xref: /linux/mm/swapfile.c (revision 8dcf44fcad5ef5c1ff915628255c19cbe91f2588)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 #include <linux/suspend.h>
44 #include <linux/zswap.h>
45 #include <linux/plist.h>
46 
47 #include <asm/tlbflush.h>
48 #include <linux/swapops.h>
49 #include <linux/swap_cgroup.h>
50 #include "internal.h"
51 #include "swap.h"
52 
53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
54 				 unsigned char);
55 static void free_swap_count_continuations(struct swap_info_struct *);
56 static void swap_entry_range_free(struct swap_info_struct *si, swp_entry_t entry,
57 				  unsigned int nr_pages);
58 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
59 			     unsigned int nr_entries);
60 static bool folio_swapcache_freeable(struct folio *folio);
61 static struct swap_cluster_info *lock_cluster_or_swap_info(
62 		struct swap_info_struct *si, unsigned long offset);
63 static void unlock_cluster_or_swap_info(struct swap_info_struct *si,
64 					struct swap_cluster_info *ci);
65 
66 static DEFINE_SPINLOCK(swap_lock);
67 static unsigned int nr_swapfiles;
68 atomic_long_t nr_swap_pages;
69 /*
70  * Some modules use swappable objects and may try to swap them out under
71  * memory pressure (via the shrinker). Before doing so, they may wish to
72  * check to see if any swap space is available.
73  */
74 EXPORT_SYMBOL_GPL(nr_swap_pages);
75 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
76 long total_swap_pages;
77 static int least_priority = -1;
78 unsigned long swapfile_maximum_size;
79 #ifdef CONFIG_MIGRATION
80 bool swap_migration_ad_supported;
81 #endif	/* CONFIG_MIGRATION */
82 
83 static const char Bad_file[] = "Bad swap file entry ";
84 static const char Unused_file[] = "Unused swap file entry ";
85 static const char Bad_offset[] = "Bad swap offset entry ";
86 static const char Unused_offset[] = "Unused swap offset entry ";
87 
88 /*
89  * all active swap_info_structs
90  * protected with swap_lock, and ordered by priority.
91  */
92 static PLIST_HEAD(swap_active_head);
93 
94 /*
95  * all available (active, not full) swap_info_structs
96  * protected with swap_avail_lock, ordered by priority.
97  * This is used by folio_alloc_swap() instead of swap_active_head
98  * because swap_active_head includes all swap_info_structs,
99  * but folio_alloc_swap() doesn't need to look at full ones.
100  * This uses its own lock instead of swap_lock because when a
101  * swap_info_struct changes between not-full/full, it needs to
102  * add/remove itself to/from this list, but the swap_info_struct->lock
103  * is held and the locking order requires swap_lock to be taken
104  * before any swap_info_struct->lock.
105  */
106 static struct plist_head *swap_avail_heads;
107 static DEFINE_SPINLOCK(swap_avail_lock);
108 
109 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
110 
111 static DEFINE_MUTEX(swapon_mutex);
112 
113 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
114 /* Activity counter to indicate that a swapon or swapoff has occurred */
115 static atomic_t proc_poll_event = ATOMIC_INIT(0);
116 
117 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
118 
119 static struct swap_info_struct *swap_type_to_swap_info(int type)
120 {
121 	if (type >= MAX_SWAPFILES)
122 		return NULL;
123 
124 	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
125 }
126 
127 static inline unsigned char swap_count(unsigned char ent)
128 {
129 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
130 }
131 
132 /* Reclaim the swap entry anyway if possible */
133 #define TTRS_ANYWAY		0x1
134 /*
135  * Reclaim the swap entry if there are no more mappings of the
136  * corresponding page
137  */
138 #define TTRS_UNMAPPED		0x2
139 /* Reclaim the swap entry if swap is getting full */
140 #define TTRS_FULL		0x4
141 /* Reclaim directly, bypass the slot cache and don't touch device lock */
142 #define TTRS_DIRECT		0x8
143 
144 static bool swap_is_has_cache(struct swap_info_struct *si,
145 			      unsigned long offset, int nr_pages)
146 {
147 	unsigned char *map = si->swap_map + offset;
148 	unsigned char *map_end = map + nr_pages;
149 
150 	do {
151 		VM_BUG_ON(!(*map & SWAP_HAS_CACHE));
152 		if (*map != SWAP_HAS_CACHE)
153 			return false;
154 	} while (++map < map_end);
155 
156 	return true;
157 }
158 
159 static bool swap_is_last_map(struct swap_info_struct *si,
160 		unsigned long offset, int nr_pages, bool *has_cache)
161 {
162 	unsigned char *map = si->swap_map + offset;
163 	unsigned char *map_end = map + nr_pages;
164 	unsigned char count = *map;
165 
166 	if (swap_count(count) != 1)
167 		return false;
168 
169 	while (++map < map_end) {
170 		if (*map != count)
171 			return false;
172 	}
173 
174 	*has_cache = !!(count & SWAP_HAS_CACHE);
175 	return true;
176 }
177 
178 /*
179  * returns number of pages in the folio that backs the swap entry. If positive,
180  * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
181  * folio was associated with the swap entry.
182  */
183 static int __try_to_reclaim_swap(struct swap_info_struct *si,
184 				 unsigned long offset, unsigned long flags)
185 {
186 	swp_entry_t entry = swp_entry(si->type, offset);
187 	struct address_space *address_space = swap_address_space(entry);
188 	struct swap_cluster_info *ci;
189 	struct folio *folio;
190 	int ret, nr_pages;
191 	bool need_reclaim;
192 
193 	folio = filemap_get_folio(address_space, swap_cache_index(entry));
194 	if (IS_ERR(folio))
195 		return 0;
196 
197 	nr_pages = folio_nr_pages(folio);
198 	ret = -nr_pages;
199 
200 	/*
201 	 * When this function is called from scan_swap_map_slots() and it's
202 	 * called by vmscan.c at reclaiming folios. So we hold a folio lock
203 	 * here. We have to use trylock for avoiding deadlock. This is a special
204 	 * case and you should use folio_free_swap() with explicit folio_lock()
205 	 * in usual operations.
206 	 */
207 	if (!folio_trylock(folio))
208 		goto out;
209 
210 	/* offset could point to the middle of a large folio */
211 	entry = folio->swap;
212 	offset = swp_offset(entry);
213 
214 	need_reclaim = ((flags & TTRS_ANYWAY) ||
215 			((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
216 			((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)));
217 	if (!need_reclaim || !folio_swapcache_freeable(folio))
218 		goto out_unlock;
219 
220 	/*
221 	 * It's safe to delete the folio from swap cache only if the folio's
222 	 * swap_map is HAS_CACHE only, which means the slots have no page table
223 	 * reference or pending writeback, and can't be allocated to others.
224 	 */
225 	ci = lock_cluster_or_swap_info(si, offset);
226 	need_reclaim = swap_is_has_cache(si, offset, nr_pages);
227 	unlock_cluster_or_swap_info(si, ci);
228 	if (!need_reclaim)
229 		goto out_unlock;
230 
231 	if (!(flags & TTRS_DIRECT)) {
232 		/* Free through slot cache */
233 		delete_from_swap_cache(folio);
234 		folio_set_dirty(folio);
235 		ret = nr_pages;
236 		goto out_unlock;
237 	}
238 
239 	xa_lock_irq(&address_space->i_pages);
240 	__delete_from_swap_cache(folio, entry, NULL);
241 	xa_unlock_irq(&address_space->i_pages);
242 	folio_ref_sub(folio, nr_pages);
243 	folio_set_dirty(folio);
244 
245 	spin_lock(&si->lock);
246 	/* Only sinple page folio can be backed by zswap */
247 	if (nr_pages == 1)
248 		zswap_invalidate(entry);
249 	swap_entry_range_free(si, entry, nr_pages);
250 	spin_unlock(&si->lock);
251 	ret = nr_pages;
252 out_unlock:
253 	folio_unlock(folio);
254 out:
255 	folio_put(folio);
256 	return ret;
257 }
258 
259 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
260 {
261 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
262 	return rb_entry(rb, struct swap_extent, rb_node);
263 }
264 
265 static inline struct swap_extent *next_se(struct swap_extent *se)
266 {
267 	struct rb_node *rb = rb_next(&se->rb_node);
268 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
269 }
270 
271 /*
272  * swapon tell device that all the old swap contents can be discarded,
273  * to allow the swap device to optimize its wear-levelling.
274  */
275 static int discard_swap(struct swap_info_struct *si)
276 {
277 	struct swap_extent *se;
278 	sector_t start_block;
279 	sector_t nr_blocks;
280 	int err = 0;
281 
282 	/* Do not discard the swap header page! */
283 	se = first_se(si);
284 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
285 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
286 	if (nr_blocks) {
287 		err = blkdev_issue_discard(si->bdev, start_block,
288 				nr_blocks, GFP_KERNEL);
289 		if (err)
290 			return err;
291 		cond_resched();
292 	}
293 
294 	for (se = next_se(se); se; se = next_se(se)) {
295 		start_block = se->start_block << (PAGE_SHIFT - 9);
296 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
297 
298 		err = blkdev_issue_discard(si->bdev, start_block,
299 				nr_blocks, GFP_KERNEL);
300 		if (err)
301 			break;
302 
303 		cond_resched();
304 	}
305 	return err;		/* That will often be -EOPNOTSUPP */
306 }
307 
308 static struct swap_extent *
309 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
310 {
311 	struct swap_extent *se;
312 	struct rb_node *rb;
313 
314 	rb = sis->swap_extent_root.rb_node;
315 	while (rb) {
316 		se = rb_entry(rb, struct swap_extent, rb_node);
317 		if (offset < se->start_page)
318 			rb = rb->rb_left;
319 		else if (offset >= se->start_page + se->nr_pages)
320 			rb = rb->rb_right;
321 		else
322 			return se;
323 	}
324 	/* It *must* be present */
325 	BUG();
326 }
327 
328 sector_t swap_folio_sector(struct folio *folio)
329 {
330 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
331 	struct swap_extent *se;
332 	sector_t sector;
333 	pgoff_t offset;
334 
335 	offset = swp_offset(folio->swap);
336 	se = offset_to_swap_extent(sis, offset);
337 	sector = se->start_block + (offset - se->start_page);
338 	return sector << (PAGE_SHIFT - 9);
339 }
340 
341 /*
342  * swap allocation tell device that a cluster of swap can now be discarded,
343  * to allow the swap device to optimize its wear-levelling.
344  */
345 static void discard_swap_cluster(struct swap_info_struct *si,
346 				 pgoff_t start_page, pgoff_t nr_pages)
347 {
348 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
349 
350 	while (nr_pages) {
351 		pgoff_t offset = start_page - se->start_page;
352 		sector_t start_block = se->start_block + offset;
353 		sector_t nr_blocks = se->nr_pages - offset;
354 
355 		if (nr_blocks > nr_pages)
356 			nr_blocks = nr_pages;
357 		start_page += nr_blocks;
358 		nr_pages -= nr_blocks;
359 
360 		start_block <<= PAGE_SHIFT - 9;
361 		nr_blocks <<= PAGE_SHIFT - 9;
362 		if (blkdev_issue_discard(si->bdev, start_block,
363 					nr_blocks, GFP_NOIO))
364 			break;
365 
366 		se = next_se(se);
367 	}
368 }
369 
370 #ifdef CONFIG_THP_SWAP
371 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
372 
373 #define swap_entry_order(order)	(order)
374 #else
375 #define SWAPFILE_CLUSTER	256
376 
377 /*
378  * Define swap_entry_order() as constant to let compiler to optimize
379  * out some code if !CONFIG_THP_SWAP
380  */
381 #define swap_entry_order(order)	0
382 #endif
383 #define LATENCY_LIMIT		256
384 
385 static inline bool cluster_is_free(struct swap_cluster_info *info)
386 {
387 	return info->flags & CLUSTER_FLAG_FREE;
388 }
389 
390 static inline unsigned int cluster_index(struct swap_info_struct *si,
391 					 struct swap_cluster_info *ci)
392 {
393 	return ci - si->cluster_info;
394 }
395 
396 static inline unsigned int cluster_offset(struct swap_info_struct *si,
397 					  struct swap_cluster_info *ci)
398 {
399 	return cluster_index(si, ci) * SWAPFILE_CLUSTER;
400 }
401 
402 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
403 						     unsigned long offset)
404 {
405 	struct swap_cluster_info *ci;
406 
407 	ci = si->cluster_info;
408 	if (ci) {
409 		ci += offset / SWAPFILE_CLUSTER;
410 		spin_lock(&ci->lock);
411 	}
412 	return ci;
413 }
414 
415 static inline void unlock_cluster(struct swap_cluster_info *ci)
416 {
417 	if (ci)
418 		spin_unlock(&ci->lock);
419 }
420 
421 /*
422  * Determine the locking method in use for this device.  Return
423  * swap_cluster_info if SSD-style cluster-based locking is in place.
424  */
425 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
426 		struct swap_info_struct *si, unsigned long offset)
427 {
428 	struct swap_cluster_info *ci;
429 
430 	/* Try to use fine-grained SSD-style locking if available: */
431 	ci = lock_cluster(si, offset);
432 	/* Otherwise, fall back to traditional, coarse locking: */
433 	if (!ci)
434 		spin_lock(&si->lock);
435 
436 	return ci;
437 }
438 
439 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
440 					       struct swap_cluster_info *ci)
441 {
442 	if (ci)
443 		unlock_cluster(ci);
444 	else
445 		spin_unlock(&si->lock);
446 }
447 
448 /* Add a cluster to discard list and schedule it to do discard */
449 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
450 		struct swap_cluster_info *ci)
451 {
452 	unsigned int idx = cluster_index(si, ci);
453 	/*
454 	 * If scan_swap_map_slots() can't find a free cluster, it will check
455 	 * si->swap_map directly. To make sure the discarding cluster isn't
456 	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
457 	 * It will be cleared after discard
458 	 */
459 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
460 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
461 
462 	VM_BUG_ON(ci->flags & CLUSTER_FLAG_FREE);
463 	list_move_tail(&ci->list, &si->discard_clusters);
464 	ci->flags = 0;
465 	schedule_work(&si->discard_work);
466 }
467 
468 static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
469 {
470 	lockdep_assert_held(&si->lock);
471 	lockdep_assert_held(&ci->lock);
472 
473 	if (ci->flags)
474 		list_move_tail(&ci->list, &si->free_clusters);
475 	else
476 		list_add_tail(&ci->list, &si->free_clusters);
477 	ci->flags = CLUSTER_FLAG_FREE;
478 	ci->order = 0;
479 }
480 
481 /*
482  * Doing discard actually. After a cluster discard is finished, the cluster
483  * will be added to free cluster list. caller should hold si->lock.
484 */
485 static void swap_do_scheduled_discard(struct swap_info_struct *si)
486 {
487 	struct swap_cluster_info *ci;
488 	unsigned int idx;
489 
490 	while (!list_empty(&si->discard_clusters)) {
491 		ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list);
492 		list_del(&ci->list);
493 		idx = cluster_index(si, ci);
494 		spin_unlock(&si->lock);
495 
496 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
497 				SWAPFILE_CLUSTER);
498 
499 		spin_lock(&si->lock);
500 		spin_lock(&ci->lock);
501 		__free_cluster(si, ci);
502 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
503 				0, SWAPFILE_CLUSTER);
504 		spin_unlock(&ci->lock);
505 	}
506 }
507 
508 static void swap_discard_work(struct work_struct *work)
509 {
510 	struct swap_info_struct *si;
511 
512 	si = container_of(work, struct swap_info_struct, discard_work);
513 
514 	spin_lock(&si->lock);
515 	swap_do_scheduled_discard(si);
516 	spin_unlock(&si->lock);
517 }
518 
519 static void swap_users_ref_free(struct percpu_ref *ref)
520 {
521 	struct swap_info_struct *si;
522 
523 	si = container_of(ref, struct swap_info_struct, users);
524 	complete(&si->comp);
525 }
526 
527 static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
528 {
529 	VM_BUG_ON(ci->count != 0);
530 	lockdep_assert_held(&si->lock);
531 	lockdep_assert_held(&ci->lock);
532 
533 	if (ci->flags & CLUSTER_FLAG_FRAG)
534 		si->frag_cluster_nr[ci->order]--;
535 
536 	/*
537 	 * If the swap is discardable, prepare discard the cluster
538 	 * instead of free it immediately. The cluster will be freed
539 	 * after discard.
540 	 */
541 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
542 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
543 		swap_cluster_schedule_discard(si, ci);
544 		return;
545 	}
546 
547 	__free_cluster(si, ci);
548 }
549 
550 /*
551  * The cluster corresponding to page_nr will be used. The cluster will not be
552  * added to free cluster list and its usage counter will be increased by 1.
553  * Only used for initialization.
554  */
555 static void inc_cluster_info_page(struct swap_info_struct *si,
556 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
557 {
558 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559 	struct swap_cluster_info *ci;
560 
561 	if (!cluster_info)
562 		return;
563 
564 	ci = cluster_info + idx;
565 	ci->count++;
566 
567 	VM_BUG_ON(ci->count > SWAPFILE_CLUSTER);
568 	VM_BUG_ON(ci->flags);
569 }
570 
571 /*
572  * The cluster ci decreases @nr_pages usage. If the usage counter becomes 0,
573  * which means no page in the cluster is in use, we can optionally discard
574  * the cluster and add it to free cluster list.
575  */
576 static void dec_cluster_info_page(struct swap_info_struct *si,
577 				  struct swap_cluster_info *ci, int nr_pages)
578 {
579 	if (!si->cluster_info)
580 		return;
581 
582 	VM_BUG_ON(ci->count < nr_pages);
583 	VM_BUG_ON(cluster_is_free(ci));
584 	lockdep_assert_held(&si->lock);
585 	lockdep_assert_held(&ci->lock);
586 	ci->count -= nr_pages;
587 
588 	if (!ci->count) {
589 		free_cluster(si, ci);
590 		return;
591 	}
592 
593 	if (!(ci->flags & CLUSTER_FLAG_NONFULL)) {
594 		VM_BUG_ON(ci->flags & CLUSTER_FLAG_FREE);
595 		if (ci->flags & CLUSTER_FLAG_FRAG)
596 			si->frag_cluster_nr[ci->order]--;
597 		list_move_tail(&ci->list, &si->nonfull_clusters[ci->order]);
598 		ci->flags = CLUSTER_FLAG_NONFULL;
599 	}
600 }
601 
602 static bool cluster_reclaim_range(struct swap_info_struct *si,
603 				  struct swap_cluster_info *ci,
604 				  unsigned long start, unsigned long end)
605 {
606 	unsigned char *map = si->swap_map;
607 	unsigned long offset;
608 
609 	spin_unlock(&ci->lock);
610 	spin_unlock(&si->lock);
611 
612 	for (offset = start; offset < end; offset++) {
613 		switch (READ_ONCE(map[offset])) {
614 		case 0:
615 			continue;
616 		case SWAP_HAS_CACHE:
617 			if (__try_to_reclaim_swap(si, offset, TTRS_ANYWAY | TTRS_DIRECT) > 0)
618 				continue;
619 			goto out;
620 		default:
621 			goto out;
622 		}
623 	}
624 out:
625 	spin_lock(&si->lock);
626 	spin_lock(&ci->lock);
627 
628 	/*
629 	 * Recheck the range no matter reclaim succeeded or not, the slot
630 	 * could have been be freed while we are not holding the lock.
631 	 */
632 	for (offset = start; offset < end; offset++)
633 		if (READ_ONCE(map[offset]))
634 			return false;
635 
636 	return true;
637 }
638 
639 static bool cluster_scan_range(struct swap_info_struct *si,
640 			       struct swap_cluster_info *ci,
641 			       unsigned long start, unsigned int nr_pages)
642 {
643 	unsigned long offset, end = start + nr_pages;
644 	unsigned char *map = si->swap_map;
645 	bool need_reclaim = false;
646 
647 	for (offset = start; offset < end; offset++) {
648 		switch (READ_ONCE(map[offset])) {
649 		case 0:
650 			continue;
651 		case SWAP_HAS_CACHE:
652 			if (!vm_swap_full())
653 				return false;
654 			need_reclaim = true;
655 			continue;
656 		default:
657 			return false;
658 		}
659 	}
660 
661 	if (need_reclaim)
662 		return cluster_reclaim_range(si, ci, start, end);
663 
664 	return true;
665 }
666 
667 static bool cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci,
668 				unsigned int start, unsigned char usage,
669 				unsigned int order)
670 {
671 	unsigned int nr_pages = 1 << order;
672 
673 	if (!(si->flags & SWP_WRITEOK))
674 		return false;
675 
676 	if (cluster_is_free(ci)) {
677 		if (nr_pages < SWAPFILE_CLUSTER) {
678 			list_move_tail(&ci->list, &si->nonfull_clusters[order]);
679 			ci->flags = CLUSTER_FLAG_NONFULL;
680 		}
681 		ci->order = order;
682 	}
683 
684 	memset(si->swap_map + start, usage, nr_pages);
685 	swap_range_alloc(si, start, nr_pages);
686 	ci->count += nr_pages;
687 
688 	if (ci->count == SWAPFILE_CLUSTER) {
689 		VM_BUG_ON(!(ci->flags &
690 			  (CLUSTER_FLAG_FREE | CLUSTER_FLAG_NONFULL | CLUSTER_FLAG_FRAG)));
691 		if (ci->flags & CLUSTER_FLAG_FRAG)
692 			si->frag_cluster_nr[ci->order]--;
693 		list_move_tail(&ci->list, &si->full_clusters);
694 		ci->flags = CLUSTER_FLAG_FULL;
695 	}
696 
697 	return true;
698 }
699 
700 static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si, unsigned long offset,
701 					    unsigned int *foundp, unsigned int order,
702 					    unsigned char usage)
703 {
704 	unsigned long start = offset & ~(SWAPFILE_CLUSTER - 1);
705 	unsigned long end = min(start + SWAPFILE_CLUSTER, si->max);
706 	unsigned int nr_pages = 1 << order;
707 	struct swap_cluster_info *ci;
708 
709 	if (end < nr_pages)
710 		return SWAP_NEXT_INVALID;
711 	end -= nr_pages;
712 
713 	ci = lock_cluster(si, offset);
714 	if (ci->count + nr_pages > SWAPFILE_CLUSTER) {
715 		offset = SWAP_NEXT_INVALID;
716 		goto done;
717 	}
718 
719 	while (offset <= end) {
720 		if (cluster_scan_range(si, ci, offset, nr_pages)) {
721 			if (!cluster_alloc_range(si, ci, offset, usage, order)) {
722 				offset = SWAP_NEXT_INVALID;
723 				goto done;
724 			}
725 			*foundp = offset;
726 			if (ci->count == SWAPFILE_CLUSTER) {
727 				offset = SWAP_NEXT_INVALID;
728 				goto done;
729 			}
730 			offset += nr_pages;
731 			break;
732 		}
733 		offset += nr_pages;
734 	}
735 	if (offset > end)
736 		offset = SWAP_NEXT_INVALID;
737 done:
738 	unlock_cluster(ci);
739 	return offset;
740 }
741 
742 /* Return true if reclaimed a whole cluster */
743 static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force)
744 {
745 	long to_scan = 1;
746 	unsigned long offset, end;
747 	struct swap_cluster_info *ci;
748 	unsigned char *map = si->swap_map;
749 	int nr_reclaim;
750 
751 	if (force)
752 		to_scan = si->inuse_pages / SWAPFILE_CLUSTER;
753 
754 	while (!list_empty(&si->full_clusters)) {
755 		ci = list_first_entry(&si->full_clusters, struct swap_cluster_info, list);
756 		list_move_tail(&ci->list, &si->full_clusters);
757 		offset = cluster_offset(si, ci);
758 		end = min(si->max, offset + SWAPFILE_CLUSTER);
759 		to_scan--;
760 
761 		spin_unlock(&si->lock);
762 		while (offset < end) {
763 			if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) {
764 				nr_reclaim = __try_to_reclaim_swap(si, offset,
765 								   TTRS_ANYWAY | TTRS_DIRECT);
766 				if (nr_reclaim) {
767 					offset += abs(nr_reclaim);
768 					continue;
769 				}
770 			}
771 			offset++;
772 		}
773 		spin_lock(&si->lock);
774 
775 		if (to_scan <= 0)
776 			break;
777 	}
778 }
779 
780 static void swap_reclaim_work(struct work_struct *work)
781 {
782 	struct swap_info_struct *si;
783 
784 	si = container_of(work, struct swap_info_struct, reclaim_work);
785 
786 	spin_lock(&si->lock);
787 	swap_reclaim_full_clusters(si, true);
788 	spin_unlock(&si->lock);
789 }
790 
791 /*
792  * Try to get swap entries with specified order from current cpu's swap entry
793  * pool (a cluster). This might involve allocating a new cluster for current CPU
794  * too.
795  */
796 static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order,
797 					      unsigned char usage)
798 {
799 	struct percpu_cluster *cluster;
800 	struct swap_cluster_info *ci;
801 	unsigned int offset, found = 0;
802 
803 new_cluster:
804 	lockdep_assert_held(&si->lock);
805 	cluster = this_cpu_ptr(si->percpu_cluster);
806 	offset = cluster->next[order];
807 	if (offset) {
808 		offset = alloc_swap_scan_cluster(si, offset, &found, order, usage);
809 		if (found)
810 			goto done;
811 	}
812 
813 	if (!list_empty(&si->free_clusters)) {
814 		ci = list_first_entry(&si->free_clusters, struct swap_cluster_info, list);
815 		offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci), &found, order, usage);
816 		/*
817 		 * Either we didn't touch the cluster due to swapoff,
818 		 * or the allocation must success.
819 		 */
820 		VM_BUG_ON((si->flags & SWP_WRITEOK) && !found);
821 		goto done;
822 	}
823 
824 	/* Try reclaim from full clusters if free clusters list is drained */
825 	if (vm_swap_full())
826 		swap_reclaim_full_clusters(si, false);
827 
828 	if (order < PMD_ORDER) {
829 		unsigned int frags = 0;
830 
831 		while (!list_empty(&si->nonfull_clusters[order])) {
832 			ci = list_first_entry(&si->nonfull_clusters[order],
833 					      struct swap_cluster_info, list);
834 			list_move_tail(&ci->list, &si->frag_clusters[order]);
835 			ci->flags = CLUSTER_FLAG_FRAG;
836 			si->frag_cluster_nr[order]++;
837 			offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
838 							 &found, order, usage);
839 			frags++;
840 			if (found)
841 				break;
842 		}
843 
844 		if (!found) {
845 			/*
846 			 * Nonfull clusters are moved to frag tail if we reached
847 			 * here, count them too, don't over scan the frag list.
848 			 */
849 			while (frags < si->frag_cluster_nr[order]) {
850 				ci = list_first_entry(&si->frag_clusters[order],
851 						      struct swap_cluster_info, list);
852 				/*
853 				 * Rotate the frag list to iterate, they were all failing
854 				 * high order allocation or moved here due to per-CPU usage,
855 				 * this help keeping usable cluster ahead.
856 				 */
857 				list_move_tail(&ci->list, &si->frag_clusters[order]);
858 				offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
859 								 &found, order, usage);
860 				frags++;
861 				if (found)
862 					break;
863 			}
864 		}
865 	}
866 
867 	if (found)
868 		goto done;
869 
870 	if (!list_empty(&si->discard_clusters)) {
871 		/*
872 		 * we don't have free cluster but have some clusters in
873 		 * discarding, do discard now and reclaim them, then
874 		 * reread cluster_next_cpu since we dropped si->lock
875 		 */
876 		swap_do_scheduled_discard(si);
877 		goto new_cluster;
878 	}
879 
880 	if (order)
881 		goto done;
882 
883 	/* Order 0 stealing from higher order */
884 	for (int o = 1; o < SWAP_NR_ORDERS; o++) {
885 		/*
886 		 * Clusters here have at least one usable slots and can't fail order 0
887 		 * allocation, but reclaim may drop si->lock and race with another user.
888 		 */
889 		while (!list_empty(&si->frag_clusters[o])) {
890 			ci = list_first_entry(&si->frag_clusters[o],
891 					      struct swap_cluster_info, list);
892 			offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
893 							 &found, 0, usage);
894 			if (found)
895 				goto done;
896 		}
897 
898 		while (!list_empty(&si->nonfull_clusters[o])) {
899 			ci = list_first_entry(&si->nonfull_clusters[o],
900 					      struct swap_cluster_info, list);
901 			offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
902 							 &found, 0, usage);
903 			if (found)
904 				goto done;
905 		}
906 	}
907 
908 done:
909 	cluster->next[order] = offset;
910 	return found;
911 }
912 
913 static void __del_from_avail_list(struct swap_info_struct *si)
914 {
915 	int nid;
916 
917 	assert_spin_locked(&si->lock);
918 	for_each_node(nid)
919 		plist_del(&si->avail_lists[nid], &swap_avail_heads[nid]);
920 }
921 
922 static void del_from_avail_list(struct swap_info_struct *si)
923 {
924 	spin_lock(&swap_avail_lock);
925 	__del_from_avail_list(si);
926 	spin_unlock(&swap_avail_lock);
927 }
928 
929 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
930 			     unsigned int nr_entries)
931 {
932 	unsigned int end = offset + nr_entries - 1;
933 
934 	if (offset == si->lowest_bit)
935 		si->lowest_bit += nr_entries;
936 	if (end == si->highest_bit)
937 		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
938 	WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
939 	if (si->inuse_pages == si->pages) {
940 		si->lowest_bit = si->max;
941 		si->highest_bit = 0;
942 		del_from_avail_list(si);
943 
944 		if (si->cluster_info && vm_swap_full())
945 			schedule_work(&si->reclaim_work);
946 	}
947 }
948 
949 static void add_to_avail_list(struct swap_info_struct *si)
950 {
951 	int nid;
952 
953 	spin_lock(&swap_avail_lock);
954 	for_each_node(nid)
955 		plist_add(&si->avail_lists[nid], &swap_avail_heads[nid]);
956 	spin_unlock(&swap_avail_lock);
957 }
958 
959 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
960 			    unsigned int nr_entries)
961 {
962 	unsigned long begin = offset;
963 	unsigned long end = offset + nr_entries - 1;
964 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
965 	unsigned int i;
966 
967 	/*
968 	 * Use atomic clear_bit operations only on zeromap instead of non-atomic
969 	 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes.
970 	 */
971 	for (i = 0; i < nr_entries; i++)
972 		clear_bit(offset + i, si->zeromap);
973 
974 	if (offset < si->lowest_bit)
975 		si->lowest_bit = offset;
976 	if (end > si->highest_bit) {
977 		bool was_full = !si->highest_bit;
978 
979 		WRITE_ONCE(si->highest_bit, end);
980 		if (was_full && (si->flags & SWP_WRITEOK))
981 			add_to_avail_list(si);
982 	}
983 	if (si->flags & SWP_BLKDEV)
984 		swap_slot_free_notify =
985 			si->bdev->bd_disk->fops->swap_slot_free_notify;
986 	else
987 		swap_slot_free_notify = NULL;
988 	while (offset <= end) {
989 		arch_swap_invalidate_page(si->type, offset);
990 		if (swap_slot_free_notify)
991 			swap_slot_free_notify(si->bdev, offset);
992 		offset++;
993 	}
994 	clear_shadow_from_swap_cache(si->type, begin, end);
995 
996 	/*
997 	 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
998 	 * only after the above cleanups are done.
999 	 */
1000 	smp_wmb();
1001 	atomic_long_add(nr_entries, &nr_swap_pages);
1002 	WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
1003 }
1004 
1005 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
1006 {
1007 	unsigned long prev;
1008 
1009 	if (!(si->flags & SWP_SOLIDSTATE)) {
1010 		si->cluster_next = next;
1011 		return;
1012 	}
1013 
1014 	prev = this_cpu_read(*si->cluster_next_cpu);
1015 	/*
1016 	 * Cross the swap address space size aligned trunk, choose
1017 	 * another trunk randomly to avoid lock contention on swap
1018 	 * address space if possible.
1019 	 */
1020 	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
1021 	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
1022 		/* No free swap slots available */
1023 		if (si->highest_bit <= si->lowest_bit)
1024 			return;
1025 		next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
1026 		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
1027 		next = max_t(unsigned int, next, si->lowest_bit);
1028 	}
1029 	this_cpu_write(*si->cluster_next_cpu, next);
1030 }
1031 
1032 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
1033 					     unsigned long offset)
1034 {
1035 	if (data_race(!si->swap_map[offset])) {
1036 		spin_lock(&si->lock);
1037 		return true;
1038 	}
1039 
1040 	if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1041 		spin_lock(&si->lock);
1042 		return true;
1043 	}
1044 
1045 	return false;
1046 }
1047 
1048 static int cluster_alloc_swap(struct swap_info_struct *si,
1049 			     unsigned char usage, int nr,
1050 			     swp_entry_t slots[], int order)
1051 {
1052 	int n_ret = 0;
1053 
1054 	VM_BUG_ON(!si->cluster_info);
1055 
1056 	si->flags += SWP_SCANNING;
1057 
1058 	while (n_ret < nr) {
1059 		unsigned long offset = cluster_alloc_swap_entry(si, order, usage);
1060 
1061 		if (!offset)
1062 			break;
1063 		slots[n_ret++] = swp_entry(si->type, offset);
1064 	}
1065 
1066 	si->flags -= SWP_SCANNING;
1067 
1068 	return n_ret;
1069 }
1070 
1071 static int scan_swap_map_slots(struct swap_info_struct *si,
1072 			       unsigned char usage, int nr,
1073 			       swp_entry_t slots[], int order)
1074 {
1075 	unsigned long offset;
1076 	unsigned long scan_base;
1077 	unsigned long last_in_cluster = 0;
1078 	int latency_ration = LATENCY_LIMIT;
1079 	unsigned int nr_pages = 1 << order;
1080 	int n_ret = 0;
1081 	bool scanned_many = false;
1082 
1083 	/*
1084 	 * We try to cluster swap pages by allocating them sequentially
1085 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
1086 	 * way, however, we resort to first-free allocation, starting
1087 	 * a new cluster.  This prevents us from scattering swap pages
1088 	 * all over the entire swap partition, so that we reduce
1089 	 * overall disk seek times between swap pages.  -- sct
1090 	 * But we do now try to find an empty cluster.  -Andrea
1091 	 * And we let swap pages go all over an SSD partition.  Hugh
1092 	 */
1093 
1094 	if (order > 0) {
1095 		/*
1096 		 * Should not even be attempting large allocations when huge
1097 		 * page swap is disabled.  Warn and fail the allocation.
1098 		 */
1099 		if (!IS_ENABLED(CONFIG_THP_SWAP) ||
1100 		    nr_pages > SWAPFILE_CLUSTER) {
1101 			VM_WARN_ON_ONCE(1);
1102 			return 0;
1103 		}
1104 
1105 		/*
1106 		 * Swapfile is not block device or not using clusters so unable
1107 		 * to allocate large entries.
1108 		 */
1109 		if (!(si->flags & SWP_BLKDEV) || !si->cluster_info)
1110 			return 0;
1111 	}
1112 
1113 	if (si->cluster_info)
1114 		return cluster_alloc_swap(si, usage, nr, slots, order);
1115 
1116 	si->flags += SWP_SCANNING;
1117 
1118 	/* For HDD, sequential access is more important. */
1119 	scan_base = si->cluster_next;
1120 	offset = scan_base;
1121 
1122 	if (unlikely(!si->cluster_nr--)) {
1123 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
1124 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
1125 			goto checks;
1126 		}
1127 
1128 		spin_unlock(&si->lock);
1129 
1130 		/*
1131 		 * If seek is expensive, start searching for new cluster from
1132 		 * start of partition, to minimize the span of allocated swap.
1133 		 */
1134 		scan_base = offset = si->lowest_bit;
1135 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
1136 
1137 		/* Locate the first empty (unaligned) cluster */
1138 		for (; last_in_cluster <= READ_ONCE(si->highest_bit); offset++) {
1139 			if (si->swap_map[offset])
1140 				last_in_cluster = offset + SWAPFILE_CLUSTER;
1141 			else if (offset == last_in_cluster) {
1142 				spin_lock(&si->lock);
1143 				offset -= SWAPFILE_CLUSTER - 1;
1144 				si->cluster_next = offset;
1145 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
1146 				goto checks;
1147 			}
1148 			if (unlikely(--latency_ration < 0)) {
1149 				cond_resched();
1150 				latency_ration = LATENCY_LIMIT;
1151 			}
1152 		}
1153 
1154 		offset = scan_base;
1155 		spin_lock(&si->lock);
1156 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
1157 	}
1158 
1159 checks:
1160 	if (!(si->flags & SWP_WRITEOK))
1161 		goto no_page;
1162 	if (!si->highest_bit)
1163 		goto no_page;
1164 	if (offset > si->highest_bit)
1165 		scan_base = offset = si->lowest_bit;
1166 
1167 	/* reuse swap entry of cache-only swap if not busy. */
1168 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
1169 		int swap_was_freed;
1170 		spin_unlock(&si->lock);
1171 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY | TTRS_DIRECT);
1172 		spin_lock(&si->lock);
1173 		/* entry was freed successfully, try to use this again */
1174 		if (swap_was_freed > 0)
1175 			goto checks;
1176 		goto scan; /* check next one */
1177 	}
1178 
1179 	if (si->swap_map[offset]) {
1180 		if (!n_ret)
1181 			goto scan;
1182 		else
1183 			goto done;
1184 	}
1185 	memset(si->swap_map + offset, usage, nr_pages);
1186 
1187 	swap_range_alloc(si, offset, nr_pages);
1188 	slots[n_ret++] = swp_entry(si->type, offset);
1189 
1190 	/* got enough slots or reach max slots? */
1191 	if ((n_ret == nr) || (offset >= si->highest_bit))
1192 		goto done;
1193 
1194 	/* search for next available slot */
1195 
1196 	/* time to take a break? */
1197 	if (unlikely(--latency_ration < 0)) {
1198 		if (n_ret)
1199 			goto done;
1200 		spin_unlock(&si->lock);
1201 		cond_resched();
1202 		spin_lock(&si->lock);
1203 		latency_ration = LATENCY_LIMIT;
1204 	}
1205 
1206 	if (si->cluster_nr && !si->swap_map[++offset]) {
1207 		/* non-ssd case, still more slots in cluster? */
1208 		--si->cluster_nr;
1209 		goto checks;
1210 	}
1211 
1212 	/*
1213 	 * Even if there's no free clusters available (fragmented),
1214 	 * try to scan a little more quickly with lock held unless we
1215 	 * have scanned too many slots already.
1216 	 */
1217 	if (!scanned_many) {
1218 		unsigned long scan_limit;
1219 
1220 		if (offset < scan_base)
1221 			scan_limit = scan_base;
1222 		else
1223 			scan_limit = si->highest_bit;
1224 		for (; offset <= scan_limit && --latency_ration > 0;
1225 		     offset++) {
1226 			if (!si->swap_map[offset])
1227 				goto checks;
1228 		}
1229 	}
1230 
1231 done:
1232 	if (order == 0)
1233 		set_cluster_next(si, offset + 1);
1234 	si->flags -= SWP_SCANNING;
1235 	return n_ret;
1236 
1237 scan:
1238 	VM_WARN_ON(order > 0);
1239 	spin_unlock(&si->lock);
1240 	while (++offset <= READ_ONCE(si->highest_bit)) {
1241 		if (unlikely(--latency_ration < 0)) {
1242 			cond_resched();
1243 			latency_ration = LATENCY_LIMIT;
1244 			scanned_many = true;
1245 		}
1246 		if (swap_offset_available_and_locked(si, offset))
1247 			goto checks;
1248 	}
1249 	offset = si->lowest_bit;
1250 	while (offset < scan_base) {
1251 		if (unlikely(--latency_ration < 0)) {
1252 			cond_resched();
1253 			latency_ration = LATENCY_LIMIT;
1254 			scanned_many = true;
1255 		}
1256 		if (swap_offset_available_and_locked(si, offset))
1257 			goto checks;
1258 		offset++;
1259 	}
1260 	spin_lock(&si->lock);
1261 
1262 no_page:
1263 	si->flags -= SWP_SCANNING;
1264 	return n_ret;
1265 }
1266 
1267 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_order)
1268 {
1269 	int order = swap_entry_order(entry_order);
1270 	unsigned long size = 1 << order;
1271 	struct swap_info_struct *si, *next;
1272 	long avail_pgs;
1273 	int n_ret = 0;
1274 	int node;
1275 
1276 	spin_lock(&swap_avail_lock);
1277 
1278 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1279 	if (avail_pgs <= 0) {
1280 		spin_unlock(&swap_avail_lock);
1281 		goto noswap;
1282 	}
1283 
1284 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1285 
1286 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1287 
1288 start_over:
1289 	node = numa_node_id();
1290 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1291 		/* requeue si to after same-priority siblings */
1292 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1293 		spin_unlock(&swap_avail_lock);
1294 		spin_lock(&si->lock);
1295 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1296 			spin_lock(&swap_avail_lock);
1297 			if (plist_node_empty(&si->avail_lists[node])) {
1298 				spin_unlock(&si->lock);
1299 				goto nextsi;
1300 			}
1301 			WARN(!si->highest_bit,
1302 			     "swap_info %d in list but !highest_bit\n",
1303 			     si->type);
1304 			WARN(!(si->flags & SWP_WRITEOK),
1305 			     "swap_info %d in list but !SWP_WRITEOK\n",
1306 			     si->type);
1307 			__del_from_avail_list(si);
1308 			spin_unlock(&si->lock);
1309 			goto nextsi;
1310 		}
1311 		n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1312 					    n_goal, swp_entries, order);
1313 		spin_unlock(&si->lock);
1314 		if (n_ret || size > 1)
1315 			goto check_out;
1316 		cond_resched();
1317 
1318 		spin_lock(&swap_avail_lock);
1319 nextsi:
1320 		/*
1321 		 * if we got here, it's likely that si was almost full before,
1322 		 * and since scan_swap_map_slots() can drop the si->lock,
1323 		 * multiple callers probably all tried to get a page from the
1324 		 * same si and it filled up before we could get one; or, the si
1325 		 * filled up between us dropping swap_avail_lock and taking
1326 		 * si->lock. Since we dropped the swap_avail_lock, the
1327 		 * swap_avail_head list may have been modified; so if next is
1328 		 * still in the swap_avail_head list then try it, otherwise
1329 		 * start over if we have not gotten any slots.
1330 		 */
1331 		if (plist_node_empty(&next->avail_lists[node]))
1332 			goto start_over;
1333 	}
1334 
1335 	spin_unlock(&swap_avail_lock);
1336 
1337 check_out:
1338 	if (n_ret < n_goal)
1339 		atomic_long_add((long)(n_goal - n_ret) * size,
1340 				&nr_swap_pages);
1341 noswap:
1342 	return n_ret;
1343 }
1344 
1345 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1346 {
1347 	struct swap_info_struct *si;
1348 	unsigned long offset;
1349 
1350 	if (!entry.val)
1351 		goto out;
1352 	si = swp_swap_info(entry);
1353 	if (!si)
1354 		goto bad_nofile;
1355 	if (data_race(!(si->flags & SWP_USED)))
1356 		goto bad_device;
1357 	offset = swp_offset(entry);
1358 	if (offset >= si->max)
1359 		goto bad_offset;
1360 	if (data_race(!si->swap_map[swp_offset(entry)]))
1361 		goto bad_free;
1362 	return si;
1363 
1364 bad_free:
1365 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1366 	goto out;
1367 bad_offset:
1368 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1369 	goto out;
1370 bad_device:
1371 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1372 	goto out;
1373 bad_nofile:
1374 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1375 out:
1376 	return NULL;
1377 }
1378 
1379 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1380 					struct swap_info_struct *q)
1381 {
1382 	struct swap_info_struct *p;
1383 
1384 	p = _swap_info_get(entry);
1385 
1386 	if (p != q) {
1387 		if (q != NULL)
1388 			spin_unlock(&q->lock);
1389 		if (p != NULL)
1390 			spin_lock(&p->lock);
1391 	}
1392 	return p;
1393 }
1394 
1395 static unsigned char __swap_entry_free_locked(struct swap_info_struct *si,
1396 					      unsigned long offset,
1397 					      unsigned char usage)
1398 {
1399 	unsigned char count;
1400 	unsigned char has_cache;
1401 
1402 	count = si->swap_map[offset];
1403 
1404 	has_cache = count & SWAP_HAS_CACHE;
1405 	count &= ~SWAP_HAS_CACHE;
1406 
1407 	if (usage == SWAP_HAS_CACHE) {
1408 		VM_BUG_ON(!has_cache);
1409 		has_cache = 0;
1410 	} else if (count == SWAP_MAP_SHMEM) {
1411 		/*
1412 		 * Or we could insist on shmem.c using a special
1413 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1414 		 */
1415 		count = 0;
1416 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1417 		if (count == COUNT_CONTINUED) {
1418 			if (swap_count_continued(si, offset, count))
1419 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1420 			else
1421 				count = SWAP_MAP_MAX;
1422 		} else
1423 			count--;
1424 	}
1425 
1426 	usage = count | has_cache;
1427 	if (usage)
1428 		WRITE_ONCE(si->swap_map[offset], usage);
1429 	else
1430 		WRITE_ONCE(si->swap_map[offset], SWAP_HAS_CACHE);
1431 
1432 	return usage;
1433 }
1434 
1435 /*
1436  * When we get a swap entry, if there aren't some other ways to
1437  * prevent swapoff, such as the folio in swap cache is locked, RCU
1438  * reader side is locked, etc., the swap entry may become invalid
1439  * because of swapoff.  Then, we need to enclose all swap related
1440  * functions with get_swap_device() and put_swap_device(), unless the
1441  * swap functions call get/put_swap_device() by themselves.
1442  *
1443  * RCU reader side lock (including any spinlock) is sufficient to
1444  * prevent swapoff, because synchronize_rcu() is called in swapoff()
1445  * before freeing data structures.
1446  *
1447  * Check whether swap entry is valid in the swap device.  If so,
1448  * return pointer to swap_info_struct, and keep the swap entry valid
1449  * via preventing the swap device from being swapoff, until
1450  * put_swap_device() is called.  Otherwise return NULL.
1451  *
1452  * Notice that swapoff or swapoff+swapon can still happen before the
1453  * percpu_ref_tryget_live() in get_swap_device() or after the
1454  * percpu_ref_put() in put_swap_device() if there isn't any other way
1455  * to prevent swapoff.  The caller must be prepared for that.  For
1456  * example, the following situation is possible.
1457  *
1458  *   CPU1				CPU2
1459  *   do_swap_page()
1460  *     ...				swapoff+swapon
1461  *     __read_swap_cache_async()
1462  *       swapcache_prepare()
1463  *         __swap_duplicate()
1464  *           // check swap_map
1465  *     // verify PTE not changed
1466  *
1467  * In __swap_duplicate(), the swap_map need to be checked before
1468  * changing partly because the specified swap entry may be for another
1469  * swap device which has been swapoff.  And in do_swap_page(), after
1470  * the page is read from the swap device, the PTE is verified not
1471  * changed with the page table locked to check whether the swap device
1472  * has been swapoff or swapoff+swapon.
1473  */
1474 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1475 {
1476 	struct swap_info_struct *si;
1477 	unsigned long offset;
1478 
1479 	if (!entry.val)
1480 		goto out;
1481 	si = swp_swap_info(entry);
1482 	if (!si)
1483 		goto bad_nofile;
1484 	if (!percpu_ref_tryget_live(&si->users))
1485 		goto out;
1486 	/*
1487 	 * Guarantee the si->users are checked before accessing other
1488 	 * fields of swap_info_struct.
1489 	 *
1490 	 * Paired with the spin_unlock() after setup_swap_info() in
1491 	 * enable_swap_info().
1492 	 */
1493 	smp_rmb();
1494 	offset = swp_offset(entry);
1495 	if (offset >= si->max)
1496 		goto put_out;
1497 
1498 	return si;
1499 bad_nofile:
1500 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1501 out:
1502 	return NULL;
1503 put_out:
1504 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1505 	percpu_ref_put(&si->users);
1506 	return NULL;
1507 }
1508 
1509 static unsigned char __swap_entry_free(struct swap_info_struct *si,
1510 				       swp_entry_t entry)
1511 {
1512 	struct swap_cluster_info *ci;
1513 	unsigned long offset = swp_offset(entry);
1514 	unsigned char usage;
1515 
1516 	ci = lock_cluster_or_swap_info(si, offset);
1517 	usage = __swap_entry_free_locked(si, offset, 1);
1518 	unlock_cluster_or_swap_info(si, ci);
1519 	if (!usage)
1520 		free_swap_slot(entry);
1521 
1522 	return usage;
1523 }
1524 
1525 static bool __swap_entries_free(struct swap_info_struct *si,
1526 		swp_entry_t entry, int nr)
1527 {
1528 	unsigned long offset = swp_offset(entry);
1529 	unsigned int type = swp_type(entry);
1530 	struct swap_cluster_info *ci;
1531 	bool has_cache = false;
1532 	unsigned char count;
1533 	int i;
1534 
1535 	if (nr <= 1 || swap_count(data_race(si->swap_map[offset])) != 1)
1536 		goto fallback;
1537 	/* cross into another cluster */
1538 	if (nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER)
1539 		goto fallback;
1540 
1541 	ci = lock_cluster_or_swap_info(si, offset);
1542 	if (!swap_is_last_map(si, offset, nr, &has_cache)) {
1543 		unlock_cluster_or_swap_info(si, ci);
1544 		goto fallback;
1545 	}
1546 	for (i = 0; i < nr; i++)
1547 		WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE);
1548 	unlock_cluster_or_swap_info(si, ci);
1549 
1550 	if (!has_cache) {
1551 		for (i = 0; i < nr; i++)
1552 			zswap_invalidate(swp_entry(si->type, offset + i));
1553 		spin_lock(&si->lock);
1554 		swap_entry_range_free(si, entry, nr);
1555 		spin_unlock(&si->lock);
1556 	}
1557 	return has_cache;
1558 
1559 fallback:
1560 	for (i = 0; i < nr; i++) {
1561 		if (data_race(si->swap_map[offset + i])) {
1562 			count = __swap_entry_free(si, swp_entry(type, offset + i));
1563 			if (count == SWAP_HAS_CACHE)
1564 				has_cache = true;
1565 		} else {
1566 			WARN_ON_ONCE(1);
1567 		}
1568 	}
1569 	return has_cache;
1570 }
1571 
1572 /*
1573  * Drop the last HAS_CACHE flag of swap entries, caller have to
1574  * ensure all entries belong to the same cgroup.
1575  */
1576 static void swap_entry_range_free(struct swap_info_struct *si, swp_entry_t entry,
1577 				  unsigned int nr_pages)
1578 {
1579 	unsigned long offset = swp_offset(entry);
1580 	unsigned char *map = si->swap_map + offset;
1581 	unsigned char *map_end = map + nr_pages;
1582 	struct swap_cluster_info *ci;
1583 
1584 	ci = lock_cluster(si, offset);
1585 	do {
1586 		VM_BUG_ON(*map != SWAP_HAS_CACHE);
1587 		*map = 0;
1588 	} while (++map < map_end);
1589 	dec_cluster_info_page(si, ci, nr_pages);
1590 	unlock_cluster(ci);
1591 
1592 	mem_cgroup_uncharge_swap(entry, nr_pages);
1593 	swap_range_free(si, offset, nr_pages);
1594 }
1595 
1596 static void cluster_swap_free_nr(struct swap_info_struct *si,
1597 		unsigned long offset, int nr_pages,
1598 		unsigned char usage)
1599 {
1600 	struct swap_cluster_info *ci;
1601 	DECLARE_BITMAP(to_free, BITS_PER_LONG) = { 0 };
1602 	int i, nr;
1603 
1604 	ci = lock_cluster_or_swap_info(si, offset);
1605 	while (nr_pages) {
1606 		nr = min(BITS_PER_LONG, nr_pages);
1607 		for (i = 0; i < nr; i++) {
1608 			if (!__swap_entry_free_locked(si, offset + i, usage))
1609 				bitmap_set(to_free, i, 1);
1610 		}
1611 		if (!bitmap_empty(to_free, BITS_PER_LONG)) {
1612 			unlock_cluster_or_swap_info(si, ci);
1613 			for_each_set_bit(i, to_free, BITS_PER_LONG)
1614 				free_swap_slot(swp_entry(si->type, offset + i));
1615 			if (nr == nr_pages)
1616 				return;
1617 			bitmap_clear(to_free, 0, BITS_PER_LONG);
1618 			ci = lock_cluster_or_swap_info(si, offset);
1619 		}
1620 		offset += nr;
1621 		nr_pages -= nr;
1622 	}
1623 	unlock_cluster_or_swap_info(si, ci);
1624 }
1625 
1626 /*
1627  * Caller has made sure that the swap device corresponding to entry
1628  * is still around or has not been recycled.
1629  */
1630 void swap_free_nr(swp_entry_t entry, int nr_pages)
1631 {
1632 	int nr;
1633 	struct swap_info_struct *sis;
1634 	unsigned long offset = swp_offset(entry);
1635 
1636 	sis = _swap_info_get(entry);
1637 	if (!sis)
1638 		return;
1639 
1640 	while (nr_pages) {
1641 		nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
1642 		cluster_swap_free_nr(sis, offset, nr, 1);
1643 		offset += nr;
1644 		nr_pages -= nr;
1645 	}
1646 }
1647 
1648 /*
1649  * Called after dropping swapcache to decrease refcnt to swap entries.
1650  */
1651 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1652 {
1653 	unsigned long offset = swp_offset(entry);
1654 	struct swap_cluster_info *ci;
1655 	struct swap_info_struct *si;
1656 	int size = 1 << swap_entry_order(folio_order(folio));
1657 
1658 	si = _swap_info_get(entry);
1659 	if (!si)
1660 		return;
1661 
1662 	ci = lock_cluster_or_swap_info(si, offset);
1663 	if (size > 1 && swap_is_has_cache(si, offset, size)) {
1664 		unlock_cluster_or_swap_info(si, ci);
1665 		spin_lock(&si->lock);
1666 		swap_entry_range_free(si, entry, size);
1667 		spin_unlock(&si->lock);
1668 		return;
1669 	}
1670 	for (int i = 0; i < size; i++, entry.val++) {
1671 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1672 			unlock_cluster_or_swap_info(si, ci);
1673 			free_swap_slot(entry);
1674 			if (i == size - 1)
1675 				return;
1676 			lock_cluster_or_swap_info(si, offset);
1677 		}
1678 	}
1679 	unlock_cluster_or_swap_info(si, ci);
1680 }
1681 
1682 static int swp_entry_cmp(const void *ent1, const void *ent2)
1683 {
1684 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1685 
1686 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1687 }
1688 
1689 void swapcache_free_entries(swp_entry_t *entries, int n)
1690 {
1691 	struct swap_info_struct *p, *prev;
1692 	int i;
1693 
1694 	if (n <= 0)
1695 		return;
1696 
1697 	prev = NULL;
1698 	p = NULL;
1699 
1700 	/*
1701 	 * Sort swap entries by swap device, so each lock is only taken once.
1702 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1703 	 * so low that it isn't necessary to optimize further.
1704 	 */
1705 	if (nr_swapfiles > 1)
1706 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1707 	for (i = 0; i < n; ++i) {
1708 		p = swap_info_get_cont(entries[i], prev);
1709 		if (p)
1710 			swap_entry_range_free(p, entries[i], 1);
1711 		prev = p;
1712 	}
1713 	if (p)
1714 		spin_unlock(&p->lock);
1715 }
1716 
1717 int __swap_count(swp_entry_t entry)
1718 {
1719 	struct swap_info_struct *si = swp_swap_info(entry);
1720 	pgoff_t offset = swp_offset(entry);
1721 
1722 	return swap_count(si->swap_map[offset]);
1723 }
1724 
1725 /*
1726  * How many references to @entry are currently swapped out?
1727  * This does not give an exact answer when swap count is continued,
1728  * but does include the high COUNT_CONTINUED flag to allow for that.
1729  */
1730 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1731 {
1732 	pgoff_t offset = swp_offset(entry);
1733 	struct swap_cluster_info *ci;
1734 	int count;
1735 
1736 	ci = lock_cluster_or_swap_info(si, offset);
1737 	count = swap_count(si->swap_map[offset]);
1738 	unlock_cluster_or_swap_info(si, ci);
1739 	return count;
1740 }
1741 
1742 /*
1743  * How many references to @entry are currently swapped out?
1744  * This considers COUNT_CONTINUED so it returns exact answer.
1745  */
1746 int swp_swapcount(swp_entry_t entry)
1747 {
1748 	int count, tmp_count, n;
1749 	struct swap_info_struct *si;
1750 	struct swap_cluster_info *ci;
1751 	struct page *page;
1752 	pgoff_t offset;
1753 	unsigned char *map;
1754 
1755 	si = _swap_info_get(entry);
1756 	if (!si)
1757 		return 0;
1758 
1759 	offset = swp_offset(entry);
1760 
1761 	ci = lock_cluster_or_swap_info(si, offset);
1762 
1763 	count = swap_count(si->swap_map[offset]);
1764 	if (!(count & COUNT_CONTINUED))
1765 		goto out;
1766 
1767 	count &= ~COUNT_CONTINUED;
1768 	n = SWAP_MAP_MAX + 1;
1769 
1770 	page = vmalloc_to_page(si->swap_map + offset);
1771 	offset &= ~PAGE_MASK;
1772 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1773 
1774 	do {
1775 		page = list_next_entry(page, lru);
1776 		map = kmap_local_page(page);
1777 		tmp_count = map[offset];
1778 		kunmap_local(map);
1779 
1780 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1781 		n *= (SWAP_CONT_MAX + 1);
1782 	} while (tmp_count & COUNT_CONTINUED);
1783 out:
1784 	unlock_cluster_or_swap_info(si, ci);
1785 	return count;
1786 }
1787 
1788 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1789 					 swp_entry_t entry, int order)
1790 {
1791 	struct swap_cluster_info *ci;
1792 	unsigned char *map = si->swap_map;
1793 	unsigned int nr_pages = 1 << order;
1794 	unsigned long roffset = swp_offset(entry);
1795 	unsigned long offset = round_down(roffset, nr_pages);
1796 	int i;
1797 	bool ret = false;
1798 
1799 	ci = lock_cluster_or_swap_info(si, offset);
1800 	if (!ci || nr_pages == 1) {
1801 		if (swap_count(map[roffset]))
1802 			ret = true;
1803 		goto unlock_out;
1804 	}
1805 	for (i = 0; i < nr_pages; i++) {
1806 		if (swap_count(map[offset + i])) {
1807 			ret = true;
1808 			break;
1809 		}
1810 	}
1811 unlock_out:
1812 	unlock_cluster_or_swap_info(si, ci);
1813 	return ret;
1814 }
1815 
1816 static bool folio_swapped(struct folio *folio)
1817 {
1818 	swp_entry_t entry = folio->swap;
1819 	struct swap_info_struct *si = _swap_info_get(entry);
1820 
1821 	if (!si)
1822 		return false;
1823 
1824 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1825 		return swap_swapcount(si, entry) != 0;
1826 
1827 	return swap_page_trans_huge_swapped(si, entry, folio_order(folio));
1828 }
1829 
1830 static bool folio_swapcache_freeable(struct folio *folio)
1831 {
1832 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1833 
1834 	if (!folio_test_swapcache(folio))
1835 		return false;
1836 	if (folio_test_writeback(folio))
1837 		return false;
1838 
1839 	/*
1840 	 * Once hibernation has begun to create its image of memory,
1841 	 * there's a danger that one of the calls to folio_free_swap()
1842 	 * - most probably a call from __try_to_reclaim_swap() while
1843 	 * hibernation is allocating its own swap pages for the image,
1844 	 * but conceivably even a call from memory reclaim - will free
1845 	 * the swap from a folio which has already been recorded in the
1846 	 * image as a clean swapcache folio, and then reuse its swap for
1847 	 * another page of the image.  On waking from hibernation, the
1848 	 * original folio might be freed under memory pressure, then
1849 	 * later read back in from swap, now with the wrong data.
1850 	 *
1851 	 * Hibernation suspends storage while it is writing the image
1852 	 * to disk so check that here.
1853 	 */
1854 	if (pm_suspended_storage())
1855 		return false;
1856 
1857 	return true;
1858 }
1859 
1860 /**
1861  * folio_free_swap() - Free the swap space used for this folio.
1862  * @folio: The folio to remove.
1863  *
1864  * If swap is getting full, or if there are no more mappings of this folio,
1865  * then call folio_free_swap to free its swap space.
1866  *
1867  * Return: true if we were able to release the swap space.
1868  */
1869 bool folio_free_swap(struct folio *folio)
1870 {
1871 	if (!folio_swapcache_freeable(folio))
1872 		return false;
1873 	if (folio_swapped(folio))
1874 		return false;
1875 
1876 	delete_from_swap_cache(folio);
1877 	folio_set_dirty(folio);
1878 	return true;
1879 }
1880 
1881 /**
1882  * free_swap_and_cache_nr() - Release reference on range of swap entries and
1883  *                            reclaim their cache if no more references remain.
1884  * @entry: First entry of range.
1885  * @nr: Number of entries in range.
1886  *
1887  * For each swap entry in the contiguous range, release a reference. If any swap
1888  * entries become free, try to reclaim their underlying folios, if present. The
1889  * offset range is defined by [entry.offset, entry.offset + nr).
1890  */
1891 void free_swap_and_cache_nr(swp_entry_t entry, int nr)
1892 {
1893 	const unsigned long start_offset = swp_offset(entry);
1894 	const unsigned long end_offset = start_offset + nr;
1895 	struct swap_info_struct *si;
1896 	bool any_only_cache = false;
1897 	unsigned long offset;
1898 
1899 	if (non_swap_entry(entry))
1900 		return;
1901 
1902 	si = get_swap_device(entry);
1903 	if (!si)
1904 		return;
1905 
1906 	if (WARN_ON(end_offset > si->max))
1907 		goto out;
1908 
1909 	/*
1910 	 * First free all entries in the range.
1911 	 */
1912 	any_only_cache = __swap_entries_free(si, entry, nr);
1913 
1914 	/*
1915 	 * Short-circuit the below loop if none of the entries had their
1916 	 * reference drop to zero.
1917 	 */
1918 	if (!any_only_cache)
1919 		goto out;
1920 
1921 	/*
1922 	 * Now go back over the range trying to reclaim the swap cache. This is
1923 	 * more efficient for large folios because we will only try to reclaim
1924 	 * the swap once per folio in the common case. If we do
1925 	 * __swap_entry_free() and __try_to_reclaim_swap() in the same loop, the
1926 	 * latter will get a reference and lock the folio for every individual
1927 	 * page but will only succeed once the swap slot for every subpage is
1928 	 * zero.
1929 	 */
1930 	for (offset = start_offset; offset < end_offset; offset += nr) {
1931 		nr = 1;
1932 		if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1933 			/*
1934 			 * Folios are always naturally aligned in swap so
1935 			 * advance forward to the next boundary. Zero means no
1936 			 * folio was found for the swap entry, so advance by 1
1937 			 * in this case. Negative value means folio was found
1938 			 * but could not be reclaimed. Here we can still advance
1939 			 * to the next boundary.
1940 			 */
1941 			nr = __try_to_reclaim_swap(si, offset,
1942 						   TTRS_UNMAPPED | TTRS_FULL);
1943 			if (nr == 0)
1944 				nr = 1;
1945 			else if (nr < 0)
1946 				nr = -nr;
1947 			nr = ALIGN(offset + 1, nr) - offset;
1948 		}
1949 	}
1950 
1951 out:
1952 	put_swap_device(si);
1953 }
1954 
1955 #ifdef CONFIG_HIBERNATION
1956 
1957 swp_entry_t get_swap_page_of_type(int type)
1958 {
1959 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1960 	swp_entry_t entry = {0};
1961 
1962 	if (!si)
1963 		goto fail;
1964 
1965 	/* This is called for allocating swap entry, not cache */
1966 	spin_lock(&si->lock);
1967 	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry, 0))
1968 		atomic_long_dec(&nr_swap_pages);
1969 	spin_unlock(&si->lock);
1970 fail:
1971 	return entry;
1972 }
1973 
1974 /*
1975  * Find the swap type that corresponds to given device (if any).
1976  *
1977  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1978  * from 0, in which the swap header is expected to be located.
1979  *
1980  * This is needed for the suspend to disk (aka swsusp).
1981  */
1982 int swap_type_of(dev_t device, sector_t offset)
1983 {
1984 	int type;
1985 
1986 	if (!device)
1987 		return -1;
1988 
1989 	spin_lock(&swap_lock);
1990 	for (type = 0; type < nr_swapfiles; type++) {
1991 		struct swap_info_struct *sis = swap_info[type];
1992 
1993 		if (!(sis->flags & SWP_WRITEOK))
1994 			continue;
1995 
1996 		if (device == sis->bdev->bd_dev) {
1997 			struct swap_extent *se = first_se(sis);
1998 
1999 			if (se->start_block == offset) {
2000 				spin_unlock(&swap_lock);
2001 				return type;
2002 			}
2003 		}
2004 	}
2005 	spin_unlock(&swap_lock);
2006 	return -ENODEV;
2007 }
2008 
2009 int find_first_swap(dev_t *device)
2010 {
2011 	int type;
2012 
2013 	spin_lock(&swap_lock);
2014 	for (type = 0; type < nr_swapfiles; type++) {
2015 		struct swap_info_struct *sis = swap_info[type];
2016 
2017 		if (!(sis->flags & SWP_WRITEOK))
2018 			continue;
2019 		*device = sis->bdev->bd_dev;
2020 		spin_unlock(&swap_lock);
2021 		return type;
2022 	}
2023 	spin_unlock(&swap_lock);
2024 	return -ENODEV;
2025 }
2026 
2027 /*
2028  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
2029  * corresponding to given index in swap_info (swap type).
2030  */
2031 sector_t swapdev_block(int type, pgoff_t offset)
2032 {
2033 	struct swap_info_struct *si = swap_type_to_swap_info(type);
2034 	struct swap_extent *se;
2035 
2036 	if (!si || !(si->flags & SWP_WRITEOK))
2037 		return 0;
2038 	se = offset_to_swap_extent(si, offset);
2039 	return se->start_block + (offset - se->start_page);
2040 }
2041 
2042 /*
2043  * Return either the total number of swap pages of given type, or the number
2044  * of free pages of that type (depending on @free)
2045  *
2046  * This is needed for software suspend
2047  */
2048 unsigned int count_swap_pages(int type, int free)
2049 {
2050 	unsigned int n = 0;
2051 
2052 	spin_lock(&swap_lock);
2053 	if ((unsigned int)type < nr_swapfiles) {
2054 		struct swap_info_struct *sis = swap_info[type];
2055 
2056 		spin_lock(&sis->lock);
2057 		if (sis->flags & SWP_WRITEOK) {
2058 			n = sis->pages;
2059 			if (free)
2060 				n -= sis->inuse_pages;
2061 		}
2062 		spin_unlock(&sis->lock);
2063 	}
2064 	spin_unlock(&swap_lock);
2065 	return n;
2066 }
2067 #endif /* CONFIG_HIBERNATION */
2068 
2069 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
2070 {
2071 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
2072 }
2073 
2074 /*
2075  * No need to decide whether this PTE shares the swap entry with others,
2076  * just let do_wp_page work it out if a write is requested later - to
2077  * force COW, vm_page_prot omits write permission from any private vma.
2078  */
2079 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
2080 		unsigned long addr, swp_entry_t entry, struct folio *folio)
2081 {
2082 	struct page *page;
2083 	struct folio *swapcache;
2084 	spinlock_t *ptl;
2085 	pte_t *pte, new_pte, old_pte;
2086 	bool hwpoisoned = false;
2087 	int ret = 1;
2088 
2089 	swapcache = folio;
2090 	folio = ksm_might_need_to_copy(folio, vma, addr);
2091 	if (unlikely(!folio))
2092 		return -ENOMEM;
2093 	else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
2094 		hwpoisoned = true;
2095 		folio = swapcache;
2096 	}
2097 
2098 	page = folio_file_page(folio, swp_offset(entry));
2099 	if (PageHWPoison(page))
2100 		hwpoisoned = true;
2101 
2102 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
2103 	if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
2104 						swp_entry_to_pte(entry)))) {
2105 		ret = 0;
2106 		goto out;
2107 	}
2108 
2109 	old_pte = ptep_get(pte);
2110 
2111 	if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
2112 		swp_entry_t swp_entry;
2113 
2114 		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2115 		if (hwpoisoned) {
2116 			swp_entry = make_hwpoison_entry(page);
2117 		} else {
2118 			swp_entry = make_poisoned_swp_entry();
2119 		}
2120 		new_pte = swp_entry_to_pte(swp_entry);
2121 		ret = 0;
2122 		goto setpte;
2123 	}
2124 
2125 	/*
2126 	 * Some architectures may have to restore extra metadata to the page
2127 	 * when reading from swap. This metadata may be indexed by swap entry
2128 	 * so this must be called before swap_free().
2129 	 */
2130 	arch_swap_restore(folio_swap(entry, folio), folio);
2131 
2132 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2133 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
2134 	folio_get(folio);
2135 	if (folio == swapcache) {
2136 		rmap_t rmap_flags = RMAP_NONE;
2137 
2138 		/*
2139 		 * See do_swap_page(): writeback would be problematic.
2140 		 * However, we do a folio_wait_writeback() just before this
2141 		 * call and have the folio locked.
2142 		 */
2143 		VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
2144 		if (pte_swp_exclusive(old_pte))
2145 			rmap_flags |= RMAP_EXCLUSIVE;
2146 		/*
2147 		 * We currently only expect small !anon folios, which are either
2148 		 * fully exclusive or fully shared. If we ever get large folios
2149 		 * here, we have to be careful.
2150 		 */
2151 		if (!folio_test_anon(folio)) {
2152 			VM_WARN_ON_ONCE(folio_test_large(folio));
2153 			VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
2154 			folio_add_new_anon_rmap(folio, vma, addr, rmap_flags);
2155 		} else {
2156 			folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
2157 		}
2158 	} else { /* ksm created a completely new copy */
2159 		folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
2160 		folio_add_lru_vma(folio, vma);
2161 	}
2162 	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
2163 	if (pte_swp_soft_dirty(old_pte))
2164 		new_pte = pte_mksoft_dirty(new_pte);
2165 	if (pte_swp_uffd_wp(old_pte))
2166 		new_pte = pte_mkuffd_wp(new_pte);
2167 setpte:
2168 	set_pte_at(vma->vm_mm, addr, pte, new_pte);
2169 	swap_free(entry);
2170 out:
2171 	if (pte)
2172 		pte_unmap_unlock(pte, ptl);
2173 	if (folio != swapcache) {
2174 		folio_unlock(folio);
2175 		folio_put(folio);
2176 	}
2177 	return ret;
2178 }
2179 
2180 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
2181 			unsigned long addr, unsigned long end,
2182 			unsigned int type)
2183 {
2184 	pte_t *pte = NULL;
2185 	struct swap_info_struct *si;
2186 
2187 	si = swap_info[type];
2188 	do {
2189 		struct folio *folio;
2190 		unsigned long offset;
2191 		unsigned char swp_count;
2192 		swp_entry_t entry;
2193 		int ret;
2194 		pte_t ptent;
2195 
2196 		if (!pte++) {
2197 			pte = pte_offset_map(pmd, addr);
2198 			if (!pte)
2199 				break;
2200 		}
2201 
2202 		ptent = ptep_get_lockless(pte);
2203 
2204 		if (!is_swap_pte(ptent))
2205 			continue;
2206 
2207 		entry = pte_to_swp_entry(ptent);
2208 		if (swp_type(entry) != type)
2209 			continue;
2210 
2211 		offset = swp_offset(entry);
2212 		pte_unmap(pte);
2213 		pte = NULL;
2214 
2215 		folio = swap_cache_get_folio(entry, vma, addr);
2216 		if (!folio) {
2217 			struct vm_fault vmf = {
2218 				.vma = vma,
2219 				.address = addr,
2220 				.real_address = addr,
2221 				.pmd = pmd,
2222 			};
2223 
2224 			folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2225 						&vmf);
2226 		}
2227 		if (!folio) {
2228 			swp_count = READ_ONCE(si->swap_map[offset]);
2229 			if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
2230 				continue;
2231 			return -ENOMEM;
2232 		}
2233 
2234 		folio_lock(folio);
2235 		folio_wait_writeback(folio);
2236 		ret = unuse_pte(vma, pmd, addr, entry, folio);
2237 		if (ret < 0) {
2238 			folio_unlock(folio);
2239 			folio_put(folio);
2240 			return ret;
2241 		}
2242 
2243 		folio_free_swap(folio);
2244 		folio_unlock(folio);
2245 		folio_put(folio);
2246 	} while (addr += PAGE_SIZE, addr != end);
2247 
2248 	if (pte)
2249 		pte_unmap(pte);
2250 	return 0;
2251 }
2252 
2253 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2254 				unsigned long addr, unsigned long end,
2255 				unsigned int type)
2256 {
2257 	pmd_t *pmd;
2258 	unsigned long next;
2259 	int ret;
2260 
2261 	pmd = pmd_offset(pud, addr);
2262 	do {
2263 		cond_resched();
2264 		next = pmd_addr_end(addr, end);
2265 		ret = unuse_pte_range(vma, pmd, addr, next, type);
2266 		if (ret)
2267 			return ret;
2268 	} while (pmd++, addr = next, addr != end);
2269 	return 0;
2270 }
2271 
2272 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2273 				unsigned long addr, unsigned long end,
2274 				unsigned int type)
2275 {
2276 	pud_t *pud;
2277 	unsigned long next;
2278 	int ret;
2279 
2280 	pud = pud_offset(p4d, addr);
2281 	do {
2282 		next = pud_addr_end(addr, end);
2283 		if (pud_none_or_clear_bad(pud))
2284 			continue;
2285 		ret = unuse_pmd_range(vma, pud, addr, next, type);
2286 		if (ret)
2287 			return ret;
2288 	} while (pud++, addr = next, addr != end);
2289 	return 0;
2290 }
2291 
2292 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2293 				unsigned long addr, unsigned long end,
2294 				unsigned int type)
2295 {
2296 	p4d_t *p4d;
2297 	unsigned long next;
2298 	int ret;
2299 
2300 	p4d = p4d_offset(pgd, addr);
2301 	do {
2302 		next = p4d_addr_end(addr, end);
2303 		if (p4d_none_or_clear_bad(p4d))
2304 			continue;
2305 		ret = unuse_pud_range(vma, p4d, addr, next, type);
2306 		if (ret)
2307 			return ret;
2308 	} while (p4d++, addr = next, addr != end);
2309 	return 0;
2310 }
2311 
2312 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
2313 {
2314 	pgd_t *pgd;
2315 	unsigned long addr, end, next;
2316 	int ret;
2317 
2318 	addr = vma->vm_start;
2319 	end = vma->vm_end;
2320 
2321 	pgd = pgd_offset(vma->vm_mm, addr);
2322 	do {
2323 		next = pgd_addr_end(addr, end);
2324 		if (pgd_none_or_clear_bad(pgd))
2325 			continue;
2326 		ret = unuse_p4d_range(vma, pgd, addr, next, type);
2327 		if (ret)
2328 			return ret;
2329 	} while (pgd++, addr = next, addr != end);
2330 	return 0;
2331 }
2332 
2333 static int unuse_mm(struct mm_struct *mm, unsigned int type)
2334 {
2335 	struct vm_area_struct *vma;
2336 	int ret = 0;
2337 	VMA_ITERATOR(vmi, mm, 0);
2338 
2339 	mmap_read_lock(mm);
2340 	for_each_vma(vmi, vma) {
2341 		if (vma->anon_vma && !is_vm_hugetlb_page(vma)) {
2342 			ret = unuse_vma(vma, type);
2343 			if (ret)
2344 				break;
2345 		}
2346 
2347 		cond_resched();
2348 	}
2349 	mmap_read_unlock(mm);
2350 	return ret;
2351 }
2352 
2353 /*
2354  * Scan swap_map from current position to next entry still in use.
2355  * Return 0 if there are no inuse entries after prev till end of
2356  * the map.
2357  */
2358 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2359 					unsigned int prev)
2360 {
2361 	unsigned int i;
2362 	unsigned char count;
2363 
2364 	/*
2365 	 * No need for swap_lock here: we're just looking
2366 	 * for whether an entry is in use, not modifying it; false
2367 	 * hits are okay, and sys_swapoff() has already prevented new
2368 	 * allocations from this area (while holding swap_lock).
2369 	 */
2370 	for (i = prev + 1; i < si->max; i++) {
2371 		count = READ_ONCE(si->swap_map[i]);
2372 		if (count && swap_count(count) != SWAP_MAP_BAD)
2373 			break;
2374 		if ((i % LATENCY_LIMIT) == 0)
2375 			cond_resched();
2376 	}
2377 
2378 	if (i == si->max)
2379 		i = 0;
2380 
2381 	return i;
2382 }
2383 
2384 static int try_to_unuse(unsigned int type)
2385 {
2386 	struct mm_struct *prev_mm;
2387 	struct mm_struct *mm;
2388 	struct list_head *p;
2389 	int retval = 0;
2390 	struct swap_info_struct *si = swap_info[type];
2391 	struct folio *folio;
2392 	swp_entry_t entry;
2393 	unsigned int i;
2394 
2395 	if (!READ_ONCE(si->inuse_pages))
2396 		goto success;
2397 
2398 retry:
2399 	retval = shmem_unuse(type);
2400 	if (retval)
2401 		return retval;
2402 
2403 	prev_mm = &init_mm;
2404 	mmget(prev_mm);
2405 
2406 	spin_lock(&mmlist_lock);
2407 	p = &init_mm.mmlist;
2408 	while (READ_ONCE(si->inuse_pages) &&
2409 	       !signal_pending(current) &&
2410 	       (p = p->next) != &init_mm.mmlist) {
2411 
2412 		mm = list_entry(p, struct mm_struct, mmlist);
2413 		if (!mmget_not_zero(mm))
2414 			continue;
2415 		spin_unlock(&mmlist_lock);
2416 		mmput(prev_mm);
2417 		prev_mm = mm;
2418 		retval = unuse_mm(mm, type);
2419 		if (retval) {
2420 			mmput(prev_mm);
2421 			return retval;
2422 		}
2423 
2424 		/*
2425 		 * Make sure that we aren't completely killing
2426 		 * interactive performance.
2427 		 */
2428 		cond_resched();
2429 		spin_lock(&mmlist_lock);
2430 	}
2431 	spin_unlock(&mmlist_lock);
2432 
2433 	mmput(prev_mm);
2434 
2435 	i = 0;
2436 	while (READ_ONCE(si->inuse_pages) &&
2437 	       !signal_pending(current) &&
2438 	       (i = find_next_to_unuse(si, i)) != 0) {
2439 
2440 		entry = swp_entry(type, i);
2441 		folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry));
2442 		if (IS_ERR(folio))
2443 			continue;
2444 
2445 		/*
2446 		 * It is conceivable that a racing task removed this folio from
2447 		 * swap cache just before we acquired the page lock. The folio
2448 		 * might even be back in swap cache on another swap area. But
2449 		 * that is okay, folio_free_swap() only removes stale folios.
2450 		 */
2451 		folio_lock(folio);
2452 		folio_wait_writeback(folio);
2453 		folio_free_swap(folio);
2454 		folio_unlock(folio);
2455 		folio_put(folio);
2456 	}
2457 
2458 	/*
2459 	 * Lets check again to see if there are still swap entries in the map.
2460 	 * If yes, we would need to do retry the unuse logic again.
2461 	 * Under global memory pressure, swap entries can be reinserted back
2462 	 * into process space after the mmlist loop above passes over them.
2463 	 *
2464 	 * Limit the number of retries? No: when mmget_not_zero()
2465 	 * above fails, that mm is likely to be freeing swap from
2466 	 * exit_mmap(), which proceeds at its own independent pace;
2467 	 * and even shmem_writepage() could have been preempted after
2468 	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2469 	 * and robust (though cpu-intensive) just to keep retrying.
2470 	 */
2471 	if (READ_ONCE(si->inuse_pages)) {
2472 		if (!signal_pending(current))
2473 			goto retry;
2474 		return -EINTR;
2475 	}
2476 
2477 success:
2478 	/*
2479 	 * Make sure that further cleanups after try_to_unuse() returns happen
2480 	 * after swap_range_free() reduces si->inuse_pages to 0.
2481 	 */
2482 	smp_mb();
2483 	return 0;
2484 }
2485 
2486 /*
2487  * After a successful try_to_unuse, if no swap is now in use, we know
2488  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2489  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2490  * added to the mmlist just after page_duplicate - before would be racy.
2491  */
2492 static void drain_mmlist(void)
2493 {
2494 	struct list_head *p, *next;
2495 	unsigned int type;
2496 
2497 	for (type = 0; type < nr_swapfiles; type++)
2498 		if (swap_info[type]->inuse_pages)
2499 			return;
2500 	spin_lock(&mmlist_lock);
2501 	list_for_each_safe(p, next, &init_mm.mmlist)
2502 		list_del_init(p);
2503 	spin_unlock(&mmlist_lock);
2504 }
2505 
2506 /*
2507  * Free all of a swapdev's extent information
2508  */
2509 static void destroy_swap_extents(struct swap_info_struct *sis)
2510 {
2511 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2512 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2513 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2514 
2515 		rb_erase(rb, &sis->swap_extent_root);
2516 		kfree(se);
2517 	}
2518 
2519 	if (sis->flags & SWP_ACTIVATED) {
2520 		struct file *swap_file = sis->swap_file;
2521 		struct address_space *mapping = swap_file->f_mapping;
2522 
2523 		sis->flags &= ~SWP_ACTIVATED;
2524 		if (mapping->a_ops->swap_deactivate)
2525 			mapping->a_ops->swap_deactivate(swap_file);
2526 	}
2527 }
2528 
2529 /*
2530  * Add a block range (and the corresponding page range) into this swapdev's
2531  * extent tree.
2532  *
2533  * This function rather assumes that it is called in ascending page order.
2534  */
2535 int
2536 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2537 		unsigned long nr_pages, sector_t start_block)
2538 {
2539 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2540 	struct swap_extent *se;
2541 	struct swap_extent *new_se;
2542 
2543 	/*
2544 	 * place the new node at the right most since the
2545 	 * function is called in ascending page order.
2546 	 */
2547 	while (*link) {
2548 		parent = *link;
2549 		link = &parent->rb_right;
2550 	}
2551 
2552 	if (parent) {
2553 		se = rb_entry(parent, struct swap_extent, rb_node);
2554 		BUG_ON(se->start_page + se->nr_pages != start_page);
2555 		if (se->start_block + se->nr_pages == start_block) {
2556 			/* Merge it */
2557 			se->nr_pages += nr_pages;
2558 			return 0;
2559 		}
2560 	}
2561 
2562 	/* No merge, insert a new extent. */
2563 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2564 	if (new_se == NULL)
2565 		return -ENOMEM;
2566 	new_se->start_page = start_page;
2567 	new_se->nr_pages = nr_pages;
2568 	new_se->start_block = start_block;
2569 
2570 	rb_link_node(&new_se->rb_node, parent, link);
2571 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2572 	return 1;
2573 }
2574 EXPORT_SYMBOL_GPL(add_swap_extent);
2575 
2576 /*
2577  * A `swap extent' is a simple thing which maps a contiguous range of pages
2578  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2579  * built at swapon time and is then used at swap_writepage/swap_read_folio
2580  * time for locating where on disk a page belongs.
2581  *
2582  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2583  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2584  * swap files identically.
2585  *
2586  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2587  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2588  * swapfiles are handled *identically* after swapon time.
2589  *
2590  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2591  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2592  * blocks are found which do not fall within the PAGE_SIZE alignment
2593  * requirements, they are simply tossed out - we will never use those blocks
2594  * for swapping.
2595  *
2596  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2597  * prevents users from writing to the swap device, which will corrupt memory.
2598  *
2599  * The amount of disk space which a single swap extent represents varies.
2600  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2601  * extents in the rbtree. - akpm.
2602  */
2603 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2604 {
2605 	struct file *swap_file = sis->swap_file;
2606 	struct address_space *mapping = swap_file->f_mapping;
2607 	struct inode *inode = mapping->host;
2608 	int ret;
2609 
2610 	if (S_ISBLK(inode->i_mode)) {
2611 		ret = add_swap_extent(sis, 0, sis->max, 0);
2612 		*span = sis->pages;
2613 		return ret;
2614 	}
2615 
2616 	if (mapping->a_ops->swap_activate) {
2617 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2618 		if (ret < 0)
2619 			return ret;
2620 		sis->flags |= SWP_ACTIVATED;
2621 		if ((sis->flags & SWP_FS_OPS) &&
2622 		    sio_pool_init() != 0) {
2623 			destroy_swap_extents(sis);
2624 			return -ENOMEM;
2625 		}
2626 		return ret;
2627 	}
2628 
2629 	return generic_swapfile_activate(sis, swap_file, span);
2630 }
2631 
2632 static int swap_node(struct swap_info_struct *si)
2633 {
2634 	struct block_device *bdev;
2635 
2636 	if (si->bdev)
2637 		bdev = si->bdev;
2638 	else
2639 		bdev = si->swap_file->f_inode->i_sb->s_bdev;
2640 
2641 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2642 }
2643 
2644 static void setup_swap_info(struct swap_info_struct *si, int prio,
2645 			    unsigned char *swap_map,
2646 			    struct swap_cluster_info *cluster_info,
2647 			    unsigned long *zeromap)
2648 {
2649 	int i;
2650 
2651 	if (prio >= 0)
2652 		si->prio = prio;
2653 	else
2654 		si->prio = --least_priority;
2655 	/*
2656 	 * the plist prio is negated because plist ordering is
2657 	 * low-to-high, while swap ordering is high-to-low
2658 	 */
2659 	si->list.prio = -si->prio;
2660 	for_each_node(i) {
2661 		if (si->prio >= 0)
2662 			si->avail_lists[i].prio = -si->prio;
2663 		else {
2664 			if (swap_node(si) == i)
2665 				si->avail_lists[i].prio = 1;
2666 			else
2667 				si->avail_lists[i].prio = -si->prio;
2668 		}
2669 	}
2670 	si->swap_map = swap_map;
2671 	si->cluster_info = cluster_info;
2672 	si->zeromap = zeromap;
2673 }
2674 
2675 static void _enable_swap_info(struct swap_info_struct *si)
2676 {
2677 	si->flags |= SWP_WRITEOK;
2678 	atomic_long_add(si->pages, &nr_swap_pages);
2679 	total_swap_pages += si->pages;
2680 
2681 	assert_spin_locked(&swap_lock);
2682 	/*
2683 	 * both lists are plists, and thus priority ordered.
2684 	 * swap_active_head needs to be priority ordered for swapoff(),
2685 	 * which on removal of any swap_info_struct with an auto-assigned
2686 	 * (i.e. negative) priority increments the auto-assigned priority
2687 	 * of any lower-priority swap_info_structs.
2688 	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2689 	 * which allocates swap pages from the highest available priority
2690 	 * swap_info_struct.
2691 	 */
2692 	plist_add(&si->list, &swap_active_head);
2693 
2694 	/* add to available list iff swap device is not full */
2695 	if (si->highest_bit)
2696 		add_to_avail_list(si);
2697 }
2698 
2699 static void enable_swap_info(struct swap_info_struct *si, int prio,
2700 				unsigned char *swap_map,
2701 				struct swap_cluster_info *cluster_info,
2702 				unsigned long *zeromap)
2703 {
2704 	spin_lock(&swap_lock);
2705 	spin_lock(&si->lock);
2706 	setup_swap_info(si, prio, swap_map, cluster_info, zeromap);
2707 	spin_unlock(&si->lock);
2708 	spin_unlock(&swap_lock);
2709 	/*
2710 	 * Finished initializing swap device, now it's safe to reference it.
2711 	 */
2712 	percpu_ref_resurrect(&si->users);
2713 	spin_lock(&swap_lock);
2714 	spin_lock(&si->lock);
2715 	_enable_swap_info(si);
2716 	spin_unlock(&si->lock);
2717 	spin_unlock(&swap_lock);
2718 }
2719 
2720 static void reinsert_swap_info(struct swap_info_struct *si)
2721 {
2722 	spin_lock(&swap_lock);
2723 	spin_lock(&si->lock);
2724 	setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap);
2725 	_enable_swap_info(si);
2726 	spin_unlock(&si->lock);
2727 	spin_unlock(&swap_lock);
2728 }
2729 
2730 static bool __has_usable_swap(void)
2731 {
2732 	return !plist_head_empty(&swap_active_head);
2733 }
2734 
2735 bool has_usable_swap(void)
2736 {
2737 	bool ret;
2738 
2739 	spin_lock(&swap_lock);
2740 	ret = __has_usable_swap();
2741 	spin_unlock(&swap_lock);
2742 	return ret;
2743 }
2744 
2745 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2746 {
2747 	struct swap_info_struct *p = NULL;
2748 	unsigned char *swap_map;
2749 	unsigned long *zeromap;
2750 	struct swap_cluster_info *cluster_info;
2751 	struct file *swap_file, *victim;
2752 	struct address_space *mapping;
2753 	struct inode *inode;
2754 	struct filename *pathname;
2755 	int err, found = 0;
2756 
2757 	if (!capable(CAP_SYS_ADMIN))
2758 		return -EPERM;
2759 
2760 	BUG_ON(!current->mm);
2761 
2762 	pathname = getname(specialfile);
2763 	if (IS_ERR(pathname))
2764 		return PTR_ERR(pathname);
2765 
2766 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2767 	err = PTR_ERR(victim);
2768 	if (IS_ERR(victim))
2769 		goto out;
2770 
2771 	mapping = victim->f_mapping;
2772 	spin_lock(&swap_lock);
2773 	plist_for_each_entry(p, &swap_active_head, list) {
2774 		if (p->flags & SWP_WRITEOK) {
2775 			if (p->swap_file->f_mapping == mapping) {
2776 				found = 1;
2777 				break;
2778 			}
2779 		}
2780 	}
2781 	if (!found) {
2782 		err = -EINVAL;
2783 		spin_unlock(&swap_lock);
2784 		goto out_dput;
2785 	}
2786 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2787 		vm_unacct_memory(p->pages);
2788 	else {
2789 		err = -ENOMEM;
2790 		spin_unlock(&swap_lock);
2791 		goto out_dput;
2792 	}
2793 	spin_lock(&p->lock);
2794 	del_from_avail_list(p);
2795 	if (p->prio < 0) {
2796 		struct swap_info_struct *si = p;
2797 		int nid;
2798 
2799 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2800 			si->prio++;
2801 			si->list.prio--;
2802 			for_each_node(nid) {
2803 				if (si->avail_lists[nid].prio != 1)
2804 					si->avail_lists[nid].prio--;
2805 			}
2806 		}
2807 		least_priority++;
2808 	}
2809 	plist_del(&p->list, &swap_active_head);
2810 	atomic_long_sub(p->pages, &nr_swap_pages);
2811 	total_swap_pages -= p->pages;
2812 	p->flags &= ~SWP_WRITEOK;
2813 	spin_unlock(&p->lock);
2814 	spin_unlock(&swap_lock);
2815 
2816 	disable_swap_slots_cache_lock();
2817 
2818 	set_current_oom_origin();
2819 	err = try_to_unuse(p->type);
2820 	clear_current_oom_origin();
2821 
2822 	if (err) {
2823 		/* re-insert swap space back into swap_list */
2824 		reinsert_swap_info(p);
2825 		reenable_swap_slots_cache_unlock();
2826 		goto out_dput;
2827 	}
2828 
2829 	reenable_swap_slots_cache_unlock();
2830 
2831 	/*
2832 	 * Wait for swap operations protected by get/put_swap_device()
2833 	 * to complete.  Because of synchronize_rcu() here, all swap
2834 	 * operations protected by RCU reader side lock (including any
2835 	 * spinlock) will be waited too.  This makes it easy to
2836 	 * prevent folio_test_swapcache() and the following swap cache
2837 	 * operations from racing with swapoff.
2838 	 */
2839 	percpu_ref_kill(&p->users);
2840 	synchronize_rcu();
2841 	wait_for_completion(&p->comp);
2842 
2843 	flush_work(&p->discard_work);
2844 	flush_work(&p->reclaim_work);
2845 
2846 	destroy_swap_extents(p);
2847 	if (p->flags & SWP_CONTINUED)
2848 		free_swap_count_continuations(p);
2849 
2850 	if (!p->bdev || !bdev_nonrot(p->bdev))
2851 		atomic_dec(&nr_rotate_swap);
2852 
2853 	mutex_lock(&swapon_mutex);
2854 	spin_lock(&swap_lock);
2855 	spin_lock(&p->lock);
2856 	drain_mmlist();
2857 
2858 	/* wait for anyone still in scan_swap_map_slots */
2859 	p->highest_bit = 0;		/* cuts scans short */
2860 	while (p->flags >= SWP_SCANNING) {
2861 		spin_unlock(&p->lock);
2862 		spin_unlock(&swap_lock);
2863 		schedule_timeout_uninterruptible(1);
2864 		spin_lock(&swap_lock);
2865 		spin_lock(&p->lock);
2866 	}
2867 
2868 	swap_file = p->swap_file;
2869 	p->swap_file = NULL;
2870 	p->max = 0;
2871 	swap_map = p->swap_map;
2872 	p->swap_map = NULL;
2873 	zeromap = p->zeromap;
2874 	p->zeromap = NULL;
2875 	cluster_info = p->cluster_info;
2876 	p->cluster_info = NULL;
2877 	spin_unlock(&p->lock);
2878 	spin_unlock(&swap_lock);
2879 	arch_swap_invalidate_area(p->type);
2880 	zswap_swapoff(p->type);
2881 	mutex_unlock(&swapon_mutex);
2882 	free_percpu(p->percpu_cluster);
2883 	p->percpu_cluster = NULL;
2884 	free_percpu(p->cluster_next_cpu);
2885 	p->cluster_next_cpu = NULL;
2886 	vfree(swap_map);
2887 	kvfree(zeromap);
2888 	kvfree(cluster_info);
2889 	/* Destroy swap account information */
2890 	swap_cgroup_swapoff(p->type);
2891 	exit_swap_address_space(p->type);
2892 
2893 	inode = mapping->host;
2894 
2895 	inode_lock(inode);
2896 	inode->i_flags &= ~S_SWAPFILE;
2897 	inode_unlock(inode);
2898 	filp_close(swap_file, NULL);
2899 
2900 	/*
2901 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2902 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2903 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2904 	 */
2905 	spin_lock(&swap_lock);
2906 	p->flags = 0;
2907 	spin_unlock(&swap_lock);
2908 
2909 	err = 0;
2910 	atomic_inc(&proc_poll_event);
2911 	wake_up_interruptible(&proc_poll_wait);
2912 
2913 out_dput:
2914 	filp_close(victim, NULL);
2915 out:
2916 	putname(pathname);
2917 	return err;
2918 }
2919 
2920 #ifdef CONFIG_PROC_FS
2921 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2922 {
2923 	struct seq_file *seq = file->private_data;
2924 
2925 	poll_wait(file, &proc_poll_wait, wait);
2926 
2927 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2928 		seq->poll_event = atomic_read(&proc_poll_event);
2929 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2930 	}
2931 
2932 	return EPOLLIN | EPOLLRDNORM;
2933 }
2934 
2935 /* iterator */
2936 static void *swap_start(struct seq_file *swap, loff_t *pos)
2937 {
2938 	struct swap_info_struct *si;
2939 	int type;
2940 	loff_t l = *pos;
2941 
2942 	mutex_lock(&swapon_mutex);
2943 
2944 	if (!l)
2945 		return SEQ_START_TOKEN;
2946 
2947 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2948 		if (!(si->flags & SWP_USED) || !si->swap_map)
2949 			continue;
2950 		if (!--l)
2951 			return si;
2952 	}
2953 
2954 	return NULL;
2955 }
2956 
2957 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2958 {
2959 	struct swap_info_struct *si = v;
2960 	int type;
2961 
2962 	if (v == SEQ_START_TOKEN)
2963 		type = 0;
2964 	else
2965 		type = si->type + 1;
2966 
2967 	++(*pos);
2968 	for (; (si = swap_type_to_swap_info(type)); type++) {
2969 		if (!(si->flags & SWP_USED) || !si->swap_map)
2970 			continue;
2971 		return si;
2972 	}
2973 
2974 	return NULL;
2975 }
2976 
2977 static void swap_stop(struct seq_file *swap, void *v)
2978 {
2979 	mutex_unlock(&swapon_mutex);
2980 }
2981 
2982 static int swap_show(struct seq_file *swap, void *v)
2983 {
2984 	struct swap_info_struct *si = v;
2985 	struct file *file;
2986 	int len;
2987 	unsigned long bytes, inuse;
2988 
2989 	if (si == SEQ_START_TOKEN) {
2990 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2991 		return 0;
2992 	}
2993 
2994 	bytes = K(si->pages);
2995 	inuse = K(READ_ONCE(si->inuse_pages));
2996 
2997 	file = si->swap_file;
2998 	len = seq_file_path(swap, file, " \t\n\\");
2999 	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
3000 			len < 40 ? 40 - len : 1, " ",
3001 			S_ISBLK(file_inode(file)->i_mode) ?
3002 				"partition" : "file\t",
3003 			bytes, bytes < 10000000 ? "\t" : "",
3004 			inuse, inuse < 10000000 ? "\t" : "",
3005 			si->prio);
3006 	return 0;
3007 }
3008 
3009 static const struct seq_operations swaps_op = {
3010 	.start =	swap_start,
3011 	.next =		swap_next,
3012 	.stop =		swap_stop,
3013 	.show =		swap_show
3014 };
3015 
3016 static int swaps_open(struct inode *inode, struct file *file)
3017 {
3018 	struct seq_file *seq;
3019 	int ret;
3020 
3021 	ret = seq_open(file, &swaps_op);
3022 	if (ret)
3023 		return ret;
3024 
3025 	seq = file->private_data;
3026 	seq->poll_event = atomic_read(&proc_poll_event);
3027 	return 0;
3028 }
3029 
3030 static const struct proc_ops swaps_proc_ops = {
3031 	.proc_flags	= PROC_ENTRY_PERMANENT,
3032 	.proc_open	= swaps_open,
3033 	.proc_read	= seq_read,
3034 	.proc_lseek	= seq_lseek,
3035 	.proc_release	= seq_release,
3036 	.proc_poll	= swaps_poll,
3037 };
3038 
3039 static int __init procswaps_init(void)
3040 {
3041 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
3042 	return 0;
3043 }
3044 __initcall(procswaps_init);
3045 #endif /* CONFIG_PROC_FS */
3046 
3047 #ifdef MAX_SWAPFILES_CHECK
3048 static int __init max_swapfiles_check(void)
3049 {
3050 	MAX_SWAPFILES_CHECK();
3051 	return 0;
3052 }
3053 late_initcall(max_swapfiles_check);
3054 #endif
3055 
3056 static struct swap_info_struct *alloc_swap_info(void)
3057 {
3058 	struct swap_info_struct *p;
3059 	struct swap_info_struct *defer = NULL;
3060 	unsigned int type;
3061 	int i;
3062 
3063 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
3064 	if (!p)
3065 		return ERR_PTR(-ENOMEM);
3066 
3067 	if (percpu_ref_init(&p->users, swap_users_ref_free,
3068 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
3069 		kvfree(p);
3070 		return ERR_PTR(-ENOMEM);
3071 	}
3072 
3073 	spin_lock(&swap_lock);
3074 	for (type = 0; type < nr_swapfiles; type++) {
3075 		if (!(swap_info[type]->flags & SWP_USED))
3076 			break;
3077 	}
3078 	if (type >= MAX_SWAPFILES) {
3079 		spin_unlock(&swap_lock);
3080 		percpu_ref_exit(&p->users);
3081 		kvfree(p);
3082 		return ERR_PTR(-EPERM);
3083 	}
3084 	if (type >= nr_swapfiles) {
3085 		p->type = type;
3086 		/*
3087 		 * Publish the swap_info_struct after initializing it.
3088 		 * Note that kvzalloc() above zeroes all its fields.
3089 		 */
3090 		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
3091 		nr_swapfiles++;
3092 	} else {
3093 		defer = p;
3094 		p = swap_info[type];
3095 		/*
3096 		 * Do not memset this entry: a racing procfs swap_next()
3097 		 * would be relying on p->type to remain valid.
3098 		 */
3099 	}
3100 	p->swap_extent_root = RB_ROOT;
3101 	plist_node_init(&p->list, 0);
3102 	for_each_node(i)
3103 		plist_node_init(&p->avail_lists[i], 0);
3104 	p->flags = SWP_USED;
3105 	spin_unlock(&swap_lock);
3106 	if (defer) {
3107 		percpu_ref_exit(&defer->users);
3108 		kvfree(defer);
3109 	}
3110 	spin_lock_init(&p->lock);
3111 	spin_lock_init(&p->cont_lock);
3112 	init_completion(&p->comp);
3113 
3114 	return p;
3115 }
3116 
3117 static int claim_swapfile(struct swap_info_struct *si, struct inode *inode)
3118 {
3119 	if (S_ISBLK(inode->i_mode)) {
3120 		si->bdev = I_BDEV(inode);
3121 		/*
3122 		 * Zoned block devices contain zones that have a sequential
3123 		 * write only restriction.  Hence zoned block devices are not
3124 		 * suitable for swapping.  Disallow them here.
3125 		 */
3126 		if (bdev_is_zoned(si->bdev))
3127 			return -EINVAL;
3128 		si->flags |= SWP_BLKDEV;
3129 	} else if (S_ISREG(inode->i_mode)) {
3130 		si->bdev = inode->i_sb->s_bdev;
3131 	}
3132 
3133 	return 0;
3134 }
3135 
3136 
3137 /*
3138  * Find out how many pages are allowed for a single swap device. There
3139  * are two limiting factors:
3140  * 1) the number of bits for the swap offset in the swp_entry_t type, and
3141  * 2) the number of bits in the swap pte, as defined by the different
3142  * architectures.
3143  *
3144  * In order to find the largest possible bit mask, a swap entry with
3145  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
3146  * decoded to a swp_entry_t again, and finally the swap offset is
3147  * extracted.
3148  *
3149  * This will mask all the bits from the initial ~0UL mask that can't
3150  * be encoded in either the swp_entry_t or the architecture definition
3151  * of a swap pte.
3152  */
3153 unsigned long generic_max_swapfile_size(void)
3154 {
3155 	return swp_offset(pte_to_swp_entry(
3156 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
3157 }
3158 
3159 /* Can be overridden by an architecture for additional checks. */
3160 __weak unsigned long arch_max_swapfile_size(void)
3161 {
3162 	return generic_max_swapfile_size();
3163 }
3164 
3165 static unsigned long read_swap_header(struct swap_info_struct *si,
3166 					union swap_header *swap_header,
3167 					struct inode *inode)
3168 {
3169 	int i;
3170 	unsigned long maxpages;
3171 	unsigned long swapfilepages;
3172 	unsigned long last_page;
3173 
3174 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
3175 		pr_err("Unable to find swap-space signature\n");
3176 		return 0;
3177 	}
3178 
3179 	/* swap partition endianness hack... */
3180 	if (swab32(swap_header->info.version) == 1) {
3181 		swab32s(&swap_header->info.version);
3182 		swab32s(&swap_header->info.last_page);
3183 		swab32s(&swap_header->info.nr_badpages);
3184 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3185 			return 0;
3186 		for (i = 0; i < swap_header->info.nr_badpages; i++)
3187 			swab32s(&swap_header->info.badpages[i]);
3188 	}
3189 	/* Check the swap header's sub-version */
3190 	if (swap_header->info.version != 1) {
3191 		pr_warn("Unable to handle swap header version %d\n",
3192 			swap_header->info.version);
3193 		return 0;
3194 	}
3195 
3196 	si->lowest_bit  = 1;
3197 	si->cluster_next = 1;
3198 	si->cluster_nr = 0;
3199 
3200 	maxpages = swapfile_maximum_size;
3201 	last_page = swap_header->info.last_page;
3202 	if (!last_page) {
3203 		pr_warn("Empty swap-file\n");
3204 		return 0;
3205 	}
3206 	if (last_page > maxpages) {
3207 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3208 			K(maxpages), K(last_page));
3209 	}
3210 	if (maxpages > last_page) {
3211 		maxpages = last_page + 1;
3212 		/* p->max is an unsigned int: don't overflow it */
3213 		if ((unsigned int)maxpages == 0)
3214 			maxpages = UINT_MAX;
3215 	}
3216 	si->highest_bit = maxpages - 1;
3217 
3218 	if (!maxpages)
3219 		return 0;
3220 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3221 	if (swapfilepages && maxpages > swapfilepages) {
3222 		pr_warn("Swap area shorter than signature indicates\n");
3223 		return 0;
3224 	}
3225 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3226 		return 0;
3227 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3228 		return 0;
3229 
3230 	return maxpages;
3231 }
3232 
3233 #define SWAP_CLUSTER_INFO_COLS						\
3234 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3235 #define SWAP_CLUSTER_SPACE_COLS						\
3236 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3237 #define SWAP_CLUSTER_COLS						\
3238 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3239 
3240 static int setup_swap_map_and_extents(struct swap_info_struct *si,
3241 					union swap_header *swap_header,
3242 					unsigned char *swap_map,
3243 					unsigned long maxpages,
3244 					sector_t *span)
3245 {
3246 	unsigned int nr_good_pages;
3247 	unsigned long i;
3248 	int nr_extents;
3249 
3250 	nr_good_pages = maxpages - 1;	/* omit header page */
3251 
3252 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3253 		unsigned int page_nr = swap_header->info.badpages[i];
3254 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3255 			return -EINVAL;
3256 		if (page_nr < maxpages) {
3257 			swap_map[page_nr] = SWAP_MAP_BAD;
3258 			nr_good_pages--;
3259 		}
3260 	}
3261 
3262 	if (nr_good_pages) {
3263 		swap_map[0] = SWAP_MAP_BAD;
3264 		si->max = maxpages;
3265 		si->pages = nr_good_pages;
3266 		nr_extents = setup_swap_extents(si, span);
3267 		if (nr_extents < 0)
3268 			return nr_extents;
3269 		nr_good_pages = si->pages;
3270 	}
3271 	if (!nr_good_pages) {
3272 		pr_warn("Empty swap-file\n");
3273 		return -EINVAL;
3274 	}
3275 
3276 	return nr_extents;
3277 }
3278 
3279 static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si,
3280 						union swap_header *swap_header,
3281 						unsigned long maxpages)
3282 {
3283 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3284 	unsigned long col = si->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3285 	struct swap_cluster_info *cluster_info;
3286 	unsigned long i, j, k, idx;
3287 	int cpu, err = -ENOMEM;
3288 
3289 	cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL);
3290 	if (!cluster_info)
3291 		goto err;
3292 
3293 	for (i = 0; i < nr_clusters; i++)
3294 		spin_lock_init(&cluster_info[i].lock);
3295 
3296 	si->cluster_next_cpu = alloc_percpu(unsigned int);
3297 	if (!si->cluster_next_cpu)
3298 		goto err_free;
3299 
3300 	/* Random start position to help with wear leveling */
3301 	for_each_possible_cpu(cpu)
3302 		per_cpu(*si->cluster_next_cpu, cpu) =
3303 		get_random_u32_inclusive(1, si->highest_bit);
3304 
3305 	si->percpu_cluster = alloc_percpu(struct percpu_cluster);
3306 	if (!si->percpu_cluster)
3307 		goto err_free;
3308 
3309 	for_each_possible_cpu(cpu) {
3310 		struct percpu_cluster *cluster;
3311 
3312 		cluster = per_cpu_ptr(si->percpu_cluster, cpu);
3313 		for (i = 0; i < SWAP_NR_ORDERS; i++)
3314 			cluster->next[i] = SWAP_NEXT_INVALID;
3315 	}
3316 
3317 	/*
3318 	 * Mark unusable pages as unavailable. The clusters aren't
3319 	 * marked free yet, so no list operations are involved yet.
3320 	 *
3321 	 * See setup_swap_map_and_extents(): header page, bad pages,
3322 	 * and the EOF part of the last cluster.
3323 	 */
3324 	inc_cluster_info_page(si, cluster_info, 0);
3325 	for (i = 0; i < swap_header->info.nr_badpages; i++)
3326 		inc_cluster_info_page(si, cluster_info,
3327 				      swap_header->info.badpages[i]);
3328 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3329 		inc_cluster_info_page(si, cluster_info, i);
3330 
3331 	INIT_LIST_HEAD(&si->free_clusters);
3332 	INIT_LIST_HEAD(&si->full_clusters);
3333 	INIT_LIST_HEAD(&si->discard_clusters);
3334 
3335 	for (i = 0; i < SWAP_NR_ORDERS; i++) {
3336 		INIT_LIST_HEAD(&si->nonfull_clusters[i]);
3337 		INIT_LIST_HEAD(&si->frag_clusters[i]);
3338 		si->frag_cluster_nr[i] = 0;
3339 	}
3340 
3341 	/*
3342 	 * Reduce false cache line sharing between cluster_info and
3343 	 * sharing same address space.
3344 	 */
3345 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3346 		j = (k + col) % SWAP_CLUSTER_COLS;
3347 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3348 			struct swap_cluster_info *ci;
3349 			idx = i * SWAP_CLUSTER_COLS + j;
3350 			ci = cluster_info + idx;
3351 			if (idx >= nr_clusters)
3352 				continue;
3353 			if (ci->count) {
3354 				ci->flags = CLUSTER_FLAG_NONFULL;
3355 				list_add_tail(&ci->list, &si->nonfull_clusters[0]);
3356 				continue;
3357 			}
3358 			ci->flags = CLUSTER_FLAG_FREE;
3359 			list_add_tail(&ci->list, &si->free_clusters);
3360 		}
3361 	}
3362 
3363 	return cluster_info;
3364 
3365 err_free:
3366 	kvfree(cluster_info);
3367 err:
3368 	return ERR_PTR(err);
3369 }
3370 
3371 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3372 {
3373 	struct swap_info_struct *si;
3374 	struct filename *name;
3375 	struct file *swap_file = NULL;
3376 	struct address_space *mapping;
3377 	struct dentry *dentry;
3378 	int prio;
3379 	int error;
3380 	union swap_header *swap_header;
3381 	int nr_extents;
3382 	sector_t span;
3383 	unsigned long maxpages;
3384 	unsigned char *swap_map = NULL;
3385 	unsigned long *zeromap = NULL;
3386 	struct swap_cluster_info *cluster_info = NULL;
3387 	struct folio *folio = NULL;
3388 	struct inode *inode = NULL;
3389 	bool inced_nr_rotate_swap = false;
3390 
3391 	if (swap_flags & ~SWAP_FLAGS_VALID)
3392 		return -EINVAL;
3393 
3394 	if (!capable(CAP_SYS_ADMIN))
3395 		return -EPERM;
3396 
3397 	if (!swap_avail_heads)
3398 		return -ENOMEM;
3399 
3400 	si = alloc_swap_info();
3401 	if (IS_ERR(si))
3402 		return PTR_ERR(si);
3403 
3404 	INIT_WORK(&si->discard_work, swap_discard_work);
3405 	INIT_WORK(&si->reclaim_work, swap_reclaim_work);
3406 
3407 	name = getname(specialfile);
3408 	if (IS_ERR(name)) {
3409 		error = PTR_ERR(name);
3410 		name = NULL;
3411 		goto bad_swap;
3412 	}
3413 	swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
3414 	if (IS_ERR(swap_file)) {
3415 		error = PTR_ERR(swap_file);
3416 		swap_file = NULL;
3417 		goto bad_swap;
3418 	}
3419 
3420 	si->swap_file = swap_file;
3421 	mapping = swap_file->f_mapping;
3422 	dentry = swap_file->f_path.dentry;
3423 	inode = mapping->host;
3424 
3425 	error = claim_swapfile(si, inode);
3426 	if (unlikely(error))
3427 		goto bad_swap;
3428 
3429 	inode_lock(inode);
3430 	if (d_unlinked(dentry) || cant_mount(dentry)) {
3431 		error = -ENOENT;
3432 		goto bad_swap_unlock_inode;
3433 	}
3434 	if (IS_SWAPFILE(inode)) {
3435 		error = -EBUSY;
3436 		goto bad_swap_unlock_inode;
3437 	}
3438 
3439 	/*
3440 	 * Read the swap header.
3441 	 */
3442 	if (!mapping->a_ops->read_folio) {
3443 		error = -EINVAL;
3444 		goto bad_swap_unlock_inode;
3445 	}
3446 	folio = read_mapping_folio(mapping, 0, swap_file);
3447 	if (IS_ERR(folio)) {
3448 		error = PTR_ERR(folio);
3449 		goto bad_swap_unlock_inode;
3450 	}
3451 	swap_header = kmap_local_folio(folio, 0);
3452 
3453 	maxpages = read_swap_header(si, swap_header, inode);
3454 	if (unlikely(!maxpages)) {
3455 		error = -EINVAL;
3456 		goto bad_swap_unlock_inode;
3457 	}
3458 
3459 	/* OK, set up the swap map and apply the bad block list */
3460 	swap_map = vzalloc(maxpages);
3461 	if (!swap_map) {
3462 		error = -ENOMEM;
3463 		goto bad_swap_unlock_inode;
3464 	}
3465 
3466 	error = swap_cgroup_swapon(si->type, maxpages);
3467 	if (error)
3468 		goto bad_swap_unlock_inode;
3469 
3470 	nr_extents = setup_swap_map_and_extents(si, swap_header, swap_map,
3471 						maxpages, &span);
3472 	if (unlikely(nr_extents < 0)) {
3473 		error = nr_extents;
3474 		goto bad_swap_unlock_inode;
3475 	}
3476 
3477 	/*
3478 	 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might
3479 	 * be above MAX_PAGE_ORDER incase of a large swap file.
3480 	 */
3481 	zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long),
3482 				    GFP_KERNEL | __GFP_ZERO);
3483 	if (!zeromap) {
3484 		error = -ENOMEM;
3485 		goto bad_swap_unlock_inode;
3486 	}
3487 
3488 	if (si->bdev && bdev_stable_writes(si->bdev))
3489 		si->flags |= SWP_STABLE_WRITES;
3490 
3491 	if (si->bdev && bdev_synchronous(si->bdev))
3492 		si->flags |= SWP_SYNCHRONOUS_IO;
3493 
3494 	if (si->bdev && bdev_nonrot(si->bdev)) {
3495 		si->flags |= SWP_SOLIDSTATE;
3496 
3497 		cluster_info = setup_clusters(si, swap_header, maxpages);
3498 		if (IS_ERR(cluster_info)) {
3499 			error = PTR_ERR(cluster_info);
3500 			cluster_info = NULL;
3501 			goto bad_swap_unlock_inode;
3502 		}
3503 	} else {
3504 		atomic_inc(&nr_rotate_swap);
3505 		inced_nr_rotate_swap = true;
3506 	}
3507 
3508 	if ((swap_flags & SWAP_FLAG_DISCARD) &&
3509 	    si->bdev && bdev_max_discard_sectors(si->bdev)) {
3510 		/*
3511 		 * When discard is enabled for swap with no particular
3512 		 * policy flagged, we set all swap discard flags here in
3513 		 * order to sustain backward compatibility with older
3514 		 * swapon(8) releases.
3515 		 */
3516 		si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3517 			     SWP_PAGE_DISCARD);
3518 
3519 		/*
3520 		 * By flagging sys_swapon, a sysadmin can tell us to
3521 		 * either do single-time area discards only, or to just
3522 		 * perform discards for released swap page-clusters.
3523 		 * Now it's time to adjust the p->flags accordingly.
3524 		 */
3525 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3526 			si->flags &= ~SWP_PAGE_DISCARD;
3527 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3528 			si->flags &= ~SWP_AREA_DISCARD;
3529 
3530 		/* issue a swapon-time discard if it's still required */
3531 		if (si->flags & SWP_AREA_DISCARD) {
3532 			int err = discard_swap(si);
3533 			if (unlikely(err))
3534 				pr_err("swapon: discard_swap(%p): %d\n",
3535 					si, err);
3536 		}
3537 	}
3538 
3539 	error = init_swap_address_space(si->type, maxpages);
3540 	if (error)
3541 		goto bad_swap_unlock_inode;
3542 
3543 	error = zswap_swapon(si->type, maxpages);
3544 	if (error)
3545 		goto free_swap_address_space;
3546 
3547 	/*
3548 	 * Flush any pending IO and dirty mappings before we start using this
3549 	 * swap device.
3550 	 */
3551 	inode->i_flags |= S_SWAPFILE;
3552 	error = inode_drain_writes(inode);
3553 	if (error) {
3554 		inode->i_flags &= ~S_SWAPFILE;
3555 		goto free_swap_zswap;
3556 	}
3557 
3558 	mutex_lock(&swapon_mutex);
3559 	prio = -1;
3560 	if (swap_flags & SWAP_FLAG_PREFER)
3561 		prio =
3562 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3563 	enable_swap_info(si, prio, swap_map, cluster_info, zeromap);
3564 
3565 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3566 		K(si->pages), name->name, si->prio, nr_extents,
3567 		K((unsigned long long)span),
3568 		(si->flags & SWP_SOLIDSTATE) ? "SS" : "",
3569 		(si->flags & SWP_DISCARDABLE) ? "D" : "",
3570 		(si->flags & SWP_AREA_DISCARD) ? "s" : "",
3571 		(si->flags & SWP_PAGE_DISCARD) ? "c" : "");
3572 
3573 	mutex_unlock(&swapon_mutex);
3574 	atomic_inc(&proc_poll_event);
3575 	wake_up_interruptible(&proc_poll_wait);
3576 
3577 	error = 0;
3578 	goto out;
3579 free_swap_zswap:
3580 	zswap_swapoff(si->type);
3581 free_swap_address_space:
3582 	exit_swap_address_space(si->type);
3583 bad_swap_unlock_inode:
3584 	inode_unlock(inode);
3585 bad_swap:
3586 	free_percpu(si->percpu_cluster);
3587 	si->percpu_cluster = NULL;
3588 	free_percpu(si->cluster_next_cpu);
3589 	si->cluster_next_cpu = NULL;
3590 	inode = NULL;
3591 	destroy_swap_extents(si);
3592 	swap_cgroup_swapoff(si->type);
3593 	spin_lock(&swap_lock);
3594 	si->swap_file = NULL;
3595 	si->flags = 0;
3596 	spin_unlock(&swap_lock);
3597 	vfree(swap_map);
3598 	kvfree(zeromap);
3599 	kvfree(cluster_info);
3600 	if (inced_nr_rotate_swap)
3601 		atomic_dec(&nr_rotate_swap);
3602 	if (swap_file)
3603 		filp_close(swap_file, NULL);
3604 out:
3605 	if (!IS_ERR_OR_NULL(folio))
3606 		folio_release_kmap(folio, swap_header);
3607 	if (name)
3608 		putname(name);
3609 	if (inode)
3610 		inode_unlock(inode);
3611 	if (!error)
3612 		enable_swap_slots_cache();
3613 	return error;
3614 }
3615 
3616 void si_swapinfo(struct sysinfo *val)
3617 {
3618 	unsigned int type;
3619 	unsigned long nr_to_be_unused = 0;
3620 
3621 	spin_lock(&swap_lock);
3622 	for (type = 0; type < nr_swapfiles; type++) {
3623 		struct swap_info_struct *si = swap_info[type];
3624 
3625 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3626 			nr_to_be_unused += READ_ONCE(si->inuse_pages);
3627 	}
3628 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3629 	val->totalswap = total_swap_pages + nr_to_be_unused;
3630 	spin_unlock(&swap_lock);
3631 }
3632 
3633 /*
3634  * Verify that nr swap entries are valid and increment their swap map counts.
3635  *
3636  * Returns error code in following case.
3637  * - success -> 0
3638  * - swp_entry is invalid -> EINVAL
3639  * - swp_entry is migration entry -> EINVAL
3640  * - swap-cache reference is requested but there is already one. -> EEXIST
3641  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3642  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3643  */
3644 static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr)
3645 {
3646 	struct swap_info_struct *si;
3647 	struct swap_cluster_info *ci;
3648 	unsigned long offset;
3649 	unsigned char count;
3650 	unsigned char has_cache;
3651 	int err, i;
3652 
3653 	si = swp_swap_info(entry);
3654 
3655 	offset = swp_offset(entry);
3656 	VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
3657 	VM_WARN_ON(usage == 1 && nr > 1);
3658 	ci = lock_cluster_or_swap_info(si, offset);
3659 
3660 	err = 0;
3661 	for (i = 0; i < nr; i++) {
3662 		count = si->swap_map[offset + i];
3663 
3664 		/*
3665 		 * swapin_readahead() doesn't check if a swap entry is valid, so the
3666 		 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3667 		 */
3668 		if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3669 			err = -ENOENT;
3670 			goto unlock_out;
3671 		}
3672 
3673 		has_cache = count & SWAP_HAS_CACHE;
3674 		count &= ~SWAP_HAS_CACHE;
3675 
3676 		if (!count && !has_cache) {
3677 			err = -ENOENT;
3678 		} else if (usage == SWAP_HAS_CACHE) {
3679 			if (has_cache)
3680 				err = -EEXIST;
3681 		} else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) {
3682 			err = -EINVAL;
3683 		}
3684 
3685 		if (err)
3686 			goto unlock_out;
3687 	}
3688 
3689 	for (i = 0; i < nr; i++) {
3690 		count = si->swap_map[offset + i];
3691 		has_cache = count & SWAP_HAS_CACHE;
3692 		count &= ~SWAP_HAS_CACHE;
3693 
3694 		if (usage == SWAP_HAS_CACHE)
3695 			has_cache = SWAP_HAS_CACHE;
3696 		else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3697 			count += usage;
3698 		else if (swap_count_continued(si, offset + i, count))
3699 			count = COUNT_CONTINUED;
3700 		else {
3701 			/*
3702 			 * Don't need to rollback changes, because if
3703 			 * usage == 1, there must be nr == 1.
3704 			 */
3705 			err = -ENOMEM;
3706 			goto unlock_out;
3707 		}
3708 
3709 		WRITE_ONCE(si->swap_map[offset + i], count | has_cache);
3710 	}
3711 
3712 unlock_out:
3713 	unlock_cluster_or_swap_info(si, ci);
3714 	return err;
3715 }
3716 
3717 /*
3718  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3719  * (in which case its reference count is never incremented).
3720  */
3721 void swap_shmem_alloc(swp_entry_t entry, int nr)
3722 {
3723 	__swap_duplicate(entry, SWAP_MAP_SHMEM, nr);
3724 }
3725 
3726 /*
3727  * Increase reference count of swap entry by 1.
3728  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3729  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3730  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3731  * might occur if a page table entry has got corrupted.
3732  */
3733 int swap_duplicate(swp_entry_t entry)
3734 {
3735 	int err = 0;
3736 
3737 	while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM)
3738 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3739 	return err;
3740 }
3741 
3742 /*
3743  * @entry: first swap entry from which we allocate nr swap cache.
3744  *
3745  * Called when allocating swap cache for existing swap entries,
3746  * This can return error codes. Returns 0 at success.
3747  * -EEXIST means there is a swap cache.
3748  * Note: return code is different from swap_duplicate().
3749  */
3750 int swapcache_prepare(swp_entry_t entry, int nr)
3751 {
3752 	return __swap_duplicate(entry, SWAP_HAS_CACHE, nr);
3753 }
3754 
3755 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr)
3756 {
3757 	unsigned long offset = swp_offset(entry);
3758 
3759 	cluster_swap_free_nr(si, offset, nr, SWAP_HAS_CACHE);
3760 }
3761 
3762 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3763 {
3764 	return swap_type_to_swap_info(swp_type(entry));
3765 }
3766 
3767 /*
3768  * out-of-line methods to avoid include hell.
3769  */
3770 struct address_space *swapcache_mapping(struct folio *folio)
3771 {
3772 	return swp_swap_info(folio->swap)->swap_file->f_mapping;
3773 }
3774 EXPORT_SYMBOL_GPL(swapcache_mapping);
3775 
3776 pgoff_t __folio_swap_cache_index(struct folio *folio)
3777 {
3778 	return swap_cache_index(folio->swap);
3779 }
3780 EXPORT_SYMBOL_GPL(__folio_swap_cache_index);
3781 
3782 /*
3783  * add_swap_count_continuation - called when a swap count is duplicated
3784  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3785  * page of the original vmalloc'ed swap_map, to hold the continuation count
3786  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3787  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3788  *
3789  * These continuation pages are seldom referenced: the common paths all work
3790  * on the original swap_map, only referring to a continuation page when the
3791  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3792  *
3793  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3794  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3795  * can be called after dropping locks.
3796  */
3797 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3798 {
3799 	struct swap_info_struct *si;
3800 	struct swap_cluster_info *ci;
3801 	struct page *head;
3802 	struct page *page;
3803 	struct page *list_page;
3804 	pgoff_t offset;
3805 	unsigned char count;
3806 	int ret = 0;
3807 
3808 	/*
3809 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3810 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3811 	 */
3812 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3813 
3814 	si = get_swap_device(entry);
3815 	if (!si) {
3816 		/*
3817 		 * An acceptable race has occurred since the failing
3818 		 * __swap_duplicate(): the swap device may be swapoff
3819 		 */
3820 		goto outer;
3821 	}
3822 	spin_lock(&si->lock);
3823 
3824 	offset = swp_offset(entry);
3825 
3826 	ci = lock_cluster(si, offset);
3827 
3828 	count = swap_count(si->swap_map[offset]);
3829 
3830 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3831 		/*
3832 		 * The higher the swap count, the more likely it is that tasks
3833 		 * will race to add swap count continuation: we need to avoid
3834 		 * over-provisioning.
3835 		 */
3836 		goto out;
3837 	}
3838 
3839 	if (!page) {
3840 		ret = -ENOMEM;
3841 		goto out;
3842 	}
3843 
3844 	head = vmalloc_to_page(si->swap_map + offset);
3845 	offset &= ~PAGE_MASK;
3846 
3847 	spin_lock(&si->cont_lock);
3848 	/*
3849 	 * Page allocation does not initialize the page's lru field,
3850 	 * but it does always reset its private field.
3851 	 */
3852 	if (!page_private(head)) {
3853 		BUG_ON(count & COUNT_CONTINUED);
3854 		INIT_LIST_HEAD(&head->lru);
3855 		set_page_private(head, SWP_CONTINUED);
3856 		si->flags |= SWP_CONTINUED;
3857 	}
3858 
3859 	list_for_each_entry(list_page, &head->lru, lru) {
3860 		unsigned char *map;
3861 
3862 		/*
3863 		 * If the previous map said no continuation, but we've found
3864 		 * a continuation page, free our allocation and use this one.
3865 		 */
3866 		if (!(count & COUNT_CONTINUED))
3867 			goto out_unlock_cont;
3868 
3869 		map = kmap_local_page(list_page) + offset;
3870 		count = *map;
3871 		kunmap_local(map);
3872 
3873 		/*
3874 		 * If this continuation count now has some space in it,
3875 		 * free our allocation and use this one.
3876 		 */
3877 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3878 			goto out_unlock_cont;
3879 	}
3880 
3881 	list_add_tail(&page->lru, &head->lru);
3882 	page = NULL;			/* now it's attached, don't free it */
3883 out_unlock_cont:
3884 	spin_unlock(&si->cont_lock);
3885 out:
3886 	unlock_cluster(ci);
3887 	spin_unlock(&si->lock);
3888 	put_swap_device(si);
3889 outer:
3890 	if (page)
3891 		__free_page(page);
3892 	return ret;
3893 }
3894 
3895 /*
3896  * swap_count_continued - when the original swap_map count is incremented
3897  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3898  * into, carry if so, or else fail until a new continuation page is allocated;
3899  * when the original swap_map count is decremented from 0 with continuation,
3900  * borrow from the continuation and report whether it still holds more.
3901  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3902  * lock.
3903  */
3904 static bool swap_count_continued(struct swap_info_struct *si,
3905 				 pgoff_t offset, unsigned char count)
3906 {
3907 	struct page *head;
3908 	struct page *page;
3909 	unsigned char *map;
3910 	bool ret;
3911 
3912 	head = vmalloc_to_page(si->swap_map + offset);
3913 	if (page_private(head) != SWP_CONTINUED) {
3914 		BUG_ON(count & COUNT_CONTINUED);
3915 		return false;		/* need to add count continuation */
3916 	}
3917 
3918 	spin_lock(&si->cont_lock);
3919 	offset &= ~PAGE_MASK;
3920 	page = list_next_entry(head, lru);
3921 	map = kmap_local_page(page) + offset;
3922 
3923 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3924 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3925 
3926 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3927 		/*
3928 		 * Think of how you add 1 to 999
3929 		 */
3930 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3931 			kunmap_local(map);
3932 			page = list_next_entry(page, lru);
3933 			BUG_ON(page == head);
3934 			map = kmap_local_page(page) + offset;
3935 		}
3936 		if (*map == SWAP_CONT_MAX) {
3937 			kunmap_local(map);
3938 			page = list_next_entry(page, lru);
3939 			if (page == head) {
3940 				ret = false;	/* add count continuation */
3941 				goto out;
3942 			}
3943 			map = kmap_local_page(page) + offset;
3944 init_map:		*map = 0;		/* we didn't zero the page */
3945 		}
3946 		*map += 1;
3947 		kunmap_local(map);
3948 		while ((page = list_prev_entry(page, lru)) != head) {
3949 			map = kmap_local_page(page) + offset;
3950 			*map = COUNT_CONTINUED;
3951 			kunmap_local(map);
3952 		}
3953 		ret = true;			/* incremented */
3954 
3955 	} else {				/* decrementing */
3956 		/*
3957 		 * Think of how you subtract 1 from 1000
3958 		 */
3959 		BUG_ON(count != COUNT_CONTINUED);
3960 		while (*map == COUNT_CONTINUED) {
3961 			kunmap_local(map);
3962 			page = list_next_entry(page, lru);
3963 			BUG_ON(page == head);
3964 			map = kmap_local_page(page) + offset;
3965 		}
3966 		BUG_ON(*map == 0);
3967 		*map -= 1;
3968 		if (*map == 0)
3969 			count = 0;
3970 		kunmap_local(map);
3971 		while ((page = list_prev_entry(page, lru)) != head) {
3972 			map = kmap_local_page(page) + offset;
3973 			*map = SWAP_CONT_MAX | count;
3974 			count = COUNT_CONTINUED;
3975 			kunmap_local(map);
3976 		}
3977 		ret = count == COUNT_CONTINUED;
3978 	}
3979 out:
3980 	spin_unlock(&si->cont_lock);
3981 	return ret;
3982 }
3983 
3984 /*
3985  * free_swap_count_continuations - swapoff free all the continuation pages
3986  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3987  */
3988 static void free_swap_count_continuations(struct swap_info_struct *si)
3989 {
3990 	pgoff_t offset;
3991 
3992 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3993 		struct page *head;
3994 		head = vmalloc_to_page(si->swap_map + offset);
3995 		if (page_private(head)) {
3996 			struct page *page, *next;
3997 
3998 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3999 				list_del(&page->lru);
4000 				__free_page(page);
4001 			}
4002 		}
4003 	}
4004 }
4005 
4006 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
4007 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
4008 {
4009 	struct swap_info_struct *si, *next;
4010 	int nid = folio_nid(folio);
4011 
4012 	if (!(gfp & __GFP_IO))
4013 		return;
4014 
4015 	if (!__has_usable_swap())
4016 		return;
4017 
4018 	if (!blk_cgroup_congested())
4019 		return;
4020 
4021 	/*
4022 	 * We've already scheduled a throttle, avoid taking the global swap
4023 	 * lock.
4024 	 */
4025 	if (current->throttle_disk)
4026 		return;
4027 
4028 	spin_lock(&swap_avail_lock);
4029 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
4030 				  avail_lists[nid]) {
4031 		if (si->bdev) {
4032 			blkcg_schedule_throttle(si->bdev->bd_disk, true);
4033 			break;
4034 		}
4035 	}
4036 	spin_unlock(&swap_avail_lock);
4037 }
4038 #endif
4039 
4040 static int __init swapfile_init(void)
4041 {
4042 	int nid;
4043 
4044 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
4045 					 GFP_KERNEL);
4046 	if (!swap_avail_heads) {
4047 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
4048 		return -ENOMEM;
4049 	}
4050 
4051 	for_each_node(nid)
4052 		plist_head_init(&swap_avail_heads[nid]);
4053 
4054 	swapfile_maximum_size = arch_max_swapfile_size();
4055 
4056 #ifdef CONFIG_MIGRATION
4057 	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
4058 		swap_migration_ad_supported = true;
4059 #endif	/* CONFIG_MIGRATION */
4060 
4061 	return 0;
4062 }
4063 subsys_initcall(swapfile_init);
4064