct->lock. 87 */ 88 static struct plist_head *swap_avail_heads; 89 static DEFINE_SPINLOCK(swap_avail_lock); 90 91 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 92 93 static DEFINE_MUTEX(swapon_mutex); 94 95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 96 /* Activity counter to indicate that a swapon or swapoff has occurred */ 97 static atomic_t proc_poll_event = ATOMIC_INIT(0); 98 99 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 100 101 static struct swap_info_struct *swap_type_to_swap_info(int type) 102 { 103 if (type >= MAX_SWAPFILES) 104 return NULL; 105 106 return READ_ONCE(swap_info[type]); /* rcu_dereference() */ 107 } 108 109 static inline unsigned char swap_count(unsigned char ent) 110 { 111 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 112 } 113 114 /* Reclaim the swap entry anyway if possible */ 115 #define TTRS_ANYWAY 0x1 116 /* 117 * Reclaim the swap entry if there are no more mappings of the 118 * corresponding page 119 */ 120 #define TTRS_UNMAPPED 0x2 121 /* Reclaim the swap entry if swap is getting full*/ 122 #define TTRS_FULL 0x4 123 124 /* returns 1 if swap entry is freed */ 125 static int __try_to_reclaim_swap(struct swap_info_struct *si, 126 unsigned long offset, unsigned long flags) 127 { 128 swp_entry_t entry = swp_entry(si->type, offset); 129 struct page *page; 130 int ret = 0; 131 132 page = find_get_page(swap_address_space(entry), offset); 133 if (!page) 134 return 0; 135 /* 136 * When this function is called from scan_swap_map_slots() and it's 137 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page, 138 * here. We have to use trylock for avoiding deadlock. This is a special 139 * case and you should use try_to_free_swap() with explicit lock_page() 140 * in usual operations. 141 */ 142 if (trylock_page(page)) { 143 if ((flags & TTRS_ANYWAY) || 144 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) || 145 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page))) 146 ret = try_to_free_swap(page); 147 unlock_page(page); 148 } 149 put_page(page); 150 return ret; 151 } 152 153 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 154 { 155 struct rb_node *rb = rb_first(&sis->swap_extent_root); 156 return rb_entry(rb, struct swap_extent, rb_node); 157 } 158 159 static inline struct swap_extent *next_se(struct swap_extent *se) 160 { 161 struct rb_node *rb = rb_next(&se->rb_node); 162 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 163 } 164 165 /* 166 * swapon tell device that all the old swap contents can be discarded, 167 * to allow the swap device to optimize its wear-levelling. 168 */ 169 static int discard_swap(struct swap_info_struct *si) 170 { 171 struct swap_extent *se; 172 sector_t start_block; 173 sector_t nr_blocks; 174 int err = 0; 175 176 /* Do not discard the swap header page! */ 177 se = first_se(si); 178 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 179 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 180 if (nr_blocks) { 181 err = blkdev_issue_discard(si->bdev, start_block, 182 nr_blocks, GFP_KERNEL, 0); 183 if (err) 184 return err; 185 cond_resched(); 186 } 187 188 for (se = next_se(se); se; se = next_se(se)) { 189 start_block = se->start_block << (PAGE_SHIFT - 9); 190 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 191 192 err = blkdev_issue_discard(si->bdev, start_block, 193 nr_blocks, GFP_KERNEL, 0); 194 if (err) 195 break; 196 197 cond_resched(); 198 } 199 return err; /* That will often be -EOPNOTSUPP */ 200 } 201 202 static struct swap_extent * 203 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 204 { 205 struct swap_extent *se; 206 struct rb_node *rb; 207 208 rb = sis->swap_extent_root.rb_node; 209 while (rb) { 210 se = rb_entry(rb, struct swap_extent, rb_node); 211 if (offset < se->start_page) 212 rb = rb->rb_left; 213 else if (offset >= se->start_page + se->nr_pages) 214 rb = rb->rb_right; 215 else 216 return se; 217 } 218 /* It *must* be present */ 219 BUG(); 220 } 221 222 sector_t swap_page_sector(struct page *page) 223 { 224 struct swap_info_struct *sis = page_swap_info(page); 225 struct swap_extent *se; 226 sector_t sector; 227 pgoff_t offset; 228 229 offset = __page_file_index(page); 230 se = offset_to_swap_extent(sis, offset); 231 sector = se->start_block + (offset - se->start_page); 232 return sector << (PAGE_SHIFT - 9); 233 } 234 235 /* 236 * swap allocation tell device that a cluster of swap can now be discarded, 237 * to allow the swap device to optimize its wear-levelling. 238 */ 239 static void discard_swap_cluster(struct swap_info_struct *si, 240 pgoff_t start_page, pgoff_t nr_pages) 241 { 242 struct swap_extent *se = offset_to_swap_extent(si, start_page); 243 244 while (nr_pages) { 245 pgoff_t offset = start_page - se->start_page; 246 sector_t start_block = se->start_block + offset; 247 sector_t nr_blocks = se->nr_pages - offset; 248 249 if (nr_blocks > nr_pages) 250 nr_blocks = nr_pages; 251 start_page += nr_blocks; 252 nr_pages -= nr_blocks; 253 254 start_block <<= PAGE_SHIFT - 9; 255 nr_blocks <<= PAGE_SHIFT - 9; 256 if (blkdev_issue_discard(si->bdev, start_block, 257 nr_blocks, GFP_NOIO, 0)) 258 break; 259 260 se = next_se(se); 261 } 262 } 263 264 #ifdef CONFIG_THP_SWAP 265 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 266 267 #define swap_entry_size(size) (size) 268 #else 269 #define SWAPFILE_CLUSTER 256 270 271 /* 272 * Define swap_entry_size() as constant to let compiler to optimize 273 * out some code if !CONFIG_THP_SWAP 274 */ 275 #define swap_entry_size(size) 1 276 #endif 277 #define LATENCY_LIMIT 256 278 279 static inline void cluster_set_flag(struct swap_cluster_info *info, 280 unsigned int flag) 281 { 282 info->flags = flag; 283 } 284 285 static inline unsigned int cluster_count(struct swap_cluster_info *info) 286 { 287 return info->data; 288 } 289 290 static inline void cluster_set_count(struct swap_cluster_info *info, 291 unsigned int c) 292 { 293 info->data = c; 294 } 295 296 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 297 unsigned int c, unsigned int f) 298 { 299 info->flags = f; 300 info->data = c; 301 } 302 303 static inline unsigned int cluster_next(struct swap_cluster_info *info) 304 { 305 return info->data; 306 } 307 308 static inline void cluster_set_next(struct swap_cluster_info *info, 309 unsigned int n) 310 { 311 info->data = n; 312 } 313 314 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 315 unsigned int n, unsigned int f) 316 { 317 info->flags = f; 318 info->data = n; 319 } 320 321 static inline bool cluster_is_free(struct swap_cluster_info *info) 322 { 323 return info->flags & CLUSTER_FLAG_FREE; 324 } 325 326 static inline bool cluster_is_null(struct swap_cluster_info *info) 327 { 328 return info->flags & CLUSTER_FLAG_NEXT_NULL; 329 } 330 331 static inline void cluster_set_null(struct swap_cluster_info *info) 332 { 333 info->flags = CLUSTER_FLAG_NEXT_NULL; 334 info->data = 0; 335 } 336 337 static inline bool cluster_is_huge(struct swap_cluster_info *info) 338 { 339 if (IS_ENABLED(CONFIG_THP_SWAP)) 340 return info->flags & CLUSTER_FLAG_HUGE; 341 return false; 342 } 343 344 static inline void cluster_clear_huge(struct swap_cluster_info *info) 345 { 346 info->flags &= ~CLUSTER_FLAG_HUGE; 347 } 348 349 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 350 unsigned long offset) 351 { 352 struct swap_cluster_info *ci; 353 354 ci = si->cluster_info; 355 if (ci) { 356 ci += offset / SWAPFILE_CLUSTER; 357 spin_lock(&ci->lock); 358 } 359 return ci; 360 } 361 362 static inline void unlock_cluster(struct swap_cluster_info *ci) 363 { 364 if (ci) 365 spin_unlock(&ci->lock); 366 } 367 368 /* 369 * Determine the locking method in use for this device. Return 370 * swap_cluster_info if SSD-style cluster-based locking is in place. 371 */ 372 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 373 struct swap_info_struct *si, unsigned long offset) 374 { 375 struct swap_cluster_info *ci; 376 377 /* Try to use fine-grained SSD-style locking if available: */ 378 ci = lock_cluster(si, offset); 379 /* Otherwise, fall back to traditional, coarse locking: */ 380 if (!ci) 381 spin_lock(&si->lock); 382 383 return ci; 384 } 385 386 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 387 struct swap_cluster_info *ci) 388 { 389 if (ci) 390 unlock_cluster(ci); 391 else 392 spin_unlock(&si->lock); 393 } 394 395 static inline bool cluster_list_empty(struct swap_cluster_list *list) 396 { 397 return cluster_is_null(&list->head); 398 } 399 400 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 401 { 402 return cluster_next(&list->head); 403 } 404 405 static void cluster_list_init(struct swap_cluster_list *list) 406 { 407 cluster_set_null(&list->head); 408 cluster_set_null(&list->tail); 409 } 410 411 static void cluster_list_add_tail(struct swap_cluster_list *list, 412 struct swap_cluster_info *ci, 413 unsigned int idx) 414 { 415 if (cluster_list_empty(list)) { 416 cluster_set_next_flag(&list->head, idx, 0); 417 cluster_set_next_flag(&list->tail, idx, 0); 418 } else { 419 struct swap_cluster_info *ci_tail; 420 unsigned int tail = cluster_next(&list->tail); 421 422 /* 423 * Nested cluster lock, but both cluster locks are 424 * only acquired when we held swap_info_struct->lock 425 */ 426 ci_tail = ci + tail; 427 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 428 cluster_set_next(ci_tail, idx); 429 spin_unlock(&ci_tail->lock); 430 cluster_set_next_flag(&list->tail, idx, 0); 431 } 432 } 433 434 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 435 struct swap_cluster_info *ci) 436 { 437 unsigned int idx; 438 439 idx = cluster_next(&list->head); 440 if (cluster_next(&list->tail) == idx) { 441 cluster_set_null(&list->head); 442 cluster_set_null(&list->tail); 443 } else 444 cluster_set_next_flag(&list->head, 445 cluster_next(&ci[idx]), 0); 446 447 return idx; 448 } 449 450 /* Add a cluster to discard list and schedule it to do discard */ 451 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 452 unsigned int idx) 453 { 454 /* 455 * If scan_swap_map_slots() can't find a free cluster, it will check 456 * si->swap_map directly. To make sure the discarding cluster isn't 457 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied). 458 * It will be cleared after discard 459 */ 460 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 461 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 462 463 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 464 465 schedule_work(&si->discard_work); 466 } 467 468 static void __free_cluster(struct swap_info_struct *si, unsigned long idx) 469 { 470 struct swap_cluster_info *ci = si->cluster_info; 471 472 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); 473 cluster_list_add_tail(&si->free_clusters, ci, idx); 474 } 475 476 /* 477 * Doing discard actually. After a cluster discard is finished, the cluster 478 * will be added to free cluster list. caller should hold si->lock. 479 */ 480 static void swap_do_scheduled_discard(struct swap_info_struct *si) 481 { 482 struct swap_cluster_info *info, *ci; 483 unsigned int idx; 484 485 info = si->cluster_info; 486 487 while (!cluster_list_empty(&si->discard_clusters)) { 488 idx = cluster_list_del_first(&si->discard_clusters, info); 489 spin_unlock(&si->lock); 490 491 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 492 SWAPFILE_CLUSTER); 493 494 spin_lock(&si->lock); 495 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 496 __free_cluster(si, idx); 497 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 498 0, SWAPFILE_CLUSTER); 499 unlock_cluster(ci); 500 } 501 } 502 503 static void swap_discard_work(struct work_struct *work) 504 { 505 struct swap_info_struct *si; 506 507 si = container_of(work, struct swap_info_struct, discard_work); 508 509 spin_lock(&si->lock); 510 swap_do_scheduled_discard(si); 511 spin_unlock(&si->lock); 512 } 513 514 static void swap_users_ref_free(struct percpu_ref *ref) 515 { 516 struct swap_info_struct *si; 517 518 si = container_of(ref, struct swap_info_struct, users); 519 complete(&si->comp); 520 } 521 522 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) 523 { 524 struct swap_cluster_info *ci = si->cluster_info; 525 526 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); 527 cluster_list_del_first(&si->free_clusters, ci); 528 cluster_set_count_flag(ci + idx, 0, 0); 529 } 530 531 static void free_cluster(struct swap_info_struct *si, unsigned long idx) 532 { 533 struct swap_cluster_info *ci = si->cluster_info + idx; 534 535 VM_BUG_ON(cluster_count(ci) != 0); 536 /* 537 * If the swap is discardable, prepare discard the cluster 538 * instead of free it immediately. The cluster will be freed 539 * after discard. 540 */ 541 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 542 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 543 swap_cluster_schedule_discard(si, idx); 544 return; 545 } 546 547 __free_cluster(si, idx); 548 } 549 550 /* 551 * The cluster corresponding to page_nr will be used. The cluster will be 552 * removed from free cluster list and its usage counter will be increased. 553 */ 554 static void inc_cluster_info_page(struct swap_info_struct *p, 555 struct swap_cluster_info *cluster_info, unsigned long page_nr) 556 { 557 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 558 559 if (!cluster_info) 560 return; 561 if (cluster_is_free(&cluster_info[idx])) 562 alloc_cluster(p, idx); 563 564 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 565 cluster_set_count(&cluster_info[idx], 566 cluster_count(&cluster_info[idx]) + 1); 567 } 568 569 /* 570 * The cluster corresponding to page_nr decreases one usage. If the usage 571 * counter becomes 0, which means no page in the cluster is in using, we can 572 * optionally discard the cluster and add it to free cluster list. 573 */ 574 static void dec_cluster_info_page(struct swap_info_struct *p, 575 struct swap_cluster_info *cluster_info, unsigned long page_nr) 576 { 577 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 578 579 if (!cluster_info) 580 return; 581 582 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 583 cluster_set_count(&cluster_info[idx], 584 cluster_count(&cluster_info[idx]) - 1); 585 586 if (cluster_count(&cluster_info[idx]) == 0) 587 free_cluster(p, idx); 588 } 589 590 /* 591 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free 592 * cluster list. Avoiding such abuse to avoid list corruption. 593 */ 594 static bool 595 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 596 unsigned long offset) 597 { 598 struct percpu_cluster *percpu_cluster; 599 bool conflict; 600 601 offset /= SWAPFILE_CLUSTER; 602 conflict = !cluster_list_empty(&si->free_clusters) && 603 offset != cluster_list_first(&si->free_clusters) && 604 cluster_is_free(&si->cluster_info[offset]); 605 606 if (!conflict) 607 return false; 608 609 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 610 cluster_set_null(&percpu_cluster->index); 611 return true; 612 } 613 614 /* 615 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 616 * might involve allocating a new cluster for current CPU too. 617 */ 618 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 619 unsigned long *offset, unsigned long *scan_base) 620 { 621 struct percpu_cluster *cluster; 622 struct swap_cluster_info *ci; 623 unsigned long tmp, max; 624 625 new_cluster: 626 cluster = this_cpu_ptr(si->percpu_cluster); 627 if (cluster_is_null(&cluster->index)) { 628 if (!cluster_list_empty(&si->free_clusters)) { 629 cluster->index = si->free_clusters.head; 630 cluster->next = cluster_next(&cluster->index) * 631 SWAPFILE_CLUSTER; 632 } else if (!cluster_list_empty(&si->discard_clusters)) { 633 /* 634 * we don't have free cluster but have some clusters in 635 * discarding, do discard now and reclaim them, then 636 * reread cluster_next_cpu since we dropped si->lock 637 */ 638 swap_do_scheduled_discard(si); 639 *scan_base = this_cpu_read(*si->cluster_next_cpu); 640 *offset = *scan_base; 641 goto new_cluster; 642 } else 643 return false; 644 } 645 646 /* 647 * Other CPUs can use our cluster if they can't find a free cluster, 648 * check if there is still free entry in the cluster 649 */ 650 tmp = cluster->next; 651 max = min_t(unsigned long, si->max, 652 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); 653 if (tmp < max) { 654 ci = lock_cluster(si, tmp); 655 while (tmp < max) { 656 if (!si->swap_map[tmp]) 657 break; 658 tmp++; 659 } 660 unlock_cluster(ci); 661 } 662 if (tmp >= max) { 663 cluster_set_null(&cluster->index); 664 goto new_cluster; 665 } 666 cluster->next = tmp + 1; 667 *offset = tmp; 668 *scan_base = tmp; 669 return true; 670 } 671 672 static void __del_from_avail_list(struct swap_info_struct *p) 673 { 674 int nid; 675 676 for_each_node(nid) 677 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); 678 } 679 680 static void del_from_avail_list(struct swap_info_struct *p) 681 { 682 spin_lock(&swap_avail_lock); 683 __del_from_avail_list(p); 684 spin_unlock(&swap_avail_lock); 685 } 686 687 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 688 unsigned int nr_entries) 689 { 690 unsigned int end = offset + nr_entries - 1; 691 692 if (offset == si->lowest_bit) 693 si->lowest_bit += nr_entries; 694 if (end == si->highest_bit) 695 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries); 696 si->inuse_pages += nr_entries; 697 if (si->inuse_pages == si->pages) { 698 si->lowest_bit = si->max; 699 si->highest_bit = 0; 700 del_from_avail_list(si); 701 } 702 } 703 704 static void add_to_avail_list(struct swap_info_struct *p) 705 { 706 int nid; 707 708 spin_lock(&swap_avail_lock); 709 for_each_node(nid) { 710 WARN_ON(!plist_node_empty(&p->avail_lists[nid])); 711 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); 712 } 713 spin_unlock(&swap_avail_lock); 714 } 715 716 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 717 unsigned int nr_entries) 718 { 719 unsigned long begin = offset; 720 unsigned long end = offset + nr_entries - 1; 721 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 722 723 if (offset < si->lowest_bit) 724 si->lowest_bit = offset; 725 if (end > si->highest_bit) { 726 bool was_full = !si->highest_bit; 727 728 WRITE_ONCE(si->highest_bit, end); 729 if (was_full && (si->flags & SWP_WRITEOK)) 730 add_to_avail_list(si); 731 } 732 atomic_long_add(nr_entries, &nr_swap_pages); 733 si->inuse_pages -= nr_entries; 734 if (si->flags & SWP_BLKDEV) 735 swap_slot_free_notify = 736 si->bdev->bd_disk->fops->swap_slot_free_notify; 737 else 738 swap_slot_free_notify = NULL; 739 while (offset <= end) { 740 arch_swap_invalidate_page(si->type, offset); 741 frontswap_invalidate_page(si->type, offset); 742 if (swap_slot_free_notify) 743 swap_slot_free_notify(si->bdev, offset); 744 offset++; 745 } 746 clear_shadow_from_swap_cache(si->type, begin, end); 747 } 748 749 static void set_cluster_next(struct swap_info_struct *si, unsigned long next) 750 { 751 unsigned long prev; 752 753 if (!(si->flags & SWP_SOLIDSTATE)) { 754 si->cluster_next = next; 755 return; 756 } 757 758 prev = this_cpu_read(*si->cluster_next_cpu); 759 /* 760 * Cross the swap address space size aligned trunk, choose 761 * another trunk randomly to avoid lock contention on swap 762 * address space if possible. 763 */ 764 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) != 765 (next >> SWAP_ADDRESS_SPACE_SHIFT)) { 766 /* No free swap slots available */ 767 if (si->highest_bit <= si->lowest_bit) 768 return; 769 next = si->lowest_bit + 770 prandom_u32_max(si->highest_bit - si->lowest_bit + 1); 771 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES); 772 next = max_t(unsigned int, next, si->lowest_bit); 773 } 774 this_cpu_write(*si->cluster_next_cpu, next); 775 } 776 777 static int scan_swap_map_slots(struct swap_info_struct *si, 778 unsigned char usage, int nr, 779 swp_entry_t slots[]) 780 { 781 struct swap_cluster_info *ci; 782 unsigned long offset; 783 unsigned long scan_base; 784 unsigned long last_in_cluster = 0; 785 int latency_ration = LATENCY_LIMIT; 786 int n_ret = 0; 787 bool scanned_many = false; 788 789 /* 790 * We try to cluster swap pages by allocating them sequentially 791 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 792 * way, however, we resort to first-free allocation, starting 793 * a new cluster. This prevents us from scattering swap pages 794 * all over the entire swap partition, so that we reduce 795 * overall disk seek times between swap pages. -- sct 796 * But we do now try to find an empty cluster. -Andrea 797 * And we let swap pages go all over an SSD partition. Hugh 798 */ 799 800 si->flags += SWP_SCANNING; 801 /* 802 * Use percpu scan base for SSD to reduce lock contention on 803 * cluster and swap cache. For HDD, sequential access is more 804 * important. 805 */ 806 if (si->flags & SWP_SOLIDSTATE) 807 scan_base = this_cpu_read(*si->cluster_next_cpu); 808 else 809 scan_base = si->cluster_next; 810 offset = scan_base; 811 812 /* SSD algorithm */ 813 if (si->cluster_info) { 814 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 815 goto scan; 816 } else if (unlikely(!si->cluster_nr--)) { 817 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 818 si->cluster_nr = SWAPFILE_CLUSTER - 1; 819 goto checks; 820 } 821 822 spin_unlock(&si->lock); 823 824 /* 825 * If seek is expensive, start searching for new cluster from 826 * start of partition, to minimize the span of allocated swap. 827 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 828 * case, just handled by scan_swap_map_try_ssd_cluster() above. 829 */ 830 scan_base = offset = si->lowest_bit; 831 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 832 833 /* Locate the first empty (unaligned) cluster */ 834 for (; last_in_cluster <= si->highest_bit; offset++) { 835 if (si->swap_map[offset]) 836 last_in_cluster = offset + SWAPFILE_CLUSTER; 837 else if (offset == last_in_cluster) { 838 spin_lock(&si->lock); 839 offset -= SWAPFILE_CLUSTER - 1; 840 si->cluster_next = offset; 841 si->cluster_nr = SWAPFILE_CLUSTER - 1; 842 goto checks; 843 } 844 if (unlikely(--latency_ration < 0)) { 845 cond_resched(); 846 latency_ration = LATENCY_LIMIT; 847 } 848 } 849 850 offset = scan_base; 851 spin_lock(&si->lock); 852 si->cluster_nr = SWAPFILE_CLUSTER - 1; 853 } 854 855 checks: 856 if (si->cluster_info) { 857 while (scan_swap_map_ssd_cluster_conflict(si, offset)) { 858 /* take a break if we already got some slots */ 859 if (n_ret) 860 goto done; 861 if (!scan_swap_map_try_ssd_cluster(si, &offset, 862 &scan_base)) 863 goto scan; 864 } 865 } 866 if (!(si->flags & SWP_WRITEOK)) 867 goto no_page; 868 if (!si->highest_bit) 869 goto no_page; 870 if (offset > si->highest_bit) 871 scan_base = offset = si->lowest_bit; 872 873 ci = lock_cluster(si, offset); 874 /* reuse swap entry of cache-only swap if not busy. */ 875 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 876 int swap_was_freed; 877 unlock_cluster(ci); 878 spin_unlock(&si->lock); 879 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 880 spin_lock(&si->lock); 881 /* entry was freed successfully, try to use this again */ 882 if (swap_was_freed) 883 goto checks; 884 goto scan; /* check next one */ 885 } 886 887 if (si->swap_map[offset]) { 888 unlock_cluster(ci); 889 if (!n_ret) 890 goto scan; 891 else 892 goto done; 893 } 894 WRITE_ONCE(si->swap_map[offset], usage); 895 inc_cluster_info_page(si, si->cluster_info, offset); 896 unlock_cluster(ci); 897 898 swap_range_alloc(si, offset, 1); 899 slots[n_ret++] = swp_entry(si->type, offset); 900 901 /* got enough slots or reach max slots? */ 902 if ((n_ret == nr) || (offset >= si->highest_bit)) 903 goto done; 904 905 /* search for next available slot */ 906 907 /* time to take a break? */ 908 if (unlikely(--latency_ration < 0)) { 909 if (n_ret) 910 goto done; 911 spin_unlock(&si->lock); 912 cond_resched(); 913 spin_lock(&si->lock); 914 latency_ration = LATENCY_LIMIT; 915 } 916 917 /* try to get more slots in cluster */ 918 if (si->cluster_info) { 919 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 920 goto checks; 921 } else if (si->cluster_nr && !si->swap_map[++offset]) { 922 /* non-ssd case, still more slots in cluster? */ 923 --si->cluster_nr; 924 goto checks; 925 } 926 927 /* 928 * Even if there's no free clusters available (fragmented), 929 * try to scan a little more quickly with lock held unless we 930 * have scanned too many slots already. 931 */ 932 if (!scanned_many) { 933 unsigned long scan_limit; 934 935 if (offset < scan_base) 936 scan_limit = scan_base; 937 else 938 scan_limit = si->highest_bit; 939 for (; offset <= scan_limit && --latency_ration > 0; 940 offset++) { 941 if (!si->swap_map[offset]) 942 goto checks; 943 } 944 } 945 946 done: 947 set_cluster_next(si, offset + 1); 948 si->flags -= SWP_SCANNING; 949 return n_ret; 950 951 scan: 952 spin_unlock(&si->lock); 953 while (++offset <= READ_ONCE(si->highest_bit)) { 954 if (data_race(!si->swap_map[offset])) { 955 spin_lock(&si->lock); 956 goto checks; 957 } 958 if (vm_swap_full() && 959 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 960 spin_lock(&si->lock); 961 goto checks; 962 } 963 if (unlikely(--latency_ration < 0)) { 964 cond_resched(); 965 latency_ration = LATENCY_LIMIT; 966 scanned_many = true; 967 } 968 } 969 offset = si->lowest_bit; 970 while (offset < scan_base) { 971 if (data_race(!si->swap_map[offset])) { 972 spin_lock(&si->lock); 973 goto checks; 974 } 975 if (vm_swap_full() && 976 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 977 spin_lock(&si->lock); 978 goto checks; 979 } 980 if (unlikely(--latency_ration < 0)) { 981 cond_resched(); 982 latency_ration = LATENCY_LIMIT; 983 scanned_many = true; 984 } 985 offset++; 986 } 987 spin_lock(&si->lock); 988 989 no_page: 990 si->flags -= SWP_SCANNING; 991 return n_ret; 992 } 993 994 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) 995 { 996 unsigned long idx; 997 struct swap_cluster_info *ci; 998 unsigned long offset; 999 1000 /* 1001 * Should not even be attempting cluster allocations when huge 1002 * page swap is disabled. Warn and fail the allocation. 1003 */ 1004 if (!IS_ENABLED(CONFIG_THP_SWAP)) { 1005 VM_WARN_ON_ONCE(1); 1006 return 0; 1007 } 1008 1009 if (cluster_list_empty(&si->free_clusters)) 1010 return 0; 1011 1012 idx = cluster_list_first(&si->free_clusters); 1013 offset = idx * SWAPFILE_CLUSTER; 1014 ci = lock_cluster(si, offset); 1015 alloc_cluster(si, idx); 1016 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); 1017 1018 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER); 1019 unlock_cluster(ci); 1020 swap_range_alloc(si, offset, SWAPFILE_CLUSTER); 1021 *slot = swp_entry(si->type, offset); 1022 1023 return 1; 1024 } 1025 1026 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) 1027 { 1028 unsigned long offset = idx * SWAPFILE_CLUSTER; 1029 struct swap_cluster_info *ci; 1030 1031 ci = lock_cluster(si, offset); 1032 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER); 1033 cluster_set_count_flag(ci, 0, 0); 1034 free_cluster(si, idx); 1035 unlock_cluster(ci); 1036 swap_range_free(si, offset, SWAPFILE_CLUSTER); 1037 } 1038 1039 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size) 1040 { 1041 unsigned long size = swap_entry_size(entry_size); 1042 struct swap_info_struct *si, *next; 1043 long avail_pgs; 1044 int n_ret = 0; 1045 int node; 1046 1047 /* Only single cluster request supported */ 1048 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER); 1049 1050 spin_lock(&swap_avail_lock); 1051 1052 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 1053 if (avail_pgs <= 0) { 1054 spin_unlock(&swap_avail_lock); 1055 goto noswap; 1056 } 1057 1058 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs); 1059 1060 atomic_long_sub(n_goal * size, &nr_swap_pages); 1061 1062 start_over: 1063 node = numa_node_id(); 1064 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1065 /* requeue si to after same-priority siblings */ 1066 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1067 spin_unlock(&swap_avail_lock); 1068 spin_lock(&si->lock); 1069 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 1070 spin_lock(&swap_avail_lock); 1071 if (plist_node_empty(&si->avail_lists[node])) { 1072 spin_unlock(&si->lock); 1073 goto nextsi; 1074 } 1075 WARN(!si->highest_bit, 1076 "swap_info %d in list but !highest_bit\n", 1077 si->type); 1078 WARN(!(si->flags & SWP_WRITEOK), 1079 "swap_info %d in list but !SWP_WRITEOK\n", 1080 si->type); 1081 __del_from_avail_list(si); 1082 spin_unlock(&si->lock); 1083 goto nextsi; 1084 } 1085 if (size == SWAPFILE_CLUSTER) { 1086 if (si->flags & SWP_BLKDEV) 1087 n_ret = swap_alloc_cluster(si, swp_entries); 1088 } else 1089 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 1090 n_goal, swp_entries); 1091 spin_unlock(&si->lock); 1092 if (n_ret || size == SWAPFILE_CLUSTER) 1093 goto check_out; 1094 pr_debug("scan_swap_map of si %d failed to find offset\n", 1095 si->type); 1096 1097 spin_lock(&swap_avail_lock); 1098 nextsi: 1099 /* 1100 * if we got here, it's likely that si was almost full before, 1101 * and since scan_swap_map_slots() can drop the si->lock, 1102 * multiple callers probably all tried to get a page from the 1103 * same si and it filled up before we could get one; or, the si 1104 * filled up between us dropping swap_avail_lock and taking 1105 * si->lock. Since we dropped the swap_avail_lock, the 1106 * swap_avail_head list may have been modified; so if next is 1107 * still in the swap_avail_head list then try it, otherwise 1108 * start over if we have not gotten any slots. 1109 */ 1110 if (plist_node_empty(&next->avail_lists[node])) 1111 goto start_over; 1112 } 1113 1114 spin_unlock(&swap_avail_lock); 1115 1116 check_out: 1117 if (n_ret < n_goal) 1118 atomic_long_add((long)(n_goal - n_ret) * size, 1119 &nr_swap_pages); 1120 noswap: 1121 return n_ret; 1122 } 1123 1124 static struct swap_info_struct *__swap_info_get(swp_entry_t entry) 1125 { 1126 struct swap_info_struct *p; 1127 unsigned long offset; 1128 1129 if (!entry.val) 1130 goto out; 1131 p = swp_swap_info(entry); 1132 if (!p) 1133 goto bad_nofile; 1134 if (data_race(!(p->flags & SWP_USED))) 1135 goto bad_device; 1136 offset = swp_offset(entry); 1137 if (offset >= p->max) 1138 goto bad_offset; 1139 return p; 1140 1141 bad_offset: 1142 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1143 goto out; 1144 bad_device: 1145 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); 1146 goto out; 1147 bad_nofile: 1148 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1149 out: 1150 return NULL; 1151 } 1152 1153 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1154 { 1155 struct swap_info_struct *p; 1156 1157 p = __swap_info_get(entry); 1158 if (!p) 1159 goto out; 1160 if (data_race(!p->swap_map[swp_offset(entry)])) 1161 goto bad_free; 1162 return p; 1163 1164 bad_free: 1165 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); 1166 out: 1167 return NULL; 1168 } 1169 1170 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 1171 { 1172 struct swap_info_struct *p; 1173 1174 p = _swap_info_get(entry); 1175 if (p) 1176 spin_lock(&p->lock); 1177 return p; 1178 } 1179 1180 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1181 struct swap_info_struct *q) 1182 { 1183 struct swap_info_struct *p; 1184 1185 p = _swap_info_get(entry); 1186 1187 if (p != q) { 1188 if (q != NULL) 1189 spin_unlock(&q->lock); 1190 if (p != NULL) 1191 spin_lock(&p->lock); 1192 } 1193 return p; 1194 } 1195 1196 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, 1197 unsigned long offset, 1198 unsigned char usage) 1199 { 1200 unsigned char count; 1201 unsigned char has_cache; 1202 1203 count = p->swap_map[offset]; 1204 1205 has_cache = count & SWAP_HAS_CACHE; 1206 count &= ~SWAP_HAS_CACHE; 1207 1208 if (usage == SWAP_HAS_CACHE) { 1209 VM_BUG_ON(!has_cache); 1210 has_cache = 0; 1211 } else if (count == SWAP_MAP_SHMEM) { 1212 /* 1213 * Or we could insist on shmem.c using a special 1214 * swap_shmem_free() and free_shmem_swap_and_cache()... 1215 */ 1216 count = 0; 1217 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1218 if (count == COUNT_CONTINUED) { 1219 if (swap_count_continued(p, offset, count)) 1220 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1221 else 1222 count = SWAP_MAP_MAX; 1223 } else 1224 count--; 1225 } 1226 1227 usage = count | has_cache; 1228 if (usage) 1229 WRITE_ONCE(p->swap_map[offset], usage); 1230 else 1231 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE); 1232 1233 return usage; 1234 } 1235 1236 /* 1237 * Check whether swap entry is valid in the swap device. If so, 1238 * return pointer to swap_info_struct, and keep the swap entry valid 1239 * via preventing the swap device from being swapoff, until 1240 * put_swap_device() is called. Otherwise return NULL. 1241 * 1242 * Notice that swapoff or swapoff+swapon can still happen before the 1243 * percpu_ref_tryget_live() in get_swap_device() or after the 1244 * percpu_ref_put() in put_swap_device() if there isn't any other way 1245 * to prevent swapoff, such as page lock, page table lock, etc. The 1246 * caller must be prepared for that. For example, the following 1247 * situation is possible. 1248 * 1249 * CPU1 CPU2 1250 * do_swap_page() 1251 * ... swapoff+swapon 1252 * __read_swap_cache_async() 1253 * swapcache_prepare() 1254 * __swap_duplicate() 1255 * // check swap_map 1256 * // verify PTE not changed 1257 * 1258 * In __swap_duplicate(), the swap_map need to be checked before 1259 * changing partly because the specified swap entry may be for another 1260 * swap device which has been swapoff. And in do_swap_page(), after 1261 * the page is read from the swap device, the PTE is verified not 1262 * changed with the page table locked to check whether the swap device 1263 * has been swapoff or swapoff+swapon. 1264 */ 1265 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1266 { 1267 struct swap_info_struct *si; 1268 unsigned long offset; 1269 1270 if (!entry.val) 1271 goto out; 1272 si = swp_swap_info(entry); 1273 if (!si) 1274 goto bad_nofile; 1275 if (!percpu_ref_tryget_live(&si->users)) 1276 goto out; 1277 /* 1278 * Guarantee the si->users are checked before accessing other 1279 * fields of swap_info_struct. 1280 * 1281 * Paired with the spin_unlock() after setup_swap_info() in 1282 * enable_swap_info(). 1283 */ 1284 smp_rmb(); 1285 offset = swp_offset(entry); 1286 if (offset >= si->max) 1287 goto put_out; 1288 1289 return si; 1290 bad_nofile: 1291 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1292 out: 1293 return NULL; 1294 put_out: 1295 percpu_ref_put(&si->users); 1296 return NULL; 1297 } 1298 1299 static unsigned char __swap_entry_free(struct swap_info_struct *p, 1300 swp_entry_t entry) 1301 { 1302 struct swap_cluster_info *ci; 1303 unsigned long offset = swp_offset(entry); 1304 unsigned char usage; 1305 1306 ci = lock_cluster_or_swap_info(p, offset); 1307 usage = __swap_entry_free_locked(p, offset, 1); 1308 unlock_cluster_or_swap_info(p, ci); 1309 if (!usage) 1310 free_swap_slot(entry); 1311 1312 return usage; 1313 } 1314 1315 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 1316 { 1317 struct swap_cluster_info *ci; 1318 unsigned long offset = swp_offset(entry); 1319 unsigned char count; 1320 1321 ci = lock_cluster(p, offset); 1322 count = p->swap_map[offset]; 1323 VM_BUG_ON(count != SWAP_HAS_CACHE); 1324 p->swap_map[offset] = 0; 1325 dec_cluster_info_page(p, p->cluster_info, offset); 1326 unlock_cluster(ci); 1327 1328 mem_cgroup_uncharge_swap(entry, 1); 1329 swap_range_free(p, offset, 1); 1330 } 1331 1332 /* 1333 * Caller has made sure that the swap device corresponding to entry 1334 * is still around or has not been recycled. 1335 */ 1336 void swap_free(swp_entry_t entry) 1337 { 1338 struct swap_info_struct *p; 1339 1340 p = _swap_info_get(entry); 1341 if (p) 1342 __swap_entry_free(p, entry); 1343 } 1344 1345 /* 1346 * Called after dropping swapcache to decrease refcnt to swap entries. 1347 */ 1348 void put_swap_page(struct page *page, swp_entry_t entry) 1349 { 1350 unsigned long offset = swp_offset(entry); 1351 unsigned long idx = offset / SWAPFILE_CLUSTER; 1352 struct swap_cluster_info *ci; 1353 struct swap_info_struct *si; 1354 unsigned char *map; 1355 unsigned int i, free_entries = 0; 1356 unsigned char val; 1357 int size = swap_entry_size(thp_nr_pages(page)); 1358 1359 si = _swap_info_get(entry); 1360 if (!si) 1361 return; 1362 1363 ci = lock_cluster_or_swap_info(si, offset); 1364 if (size == SWAPFILE_CLUSTER) { 1365 VM_BUG_ON(!cluster_is_huge(ci)); 1366 map = si->swap_map + offset; 1367 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1368 val = map[i]; 1369 VM_BUG_ON(!(val & SWAP_HAS_CACHE)); 1370 if (val == SWAP_HAS_CACHE) 1371 free_entries++; 1372 } 1373 cluster_clear_huge(ci); 1374 if (free_entries == SWAPFILE_CLUSTER) { 1375 unlock_cluster_or_swap_info(si, ci); 1376 spin_lock(&si->lock); 1377 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); 1378 swap_free_cluster(si, idx); 1379 spin_unlock(&si->lock); 1380 return; 1381 } 1382 } 1383 for (i = 0; i < size; i++, entry.val++) { 1384 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { 1385 unlock_cluster_or_swap_info(si, ci); 1386 free_swap_slot(entry); 1387 if (i == size - 1) 1388 return; 1389 lock_cluster_or_swap_info(si, offset); 1390 } 1391 } 1392 unlock_cluster_or_swap_info(si, ci); 1393 } 1394 1395 #ifdef CONFIG_THP_SWAP 1396 int split_swap_cluster(swp_entry_t entry) 1397 { 1398 struct swap_info_struct *si; 1399 struct swap_cluster_info *ci; 1400 unsigned long offset = swp_offset(entry); 1401 1402 si = _swap_info_get(entry); 1403 if (!si) 1404 return -EBUSY; 1405 ci = lock_cluster(si, offset); 1406 cluster_clear_huge(ci); 1407 unlock_cluster(ci); 1408 return 0; 1409 } 1410 #endif 1411 1412 static int swp_entry_cmp(const void *ent1, const void *ent2) 1413 { 1414 const swp_entry_t *e1 = ent1, *e2 = ent2; 1415 1416 return (int)swp_type(*e1) - (int)swp_type(*e2); 1417 } 1418 1419 void swapcache_free_entries(swp_entry_t *entries, int n) 1420 { 1421 struct swap_info_struct *p, *prev; 1422 int i; 1423 1424 if (n <= 0) 1425 return; 1426 1427 prev = NULL; 1428 p = NULL; 1429 1430 /* 1431 * Sort swap entries by swap device, so each lock is only taken once. 1432 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1433 * so low that it isn't necessary to optimize further. 1434 */ 1435 if (nr_swapfiles > 1) 1436 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1437 for (i = 0; i < n; ++i) { 1438 p = swap_info_get_cont(entries[i], prev); 1439 if (p) 1440 swap_entry_free(p, entries[i]); 1441 prev = p; 1442 } 1443 if (p) 1444 spin_unlock(&p->lock); 1445 } 1446 1447 /* 1448 * How many references to page are currently swapped out? 1449 * This does not give an exact answer when swap count is continued, 1450 * but does include the high COUNT_CONTINUED flag to allow for that. 1451 */ 1452 int page_swapcount(struct page *page) 1453 { 1454 int count = 0; 1455 struct swap_info_struct *p; 1456 struct swap_cluster_info *ci; 1457 swp_entry_t entry; 1458 unsigned long offset; 1459 1460 entry.val = page_private(page); 1461 p = _swap_info_get(entry); 1462 if (p) { 1463 offset = swp_offset(entry); 1464 ci = lock_cluster_or_swap_info(p, offset); 1465 count = swap_count(p->swap_map[offset]); 1466 unlock_cluster_or_swap_info(p, ci); 1467 } 1468 return count; 1469 } 1470 1471 int __swap_count(swp_entry_t entry) 1472 { 1473 struct swap_info_struct *si; 1474 pgoff_t offset = swp_offset(entry); 1475 int count = 0; 1476 1477 si = get_swap_device(entry); 1478 if (si) { 1479 count = swap_count(si->swap_map[offset]); 1480 put_swap_device(si); 1481 } 1482 return count; 1483 } 1484 1485 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1486 { 1487 int count = 0; 1488 pgoff_t offset = swp_offset(entry); 1489 struct swap_cluster_info *ci; 1490 1491 ci = lock_cluster_or_swap_info(si, offset); 1492 count = swap_count(si->swap_map[offset]); 1493 unlock_cluster_or_swap_info(si, ci); 1494 return count; 1495 } 1496 1497 /* 1498 * How many references to @entry are currently swapped out? 1499 * This does not give an exact answer when swap count is continued, 1500 * but does include the high COUNT_CONTINUED flag to allow for that. 1501 */ 1502 int __swp_swapcount(swp_entry_t entry) 1503 { 1504 int count = 0; 1505 struct swap_info_struct *si; 1506 1507 si = get_swap_device(entry); 1508 if (si) { 1509 count = swap_swapcount(si, entry); 1510 put_swap_device(si); 1511 } 1512 return count; 1513 } 1514 1515 /* 1516 * How many references to @entry are currently swapped out? 1517 * This considers COUNT_CONTINUED so it returns exact answer. 1518 */ 1519 int swp_swapcount(swp_entry_t entry) 1520 { 1521 int count, tmp_count, n; 1522 struct swap_info_struct *p; 1523 struct swap_cluster_info *ci; 1524 struct page *page; 1525 pgoff_t offset; 1526 unsigned char *map; 1527 1528 p = _swap_info_get(entry); 1529 if (!p) 1530 return 0; 1531 1532 offset = swp_offset(entry); 1533 1534 ci = lock_cluster_or_swap_info(p, offset); 1535 1536 count = swap_count(p->swap_map[offset]); 1537 if (!(count & COUNT_CONTINUED)) 1538 goto out; 1539 1540 count &= ~COUNT_CONTINUED; 1541 n = SWAP_MAP_MAX + 1; 1542 1543 page = vmalloc_to_page(p->swap_map + offset); 1544 offset &= ~PAGE_MASK; 1545 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1546 1547 do { 1548 page = list_next_entry(page, lru); 1549 map = kmap_atomic(page); 1550 tmp_count = map[offset]; 1551 kunmap_atomic(map); 1552 1553 count += (tmp_count & ~COUNT_CONTINUED) * n; 1554 n *= (SWAP_CONT_MAX + 1); 1555 } while (tmp_count & COUNT_CONTINUED); 1556 out: 1557 unlock_cluster_or_swap_info(p, ci); 1558 return count; 1559 } 1560 1561 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1562 swp_entry_t entry) 1563 { 1564 struct swap_cluster_info *ci; 1565 unsigned char *map = si->swap_map; 1566 unsigned long roffset = swp_offset(entry); 1567 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); 1568 int i; 1569 bool ret = false; 1570 1571 ci = lock_cluster_or_swap_info(si, offset); 1572 if (!ci || !cluster_is_huge(ci)) { 1573 if (swap_count(map[roffset])) 1574 ret = true; 1575 goto unlock_out; 1576 } 1577 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1578 if (swap_count(map[offset + i])) { 1579 ret = true; 1580 break; 1581 } 1582 } 1583 unlock_out: 1584 unlock_cluster_or_swap_info(si, ci); 1585 return ret; 1586 } 1587 1588 static bool page_swapped(struct page *page) 1589 { 1590 swp_entry_t entry; 1591 struct swap_info_struct *si; 1592 1593 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) 1594 return page_swapcount(page) != 0; 1595 1596 page = compound_head(page); 1597 entry.val = page_private(page); 1598 si = _swap_info_get(entry); 1599 if (si) 1600 return swap_page_trans_huge_swapped(si, entry); 1601 return false; 1602 } 1603 1604 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount, 1605 int *total_swapcount) 1606 { 1607 int i, map_swapcount, _total_mapcount, _total_swapcount; 1608 unsigned long offset = 0; 1609 struct swap_info_struct *si; 1610 struct swap_cluster_info *ci = NULL; 1611 unsigned char *map = NULL; 1612 int mapcount, swapcount = 0; 1613 1614 /* hugetlbfs shouldn't call it */ 1615 VM_BUG_ON_PAGE(PageHuge(page), page); 1616 1617 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) { 1618 mapcount = page_trans_huge_mapcount(page, total_mapcount); 1619 if (PageSwapCache(page)) 1620 swapcount = page_swapcount(page); 1621 if (total_swapcount) 1622 *total_swapcount = swapcount; 1623 return mapcount + swapcount; 1624 } 1625 1626 page = compound_head(page); 1627 1628 _total_mapcount = _total_swapcount = map_swapcount = 0; 1629 if (PageSwapCache(page)) { 1630 swp_entry_t entry; 1631 1632 entry.val = page_private(page); 1633 si = _swap_info_get(entry); 1634 if (si) { 1635 map = si->swap_map; 1636 offset = swp_offset(entry); 1637 } 1638 } 1639 if (map) 1640 ci = lock_cluster(si, offset); 1641 for (i = 0; i < HPAGE_PMD_NR; i++) { 1642 mapcount = atomic_read(&page[i]._mapcount) + 1; 1643 _total_mapcount += mapcount; 1644 if (map) { 1645 swapcount = swap_count(map[offset + i]); 1646 _total_swapcount += swapcount; 1647 } 1648 map_swapcount = max(map_swapcount, mapcount + swapcount); 1649 } 1650 unlock_cluster(ci); 1651 if (PageDoubleMap(page)) { 1652 map_swapcount -= 1; 1653 _total_mapcount -= HPAGE_PMD_NR; 1654 } 1655 mapcount = compound_mapcount(page); 1656 map_swapcount += mapcount; 1657 _total_mapcount += mapcount; 1658 if (total_mapcount) 1659 *total_mapcount = _total_mapcount; 1660 if (total_swapcount) 1661 *total_swapcount = _total_swapcount; 1662 1663 return map_swapcount; 1664 } 1665 1666 /* 1667 * We can write to an anon page without COW if there are no other references 1668 * to it. And as a side-effect, free up its swap: because the old content 1669 * on disk will never be read, and seeking back there to write new content 1670 * later would only waste time away from clustering. 1671 * 1672 * NOTE: total_map_swapcount should not be relied upon by the caller if 1673 * reuse_swap_page() returns false, but it may be always overwritten 1674 * (see the other implementation for CONFIG_SWAP=n). 1675 */ 1676 bool reuse_swap_page(struct page *page, int *total_map_swapcount) 1677 { 1678 int count, total_mapcount, total_swapcount; 1679 1680 VM_BUG_ON_PAGE(!PageLocked(page), page); 1681 if (unlikely(PageKsm(page))) 1682 return false; 1683 count = page_trans_huge_map_swapcount(page, &total_mapcount, 1684 &total_swapcount); 1685 if (total_map_swapcount) 1686 *total_map_swapcount = total_mapcount + total_swapcount; 1687 if (count == 1 && PageSwapCache(page) && 1688 (likely(!PageTransCompound(page)) || 1689 /* The remaining swap count will be freed soon */ 1690 total_swapcount == page_swapcount(page))) { 1691 if (!PageWriteback(page)) { 1692 page = compound_head(page); 1693 delete_from_swap_cache(page); 1694 SetPageDirty(page); 1695 } else { 1696 swp_entry_t entry; 1697 struct swap_info_struct *p; 1698 1699 entry.val = page_private(page); 1700 p = swap_info_get(entry); 1701 if (p->flags & SWP_STABLE_WRITES) { 1702 spin_unlock(&p->lock); 1703 return false; 1704 } 1705 spin_unlock(&p->lock); 1706 } 1707 } 1708 1709 return count <= 1; 1710 } 1711 1712 /* 1713 * If swap is getting full, or if there are no more mappings of this page, 1714 * then try_to_free_swap is called to free its swap space. 1715 */ 1716 int try_to_free_swap(struct page *page) 1717 { 1718 VM_BUG_ON_PAGE(!PageLocked(page), page); 1719 1720 if (!PageSwapCache(page)) 1721 return 0; 1722 if (PageWriteback(page)) 1723 return 0; 1724 if (page_swapped(page)) 1725 return 0; 1726 1727 /* 1728 * Once hibernation has begun to create its image of memory, 1729 * there's a danger that one of the calls to try_to_free_swap() 1730 * - most probably a call from __try_to_reclaim_swap() while 1731 * hibernation is allocating its own swap pages for the image, 1732 * but conceivably even a call from memory reclaim - will free 1733 * the swap from a page which has already been recorded in the 1734 * image as a clean swapcache page, and then reuse its swap for 1735 * another page of the image. On waking from hibernation, the 1736 * original page might be freed under memory pressure, then 1737 * later read back in from swap, now with the wrong data. 1738 * 1739 * Hibernation suspends storage while it is writing the image 1740 * to disk so check that here. 1741 */ 1742 if (pm_suspended_storage()) 1743 return 0; 1744 1745 page = compound_head(page); 1746 delete_from_swap_cache(page); 1747 SetPageDirty(page); 1748 return 1; 1749 } 1750 1751 /* 1752 * Free the swap entry like above, but also try to 1753 * free the page cache entry if it is the last user. 1754 */ 1755 int free_swap_and_cache(swp_entry_t entry) 1756 { 1757 struct swap_info_struct *p; 1758 unsigned char count; 1759 1760 if (non_swap_entry(entry)) 1761 return 1; 1762 1763 p = _swap_info_get(entry); 1764 if (p) { 1765 count = __swap_entry_free(p, entry); 1766 if (count == SWAP_HAS_CACHE && 1767 !swap_page_trans_huge_swapped(p, entry)) 1768 __try_to_reclaim_swap(p, swp_offset(entry), 1769 TTRS_UNMAPPED | TTRS_FULL); 1770 } 1771 return p != NULL; 1772 } 1773 1774 #ifdef CONFIG_HIBERNATION 1775 1776 swp_entry_t get_swap_page_of_type(int type) 1777 { 1778 struct swap_info_struct *si = swap_type_to_swap_info(type); 1779 swp_entry_t entry = {0}; 1780 1781 if (!si) 1782 goto fail; 1783 1784 /* This is called for allocating swap entry, not cache */ 1785 spin_lock(&si->lock); 1786 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry)) 1787 atomic_long_dec(&nr_swap_pages); 1788 spin_unlock(&si->lock); 1789 fail: 1790 return entry; 1791 } 1792 1793 /* 1794 * Find the swap type that corresponds to given device (if any). 1795 * 1796 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1797 * from 0, in which the swap header is expected to be located. 1798 * 1799 * This is needed for the suspend to disk (aka swsusp). 1800 */ 1801 int swap_type_of(dev_t device, sector_t offset) 1802 { 1803 int type; 1804 1805 if (!device) 1806 return -1; 1807 1808 spin_lock(&swap_lock); 1809 for (type = 0; type < nr_swapfiles; type++) { 1810 struct swap_info_struct *sis = swap_info[type]; 1811 1812 if (!(sis->flags & SWP_WRITEOK)) 1813 continue; 1814 1815 if (device == sis->bdev->bd_dev) { 1816 struct swap_extent *se = first_se(sis); 1817 1818 if (se->start_block == offset) { 1819 spin_unlock(&swap_lock); 1820 return type; 1821 } 1822 } 1823 } 1824 spin_unlock(&swap_lock); 1825 return -ENODEV; 1826 } 1827 1828 int find_first_swap(dev_t *device) 1829 { 1830 int type; 1831 1832 spin_lock(&swap_lock); 1833 for (type = 0; type < nr_swapfiles; type++) { 1834 struct swap_info_struct *sis = swap_info[type]; 1835 1836 if (!(sis->flags & SWP_WRITEOK)) 1837 continue; 1838 *device = sis->bdev->bd_dev; 1839 spin_unlock(&swap_lock); 1840 return type; 1841 } 1842 spin_unlock(&swap_lock); 1843 return -ENODEV; 1844 } 1845 1846 /* 1847 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1848 * corresponding to given index in swap_info (swap type). 1849 */ 1850 sector_t swapdev_block(int type, pgoff_t offset) 1851 { 1852 struct swap_info_struct *si = swap_type_to_swap_info(type); 1853 struct swap_extent *se; 1854 1855 if (!si || !(si->flags & SWP_WRITEOK)) 1856 return 0; 1857 se = offset_to_swap_extent(si, offset); 1858 return se->start_block + (offset - se->start_page); 1859 } 1860 1861 /* 1862 * Return either the total number of swap pages of given type, or the number 1863 * of free pages of that type (depending on @free) 1864 * 1865 * This is needed for software suspend 1866 */ 1867 unsigned int count_swap_pages(int type, int free) 1868 { 1869 unsigned int n = 0; 1870 1871 spin_lock(&swap_lock); 1872 if ((unsigned int)type < nr_swapfiles) { 1873 struct swap_info_struct *sis = swap_info[type]; 1874 1875 spin_lock(&sis->lock); 1876 if (sis->flags & SWP_WRITEOK) { 1877 n = sis->pages; 1878 if (free) 1879 n -= sis->inuse_pages; 1880 } 1881 spin_unlock(&sis->lock); 1882 } 1883 spin_unlock(&swap_lock); 1884 return n; 1885 } 1886 #endif /* CONFIG_HIBERNATION */ 1887 1888 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1889 { 1890 return pte_same(pte_swp_clear_flags(pte), swp_pte); 1891 } 1892 1893 /* 1894 * No need to decide whether this PTE shares the swap entry with others, 1895 * just let do_wp_page work it out if a write is requested later - to 1896 * force COW, vm_page_prot omits write permission from any private vma. 1897 */ 1898 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1899 unsigned long addr, swp_entry_t entry, struct page *page) 1900 { 1901 struct page *swapcache; 1902 spinlock_t *ptl; 1903 pte_t *pte; 1904 int ret = 1; 1905 1906 swapcache = page; 1907 page = ksm_might_need_to_copy(page, vma, addr); 1908 if (unlikely(!page)) 1909 return -ENOMEM; 1910 1911 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1912 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { 1913 ret = 0; 1914 goto out; 1915 } 1916 1917 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1918 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1919 get_page(page); 1920 set_pte_at(vma->vm_mm, addr, pte, 1921 pte_mkold(mk_pte(page, vma->vm_page_prot))); 1922 if (page == swapcache) { 1923 page_add_anon_rmap(page, vma, addr, false); 1924 } else { /* ksm created a completely new copy */ 1925 page_add_new_anon_rmap(page, vma, addr, false); 1926 lru_cache_add_inactive_or_unevictable(page, vma); 1927 } 1928 swap_free(entry); 1929 out: 1930 pte_unmap_unlock(pte, ptl); 1931 if (page != swapcache) { 1932 unlock_page(page); 1933 put_page(page); 1934 } 1935 return ret; 1936 } 1937 1938 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1939 unsigned long addr, unsigned long end, 1940 unsigned int type, bool frontswap, 1941 unsigned long *fs_pages_to_unuse) 1942 { 1943 struct page *page; 1944 swp_entry_t entry; 1945 pte_t *pte; 1946 struct swap_info_struct *si; 1947 unsigned long offset; 1948 int ret = 0; 1949 volatile unsigned char *swap_map; 1950 1951 si = swap_info[type]; 1952 pte = pte_offset_map(pmd, addr); 1953 do { 1954 if (!is_swap_pte(*pte)) 1955 continue; 1956 1957 entry = pte_to_swp_entry(*pte); 1958 if (swp_type(entry) != type) 1959 continue; 1960 1961 offset = swp_offset(entry); 1962 if (frontswap && !frontswap_test(si, offset)) 1963 continue; 1964 1965 pte_unmap(pte); 1966 swap_map = &si->swap_map[offset]; 1967 page = lookup_swap_cache(entry, vma, addr); 1968 if (!page) { 1969 struct vm_fault vmf = { 1970 .vma = vma, 1971 .address = addr, 1972 .pmd = pmd, 1973 }; 1974 1975 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 1976 &vmf); 1977 } 1978 if (!page) { 1979 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD) 1980 goto try_next; 1981 return -ENOMEM; 1982 } 1983 1984 lock_page(page); 1985 wait_on_page_writeback(page); 1986 ret = unuse_pte(vma, pmd, addr, entry, page); 1987 if (ret < 0) { 1988 unlock_page(page); 1989 put_page(page); 1990 goto out; 1991 } 1992 1993 try_to_free_swap(page); 1994 unlock_page(page); 1995 put_page(page); 1996 1997 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) { 1998 ret = FRONTSWAP_PAGES_UNUSED; 1999 goto out; 2000 } 2001 try_next: 2002 pte = pte_offset_map(pmd, addr); 2003 } while (pte++, addr += PAGE_SIZE, addr != end); 2004 pte_unmap(pte - 1); 2005 2006 ret = 0; 2007 out: 2008 return ret; 2009 } 2010 2011 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 2012 unsigned long addr, unsigned long end, 2013 unsigned int type, bool frontswap, 2014 unsigned long *fs_pages_to_unuse) 2015 { 2016 pmd_t *pmd; 2017 unsigned long next; 2018 int ret; 2019 2020 pmd = pmd_offset(pud, addr); 2021 do { 2022 cond_resched(); 2023 next = pmd_addr_end(addr, end); 2024 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 2025 continue; 2026 ret = unuse_pte_range(vma, pmd, addr, next, type, 2027 frontswap, fs_pages_to_unuse); 2028 if (ret) 2029 return ret; 2030 } while (pmd++, addr = next, addr != end); 2031 return 0; 2032 } 2033 2034 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 2035 unsigned long addr, unsigned long end, 2036 unsigned int type, bool frontswap, 2037 unsigned long *fs_pages_to_unuse) 2038 { 2039 pud_t *pud; 2040 unsigned long next; 2041 int ret; 2042 2043 pud = pud_offset(p4d, addr); 2044 do { 2045 next = pud_addr_end(addr, end); 2046 if (pud_none_or_clear_bad(pud)) 2047 continue; 2048 ret = unuse_pmd_range(vma, pud, addr, next, type, 2049 frontswap, fs_pages_to_unuse); 2050 if (ret) 2051 return ret; 2052 } while (pud++, addr = next, addr != end); 2053 return 0; 2054 } 2055 2056 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 2057 unsigned long addr, unsigned long end, 2058 unsigned int type, bool frontswap, 2059 unsigned long *fs_pages_to_unuse) 2060 { 2061 p4d_t *p4d; 2062 unsigned long next; 2063 int ret; 2064 2065 p4d = p4d_offset(pgd, addr); 2066 do { 2067 next = p4d_addr_end(addr, end); 2068 if (p4d_none_or_clear_bad(p4d)) 2069 continue; 2070 ret = unuse_pud_range(vma, p4d, addr, next, type, 2071 frontswap, fs_pages_to_unuse); 2072 if (ret) 2073 return ret; 2074 } while (p4d++, addr = next, addr != end); 2075 return 0; 2076 } 2077 2078 static int unuse_vma(struct vm_area_struct *vma, unsigned int type, 2079 bool frontswap, unsigned long *fs_pages_to_unuse) 2080 { 2081 pgd_t *pgd; 2082 unsigned long addr, end, next; 2083 int ret; 2084 2085 addr = vma->vm_start; 2086 end = vma->vm_end; 2087 2088 pgd = pgd_offset(vma->vm_mm, addr); 2089 do { 2090 next = pgd_addr_end(addr, end); 2091 if (pgd_none_or_clear_bad(pgd)) 2092 continue; 2093 ret = unuse_p4d_range(vma, pgd, addr, next, type, 2094 frontswap, fs_pages_to_unuse); 2095 if (ret) 2096 return ret; 2097 } while (pgd++, addr = next, addr != end); 2098 return 0; 2099 } 2100 2101 static int unuse_mm(struct mm_struct *mm, unsigned int type, 2102 bool frontswap, unsigned long *fs_pages_to_unuse) 2103 { 2104 struct vm_area_struct *vma; 2105 int ret = 0; 2106 2107 mmap_read_lock(mm); 2108 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2109 if (vma->anon_vma) { 2110 ret = unuse_vma(vma, type, frontswap, 2111 fs_pages_to_unuse); 2112 if (ret) 2113 break; 2114 } 2115 cond_resched(); 2116 } 2117 mmap_read_unlock(mm); 2118 return ret; 2119 } 2120 2121 /* 2122 * Scan swap_map (or frontswap_map if frontswap parameter is true) 2123 * from current position to next entry still in use. Return 0 2124 * if there are no inuse entries after prev till end of the map. 2125 */ 2126 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 2127 unsigned int prev, bool frontswap) 2128 { 2129 unsigned int i; 2130 unsigned char count; 2131 2132 /* 2133 * No need for swap_lock here: we're just looking 2134 * for whether an entry is in use, not modifying it; false 2135 * hits are okay, and sys_swapoff() has already prevented new 2136 * allocations from this area (while holding swap_lock). 2137 */ 2138 for (i = prev + 1; i < si->max; i++) { 2139 count = READ_ONCE(si->swap_map[i]); 2140 if (count && swap_count(count) != SWAP_MAP_BAD) 2141 if (!frontswap || frontswap_test(si, i)) 2142 break; 2143 if ((i % LATENCY_LIMIT) == 0) 2144 cond_resched(); 2145 } 2146 2147 if (i == si->max) 2148 i = 0; 2149 2150 return i; 2151 } 2152 2153 /* 2154 * If the boolean frontswap is true, only unuse pages_to_unuse pages; 2155 * pages_to_unuse==0 means all pages; ignored if frontswap is false 2156 */ 2157 int try_to_unuse(unsigned int type, bool frontswap, 2158 unsigned long pages_to_unuse) 2159 { 2160 struct mm_struct *prev_mm; 2161 struct mm_struct *mm; 2162 struct list_head *p; 2163 int retval = 0; 2164 struct swap_info_struct *si = swap_info[type]; 2165 struct page *page; 2166 swp_entry_t entry; 2167 unsigned int i; 2168 2169 if (!READ_ONCE(si->inuse_pages)) 2170 return 0; 2171 2172 if (!frontswap) 2173 pages_to_unuse = 0; 2174 2175 retry: 2176 retval = shmem_unuse(type, frontswap, &pages_to_unuse); 2177 if (retval) 2178 goto out; 2179 2180 prev_mm = &init_mm; 2181 mmget(prev_mm); 2182 2183 spin_lock(&mmlist_lock); 2184 p = &init_mm.mmlist; 2185 while (READ_ONCE(si->inuse_pages) && 2186 !signal_pending(current) && 2187 (p = p->next) != &init_mm.mmlist) { 2188 2189 mm = list_entry(p, struct mm_struct, mmlist); 2190 if (!mmget_not_zero(mm)) 2191 continue; 2192 spin_unlock(&mmlist_lock); 2193 mmput(prev_mm); 2194 prev_mm = mm; 2195 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse); 2196 2197 if (retval) { 2198 mmput(prev_mm); 2199 goto out; 2200 } 2201 2202 /* 2203 * Make sure that we aren't completely killing 2204 * interactive performance. 2205 */ 2206 cond_resched(); 2207 spin_lock(&mmlist_lock); 2208 } 2209 spin_unlock(&mmlist_lock); 2210 2211 mmput(prev_mm); 2212 2213 i = 0; 2214 while (READ_ONCE(si->inuse_pages) && 2215 !signal_pending(current) && 2216 (i = find_next_to_unuse(si, i, frontswap)) != 0) { 2217 2218 entry = swp_entry(type, i); 2219 page = find_get_page(swap_address_space(entry), i); 2220 if (!page) 2221 continue; 2222 2223 /* 2224 * It is conceivable that a racing task removed this page from 2225 * swap cache just before we acquired the page lock. The page 2226 * might even be back in swap cache on another swap area. But 2227 * that is okay, try_to_free_swap() only removes stale pages. 2228 */ 2229 lock_page(page); 2230 wait_on_page_writeback(page); 2231 try_to_free_swap(page); 2232 unlock_page(page); 2233 put_page(page); 2234 2235 /* 2236 * For frontswap, we just need to unuse pages_to_unuse, if 2237 * it was specified. Need not check frontswap again here as 2238 * we already zeroed out pages_to_unuse if not frontswap. 2239 */ 2240 if (pages_to_unuse && --pages_to_unuse == 0) 2241 goto out; 2242 } 2243 2244 /* 2245 * Lets check again to see if there are still swap entries in the map. 2246 * If yes, we would need to do retry the unuse logic again. 2247 * Under global memory pressure, swap entries can be reinserted back 2248 * into process space after the mmlist loop above passes over them. 2249 * 2250 * Limit the number of retries? No: when mmget_not_zero() above fails, 2251 * that mm is likely to be freeing swap from exit_mmap(), which proceeds 2252 * at its own independent pace; and even shmem_writepage() could have 2253 * been preempted after get_swap_page(), temporarily hiding that swap. 2254 * It's easy and robust (though cpu-intensive) just to keep retrying. 2255 */ 2256 if (READ_ONCE(si->inuse_pages)) { 2257 if (!signal_pending(current)) 2258 goto retry; 2259 retval = -EINTR; 2260 } 2261 out: 2262 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval; 2263 } 2264 2265 /* 2266 * After a successful try_to_unuse, if no swap is now in use, we know 2267 * we can empty the mmlist. swap_lock must be held on entry and exit. 2268 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2269 * added to the mmlist just after page_duplicate - before would be racy. 2270 */ 2271 static void drain_mmlist(void) 2272 { 2273 struct list_head *p, *next; 2274 unsigned int type; 2275 2276 for (type = 0; type < nr_swapfiles; type++) 2277 if (swap_info[type]->inuse_pages) 2278 return; 2279 spin_lock(&mmlist_lock); 2280 list_for_each_safe(p, next, &init_mm.mmlist) 2281 list_del_init(p); 2282 spin_unlock(&mmlist_lock); 2283 } 2284 2285 /* 2286 * Free all of a swapdev's extent information 2287 */ 2288 static void destroy_swap_extents(struct swap_info_struct *sis) 2289 { 2290 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2291 struct rb_node *rb = sis->swap_extent_root.rb_node; 2292 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2293 2294 rb_erase(rb, &sis->swap_extent_root); 2295 kfree(se); 2296 } 2297 2298 if (sis->flags & SWP_ACTIVATED) { 2299 struct file *swap_file = sis->swap_file; 2300 struct address_space *mapping = swap_file->f_mapping; 2301 2302 sis->flags &= ~SWP_ACTIVATED; 2303 if (mapping->a_ops->swap_deactivate) 2304 mapping->a_ops->swap_deactivate(swap_file); 2305 } 2306 } 2307 2308 /* 2309 * Add a block range (and the corresponding page range) into this swapdev's 2310 * extent tree. 2311 * 2312 * This function rather assumes that it is called in ascending page order. 2313 */ 2314 int 2315 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2316 unsigned long nr_pages, sector_t start_block) 2317 { 2318 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2319 struct swap_extent *se; 2320 struct swap_extent *new_se; 2321 2322 /* 2323 * place the new node at the right most since the 2324 * function is called in ascending page order. 2325 */ 2326 while (*link) { 2327 parent = *link; 2328 link = &parent->rb_right; 2329 } 2330 2331 if (parent) { 2332 se = rb_entry(parent, struct swap_extent, rb_node); 2333 BUG_ON(se->start_page + se->nr_pages != start_page); 2334 if (se->start_block + se->nr_pages == start_block) { 2335 /* Merge it */ 2336 se->nr_pages += nr_pages; 2337 return 0; 2338 } 2339 } 2340 2341 /* No merge, insert a new extent. */ 2342 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2343 if (new_se == NULL) 2344 return -ENOMEM; 2345 new_se->start_page = start_page; 2346 new_se->nr_pages = nr_pages; 2347 new_se->start_block = start_block; 2348 2349 rb_link_node(&new_se->rb_node, parent, link); 2350 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2351 return 1; 2352 } 2353 EXPORT_SYMBOL_GPL(add_swap_extent); 2354 2355 /* 2356 * A `swap extent' is a simple thing which maps a contiguous range of pages 2357 * onto a contiguous range of disk blocks. An ordered list of swap extents 2358 * is built at swapon time and is then used at swap_writepage/swap_readpage 2359 * time for locating where on disk a page belongs. 2360 * 2361 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2362 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2363 * swap files identically. 2364 * 2365 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2366 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2367 * swapfiles are handled *identically* after swapon time. 2368 * 2369 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2370 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 2371 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 2372 * requirements, they are simply tossed out - we will never use those blocks 2373 * for swapping. 2374 * 2375 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2376 * prevents users from writing to the swap device, which will corrupt memory. 2377 * 2378 * The amount of disk space which a single swap extent represents varies. 2379 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2380 * extents in the list. To avoid much list walking, we cache the previous 2381 * search location in `curr_swap_extent', and start new searches from there. 2382 * This is extremely effective. The average number of iterations in 2383 * map_swap_page() has been measured at about 0.3 per page. - akpm. 2384 */ 2385 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2386 { 2387 struct file *swap_file = sis->swap_file; 2388 struct address_space *mapping = swap_file->f_mapping; 2389 struct inode *inode = mapping->host; 2390 int ret; 2391 2392 if (S_ISBLK(inode->i_mode)) { 2393 ret = add_swap_extent(sis, 0, sis->max, 0); 2394 *span = sis->pages; 2395 return ret; 2396 } 2397 2398 if (mapping->a_ops->swap_activate) { 2399 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2400 if (ret >= 0) 2401 sis->flags |= SWP_ACTIVATED; 2402 if (!ret) { 2403 sis->flags |= SWP_FS_OPS; 2404 ret = add_swap_extent(sis, 0, sis->max, 0); 2405 *span = sis->pages; 2406 } 2407 return ret; 2408 } 2409 2410 return generic_swapfile_activate(sis, swap_file, span); 2411 } 2412 2413 static int swap_node(struct swap_info_struct *p) 2414 { 2415 struct block_device *bdev; 2416 2417 if (p->bdev) 2418 bdev = p->bdev; 2419 else 2420 bdev = p->swap_file->f_inode->i_sb->s_bdev; 2421 2422 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2423 } 2424 2425 static void setup_swap_info(struct swap_info_struct *p, int prio, 2426 unsigned char *swap_map, 2427 struct swap_cluster_info *cluster_info) 2428 { 2429 int i; 2430 2431 if (prio >= 0) 2432 p->prio = prio; 2433 else 2434 p->prio = --least_priority; 2435 /* 2436 * the plist prio is negated because plist ordering is 2437 * low-to-high, while swap ordering is high-to-low 2438 */ 2439 p->list.prio = -p->prio; 2440 for_each_node(i) { 2441 if (p->prio >= 0) 2442 p->avail_lists[i].prio = -p->prio; 2443 else { 2444 if (swap_node(p) == i) 2445 p->avail_lists[i].prio = 1; 2446 else 2447 p->avail_lists[i].prio = -p->prio; 2448 } 2449 } 2450 p->swap_map = swap_map; 2451 p->cluster_info = cluster_info; 2452 } 2453 2454 static void _enable_swap_info(struct swap_info_struct *p) 2455 { 2456 p->flags |= SWP_WRITEOK; 2457 atomic_long_add(p->pages, &nr_swap_pages); 2458 total_swap_pages += p->pages; 2459 2460 assert_spin_locked(&swap_lock); 2461 /* 2462 * both lists are plists, and thus priority ordered. 2463 * swap_active_head needs to be priority ordered for swapoff(), 2464 * which on removal of any swap_info_struct with an auto-assigned 2465 * (i.e. negative) priority increments the auto-assigned priority 2466 * of any lower-priority swap_info_structs. 2467 * swap_avail_head needs to be priority ordered for get_swap_page(), 2468 * which allocates swap pages from the highest available priority 2469 * swap_info_struct. 2470 */ 2471 plist_add(&p->list, &swap_active_head); 2472 add_to_avail_list(p); 2473 } 2474 2475 static void enable_swap_info(struct swap_info_struct *p, int prio, 2476 unsigned char *swap_map, 2477 struct swap_cluster_info *cluster_info, 2478 unsigned long *frontswap_map) 2479 { 2480 frontswap_init(p->type, frontswap_map); 2481 spin_lock(&swap_lock); 2482 spin_lock(&p->lock); 2483 setup_swap_info(p, prio, swap_map, cluster_info); 2484 spin_unlock(&p->lock); 2485 spin_unlock(&swap_lock); 2486 /* 2487 * Finished initializing swap device, now it's safe to reference it. 2488 */ 2489 percpu_ref_resurrect(&p->users); 2490 spin_lock(&swap_lock); 2491 spin_lock(&p->lock); 2492 _enable_swap_info(p); 2493 spin_unlock(&p->lock); 2494 spin_unlock(&swap_lock); 2495 } 2496 2497 static void reinsert_swap_info(struct swap_info_struct *p) 2498 { 2499 spin_lock(&swap_lock); 2500 spin_lock(&p->lock); 2501 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2502 _enable_swap_info(p); 2503 spin_unlock(&p->lock); 2504 spin_unlock(&swap_lock); 2505 } 2506 2507 bool has_usable_swap(void) 2508 { 2509 bool ret = true; 2510 2511 spin_lock(&swap_lock); 2512 if (plist_head_empty(&swap_active_head)) 2513 ret = false; 2514 spin_unlock(&swap_lock); 2515 return ret; 2516 } 2517 2518 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2519 { 2520 struct swap_info_struct *p = NULL; 2521 unsigned char *swap_map; 2522 struct swap_cluster_info *cluster_info; 2523 unsigned long *frontswap_map; 2524 struct file *swap_file, *victim; 2525 struct address_space *mapping; 2526 struct inode *inode; 2527 struct filename *pathname; 2528 int err, found = 0; 2529 unsigned int old_block_size; 2530 2531 if (!capable(CAP_SYS_ADMIN)) 2532 return -EPERM; 2533 2534 BUG_ON(!current->mm); 2535 2536 pathname = getname(specialfile); 2537 if (IS_ERR(pathname)) 2538 return PTR_ERR(pathname); 2539 2540 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2541 err = PTR_ERR(victim); 2542 if (IS_ERR(victim)) 2543 goto out; 2544 2545 mapping = victim->f_mapping; 2546 spin_lock(&swap_lock); 2547 plist_for_each_entry(p, &swap_active_head, list) { 2548 if (p->flags & SWP_WRITEOK) { 2549 if (p->swap_file->f_mapping == mapping) { 2550 found = 1; 2551 break; 2552 } 2553 } 2554 } 2555 if (!found) { 2556 err = -EINVAL; 2557 spin_unlock(&swap_lock); 2558 goto out_dput; 2559 } 2560 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2561 vm_unacct_memory(p->pages); 2562 else { 2563 err = -ENOMEM; 2564 spin_unlock(&swap_lock); 2565 goto out_dput; 2566 } 2567 del_from_avail_list(p); 2568 spin_lock(&p->lock); 2569 if (p->prio < 0) { 2570 struct swap_info_struct *si = p; 2571 int nid; 2572 2573 plist_for_each_entry_continue(si, &swap_active_head, list) { 2574 si->prio++; 2575 si->list.prio--; 2576 for_each_node(nid) { 2577 if (si->avail_lists[nid].prio != 1) 2578 si->avail_lists[nid].prio--; 2579 } 2580 } 2581 least_priority++; 2582 } 2583 plist_del(&p->list, &swap_active_head); 2584 atomic_long_sub(p->pages, &nr_swap_pages); 2585 total_swap_pages -= p->pages; 2586 p->flags &= ~SWP_WRITEOK; 2587 spin_unlock(&p->lock); 2588 spin_unlock(&swap_lock); 2589 2590 disable_swap_slots_cache_lock(); 2591 2592 set_current_oom_origin(); 2593 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */ 2594 clear_current_oom_origin(); 2595 2596 if (err) { 2597 /* re-insert swap space back into swap_list */ 2598 reinsert_swap_info(p); 2599 reenable_swap_slots_cache_unlock(); 2600 goto out_dput; 2601 } 2602 2603 reenable_swap_slots_cache_unlock(); 2604 2605 /* 2606 * Wait for swap operations protected by get/put_swap_device() 2607 * to complete. 2608 * 2609 * We need synchronize_rcu() here to protect the accessing to 2610 * the swap cache data structure. 2611 */ 2612 percpu_ref_kill(&p->users); 2613 synchronize_rcu(); 2614 wait_for_completion(&p->comp); 2615 2616 flush_work(&p->discard_work); 2617 2618 destroy_swap_extents(p); 2619 if (p->flags & SWP_CONTINUED) 2620 free_swap_count_continuations(p); 2621 2622 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev))) 2623 atomic_dec(&nr_rotate_swap); 2624 2625 mutex_lock(&swapon_mutex); 2626 spin_lock(&swap_lock); 2627 spin_lock(&p->lock); 2628 drain_mmlist(); 2629 2630 /* wait for anyone still in scan_swap_map_slots */ 2631 p->highest_bit = 0; /* cuts scans short */ 2632 while (p->flags >= SWP_SCANNING) { 2633 spin_unlock(&p->lock); 2634 spin_unlock(&swap_lock); 2635 schedule_timeout_uninterruptible(1); 2636 spin_lock(&swap_lock); 2637 spin_lock(&p->lock); 2638 } 2639 2640 swap_file = p->swap_file; 2641 old_block_size = p->old_block_size; 2642 p->swap_file = NULL; 2643 p->max = 0; 2644 swap_map = p->swap_map; 2645 p->swap_map = NULL; 2646 cluster_info = p->cluster_info; 2647 p->cluster_info = NULL; 2648 frontswap_map = frontswap_map_get(p); 2649 spin_unlock(&p->lock); 2650 spin_unlock(&swap_lock); 2651 arch_swap_invalidate_area(p->type); 2652 frontswap_invalidate_area(p->type); 2653 frontswap_map_set(p, NULL); 2654 mutex_unlock(&swapon_mutex); 2655 free_percpu(p->percpu_cluster); 2656 p->percpu_cluster = NULL; 2657 free_percpu(p->cluster_next_cpu); 2658 p->cluster_next_cpu = NULL; 2659 vfree(swap_map); 2660 kvfree(cluster_info); 2661 kvfree(frontswap_map); 2662 /* Destroy swap account information */ 2663 swap_cgroup_swapoff(p->type); 2664 exit_swap_address_space(p->type); 2665 2666 inode = mapping->host; 2667 if (S_ISBLK(inode->i_mode)) { 2668 struct block_device *bdev = I_BDEV(inode); 2669 2670 set_blocksize(bdev, old_block_size); 2671 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2672 } 2673 2674 inode_lock(inode); 2675 inode->i_flags &= ~S_SWAPFILE; 2676 inode_unlock(inode); 2677 filp_close(swap_file, NULL); 2678 2679 /* 2680 * Clear the SWP_USED flag after all resources are freed so that swapon 2681 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2682 * not hold p->lock after we cleared its SWP_WRITEOK. 2683 */ 2684 spin_lock(&swap_lock); 2685 p->flags = 0; 2686 spin_unlock(&swap_lock); 2687 2688 err = 0; 2689 atomic_inc(&proc_poll_event); 2690 wake_up_interruptible(&proc_poll_wait); 2691 2692 out_dput: 2693 filp_close(victim, NULL); 2694 out: 2695 putname(pathname); 2696 return err; 2697 } 2698 2699 #ifdef CONFIG_PROC_FS 2700 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2701 { 2702 struct seq_file *seq = file->private_data; 2703 2704 poll_wait(file, &proc_poll_wait, wait); 2705 2706 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2707 seq->poll_event = atomic_read(&proc_poll_event); 2708 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2709 } 2710 2711 return EPOLLIN | EPOLLRDNORM; 2712 } 2713 2714 /* iterator */ 2715 static void *swap_start(struct seq_file *swap, loff_t *pos) 2716 { 2717 struct swap_info_struct *si; 2718 int type; 2719 loff_t l = *pos; 2720 2721 mutex_lock(&swapon_mutex); 2722 2723 if (!l) 2724 return SEQ_START_TOKEN; 2725 2726 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2727 if (!(si->flags & SWP_USED) || !si->swap_map) 2728 continue; 2729 if (!--l) 2730 return si; 2731 } 2732 2733 return NULL; 2734 } 2735 2736 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2737 { 2738 struct swap_info_struct *si = v; 2739 int type; 2740 2741 if (v == SEQ_START_TOKEN) 2742 type = 0; 2743 else 2744 type = si->type + 1; 2745 2746 ++(*pos); 2747 for (; (si = swap_type_to_swap_info(type)); type++) { 2748 if (!(si->flags & SWP_USED) || !si->swap_map) 2749 continue; 2750 return si; 2751 } 2752 2753 return NULL; 2754 } 2755 2756 static void swap_stop(struct seq_file *swap, void *v) 2757 { 2758 mutex_unlock(&swapon_mutex); 2759 } 2760 2761 static int swap_show(struct seq_file *swap, void *v) 2762 { 2763 struct swap_info_struct *si = v; 2764 struct file *file; 2765 int len; 2766 unsigned int bytes, inuse; 2767 2768 if (si == SEQ_START_TOKEN) { 2769 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 2770 return 0; 2771 } 2772 2773 bytes = si->pages << (PAGE_SHIFT - 10); 2774 inuse = si->inuse_pages << (PAGE_SHIFT - 10); 2775 2776 file = si->swap_file; 2777 len = seq_file_path(swap, file, " \t\n\\"); 2778 seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n", 2779 len < 40 ? 40 - len : 1, " ", 2780 S_ISBLK(file_inode(file)->i_mode) ? 2781 "partition" : "file\t", 2782 bytes, bytes < 10000000 ? "\t" : "", 2783 inuse, inuse < 10000000 ? "\t" : "", 2784 si->prio); 2785 return 0; 2786 } 2787 2788 static const struct seq_operations swaps_op = { 2789 .start = swap_start, 2790 .next = swap_next, 2791 .stop = swap_stop, 2792 .show = swap_show 2793 }; 2794 2795 static int swaps_open(struct inode *inode, struct file *file) 2796 { 2797 struct seq_file *seq; 2798 int ret; 2799 2800 ret = seq_open(file, &swaps_op); 2801 if (ret) 2802 return ret; 2803 2804 seq = file->private_data; 2805 seq->poll_event = atomic_read(&proc_poll_event); 2806 return 0; 2807 } 2808 2809 static const struct proc_ops swaps_proc_ops = { 2810 .proc_flags = PROC_ENTRY_PERMANENT, 2811 .proc_open = swaps_open, 2812 .proc_read = seq_read, 2813 .proc_lseek = seq_lseek, 2814 .proc_release = seq_release, 2815 .proc_poll = swaps_poll, 2816 }; 2817 2818 static int __init procswaps_init(void) 2819 { 2820 proc_create("swaps", 0, NULL, &swaps_proc_ops); 2821 return 0; 2822 } 2823 __initcall(procswaps_init); 2824 #endif /* CONFIG_PROC_FS */ 2825 2826 #ifdef MAX_SWAPFILES_CHECK 2827 static int __init max_swapfiles_check(void) 2828 { 2829 MAX_SWAPFILES_CHECK(); 2830 return 0; 2831 } 2832 late_initcall(max_swapfiles_check); 2833 #endif 2834 2835 static struct swap_info_struct *alloc_swap_info(void) 2836 { 2837 struct swap_info_struct *p; 2838 struct swap_info_struct *defer = NULL; 2839 unsigned int type; 2840 int i; 2841 2842 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2843 if (!p) 2844 return ERR_PTR(-ENOMEM); 2845 2846 if (percpu_ref_init(&p->users, swap_users_ref_free, 2847 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { 2848 kvfree(p); 2849 return ERR_PTR(-ENOMEM); 2850 } 2851 2852 spin_lock(&swap_lock); 2853 for (type = 0; type < nr_swapfiles; type++) { 2854 if (!(swap_info[type]->flags & SWP_USED)) 2855 break; 2856 } 2857 if (type >= MAX_SWAPFILES) { 2858 spin_unlock(&swap_lock); 2859 percpu_ref_exit(&p->users); 2860 kvfree(p); 2861 return ERR_PTR(-EPERM); 2862 } 2863 if (type >= nr_swapfiles) { 2864 p->type = type; 2865 /* 2866 * Publish the swap_info_struct after initializing it. 2867 * Note that kvzalloc() above zeroes all its fields. 2868 */ 2869 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ 2870 nr_swapfiles++; 2871 } else { 2872 defer = p; 2873 p = swap_info[type]; 2874 /* 2875 * Do not memset this entry: a racing procfs swap_next() 2876 * would be relying on p->type to remain valid. 2877 */ 2878 } 2879 p->swap_extent_root = RB_ROOT; 2880 plist_node_init(&p->list, 0); 2881 for_each_node(i) 2882 plist_node_init(&p->avail_lists[i], 0); 2883 p->flags = SWP_USED; 2884 spin_unlock(&swap_lock); 2885 if (defer) { 2886 percpu_ref_exit(&defer->users); 2887 kvfree(defer); 2888 } 2889 spin_lock_init(&p->lock); 2890 spin_lock_init(&p->cont_lock); 2891 init_completion(&p->comp); 2892 2893 return p; 2894 } 2895 2896 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2897 { 2898 int error; 2899 2900 if (S_ISBLK(inode->i_mode)) { 2901 p->bdev = blkdev_get_by_dev(inode->i_rdev, 2902 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); 2903 if (IS_ERR(p->bdev)) { 2904 error = PTR_ERR(p->bdev); 2905 p->bdev = NULL; 2906 return error; 2907 } 2908 p->old_block_size = block_size(p->bdev); 2909 error = set_blocksize(p->bdev, PAGE_SIZE); 2910 if (error < 0) 2911 return error; 2912 /* 2913 * Zoned block devices contain zones that have a sequential 2914 * write only restriction. Hence zoned block devices are not 2915 * suitable for swapping. Disallow them here. 2916 */ 2917 if (blk_queue_is_zoned(p->bdev->bd_disk->queue)) 2918 return -EINVAL; 2919 p->flags |= SWP_BLKDEV; 2920 } else if (S_ISREG(inode->i_mode)) { 2921 p->bdev = inode->i_sb->s_bdev; 2922 } 2923 2924 return 0; 2925 } 2926 2927 2928 /* 2929 * Find out how many pages are allowed for a single swap device. There 2930 * are two limiting factors: 2931 * 1) the number of bits for the swap offset in the swp_entry_t type, and 2932 * 2) the number of bits in the swap pte, as defined by the different 2933 * architectures. 2934 * 2935 * In order to find the largest possible bit mask, a swap entry with 2936 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 2937 * decoded to a swp_entry_t again, and finally the swap offset is 2938 * extracted. 2939 * 2940 * This will mask all the bits from the initial ~0UL mask that can't 2941 * be encoded in either the swp_entry_t or the architecture definition 2942 * of a swap pte. 2943 */ 2944 unsigned long generic_max_swapfile_size(void) 2945 { 2946 return swp_offset(pte_to_swp_entry( 2947 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2948 } 2949 2950 /* Can be overridden by an architecture for additional checks. */ 2951 __weak unsigned long max_swapfile_size(void) 2952 { 2953 return generic_max_swapfile_size(); 2954 } 2955 2956 static unsigned long read_swap_header(struct swap_info_struct *p, 2957 union swap_header *swap_header, 2958 struct inode *inode) 2959 { 2960 int i; 2961 unsigned long maxpages; 2962 unsigned long swapfilepages; 2963 unsigned long last_page; 2964 2965 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2966 pr_err("Unable to find swap-space signature\n"); 2967 return 0; 2968 } 2969 2970 /* swap partition endianness hack... */ 2971 if (swab32(swap_header->info.version) == 1) { 2972 swab32s(&swap_header->info.version); 2973 swab32s(&swap_header->info.last_page); 2974 swab32s(&swap_header->info.nr_badpages); 2975 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2976 return 0; 2977 for (i = 0; i < swap_header->info.nr_badpages; i++) 2978 swab32s(&swap_header->info.badpages[i]); 2979 } 2980 /* Check the swap header's sub-version */ 2981 if (swap_header->info.version != 1) { 2982 pr_warn("Unable to handle swap header version %d\n", 2983 swap_header->info.version); 2984 return 0; 2985 } 2986 2987 p->lowest_bit = 1; 2988 p->cluster_next = 1; 2989 p->cluster_nr = 0; 2990 2991 maxpages = max_swapfile_size(); 2992 last_page = swap_header->info.last_page; 2993 if (!last_page) { 2994 pr_warn("Empty swap-file\n"); 2995 return 0; 2996 } 2997 if (last_page > maxpages) { 2998 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2999 maxpages << (PAGE_SHIFT - 10), 3000 last_page << (PAGE_SHIFT - 10)); 3001 } 3002 if (maxpages > last_page) { 3003 maxpages = last_page + 1; 3004 /* p->max is an unsigned int: don't overflow it */ 3005 if ((unsigned int)maxpages == 0) 3006 maxpages = UINT_MAX; 3007 } 3008 p->highest_bit = maxpages - 1; 3009 3010 if (!maxpages) 3011 return 0; 3012 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 3013 if (swapfilepages && maxpages > swapfilepages) { 3014 pr_warn("Swap area shorter than signature indicates\n"); 3015 return 0; 3016 } 3017 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 3018 return 0; 3019 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 3020 return 0; 3021 3022 return maxpages; 3023 } 3024 3025 #define SWAP_CLUSTER_INFO_COLS \ 3026 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 3027 #define SWAP_CLUSTER_SPACE_COLS \ 3028 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 3029 #define SWAP_CLUSTER_COLS \ 3030 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 3031 3032 static int setup_swap_map_and_extents(struct swap_info_struct *p, 3033 union swap_header *swap_header, 3034 unsigned char *swap_map, 3035 struct swap_cluster_info *cluster_info, 3036 unsigned long maxpages, 3037 sector_t *span) 3038 { 3039 unsigned int j, k; 3040 unsigned int nr_good_pages; 3041 int nr_extents; 3042 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3043 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 3044 unsigned long i, idx; 3045 3046 nr_good_pages = maxpages - 1; /* omit header page */ 3047 3048 cluster_list_init(&p->free_clusters); 3049 cluster_list_init(&p->discard_clusters); 3050 3051 for (i = 0; i < swap_header->info.nr_badpages; i++) { 3052 unsigned int page_nr = swap_header->info.badpages[i]; 3053 if (page_nr == 0 || page_nr > swap_header->info.last_page) 3054 return -EINVAL; 3055 if (page_nr < maxpages) { 3056 swap_map[page_nr] = SWAP_MAP_BAD; 3057 nr_good_pages--; 3058 /* 3059 * Haven't marked the cluster free yet, no list 3060 * operation involved 3061 */ 3062 inc_cluster_info_page(p, cluster_info, page_nr); 3063 } 3064 } 3065 3066 /* Haven't marked the cluster free yet, no list operation involved */ 3067 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 3068 inc_cluster_info_page(p, cluster_info, i); 3069 3070 if (nr_good_pages) { 3071 swap_map[0] = SWAP_MAP_BAD; 3072 /* 3073 * Not mark the cluster free yet, no list 3074 * operation involved 3075 */ 3076 inc_cluster_info_page(p, cluster_info, 0); 3077 p->max = maxpages; 3078 p->pages = nr_good_pages; 3079 nr_extents = setup_swap_extents(p, span); 3080 if (nr_extents < 0) 3081 return nr_extents; 3082 nr_good_pages = p->pages; 3083 } 3084 if (!nr_good_pages) { 3085 pr_warn("Empty swap-file\n"); 3086 return -EINVAL; 3087 } 3088 3089 if (!cluster_info) 3090 return nr_extents; 3091 3092 3093 /* 3094 * Reduce false cache line sharing between cluster_info and 3095 * sharing same address space. 3096 */ 3097 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 3098 j = (k + col) % SWAP_CLUSTER_COLS; 3099 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 3100 idx = i * SWAP_CLUSTER_COLS + j; 3101 if (idx >= nr_clusters) 3102 continue; 3103 if (cluster_count(&cluster_info[idx])) 3104 continue; 3105 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 3106 cluster_list_add_tail(&p->free_clusters, cluster_info, 3107 idx); 3108 } 3109 } 3110 return nr_extents; 3111 } 3112 3113 /* 3114 * Helper to sys_swapon determining if a given swap 3115 * backing device queue supports DISCARD operations. 3116 */ 3117 static bool swap_discardable(struct swap_info_struct *si) 3118 { 3119 struct request_queue *q = bdev_get_queue(si->bdev); 3120 3121 if (!q || !blk_queue_discard(q)) 3122 return false; 3123 3124 return true; 3125 } 3126 3127 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 3128 { 3129 struct swap_info_struct *p; 3130 struct filename *name; 3131 struct file *swap_file = NULL; 3132 struct address_space *mapping; 3133 struct dentry *dentry; 3134 int prio; 3135 int error; 3136 union swap_header *swap_header; 3137 int nr_extents; 3138 sector_t span; 3139 unsigned long maxpages; 3140 unsigned char *swap_map = NULL; 3141 struct swap_cluster_info *cluster_info = NULL; 3142 unsigned long *frontswap_map = NULL; 3143 struct page *page = NULL; 3144 struct inode *inode = NULL; 3145 bool inced_nr_rotate_swap = false; 3146 3147 if (swap_flags & ~SWAP_FLAGS_VALID) 3148 return -EINVAL; 3149 3150 if (!capable(CAP_SYS_ADMIN)) 3151 return -EPERM; 3152 3153 if (!swap_avail_heads) 3154 return -ENOMEM; 3155 3156 p = alloc_swap_info(); 3157 if (IS_ERR(p)) 3158 return PTR_ERR(p); 3159 3160 INIT_WORK(&p->discard_work, swap_discard_work); 3161 3162 name = getname(specialfile); 3163 if (IS_ERR(name)) { 3164 error = PTR_ERR(name); 3165 name = NULL; 3166 goto bad_swap; 3167 } 3168 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 3169 if (IS_ERR(swap_file)) { 3170 error = PTR_ERR(swap_file); 3171 swap_file = NULL; 3172 goto bad_swap; 3173 } 3174 3175 p->swap_file = swap_file; 3176 mapping = swap_file->f_mapping; 3177 dentry = swap_file->f_path.dentry; 3178 inode = mapping->host; 3179 3180 error = claim_swapfile(p, inode); 3181 if (unlikely(error)) 3182 goto bad_swap; 3183 3184 inode_lock(inode); 3185 if (d_unlinked(dentry) || cant_mount(dentry)) { 3186 error = -ENOENT; 3187 goto bad_swap_unlock_inode; 3188 } 3189 if (IS_SWAPFILE(inode)) { 3190 error = -EBUSY; 3191 goto bad_swap_unlock_inode; 3192 } 3193 3194 /* 3195 * Read the swap header. 3196 */ 3197 if (!mapping->a_ops->readpage) { 3198 error = -EINVAL; 3199 goto bad_swap_unlock_inode; 3200 } 3201 page = read_mapping_page(mapping, 0, swap_file); 3202 if (IS_ERR(page)) { 3203 error = PTR_ERR(page); 3204 goto bad_swap_unlock_inode; 3205 } 3206 swap_header = kmap(page); 3207 3208 maxpages = read_swap_header(p, swap_header, inode); 3209 if (unlikely(!maxpages)) { 3210 error = -EINVAL; 3211 goto bad_swap_unlock_inode; 3212 } 3213 3214 /* OK, set up the swap map and apply the bad block list */ 3215 swap_map = vzalloc(maxpages); 3216 if (!swap_map) { 3217 error = -ENOMEM; 3218 goto bad_swap_unlock_inode; 3219 } 3220 3221 if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue)) 3222 p->flags |= SWP_STABLE_WRITES; 3223 3224 if (p->bdev && p->bdev->bd_disk->fops->rw_page) 3225 p->flags |= SWP_SYNCHRONOUS_IO; 3226 3227 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { 3228 int cpu; 3229 unsigned long ci, nr_cluster; 3230 3231 p->flags |= SWP_SOLIDSTATE; 3232 p->cluster_next_cpu = alloc_percpu(unsigned int); 3233 if (!p->cluster_next_cpu) { 3234 error = -ENOMEM; 3235 goto bad_swap_unlock_inode; 3236 } 3237 /* 3238 * select a random position to start with to help wear leveling 3239 * SSD 3240 */ 3241 for_each_possible_cpu(cpu) { 3242 per_cpu(*p->cluster_next_cpu, cpu) = 3243 1 + prandom_u32_max(p->highest_bit); 3244 } 3245 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3246 3247 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), 3248 GFP_KERNEL); 3249 if (!cluster_info) { 3250 error = -ENOMEM; 3251 goto bad_swap_unlock_inode; 3252 } 3253 3254 for (ci = 0; ci < nr_cluster; ci++) 3255 spin_lock_init(&((cluster_info + ci)->lock)); 3256 3257 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 3258 if (!p->percpu_cluster) { 3259 error = -ENOMEM; 3260 goto bad_swap_unlock_inode; 3261 } 3262 for_each_possible_cpu(cpu) { 3263 struct percpu_cluster *cluster; 3264 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 3265 cluster_set_null(&cluster->index); 3266 } 3267 } else { 3268 atomic_inc(&nr_rotate_swap); 3269 inced_nr_rotate_swap = true; 3270 } 3271 3272 error = swap_cgroup_swapon(p->type, maxpages); 3273 if (error) 3274 goto bad_swap_unlock_inode; 3275 3276 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 3277 cluster_info, maxpages, &span); 3278 if (unlikely(nr_extents < 0)) { 3279 error = nr_extents; 3280 goto bad_swap_unlock_inode; 3281 } 3282 /* frontswap enabled? set up bit-per-page map for frontswap */ 3283 if (IS_ENABLED(CONFIG_FRONTSWAP)) 3284 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages), 3285 sizeof(long), 3286 GFP_KERNEL); 3287 3288 if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { 3289 /* 3290 * When discard is enabled for swap with no particular 3291 * policy flagged, we set all swap discard flags here in 3292 * order to sustain backward compatibility with older 3293 * swapon(8) releases. 3294 */ 3295 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3296 SWP_PAGE_DISCARD); 3297 3298 /* 3299 * By flagging sys_swapon, a sysadmin can tell us to 3300 * either do single-time area discards only, or to just 3301 * perform discards for released swap page-clusters. 3302 * Now it's time to adjust the p->flags accordingly. 3303 */ 3304 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3305 p->flags &= ~SWP_PAGE_DISCARD; 3306 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3307 p->flags &= ~SWP_AREA_DISCARD; 3308 3309 /* issue a swapon-time discard if it's still required */ 3310 if (p->flags & SWP_AREA_DISCARD) { 3311 int err = discard_swap(p); 3312 if (unlikely(err)) 3313 pr_err("swapon: discard_swap(%p): %d\n", 3314 p, err); 3315 } 3316 } 3317 3318 error = init_swap_address_space(p->type, maxpages); 3319 if (error) 3320 goto bad_swap_unlock_inode; 3321 3322 /* 3323 * Flush any pending IO and dirty mappings before we start using this 3324 * swap device. 3325 */ 3326 inode->i_flags |= S_SWAPFILE; 3327 error = inode_drain_writes(inode); 3328 if (error) { 3329 inode->i_flags &= ~S_SWAPFILE; 3330 goto free_swap_address_space; 3331 } 3332 3333 mutex_lock(&swapon_mutex); 3334 prio = -1; 3335 if (swap_flags & SWAP_FLAG_PREFER) 3336 prio = 3337 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3338 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 3339 3340 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 3341 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 3342 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 3343 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 3344 (p->flags & SWP_DISCARDABLE) ? "D" : "", 3345 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 3346 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 3347 (frontswap_map) ? "FS" : ""); 3348 3349 mutex_unlock(&swapon_mutex); 3350 atomic_inc(&proc_poll_event); 3351 wake_up_interruptible(&proc_poll_wait); 3352 3353 error = 0; 3354 goto out; 3355 free_swap_address_space: 3356 exit_swap_address_space(p->type); 3357 bad_swap_unlock_inode: 3358 inode_unlock(inode); 3359 bad_swap: 3360 free_percpu(p->percpu_cluster); 3361 p->percpu_cluster = NULL; 3362 free_percpu(p->cluster_next_cpu); 3363 p->cluster_next_cpu = NULL; 3364 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 3365 set_blocksize(p->bdev, p->old_block_size); 3366 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 3367 } 3368 inode = NULL; 3369 destroy_swap_extents(p); 3370 swap_cgroup_swapoff(p->type); 3371 spin_lock(&swap_lock); 3372 p->swap_file = NULL; 3373 p->flags = 0; 3374 spin_unlock(&swap_lock); 3375 vfree(swap_map); 3376 kvfree(cluster_info); 3377 kvfree(frontswap_map); 3378 if (inced_nr_rotate_swap) 3379 atomic_dec(&nr_rotate_swap); 3380 if (swap_file) 3381 filp_close(swap_file, NULL); 3382 out: 3383 if (page && !IS_ERR(page)) { 3384 kunmap(page); 3385 put_page(page); 3386 } 3387 if (name) 3388 putname(name); 3389 if (inode) 3390 inode_unlock(inode); 3391 if (!error) 3392 enable_swap_slots_cache(); 3393 return error; 3394 } 3395 3396 void si_swapinfo(struct sysinfo *val) 3397 { 3398 unsigned int type; 3399 unsigned long nr_to_be_unused = 0; 3400 3401 spin_lock(&swap_lock); 3402 for (type = 0; type < nr_swapfiles; type++) { 3403 struct swap_info_struct *si = swap_info[type]; 3404 3405 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3406 nr_to_be_unused += si->inuse_pages; 3407 } 3408 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3409 val->totalswap = total_swap_pages + nr_to_be_unused; 3410 spin_unlock(&swap_lock); 3411 } 3412 3413 /* 3414 * Verify that a swap entry is valid and increment its swap map count. 3415 * 3416 * Returns error code in following case. 3417 * - success -> 0 3418 * - swp_entry is invalid -> EINVAL 3419 * - swp_entry is migration entry -> EINVAL 3420 * - swap-cache reference is requested but there is already one. -> EEXIST 3421 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3422 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3423 */ 3424 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 3425 { 3426 struct swap_info_struct *p; 3427 struct swap_cluster_info *ci; 3428 unsigned long offset; 3429 unsigned char count; 3430 unsigned char has_cache; 3431 int err; 3432 3433 p = get_swap_device(entry); 3434 if (!p) 3435 return -EINVAL; 3436 3437 offset = swp_offset(entry); 3438 ci = lock_cluster_or_swap_info(p, offset); 3439 3440 count = p->swap_map[offset]; 3441 3442 /* 3443 * swapin_readahead() doesn't check if a swap entry is valid, so the 3444 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3445 */ 3446 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3447 err = -ENOENT; 3448 goto unlock_out; 3449 } 3450 3451 has_cache = count & SWAP_HAS_CACHE; 3452 count &= ~SWAP_HAS_CACHE; 3453 err = 0; 3454 3455 if (usage == SWAP_HAS_CACHE) { 3456 3457 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 3458 if (!has_cache && count) 3459 has_cache = SWAP_HAS_CACHE; 3460 else if (has_cache) /* someone else added cache */ 3461 err = -EEXIST; 3462 else /* no users remaining */ 3463 err = -ENOENT; 3464 3465 } else if (count || has_cache) { 3466 3467 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3468 count += usage; 3469 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3470 err = -EINVAL; 3471 else if (swap_count_continued(p, offset, count)) 3472 count = COUNT_CONTINUED; 3473 else 3474 err = -ENOMEM; 3475 } else 3476 err = -ENOENT; /* unused swap entry */ 3477 3478 WRITE_ONCE(p->swap_map[offset], count | has_cache); 3479 3480 unlock_out: 3481 unlock_cluster_or_swap_info(p, ci); 3482 if (p) 3483 put_swap_device(p); 3484 return err; 3485 } 3486 3487 /* 3488 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3489 * (in which case its reference count is never incremented). 3490 */ 3491 void swap_shmem_alloc(swp_entry_t entry) 3492 { 3493 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3494 } 3495 3496 /* 3497 * Increase reference count of swap entry by 1. 3498 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3499 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3500 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3501 * might occur if a page table entry has got corrupted. 3502 */ 3503 int swap_duplicate(swp_entry_t entry) 3504 { 3505 int err = 0; 3506 3507 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3508 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3509 return err; 3510 } 3511 3512 /* 3513 * @entry: swap entry for which we allocate swap cache. 3514 * 3515 * Called when allocating swap cache for existing swap entry, 3516 * This can return error codes. Returns 0 at success. 3517 * -EEXIST means there is a swap cache. 3518 * Note: return code is different from swap_duplicate(). 3519 */ 3520 int swapcache_prepare(swp_entry_t entry) 3521 { 3522 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3523 } 3524 3525 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3526 { 3527 return swap_type_to_swap_info(swp_type(entry)); 3528 } 3529 3530 struct swap_info_struct *page_swap_info(struct page *page) 3531 { 3532 swp_entry_t entry = { .val = page_private(page) }; 3533 return swp_swap_info(entry); 3534 } 3535 3536 /* 3537 * out-of-line __page_file_ methods to avoid include hell. 3538 */ 3539 struct address_space *__page_file_mapping(struct page *page) 3540 { 3541 return page_swap_info(page)->swap_file->f_mapping; 3542 } 3543 EXPORT_SYMBOL_GPL(__page_file_mapping); 3544 3545 pgoff_t __page_file_index(struct page *page) 3546 { 3547 swp_entry_t swap = { .val = page_private(page) }; 3548 return swp_offset(swap); 3549 } 3550 EXPORT_SYMBOL_GPL(__page_file_index); 3551 3552 /* 3553 * add_swap_count_continuation - called when a swap count is duplicated 3554 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3555 * page of the original vmalloc'ed swap_map, to hold the continuation count 3556 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3557 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3558 * 3559 * These continuation pages are seldom referenced: the common paths all work 3560 * on the original swap_map, only referring to a continuation page when the 3561 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3562 * 3563 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3564 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3565 * can be called after dropping locks. 3566 */ 3567 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3568 { 3569 struct swap_info_struct *si; 3570 struct swap_cluster_info *ci; 3571 struct page *head; 3572 struct page *page; 3573 struct page *list_page; 3574 pgoff_t offset; 3575 unsigned char count; 3576 int ret = 0; 3577 3578 /* 3579 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3580 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3581 */ 3582 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3583 3584 si = get_swap_device(entry); 3585 if (!si) { 3586 /* 3587 * An acceptable race has occurred since the failing 3588 * __swap_duplicate(): the swap device may be swapoff 3589 */ 3590 goto outer; 3591 } 3592 spin_lock(&si->lock); 3593 3594 offset = swp_offset(entry); 3595 3596 ci = lock_cluster(si, offset); 3597 3598 count = swap_count(si->swap_map[offset]); 3599 3600 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3601 /* 3602 * The higher the swap count, the more likely it is that tasks 3603 * will race to add swap count continuation: we need to avoid 3604 * over-provisioning. 3605 */ 3606 goto out; 3607 } 3608 3609 if (!page) { 3610 ret = -ENOMEM; 3611 goto out; 3612 } 3613 3614 /* 3615 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 3616 * no architecture is using highmem pages for kernel page tables: so it 3617 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 3618 */ 3619 head = vmalloc_to_page(si->swap_map + offset); 3620 offset &= ~PAGE_MASK; 3621 3622 spin_lock(&si->cont_lock); 3623 /* 3624 * Page allocation does not initialize the page's lru field, 3625 * but it does always reset its private field. 3626 */ 3627 if (!page_private(head)) { 3628 BUG_ON(count & COUNT_CONTINUED); 3629 INIT_LIST_HEAD(&head->lru); 3630 set_page_private(head, SWP_CONTINUED); 3631 si->flags |= SWP_CONTINUED; 3632 } 3633 3634 list_for_each_entry(list_page, &head->lru, lru) { 3635 unsigned char *map; 3636 3637 /* 3638 * If the previous map said no continuation, but we've found 3639 * a continuation page, free our allocation and use this one. 3640 */ 3641 if (!(count & COUNT_CONTINUED)) 3642 goto out_unlock_cont; 3643 3644 map = kmap_atomic(list_page) + offset; 3645 count = *map; 3646 kunmap_atomic(map); 3647 3648 /* 3649 * If this continuation count now has some space in it, 3650 * free our allocation and use this one. 3651 */ 3652 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3653 goto out_unlock_cont; 3654 } 3655 3656 list_add_tail(&page->lru, &head->lru); 3657 page = NULL; /* now it's attached, don't free it */ 3658 out_unlock_cont: 3659 spin_unlock(&si->cont_lock); 3660 out: 3661 unlock_cluster(ci); 3662 spin_unlock(&si->lock); 3663 put_swap_device(si); 3664 outer: 3665 if (page) 3666 __free_page(page); 3667 return ret; 3668 } 3669 3670 /* 3671 * swap_count_continued - when the original swap_map count is incremented 3672 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3673 * into, carry if so, or else fail until a new continuation page is allocated; 3674 * when the original swap_map count is decremented from 0 with continuation, 3675 * borrow from the continuation and report whether it still holds more. 3676 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3677 * lock. 3678 */ 3679 static bool swap_count_continued(struct swap_info_struct *si, 3680 pgoff_t offset, unsigned char count) 3681 { 3682 struct page *head; 3683 struct page *page; 3684 unsigned char *map; 3685 bool ret; 3686 3687 head = vmalloc_to_page(si->swap_map + offset); 3688 if (page_private(head) != SWP_CONTINUED) { 3689 BUG_ON(count & COUNT_CONTINUED); 3690 return false; /* need to add count continuation */ 3691 } 3692 3693 spin_lock(&si->cont_lock); 3694 offset &= ~PAGE_MASK; 3695 page = list_next_entry(head, lru); 3696 map = kmap_atomic(page) + offset; 3697 3698 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3699 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3700 3701 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3702 /* 3703 * Think of how you add 1 to 999 3704 */ 3705 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3706 kunmap_atomic(map); 3707 page = list_next_entry(page, lru); 3708 BUG_ON(page == head); 3709 map = kmap_atomic(page) + offset; 3710 } 3711 if (*map == SWAP_CONT_MAX) { 3712 kunmap_atomic(map); 3713 page = list_next_entry(page, lru); 3714 if (page == head) { 3715 ret = false; /* add count continuation */ 3716 goto out; 3717 } 3718 map = kmap_atomic(page) + offset; 3719 init_map: *map = 0; /* we didn't zero the page */ 3720 } 3721 *map += 1; 3722 kunmap_atomic(map); 3723 while ((page = list_prev_entry(page, lru)) != head) { 3724 map = kmap_atomic(page) + offset; 3725 *map = COUNT_CONTINUED; 3726 kunmap_atomic(map); 3727 } 3728 ret = true; /* incremented */ 3729 3730 } else { /* decrementing */ 3731 /* 3732 * Think of how you subtract 1 from 1000 3733 */ 3734 BUG_ON(count != COUNT_CONTINUED); 3735 while (*map == COUNT_CONTINUED) { 3736 kunmap_atomic(map); 3737 page = list_next_entry(page, lru); 3738 BUG_ON(page == head); 3739 map = kmap_atomic(page) + offset; 3740 } 3741 BUG_ON(*map == 0); 3742 *map -= 1; 3743 if (*map == 0) 3744 count = 0; 3745 kunmap_atomic(map); 3746 while ((page = list_prev_entry(page, lru)) != head) { 3747 map = kmap_atomic(page) + offset; 3748 *map = SWAP_CONT_MAX | count; 3749 count = COUNT_CONTINUED; 3750 kunmap_atomic(map); 3751 } 3752 ret = count == COUNT_CONTINUED; 3753 } 3754 out: 3755 spin_unlock(&si->cont_lock); 3756 return ret; 3757 } 3758 3759 /* 3760 * free_swap_count_continuations - swapoff free all the continuation pages 3761 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3762 */ 3763 static void free_swap_count_continuations(struct swap_info_struct *si) 3764 { 3765 pgoff_t offset; 3766 3767 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3768 struct page *head; 3769 head = vmalloc_to_page(si->swap_map + offset); 3770 if (page_private(head)) { 3771 struct page *page, *next; 3772 3773 list_for_each_entry_safe(page, next, &head->lru, lru) { 3774 list_del(&page->lru); 3775 __free_page(page); 3776 } 3777 } 3778 } 3779 } 3780 3781 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3782 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask) 3783 { 3784 struct swap_info_struct *si, *next; 3785 int nid = page_to_nid(page); 3786 3787 if (!(gfp_mask & __GFP_IO)) 3788 return; 3789 3790 if (!blk_cgroup_congested()) 3791 return; 3792 3793 /* 3794 * We've already scheduled a throttle, avoid taking the global swap 3795 * lock. 3796 */ 3797 if (current->throttle_queue) 3798 return; 3799 3800 spin_lock(&swap_avail_lock); 3801 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], 3802 avail_lists[nid]) { 3803 if (si->bdev) { 3804 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true); 3805 break; 3806 } 3807 } 3808 spin_unlock(&swap_avail_lock); 3809 } 3810 #endif 3811 3812 static int __init swapfile_init(void) 3813 { 3814 int nid; 3815 3816 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3817 GFP_KERNEL); 3818 if (!swap_avail_heads) { 3819 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3820 return -ENOMEM; 3821 } 3822 3823 for_each_node(nid) 3824 plist_head_init(&swap_avail_heads[nid]); 3825 3826 return 0; 3827 } 3828 subsys_initcall(swapfile_init); 3829