1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/blkdev.h> 10 #include <linux/mm.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/task.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mman.h> 15 #include <linux/slab.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/swap.h> 18 #include <linux/vmalloc.h> 19 #include <linux/pagemap.h> 20 #include <linux/namei.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/blk-cgroup.h> 23 #include <linux/random.h> 24 #include <linux/writeback.h> 25 #include <linux/proc_fs.h> 26 #include <linux/seq_file.h> 27 #include <linux/init.h> 28 #include <linux/ksm.h> 29 #include <linux/rmap.h> 30 #include <linux/security.h> 31 #include <linux/backing-dev.h> 32 #include <linux/mutex.h> 33 #include <linux/capability.h> 34 #include <linux/syscalls.h> 35 #include <linux/memcontrol.h> 36 #include <linux/poll.h> 37 #include <linux/oom.h> 38 #include <linux/swapfile.h> 39 #include <linux/export.h> 40 #include <linux/sort.h> 41 #include <linux/completion.h> 42 #include <linux/suspend.h> 43 #include <linux/zswap.h> 44 #include <linux/plist.h> 45 46 #include <asm/tlbflush.h> 47 #include <linux/swapops.h> 48 #include <linux/swap_cgroup.h> 49 #include "internal.h" 50 #include "swap.h" 51 52 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 53 unsigned char); 54 static void free_swap_count_continuations(struct swap_info_struct *); 55 static void swap_entry_range_free(struct swap_info_struct *si, 56 struct swap_cluster_info *ci, 57 swp_entry_t entry, unsigned int nr_pages); 58 static void swap_range_alloc(struct swap_info_struct *si, 59 unsigned int nr_entries); 60 static bool folio_swapcache_freeable(struct folio *folio); 61 static struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 62 unsigned long offset); 63 static inline void unlock_cluster(struct swap_cluster_info *ci); 64 65 static DEFINE_SPINLOCK(swap_lock); 66 static unsigned int nr_swapfiles; 67 atomic_long_t nr_swap_pages; 68 /* 69 * Some modules use swappable objects and may try to swap them out under 70 * memory pressure (via the shrinker). Before doing so, they may wish to 71 * check to see if any swap space is available. 72 */ 73 EXPORT_SYMBOL_GPL(nr_swap_pages); 74 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 75 long total_swap_pages; 76 static int least_priority = -1; 77 unsigned long swapfile_maximum_size; 78 #ifdef CONFIG_MIGRATION 79 bool swap_migration_ad_supported; 80 #endif /* CONFIG_MIGRATION */ 81 82 static const char Bad_file[] = "Bad swap file entry "; 83 static const char Unused_file[] = "Unused swap file entry "; 84 static const char Bad_offset[] = "Bad swap offset entry "; 85 static const char Unused_offset[] = "Unused swap offset entry "; 86 87 /* 88 * all active swap_info_structs 89 * protected with swap_lock, and ordered by priority. 90 */ 91 static PLIST_HEAD(swap_active_head); 92 93 /* 94 * all available (active, not full) swap_info_structs 95 * protected with swap_avail_lock, ordered by priority. 96 * This is used by folio_alloc_swap() instead of swap_active_head 97 * because swap_active_head includes all swap_info_structs, 98 * but folio_alloc_swap() doesn't need to look at full ones. 99 * This uses its own lock instead of swap_lock because when a 100 * swap_info_struct changes between not-full/full, it needs to 101 * add/remove itself to/from this list, but the swap_info_struct->lock 102 * is held and the locking order requires swap_lock to be taken 103 * before any swap_info_struct->lock. 104 */ 105 static struct plist_head *swap_avail_heads; 106 static DEFINE_SPINLOCK(swap_avail_lock); 107 108 static struct swap_info_struct *swap_info[MAX_SWAPFILES]; 109 110 static DEFINE_MUTEX(swapon_mutex); 111 112 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 113 /* Activity counter to indicate that a swapon or swapoff has occurred */ 114 static atomic_t proc_poll_event = ATOMIC_INIT(0); 115 116 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 117 118 struct percpu_swap_cluster { 119 struct swap_info_struct *si[SWAP_NR_ORDERS]; 120 unsigned long offset[SWAP_NR_ORDERS]; 121 local_lock_t lock; 122 }; 123 124 static DEFINE_PER_CPU(struct percpu_swap_cluster, percpu_swap_cluster) = { 125 .si = { NULL }, 126 .offset = { SWAP_ENTRY_INVALID }, 127 .lock = INIT_LOCAL_LOCK(), 128 }; 129 130 static struct swap_info_struct *swap_type_to_swap_info(int type) 131 { 132 if (type >= MAX_SWAPFILES) 133 return NULL; 134 135 return READ_ONCE(swap_info[type]); /* rcu_dereference() */ 136 } 137 138 static inline unsigned char swap_count(unsigned char ent) 139 { 140 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 141 } 142 143 /* 144 * Use the second highest bit of inuse_pages counter as the indicator 145 * if one swap device is on the available plist, so the atomic can 146 * still be updated arithmetically while having special data embedded. 147 * 148 * inuse_pages counter is the only thing indicating if a device should 149 * be on avail_lists or not (except swapon / swapoff). By embedding the 150 * off-list bit in the atomic counter, updates no longer need any lock 151 * to check the list status. 152 * 153 * This bit will be set if the device is not on the plist and not 154 * usable, will be cleared if the device is on the plist. 155 */ 156 #define SWAP_USAGE_OFFLIST_BIT (1UL << (BITS_PER_TYPE(atomic_t) - 2)) 157 #define SWAP_USAGE_COUNTER_MASK (~SWAP_USAGE_OFFLIST_BIT) 158 static long swap_usage_in_pages(struct swap_info_struct *si) 159 { 160 return atomic_long_read(&si->inuse_pages) & SWAP_USAGE_COUNTER_MASK; 161 } 162 163 /* Reclaim the swap entry anyway if possible */ 164 #define TTRS_ANYWAY 0x1 165 /* 166 * Reclaim the swap entry if there are no more mappings of the 167 * corresponding page 168 */ 169 #define TTRS_UNMAPPED 0x2 170 /* Reclaim the swap entry if swap is getting full */ 171 #define TTRS_FULL 0x4 172 173 static bool swap_only_has_cache(struct swap_info_struct *si, 174 unsigned long offset, int nr_pages) 175 { 176 unsigned char *map = si->swap_map + offset; 177 unsigned char *map_end = map + nr_pages; 178 179 do { 180 VM_BUG_ON(!(*map & SWAP_HAS_CACHE)); 181 if (*map != SWAP_HAS_CACHE) 182 return false; 183 } while (++map < map_end); 184 185 return true; 186 } 187 188 static bool swap_is_last_map(struct swap_info_struct *si, 189 unsigned long offset, int nr_pages, bool *has_cache) 190 { 191 unsigned char *map = si->swap_map + offset; 192 unsigned char *map_end = map + nr_pages; 193 unsigned char count = *map; 194 195 if (swap_count(count) != 1) 196 return false; 197 198 while (++map < map_end) { 199 if (*map != count) 200 return false; 201 } 202 203 *has_cache = !!(count & SWAP_HAS_CACHE); 204 return true; 205 } 206 207 /* 208 * returns number of pages in the folio that backs the swap entry. If positive, 209 * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no 210 * folio was associated with the swap entry. 211 */ 212 static int __try_to_reclaim_swap(struct swap_info_struct *si, 213 unsigned long offset, unsigned long flags) 214 { 215 swp_entry_t entry = swp_entry(si->type, offset); 216 struct address_space *address_space = swap_address_space(entry); 217 struct swap_cluster_info *ci; 218 struct folio *folio; 219 int ret, nr_pages; 220 bool need_reclaim; 221 222 again: 223 folio = filemap_get_folio(address_space, swap_cache_index(entry)); 224 if (IS_ERR(folio)) 225 return 0; 226 227 nr_pages = folio_nr_pages(folio); 228 ret = -nr_pages; 229 230 /* 231 * When this function is called from scan_swap_map_slots() and it's 232 * called by vmscan.c at reclaiming folios. So we hold a folio lock 233 * here. We have to use trylock for avoiding deadlock. This is a special 234 * case and you should use folio_free_swap() with explicit folio_lock() 235 * in usual operations. 236 */ 237 if (!folio_trylock(folio)) 238 goto out; 239 240 /* 241 * Offset could point to the middle of a large folio, or folio 242 * may no longer point to the expected offset before it's locked. 243 */ 244 entry = folio->swap; 245 if (offset < swp_offset(entry) || offset >= swp_offset(entry) + nr_pages) { 246 folio_unlock(folio); 247 folio_put(folio); 248 goto again; 249 } 250 offset = swp_offset(entry); 251 252 need_reclaim = ((flags & TTRS_ANYWAY) || 253 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) || 254 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio))); 255 if (!need_reclaim || !folio_swapcache_freeable(folio)) 256 goto out_unlock; 257 258 /* 259 * It's safe to delete the folio from swap cache only if the folio's 260 * swap_map is HAS_CACHE only, which means the slots have no page table 261 * reference or pending writeback, and can't be allocated to others. 262 */ 263 ci = lock_cluster(si, offset); 264 need_reclaim = swap_only_has_cache(si, offset, nr_pages); 265 unlock_cluster(ci); 266 if (!need_reclaim) 267 goto out_unlock; 268 269 delete_from_swap_cache(folio); 270 folio_set_dirty(folio); 271 ret = nr_pages; 272 out_unlock: 273 folio_unlock(folio); 274 out: 275 folio_put(folio); 276 return ret; 277 } 278 279 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 280 { 281 struct rb_node *rb = rb_first(&sis->swap_extent_root); 282 return rb_entry(rb, struct swap_extent, rb_node); 283 } 284 285 static inline struct swap_extent *next_se(struct swap_extent *se) 286 { 287 struct rb_node *rb = rb_next(&se->rb_node); 288 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 289 } 290 291 /* 292 * swapon tell device that all the old swap contents can be discarded, 293 * to allow the swap device to optimize its wear-levelling. 294 */ 295 static int discard_swap(struct swap_info_struct *si) 296 { 297 struct swap_extent *se; 298 sector_t start_block; 299 sector_t nr_blocks; 300 int err = 0; 301 302 /* Do not discard the swap header page! */ 303 se = first_se(si); 304 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 305 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 306 if (nr_blocks) { 307 err = blkdev_issue_discard(si->bdev, start_block, 308 nr_blocks, GFP_KERNEL); 309 if (err) 310 return err; 311 cond_resched(); 312 } 313 314 for (se = next_se(se); se; se = next_se(se)) { 315 start_block = se->start_block << (PAGE_SHIFT - 9); 316 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 317 318 err = blkdev_issue_discard(si->bdev, start_block, 319 nr_blocks, GFP_KERNEL); 320 if (err) 321 break; 322 323 cond_resched(); 324 } 325 return err; /* That will often be -EOPNOTSUPP */ 326 } 327 328 static struct swap_extent * 329 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 330 { 331 struct swap_extent *se; 332 struct rb_node *rb; 333 334 rb = sis->swap_extent_root.rb_node; 335 while (rb) { 336 se = rb_entry(rb, struct swap_extent, rb_node); 337 if (offset < se->start_page) 338 rb = rb->rb_left; 339 else if (offset >= se->start_page + se->nr_pages) 340 rb = rb->rb_right; 341 else 342 return se; 343 } 344 /* It *must* be present */ 345 BUG(); 346 } 347 348 sector_t swap_folio_sector(struct folio *folio) 349 { 350 struct swap_info_struct *sis = swp_swap_info(folio->swap); 351 struct swap_extent *se; 352 sector_t sector; 353 pgoff_t offset; 354 355 offset = swp_offset(folio->swap); 356 se = offset_to_swap_extent(sis, offset); 357 sector = se->start_block + (offset - se->start_page); 358 return sector << (PAGE_SHIFT - 9); 359 } 360 361 /* 362 * swap allocation tell device that a cluster of swap can now be discarded, 363 * to allow the swap device to optimize its wear-levelling. 364 */ 365 static void discard_swap_cluster(struct swap_info_struct *si, 366 pgoff_t start_page, pgoff_t nr_pages) 367 { 368 struct swap_extent *se = offset_to_swap_extent(si, start_page); 369 370 while (nr_pages) { 371 pgoff_t offset = start_page - se->start_page; 372 sector_t start_block = se->start_block + offset; 373 sector_t nr_blocks = se->nr_pages - offset; 374 375 if (nr_blocks > nr_pages) 376 nr_blocks = nr_pages; 377 start_page += nr_blocks; 378 nr_pages -= nr_blocks; 379 380 start_block <<= PAGE_SHIFT - 9; 381 nr_blocks <<= PAGE_SHIFT - 9; 382 if (blkdev_issue_discard(si->bdev, start_block, 383 nr_blocks, GFP_NOIO)) 384 break; 385 386 se = next_se(se); 387 } 388 } 389 390 #ifdef CONFIG_THP_SWAP 391 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 392 393 #define swap_entry_order(order) (order) 394 #else 395 #define SWAPFILE_CLUSTER 256 396 397 /* 398 * Define swap_entry_order() as constant to let compiler to optimize 399 * out some code if !CONFIG_THP_SWAP 400 */ 401 #define swap_entry_order(order) 0 402 #endif 403 #define LATENCY_LIMIT 256 404 405 static inline bool cluster_is_empty(struct swap_cluster_info *info) 406 { 407 return info->count == 0; 408 } 409 410 static inline bool cluster_is_discard(struct swap_cluster_info *info) 411 { 412 return info->flags == CLUSTER_FLAG_DISCARD; 413 } 414 415 static inline bool cluster_is_usable(struct swap_cluster_info *ci, int order) 416 { 417 if (unlikely(ci->flags > CLUSTER_FLAG_USABLE)) 418 return false; 419 if (!order) 420 return true; 421 return cluster_is_empty(ci) || order == ci->order; 422 } 423 424 static inline unsigned int cluster_index(struct swap_info_struct *si, 425 struct swap_cluster_info *ci) 426 { 427 return ci - si->cluster_info; 428 } 429 430 static inline struct swap_cluster_info *offset_to_cluster(struct swap_info_struct *si, 431 unsigned long offset) 432 { 433 return &si->cluster_info[offset / SWAPFILE_CLUSTER]; 434 } 435 436 static inline unsigned int cluster_offset(struct swap_info_struct *si, 437 struct swap_cluster_info *ci) 438 { 439 return cluster_index(si, ci) * SWAPFILE_CLUSTER; 440 } 441 442 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 443 unsigned long offset) 444 { 445 struct swap_cluster_info *ci; 446 447 ci = offset_to_cluster(si, offset); 448 spin_lock(&ci->lock); 449 450 return ci; 451 } 452 453 static inline void unlock_cluster(struct swap_cluster_info *ci) 454 { 455 spin_unlock(&ci->lock); 456 } 457 458 static void move_cluster(struct swap_info_struct *si, 459 struct swap_cluster_info *ci, struct list_head *list, 460 enum swap_cluster_flags new_flags) 461 { 462 VM_WARN_ON(ci->flags == new_flags); 463 464 BUILD_BUG_ON(1 << sizeof(ci->flags) * BITS_PER_BYTE < CLUSTER_FLAG_MAX); 465 lockdep_assert_held(&ci->lock); 466 467 spin_lock(&si->lock); 468 if (ci->flags == CLUSTER_FLAG_NONE) 469 list_add_tail(&ci->list, list); 470 else 471 list_move_tail(&ci->list, list); 472 spin_unlock(&si->lock); 473 474 if (ci->flags == CLUSTER_FLAG_FRAG) 475 atomic_long_dec(&si->frag_cluster_nr[ci->order]); 476 else if (new_flags == CLUSTER_FLAG_FRAG) 477 atomic_long_inc(&si->frag_cluster_nr[ci->order]); 478 ci->flags = new_flags; 479 } 480 481 /* Add a cluster to discard list and schedule it to do discard */ 482 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 483 struct swap_cluster_info *ci) 484 { 485 VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE); 486 move_cluster(si, ci, &si->discard_clusters, CLUSTER_FLAG_DISCARD); 487 schedule_work(&si->discard_work); 488 } 489 490 static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci) 491 { 492 lockdep_assert_held(&ci->lock); 493 move_cluster(si, ci, &si->free_clusters, CLUSTER_FLAG_FREE); 494 ci->order = 0; 495 } 496 497 /* 498 * Isolate and lock the first cluster that is not contented on a list, 499 * clean its flag before taken off-list. Cluster flag must be in sync 500 * with list status, so cluster updaters can always know the cluster 501 * list status without touching si lock. 502 * 503 * Note it's possible that all clusters on a list are contented so 504 * this returns NULL for an non-empty list. 505 */ 506 static struct swap_cluster_info *isolate_lock_cluster( 507 struct swap_info_struct *si, struct list_head *list) 508 { 509 struct swap_cluster_info *ci, *ret = NULL; 510 511 spin_lock(&si->lock); 512 513 if (unlikely(!(si->flags & SWP_WRITEOK))) 514 goto out; 515 516 list_for_each_entry(ci, list, list) { 517 if (!spin_trylock(&ci->lock)) 518 continue; 519 520 /* We may only isolate and clear flags of following lists */ 521 VM_BUG_ON(!ci->flags); 522 VM_BUG_ON(ci->flags > CLUSTER_FLAG_USABLE && 523 ci->flags != CLUSTER_FLAG_FULL); 524 525 list_del(&ci->list); 526 ci->flags = CLUSTER_FLAG_NONE; 527 ret = ci; 528 break; 529 } 530 out: 531 spin_unlock(&si->lock); 532 533 return ret; 534 } 535 536 /* 537 * Doing discard actually. After a cluster discard is finished, the cluster 538 * will be added to free cluster list. Discard cluster is a bit special as 539 * they don't participate in allocation or reclaim, so clusters marked as 540 * CLUSTER_FLAG_DISCARD must remain off-list or on discard list. 541 */ 542 static bool swap_do_scheduled_discard(struct swap_info_struct *si) 543 { 544 struct swap_cluster_info *ci; 545 bool ret = false; 546 unsigned int idx; 547 548 spin_lock(&si->lock); 549 while (!list_empty(&si->discard_clusters)) { 550 ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list); 551 /* 552 * Delete the cluster from list to prepare for discard, but keep 553 * the CLUSTER_FLAG_DISCARD flag, percpu_swap_cluster could be 554 * pointing to it, or ran into by relocate_cluster. 555 */ 556 list_del(&ci->list); 557 idx = cluster_index(si, ci); 558 spin_unlock(&si->lock); 559 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 560 SWAPFILE_CLUSTER); 561 562 spin_lock(&ci->lock); 563 /* 564 * Discard is done, clear its flags as it's off-list, then 565 * return the cluster to allocation list. 566 */ 567 ci->flags = CLUSTER_FLAG_NONE; 568 __free_cluster(si, ci); 569 spin_unlock(&ci->lock); 570 ret = true; 571 spin_lock(&si->lock); 572 } 573 spin_unlock(&si->lock); 574 return ret; 575 } 576 577 static void swap_discard_work(struct work_struct *work) 578 { 579 struct swap_info_struct *si; 580 581 si = container_of(work, struct swap_info_struct, discard_work); 582 583 swap_do_scheduled_discard(si); 584 } 585 586 static void swap_users_ref_free(struct percpu_ref *ref) 587 { 588 struct swap_info_struct *si; 589 590 si = container_of(ref, struct swap_info_struct, users); 591 complete(&si->comp); 592 } 593 594 /* 595 * Must be called after freeing if ci->count == 0, moves the cluster to free 596 * or discard list. 597 */ 598 static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci) 599 { 600 VM_BUG_ON(ci->count != 0); 601 VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE); 602 lockdep_assert_held(&ci->lock); 603 604 /* 605 * If the swap is discardable, prepare discard the cluster 606 * instead of free it immediately. The cluster will be freed 607 * after discard. 608 */ 609 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 610 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 611 swap_cluster_schedule_discard(si, ci); 612 return; 613 } 614 615 __free_cluster(si, ci); 616 } 617 618 /* 619 * Must be called after freeing if ci->count != 0, moves the cluster to 620 * nonfull list. 621 */ 622 static void partial_free_cluster(struct swap_info_struct *si, 623 struct swap_cluster_info *ci) 624 { 625 VM_BUG_ON(!ci->count || ci->count == SWAPFILE_CLUSTER); 626 lockdep_assert_held(&ci->lock); 627 628 if (ci->flags != CLUSTER_FLAG_NONFULL) 629 move_cluster(si, ci, &si->nonfull_clusters[ci->order], 630 CLUSTER_FLAG_NONFULL); 631 } 632 633 /* 634 * Must be called after allocation, moves the cluster to full or frag list. 635 * Note: allocation doesn't acquire si lock, and may drop the ci lock for 636 * reclaim, so the cluster could be any where when called. 637 */ 638 static void relocate_cluster(struct swap_info_struct *si, 639 struct swap_cluster_info *ci) 640 { 641 lockdep_assert_held(&ci->lock); 642 643 /* Discard cluster must remain off-list or on discard list */ 644 if (cluster_is_discard(ci)) 645 return; 646 647 if (!ci->count) { 648 if (ci->flags != CLUSTER_FLAG_FREE) 649 free_cluster(si, ci); 650 } else if (ci->count != SWAPFILE_CLUSTER) { 651 if (ci->flags != CLUSTER_FLAG_FRAG) 652 move_cluster(si, ci, &si->frag_clusters[ci->order], 653 CLUSTER_FLAG_FRAG); 654 } else { 655 if (ci->flags != CLUSTER_FLAG_FULL) 656 move_cluster(si, ci, &si->full_clusters, 657 CLUSTER_FLAG_FULL); 658 } 659 } 660 661 /* 662 * The cluster corresponding to page_nr will be used. The cluster will not be 663 * added to free cluster list and its usage counter will be increased by 1. 664 * Only used for initialization. 665 */ 666 static void inc_cluster_info_page(struct swap_info_struct *si, 667 struct swap_cluster_info *cluster_info, unsigned long page_nr) 668 { 669 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 670 struct swap_cluster_info *ci; 671 672 ci = cluster_info + idx; 673 ci->count++; 674 675 VM_BUG_ON(ci->count > SWAPFILE_CLUSTER); 676 VM_BUG_ON(ci->flags); 677 } 678 679 static bool cluster_reclaim_range(struct swap_info_struct *si, 680 struct swap_cluster_info *ci, 681 unsigned long start, unsigned long end) 682 { 683 unsigned char *map = si->swap_map; 684 unsigned long offset = start; 685 int nr_reclaim; 686 687 spin_unlock(&ci->lock); 688 do { 689 switch (READ_ONCE(map[offset])) { 690 case 0: 691 offset++; 692 break; 693 case SWAP_HAS_CACHE: 694 nr_reclaim = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 695 if (nr_reclaim > 0) 696 offset += nr_reclaim; 697 else 698 goto out; 699 break; 700 default: 701 goto out; 702 } 703 } while (offset < end); 704 out: 705 spin_lock(&ci->lock); 706 /* 707 * Recheck the range no matter reclaim succeeded or not, the slot 708 * could have been be freed while we are not holding the lock. 709 */ 710 for (offset = start; offset < end; offset++) 711 if (READ_ONCE(map[offset])) 712 return false; 713 714 return true; 715 } 716 717 static bool cluster_scan_range(struct swap_info_struct *si, 718 struct swap_cluster_info *ci, 719 unsigned long start, unsigned int nr_pages, 720 bool *need_reclaim) 721 { 722 unsigned long offset, end = start + nr_pages; 723 unsigned char *map = si->swap_map; 724 725 if (cluster_is_empty(ci)) 726 return true; 727 728 for (offset = start; offset < end; offset++) { 729 switch (READ_ONCE(map[offset])) { 730 case 0: 731 continue; 732 case SWAP_HAS_CACHE: 733 if (!vm_swap_full()) 734 return false; 735 *need_reclaim = true; 736 continue; 737 default: 738 return false; 739 } 740 } 741 742 return true; 743 } 744 745 static bool cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci, 746 unsigned int start, unsigned char usage, 747 unsigned int order) 748 { 749 unsigned int nr_pages = 1 << order; 750 751 lockdep_assert_held(&ci->lock); 752 753 if (!(si->flags & SWP_WRITEOK)) 754 return false; 755 756 /* 757 * The first allocation in a cluster makes the 758 * cluster exclusive to this order 759 */ 760 if (cluster_is_empty(ci)) 761 ci->order = order; 762 763 memset(si->swap_map + start, usage, nr_pages); 764 swap_range_alloc(si, nr_pages); 765 ci->count += nr_pages; 766 767 return true; 768 } 769 770 /* Try use a new cluster for current CPU and allocate from it. */ 771 static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si, 772 struct swap_cluster_info *ci, 773 unsigned long offset, 774 unsigned int order, 775 unsigned char usage) 776 { 777 unsigned int next = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID; 778 unsigned long start = ALIGN_DOWN(offset, SWAPFILE_CLUSTER); 779 unsigned long end = min(start + SWAPFILE_CLUSTER, si->max); 780 unsigned int nr_pages = 1 << order; 781 bool need_reclaim, ret; 782 783 lockdep_assert_held(&ci->lock); 784 785 if (end < nr_pages || ci->count + nr_pages > SWAPFILE_CLUSTER) 786 goto out; 787 788 for (end -= nr_pages; offset <= end; offset += nr_pages) { 789 need_reclaim = false; 790 if (!cluster_scan_range(si, ci, offset, nr_pages, &need_reclaim)) 791 continue; 792 if (need_reclaim) { 793 ret = cluster_reclaim_range(si, ci, offset, offset + nr_pages); 794 /* 795 * Reclaim drops ci->lock and cluster could be used 796 * by another order. Not checking flag as off-list 797 * cluster has no flag set, and change of list 798 * won't cause fragmentation. 799 */ 800 if (!cluster_is_usable(ci, order)) 801 goto out; 802 if (cluster_is_empty(ci)) 803 offset = start; 804 /* Reclaim failed but cluster is usable, try next */ 805 if (!ret) 806 continue; 807 } 808 if (!cluster_alloc_range(si, ci, offset, usage, order)) 809 break; 810 found = offset; 811 offset += nr_pages; 812 if (ci->count < SWAPFILE_CLUSTER && offset <= end) 813 next = offset; 814 break; 815 } 816 out: 817 relocate_cluster(si, ci); 818 unlock_cluster(ci); 819 if (si->flags & SWP_SOLIDSTATE) { 820 this_cpu_write(percpu_swap_cluster.offset[order], next); 821 this_cpu_write(percpu_swap_cluster.si[order], si); 822 } else { 823 si->global_cluster->next[order] = next; 824 } 825 return found; 826 } 827 828 static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force) 829 { 830 long to_scan = 1; 831 unsigned long offset, end; 832 struct swap_cluster_info *ci; 833 unsigned char *map = si->swap_map; 834 int nr_reclaim; 835 836 if (force) 837 to_scan = swap_usage_in_pages(si) / SWAPFILE_CLUSTER; 838 839 while ((ci = isolate_lock_cluster(si, &si->full_clusters))) { 840 offset = cluster_offset(si, ci); 841 end = min(si->max, offset + SWAPFILE_CLUSTER); 842 to_scan--; 843 844 while (offset < end) { 845 if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) { 846 spin_unlock(&ci->lock); 847 nr_reclaim = __try_to_reclaim_swap(si, offset, 848 TTRS_ANYWAY); 849 spin_lock(&ci->lock); 850 if (nr_reclaim) { 851 offset += abs(nr_reclaim); 852 continue; 853 } 854 } 855 offset++; 856 } 857 858 /* in case no swap cache is reclaimed */ 859 if (ci->flags == CLUSTER_FLAG_NONE) 860 relocate_cluster(si, ci); 861 862 unlock_cluster(ci); 863 if (to_scan <= 0) 864 break; 865 } 866 } 867 868 static void swap_reclaim_work(struct work_struct *work) 869 { 870 struct swap_info_struct *si; 871 872 si = container_of(work, struct swap_info_struct, reclaim_work); 873 874 swap_reclaim_full_clusters(si, true); 875 } 876 877 /* 878 * Try to allocate swap entries with specified order and try set a new 879 * cluster for current CPU too. 880 */ 881 static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order, 882 unsigned char usage) 883 { 884 struct swap_cluster_info *ci; 885 unsigned int offset = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID; 886 887 /* 888 * Swapfile is not block device so unable 889 * to allocate large entries. 890 */ 891 if (order && !(si->flags & SWP_BLKDEV)) 892 return 0; 893 894 if (!(si->flags & SWP_SOLIDSTATE)) { 895 /* Serialize HDD SWAP allocation for each device. */ 896 spin_lock(&si->global_cluster_lock); 897 offset = si->global_cluster->next[order]; 898 if (offset == SWAP_ENTRY_INVALID) 899 goto new_cluster; 900 901 ci = lock_cluster(si, offset); 902 /* Cluster could have been used by another order */ 903 if (cluster_is_usable(ci, order)) { 904 if (cluster_is_empty(ci)) 905 offset = cluster_offset(si, ci); 906 found = alloc_swap_scan_cluster(si, ci, offset, 907 order, usage); 908 } else { 909 unlock_cluster(ci); 910 } 911 if (found) 912 goto done; 913 } 914 915 new_cluster: 916 ci = isolate_lock_cluster(si, &si->free_clusters); 917 if (ci) { 918 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci), 919 order, usage); 920 if (found) 921 goto done; 922 } 923 924 /* Try reclaim from full clusters if free clusters list is drained */ 925 if (vm_swap_full()) 926 swap_reclaim_full_clusters(si, false); 927 928 if (order < PMD_ORDER) { 929 unsigned int frags = 0, frags_existing; 930 931 while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[order]))) { 932 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci), 933 order, usage); 934 if (found) 935 goto done; 936 /* Clusters failed to allocate are moved to frag_clusters */ 937 frags++; 938 } 939 940 frags_existing = atomic_long_read(&si->frag_cluster_nr[order]); 941 while (frags < frags_existing && 942 (ci = isolate_lock_cluster(si, &si->frag_clusters[order]))) { 943 atomic_long_dec(&si->frag_cluster_nr[order]); 944 /* 945 * Rotate the frag list to iterate, they were all 946 * failing high order allocation or moved here due to 947 * per-CPU usage, but they could contain newly released 948 * reclaimable (eg. lazy-freed swap cache) slots. 949 */ 950 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci), 951 order, usage); 952 if (found) 953 goto done; 954 frags++; 955 } 956 } 957 958 /* 959 * We don't have free cluster but have some clusters in 960 * discarding, do discard now and reclaim them, then 961 * reread cluster_next_cpu since we dropped si->lock 962 */ 963 if ((si->flags & SWP_PAGE_DISCARD) && swap_do_scheduled_discard(si)) 964 goto new_cluster; 965 966 if (order) 967 goto done; 968 969 /* Order 0 stealing from higher order */ 970 for (int o = 1; o < SWAP_NR_ORDERS; o++) { 971 /* 972 * Clusters here have at least one usable slots and can't fail order 0 973 * allocation, but reclaim may drop si->lock and race with another user. 974 */ 975 while ((ci = isolate_lock_cluster(si, &si->frag_clusters[o]))) { 976 atomic_long_dec(&si->frag_cluster_nr[o]); 977 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci), 978 0, usage); 979 if (found) 980 goto done; 981 } 982 983 while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[o]))) { 984 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci), 985 0, usage); 986 if (found) 987 goto done; 988 } 989 } 990 done: 991 if (!(si->flags & SWP_SOLIDSTATE)) 992 spin_unlock(&si->global_cluster_lock); 993 return found; 994 } 995 996 /* SWAP_USAGE_OFFLIST_BIT can only be set by this helper. */ 997 static void del_from_avail_list(struct swap_info_struct *si, bool swapoff) 998 { 999 int nid; 1000 unsigned long pages; 1001 1002 spin_lock(&swap_avail_lock); 1003 1004 if (swapoff) { 1005 /* 1006 * Forcefully remove it. Clear the SWP_WRITEOK flags for 1007 * swapoff here so it's synchronized by both si->lock and 1008 * swap_avail_lock, to ensure the result can be seen by 1009 * add_to_avail_list. 1010 */ 1011 lockdep_assert_held(&si->lock); 1012 si->flags &= ~SWP_WRITEOK; 1013 atomic_long_or(SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages); 1014 } else { 1015 /* 1016 * If not called by swapoff, take it off-list only if it's 1017 * full and SWAP_USAGE_OFFLIST_BIT is not set (strictly 1018 * si->inuse_pages == pages), any concurrent slot freeing, 1019 * or device already removed from plist by someone else 1020 * will make this return false. 1021 */ 1022 pages = si->pages; 1023 if (!atomic_long_try_cmpxchg(&si->inuse_pages, &pages, 1024 pages | SWAP_USAGE_OFFLIST_BIT)) 1025 goto skip; 1026 } 1027 1028 for_each_node(nid) 1029 plist_del(&si->avail_lists[nid], &swap_avail_heads[nid]); 1030 1031 skip: 1032 spin_unlock(&swap_avail_lock); 1033 } 1034 1035 /* SWAP_USAGE_OFFLIST_BIT can only be cleared by this helper. */ 1036 static void add_to_avail_list(struct swap_info_struct *si, bool swapon) 1037 { 1038 int nid; 1039 long val; 1040 unsigned long pages; 1041 1042 spin_lock(&swap_avail_lock); 1043 1044 /* Corresponding to SWP_WRITEOK clearing in del_from_avail_list */ 1045 if (swapon) { 1046 lockdep_assert_held(&si->lock); 1047 si->flags |= SWP_WRITEOK; 1048 } else { 1049 if (!(READ_ONCE(si->flags) & SWP_WRITEOK)) 1050 goto skip; 1051 } 1052 1053 if (!(atomic_long_read(&si->inuse_pages) & SWAP_USAGE_OFFLIST_BIT)) 1054 goto skip; 1055 1056 val = atomic_long_fetch_and_relaxed(~SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages); 1057 1058 /* 1059 * When device is full and device is on the plist, only one updater will 1060 * see (inuse_pages == si->pages) and will call del_from_avail_list. If 1061 * that updater happen to be here, just skip adding. 1062 */ 1063 pages = si->pages; 1064 if (val == pages) { 1065 /* Just like the cmpxchg in del_from_avail_list */ 1066 if (atomic_long_try_cmpxchg(&si->inuse_pages, &pages, 1067 pages | SWAP_USAGE_OFFLIST_BIT)) 1068 goto skip; 1069 } 1070 1071 for_each_node(nid) 1072 plist_add(&si->avail_lists[nid], &swap_avail_heads[nid]); 1073 1074 skip: 1075 spin_unlock(&swap_avail_lock); 1076 } 1077 1078 /* 1079 * swap_usage_add / swap_usage_sub of each slot are serialized by ci->lock 1080 * within each cluster, so the total contribution to the global counter should 1081 * always be positive and cannot exceed the total number of usable slots. 1082 */ 1083 static bool swap_usage_add(struct swap_info_struct *si, unsigned int nr_entries) 1084 { 1085 long val = atomic_long_add_return_relaxed(nr_entries, &si->inuse_pages); 1086 1087 /* 1088 * If device is full, and SWAP_USAGE_OFFLIST_BIT is not set, 1089 * remove it from the plist. 1090 */ 1091 if (unlikely(val == si->pages)) { 1092 del_from_avail_list(si, false); 1093 return true; 1094 } 1095 1096 return false; 1097 } 1098 1099 static void swap_usage_sub(struct swap_info_struct *si, unsigned int nr_entries) 1100 { 1101 long val = atomic_long_sub_return_relaxed(nr_entries, &si->inuse_pages); 1102 1103 /* 1104 * If device is not full, and SWAP_USAGE_OFFLIST_BIT is set, 1105 * add it to the plist. 1106 */ 1107 if (unlikely(val & SWAP_USAGE_OFFLIST_BIT)) 1108 add_to_avail_list(si, false); 1109 } 1110 1111 static void swap_range_alloc(struct swap_info_struct *si, 1112 unsigned int nr_entries) 1113 { 1114 if (swap_usage_add(si, nr_entries)) { 1115 if (vm_swap_full()) 1116 schedule_work(&si->reclaim_work); 1117 } 1118 } 1119 1120 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 1121 unsigned int nr_entries) 1122 { 1123 unsigned long begin = offset; 1124 unsigned long end = offset + nr_entries - 1; 1125 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 1126 unsigned int i; 1127 1128 /* 1129 * Use atomic clear_bit operations only on zeromap instead of non-atomic 1130 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes. 1131 */ 1132 for (i = 0; i < nr_entries; i++) { 1133 clear_bit(offset + i, si->zeromap); 1134 zswap_invalidate(swp_entry(si->type, offset + i)); 1135 } 1136 1137 if (si->flags & SWP_BLKDEV) 1138 swap_slot_free_notify = 1139 si->bdev->bd_disk->fops->swap_slot_free_notify; 1140 else 1141 swap_slot_free_notify = NULL; 1142 while (offset <= end) { 1143 arch_swap_invalidate_page(si->type, offset); 1144 if (swap_slot_free_notify) 1145 swap_slot_free_notify(si->bdev, offset); 1146 offset++; 1147 } 1148 clear_shadow_from_swap_cache(si->type, begin, end); 1149 1150 /* 1151 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0 1152 * only after the above cleanups are done. 1153 */ 1154 smp_wmb(); 1155 atomic_long_add(nr_entries, &nr_swap_pages); 1156 swap_usage_sub(si, nr_entries); 1157 } 1158 1159 static bool get_swap_device_info(struct swap_info_struct *si) 1160 { 1161 if (!percpu_ref_tryget_live(&si->users)) 1162 return false; 1163 /* 1164 * Guarantee the si->users are checked before accessing other 1165 * fields of swap_info_struct, and si->flags (SWP_WRITEOK) is 1166 * up to dated. 1167 * 1168 * Paired with the spin_unlock() after setup_swap_info() in 1169 * enable_swap_info(), and smp_wmb() in swapoff. 1170 */ 1171 smp_rmb(); 1172 return true; 1173 } 1174 1175 /* 1176 * Fast path try to get swap entries with specified order from current 1177 * CPU's swap entry pool (a cluster). 1178 */ 1179 static bool swap_alloc_fast(swp_entry_t *entry, 1180 int order) 1181 { 1182 struct swap_cluster_info *ci; 1183 struct swap_info_struct *si; 1184 unsigned int offset, found = SWAP_ENTRY_INVALID; 1185 1186 /* 1187 * Once allocated, swap_info_struct will never be completely freed, 1188 * so checking it's liveness by get_swap_device_info is enough. 1189 */ 1190 si = this_cpu_read(percpu_swap_cluster.si[order]); 1191 offset = this_cpu_read(percpu_swap_cluster.offset[order]); 1192 if (!si || !offset || !get_swap_device_info(si)) 1193 return false; 1194 1195 ci = lock_cluster(si, offset); 1196 if (cluster_is_usable(ci, order)) { 1197 if (cluster_is_empty(ci)) 1198 offset = cluster_offset(si, ci); 1199 found = alloc_swap_scan_cluster(si, ci, offset, order, SWAP_HAS_CACHE); 1200 if (found) 1201 *entry = swp_entry(si->type, found); 1202 } else { 1203 unlock_cluster(ci); 1204 } 1205 1206 put_swap_device(si); 1207 return !!found; 1208 } 1209 1210 /* Rotate the device and switch to a new cluster */ 1211 static bool swap_alloc_slow(swp_entry_t *entry, 1212 int order) 1213 { 1214 int node; 1215 unsigned long offset; 1216 struct swap_info_struct *si, *next; 1217 1218 node = numa_node_id(); 1219 spin_lock(&swap_avail_lock); 1220 start_over: 1221 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1222 /* Rotate the device and switch to a new cluster */ 1223 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1224 spin_unlock(&swap_avail_lock); 1225 if (get_swap_device_info(si)) { 1226 offset = cluster_alloc_swap_entry(si, order, SWAP_HAS_CACHE); 1227 put_swap_device(si); 1228 if (offset) { 1229 *entry = swp_entry(si->type, offset); 1230 return true; 1231 } 1232 if (order) 1233 return false; 1234 } 1235 1236 spin_lock(&swap_avail_lock); 1237 /* 1238 * if we got here, it's likely that si was almost full before, 1239 * and since scan_swap_map_slots() can drop the si->lock, 1240 * multiple callers probably all tried to get a page from the 1241 * same si and it filled up before we could get one; or, the si 1242 * filled up between us dropping swap_avail_lock and taking 1243 * si->lock. Since we dropped the swap_avail_lock, the 1244 * swap_avail_head list may have been modified; so if next is 1245 * still in the swap_avail_head list then try it, otherwise 1246 * start over if we have not gotten any slots. 1247 */ 1248 if (plist_node_empty(&next->avail_lists[node])) 1249 goto start_over; 1250 } 1251 spin_unlock(&swap_avail_lock); 1252 return false; 1253 } 1254 1255 /** 1256 * folio_alloc_swap - allocate swap space for a folio 1257 * @folio: folio we want to move to swap 1258 * @gfp: gfp mask for shadow nodes 1259 * 1260 * Allocate swap space for the folio and add the folio to the 1261 * swap cache. 1262 * 1263 * Context: Caller needs to hold the folio lock. 1264 * Return: Whether the folio was added to the swap cache. 1265 */ 1266 int folio_alloc_swap(struct folio *folio, gfp_t gfp) 1267 { 1268 unsigned int order = folio_order(folio); 1269 unsigned int size = 1 << order; 1270 swp_entry_t entry = {}; 1271 1272 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1273 VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio); 1274 1275 /* 1276 * Should not even be attempting large allocations when huge 1277 * page swap is disabled. Warn and fail the allocation. 1278 */ 1279 if (order && (!IS_ENABLED(CONFIG_THP_SWAP) || size > SWAPFILE_CLUSTER)) { 1280 VM_WARN_ON_ONCE(1); 1281 return -EINVAL; 1282 } 1283 1284 local_lock(&percpu_swap_cluster.lock); 1285 if (!swap_alloc_fast(&entry, order)) 1286 swap_alloc_slow(&entry, order); 1287 local_unlock(&percpu_swap_cluster.lock); 1288 1289 /* Need to call this even if allocation failed, for MEMCG_SWAP_FAIL. */ 1290 if (mem_cgroup_try_charge_swap(folio, entry)) 1291 goto out_free; 1292 1293 if (!entry.val) 1294 return -ENOMEM; 1295 1296 /* 1297 * XArray node allocations from PF_MEMALLOC contexts could 1298 * completely exhaust the page allocator. __GFP_NOMEMALLOC 1299 * stops emergency reserves from being allocated. 1300 * 1301 * TODO: this could cause a theoretical memory reclaim 1302 * deadlock in the swap out path. 1303 */ 1304 if (add_to_swap_cache(folio, entry, gfp | __GFP_NOMEMALLOC, NULL)) 1305 goto out_free; 1306 1307 atomic_long_sub(size, &nr_swap_pages); 1308 return 0; 1309 1310 out_free: 1311 put_swap_folio(folio, entry); 1312 return -ENOMEM; 1313 } 1314 1315 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1316 { 1317 struct swap_info_struct *si; 1318 unsigned long offset; 1319 1320 if (!entry.val) 1321 goto out; 1322 si = swp_swap_info(entry); 1323 if (!si) 1324 goto bad_nofile; 1325 if (data_race(!(si->flags & SWP_USED))) 1326 goto bad_device; 1327 offset = swp_offset(entry); 1328 if (offset >= si->max) 1329 goto bad_offset; 1330 if (data_race(!si->swap_map[swp_offset(entry)])) 1331 goto bad_free; 1332 return si; 1333 1334 bad_free: 1335 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); 1336 goto out; 1337 bad_offset: 1338 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1339 goto out; 1340 bad_device: 1341 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); 1342 goto out; 1343 bad_nofile: 1344 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1345 out: 1346 return NULL; 1347 } 1348 1349 static unsigned char __swap_entry_free_locked(struct swap_info_struct *si, 1350 unsigned long offset, 1351 unsigned char usage) 1352 { 1353 unsigned char count; 1354 unsigned char has_cache; 1355 1356 count = si->swap_map[offset]; 1357 1358 has_cache = count & SWAP_HAS_CACHE; 1359 count &= ~SWAP_HAS_CACHE; 1360 1361 if (usage == SWAP_HAS_CACHE) { 1362 VM_BUG_ON(!has_cache); 1363 has_cache = 0; 1364 } else if (count == SWAP_MAP_SHMEM) { 1365 /* 1366 * Or we could insist on shmem.c using a special 1367 * swap_shmem_free() and free_shmem_swap_and_cache()... 1368 */ 1369 count = 0; 1370 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1371 if (count == COUNT_CONTINUED) { 1372 if (swap_count_continued(si, offset, count)) 1373 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1374 else 1375 count = SWAP_MAP_MAX; 1376 } else 1377 count--; 1378 } 1379 1380 usage = count | has_cache; 1381 if (usage) 1382 WRITE_ONCE(si->swap_map[offset], usage); 1383 else 1384 WRITE_ONCE(si->swap_map[offset], SWAP_HAS_CACHE); 1385 1386 return usage; 1387 } 1388 1389 /* 1390 * When we get a swap entry, if there aren't some other ways to 1391 * prevent swapoff, such as the folio in swap cache is locked, RCU 1392 * reader side is locked, etc., the swap entry may become invalid 1393 * because of swapoff. Then, we need to enclose all swap related 1394 * functions with get_swap_device() and put_swap_device(), unless the 1395 * swap functions call get/put_swap_device() by themselves. 1396 * 1397 * RCU reader side lock (including any spinlock) is sufficient to 1398 * prevent swapoff, because synchronize_rcu() is called in swapoff() 1399 * before freeing data structures. 1400 * 1401 * Check whether swap entry is valid in the swap device. If so, 1402 * return pointer to swap_info_struct, and keep the swap entry valid 1403 * via preventing the swap device from being swapoff, until 1404 * put_swap_device() is called. Otherwise return NULL. 1405 * 1406 * Notice that swapoff or swapoff+swapon can still happen before the 1407 * percpu_ref_tryget_live() in get_swap_device() or after the 1408 * percpu_ref_put() in put_swap_device() if there isn't any other way 1409 * to prevent swapoff. The caller must be prepared for that. For 1410 * example, the following situation is possible. 1411 * 1412 * CPU1 CPU2 1413 * do_swap_page() 1414 * ... swapoff+swapon 1415 * __read_swap_cache_async() 1416 * swapcache_prepare() 1417 * __swap_duplicate() 1418 * // check swap_map 1419 * // verify PTE not changed 1420 * 1421 * In __swap_duplicate(), the swap_map need to be checked before 1422 * changing partly because the specified swap entry may be for another 1423 * swap device which has been swapoff. And in do_swap_page(), after 1424 * the page is read from the swap device, the PTE is verified not 1425 * changed with the page table locked to check whether the swap device 1426 * has been swapoff or swapoff+swapon. 1427 */ 1428 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1429 { 1430 struct swap_info_struct *si; 1431 unsigned long offset; 1432 1433 if (!entry.val) 1434 goto out; 1435 si = swp_swap_info(entry); 1436 if (!si) 1437 goto bad_nofile; 1438 if (!get_swap_device_info(si)) 1439 goto out; 1440 offset = swp_offset(entry); 1441 if (offset >= si->max) 1442 goto put_out; 1443 1444 return si; 1445 bad_nofile: 1446 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1447 out: 1448 return NULL; 1449 put_out: 1450 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1451 percpu_ref_put(&si->users); 1452 return NULL; 1453 } 1454 1455 static unsigned char __swap_entry_free(struct swap_info_struct *si, 1456 swp_entry_t entry) 1457 { 1458 struct swap_cluster_info *ci; 1459 unsigned long offset = swp_offset(entry); 1460 unsigned char usage; 1461 1462 ci = lock_cluster(si, offset); 1463 usage = __swap_entry_free_locked(si, offset, 1); 1464 if (!usage) 1465 swap_entry_range_free(si, ci, swp_entry(si->type, offset), 1); 1466 unlock_cluster(ci); 1467 1468 return usage; 1469 } 1470 1471 static bool __swap_entries_free(struct swap_info_struct *si, 1472 swp_entry_t entry, int nr) 1473 { 1474 unsigned long offset = swp_offset(entry); 1475 unsigned int type = swp_type(entry); 1476 struct swap_cluster_info *ci; 1477 bool has_cache = false; 1478 unsigned char count; 1479 int i; 1480 1481 if (nr <= 1 || swap_count(data_race(si->swap_map[offset])) != 1) 1482 goto fallback; 1483 /* cross into another cluster */ 1484 if (nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER) 1485 goto fallback; 1486 1487 ci = lock_cluster(si, offset); 1488 if (!swap_is_last_map(si, offset, nr, &has_cache)) { 1489 unlock_cluster(ci); 1490 goto fallback; 1491 } 1492 for (i = 0; i < nr; i++) 1493 WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE); 1494 if (!has_cache) 1495 swap_entry_range_free(si, ci, entry, nr); 1496 unlock_cluster(ci); 1497 1498 return has_cache; 1499 1500 fallback: 1501 for (i = 0; i < nr; i++) { 1502 if (data_race(si->swap_map[offset + i])) { 1503 count = __swap_entry_free(si, swp_entry(type, offset + i)); 1504 if (count == SWAP_HAS_CACHE) 1505 has_cache = true; 1506 } else { 1507 WARN_ON_ONCE(1); 1508 } 1509 } 1510 return has_cache; 1511 } 1512 1513 /* 1514 * Drop the last HAS_CACHE flag of swap entries, caller have to 1515 * ensure all entries belong to the same cgroup. 1516 */ 1517 static void swap_entry_range_free(struct swap_info_struct *si, 1518 struct swap_cluster_info *ci, 1519 swp_entry_t entry, unsigned int nr_pages) 1520 { 1521 unsigned long offset = swp_offset(entry); 1522 unsigned char *map = si->swap_map + offset; 1523 unsigned char *map_end = map + nr_pages; 1524 1525 /* It should never free entries across different clusters */ 1526 VM_BUG_ON(ci != offset_to_cluster(si, offset + nr_pages - 1)); 1527 VM_BUG_ON(cluster_is_empty(ci)); 1528 VM_BUG_ON(ci->count < nr_pages); 1529 1530 ci->count -= nr_pages; 1531 do { 1532 VM_BUG_ON(*map != SWAP_HAS_CACHE); 1533 *map = 0; 1534 } while (++map < map_end); 1535 1536 mem_cgroup_uncharge_swap(entry, nr_pages); 1537 swap_range_free(si, offset, nr_pages); 1538 1539 if (!ci->count) 1540 free_cluster(si, ci); 1541 else 1542 partial_free_cluster(si, ci); 1543 } 1544 1545 static void cluster_swap_free_nr(struct swap_info_struct *si, 1546 unsigned long offset, int nr_pages, 1547 unsigned char usage) 1548 { 1549 struct swap_cluster_info *ci; 1550 unsigned long end = offset + nr_pages; 1551 1552 ci = lock_cluster(si, offset); 1553 do { 1554 if (!__swap_entry_free_locked(si, offset, usage)) 1555 swap_entry_range_free(si, ci, swp_entry(si->type, offset), 1); 1556 } while (++offset < end); 1557 unlock_cluster(ci); 1558 } 1559 1560 /* 1561 * Caller has made sure that the swap device corresponding to entry 1562 * is still around or has not been recycled. 1563 */ 1564 void swap_free_nr(swp_entry_t entry, int nr_pages) 1565 { 1566 int nr; 1567 struct swap_info_struct *sis; 1568 unsigned long offset = swp_offset(entry); 1569 1570 sis = _swap_info_get(entry); 1571 if (!sis) 1572 return; 1573 1574 while (nr_pages) { 1575 nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER); 1576 cluster_swap_free_nr(sis, offset, nr, 1); 1577 offset += nr; 1578 nr_pages -= nr; 1579 } 1580 } 1581 1582 /* 1583 * Called after dropping swapcache to decrease refcnt to swap entries. 1584 */ 1585 void put_swap_folio(struct folio *folio, swp_entry_t entry) 1586 { 1587 unsigned long offset = swp_offset(entry); 1588 struct swap_cluster_info *ci; 1589 struct swap_info_struct *si; 1590 int size = 1 << swap_entry_order(folio_order(folio)); 1591 1592 si = _swap_info_get(entry); 1593 if (!si) 1594 return; 1595 1596 ci = lock_cluster(si, offset); 1597 if (swap_only_has_cache(si, offset, size)) 1598 swap_entry_range_free(si, ci, entry, size); 1599 else { 1600 for (int i = 0; i < size; i++, entry.val++) { 1601 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) 1602 swap_entry_range_free(si, ci, entry, 1); 1603 } 1604 } 1605 unlock_cluster(ci); 1606 } 1607 1608 int __swap_count(swp_entry_t entry) 1609 { 1610 struct swap_info_struct *si = swp_swap_info(entry); 1611 pgoff_t offset = swp_offset(entry); 1612 1613 return swap_count(si->swap_map[offset]); 1614 } 1615 1616 /* 1617 * How many references to @entry are currently swapped out? 1618 * This does not give an exact answer when swap count is continued, 1619 * but does include the high COUNT_CONTINUED flag to allow for that. 1620 */ 1621 bool swap_entry_swapped(struct swap_info_struct *si, swp_entry_t entry) 1622 { 1623 pgoff_t offset = swp_offset(entry); 1624 struct swap_cluster_info *ci; 1625 int count; 1626 1627 ci = lock_cluster(si, offset); 1628 count = swap_count(si->swap_map[offset]); 1629 unlock_cluster(ci); 1630 return !!count; 1631 } 1632 1633 /* 1634 * How many references to @entry are currently swapped out? 1635 * This considers COUNT_CONTINUED so it returns exact answer. 1636 */ 1637 int swp_swapcount(swp_entry_t entry) 1638 { 1639 int count, tmp_count, n; 1640 struct swap_info_struct *si; 1641 struct swap_cluster_info *ci; 1642 struct page *page; 1643 pgoff_t offset; 1644 unsigned char *map; 1645 1646 si = _swap_info_get(entry); 1647 if (!si) 1648 return 0; 1649 1650 offset = swp_offset(entry); 1651 1652 ci = lock_cluster(si, offset); 1653 1654 count = swap_count(si->swap_map[offset]); 1655 if (!(count & COUNT_CONTINUED)) 1656 goto out; 1657 1658 count &= ~COUNT_CONTINUED; 1659 n = SWAP_MAP_MAX + 1; 1660 1661 page = vmalloc_to_page(si->swap_map + offset); 1662 offset &= ~PAGE_MASK; 1663 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1664 1665 do { 1666 page = list_next_entry(page, lru); 1667 map = kmap_local_page(page); 1668 tmp_count = map[offset]; 1669 kunmap_local(map); 1670 1671 count += (tmp_count & ~COUNT_CONTINUED) * n; 1672 n *= (SWAP_CONT_MAX + 1); 1673 } while (tmp_count & COUNT_CONTINUED); 1674 out: 1675 unlock_cluster(ci); 1676 return count; 1677 } 1678 1679 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1680 swp_entry_t entry, int order) 1681 { 1682 struct swap_cluster_info *ci; 1683 unsigned char *map = si->swap_map; 1684 unsigned int nr_pages = 1 << order; 1685 unsigned long roffset = swp_offset(entry); 1686 unsigned long offset = round_down(roffset, nr_pages); 1687 int i; 1688 bool ret = false; 1689 1690 ci = lock_cluster(si, offset); 1691 if (nr_pages == 1) { 1692 if (swap_count(map[roffset])) 1693 ret = true; 1694 goto unlock_out; 1695 } 1696 for (i = 0; i < nr_pages; i++) { 1697 if (swap_count(map[offset + i])) { 1698 ret = true; 1699 break; 1700 } 1701 } 1702 unlock_out: 1703 unlock_cluster(ci); 1704 return ret; 1705 } 1706 1707 static bool folio_swapped(struct folio *folio) 1708 { 1709 swp_entry_t entry = folio->swap; 1710 struct swap_info_struct *si = _swap_info_get(entry); 1711 1712 if (!si) 1713 return false; 1714 1715 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio))) 1716 return swap_entry_swapped(si, entry); 1717 1718 return swap_page_trans_huge_swapped(si, entry, folio_order(folio)); 1719 } 1720 1721 static bool folio_swapcache_freeable(struct folio *folio) 1722 { 1723 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1724 1725 if (!folio_test_swapcache(folio)) 1726 return false; 1727 if (folio_test_writeback(folio)) 1728 return false; 1729 1730 /* 1731 * Once hibernation has begun to create its image of memory, 1732 * there's a danger that one of the calls to folio_free_swap() 1733 * - most probably a call from __try_to_reclaim_swap() while 1734 * hibernation is allocating its own swap pages for the image, 1735 * but conceivably even a call from memory reclaim - will free 1736 * the swap from a folio which has already been recorded in the 1737 * image as a clean swapcache folio, and then reuse its swap for 1738 * another page of the image. On waking from hibernation, the 1739 * original folio might be freed under memory pressure, then 1740 * later read back in from swap, now with the wrong data. 1741 * 1742 * Hibernation suspends storage while it is writing the image 1743 * to disk so check that here. 1744 */ 1745 if (pm_suspended_storage()) 1746 return false; 1747 1748 return true; 1749 } 1750 1751 /** 1752 * folio_free_swap() - Free the swap space used for this folio. 1753 * @folio: The folio to remove. 1754 * 1755 * If swap is getting full, or if there are no more mappings of this folio, 1756 * then call folio_free_swap to free its swap space. 1757 * 1758 * Return: true if we were able to release the swap space. 1759 */ 1760 bool folio_free_swap(struct folio *folio) 1761 { 1762 if (!folio_swapcache_freeable(folio)) 1763 return false; 1764 if (folio_swapped(folio)) 1765 return false; 1766 1767 delete_from_swap_cache(folio); 1768 folio_set_dirty(folio); 1769 return true; 1770 } 1771 1772 /** 1773 * free_swap_and_cache_nr() - Release reference on range of swap entries and 1774 * reclaim their cache if no more references remain. 1775 * @entry: First entry of range. 1776 * @nr: Number of entries in range. 1777 * 1778 * For each swap entry in the contiguous range, release a reference. If any swap 1779 * entries become free, try to reclaim their underlying folios, if present. The 1780 * offset range is defined by [entry.offset, entry.offset + nr). 1781 */ 1782 void free_swap_and_cache_nr(swp_entry_t entry, int nr) 1783 { 1784 const unsigned long start_offset = swp_offset(entry); 1785 const unsigned long end_offset = start_offset + nr; 1786 struct swap_info_struct *si; 1787 bool any_only_cache = false; 1788 unsigned long offset; 1789 1790 si = get_swap_device(entry); 1791 if (!si) 1792 return; 1793 1794 if (WARN_ON(end_offset > si->max)) 1795 goto out; 1796 1797 /* 1798 * First free all entries in the range. 1799 */ 1800 any_only_cache = __swap_entries_free(si, entry, nr); 1801 1802 /* 1803 * Short-circuit the below loop if none of the entries had their 1804 * reference drop to zero. 1805 */ 1806 if (!any_only_cache) 1807 goto out; 1808 1809 /* 1810 * Now go back over the range trying to reclaim the swap cache. This is 1811 * more efficient for large folios because we will only try to reclaim 1812 * the swap once per folio in the common case. If we do 1813 * __swap_entry_free() and __try_to_reclaim_swap() in the same loop, the 1814 * latter will get a reference and lock the folio for every individual 1815 * page but will only succeed once the swap slot for every subpage is 1816 * zero. 1817 */ 1818 for (offset = start_offset; offset < end_offset; offset += nr) { 1819 nr = 1; 1820 if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 1821 /* 1822 * Folios are always naturally aligned in swap so 1823 * advance forward to the next boundary. Zero means no 1824 * folio was found for the swap entry, so advance by 1 1825 * in this case. Negative value means folio was found 1826 * but could not be reclaimed. Here we can still advance 1827 * to the next boundary. 1828 */ 1829 nr = __try_to_reclaim_swap(si, offset, 1830 TTRS_UNMAPPED | TTRS_FULL); 1831 if (nr == 0) 1832 nr = 1; 1833 else if (nr < 0) 1834 nr = -nr; 1835 nr = ALIGN(offset + 1, nr) - offset; 1836 } 1837 } 1838 1839 out: 1840 put_swap_device(si); 1841 } 1842 1843 #ifdef CONFIG_HIBERNATION 1844 1845 swp_entry_t get_swap_page_of_type(int type) 1846 { 1847 struct swap_info_struct *si = swap_type_to_swap_info(type); 1848 unsigned long offset; 1849 swp_entry_t entry = {0}; 1850 1851 if (!si) 1852 goto fail; 1853 1854 /* This is called for allocating swap entry, not cache */ 1855 if (get_swap_device_info(si)) { 1856 if (si->flags & SWP_WRITEOK) { 1857 offset = cluster_alloc_swap_entry(si, 0, 1); 1858 if (offset) { 1859 entry = swp_entry(si->type, offset); 1860 atomic_long_dec(&nr_swap_pages); 1861 } 1862 } 1863 put_swap_device(si); 1864 } 1865 fail: 1866 return entry; 1867 } 1868 1869 /* 1870 * Find the swap type that corresponds to given device (if any). 1871 * 1872 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1873 * from 0, in which the swap header is expected to be located. 1874 * 1875 * This is needed for the suspend to disk (aka swsusp). 1876 */ 1877 int swap_type_of(dev_t device, sector_t offset) 1878 { 1879 int type; 1880 1881 if (!device) 1882 return -1; 1883 1884 spin_lock(&swap_lock); 1885 for (type = 0; type < nr_swapfiles; type++) { 1886 struct swap_info_struct *sis = swap_info[type]; 1887 1888 if (!(sis->flags & SWP_WRITEOK)) 1889 continue; 1890 1891 if (device == sis->bdev->bd_dev) { 1892 struct swap_extent *se = first_se(sis); 1893 1894 if (se->start_block == offset) { 1895 spin_unlock(&swap_lock); 1896 return type; 1897 } 1898 } 1899 } 1900 spin_unlock(&swap_lock); 1901 return -ENODEV; 1902 } 1903 1904 int find_first_swap(dev_t *device) 1905 { 1906 int type; 1907 1908 spin_lock(&swap_lock); 1909 for (type = 0; type < nr_swapfiles; type++) { 1910 struct swap_info_struct *sis = swap_info[type]; 1911 1912 if (!(sis->flags & SWP_WRITEOK)) 1913 continue; 1914 *device = sis->bdev->bd_dev; 1915 spin_unlock(&swap_lock); 1916 return type; 1917 } 1918 spin_unlock(&swap_lock); 1919 return -ENODEV; 1920 } 1921 1922 /* 1923 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1924 * corresponding to given index in swap_info (swap type). 1925 */ 1926 sector_t swapdev_block(int type, pgoff_t offset) 1927 { 1928 struct swap_info_struct *si = swap_type_to_swap_info(type); 1929 struct swap_extent *se; 1930 1931 if (!si || !(si->flags & SWP_WRITEOK)) 1932 return 0; 1933 se = offset_to_swap_extent(si, offset); 1934 return se->start_block + (offset - se->start_page); 1935 } 1936 1937 /* 1938 * Return either the total number of swap pages of given type, or the number 1939 * of free pages of that type (depending on @free) 1940 * 1941 * This is needed for software suspend 1942 */ 1943 unsigned int count_swap_pages(int type, int free) 1944 { 1945 unsigned int n = 0; 1946 1947 spin_lock(&swap_lock); 1948 if ((unsigned int)type < nr_swapfiles) { 1949 struct swap_info_struct *sis = swap_info[type]; 1950 1951 spin_lock(&sis->lock); 1952 if (sis->flags & SWP_WRITEOK) { 1953 n = sis->pages; 1954 if (free) 1955 n -= swap_usage_in_pages(sis); 1956 } 1957 spin_unlock(&sis->lock); 1958 } 1959 spin_unlock(&swap_lock); 1960 return n; 1961 } 1962 #endif /* CONFIG_HIBERNATION */ 1963 1964 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1965 { 1966 return pte_same(pte_swp_clear_flags(pte), swp_pte); 1967 } 1968 1969 /* 1970 * No need to decide whether this PTE shares the swap entry with others, 1971 * just let do_wp_page work it out if a write is requested later - to 1972 * force COW, vm_page_prot omits write permission from any private vma. 1973 */ 1974 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1975 unsigned long addr, swp_entry_t entry, struct folio *folio) 1976 { 1977 struct page *page; 1978 struct folio *swapcache; 1979 spinlock_t *ptl; 1980 pte_t *pte, new_pte, old_pte; 1981 bool hwpoisoned = false; 1982 int ret = 1; 1983 1984 swapcache = folio; 1985 folio = ksm_might_need_to_copy(folio, vma, addr); 1986 if (unlikely(!folio)) 1987 return -ENOMEM; 1988 else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 1989 hwpoisoned = true; 1990 folio = swapcache; 1991 } 1992 1993 page = folio_file_page(folio, swp_offset(entry)); 1994 if (PageHWPoison(page)) 1995 hwpoisoned = true; 1996 1997 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1998 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte), 1999 swp_entry_to_pte(entry)))) { 2000 ret = 0; 2001 goto out; 2002 } 2003 2004 old_pte = ptep_get(pte); 2005 2006 if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) { 2007 swp_entry_t swp_entry; 2008 2009 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 2010 if (hwpoisoned) { 2011 swp_entry = make_hwpoison_entry(page); 2012 } else { 2013 swp_entry = make_poisoned_swp_entry(); 2014 } 2015 new_pte = swp_entry_to_pte(swp_entry); 2016 ret = 0; 2017 goto setpte; 2018 } 2019 2020 /* 2021 * Some architectures may have to restore extra metadata to the page 2022 * when reading from swap. This metadata may be indexed by swap entry 2023 * so this must be called before swap_free(). 2024 */ 2025 arch_swap_restore(folio_swap(entry, folio), folio); 2026 2027 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 2028 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 2029 folio_get(folio); 2030 if (folio == swapcache) { 2031 rmap_t rmap_flags = RMAP_NONE; 2032 2033 /* 2034 * See do_swap_page(): writeback would be problematic. 2035 * However, we do a folio_wait_writeback() just before this 2036 * call and have the folio locked. 2037 */ 2038 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 2039 if (pte_swp_exclusive(old_pte)) 2040 rmap_flags |= RMAP_EXCLUSIVE; 2041 /* 2042 * We currently only expect small !anon folios, which are either 2043 * fully exclusive or fully shared. If we ever get large folios 2044 * here, we have to be careful. 2045 */ 2046 if (!folio_test_anon(folio)) { 2047 VM_WARN_ON_ONCE(folio_test_large(folio)); 2048 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 2049 folio_add_new_anon_rmap(folio, vma, addr, rmap_flags); 2050 } else { 2051 folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags); 2052 } 2053 } else { /* ksm created a completely new copy */ 2054 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 2055 folio_add_lru_vma(folio, vma); 2056 } 2057 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot)); 2058 if (pte_swp_soft_dirty(old_pte)) 2059 new_pte = pte_mksoft_dirty(new_pte); 2060 if (pte_swp_uffd_wp(old_pte)) 2061 new_pte = pte_mkuffd_wp(new_pte); 2062 setpte: 2063 set_pte_at(vma->vm_mm, addr, pte, new_pte); 2064 swap_free(entry); 2065 out: 2066 if (pte) 2067 pte_unmap_unlock(pte, ptl); 2068 if (folio != swapcache) { 2069 folio_unlock(folio); 2070 folio_put(folio); 2071 } 2072 return ret; 2073 } 2074 2075 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 2076 unsigned long addr, unsigned long end, 2077 unsigned int type) 2078 { 2079 pte_t *pte = NULL; 2080 struct swap_info_struct *si; 2081 2082 si = swap_info[type]; 2083 do { 2084 struct folio *folio; 2085 unsigned long offset; 2086 unsigned char swp_count; 2087 swp_entry_t entry; 2088 int ret; 2089 pte_t ptent; 2090 2091 if (!pte++) { 2092 pte = pte_offset_map(pmd, addr); 2093 if (!pte) 2094 break; 2095 } 2096 2097 ptent = ptep_get_lockless(pte); 2098 2099 if (!is_swap_pte(ptent)) 2100 continue; 2101 2102 entry = pte_to_swp_entry(ptent); 2103 if (swp_type(entry) != type) 2104 continue; 2105 2106 offset = swp_offset(entry); 2107 pte_unmap(pte); 2108 pte = NULL; 2109 2110 folio = swap_cache_get_folio(entry, vma, addr); 2111 if (!folio) { 2112 struct vm_fault vmf = { 2113 .vma = vma, 2114 .address = addr, 2115 .real_address = addr, 2116 .pmd = pmd, 2117 }; 2118 2119 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 2120 &vmf); 2121 } 2122 if (!folio) { 2123 swp_count = READ_ONCE(si->swap_map[offset]); 2124 if (swp_count == 0 || swp_count == SWAP_MAP_BAD) 2125 continue; 2126 return -ENOMEM; 2127 } 2128 2129 folio_lock(folio); 2130 folio_wait_writeback(folio); 2131 ret = unuse_pte(vma, pmd, addr, entry, folio); 2132 if (ret < 0) { 2133 folio_unlock(folio); 2134 folio_put(folio); 2135 return ret; 2136 } 2137 2138 folio_free_swap(folio); 2139 folio_unlock(folio); 2140 folio_put(folio); 2141 } while (addr += PAGE_SIZE, addr != end); 2142 2143 if (pte) 2144 pte_unmap(pte); 2145 return 0; 2146 } 2147 2148 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 2149 unsigned long addr, unsigned long end, 2150 unsigned int type) 2151 { 2152 pmd_t *pmd; 2153 unsigned long next; 2154 int ret; 2155 2156 pmd = pmd_offset(pud, addr); 2157 do { 2158 cond_resched(); 2159 next = pmd_addr_end(addr, end); 2160 ret = unuse_pte_range(vma, pmd, addr, next, type); 2161 if (ret) 2162 return ret; 2163 } while (pmd++, addr = next, addr != end); 2164 return 0; 2165 } 2166 2167 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 2168 unsigned long addr, unsigned long end, 2169 unsigned int type) 2170 { 2171 pud_t *pud; 2172 unsigned long next; 2173 int ret; 2174 2175 pud = pud_offset(p4d, addr); 2176 do { 2177 next = pud_addr_end(addr, end); 2178 if (pud_none_or_clear_bad(pud)) 2179 continue; 2180 ret = unuse_pmd_range(vma, pud, addr, next, type); 2181 if (ret) 2182 return ret; 2183 } while (pud++, addr = next, addr != end); 2184 return 0; 2185 } 2186 2187 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 2188 unsigned long addr, unsigned long end, 2189 unsigned int type) 2190 { 2191 p4d_t *p4d; 2192 unsigned long next; 2193 int ret; 2194 2195 p4d = p4d_offset(pgd, addr); 2196 do { 2197 next = p4d_addr_end(addr, end); 2198 if (p4d_none_or_clear_bad(p4d)) 2199 continue; 2200 ret = unuse_pud_range(vma, p4d, addr, next, type); 2201 if (ret) 2202 return ret; 2203 } while (p4d++, addr = next, addr != end); 2204 return 0; 2205 } 2206 2207 static int unuse_vma(struct vm_area_struct *vma, unsigned int type) 2208 { 2209 pgd_t *pgd; 2210 unsigned long addr, end, next; 2211 int ret; 2212 2213 addr = vma->vm_start; 2214 end = vma->vm_end; 2215 2216 pgd = pgd_offset(vma->vm_mm, addr); 2217 do { 2218 next = pgd_addr_end(addr, end); 2219 if (pgd_none_or_clear_bad(pgd)) 2220 continue; 2221 ret = unuse_p4d_range(vma, pgd, addr, next, type); 2222 if (ret) 2223 return ret; 2224 } while (pgd++, addr = next, addr != end); 2225 return 0; 2226 } 2227 2228 static int unuse_mm(struct mm_struct *mm, unsigned int type) 2229 { 2230 struct vm_area_struct *vma; 2231 int ret = 0; 2232 VMA_ITERATOR(vmi, mm, 0); 2233 2234 mmap_read_lock(mm); 2235 for_each_vma(vmi, vma) { 2236 if (vma->anon_vma && !is_vm_hugetlb_page(vma)) { 2237 ret = unuse_vma(vma, type); 2238 if (ret) 2239 break; 2240 } 2241 2242 cond_resched(); 2243 } 2244 mmap_read_unlock(mm); 2245 return ret; 2246 } 2247 2248 /* 2249 * Scan swap_map from current position to next entry still in use. 2250 * Return 0 if there are no inuse entries after prev till end of 2251 * the map. 2252 */ 2253 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 2254 unsigned int prev) 2255 { 2256 unsigned int i; 2257 unsigned char count; 2258 2259 /* 2260 * No need for swap_lock here: we're just looking 2261 * for whether an entry is in use, not modifying it; false 2262 * hits are okay, and sys_swapoff() has already prevented new 2263 * allocations from this area (while holding swap_lock). 2264 */ 2265 for (i = prev + 1; i < si->max; i++) { 2266 count = READ_ONCE(si->swap_map[i]); 2267 if (count && swap_count(count) != SWAP_MAP_BAD) 2268 break; 2269 if ((i % LATENCY_LIMIT) == 0) 2270 cond_resched(); 2271 } 2272 2273 if (i == si->max) 2274 i = 0; 2275 2276 return i; 2277 } 2278 2279 static int try_to_unuse(unsigned int type) 2280 { 2281 struct mm_struct *prev_mm; 2282 struct mm_struct *mm; 2283 struct list_head *p; 2284 int retval = 0; 2285 struct swap_info_struct *si = swap_info[type]; 2286 struct folio *folio; 2287 swp_entry_t entry; 2288 unsigned int i; 2289 2290 if (!swap_usage_in_pages(si)) 2291 goto success; 2292 2293 retry: 2294 retval = shmem_unuse(type); 2295 if (retval) 2296 return retval; 2297 2298 prev_mm = &init_mm; 2299 mmget(prev_mm); 2300 2301 spin_lock(&mmlist_lock); 2302 p = &init_mm.mmlist; 2303 while (swap_usage_in_pages(si) && 2304 !signal_pending(current) && 2305 (p = p->next) != &init_mm.mmlist) { 2306 2307 mm = list_entry(p, struct mm_struct, mmlist); 2308 if (!mmget_not_zero(mm)) 2309 continue; 2310 spin_unlock(&mmlist_lock); 2311 mmput(prev_mm); 2312 prev_mm = mm; 2313 retval = unuse_mm(mm, type); 2314 if (retval) { 2315 mmput(prev_mm); 2316 return retval; 2317 } 2318 2319 /* 2320 * Make sure that we aren't completely killing 2321 * interactive performance. 2322 */ 2323 cond_resched(); 2324 spin_lock(&mmlist_lock); 2325 } 2326 spin_unlock(&mmlist_lock); 2327 2328 mmput(prev_mm); 2329 2330 i = 0; 2331 while (swap_usage_in_pages(si) && 2332 !signal_pending(current) && 2333 (i = find_next_to_unuse(si, i)) != 0) { 2334 2335 entry = swp_entry(type, i); 2336 folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry)); 2337 if (IS_ERR(folio)) 2338 continue; 2339 2340 /* 2341 * It is conceivable that a racing task removed this folio from 2342 * swap cache just before we acquired the page lock. The folio 2343 * might even be back in swap cache on another swap area. But 2344 * that is okay, folio_free_swap() only removes stale folios. 2345 */ 2346 folio_lock(folio); 2347 folio_wait_writeback(folio); 2348 folio_free_swap(folio); 2349 folio_unlock(folio); 2350 folio_put(folio); 2351 } 2352 2353 /* 2354 * Lets check again to see if there are still swap entries in the map. 2355 * If yes, we would need to do retry the unuse logic again. 2356 * Under global memory pressure, swap entries can be reinserted back 2357 * into process space after the mmlist loop above passes over them. 2358 * 2359 * Limit the number of retries? No: when mmget_not_zero() 2360 * above fails, that mm is likely to be freeing swap from 2361 * exit_mmap(), which proceeds at its own independent pace; 2362 * and even shmem_writepage() could have been preempted after 2363 * folio_alloc_swap(), temporarily hiding that swap. It's easy 2364 * and robust (though cpu-intensive) just to keep retrying. 2365 */ 2366 if (swap_usage_in_pages(si)) { 2367 if (!signal_pending(current)) 2368 goto retry; 2369 return -EINTR; 2370 } 2371 2372 success: 2373 /* 2374 * Make sure that further cleanups after try_to_unuse() returns happen 2375 * after swap_range_free() reduces si->inuse_pages to 0. 2376 */ 2377 smp_mb(); 2378 return 0; 2379 } 2380 2381 /* 2382 * After a successful try_to_unuse, if no swap is now in use, we know 2383 * we can empty the mmlist. swap_lock must be held on entry and exit. 2384 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2385 * added to the mmlist just after page_duplicate - before would be racy. 2386 */ 2387 static void drain_mmlist(void) 2388 { 2389 struct list_head *p, *next; 2390 unsigned int type; 2391 2392 for (type = 0; type < nr_swapfiles; type++) 2393 if (swap_usage_in_pages(swap_info[type])) 2394 return; 2395 spin_lock(&mmlist_lock); 2396 list_for_each_safe(p, next, &init_mm.mmlist) 2397 list_del_init(p); 2398 spin_unlock(&mmlist_lock); 2399 } 2400 2401 /* 2402 * Free all of a swapdev's extent information 2403 */ 2404 static void destroy_swap_extents(struct swap_info_struct *sis) 2405 { 2406 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2407 struct rb_node *rb = sis->swap_extent_root.rb_node; 2408 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2409 2410 rb_erase(rb, &sis->swap_extent_root); 2411 kfree(se); 2412 } 2413 2414 if (sis->flags & SWP_ACTIVATED) { 2415 struct file *swap_file = sis->swap_file; 2416 struct address_space *mapping = swap_file->f_mapping; 2417 2418 sis->flags &= ~SWP_ACTIVATED; 2419 if (mapping->a_ops->swap_deactivate) 2420 mapping->a_ops->swap_deactivate(swap_file); 2421 } 2422 } 2423 2424 /* 2425 * Add a block range (and the corresponding page range) into this swapdev's 2426 * extent tree. 2427 * 2428 * This function rather assumes that it is called in ascending page order. 2429 */ 2430 int 2431 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2432 unsigned long nr_pages, sector_t start_block) 2433 { 2434 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2435 struct swap_extent *se; 2436 struct swap_extent *new_se; 2437 2438 /* 2439 * place the new node at the right most since the 2440 * function is called in ascending page order. 2441 */ 2442 while (*link) { 2443 parent = *link; 2444 link = &parent->rb_right; 2445 } 2446 2447 if (parent) { 2448 se = rb_entry(parent, struct swap_extent, rb_node); 2449 BUG_ON(se->start_page + se->nr_pages != start_page); 2450 if (se->start_block + se->nr_pages == start_block) { 2451 /* Merge it */ 2452 se->nr_pages += nr_pages; 2453 return 0; 2454 } 2455 } 2456 2457 /* No merge, insert a new extent. */ 2458 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2459 if (new_se == NULL) 2460 return -ENOMEM; 2461 new_se->start_page = start_page; 2462 new_se->nr_pages = nr_pages; 2463 new_se->start_block = start_block; 2464 2465 rb_link_node(&new_se->rb_node, parent, link); 2466 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2467 return 1; 2468 } 2469 EXPORT_SYMBOL_GPL(add_swap_extent); 2470 2471 /* 2472 * A `swap extent' is a simple thing which maps a contiguous range of pages 2473 * onto a contiguous range of disk blocks. A rbtree of swap extents is 2474 * built at swapon time and is then used at swap_writepage/swap_read_folio 2475 * time for locating where on disk a page belongs. 2476 * 2477 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2478 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2479 * swap files identically. 2480 * 2481 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2482 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2483 * swapfiles are handled *identically* after swapon time. 2484 * 2485 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2486 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray 2487 * blocks are found which do not fall within the PAGE_SIZE alignment 2488 * requirements, they are simply tossed out - we will never use those blocks 2489 * for swapping. 2490 * 2491 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2492 * prevents users from writing to the swap device, which will corrupt memory. 2493 * 2494 * The amount of disk space which a single swap extent represents varies. 2495 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2496 * extents in the rbtree. - akpm. 2497 */ 2498 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2499 { 2500 struct file *swap_file = sis->swap_file; 2501 struct address_space *mapping = swap_file->f_mapping; 2502 struct inode *inode = mapping->host; 2503 int ret; 2504 2505 if (S_ISBLK(inode->i_mode)) { 2506 ret = add_swap_extent(sis, 0, sis->max, 0); 2507 *span = sis->pages; 2508 return ret; 2509 } 2510 2511 if (mapping->a_ops->swap_activate) { 2512 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2513 if (ret < 0) 2514 return ret; 2515 sis->flags |= SWP_ACTIVATED; 2516 if ((sis->flags & SWP_FS_OPS) && 2517 sio_pool_init() != 0) { 2518 destroy_swap_extents(sis); 2519 return -ENOMEM; 2520 } 2521 return ret; 2522 } 2523 2524 return generic_swapfile_activate(sis, swap_file, span); 2525 } 2526 2527 static int swap_node(struct swap_info_struct *si) 2528 { 2529 struct block_device *bdev; 2530 2531 if (si->bdev) 2532 bdev = si->bdev; 2533 else 2534 bdev = si->swap_file->f_inode->i_sb->s_bdev; 2535 2536 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2537 } 2538 2539 static void setup_swap_info(struct swap_info_struct *si, int prio, 2540 unsigned char *swap_map, 2541 struct swap_cluster_info *cluster_info, 2542 unsigned long *zeromap) 2543 { 2544 int i; 2545 2546 if (prio >= 0) 2547 si->prio = prio; 2548 else 2549 si->prio = --least_priority; 2550 /* 2551 * the plist prio is negated because plist ordering is 2552 * low-to-high, while swap ordering is high-to-low 2553 */ 2554 si->list.prio = -si->prio; 2555 for_each_node(i) { 2556 if (si->prio >= 0) 2557 si->avail_lists[i].prio = -si->prio; 2558 else { 2559 if (swap_node(si) == i) 2560 si->avail_lists[i].prio = 1; 2561 else 2562 si->avail_lists[i].prio = -si->prio; 2563 } 2564 } 2565 si->swap_map = swap_map; 2566 si->cluster_info = cluster_info; 2567 si->zeromap = zeromap; 2568 } 2569 2570 static void _enable_swap_info(struct swap_info_struct *si) 2571 { 2572 atomic_long_add(si->pages, &nr_swap_pages); 2573 total_swap_pages += si->pages; 2574 2575 assert_spin_locked(&swap_lock); 2576 /* 2577 * both lists are plists, and thus priority ordered. 2578 * swap_active_head needs to be priority ordered for swapoff(), 2579 * which on removal of any swap_info_struct with an auto-assigned 2580 * (i.e. negative) priority increments the auto-assigned priority 2581 * of any lower-priority swap_info_structs. 2582 * swap_avail_head needs to be priority ordered for folio_alloc_swap(), 2583 * which allocates swap pages from the highest available priority 2584 * swap_info_struct. 2585 */ 2586 plist_add(&si->list, &swap_active_head); 2587 2588 /* Add back to available list */ 2589 add_to_avail_list(si, true); 2590 } 2591 2592 static void enable_swap_info(struct swap_info_struct *si, int prio, 2593 unsigned char *swap_map, 2594 struct swap_cluster_info *cluster_info, 2595 unsigned long *zeromap) 2596 { 2597 spin_lock(&swap_lock); 2598 spin_lock(&si->lock); 2599 setup_swap_info(si, prio, swap_map, cluster_info, zeromap); 2600 spin_unlock(&si->lock); 2601 spin_unlock(&swap_lock); 2602 /* 2603 * Finished initializing swap device, now it's safe to reference it. 2604 */ 2605 percpu_ref_resurrect(&si->users); 2606 spin_lock(&swap_lock); 2607 spin_lock(&si->lock); 2608 _enable_swap_info(si); 2609 spin_unlock(&si->lock); 2610 spin_unlock(&swap_lock); 2611 } 2612 2613 static void reinsert_swap_info(struct swap_info_struct *si) 2614 { 2615 spin_lock(&swap_lock); 2616 spin_lock(&si->lock); 2617 setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap); 2618 _enable_swap_info(si); 2619 spin_unlock(&si->lock); 2620 spin_unlock(&swap_lock); 2621 } 2622 2623 /* 2624 * Called after clearing SWP_WRITEOK, ensures cluster_alloc_range 2625 * see the updated flags, so there will be no more allocations. 2626 */ 2627 static void wait_for_allocation(struct swap_info_struct *si) 2628 { 2629 unsigned long offset; 2630 unsigned long end = ALIGN(si->max, SWAPFILE_CLUSTER); 2631 struct swap_cluster_info *ci; 2632 2633 BUG_ON(si->flags & SWP_WRITEOK); 2634 2635 for (offset = 0; offset < end; offset += SWAPFILE_CLUSTER) { 2636 ci = lock_cluster(si, offset); 2637 unlock_cluster(ci); 2638 } 2639 } 2640 2641 /* 2642 * Called after swap device's reference count is dead, so 2643 * neither scan nor allocation will use it. 2644 */ 2645 static void flush_percpu_swap_cluster(struct swap_info_struct *si) 2646 { 2647 int cpu, i; 2648 struct swap_info_struct **pcp_si; 2649 2650 for_each_possible_cpu(cpu) { 2651 pcp_si = per_cpu_ptr(percpu_swap_cluster.si, cpu); 2652 /* 2653 * Invalidate the percpu swap cluster cache, si->users 2654 * is dead, so no new user will point to it, just flush 2655 * any existing user. 2656 */ 2657 for (i = 0; i < SWAP_NR_ORDERS; i++) 2658 cmpxchg(&pcp_si[i], si, NULL); 2659 } 2660 } 2661 2662 2663 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2664 { 2665 struct swap_info_struct *p = NULL; 2666 unsigned char *swap_map; 2667 unsigned long *zeromap; 2668 struct swap_cluster_info *cluster_info; 2669 struct file *swap_file, *victim; 2670 struct address_space *mapping; 2671 struct inode *inode; 2672 struct filename *pathname; 2673 int err, found = 0; 2674 2675 if (!capable(CAP_SYS_ADMIN)) 2676 return -EPERM; 2677 2678 BUG_ON(!current->mm); 2679 2680 pathname = getname(specialfile); 2681 if (IS_ERR(pathname)) 2682 return PTR_ERR(pathname); 2683 2684 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2685 err = PTR_ERR(victim); 2686 if (IS_ERR(victim)) 2687 goto out; 2688 2689 mapping = victim->f_mapping; 2690 spin_lock(&swap_lock); 2691 plist_for_each_entry(p, &swap_active_head, list) { 2692 if (p->flags & SWP_WRITEOK) { 2693 if (p->swap_file->f_mapping == mapping) { 2694 found = 1; 2695 break; 2696 } 2697 } 2698 } 2699 if (!found) { 2700 err = -EINVAL; 2701 spin_unlock(&swap_lock); 2702 goto out_dput; 2703 } 2704 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2705 vm_unacct_memory(p->pages); 2706 else { 2707 err = -ENOMEM; 2708 spin_unlock(&swap_lock); 2709 goto out_dput; 2710 } 2711 spin_lock(&p->lock); 2712 del_from_avail_list(p, true); 2713 if (p->prio < 0) { 2714 struct swap_info_struct *si = p; 2715 int nid; 2716 2717 plist_for_each_entry_continue(si, &swap_active_head, list) { 2718 si->prio++; 2719 si->list.prio--; 2720 for_each_node(nid) { 2721 if (si->avail_lists[nid].prio != 1) 2722 si->avail_lists[nid].prio--; 2723 } 2724 } 2725 least_priority++; 2726 } 2727 plist_del(&p->list, &swap_active_head); 2728 atomic_long_sub(p->pages, &nr_swap_pages); 2729 total_swap_pages -= p->pages; 2730 spin_unlock(&p->lock); 2731 spin_unlock(&swap_lock); 2732 2733 wait_for_allocation(p); 2734 2735 set_current_oom_origin(); 2736 err = try_to_unuse(p->type); 2737 clear_current_oom_origin(); 2738 2739 if (err) { 2740 /* re-insert swap space back into swap_list */ 2741 reinsert_swap_info(p); 2742 goto out_dput; 2743 } 2744 2745 /* 2746 * Wait for swap operations protected by get/put_swap_device() 2747 * to complete. Because of synchronize_rcu() here, all swap 2748 * operations protected by RCU reader side lock (including any 2749 * spinlock) will be waited too. This makes it easy to 2750 * prevent folio_test_swapcache() and the following swap cache 2751 * operations from racing with swapoff. 2752 */ 2753 percpu_ref_kill(&p->users); 2754 synchronize_rcu(); 2755 wait_for_completion(&p->comp); 2756 2757 flush_work(&p->discard_work); 2758 flush_work(&p->reclaim_work); 2759 flush_percpu_swap_cluster(p); 2760 2761 destroy_swap_extents(p); 2762 if (p->flags & SWP_CONTINUED) 2763 free_swap_count_continuations(p); 2764 2765 if (!p->bdev || !bdev_nonrot(p->bdev)) 2766 atomic_dec(&nr_rotate_swap); 2767 2768 mutex_lock(&swapon_mutex); 2769 spin_lock(&swap_lock); 2770 spin_lock(&p->lock); 2771 drain_mmlist(); 2772 2773 swap_file = p->swap_file; 2774 p->swap_file = NULL; 2775 p->max = 0; 2776 swap_map = p->swap_map; 2777 p->swap_map = NULL; 2778 zeromap = p->zeromap; 2779 p->zeromap = NULL; 2780 cluster_info = p->cluster_info; 2781 p->cluster_info = NULL; 2782 spin_unlock(&p->lock); 2783 spin_unlock(&swap_lock); 2784 arch_swap_invalidate_area(p->type); 2785 zswap_swapoff(p->type); 2786 mutex_unlock(&swapon_mutex); 2787 kfree(p->global_cluster); 2788 p->global_cluster = NULL; 2789 vfree(swap_map); 2790 kvfree(zeromap); 2791 kvfree(cluster_info); 2792 /* Destroy swap account information */ 2793 swap_cgroup_swapoff(p->type); 2794 exit_swap_address_space(p->type); 2795 2796 inode = mapping->host; 2797 2798 inode_lock(inode); 2799 inode->i_flags &= ~S_SWAPFILE; 2800 inode_unlock(inode); 2801 filp_close(swap_file, NULL); 2802 2803 /* 2804 * Clear the SWP_USED flag after all resources are freed so that swapon 2805 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2806 * not hold p->lock after we cleared its SWP_WRITEOK. 2807 */ 2808 spin_lock(&swap_lock); 2809 p->flags = 0; 2810 spin_unlock(&swap_lock); 2811 2812 err = 0; 2813 atomic_inc(&proc_poll_event); 2814 wake_up_interruptible(&proc_poll_wait); 2815 2816 out_dput: 2817 filp_close(victim, NULL); 2818 out: 2819 putname(pathname); 2820 return err; 2821 } 2822 2823 #ifdef CONFIG_PROC_FS 2824 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2825 { 2826 struct seq_file *seq = file->private_data; 2827 2828 poll_wait(file, &proc_poll_wait, wait); 2829 2830 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2831 seq->poll_event = atomic_read(&proc_poll_event); 2832 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2833 } 2834 2835 return EPOLLIN | EPOLLRDNORM; 2836 } 2837 2838 /* iterator */ 2839 static void *swap_start(struct seq_file *swap, loff_t *pos) 2840 { 2841 struct swap_info_struct *si; 2842 int type; 2843 loff_t l = *pos; 2844 2845 mutex_lock(&swapon_mutex); 2846 2847 if (!l) 2848 return SEQ_START_TOKEN; 2849 2850 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2851 if (!(si->flags & SWP_USED) || !si->swap_map) 2852 continue; 2853 if (!--l) 2854 return si; 2855 } 2856 2857 return NULL; 2858 } 2859 2860 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2861 { 2862 struct swap_info_struct *si = v; 2863 int type; 2864 2865 if (v == SEQ_START_TOKEN) 2866 type = 0; 2867 else 2868 type = si->type + 1; 2869 2870 ++(*pos); 2871 for (; (si = swap_type_to_swap_info(type)); type++) { 2872 if (!(si->flags & SWP_USED) || !si->swap_map) 2873 continue; 2874 return si; 2875 } 2876 2877 return NULL; 2878 } 2879 2880 static void swap_stop(struct seq_file *swap, void *v) 2881 { 2882 mutex_unlock(&swapon_mutex); 2883 } 2884 2885 static int swap_show(struct seq_file *swap, void *v) 2886 { 2887 struct swap_info_struct *si = v; 2888 struct file *file; 2889 int len; 2890 unsigned long bytes, inuse; 2891 2892 if (si == SEQ_START_TOKEN) { 2893 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 2894 return 0; 2895 } 2896 2897 bytes = K(si->pages); 2898 inuse = K(swap_usage_in_pages(si)); 2899 2900 file = si->swap_file; 2901 len = seq_file_path(swap, file, " \t\n\\"); 2902 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n", 2903 len < 40 ? 40 - len : 1, " ", 2904 S_ISBLK(file_inode(file)->i_mode) ? 2905 "partition" : "file\t", 2906 bytes, bytes < 10000000 ? "\t" : "", 2907 inuse, inuse < 10000000 ? "\t" : "", 2908 si->prio); 2909 return 0; 2910 } 2911 2912 static const struct seq_operations swaps_op = { 2913 .start = swap_start, 2914 .next = swap_next, 2915 .stop = swap_stop, 2916 .show = swap_show 2917 }; 2918 2919 static int swaps_open(struct inode *inode, struct file *file) 2920 { 2921 struct seq_file *seq; 2922 int ret; 2923 2924 ret = seq_open(file, &swaps_op); 2925 if (ret) 2926 return ret; 2927 2928 seq = file->private_data; 2929 seq->poll_event = atomic_read(&proc_poll_event); 2930 return 0; 2931 } 2932 2933 static const struct proc_ops swaps_proc_ops = { 2934 .proc_flags = PROC_ENTRY_PERMANENT, 2935 .proc_open = swaps_open, 2936 .proc_read = seq_read, 2937 .proc_lseek = seq_lseek, 2938 .proc_release = seq_release, 2939 .proc_poll = swaps_poll, 2940 }; 2941 2942 static int __init procswaps_init(void) 2943 { 2944 proc_create("swaps", 0, NULL, &swaps_proc_ops); 2945 return 0; 2946 } 2947 __initcall(procswaps_init); 2948 #endif /* CONFIG_PROC_FS */ 2949 2950 #ifdef MAX_SWAPFILES_CHECK 2951 static int __init max_swapfiles_check(void) 2952 { 2953 MAX_SWAPFILES_CHECK(); 2954 return 0; 2955 } 2956 late_initcall(max_swapfiles_check); 2957 #endif 2958 2959 static struct swap_info_struct *alloc_swap_info(void) 2960 { 2961 struct swap_info_struct *p; 2962 struct swap_info_struct *defer = NULL; 2963 unsigned int type; 2964 int i; 2965 2966 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2967 if (!p) 2968 return ERR_PTR(-ENOMEM); 2969 2970 if (percpu_ref_init(&p->users, swap_users_ref_free, 2971 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { 2972 kvfree(p); 2973 return ERR_PTR(-ENOMEM); 2974 } 2975 2976 spin_lock(&swap_lock); 2977 for (type = 0; type < nr_swapfiles; type++) { 2978 if (!(swap_info[type]->flags & SWP_USED)) 2979 break; 2980 } 2981 if (type >= MAX_SWAPFILES) { 2982 spin_unlock(&swap_lock); 2983 percpu_ref_exit(&p->users); 2984 kvfree(p); 2985 return ERR_PTR(-EPERM); 2986 } 2987 if (type >= nr_swapfiles) { 2988 p->type = type; 2989 /* 2990 * Publish the swap_info_struct after initializing it. 2991 * Note that kvzalloc() above zeroes all its fields. 2992 */ 2993 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ 2994 nr_swapfiles++; 2995 } else { 2996 defer = p; 2997 p = swap_info[type]; 2998 /* 2999 * Do not memset this entry: a racing procfs swap_next() 3000 * would be relying on p->type to remain valid. 3001 */ 3002 } 3003 p->swap_extent_root = RB_ROOT; 3004 plist_node_init(&p->list, 0); 3005 for_each_node(i) 3006 plist_node_init(&p->avail_lists[i], 0); 3007 p->flags = SWP_USED; 3008 spin_unlock(&swap_lock); 3009 if (defer) { 3010 percpu_ref_exit(&defer->users); 3011 kvfree(defer); 3012 } 3013 spin_lock_init(&p->lock); 3014 spin_lock_init(&p->cont_lock); 3015 atomic_long_set(&p->inuse_pages, SWAP_USAGE_OFFLIST_BIT); 3016 init_completion(&p->comp); 3017 3018 return p; 3019 } 3020 3021 static int claim_swapfile(struct swap_info_struct *si, struct inode *inode) 3022 { 3023 if (S_ISBLK(inode->i_mode)) { 3024 si->bdev = I_BDEV(inode); 3025 /* 3026 * Zoned block devices contain zones that have a sequential 3027 * write only restriction. Hence zoned block devices are not 3028 * suitable for swapping. Disallow them here. 3029 */ 3030 if (bdev_is_zoned(si->bdev)) 3031 return -EINVAL; 3032 si->flags |= SWP_BLKDEV; 3033 } else if (S_ISREG(inode->i_mode)) { 3034 si->bdev = inode->i_sb->s_bdev; 3035 } 3036 3037 return 0; 3038 } 3039 3040 3041 /* 3042 * Find out how many pages are allowed for a single swap device. There 3043 * are two limiting factors: 3044 * 1) the number of bits for the swap offset in the swp_entry_t type, and 3045 * 2) the number of bits in the swap pte, as defined by the different 3046 * architectures. 3047 * 3048 * In order to find the largest possible bit mask, a swap entry with 3049 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 3050 * decoded to a swp_entry_t again, and finally the swap offset is 3051 * extracted. 3052 * 3053 * This will mask all the bits from the initial ~0UL mask that can't 3054 * be encoded in either the swp_entry_t or the architecture definition 3055 * of a swap pte. 3056 */ 3057 unsigned long generic_max_swapfile_size(void) 3058 { 3059 return swp_offset(pte_to_swp_entry( 3060 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 3061 } 3062 3063 /* Can be overridden by an architecture for additional checks. */ 3064 __weak unsigned long arch_max_swapfile_size(void) 3065 { 3066 return generic_max_swapfile_size(); 3067 } 3068 3069 static unsigned long read_swap_header(struct swap_info_struct *si, 3070 union swap_header *swap_header, 3071 struct inode *inode) 3072 { 3073 int i; 3074 unsigned long maxpages; 3075 unsigned long swapfilepages; 3076 unsigned long last_page; 3077 3078 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 3079 pr_err("Unable to find swap-space signature\n"); 3080 return 0; 3081 } 3082 3083 /* swap partition endianness hack... */ 3084 if (swab32(swap_header->info.version) == 1) { 3085 swab32s(&swap_header->info.version); 3086 swab32s(&swap_header->info.last_page); 3087 swab32s(&swap_header->info.nr_badpages); 3088 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 3089 return 0; 3090 for (i = 0; i < swap_header->info.nr_badpages; i++) 3091 swab32s(&swap_header->info.badpages[i]); 3092 } 3093 /* Check the swap header's sub-version */ 3094 if (swap_header->info.version != 1) { 3095 pr_warn("Unable to handle swap header version %d\n", 3096 swap_header->info.version); 3097 return 0; 3098 } 3099 3100 maxpages = swapfile_maximum_size; 3101 last_page = swap_header->info.last_page; 3102 if (!last_page) { 3103 pr_warn("Empty swap-file\n"); 3104 return 0; 3105 } 3106 if (last_page > maxpages) { 3107 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 3108 K(maxpages), K(last_page)); 3109 } 3110 if (maxpages > last_page) { 3111 maxpages = last_page + 1; 3112 /* p->max is an unsigned int: don't overflow it */ 3113 if ((unsigned int)maxpages == 0) 3114 maxpages = UINT_MAX; 3115 } 3116 3117 if (!maxpages) 3118 return 0; 3119 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 3120 if (swapfilepages && maxpages > swapfilepages) { 3121 pr_warn("Swap area shorter than signature indicates\n"); 3122 return 0; 3123 } 3124 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 3125 return 0; 3126 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 3127 return 0; 3128 3129 return maxpages; 3130 } 3131 3132 static int setup_swap_map_and_extents(struct swap_info_struct *si, 3133 union swap_header *swap_header, 3134 unsigned char *swap_map, 3135 unsigned long maxpages, 3136 sector_t *span) 3137 { 3138 unsigned int nr_good_pages; 3139 unsigned long i; 3140 int nr_extents; 3141 3142 nr_good_pages = maxpages - 1; /* omit header page */ 3143 3144 for (i = 0; i < swap_header->info.nr_badpages; i++) { 3145 unsigned int page_nr = swap_header->info.badpages[i]; 3146 if (page_nr == 0 || page_nr > swap_header->info.last_page) 3147 return -EINVAL; 3148 if (page_nr < maxpages) { 3149 swap_map[page_nr] = SWAP_MAP_BAD; 3150 nr_good_pages--; 3151 } 3152 } 3153 3154 if (nr_good_pages) { 3155 swap_map[0] = SWAP_MAP_BAD; 3156 si->max = maxpages; 3157 si->pages = nr_good_pages; 3158 nr_extents = setup_swap_extents(si, span); 3159 if (nr_extents < 0) 3160 return nr_extents; 3161 nr_good_pages = si->pages; 3162 } 3163 if (!nr_good_pages) { 3164 pr_warn("Empty swap-file\n"); 3165 return -EINVAL; 3166 } 3167 3168 return nr_extents; 3169 } 3170 3171 #define SWAP_CLUSTER_INFO_COLS \ 3172 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 3173 #define SWAP_CLUSTER_SPACE_COLS \ 3174 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 3175 #define SWAP_CLUSTER_COLS \ 3176 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 3177 3178 static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si, 3179 union swap_header *swap_header, 3180 unsigned long maxpages) 3181 { 3182 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3183 struct swap_cluster_info *cluster_info; 3184 unsigned long i, j, idx; 3185 int err = -ENOMEM; 3186 3187 cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL); 3188 if (!cluster_info) 3189 goto err; 3190 3191 for (i = 0; i < nr_clusters; i++) 3192 spin_lock_init(&cluster_info[i].lock); 3193 3194 if (!(si->flags & SWP_SOLIDSTATE)) { 3195 si->global_cluster = kmalloc(sizeof(*si->global_cluster), 3196 GFP_KERNEL); 3197 if (!si->global_cluster) 3198 goto err_free; 3199 for (i = 0; i < SWAP_NR_ORDERS; i++) 3200 si->global_cluster->next[i] = SWAP_ENTRY_INVALID; 3201 spin_lock_init(&si->global_cluster_lock); 3202 } 3203 3204 /* 3205 * Mark unusable pages as unavailable. The clusters aren't 3206 * marked free yet, so no list operations are involved yet. 3207 * 3208 * See setup_swap_map_and_extents(): header page, bad pages, 3209 * and the EOF part of the last cluster. 3210 */ 3211 inc_cluster_info_page(si, cluster_info, 0); 3212 for (i = 0; i < swap_header->info.nr_badpages; i++) 3213 inc_cluster_info_page(si, cluster_info, 3214 swap_header->info.badpages[i]); 3215 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 3216 inc_cluster_info_page(si, cluster_info, i); 3217 3218 INIT_LIST_HEAD(&si->free_clusters); 3219 INIT_LIST_HEAD(&si->full_clusters); 3220 INIT_LIST_HEAD(&si->discard_clusters); 3221 3222 for (i = 0; i < SWAP_NR_ORDERS; i++) { 3223 INIT_LIST_HEAD(&si->nonfull_clusters[i]); 3224 INIT_LIST_HEAD(&si->frag_clusters[i]); 3225 atomic_long_set(&si->frag_cluster_nr[i], 0); 3226 } 3227 3228 /* 3229 * Reduce false cache line sharing between cluster_info and 3230 * sharing same address space. 3231 */ 3232 for (j = 0; j < SWAP_CLUSTER_COLS; j++) { 3233 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 3234 struct swap_cluster_info *ci; 3235 idx = i * SWAP_CLUSTER_COLS + j; 3236 ci = cluster_info + idx; 3237 if (idx >= nr_clusters) 3238 continue; 3239 if (ci->count) { 3240 ci->flags = CLUSTER_FLAG_NONFULL; 3241 list_add_tail(&ci->list, &si->nonfull_clusters[0]); 3242 continue; 3243 } 3244 ci->flags = CLUSTER_FLAG_FREE; 3245 list_add_tail(&ci->list, &si->free_clusters); 3246 } 3247 } 3248 3249 return cluster_info; 3250 3251 err_free: 3252 kvfree(cluster_info); 3253 err: 3254 return ERR_PTR(err); 3255 } 3256 3257 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 3258 { 3259 struct swap_info_struct *si; 3260 struct filename *name; 3261 struct file *swap_file = NULL; 3262 struct address_space *mapping; 3263 struct dentry *dentry; 3264 int prio; 3265 int error; 3266 union swap_header *swap_header; 3267 int nr_extents; 3268 sector_t span; 3269 unsigned long maxpages; 3270 unsigned char *swap_map = NULL; 3271 unsigned long *zeromap = NULL; 3272 struct swap_cluster_info *cluster_info = NULL; 3273 struct folio *folio = NULL; 3274 struct inode *inode = NULL; 3275 bool inced_nr_rotate_swap = false; 3276 3277 if (swap_flags & ~SWAP_FLAGS_VALID) 3278 return -EINVAL; 3279 3280 if (!capable(CAP_SYS_ADMIN)) 3281 return -EPERM; 3282 3283 if (!swap_avail_heads) 3284 return -ENOMEM; 3285 3286 si = alloc_swap_info(); 3287 if (IS_ERR(si)) 3288 return PTR_ERR(si); 3289 3290 INIT_WORK(&si->discard_work, swap_discard_work); 3291 INIT_WORK(&si->reclaim_work, swap_reclaim_work); 3292 3293 name = getname(specialfile); 3294 if (IS_ERR(name)) { 3295 error = PTR_ERR(name); 3296 name = NULL; 3297 goto bad_swap; 3298 } 3299 swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0); 3300 if (IS_ERR(swap_file)) { 3301 error = PTR_ERR(swap_file); 3302 swap_file = NULL; 3303 goto bad_swap; 3304 } 3305 3306 si->swap_file = swap_file; 3307 mapping = swap_file->f_mapping; 3308 dentry = swap_file->f_path.dentry; 3309 inode = mapping->host; 3310 3311 error = claim_swapfile(si, inode); 3312 if (unlikely(error)) 3313 goto bad_swap; 3314 3315 inode_lock(inode); 3316 if (d_unlinked(dentry) || cant_mount(dentry)) { 3317 error = -ENOENT; 3318 goto bad_swap_unlock_inode; 3319 } 3320 if (IS_SWAPFILE(inode)) { 3321 error = -EBUSY; 3322 goto bad_swap_unlock_inode; 3323 } 3324 3325 /* 3326 * Read the swap header. 3327 */ 3328 if (!mapping->a_ops->read_folio) { 3329 error = -EINVAL; 3330 goto bad_swap_unlock_inode; 3331 } 3332 folio = read_mapping_folio(mapping, 0, swap_file); 3333 if (IS_ERR(folio)) { 3334 error = PTR_ERR(folio); 3335 goto bad_swap_unlock_inode; 3336 } 3337 swap_header = kmap_local_folio(folio, 0); 3338 3339 maxpages = read_swap_header(si, swap_header, inode); 3340 if (unlikely(!maxpages)) { 3341 error = -EINVAL; 3342 goto bad_swap_unlock_inode; 3343 } 3344 3345 /* OK, set up the swap map and apply the bad block list */ 3346 swap_map = vzalloc(maxpages); 3347 if (!swap_map) { 3348 error = -ENOMEM; 3349 goto bad_swap_unlock_inode; 3350 } 3351 3352 error = swap_cgroup_swapon(si->type, maxpages); 3353 if (error) 3354 goto bad_swap_unlock_inode; 3355 3356 nr_extents = setup_swap_map_and_extents(si, swap_header, swap_map, 3357 maxpages, &span); 3358 if (unlikely(nr_extents < 0)) { 3359 error = nr_extents; 3360 goto bad_swap_unlock_inode; 3361 } 3362 3363 /* 3364 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might 3365 * be above MAX_PAGE_ORDER incase of a large swap file. 3366 */ 3367 zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long), 3368 GFP_KERNEL | __GFP_ZERO); 3369 if (!zeromap) { 3370 error = -ENOMEM; 3371 goto bad_swap_unlock_inode; 3372 } 3373 3374 if (si->bdev && bdev_stable_writes(si->bdev)) 3375 si->flags |= SWP_STABLE_WRITES; 3376 3377 if (si->bdev && bdev_synchronous(si->bdev)) 3378 si->flags |= SWP_SYNCHRONOUS_IO; 3379 3380 if (si->bdev && bdev_nonrot(si->bdev)) { 3381 si->flags |= SWP_SOLIDSTATE; 3382 } else { 3383 atomic_inc(&nr_rotate_swap); 3384 inced_nr_rotate_swap = true; 3385 } 3386 3387 cluster_info = setup_clusters(si, swap_header, maxpages); 3388 if (IS_ERR(cluster_info)) { 3389 error = PTR_ERR(cluster_info); 3390 cluster_info = NULL; 3391 goto bad_swap_unlock_inode; 3392 } 3393 3394 if ((swap_flags & SWAP_FLAG_DISCARD) && 3395 si->bdev && bdev_max_discard_sectors(si->bdev)) { 3396 /* 3397 * When discard is enabled for swap with no particular 3398 * policy flagged, we set all swap discard flags here in 3399 * order to sustain backward compatibility with older 3400 * swapon(8) releases. 3401 */ 3402 si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3403 SWP_PAGE_DISCARD); 3404 3405 /* 3406 * By flagging sys_swapon, a sysadmin can tell us to 3407 * either do single-time area discards only, or to just 3408 * perform discards for released swap page-clusters. 3409 * Now it's time to adjust the p->flags accordingly. 3410 */ 3411 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3412 si->flags &= ~SWP_PAGE_DISCARD; 3413 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3414 si->flags &= ~SWP_AREA_DISCARD; 3415 3416 /* issue a swapon-time discard if it's still required */ 3417 if (si->flags & SWP_AREA_DISCARD) { 3418 int err = discard_swap(si); 3419 if (unlikely(err)) 3420 pr_err("swapon: discard_swap(%p): %d\n", 3421 si, err); 3422 } 3423 } 3424 3425 error = init_swap_address_space(si->type, maxpages); 3426 if (error) 3427 goto bad_swap_unlock_inode; 3428 3429 error = zswap_swapon(si->type, maxpages); 3430 if (error) 3431 goto free_swap_address_space; 3432 3433 /* 3434 * Flush any pending IO and dirty mappings before we start using this 3435 * swap device. 3436 */ 3437 inode->i_flags |= S_SWAPFILE; 3438 error = inode_drain_writes(inode); 3439 if (error) { 3440 inode->i_flags &= ~S_SWAPFILE; 3441 goto free_swap_zswap; 3442 } 3443 3444 mutex_lock(&swapon_mutex); 3445 prio = -1; 3446 if (swap_flags & SWAP_FLAG_PREFER) 3447 prio = swap_flags & SWAP_FLAG_PRIO_MASK; 3448 enable_swap_info(si, prio, swap_map, cluster_info, zeromap); 3449 3450 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n", 3451 K(si->pages), name->name, si->prio, nr_extents, 3452 K((unsigned long long)span), 3453 (si->flags & SWP_SOLIDSTATE) ? "SS" : "", 3454 (si->flags & SWP_DISCARDABLE) ? "D" : "", 3455 (si->flags & SWP_AREA_DISCARD) ? "s" : "", 3456 (si->flags & SWP_PAGE_DISCARD) ? "c" : ""); 3457 3458 mutex_unlock(&swapon_mutex); 3459 atomic_inc(&proc_poll_event); 3460 wake_up_interruptible(&proc_poll_wait); 3461 3462 error = 0; 3463 goto out; 3464 free_swap_zswap: 3465 zswap_swapoff(si->type); 3466 free_swap_address_space: 3467 exit_swap_address_space(si->type); 3468 bad_swap_unlock_inode: 3469 inode_unlock(inode); 3470 bad_swap: 3471 kfree(si->global_cluster); 3472 si->global_cluster = NULL; 3473 inode = NULL; 3474 destroy_swap_extents(si); 3475 swap_cgroup_swapoff(si->type); 3476 spin_lock(&swap_lock); 3477 si->swap_file = NULL; 3478 si->flags = 0; 3479 spin_unlock(&swap_lock); 3480 vfree(swap_map); 3481 kvfree(zeromap); 3482 kvfree(cluster_info); 3483 if (inced_nr_rotate_swap) 3484 atomic_dec(&nr_rotate_swap); 3485 if (swap_file) 3486 filp_close(swap_file, NULL); 3487 out: 3488 if (!IS_ERR_OR_NULL(folio)) 3489 folio_release_kmap(folio, swap_header); 3490 if (name) 3491 putname(name); 3492 if (inode) 3493 inode_unlock(inode); 3494 return error; 3495 } 3496 3497 void si_swapinfo(struct sysinfo *val) 3498 { 3499 unsigned int type; 3500 unsigned long nr_to_be_unused = 0; 3501 3502 spin_lock(&swap_lock); 3503 for (type = 0; type < nr_swapfiles; type++) { 3504 struct swap_info_struct *si = swap_info[type]; 3505 3506 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3507 nr_to_be_unused += swap_usage_in_pages(si); 3508 } 3509 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3510 val->totalswap = total_swap_pages + nr_to_be_unused; 3511 spin_unlock(&swap_lock); 3512 } 3513 3514 /* 3515 * Verify that nr swap entries are valid and increment their swap map counts. 3516 * 3517 * Returns error code in following case. 3518 * - success -> 0 3519 * - swp_entry is invalid -> EINVAL 3520 * - swap-cache reference is requested but there is already one. -> EEXIST 3521 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3522 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3523 */ 3524 static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr) 3525 { 3526 struct swap_info_struct *si; 3527 struct swap_cluster_info *ci; 3528 unsigned long offset; 3529 unsigned char count; 3530 unsigned char has_cache; 3531 int err, i; 3532 3533 si = swp_swap_info(entry); 3534 if (WARN_ON_ONCE(!si)) { 3535 pr_err("%s%08lx\n", Bad_file, entry.val); 3536 return -EINVAL; 3537 } 3538 3539 offset = swp_offset(entry); 3540 VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER); 3541 VM_WARN_ON(usage == 1 && nr > 1); 3542 ci = lock_cluster(si, offset); 3543 3544 err = 0; 3545 for (i = 0; i < nr; i++) { 3546 count = si->swap_map[offset + i]; 3547 3548 /* 3549 * swapin_readahead() doesn't check if a swap entry is valid, so the 3550 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3551 */ 3552 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3553 err = -ENOENT; 3554 goto unlock_out; 3555 } 3556 3557 has_cache = count & SWAP_HAS_CACHE; 3558 count &= ~SWAP_HAS_CACHE; 3559 3560 if (!count && !has_cache) { 3561 err = -ENOENT; 3562 } else if (usage == SWAP_HAS_CACHE) { 3563 if (has_cache) 3564 err = -EEXIST; 3565 } else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) { 3566 err = -EINVAL; 3567 } 3568 3569 if (err) 3570 goto unlock_out; 3571 } 3572 3573 for (i = 0; i < nr; i++) { 3574 count = si->swap_map[offset + i]; 3575 has_cache = count & SWAP_HAS_CACHE; 3576 count &= ~SWAP_HAS_CACHE; 3577 3578 if (usage == SWAP_HAS_CACHE) 3579 has_cache = SWAP_HAS_CACHE; 3580 else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3581 count += usage; 3582 else if (swap_count_continued(si, offset + i, count)) 3583 count = COUNT_CONTINUED; 3584 else { 3585 /* 3586 * Don't need to rollback changes, because if 3587 * usage == 1, there must be nr == 1. 3588 */ 3589 err = -ENOMEM; 3590 goto unlock_out; 3591 } 3592 3593 WRITE_ONCE(si->swap_map[offset + i], count | has_cache); 3594 } 3595 3596 unlock_out: 3597 unlock_cluster(ci); 3598 return err; 3599 } 3600 3601 /* 3602 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3603 * (in which case its reference count is never incremented). 3604 */ 3605 void swap_shmem_alloc(swp_entry_t entry, int nr) 3606 { 3607 __swap_duplicate(entry, SWAP_MAP_SHMEM, nr); 3608 } 3609 3610 /* 3611 * Increase reference count of swap entry by 1. 3612 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3613 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3614 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3615 * might occur if a page table entry has got corrupted. 3616 */ 3617 int swap_duplicate(swp_entry_t entry) 3618 { 3619 int err = 0; 3620 3621 while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM) 3622 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3623 return err; 3624 } 3625 3626 /* 3627 * @entry: first swap entry from which we allocate nr swap cache. 3628 * 3629 * Called when allocating swap cache for existing swap entries, 3630 * This can return error codes. Returns 0 at success. 3631 * -EEXIST means there is a swap cache. 3632 * Note: return code is different from swap_duplicate(). 3633 */ 3634 int swapcache_prepare(swp_entry_t entry, int nr) 3635 { 3636 return __swap_duplicate(entry, SWAP_HAS_CACHE, nr); 3637 } 3638 3639 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr) 3640 { 3641 unsigned long offset = swp_offset(entry); 3642 3643 cluster_swap_free_nr(si, offset, nr, SWAP_HAS_CACHE); 3644 } 3645 3646 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3647 { 3648 return swap_type_to_swap_info(swp_type(entry)); 3649 } 3650 3651 /* 3652 * out-of-line methods to avoid include hell. 3653 */ 3654 struct address_space *swapcache_mapping(struct folio *folio) 3655 { 3656 return swp_swap_info(folio->swap)->swap_file->f_mapping; 3657 } 3658 EXPORT_SYMBOL_GPL(swapcache_mapping); 3659 3660 pgoff_t __folio_swap_cache_index(struct folio *folio) 3661 { 3662 return swap_cache_index(folio->swap); 3663 } 3664 EXPORT_SYMBOL_GPL(__folio_swap_cache_index); 3665 3666 /* 3667 * add_swap_count_continuation - called when a swap count is duplicated 3668 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3669 * page of the original vmalloc'ed swap_map, to hold the continuation count 3670 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3671 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3672 * 3673 * These continuation pages are seldom referenced: the common paths all work 3674 * on the original swap_map, only referring to a continuation page when the 3675 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3676 * 3677 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3678 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3679 * can be called after dropping locks. 3680 */ 3681 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3682 { 3683 struct swap_info_struct *si; 3684 struct swap_cluster_info *ci; 3685 struct page *head; 3686 struct page *page; 3687 struct page *list_page; 3688 pgoff_t offset; 3689 unsigned char count; 3690 int ret = 0; 3691 3692 /* 3693 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3694 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3695 */ 3696 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3697 3698 si = get_swap_device(entry); 3699 if (!si) { 3700 /* 3701 * An acceptable race has occurred since the failing 3702 * __swap_duplicate(): the swap device may be swapoff 3703 */ 3704 goto outer; 3705 } 3706 3707 offset = swp_offset(entry); 3708 3709 ci = lock_cluster(si, offset); 3710 3711 count = swap_count(si->swap_map[offset]); 3712 3713 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3714 /* 3715 * The higher the swap count, the more likely it is that tasks 3716 * will race to add swap count continuation: we need to avoid 3717 * over-provisioning. 3718 */ 3719 goto out; 3720 } 3721 3722 if (!page) { 3723 ret = -ENOMEM; 3724 goto out; 3725 } 3726 3727 head = vmalloc_to_page(si->swap_map + offset); 3728 offset &= ~PAGE_MASK; 3729 3730 spin_lock(&si->cont_lock); 3731 /* 3732 * Page allocation does not initialize the page's lru field, 3733 * but it does always reset its private field. 3734 */ 3735 if (!page_private(head)) { 3736 BUG_ON(count & COUNT_CONTINUED); 3737 INIT_LIST_HEAD(&head->lru); 3738 set_page_private(head, SWP_CONTINUED); 3739 si->flags |= SWP_CONTINUED; 3740 } 3741 3742 list_for_each_entry(list_page, &head->lru, lru) { 3743 unsigned char *map; 3744 3745 /* 3746 * If the previous map said no continuation, but we've found 3747 * a continuation page, free our allocation and use this one. 3748 */ 3749 if (!(count & COUNT_CONTINUED)) 3750 goto out_unlock_cont; 3751 3752 map = kmap_local_page(list_page) + offset; 3753 count = *map; 3754 kunmap_local(map); 3755 3756 /* 3757 * If this continuation count now has some space in it, 3758 * free our allocation and use this one. 3759 */ 3760 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3761 goto out_unlock_cont; 3762 } 3763 3764 list_add_tail(&page->lru, &head->lru); 3765 page = NULL; /* now it's attached, don't free it */ 3766 out_unlock_cont: 3767 spin_unlock(&si->cont_lock); 3768 out: 3769 unlock_cluster(ci); 3770 put_swap_device(si); 3771 outer: 3772 if (page) 3773 __free_page(page); 3774 return ret; 3775 } 3776 3777 /* 3778 * swap_count_continued - when the original swap_map count is incremented 3779 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3780 * into, carry if so, or else fail until a new continuation page is allocated; 3781 * when the original swap_map count is decremented from 0 with continuation, 3782 * borrow from the continuation and report whether it still holds more. 3783 * Called while __swap_duplicate() or caller of __swap_entry_free_locked() 3784 * holds cluster lock. 3785 */ 3786 static bool swap_count_continued(struct swap_info_struct *si, 3787 pgoff_t offset, unsigned char count) 3788 { 3789 struct page *head; 3790 struct page *page; 3791 unsigned char *map; 3792 bool ret; 3793 3794 head = vmalloc_to_page(si->swap_map + offset); 3795 if (page_private(head) != SWP_CONTINUED) { 3796 BUG_ON(count & COUNT_CONTINUED); 3797 return false; /* need to add count continuation */ 3798 } 3799 3800 spin_lock(&si->cont_lock); 3801 offset &= ~PAGE_MASK; 3802 page = list_next_entry(head, lru); 3803 map = kmap_local_page(page) + offset; 3804 3805 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3806 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3807 3808 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3809 /* 3810 * Think of how you add 1 to 999 3811 */ 3812 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3813 kunmap_local(map); 3814 page = list_next_entry(page, lru); 3815 BUG_ON(page == head); 3816 map = kmap_local_page(page) + offset; 3817 } 3818 if (*map == SWAP_CONT_MAX) { 3819 kunmap_local(map); 3820 page = list_next_entry(page, lru); 3821 if (page == head) { 3822 ret = false; /* add count continuation */ 3823 goto out; 3824 } 3825 map = kmap_local_page(page) + offset; 3826 init_map: *map = 0; /* we didn't zero the page */ 3827 } 3828 *map += 1; 3829 kunmap_local(map); 3830 while ((page = list_prev_entry(page, lru)) != head) { 3831 map = kmap_local_page(page) + offset; 3832 *map = COUNT_CONTINUED; 3833 kunmap_local(map); 3834 } 3835 ret = true; /* incremented */ 3836 3837 } else { /* decrementing */ 3838 /* 3839 * Think of how you subtract 1 from 1000 3840 */ 3841 BUG_ON(count != COUNT_CONTINUED); 3842 while (*map == COUNT_CONTINUED) { 3843 kunmap_local(map); 3844 page = list_next_entry(page, lru); 3845 BUG_ON(page == head); 3846 map = kmap_local_page(page) + offset; 3847 } 3848 BUG_ON(*map == 0); 3849 *map -= 1; 3850 if (*map == 0) 3851 count = 0; 3852 kunmap_local(map); 3853 while ((page = list_prev_entry(page, lru)) != head) { 3854 map = kmap_local_page(page) + offset; 3855 *map = SWAP_CONT_MAX | count; 3856 count = COUNT_CONTINUED; 3857 kunmap_local(map); 3858 } 3859 ret = count == COUNT_CONTINUED; 3860 } 3861 out: 3862 spin_unlock(&si->cont_lock); 3863 return ret; 3864 } 3865 3866 /* 3867 * free_swap_count_continuations - swapoff free all the continuation pages 3868 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3869 */ 3870 static void free_swap_count_continuations(struct swap_info_struct *si) 3871 { 3872 pgoff_t offset; 3873 3874 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3875 struct page *head; 3876 head = vmalloc_to_page(si->swap_map + offset); 3877 if (page_private(head)) { 3878 struct page *page, *next; 3879 3880 list_for_each_entry_safe(page, next, &head->lru, lru) { 3881 list_del(&page->lru); 3882 __free_page(page); 3883 } 3884 } 3885 } 3886 } 3887 3888 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3889 static bool __has_usable_swap(void) 3890 { 3891 return !plist_head_empty(&swap_active_head); 3892 } 3893 3894 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp) 3895 { 3896 struct swap_info_struct *si, *next; 3897 int nid = folio_nid(folio); 3898 3899 if (!(gfp & __GFP_IO)) 3900 return; 3901 3902 if (!__has_usable_swap()) 3903 return; 3904 3905 if (!blk_cgroup_congested()) 3906 return; 3907 3908 /* 3909 * We've already scheduled a throttle, avoid taking the global swap 3910 * lock. 3911 */ 3912 if (current->throttle_disk) 3913 return; 3914 3915 spin_lock(&swap_avail_lock); 3916 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], 3917 avail_lists[nid]) { 3918 if (si->bdev) { 3919 blkcg_schedule_throttle(si->bdev->bd_disk, true); 3920 break; 3921 } 3922 } 3923 spin_unlock(&swap_avail_lock); 3924 } 3925 #endif 3926 3927 static int __init swapfile_init(void) 3928 { 3929 int nid; 3930 3931 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3932 GFP_KERNEL); 3933 if (!swap_avail_heads) { 3934 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3935 return -ENOMEM; 3936 } 3937 3938 for_each_node(nid) 3939 plist_head_init(&swap_avail_heads[nid]); 3940 3941 swapfile_maximum_size = arch_max_swapfile_size(); 3942 3943 #ifdef CONFIG_MIGRATION 3944 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS)) 3945 swap_migration_ad_supported = true; 3946 #endif /* CONFIG_MIGRATION */ 3947 3948 return 0; 3949 } 3950 subsys_initcall(swapfile_init); 3951