1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/hugetlb.h> 10 #include <linux/mman.h> 11 #include <linux/slab.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/shm.h> 18 #include <linux/blkdev.h> 19 #include <linux/writeback.h> 20 #include <linux/proc_fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/init.h> 23 #include <linux/module.h> 24 #include <linux/rmap.h> 25 #include <linux/security.h> 26 #include <linux/backing-dev.h> 27 #include <linux/mutex.h> 28 #include <linux/capability.h> 29 #include <linux/syscalls.h> 30 #include <linux/memcontrol.h> 31 32 #include <asm/pgtable.h> 33 #include <asm/tlbflush.h> 34 #include <linux/swapops.h> 35 36 static DEFINE_SPINLOCK(swap_lock); 37 static unsigned int nr_swapfiles; 38 long total_swap_pages; 39 static int swap_overflow; 40 static int least_priority; 41 42 static const char Bad_file[] = "Bad swap file entry "; 43 static const char Unused_file[] = "Unused swap file entry "; 44 static const char Bad_offset[] = "Bad swap offset entry "; 45 static const char Unused_offset[] = "Unused swap offset entry "; 46 47 static struct swap_list_t swap_list = {-1, -1}; 48 49 static struct swap_info_struct swap_info[MAX_SWAPFILES]; 50 51 static DEFINE_MUTEX(swapon_mutex); 52 53 /* 54 * We need this because the bdev->unplug_fn can sleep and we cannot 55 * hold swap_lock while calling the unplug_fn. And swap_lock 56 * cannot be turned into a mutex. 57 */ 58 static DECLARE_RWSEM(swap_unplug_sem); 59 60 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page) 61 { 62 swp_entry_t entry; 63 64 down_read(&swap_unplug_sem); 65 entry.val = page_private(page); 66 if (PageSwapCache(page)) { 67 struct block_device *bdev = swap_info[swp_type(entry)].bdev; 68 struct backing_dev_info *bdi; 69 70 /* 71 * If the page is removed from swapcache from under us (with a 72 * racy try_to_unuse/swapoff) we need an additional reference 73 * count to avoid reading garbage from page_private(page) above. 74 * If the WARN_ON triggers during a swapoff it maybe the race 75 * condition and it's harmless. However if it triggers without 76 * swapoff it signals a problem. 77 */ 78 WARN_ON(page_count(page) <= 1); 79 80 bdi = bdev->bd_inode->i_mapping->backing_dev_info; 81 blk_run_backing_dev(bdi, page); 82 } 83 up_read(&swap_unplug_sem); 84 } 85 86 #define SWAPFILE_CLUSTER 256 87 #define LATENCY_LIMIT 256 88 89 static inline unsigned long scan_swap_map(struct swap_info_struct *si) 90 { 91 unsigned long offset, last_in_cluster; 92 int latency_ration = LATENCY_LIMIT; 93 94 /* 95 * We try to cluster swap pages by allocating them sequentially 96 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 97 * way, however, we resort to first-free allocation, starting 98 * a new cluster. This prevents us from scattering swap pages 99 * all over the entire swap partition, so that we reduce 100 * overall disk seek times between swap pages. -- sct 101 * But we do now try to find an empty cluster. -Andrea 102 */ 103 104 si->flags += SWP_SCANNING; 105 if (unlikely(!si->cluster_nr)) { 106 si->cluster_nr = SWAPFILE_CLUSTER - 1; 107 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) 108 goto lowest; 109 spin_unlock(&swap_lock); 110 111 offset = si->lowest_bit; 112 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 113 114 /* Locate the first empty (unaligned) cluster */ 115 for (; last_in_cluster <= si->highest_bit; offset++) { 116 if (si->swap_map[offset]) 117 last_in_cluster = offset + SWAPFILE_CLUSTER; 118 else if (offset == last_in_cluster) { 119 spin_lock(&swap_lock); 120 si->cluster_next = offset-SWAPFILE_CLUSTER+1; 121 goto cluster; 122 } 123 if (unlikely(--latency_ration < 0)) { 124 cond_resched(); 125 latency_ration = LATENCY_LIMIT; 126 } 127 } 128 spin_lock(&swap_lock); 129 goto lowest; 130 } 131 132 si->cluster_nr--; 133 cluster: 134 offset = si->cluster_next; 135 if (offset > si->highest_bit) 136 lowest: offset = si->lowest_bit; 137 checks: if (!(si->flags & SWP_WRITEOK)) 138 goto no_page; 139 if (!si->highest_bit) 140 goto no_page; 141 if (!si->swap_map[offset]) { 142 if (offset == si->lowest_bit) 143 si->lowest_bit++; 144 if (offset == si->highest_bit) 145 si->highest_bit--; 146 si->inuse_pages++; 147 if (si->inuse_pages == si->pages) { 148 si->lowest_bit = si->max; 149 si->highest_bit = 0; 150 } 151 si->swap_map[offset] = 1; 152 si->cluster_next = offset + 1; 153 si->flags -= SWP_SCANNING; 154 return offset; 155 } 156 157 spin_unlock(&swap_lock); 158 while (++offset <= si->highest_bit) { 159 if (!si->swap_map[offset]) { 160 spin_lock(&swap_lock); 161 goto checks; 162 } 163 if (unlikely(--latency_ration < 0)) { 164 cond_resched(); 165 latency_ration = LATENCY_LIMIT; 166 } 167 } 168 spin_lock(&swap_lock); 169 goto lowest; 170 171 no_page: 172 si->flags -= SWP_SCANNING; 173 return 0; 174 } 175 176 swp_entry_t get_swap_page(void) 177 { 178 struct swap_info_struct *si; 179 pgoff_t offset; 180 int type, next; 181 int wrapped = 0; 182 183 spin_lock(&swap_lock); 184 if (nr_swap_pages <= 0) 185 goto noswap; 186 nr_swap_pages--; 187 188 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { 189 si = swap_info + type; 190 next = si->next; 191 if (next < 0 || 192 (!wrapped && si->prio != swap_info[next].prio)) { 193 next = swap_list.head; 194 wrapped++; 195 } 196 197 if (!si->highest_bit) 198 continue; 199 if (!(si->flags & SWP_WRITEOK)) 200 continue; 201 202 swap_list.next = next; 203 offset = scan_swap_map(si); 204 if (offset) { 205 spin_unlock(&swap_lock); 206 return swp_entry(type, offset); 207 } 208 next = swap_list.next; 209 } 210 211 nr_swap_pages++; 212 noswap: 213 spin_unlock(&swap_lock); 214 return (swp_entry_t) {0}; 215 } 216 217 swp_entry_t get_swap_page_of_type(int type) 218 { 219 struct swap_info_struct *si; 220 pgoff_t offset; 221 222 spin_lock(&swap_lock); 223 si = swap_info + type; 224 if (si->flags & SWP_WRITEOK) { 225 nr_swap_pages--; 226 offset = scan_swap_map(si); 227 if (offset) { 228 spin_unlock(&swap_lock); 229 return swp_entry(type, offset); 230 } 231 nr_swap_pages++; 232 } 233 spin_unlock(&swap_lock); 234 return (swp_entry_t) {0}; 235 } 236 237 static struct swap_info_struct * swap_info_get(swp_entry_t entry) 238 { 239 struct swap_info_struct * p; 240 unsigned long offset, type; 241 242 if (!entry.val) 243 goto out; 244 type = swp_type(entry); 245 if (type >= nr_swapfiles) 246 goto bad_nofile; 247 p = & swap_info[type]; 248 if (!(p->flags & SWP_USED)) 249 goto bad_device; 250 offset = swp_offset(entry); 251 if (offset >= p->max) 252 goto bad_offset; 253 if (!p->swap_map[offset]) 254 goto bad_free; 255 spin_lock(&swap_lock); 256 return p; 257 258 bad_free: 259 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); 260 goto out; 261 bad_offset: 262 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); 263 goto out; 264 bad_device: 265 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); 266 goto out; 267 bad_nofile: 268 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); 269 out: 270 return NULL; 271 } 272 273 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset) 274 { 275 int count = p->swap_map[offset]; 276 277 if (count < SWAP_MAP_MAX) { 278 count--; 279 p->swap_map[offset] = count; 280 if (!count) { 281 if (offset < p->lowest_bit) 282 p->lowest_bit = offset; 283 if (offset > p->highest_bit) 284 p->highest_bit = offset; 285 if (p->prio > swap_info[swap_list.next].prio) 286 swap_list.next = p - swap_info; 287 nr_swap_pages++; 288 p->inuse_pages--; 289 } 290 } 291 return count; 292 } 293 294 /* 295 * Caller has made sure that the swapdevice corresponding to entry 296 * is still around or has not been recycled. 297 */ 298 void swap_free(swp_entry_t entry) 299 { 300 struct swap_info_struct * p; 301 302 p = swap_info_get(entry); 303 if (p) { 304 swap_entry_free(p, swp_offset(entry)); 305 spin_unlock(&swap_lock); 306 } 307 } 308 309 /* 310 * How many references to page are currently swapped out? 311 */ 312 static inline int page_swapcount(struct page *page) 313 { 314 int count = 0; 315 struct swap_info_struct *p; 316 swp_entry_t entry; 317 318 entry.val = page_private(page); 319 p = swap_info_get(entry); 320 if (p) { 321 /* Subtract the 1 for the swap cache itself */ 322 count = p->swap_map[swp_offset(entry)] - 1; 323 spin_unlock(&swap_lock); 324 } 325 return count; 326 } 327 328 /* 329 * We can use this swap cache entry directly 330 * if there are no other references to it. 331 */ 332 int can_share_swap_page(struct page *page) 333 { 334 int count; 335 336 BUG_ON(!PageLocked(page)); 337 count = page_mapcount(page); 338 if (count <= 1 && PageSwapCache(page)) 339 count += page_swapcount(page); 340 return count == 1; 341 } 342 343 /* 344 * Work out if there are any other processes sharing this 345 * swap cache page. Free it if you can. Return success. 346 */ 347 static int remove_exclusive_swap_page_count(struct page *page, int count) 348 { 349 int retval; 350 struct swap_info_struct * p; 351 swp_entry_t entry; 352 353 BUG_ON(PagePrivate(page)); 354 BUG_ON(!PageLocked(page)); 355 356 if (!PageSwapCache(page)) 357 return 0; 358 if (PageWriteback(page)) 359 return 0; 360 if (page_count(page) != count) /* us + cache + ptes */ 361 return 0; 362 363 entry.val = page_private(page); 364 p = swap_info_get(entry); 365 if (!p) 366 return 0; 367 368 /* Is the only swap cache user the cache itself? */ 369 retval = 0; 370 if (p->swap_map[swp_offset(entry)] == 1) { 371 /* Recheck the page count with the swapcache lock held.. */ 372 spin_lock_irq(&swapper_space.tree_lock); 373 if ((page_count(page) == count) && !PageWriteback(page)) { 374 __delete_from_swap_cache(page); 375 SetPageDirty(page); 376 retval = 1; 377 } 378 spin_unlock_irq(&swapper_space.tree_lock); 379 } 380 spin_unlock(&swap_lock); 381 382 if (retval) { 383 swap_free(entry); 384 page_cache_release(page); 385 } 386 387 return retval; 388 } 389 390 /* 391 * Most of the time the page should have two references: one for the 392 * process and one for the swap cache. 393 */ 394 int remove_exclusive_swap_page(struct page *page) 395 { 396 return remove_exclusive_swap_page_count(page, 2); 397 } 398 399 /* 400 * The pageout code holds an extra reference to the page. That raises 401 * the reference count to test for to 2 for a page that is only in the 402 * swap cache plus 1 for each process that maps the page. 403 */ 404 int remove_exclusive_swap_page_ref(struct page *page) 405 { 406 return remove_exclusive_swap_page_count(page, 2 + page_mapcount(page)); 407 } 408 409 /* 410 * Free the swap entry like above, but also try to 411 * free the page cache entry if it is the last user. 412 */ 413 void free_swap_and_cache(swp_entry_t entry) 414 { 415 struct swap_info_struct * p; 416 struct page *page = NULL; 417 418 if (is_migration_entry(entry)) 419 return; 420 421 p = swap_info_get(entry); 422 if (p) { 423 if (swap_entry_free(p, swp_offset(entry)) == 1) { 424 page = find_get_page(&swapper_space, entry.val); 425 if (page && !trylock_page(page)) { 426 page_cache_release(page); 427 page = NULL; 428 } 429 } 430 spin_unlock(&swap_lock); 431 } 432 if (page) { 433 int one_user; 434 435 BUG_ON(PagePrivate(page)); 436 one_user = (page_count(page) == 2); 437 /* Only cache user (+us), or swap space full? Free it! */ 438 /* Also recheck PageSwapCache after page is locked (above) */ 439 if (PageSwapCache(page) && !PageWriteback(page) && 440 (one_user || vm_swap_full())) { 441 delete_from_swap_cache(page); 442 SetPageDirty(page); 443 } 444 unlock_page(page); 445 page_cache_release(page); 446 } 447 } 448 449 #ifdef CONFIG_HIBERNATION 450 /* 451 * Find the swap type that corresponds to given device (if any). 452 * 453 * @offset - number of the PAGE_SIZE-sized block of the device, starting 454 * from 0, in which the swap header is expected to be located. 455 * 456 * This is needed for the suspend to disk (aka swsusp). 457 */ 458 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 459 { 460 struct block_device *bdev = NULL; 461 int i; 462 463 if (device) 464 bdev = bdget(device); 465 466 spin_lock(&swap_lock); 467 for (i = 0; i < nr_swapfiles; i++) { 468 struct swap_info_struct *sis = swap_info + i; 469 470 if (!(sis->flags & SWP_WRITEOK)) 471 continue; 472 473 if (!bdev) { 474 if (bdev_p) 475 *bdev_p = sis->bdev; 476 477 spin_unlock(&swap_lock); 478 return i; 479 } 480 if (bdev == sis->bdev) { 481 struct swap_extent *se; 482 483 se = list_entry(sis->extent_list.next, 484 struct swap_extent, list); 485 if (se->start_block == offset) { 486 if (bdev_p) 487 *bdev_p = sis->bdev; 488 489 spin_unlock(&swap_lock); 490 bdput(bdev); 491 return i; 492 } 493 } 494 } 495 spin_unlock(&swap_lock); 496 if (bdev) 497 bdput(bdev); 498 499 return -ENODEV; 500 } 501 502 /* 503 * Return either the total number of swap pages of given type, or the number 504 * of free pages of that type (depending on @free) 505 * 506 * This is needed for software suspend 507 */ 508 unsigned int count_swap_pages(int type, int free) 509 { 510 unsigned int n = 0; 511 512 if (type < nr_swapfiles) { 513 spin_lock(&swap_lock); 514 if (swap_info[type].flags & SWP_WRITEOK) { 515 n = swap_info[type].pages; 516 if (free) 517 n -= swap_info[type].inuse_pages; 518 } 519 spin_unlock(&swap_lock); 520 } 521 return n; 522 } 523 #endif 524 525 /* 526 * No need to decide whether this PTE shares the swap entry with others, 527 * just let do_wp_page work it out if a write is requested later - to 528 * force COW, vm_page_prot omits write permission from any private vma. 529 */ 530 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 531 unsigned long addr, swp_entry_t entry, struct page *page) 532 { 533 spinlock_t *ptl; 534 pte_t *pte; 535 int ret = 1; 536 537 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) 538 ret = -ENOMEM; 539 540 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 541 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) { 542 if (ret > 0) 543 mem_cgroup_uncharge_page(page); 544 ret = 0; 545 goto out; 546 } 547 548 inc_mm_counter(vma->vm_mm, anon_rss); 549 get_page(page); 550 set_pte_at(vma->vm_mm, addr, pte, 551 pte_mkold(mk_pte(page, vma->vm_page_prot))); 552 page_add_anon_rmap(page, vma, addr); 553 swap_free(entry); 554 /* 555 * Move the page to the active list so it is not 556 * immediately swapped out again after swapon. 557 */ 558 activate_page(page); 559 out: 560 pte_unmap_unlock(pte, ptl); 561 return ret; 562 } 563 564 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 565 unsigned long addr, unsigned long end, 566 swp_entry_t entry, struct page *page) 567 { 568 pte_t swp_pte = swp_entry_to_pte(entry); 569 pte_t *pte; 570 int ret = 0; 571 572 /* 573 * We don't actually need pte lock while scanning for swp_pte: since 574 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 575 * page table while we're scanning; though it could get zapped, and on 576 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 577 * of unmatched parts which look like swp_pte, so unuse_pte must 578 * recheck under pte lock. Scanning without pte lock lets it be 579 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 580 */ 581 pte = pte_offset_map(pmd, addr); 582 do { 583 /* 584 * swapoff spends a _lot_ of time in this loop! 585 * Test inline before going to call unuse_pte. 586 */ 587 if (unlikely(pte_same(*pte, swp_pte))) { 588 pte_unmap(pte); 589 ret = unuse_pte(vma, pmd, addr, entry, page); 590 if (ret) 591 goto out; 592 pte = pte_offset_map(pmd, addr); 593 } 594 } while (pte++, addr += PAGE_SIZE, addr != end); 595 pte_unmap(pte - 1); 596 out: 597 return ret; 598 } 599 600 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 601 unsigned long addr, unsigned long end, 602 swp_entry_t entry, struct page *page) 603 { 604 pmd_t *pmd; 605 unsigned long next; 606 int ret; 607 608 pmd = pmd_offset(pud, addr); 609 do { 610 next = pmd_addr_end(addr, end); 611 if (pmd_none_or_clear_bad(pmd)) 612 continue; 613 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 614 if (ret) 615 return ret; 616 } while (pmd++, addr = next, addr != end); 617 return 0; 618 } 619 620 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 621 unsigned long addr, unsigned long end, 622 swp_entry_t entry, struct page *page) 623 { 624 pud_t *pud; 625 unsigned long next; 626 int ret; 627 628 pud = pud_offset(pgd, addr); 629 do { 630 next = pud_addr_end(addr, end); 631 if (pud_none_or_clear_bad(pud)) 632 continue; 633 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 634 if (ret) 635 return ret; 636 } while (pud++, addr = next, addr != end); 637 return 0; 638 } 639 640 static int unuse_vma(struct vm_area_struct *vma, 641 swp_entry_t entry, struct page *page) 642 { 643 pgd_t *pgd; 644 unsigned long addr, end, next; 645 int ret; 646 647 if (page->mapping) { 648 addr = page_address_in_vma(page, vma); 649 if (addr == -EFAULT) 650 return 0; 651 else 652 end = addr + PAGE_SIZE; 653 } else { 654 addr = vma->vm_start; 655 end = vma->vm_end; 656 } 657 658 pgd = pgd_offset(vma->vm_mm, addr); 659 do { 660 next = pgd_addr_end(addr, end); 661 if (pgd_none_or_clear_bad(pgd)) 662 continue; 663 ret = unuse_pud_range(vma, pgd, addr, next, entry, page); 664 if (ret) 665 return ret; 666 } while (pgd++, addr = next, addr != end); 667 return 0; 668 } 669 670 static int unuse_mm(struct mm_struct *mm, 671 swp_entry_t entry, struct page *page) 672 { 673 struct vm_area_struct *vma; 674 int ret = 0; 675 676 if (!down_read_trylock(&mm->mmap_sem)) { 677 /* 678 * Activate page so shrink_inactive_list is unlikely to unmap 679 * its ptes while lock is dropped, so swapoff can make progress. 680 */ 681 activate_page(page); 682 unlock_page(page); 683 down_read(&mm->mmap_sem); 684 lock_page(page); 685 } 686 for (vma = mm->mmap; vma; vma = vma->vm_next) { 687 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 688 break; 689 } 690 up_read(&mm->mmap_sem); 691 return (ret < 0)? ret: 0; 692 } 693 694 /* 695 * Scan swap_map from current position to next entry still in use. 696 * Recycle to start on reaching the end, returning 0 when empty. 697 */ 698 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 699 unsigned int prev) 700 { 701 unsigned int max = si->max; 702 unsigned int i = prev; 703 int count; 704 705 /* 706 * No need for swap_lock here: we're just looking 707 * for whether an entry is in use, not modifying it; false 708 * hits are okay, and sys_swapoff() has already prevented new 709 * allocations from this area (while holding swap_lock). 710 */ 711 for (;;) { 712 if (++i >= max) { 713 if (!prev) { 714 i = 0; 715 break; 716 } 717 /* 718 * No entries in use at top of swap_map, 719 * loop back to start and recheck there. 720 */ 721 max = prev + 1; 722 prev = 0; 723 i = 1; 724 } 725 count = si->swap_map[i]; 726 if (count && count != SWAP_MAP_BAD) 727 break; 728 } 729 return i; 730 } 731 732 /* 733 * We completely avoid races by reading each swap page in advance, 734 * and then search for the process using it. All the necessary 735 * page table adjustments can then be made atomically. 736 */ 737 static int try_to_unuse(unsigned int type) 738 { 739 struct swap_info_struct * si = &swap_info[type]; 740 struct mm_struct *start_mm; 741 unsigned short *swap_map; 742 unsigned short swcount; 743 struct page *page; 744 swp_entry_t entry; 745 unsigned int i = 0; 746 int retval = 0; 747 int reset_overflow = 0; 748 int shmem; 749 750 /* 751 * When searching mms for an entry, a good strategy is to 752 * start at the first mm we freed the previous entry from 753 * (though actually we don't notice whether we or coincidence 754 * freed the entry). Initialize this start_mm with a hold. 755 * 756 * A simpler strategy would be to start at the last mm we 757 * freed the previous entry from; but that would take less 758 * advantage of mmlist ordering, which clusters forked mms 759 * together, child after parent. If we race with dup_mmap(), we 760 * prefer to resolve parent before child, lest we miss entries 761 * duplicated after we scanned child: using last mm would invert 762 * that. Though it's only a serious concern when an overflowed 763 * swap count is reset from SWAP_MAP_MAX, preventing a rescan. 764 */ 765 start_mm = &init_mm; 766 atomic_inc(&init_mm.mm_users); 767 768 /* 769 * Keep on scanning until all entries have gone. Usually, 770 * one pass through swap_map is enough, but not necessarily: 771 * there are races when an instance of an entry might be missed. 772 */ 773 while ((i = find_next_to_unuse(si, i)) != 0) { 774 if (signal_pending(current)) { 775 retval = -EINTR; 776 break; 777 } 778 779 /* 780 * Get a page for the entry, using the existing swap 781 * cache page if there is one. Otherwise, get a clean 782 * page and read the swap into it. 783 */ 784 swap_map = &si->swap_map[i]; 785 entry = swp_entry(type, i); 786 page = read_swap_cache_async(entry, 787 GFP_HIGHUSER_MOVABLE, NULL, 0); 788 if (!page) { 789 /* 790 * Either swap_duplicate() failed because entry 791 * has been freed independently, and will not be 792 * reused since sys_swapoff() already disabled 793 * allocation from here, or alloc_page() failed. 794 */ 795 if (!*swap_map) 796 continue; 797 retval = -ENOMEM; 798 break; 799 } 800 801 /* 802 * Don't hold on to start_mm if it looks like exiting. 803 */ 804 if (atomic_read(&start_mm->mm_users) == 1) { 805 mmput(start_mm); 806 start_mm = &init_mm; 807 atomic_inc(&init_mm.mm_users); 808 } 809 810 /* 811 * Wait for and lock page. When do_swap_page races with 812 * try_to_unuse, do_swap_page can handle the fault much 813 * faster than try_to_unuse can locate the entry. This 814 * apparently redundant "wait_on_page_locked" lets try_to_unuse 815 * defer to do_swap_page in such a case - in some tests, 816 * do_swap_page and try_to_unuse repeatedly compete. 817 */ 818 wait_on_page_locked(page); 819 wait_on_page_writeback(page); 820 lock_page(page); 821 wait_on_page_writeback(page); 822 823 /* 824 * Remove all references to entry. 825 * Whenever we reach init_mm, there's no address space 826 * to search, but use it as a reminder to search shmem. 827 */ 828 shmem = 0; 829 swcount = *swap_map; 830 if (swcount > 1) { 831 if (start_mm == &init_mm) 832 shmem = shmem_unuse(entry, page); 833 else 834 retval = unuse_mm(start_mm, entry, page); 835 } 836 if (*swap_map > 1) { 837 int set_start_mm = (*swap_map >= swcount); 838 struct list_head *p = &start_mm->mmlist; 839 struct mm_struct *new_start_mm = start_mm; 840 struct mm_struct *prev_mm = start_mm; 841 struct mm_struct *mm; 842 843 atomic_inc(&new_start_mm->mm_users); 844 atomic_inc(&prev_mm->mm_users); 845 spin_lock(&mmlist_lock); 846 while (*swap_map > 1 && !retval && !shmem && 847 (p = p->next) != &start_mm->mmlist) { 848 mm = list_entry(p, struct mm_struct, mmlist); 849 if (!atomic_inc_not_zero(&mm->mm_users)) 850 continue; 851 spin_unlock(&mmlist_lock); 852 mmput(prev_mm); 853 prev_mm = mm; 854 855 cond_resched(); 856 857 swcount = *swap_map; 858 if (swcount <= 1) 859 ; 860 else if (mm == &init_mm) { 861 set_start_mm = 1; 862 shmem = shmem_unuse(entry, page); 863 } else 864 retval = unuse_mm(mm, entry, page); 865 if (set_start_mm && *swap_map < swcount) { 866 mmput(new_start_mm); 867 atomic_inc(&mm->mm_users); 868 new_start_mm = mm; 869 set_start_mm = 0; 870 } 871 spin_lock(&mmlist_lock); 872 } 873 spin_unlock(&mmlist_lock); 874 mmput(prev_mm); 875 mmput(start_mm); 876 start_mm = new_start_mm; 877 } 878 if (shmem) { 879 /* page has already been unlocked and released */ 880 if (shmem > 0) 881 continue; 882 retval = shmem; 883 break; 884 } 885 if (retval) { 886 unlock_page(page); 887 page_cache_release(page); 888 break; 889 } 890 891 /* 892 * How could swap count reach 0x7fff when the maximum 893 * pid is 0x7fff, and there's no way to repeat a swap 894 * page within an mm (except in shmem, where it's the 895 * shared object which takes the reference count)? 896 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4. 897 * 898 * If that's wrong, then we should worry more about 899 * exit_mmap() and do_munmap() cases described above: 900 * we might be resetting SWAP_MAP_MAX too early here. 901 * We know "Undead"s can happen, they're okay, so don't 902 * report them; but do report if we reset SWAP_MAP_MAX. 903 */ 904 if (*swap_map == SWAP_MAP_MAX) { 905 spin_lock(&swap_lock); 906 *swap_map = 1; 907 spin_unlock(&swap_lock); 908 reset_overflow = 1; 909 } 910 911 /* 912 * If a reference remains (rare), we would like to leave 913 * the page in the swap cache; but try_to_unmap could 914 * then re-duplicate the entry once we drop page lock, 915 * so we might loop indefinitely; also, that page could 916 * not be swapped out to other storage meanwhile. So: 917 * delete from cache even if there's another reference, 918 * after ensuring that the data has been saved to disk - 919 * since if the reference remains (rarer), it will be 920 * read from disk into another page. Splitting into two 921 * pages would be incorrect if swap supported "shared 922 * private" pages, but they are handled by tmpfs files. 923 */ 924 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) { 925 struct writeback_control wbc = { 926 .sync_mode = WB_SYNC_NONE, 927 }; 928 929 swap_writepage(page, &wbc); 930 lock_page(page); 931 wait_on_page_writeback(page); 932 } 933 if (PageSwapCache(page)) 934 delete_from_swap_cache(page); 935 936 /* 937 * So we could skip searching mms once swap count went 938 * to 1, we did not mark any present ptes as dirty: must 939 * mark page dirty so shrink_page_list will preserve it. 940 */ 941 SetPageDirty(page); 942 unlock_page(page); 943 page_cache_release(page); 944 945 /* 946 * Make sure that we aren't completely killing 947 * interactive performance. 948 */ 949 cond_resched(); 950 } 951 952 mmput(start_mm); 953 if (reset_overflow) { 954 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n"); 955 swap_overflow = 0; 956 } 957 return retval; 958 } 959 960 /* 961 * After a successful try_to_unuse, if no swap is now in use, we know 962 * we can empty the mmlist. swap_lock must be held on entry and exit. 963 * Note that mmlist_lock nests inside swap_lock, and an mm must be 964 * added to the mmlist just after page_duplicate - before would be racy. 965 */ 966 static void drain_mmlist(void) 967 { 968 struct list_head *p, *next; 969 unsigned int i; 970 971 for (i = 0; i < nr_swapfiles; i++) 972 if (swap_info[i].inuse_pages) 973 return; 974 spin_lock(&mmlist_lock); 975 list_for_each_safe(p, next, &init_mm.mmlist) 976 list_del_init(p); 977 spin_unlock(&mmlist_lock); 978 } 979 980 /* 981 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 982 * corresponds to page offset `offset'. 983 */ 984 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset) 985 { 986 struct swap_extent *se = sis->curr_swap_extent; 987 struct swap_extent *start_se = se; 988 989 for ( ; ; ) { 990 struct list_head *lh; 991 992 if (se->start_page <= offset && 993 offset < (se->start_page + se->nr_pages)) { 994 return se->start_block + (offset - se->start_page); 995 } 996 lh = se->list.next; 997 if (lh == &sis->extent_list) 998 lh = lh->next; 999 se = list_entry(lh, struct swap_extent, list); 1000 sis->curr_swap_extent = se; 1001 BUG_ON(se == start_se); /* It *must* be present */ 1002 } 1003 } 1004 1005 #ifdef CONFIG_HIBERNATION 1006 /* 1007 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1008 * corresponding to given index in swap_info (swap type). 1009 */ 1010 sector_t swapdev_block(int swap_type, pgoff_t offset) 1011 { 1012 struct swap_info_struct *sis; 1013 1014 if (swap_type >= nr_swapfiles) 1015 return 0; 1016 1017 sis = swap_info + swap_type; 1018 return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0; 1019 } 1020 #endif /* CONFIG_HIBERNATION */ 1021 1022 /* 1023 * Free all of a swapdev's extent information 1024 */ 1025 static void destroy_swap_extents(struct swap_info_struct *sis) 1026 { 1027 while (!list_empty(&sis->extent_list)) { 1028 struct swap_extent *se; 1029 1030 se = list_entry(sis->extent_list.next, 1031 struct swap_extent, list); 1032 list_del(&se->list); 1033 kfree(se); 1034 } 1035 } 1036 1037 /* 1038 * Add a block range (and the corresponding page range) into this swapdev's 1039 * extent list. The extent list is kept sorted in page order. 1040 * 1041 * This function rather assumes that it is called in ascending page order. 1042 */ 1043 static int 1044 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 1045 unsigned long nr_pages, sector_t start_block) 1046 { 1047 struct swap_extent *se; 1048 struct swap_extent *new_se; 1049 struct list_head *lh; 1050 1051 lh = sis->extent_list.prev; /* The highest page extent */ 1052 if (lh != &sis->extent_list) { 1053 se = list_entry(lh, struct swap_extent, list); 1054 BUG_ON(se->start_page + se->nr_pages != start_page); 1055 if (se->start_block + se->nr_pages == start_block) { 1056 /* Merge it */ 1057 se->nr_pages += nr_pages; 1058 return 0; 1059 } 1060 } 1061 1062 /* 1063 * No merge. Insert a new extent, preserving ordering. 1064 */ 1065 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 1066 if (new_se == NULL) 1067 return -ENOMEM; 1068 new_se->start_page = start_page; 1069 new_se->nr_pages = nr_pages; 1070 new_se->start_block = start_block; 1071 1072 list_add_tail(&new_se->list, &sis->extent_list); 1073 return 1; 1074 } 1075 1076 /* 1077 * A `swap extent' is a simple thing which maps a contiguous range of pages 1078 * onto a contiguous range of disk blocks. An ordered list of swap extents 1079 * is built at swapon time and is then used at swap_writepage/swap_readpage 1080 * time for locating where on disk a page belongs. 1081 * 1082 * If the swapfile is an S_ISBLK block device, a single extent is installed. 1083 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 1084 * swap files identically. 1085 * 1086 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 1087 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 1088 * swapfiles are handled *identically* after swapon time. 1089 * 1090 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 1091 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 1092 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 1093 * requirements, they are simply tossed out - we will never use those blocks 1094 * for swapping. 1095 * 1096 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 1097 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 1098 * which will scribble on the fs. 1099 * 1100 * The amount of disk space which a single swap extent represents varies. 1101 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 1102 * extents in the list. To avoid much list walking, we cache the previous 1103 * search location in `curr_swap_extent', and start new searches from there. 1104 * This is extremely effective. The average number of iterations in 1105 * map_swap_page() has been measured at about 0.3 per page. - akpm. 1106 */ 1107 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 1108 { 1109 struct inode *inode; 1110 unsigned blocks_per_page; 1111 unsigned long page_no; 1112 unsigned blkbits; 1113 sector_t probe_block; 1114 sector_t last_block; 1115 sector_t lowest_block = -1; 1116 sector_t highest_block = 0; 1117 int nr_extents = 0; 1118 int ret; 1119 1120 inode = sis->swap_file->f_mapping->host; 1121 if (S_ISBLK(inode->i_mode)) { 1122 ret = add_swap_extent(sis, 0, sis->max, 0); 1123 *span = sis->pages; 1124 goto done; 1125 } 1126 1127 blkbits = inode->i_blkbits; 1128 blocks_per_page = PAGE_SIZE >> blkbits; 1129 1130 /* 1131 * Map all the blocks into the extent list. This code doesn't try 1132 * to be very smart. 1133 */ 1134 probe_block = 0; 1135 page_no = 0; 1136 last_block = i_size_read(inode) >> blkbits; 1137 while ((probe_block + blocks_per_page) <= last_block && 1138 page_no < sis->max) { 1139 unsigned block_in_page; 1140 sector_t first_block; 1141 1142 first_block = bmap(inode, probe_block); 1143 if (first_block == 0) 1144 goto bad_bmap; 1145 1146 /* 1147 * It must be PAGE_SIZE aligned on-disk 1148 */ 1149 if (first_block & (blocks_per_page - 1)) { 1150 probe_block++; 1151 goto reprobe; 1152 } 1153 1154 for (block_in_page = 1; block_in_page < blocks_per_page; 1155 block_in_page++) { 1156 sector_t block; 1157 1158 block = bmap(inode, probe_block + block_in_page); 1159 if (block == 0) 1160 goto bad_bmap; 1161 if (block != first_block + block_in_page) { 1162 /* Discontiguity */ 1163 probe_block++; 1164 goto reprobe; 1165 } 1166 } 1167 1168 first_block >>= (PAGE_SHIFT - blkbits); 1169 if (page_no) { /* exclude the header page */ 1170 if (first_block < lowest_block) 1171 lowest_block = first_block; 1172 if (first_block > highest_block) 1173 highest_block = first_block; 1174 } 1175 1176 /* 1177 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 1178 */ 1179 ret = add_swap_extent(sis, page_no, 1, first_block); 1180 if (ret < 0) 1181 goto out; 1182 nr_extents += ret; 1183 page_no++; 1184 probe_block += blocks_per_page; 1185 reprobe: 1186 continue; 1187 } 1188 ret = nr_extents; 1189 *span = 1 + highest_block - lowest_block; 1190 if (page_no == 0) 1191 page_no = 1; /* force Empty message */ 1192 sis->max = page_no; 1193 sis->pages = page_no - 1; 1194 sis->highest_bit = page_no - 1; 1195 done: 1196 sis->curr_swap_extent = list_entry(sis->extent_list.prev, 1197 struct swap_extent, list); 1198 goto out; 1199 bad_bmap: 1200 printk(KERN_ERR "swapon: swapfile has holes\n"); 1201 ret = -EINVAL; 1202 out: 1203 return ret; 1204 } 1205 1206 #if 0 /* We don't need this yet */ 1207 #include <linux/backing-dev.h> 1208 int page_queue_congested(struct page *page) 1209 { 1210 struct backing_dev_info *bdi; 1211 1212 BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */ 1213 1214 if (PageSwapCache(page)) { 1215 swp_entry_t entry = { .val = page_private(page) }; 1216 struct swap_info_struct *sis; 1217 1218 sis = get_swap_info_struct(swp_type(entry)); 1219 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info; 1220 } else 1221 bdi = page->mapping->backing_dev_info; 1222 return bdi_write_congested(bdi); 1223 } 1224 #endif 1225 1226 asmlinkage long sys_swapoff(const char __user * specialfile) 1227 { 1228 struct swap_info_struct * p = NULL; 1229 unsigned short *swap_map; 1230 struct file *swap_file, *victim; 1231 struct address_space *mapping; 1232 struct inode *inode; 1233 char * pathname; 1234 int i, type, prev; 1235 int err; 1236 1237 if (!capable(CAP_SYS_ADMIN)) 1238 return -EPERM; 1239 1240 pathname = getname(specialfile); 1241 err = PTR_ERR(pathname); 1242 if (IS_ERR(pathname)) 1243 goto out; 1244 1245 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0); 1246 putname(pathname); 1247 err = PTR_ERR(victim); 1248 if (IS_ERR(victim)) 1249 goto out; 1250 1251 mapping = victim->f_mapping; 1252 prev = -1; 1253 spin_lock(&swap_lock); 1254 for (type = swap_list.head; type >= 0; type = swap_info[type].next) { 1255 p = swap_info + type; 1256 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) { 1257 if (p->swap_file->f_mapping == mapping) 1258 break; 1259 } 1260 prev = type; 1261 } 1262 if (type < 0) { 1263 err = -EINVAL; 1264 spin_unlock(&swap_lock); 1265 goto out_dput; 1266 } 1267 if (!security_vm_enough_memory(p->pages)) 1268 vm_unacct_memory(p->pages); 1269 else { 1270 err = -ENOMEM; 1271 spin_unlock(&swap_lock); 1272 goto out_dput; 1273 } 1274 if (prev < 0) { 1275 swap_list.head = p->next; 1276 } else { 1277 swap_info[prev].next = p->next; 1278 } 1279 if (type == swap_list.next) { 1280 /* just pick something that's safe... */ 1281 swap_list.next = swap_list.head; 1282 } 1283 if (p->prio < 0) { 1284 for (i = p->next; i >= 0; i = swap_info[i].next) 1285 swap_info[i].prio = p->prio--; 1286 least_priority++; 1287 } 1288 nr_swap_pages -= p->pages; 1289 total_swap_pages -= p->pages; 1290 p->flags &= ~SWP_WRITEOK; 1291 spin_unlock(&swap_lock); 1292 1293 current->flags |= PF_SWAPOFF; 1294 err = try_to_unuse(type); 1295 current->flags &= ~PF_SWAPOFF; 1296 1297 if (err) { 1298 /* re-insert swap space back into swap_list */ 1299 spin_lock(&swap_lock); 1300 if (p->prio < 0) 1301 p->prio = --least_priority; 1302 prev = -1; 1303 for (i = swap_list.head; i >= 0; i = swap_info[i].next) { 1304 if (p->prio >= swap_info[i].prio) 1305 break; 1306 prev = i; 1307 } 1308 p->next = i; 1309 if (prev < 0) 1310 swap_list.head = swap_list.next = p - swap_info; 1311 else 1312 swap_info[prev].next = p - swap_info; 1313 nr_swap_pages += p->pages; 1314 total_swap_pages += p->pages; 1315 p->flags |= SWP_WRITEOK; 1316 spin_unlock(&swap_lock); 1317 goto out_dput; 1318 } 1319 1320 /* wait for any unplug function to finish */ 1321 down_write(&swap_unplug_sem); 1322 up_write(&swap_unplug_sem); 1323 1324 destroy_swap_extents(p); 1325 mutex_lock(&swapon_mutex); 1326 spin_lock(&swap_lock); 1327 drain_mmlist(); 1328 1329 /* wait for anyone still in scan_swap_map */ 1330 p->highest_bit = 0; /* cuts scans short */ 1331 while (p->flags >= SWP_SCANNING) { 1332 spin_unlock(&swap_lock); 1333 schedule_timeout_uninterruptible(1); 1334 spin_lock(&swap_lock); 1335 } 1336 1337 swap_file = p->swap_file; 1338 p->swap_file = NULL; 1339 p->max = 0; 1340 swap_map = p->swap_map; 1341 p->swap_map = NULL; 1342 p->flags = 0; 1343 spin_unlock(&swap_lock); 1344 mutex_unlock(&swapon_mutex); 1345 vfree(swap_map); 1346 inode = mapping->host; 1347 if (S_ISBLK(inode->i_mode)) { 1348 struct block_device *bdev = I_BDEV(inode); 1349 set_blocksize(bdev, p->old_block_size); 1350 bd_release(bdev); 1351 } else { 1352 mutex_lock(&inode->i_mutex); 1353 inode->i_flags &= ~S_SWAPFILE; 1354 mutex_unlock(&inode->i_mutex); 1355 } 1356 filp_close(swap_file, NULL); 1357 err = 0; 1358 1359 out_dput: 1360 filp_close(victim, NULL); 1361 out: 1362 return err; 1363 } 1364 1365 #ifdef CONFIG_PROC_FS 1366 /* iterator */ 1367 static void *swap_start(struct seq_file *swap, loff_t *pos) 1368 { 1369 struct swap_info_struct *ptr = swap_info; 1370 int i; 1371 loff_t l = *pos; 1372 1373 mutex_lock(&swapon_mutex); 1374 1375 if (!l) 1376 return SEQ_START_TOKEN; 1377 1378 for (i = 0; i < nr_swapfiles; i++, ptr++) { 1379 if (!(ptr->flags & SWP_USED) || !ptr->swap_map) 1380 continue; 1381 if (!--l) 1382 return ptr; 1383 } 1384 1385 return NULL; 1386 } 1387 1388 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 1389 { 1390 struct swap_info_struct *ptr; 1391 struct swap_info_struct *endptr = swap_info + nr_swapfiles; 1392 1393 if (v == SEQ_START_TOKEN) 1394 ptr = swap_info; 1395 else { 1396 ptr = v; 1397 ptr++; 1398 } 1399 1400 for (; ptr < endptr; ptr++) { 1401 if (!(ptr->flags & SWP_USED) || !ptr->swap_map) 1402 continue; 1403 ++*pos; 1404 return ptr; 1405 } 1406 1407 return NULL; 1408 } 1409 1410 static void swap_stop(struct seq_file *swap, void *v) 1411 { 1412 mutex_unlock(&swapon_mutex); 1413 } 1414 1415 static int swap_show(struct seq_file *swap, void *v) 1416 { 1417 struct swap_info_struct *ptr = v; 1418 struct file *file; 1419 int len; 1420 1421 if (ptr == SEQ_START_TOKEN) { 1422 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 1423 return 0; 1424 } 1425 1426 file = ptr->swap_file; 1427 len = seq_path(swap, &file->f_path, " \t\n\\"); 1428 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 1429 len < 40 ? 40 - len : 1, " ", 1430 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ? 1431 "partition" : "file\t", 1432 ptr->pages << (PAGE_SHIFT - 10), 1433 ptr->inuse_pages << (PAGE_SHIFT - 10), 1434 ptr->prio); 1435 return 0; 1436 } 1437 1438 static const struct seq_operations swaps_op = { 1439 .start = swap_start, 1440 .next = swap_next, 1441 .stop = swap_stop, 1442 .show = swap_show 1443 }; 1444 1445 static int swaps_open(struct inode *inode, struct file *file) 1446 { 1447 return seq_open(file, &swaps_op); 1448 } 1449 1450 static const struct file_operations proc_swaps_operations = { 1451 .open = swaps_open, 1452 .read = seq_read, 1453 .llseek = seq_lseek, 1454 .release = seq_release, 1455 }; 1456 1457 static int __init procswaps_init(void) 1458 { 1459 proc_create("swaps", 0, NULL, &proc_swaps_operations); 1460 return 0; 1461 } 1462 __initcall(procswaps_init); 1463 #endif /* CONFIG_PROC_FS */ 1464 1465 /* 1466 * Written 01/25/92 by Simmule Turner, heavily changed by Linus. 1467 * 1468 * The swapon system call 1469 */ 1470 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) 1471 { 1472 struct swap_info_struct * p; 1473 char *name = NULL; 1474 struct block_device *bdev = NULL; 1475 struct file *swap_file = NULL; 1476 struct address_space *mapping; 1477 unsigned int type; 1478 int i, prev; 1479 int error; 1480 union swap_header *swap_header = NULL; 1481 int swap_header_version; 1482 unsigned int nr_good_pages = 0; 1483 int nr_extents = 0; 1484 sector_t span; 1485 unsigned long maxpages = 1; 1486 int swapfilesize; 1487 unsigned short *swap_map = NULL; 1488 struct page *page = NULL; 1489 struct inode *inode = NULL; 1490 int did_down = 0; 1491 1492 if (!capable(CAP_SYS_ADMIN)) 1493 return -EPERM; 1494 spin_lock(&swap_lock); 1495 p = swap_info; 1496 for (type = 0 ; type < nr_swapfiles ; type++,p++) 1497 if (!(p->flags & SWP_USED)) 1498 break; 1499 error = -EPERM; 1500 if (type >= MAX_SWAPFILES) { 1501 spin_unlock(&swap_lock); 1502 goto out; 1503 } 1504 if (type >= nr_swapfiles) 1505 nr_swapfiles = type+1; 1506 memset(p, 0, sizeof(*p)); 1507 INIT_LIST_HEAD(&p->extent_list); 1508 p->flags = SWP_USED; 1509 p->next = -1; 1510 spin_unlock(&swap_lock); 1511 name = getname(specialfile); 1512 error = PTR_ERR(name); 1513 if (IS_ERR(name)) { 1514 name = NULL; 1515 goto bad_swap_2; 1516 } 1517 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0); 1518 error = PTR_ERR(swap_file); 1519 if (IS_ERR(swap_file)) { 1520 swap_file = NULL; 1521 goto bad_swap_2; 1522 } 1523 1524 p->swap_file = swap_file; 1525 mapping = swap_file->f_mapping; 1526 inode = mapping->host; 1527 1528 error = -EBUSY; 1529 for (i = 0; i < nr_swapfiles; i++) { 1530 struct swap_info_struct *q = &swap_info[i]; 1531 1532 if (i == type || !q->swap_file) 1533 continue; 1534 if (mapping == q->swap_file->f_mapping) 1535 goto bad_swap; 1536 } 1537 1538 error = -EINVAL; 1539 if (S_ISBLK(inode->i_mode)) { 1540 bdev = I_BDEV(inode); 1541 error = bd_claim(bdev, sys_swapon); 1542 if (error < 0) { 1543 bdev = NULL; 1544 error = -EINVAL; 1545 goto bad_swap; 1546 } 1547 p->old_block_size = block_size(bdev); 1548 error = set_blocksize(bdev, PAGE_SIZE); 1549 if (error < 0) 1550 goto bad_swap; 1551 p->bdev = bdev; 1552 } else if (S_ISREG(inode->i_mode)) { 1553 p->bdev = inode->i_sb->s_bdev; 1554 mutex_lock(&inode->i_mutex); 1555 did_down = 1; 1556 if (IS_SWAPFILE(inode)) { 1557 error = -EBUSY; 1558 goto bad_swap; 1559 } 1560 } else { 1561 goto bad_swap; 1562 } 1563 1564 swapfilesize = i_size_read(inode) >> PAGE_SHIFT; 1565 1566 /* 1567 * Read the swap header. 1568 */ 1569 if (!mapping->a_ops->readpage) { 1570 error = -EINVAL; 1571 goto bad_swap; 1572 } 1573 page = read_mapping_page(mapping, 0, swap_file); 1574 if (IS_ERR(page)) { 1575 error = PTR_ERR(page); 1576 goto bad_swap; 1577 } 1578 kmap(page); 1579 swap_header = page_address(page); 1580 1581 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10)) 1582 swap_header_version = 1; 1583 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10)) 1584 swap_header_version = 2; 1585 else { 1586 printk(KERN_ERR "Unable to find swap-space signature\n"); 1587 error = -EINVAL; 1588 goto bad_swap; 1589 } 1590 1591 switch (swap_header_version) { 1592 case 1: 1593 printk(KERN_ERR "version 0 swap is no longer supported. " 1594 "Use mkswap -v1 %s\n", name); 1595 error = -EINVAL; 1596 goto bad_swap; 1597 case 2: 1598 /* swap partition endianess hack... */ 1599 if (swab32(swap_header->info.version) == 1) { 1600 swab32s(&swap_header->info.version); 1601 swab32s(&swap_header->info.last_page); 1602 swab32s(&swap_header->info.nr_badpages); 1603 for (i = 0; i < swap_header->info.nr_badpages; i++) 1604 swab32s(&swap_header->info.badpages[i]); 1605 } 1606 /* Check the swap header's sub-version and the size of 1607 the swap file and bad block lists */ 1608 if (swap_header->info.version != 1) { 1609 printk(KERN_WARNING 1610 "Unable to handle swap header version %d\n", 1611 swap_header->info.version); 1612 error = -EINVAL; 1613 goto bad_swap; 1614 } 1615 1616 p->lowest_bit = 1; 1617 p->cluster_next = 1; 1618 1619 /* 1620 * Find out how many pages are allowed for a single swap 1621 * device. There are two limiting factors: 1) the number of 1622 * bits for the swap offset in the swp_entry_t type and 1623 * 2) the number of bits in the a swap pte as defined by 1624 * the different architectures. In order to find the 1625 * largest possible bit mask a swap entry with swap type 0 1626 * and swap offset ~0UL is created, encoded to a swap pte, 1627 * decoded to a swp_entry_t again and finally the swap 1628 * offset is extracted. This will mask all the bits from 1629 * the initial ~0UL mask that can't be encoded in either 1630 * the swp_entry_t or the architecture definition of a 1631 * swap pte. 1632 */ 1633 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1; 1634 if (maxpages > swap_header->info.last_page) 1635 maxpages = swap_header->info.last_page; 1636 p->highest_bit = maxpages - 1; 1637 1638 error = -EINVAL; 1639 if (!maxpages) 1640 goto bad_swap; 1641 if (swapfilesize && maxpages > swapfilesize) { 1642 printk(KERN_WARNING 1643 "Swap area shorter than signature indicates\n"); 1644 goto bad_swap; 1645 } 1646 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 1647 goto bad_swap; 1648 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 1649 goto bad_swap; 1650 1651 /* OK, set up the swap map and apply the bad block list */ 1652 swap_map = vmalloc(maxpages * sizeof(short)); 1653 if (!swap_map) { 1654 error = -ENOMEM; 1655 goto bad_swap; 1656 } 1657 1658 error = 0; 1659 memset(swap_map, 0, maxpages * sizeof(short)); 1660 for (i = 0; i < swap_header->info.nr_badpages; i++) { 1661 int page_nr = swap_header->info.badpages[i]; 1662 if (page_nr <= 0 || page_nr >= swap_header->info.last_page) 1663 error = -EINVAL; 1664 else 1665 swap_map[page_nr] = SWAP_MAP_BAD; 1666 } 1667 nr_good_pages = swap_header->info.last_page - 1668 swap_header->info.nr_badpages - 1669 1 /* header page */; 1670 if (error) 1671 goto bad_swap; 1672 } 1673 1674 if (nr_good_pages) { 1675 swap_map[0] = SWAP_MAP_BAD; 1676 p->max = maxpages; 1677 p->pages = nr_good_pages; 1678 nr_extents = setup_swap_extents(p, &span); 1679 if (nr_extents < 0) { 1680 error = nr_extents; 1681 goto bad_swap; 1682 } 1683 nr_good_pages = p->pages; 1684 } 1685 if (!nr_good_pages) { 1686 printk(KERN_WARNING "Empty swap-file\n"); 1687 error = -EINVAL; 1688 goto bad_swap; 1689 } 1690 1691 mutex_lock(&swapon_mutex); 1692 spin_lock(&swap_lock); 1693 if (swap_flags & SWAP_FLAG_PREFER) 1694 p->prio = 1695 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 1696 else 1697 p->prio = --least_priority; 1698 p->swap_map = swap_map; 1699 p->flags = SWP_ACTIVE; 1700 nr_swap_pages += nr_good_pages; 1701 total_swap_pages += nr_good_pages; 1702 1703 printk(KERN_INFO "Adding %uk swap on %s. " 1704 "Priority:%d extents:%d across:%lluk\n", 1705 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio, 1706 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10)); 1707 1708 /* insert swap space into swap_list: */ 1709 prev = -1; 1710 for (i = swap_list.head; i >= 0; i = swap_info[i].next) { 1711 if (p->prio >= swap_info[i].prio) { 1712 break; 1713 } 1714 prev = i; 1715 } 1716 p->next = i; 1717 if (prev < 0) { 1718 swap_list.head = swap_list.next = p - swap_info; 1719 } else { 1720 swap_info[prev].next = p - swap_info; 1721 } 1722 spin_unlock(&swap_lock); 1723 mutex_unlock(&swapon_mutex); 1724 error = 0; 1725 goto out; 1726 bad_swap: 1727 if (bdev) { 1728 set_blocksize(bdev, p->old_block_size); 1729 bd_release(bdev); 1730 } 1731 destroy_swap_extents(p); 1732 bad_swap_2: 1733 spin_lock(&swap_lock); 1734 p->swap_file = NULL; 1735 p->flags = 0; 1736 spin_unlock(&swap_lock); 1737 vfree(swap_map); 1738 if (swap_file) 1739 filp_close(swap_file, NULL); 1740 out: 1741 if (page && !IS_ERR(page)) { 1742 kunmap(page); 1743 page_cache_release(page); 1744 } 1745 if (name) 1746 putname(name); 1747 if (did_down) { 1748 if (!error) 1749 inode->i_flags |= S_SWAPFILE; 1750 mutex_unlock(&inode->i_mutex); 1751 } 1752 return error; 1753 } 1754 1755 void si_swapinfo(struct sysinfo *val) 1756 { 1757 unsigned int i; 1758 unsigned long nr_to_be_unused = 0; 1759 1760 spin_lock(&swap_lock); 1761 for (i = 0; i < nr_swapfiles; i++) { 1762 if (!(swap_info[i].flags & SWP_USED) || 1763 (swap_info[i].flags & SWP_WRITEOK)) 1764 continue; 1765 nr_to_be_unused += swap_info[i].inuse_pages; 1766 } 1767 val->freeswap = nr_swap_pages + nr_to_be_unused; 1768 val->totalswap = total_swap_pages + nr_to_be_unused; 1769 spin_unlock(&swap_lock); 1770 } 1771 1772 /* 1773 * Verify that a swap entry is valid and increment its swap map count. 1774 * 1775 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as 1776 * "permanent", but will be reclaimed by the next swapoff. 1777 */ 1778 int swap_duplicate(swp_entry_t entry) 1779 { 1780 struct swap_info_struct * p; 1781 unsigned long offset, type; 1782 int result = 0; 1783 1784 if (is_migration_entry(entry)) 1785 return 1; 1786 1787 type = swp_type(entry); 1788 if (type >= nr_swapfiles) 1789 goto bad_file; 1790 p = type + swap_info; 1791 offset = swp_offset(entry); 1792 1793 spin_lock(&swap_lock); 1794 if (offset < p->max && p->swap_map[offset]) { 1795 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) { 1796 p->swap_map[offset]++; 1797 result = 1; 1798 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) { 1799 if (swap_overflow++ < 5) 1800 printk(KERN_WARNING "swap_dup: swap entry overflow\n"); 1801 p->swap_map[offset] = SWAP_MAP_MAX; 1802 result = 1; 1803 } 1804 } 1805 spin_unlock(&swap_lock); 1806 out: 1807 return result; 1808 1809 bad_file: 1810 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); 1811 goto out; 1812 } 1813 1814 struct swap_info_struct * 1815 get_swap_info_struct(unsigned type) 1816 { 1817 return &swap_info[type]; 1818 } 1819 1820 /* 1821 * swap_lock prevents swap_map being freed. Don't grab an extra 1822 * reference on the swaphandle, it doesn't matter if it becomes unused. 1823 */ 1824 int valid_swaphandles(swp_entry_t entry, unsigned long *offset) 1825 { 1826 struct swap_info_struct *si; 1827 int our_page_cluster = page_cluster; 1828 pgoff_t target, toff; 1829 pgoff_t base, end; 1830 int nr_pages = 0; 1831 1832 if (!our_page_cluster) /* no readahead */ 1833 return 0; 1834 1835 si = &swap_info[swp_type(entry)]; 1836 target = swp_offset(entry); 1837 base = (target >> our_page_cluster) << our_page_cluster; 1838 end = base + (1 << our_page_cluster); 1839 if (!base) /* first page is swap header */ 1840 base++; 1841 1842 spin_lock(&swap_lock); 1843 if (end > si->max) /* don't go beyond end of map */ 1844 end = si->max; 1845 1846 /* Count contiguous allocated slots above our target */ 1847 for (toff = target; ++toff < end; nr_pages++) { 1848 /* Don't read in free or bad pages */ 1849 if (!si->swap_map[toff]) 1850 break; 1851 if (si->swap_map[toff] == SWAP_MAP_BAD) 1852 break; 1853 } 1854 /* Count contiguous allocated slots below our target */ 1855 for (toff = target; --toff >= base; nr_pages++) { 1856 /* Don't read in free or bad pages */ 1857 if (!si->swap_map[toff]) 1858 break; 1859 if (si->swap_map[toff] == SWAP_MAP_BAD) 1860 break; 1861 } 1862 spin_unlock(&swap_lock); 1863 1864 /* 1865 * Indicate starting offset, and return number of pages to get: 1866 * if only 1, say 0, since there's then no readahead to be done. 1867 */ 1868 *offset = ++toff; 1869 return nr_pages? ++nr_pages: 0; 1870 } 1871