xref: /linux/mm/swapfile.c (revision 7a9b709e7cc5ce1ffb84ce07bf6d157e1de758df)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/sort.h>
41 #include <linux/completion.h>
42 #include <linux/suspend.h>
43 #include <linux/zswap.h>
44 #include <linux/plist.h>
45 
46 #include <asm/tlbflush.h>
47 #include <linux/swapops.h>
48 #include <linux/swap_cgroup.h>
49 #include "internal.h"
50 #include "swap.h"
51 
52 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
53 				 unsigned char);
54 static void free_swap_count_continuations(struct swap_info_struct *);
55 static void swap_entry_range_free(struct swap_info_struct *si,
56 				  struct swap_cluster_info *ci,
57 				  swp_entry_t entry, unsigned int nr_pages);
58 static void swap_range_alloc(struct swap_info_struct *si,
59 			     unsigned int nr_entries);
60 static bool folio_swapcache_freeable(struct folio *folio);
61 static struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
62 					      unsigned long offset);
63 static inline void unlock_cluster(struct swap_cluster_info *ci);
64 
65 static DEFINE_SPINLOCK(swap_lock);
66 static unsigned int nr_swapfiles;
67 atomic_long_t nr_swap_pages;
68 /*
69  * Some modules use swappable objects and may try to swap them out under
70  * memory pressure (via the shrinker). Before doing so, they may wish to
71  * check to see if any swap space is available.
72  */
73 EXPORT_SYMBOL_GPL(nr_swap_pages);
74 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
75 long total_swap_pages;
76 static int least_priority = -1;
77 unsigned long swapfile_maximum_size;
78 #ifdef CONFIG_MIGRATION
79 bool swap_migration_ad_supported;
80 #endif	/* CONFIG_MIGRATION */
81 
82 static const char Bad_file[] = "Bad swap file entry ";
83 static const char Unused_file[] = "Unused swap file entry ";
84 static const char Bad_offset[] = "Bad swap offset entry ";
85 static const char Unused_offset[] = "Unused swap offset entry ";
86 
87 /*
88  * all active swap_info_structs
89  * protected with swap_lock, and ordered by priority.
90  */
91 static PLIST_HEAD(swap_active_head);
92 
93 /*
94  * all available (active, not full) swap_info_structs
95  * protected with swap_avail_lock, ordered by priority.
96  * This is used by folio_alloc_swap() instead of swap_active_head
97  * because swap_active_head includes all swap_info_structs,
98  * but folio_alloc_swap() doesn't need to look at full ones.
99  * This uses its own lock instead of swap_lock because when a
100  * swap_info_struct changes between not-full/full, it needs to
101  * add/remove itself to/from this list, but the swap_info_struct->lock
102  * is held and the locking order requires swap_lock to be taken
103  * before any swap_info_struct->lock.
104  */
105 static struct plist_head *swap_avail_heads;
106 static DEFINE_SPINLOCK(swap_avail_lock);
107 
108 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
109 
110 static DEFINE_MUTEX(swapon_mutex);
111 
112 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
113 /* Activity counter to indicate that a swapon or swapoff has occurred */
114 static atomic_t proc_poll_event = ATOMIC_INIT(0);
115 
116 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
117 
118 struct percpu_swap_cluster {
119 	struct swap_info_struct *si[SWAP_NR_ORDERS];
120 	unsigned long offset[SWAP_NR_ORDERS];
121 	local_lock_t lock;
122 };
123 
124 static DEFINE_PER_CPU(struct percpu_swap_cluster, percpu_swap_cluster) = {
125 	.si = { NULL },
126 	.offset = { SWAP_ENTRY_INVALID },
127 	.lock = INIT_LOCAL_LOCK(),
128 };
129 
130 static struct swap_info_struct *swap_type_to_swap_info(int type)
131 {
132 	if (type >= MAX_SWAPFILES)
133 		return NULL;
134 
135 	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
136 }
137 
138 static inline unsigned char swap_count(unsigned char ent)
139 {
140 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
141 }
142 
143 /*
144  * Use the second highest bit of inuse_pages counter as the indicator
145  * if one swap device is on the available plist, so the atomic can
146  * still be updated arithmetically while having special data embedded.
147  *
148  * inuse_pages counter is the only thing indicating if a device should
149  * be on avail_lists or not (except swapon / swapoff). By embedding the
150  * off-list bit in the atomic counter, updates no longer need any lock
151  * to check the list status.
152  *
153  * This bit will be set if the device is not on the plist and not
154  * usable, will be cleared if the device is on the plist.
155  */
156 #define SWAP_USAGE_OFFLIST_BIT (1UL << (BITS_PER_TYPE(atomic_t) - 2))
157 #define SWAP_USAGE_COUNTER_MASK (~SWAP_USAGE_OFFLIST_BIT)
158 static long swap_usage_in_pages(struct swap_info_struct *si)
159 {
160 	return atomic_long_read(&si->inuse_pages) & SWAP_USAGE_COUNTER_MASK;
161 }
162 
163 /* Reclaim the swap entry anyway if possible */
164 #define TTRS_ANYWAY		0x1
165 /*
166  * Reclaim the swap entry if there are no more mappings of the
167  * corresponding page
168  */
169 #define TTRS_UNMAPPED		0x2
170 /* Reclaim the swap entry if swap is getting full */
171 #define TTRS_FULL		0x4
172 
173 static bool swap_only_has_cache(struct swap_info_struct *si,
174 			      unsigned long offset, int nr_pages)
175 {
176 	unsigned char *map = si->swap_map + offset;
177 	unsigned char *map_end = map + nr_pages;
178 
179 	do {
180 		VM_BUG_ON(!(*map & SWAP_HAS_CACHE));
181 		if (*map != SWAP_HAS_CACHE)
182 			return false;
183 	} while (++map < map_end);
184 
185 	return true;
186 }
187 
188 static bool swap_is_last_map(struct swap_info_struct *si,
189 		unsigned long offset, int nr_pages, bool *has_cache)
190 {
191 	unsigned char *map = si->swap_map + offset;
192 	unsigned char *map_end = map + nr_pages;
193 	unsigned char count = *map;
194 
195 	if (swap_count(count) != 1)
196 		return false;
197 
198 	while (++map < map_end) {
199 		if (*map != count)
200 			return false;
201 	}
202 
203 	*has_cache = !!(count & SWAP_HAS_CACHE);
204 	return true;
205 }
206 
207 /*
208  * returns number of pages in the folio that backs the swap entry. If positive,
209  * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
210  * folio was associated with the swap entry.
211  */
212 static int __try_to_reclaim_swap(struct swap_info_struct *si,
213 				 unsigned long offset, unsigned long flags)
214 {
215 	swp_entry_t entry = swp_entry(si->type, offset);
216 	struct address_space *address_space = swap_address_space(entry);
217 	struct swap_cluster_info *ci;
218 	struct folio *folio;
219 	int ret, nr_pages;
220 	bool need_reclaim;
221 
222 again:
223 	folio = filemap_get_folio(address_space, swap_cache_index(entry));
224 	if (IS_ERR(folio))
225 		return 0;
226 
227 	nr_pages = folio_nr_pages(folio);
228 	ret = -nr_pages;
229 
230 	/*
231 	 * When this function is called from scan_swap_map_slots() and it's
232 	 * called by vmscan.c at reclaiming folios. So we hold a folio lock
233 	 * here. We have to use trylock for avoiding deadlock. This is a special
234 	 * case and you should use folio_free_swap() with explicit folio_lock()
235 	 * in usual operations.
236 	 */
237 	if (!folio_trylock(folio))
238 		goto out;
239 
240 	/*
241 	 * Offset could point to the middle of a large folio, or folio
242 	 * may no longer point to the expected offset before it's locked.
243 	 */
244 	entry = folio->swap;
245 	if (offset < swp_offset(entry) || offset >= swp_offset(entry) + nr_pages) {
246 		folio_unlock(folio);
247 		folio_put(folio);
248 		goto again;
249 	}
250 	offset = swp_offset(entry);
251 
252 	need_reclaim = ((flags & TTRS_ANYWAY) ||
253 			((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
254 			((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)));
255 	if (!need_reclaim || !folio_swapcache_freeable(folio))
256 		goto out_unlock;
257 
258 	/*
259 	 * It's safe to delete the folio from swap cache only if the folio's
260 	 * swap_map is HAS_CACHE only, which means the slots have no page table
261 	 * reference or pending writeback, and can't be allocated to others.
262 	 */
263 	ci = lock_cluster(si, offset);
264 	need_reclaim = swap_only_has_cache(si, offset, nr_pages);
265 	unlock_cluster(ci);
266 	if (!need_reclaim)
267 		goto out_unlock;
268 
269 	delete_from_swap_cache(folio);
270 	folio_set_dirty(folio);
271 	ret = nr_pages;
272 out_unlock:
273 	folio_unlock(folio);
274 out:
275 	folio_put(folio);
276 	return ret;
277 }
278 
279 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
280 {
281 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
282 	return rb_entry(rb, struct swap_extent, rb_node);
283 }
284 
285 static inline struct swap_extent *next_se(struct swap_extent *se)
286 {
287 	struct rb_node *rb = rb_next(&se->rb_node);
288 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
289 }
290 
291 /*
292  * swapon tell device that all the old swap contents can be discarded,
293  * to allow the swap device to optimize its wear-levelling.
294  */
295 static int discard_swap(struct swap_info_struct *si)
296 {
297 	struct swap_extent *se;
298 	sector_t start_block;
299 	sector_t nr_blocks;
300 	int err = 0;
301 
302 	/* Do not discard the swap header page! */
303 	se = first_se(si);
304 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
305 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
306 	if (nr_blocks) {
307 		err = blkdev_issue_discard(si->bdev, start_block,
308 				nr_blocks, GFP_KERNEL);
309 		if (err)
310 			return err;
311 		cond_resched();
312 	}
313 
314 	for (se = next_se(se); se; se = next_se(se)) {
315 		start_block = se->start_block << (PAGE_SHIFT - 9);
316 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
317 
318 		err = blkdev_issue_discard(si->bdev, start_block,
319 				nr_blocks, GFP_KERNEL);
320 		if (err)
321 			break;
322 
323 		cond_resched();
324 	}
325 	return err;		/* That will often be -EOPNOTSUPP */
326 }
327 
328 static struct swap_extent *
329 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
330 {
331 	struct swap_extent *se;
332 	struct rb_node *rb;
333 
334 	rb = sis->swap_extent_root.rb_node;
335 	while (rb) {
336 		se = rb_entry(rb, struct swap_extent, rb_node);
337 		if (offset < se->start_page)
338 			rb = rb->rb_left;
339 		else if (offset >= se->start_page + se->nr_pages)
340 			rb = rb->rb_right;
341 		else
342 			return se;
343 	}
344 	/* It *must* be present */
345 	BUG();
346 }
347 
348 sector_t swap_folio_sector(struct folio *folio)
349 {
350 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
351 	struct swap_extent *se;
352 	sector_t sector;
353 	pgoff_t offset;
354 
355 	offset = swp_offset(folio->swap);
356 	se = offset_to_swap_extent(sis, offset);
357 	sector = se->start_block + (offset - se->start_page);
358 	return sector << (PAGE_SHIFT - 9);
359 }
360 
361 /*
362  * swap allocation tell device that a cluster of swap can now be discarded,
363  * to allow the swap device to optimize its wear-levelling.
364  */
365 static void discard_swap_cluster(struct swap_info_struct *si,
366 				 pgoff_t start_page, pgoff_t nr_pages)
367 {
368 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
369 
370 	while (nr_pages) {
371 		pgoff_t offset = start_page - se->start_page;
372 		sector_t start_block = se->start_block + offset;
373 		sector_t nr_blocks = se->nr_pages - offset;
374 
375 		if (nr_blocks > nr_pages)
376 			nr_blocks = nr_pages;
377 		start_page += nr_blocks;
378 		nr_pages -= nr_blocks;
379 
380 		start_block <<= PAGE_SHIFT - 9;
381 		nr_blocks <<= PAGE_SHIFT - 9;
382 		if (blkdev_issue_discard(si->bdev, start_block,
383 					nr_blocks, GFP_NOIO))
384 			break;
385 
386 		se = next_se(se);
387 	}
388 }
389 
390 #ifdef CONFIG_THP_SWAP
391 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
392 
393 #define swap_entry_order(order)	(order)
394 #else
395 #define SWAPFILE_CLUSTER	256
396 
397 /*
398  * Define swap_entry_order() as constant to let compiler to optimize
399  * out some code if !CONFIG_THP_SWAP
400  */
401 #define swap_entry_order(order)	0
402 #endif
403 #define LATENCY_LIMIT		256
404 
405 static inline bool cluster_is_empty(struct swap_cluster_info *info)
406 {
407 	return info->count == 0;
408 }
409 
410 static inline bool cluster_is_discard(struct swap_cluster_info *info)
411 {
412 	return info->flags == CLUSTER_FLAG_DISCARD;
413 }
414 
415 static inline bool cluster_is_usable(struct swap_cluster_info *ci, int order)
416 {
417 	if (unlikely(ci->flags > CLUSTER_FLAG_USABLE))
418 		return false;
419 	if (!order)
420 		return true;
421 	return cluster_is_empty(ci) || order == ci->order;
422 }
423 
424 static inline unsigned int cluster_index(struct swap_info_struct *si,
425 					 struct swap_cluster_info *ci)
426 {
427 	return ci - si->cluster_info;
428 }
429 
430 static inline struct swap_cluster_info *offset_to_cluster(struct swap_info_struct *si,
431 							  unsigned long offset)
432 {
433 	return &si->cluster_info[offset / SWAPFILE_CLUSTER];
434 }
435 
436 static inline unsigned int cluster_offset(struct swap_info_struct *si,
437 					  struct swap_cluster_info *ci)
438 {
439 	return cluster_index(si, ci) * SWAPFILE_CLUSTER;
440 }
441 
442 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
443 						     unsigned long offset)
444 {
445 	struct swap_cluster_info *ci;
446 
447 	ci = offset_to_cluster(si, offset);
448 	spin_lock(&ci->lock);
449 
450 	return ci;
451 }
452 
453 static inline void unlock_cluster(struct swap_cluster_info *ci)
454 {
455 	spin_unlock(&ci->lock);
456 }
457 
458 static void move_cluster(struct swap_info_struct *si,
459 			 struct swap_cluster_info *ci, struct list_head *list,
460 			 enum swap_cluster_flags new_flags)
461 {
462 	VM_WARN_ON(ci->flags == new_flags);
463 
464 	BUILD_BUG_ON(1 << sizeof(ci->flags) * BITS_PER_BYTE < CLUSTER_FLAG_MAX);
465 	lockdep_assert_held(&ci->lock);
466 
467 	spin_lock(&si->lock);
468 	if (ci->flags == CLUSTER_FLAG_NONE)
469 		list_add_tail(&ci->list, list);
470 	else
471 		list_move_tail(&ci->list, list);
472 	spin_unlock(&si->lock);
473 
474 	if (ci->flags == CLUSTER_FLAG_FRAG)
475 		atomic_long_dec(&si->frag_cluster_nr[ci->order]);
476 	else if (new_flags == CLUSTER_FLAG_FRAG)
477 		atomic_long_inc(&si->frag_cluster_nr[ci->order]);
478 	ci->flags = new_flags;
479 }
480 
481 /* Add a cluster to discard list and schedule it to do discard */
482 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
483 		struct swap_cluster_info *ci)
484 {
485 	VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);
486 	move_cluster(si, ci, &si->discard_clusters, CLUSTER_FLAG_DISCARD);
487 	schedule_work(&si->discard_work);
488 }
489 
490 static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
491 {
492 	lockdep_assert_held(&ci->lock);
493 	move_cluster(si, ci, &si->free_clusters, CLUSTER_FLAG_FREE);
494 	ci->order = 0;
495 }
496 
497 /*
498  * Isolate and lock the first cluster that is not contented on a list,
499  * clean its flag before taken off-list. Cluster flag must be in sync
500  * with list status, so cluster updaters can always know the cluster
501  * list status without touching si lock.
502  *
503  * Note it's possible that all clusters on a list are contented so
504  * this returns NULL for an non-empty list.
505  */
506 static struct swap_cluster_info *isolate_lock_cluster(
507 		struct swap_info_struct *si, struct list_head *list)
508 {
509 	struct swap_cluster_info *ci, *ret = NULL;
510 
511 	spin_lock(&si->lock);
512 
513 	if (unlikely(!(si->flags & SWP_WRITEOK)))
514 		goto out;
515 
516 	list_for_each_entry(ci, list, list) {
517 		if (!spin_trylock(&ci->lock))
518 			continue;
519 
520 		/* We may only isolate and clear flags of following lists */
521 		VM_BUG_ON(!ci->flags);
522 		VM_BUG_ON(ci->flags > CLUSTER_FLAG_USABLE &&
523 			  ci->flags != CLUSTER_FLAG_FULL);
524 
525 		list_del(&ci->list);
526 		ci->flags = CLUSTER_FLAG_NONE;
527 		ret = ci;
528 		break;
529 	}
530 out:
531 	spin_unlock(&si->lock);
532 
533 	return ret;
534 }
535 
536 /*
537  * Doing discard actually. After a cluster discard is finished, the cluster
538  * will be added to free cluster list. Discard cluster is a bit special as
539  * they don't participate in allocation or reclaim, so clusters marked as
540  * CLUSTER_FLAG_DISCARD must remain off-list or on discard list.
541  */
542 static bool swap_do_scheduled_discard(struct swap_info_struct *si)
543 {
544 	struct swap_cluster_info *ci;
545 	bool ret = false;
546 	unsigned int idx;
547 
548 	spin_lock(&si->lock);
549 	while (!list_empty(&si->discard_clusters)) {
550 		ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list);
551 		/*
552 		 * Delete the cluster from list to prepare for discard, but keep
553 		 * the CLUSTER_FLAG_DISCARD flag, percpu_swap_cluster could be
554 		 * pointing to it, or ran into by relocate_cluster.
555 		 */
556 		list_del(&ci->list);
557 		idx = cluster_index(si, ci);
558 		spin_unlock(&si->lock);
559 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
560 				SWAPFILE_CLUSTER);
561 
562 		spin_lock(&ci->lock);
563 		/*
564 		 * Discard is done, clear its flags as it's off-list, then
565 		 * return the cluster to allocation list.
566 		 */
567 		ci->flags = CLUSTER_FLAG_NONE;
568 		__free_cluster(si, ci);
569 		spin_unlock(&ci->lock);
570 		ret = true;
571 		spin_lock(&si->lock);
572 	}
573 	spin_unlock(&si->lock);
574 	return ret;
575 }
576 
577 static void swap_discard_work(struct work_struct *work)
578 {
579 	struct swap_info_struct *si;
580 
581 	si = container_of(work, struct swap_info_struct, discard_work);
582 
583 	swap_do_scheduled_discard(si);
584 }
585 
586 static void swap_users_ref_free(struct percpu_ref *ref)
587 {
588 	struct swap_info_struct *si;
589 
590 	si = container_of(ref, struct swap_info_struct, users);
591 	complete(&si->comp);
592 }
593 
594 /*
595  * Must be called after freeing if ci->count == 0, moves the cluster to free
596  * or discard list.
597  */
598 static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
599 {
600 	VM_BUG_ON(ci->count != 0);
601 	VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);
602 	lockdep_assert_held(&ci->lock);
603 
604 	/*
605 	 * If the swap is discardable, prepare discard the cluster
606 	 * instead of free it immediately. The cluster will be freed
607 	 * after discard.
608 	 */
609 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
610 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
611 		swap_cluster_schedule_discard(si, ci);
612 		return;
613 	}
614 
615 	__free_cluster(si, ci);
616 }
617 
618 /*
619  * Must be called after freeing if ci->count != 0, moves the cluster to
620  * nonfull list.
621  */
622 static void partial_free_cluster(struct swap_info_struct *si,
623 				 struct swap_cluster_info *ci)
624 {
625 	VM_BUG_ON(!ci->count || ci->count == SWAPFILE_CLUSTER);
626 	lockdep_assert_held(&ci->lock);
627 
628 	if (ci->flags != CLUSTER_FLAG_NONFULL)
629 		move_cluster(si, ci, &si->nonfull_clusters[ci->order],
630 			     CLUSTER_FLAG_NONFULL);
631 }
632 
633 /*
634  * Must be called after allocation, moves the cluster to full or frag list.
635  * Note: allocation doesn't acquire si lock, and may drop the ci lock for
636  * reclaim, so the cluster could be any where when called.
637  */
638 static void relocate_cluster(struct swap_info_struct *si,
639 			     struct swap_cluster_info *ci)
640 {
641 	lockdep_assert_held(&ci->lock);
642 
643 	/* Discard cluster must remain off-list or on discard list */
644 	if (cluster_is_discard(ci))
645 		return;
646 
647 	if (!ci->count) {
648 		if (ci->flags != CLUSTER_FLAG_FREE)
649 			free_cluster(si, ci);
650 	} else if (ci->count != SWAPFILE_CLUSTER) {
651 		if (ci->flags != CLUSTER_FLAG_FRAG)
652 			move_cluster(si, ci, &si->frag_clusters[ci->order],
653 				     CLUSTER_FLAG_FRAG);
654 	} else {
655 		if (ci->flags != CLUSTER_FLAG_FULL)
656 			move_cluster(si, ci, &si->full_clusters,
657 				     CLUSTER_FLAG_FULL);
658 	}
659 }
660 
661 /*
662  * The cluster corresponding to page_nr will be used. The cluster will not be
663  * added to free cluster list and its usage counter will be increased by 1.
664  * Only used for initialization.
665  */
666 static void inc_cluster_info_page(struct swap_info_struct *si,
667 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
668 {
669 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
670 	struct swap_cluster_info *ci;
671 
672 	ci = cluster_info + idx;
673 	ci->count++;
674 
675 	VM_BUG_ON(ci->count > SWAPFILE_CLUSTER);
676 	VM_BUG_ON(ci->flags);
677 }
678 
679 static bool cluster_reclaim_range(struct swap_info_struct *si,
680 				  struct swap_cluster_info *ci,
681 				  unsigned long start, unsigned long end)
682 {
683 	unsigned char *map = si->swap_map;
684 	unsigned long offset = start;
685 	int nr_reclaim;
686 
687 	spin_unlock(&ci->lock);
688 	do {
689 		switch (READ_ONCE(map[offset])) {
690 		case 0:
691 			offset++;
692 			break;
693 		case SWAP_HAS_CACHE:
694 			nr_reclaim = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
695 			if (nr_reclaim > 0)
696 				offset += nr_reclaim;
697 			else
698 				goto out;
699 			break;
700 		default:
701 			goto out;
702 		}
703 	} while (offset < end);
704 out:
705 	spin_lock(&ci->lock);
706 	/*
707 	 * Recheck the range no matter reclaim succeeded or not, the slot
708 	 * could have been be freed while we are not holding the lock.
709 	 */
710 	for (offset = start; offset < end; offset++)
711 		if (READ_ONCE(map[offset]))
712 			return false;
713 
714 	return true;
715 }
716 
717 static bool cluster_scan_range(struct swap_info_struct *si,
718 			       struct swap_cluster_info *ci,
719 			       unsigned long start, unsigned int nr_pages,
720 			       bool *need_reclaim)
721 {
722 	unsigned long offset, end = start + nr_pages;
723 	unsigned char *map = si->swap_map;
724 
725 	if (cluster_is_empty(ci))
726 		return true;
727 
728 	for (offset = start; offset < end; offset++) {
729 		switch (READ_ONCE(map[offset])) {
730 		case 0:
731 			continue;
732 		case SWAP_HAS_CACHE:
733 			if (!vm_swap_full())
734 				return false;
735 			*need_reclaim = true;
736 			continue;
737 		default:
738 			return false;
739 		}
740 	}
741 
742 	return true;
743 }
744 
745 static bool cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci,
746 				unsigned int start, unsigned char usage,
747 				unsigned int order)
748 {
749 	unsigned int nr_pages = 1 << order;
750 
751 	lockdep_assert_held(&ci->lock);
752 
753 	if (!(si->flags & SWP_WRITEOK))
754 		return false;
755 
756 	/*
757 	 * The first allocation in a cluster makes the
758 	 * cluster exclusive to this order
759 	 */
760 	if (cluster_is_empty(ci))
761 		ci->order = order;
762 
763 	memset(si->swap_map + start, usage, nr_pages);
764 	swap_range_alloc(si, nr_pages);
765 	ci->count += nr_pages;
766 
767 	return true;
768 }
769 
770 /* Try use a new cluster for current CPU and allocate from it. */
771 static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si,
772 					    struct swap_cluster_info *ci,
773 					    unsigned long offset,
774 					    unsigned int order,
775 					    unsigned char usage)
776 {
777 	unsigned int next = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID;
778 	unsigned long start = ALIGN_DOWN(offset, SWAPFILE_CLUSTER);
779 	unsigned long end = min(start + SWAPFILE_CLUSTER, si->max);
780 	unsigned int nr_pages = 1 << order;
781 	bool need_reclaim, ret;
782 
783 	lockdep_assert_held(&ci->lock);
784 
785 	if (end < nr_pages || ci->count + nr_pages > SWAPFILE_CLUSTER)
786 		goto out;
787 
788 	for (end -= nr_pages; offset <= end; offset += nr_pages) {
789 		need_reclaim = false;
790 		if (!cluster_scan_range(si, ci, offset, nr_pages, &need_reclaim))
791 			continue;
792 		if (need_reclaim) {
793 			ret = cluster_reclaim_range(si, ci, offset, offset + nr_pages);
794 			/*
795 			 * Reclaim drops ci->lock and cluster could be used
796 			 * by another order. Not checking flag as off-list
797 			 * cluster has no flag set, and change of list
798 			 * won't cause fragmentation.
799 			 */
800 			if (!cluster_is_usable(ci, order))
801 				goto out;
802 			if (cluster_is_empty(ci))
803 				offset = start;
804 			/* Reclaim failed but cluster is usable, try next */
805 			if (!ret)
806 				continue;
807 		}
808 		if (!cluster_alloc_range(si, ci, offset, usage, order))
809 			break;
810 		found = offset;
811 		offset += nr_pages;
812 		if (ci->count < SWAPFILE_CLUSTER && offset <= end)
813 			next = offset;
814 		break;
815 	}
816 out:
817 	relocate_cluster(si, ci);
818 	unlock_cluster(ci);
819 	if (si->flags & SWP_SOLIDSTATE) {
820 		this_cpu_write(percpu_swap_cluster.offset[order], next);
821 		this_cpu_write(percpu_swap_cluster.si[order], si);
822 	} else {
823 		si->global_cluster->next[order] = next;
824 	}
825 	return found;
826 }
827 
828 static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force)
829 {
830 	long to_scan = 1;
831 	unsigned long offset, end;
832 	struct swap_cluster_info *ci;
833 	unsigned char *map = si->swap_map;
834 	int nr_reclaim;
835 
836 	if (force)
837 		to_scan = swap_usage_in_pages(si) / SWAPFILE_CLUSTER;
838 
839 	while ((ci = isolate_lock_cluster(si, &si->full_clusters))) {
840 		offset = cluster_offset(si, ci);
841 		end = min(si->max, offset + SWAPFILE_CLUSTER);
842 		to_scan--;
843 
844 		while (offset < end) {
845 			if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) {
846 				spin_unlock(&ci->lock);
847 				nr_reclaim = __try_to_reclaim_swap(si, offset,
848 								   TTRS_ANYWAY);
849 				spin_lock(&ci->lock);
850 				if (nr_reclaim) {
851 					offset += abs(nr_reclaim);
852 					continue;
853 				}
854 			}
855 			offset++;
856 		}
857 
858 		/* in case no swap cache is reclaimed */
859 		if (ci->flags == CLUSTER_FLAG_NONE)
860 			relocate_cluster(si, ci);
861 
862 		unlock_cluster(ci);
863 		if (to_scan <= 0)
864 			break;
865 	}
866 }
867 
868 static void swap_reclaim_work(struct work_struct *work)
869 {
870 	struct swap_info_struct *si;
871 
872 	si = container_of(work, struct swap_info_struct, reclaim_work);
873 
874 	swap_reclaim_full_clusters(si, true);
875 }
876 
877 /*
878  * Try to allocate swap entries with specified order and try set a new
879  * cluster for current CPU too.
880  */
881 static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order,
882 					      unsigned char usage)
883 {
884 	struct swap_cluster_info *ci;
885 	unsigned int offset = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID;
886 
887 	/*
888 	 * Swapfile is not block device so unable
889 	 * to allocate large entries.
890 	 */
891 	if (order && !(si->flags & SWP_BLKDEV))
892 		return 0;
893 
894 	if (!(si->flags & SWP_SOLIDSTATE)) {
895 		/* Serialize HDD SWAP allocation for each device. */
896 		spin_lock(&si->global_cluster_lock);
897 		offset = si->global_cluster->next[order];
898 		if (offset == SWAP_ENTRY_INVALID)
899 			goto new_cluster;
900 
901 		ci = lock_cluster(si, offset);
902 		/* Cluster could have been used by another order */
903 		if (cluster_is_usable(ci, order)) {
904 			if (cluster_is_empty(ci))
905 				offset = cluster_offset(si, ci);
906 			found = alloc_swap_scan_cluster(si, ci, offset,
907 							order, usage);
908 		} else {
909 			unlock_cluster(ci);
910 		}
911 		if (found)
912 			goto done;
913 	}
914 
915 new_cluster:
916 	ci = isolate_lock_cluster(si, &si->free_clusters);
917 	if (ci) {
918 		found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
919 						order, usage);
920 		if (found)
921 			goto done;
922 	}
923 
924 	/* Try reclaim from full clusters if free clusters list is drained */
925 	if (vm_swap_full())
926 		swap_reclaim_full_clusters(si, false);
927 
928 	if (order < PMD_ORDER) {
929 		unsigned int frags = 0, frags_existing;
930 
931 		while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[order]))) {
932 			found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
933 							order, usage);
934 			if (found)
935 				goto done;
936 			/* Clusters failed to allocate are moved to frag_clusters */
937 			frags++;
938 		}
939 
940 		frags_existing = atomic_long_read(&si->frag_cluster_nr[order]);
941 		while (frags < frags_existing &&
942 		       (ci = isolate_lock_cluster(si, &si->frag_clusters[order]))) {
943 			atomic_long_dec(&si->frag_cluster_nr[order]);
944 			/*
945 			 * Rotate the frag list to iterate, they were all
946 			 * failing high order allocation or moved here due to
947 			 * per-CPU usage, but they could contain newly released
948 			 * reclaimable (eg. lazy-freed swap cache) slots.
949 			 */
950 			found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
951 							order, usage);
952 			if (found)
953 				goto done;
954 			frags++;
955 		}
956 	}
957 
958 	/*
959 	 * We don't have free cluster but have some clusters in
960 	 * discarding, do discard now and reclaim them, then
961 	 * reread cluster_next_cpu since we dropped si->lock
962 	 */
963 	if ((si->flags & SWP_PAGE_DISCARD) && swap_do_scheduled_discard(si))
964 		goto new_cluster;
965 
966 	if (order)
967 		goto done;
968 
969 	/* Order 0 stealing from higher order */
970 	for (int o = 1; o < SWAP_NR_ORDERS; o++) {
971 		/*
972 		 * Clusters here have at least one usable slots and can't fail order 0
973 		 * allocation, but reclaim may drop si->lock and race with another user.
974 		 */
975 		while ((ci = isolate_lock_cluster(si, &si->frag_clusters[o]))) {
976 			atomic_long_dec(&si->frag_cluster_nr[o]);
977 			found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
978 							0, usage);
979 			if (found)
980 				goto done;
981 		}
982 
983 		while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[o]))) {
984 			found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
985 							0, usage);
986 			if (found)
987 				goto done;
988 		}
989 	}
990 done:
991 	if (!(si->flags & SWP_SOLIDSTATE))
992 		spin_unlock(&si->global_cluster_lock);
993 	return found;
994 }
995 
996 /* SWAP_USAGE_OFFLIST_BIT can only be set by this helper. */
997 static void del_from_avail_list(struct swap_info_struct *si, bool swapoff)
998 {
999 	int nid;
1000 	unsigned long pages;
1001 
1002 	spin_lock(&swap_avail_lock);
1003 
1004 	if (swapoff) {
1005 		/*
1006 		 * Forcefully remove it. Clear the SWP_WRITEOK flags for
1007 		 * swapoff here so it's synchronized by both si->lock and
1008 		 * swap_avail_lock, to ensure the result can be seen by
1009 		 * add_to_avail_list.
1010 		 */
1011 		lockdep_assert_held(&si->lock);
1012 		si->flags &= ~SWP_WRITEOK;
1013 		atomic_long_or(SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages);
1014 	} else {
1015 		/*
1016 		 * If not called by swapoff, take it off-list only if it's
1017 		 * full and SWAP_USAGE_OFFLIST_BIT is not set (strictly
1018 		 * si->inuse_pages == pages), any concurrent slot freeing,
1019 		 * or device already removed from plist by someone else
1020 		 * will make this return false.
1021 		 */
1022 		pages = si->pages;
1023 		if (!atomic_long_try_cmpxchg(&si->inuse_pages, &pages,
1024 					     pages | SWAP_USAGE_OFFLIST_BIT))
1025 			goto skip;
1026 	}
1027 
1028 	for_each_node(nid)
1029 		plist_del(&si->avail_lists[nid], &swap_avail_heads[nid]);
1030 
1031 skip:
1032 	spin_unlock(&swap_avail_lock);
1033 }
1034 
1035 /* SWAP_USAGE_OFFLIST_BIT can only be cleared by this helper. */
1036 static void add_to_avail_list(struct swap_info_struct *si, bool swapon)
1037 {
1038 	int nid;
1039 	long val;
1040 	unsigned long pages;
1041 
1042 	spin_lock(&swap_avail_lock);
1043 
1044 	/* Corresponding to SWP_WRITEOK clearing in del_from_avail_list */
1045 	if (swapon) {
1046 		lockdep_assert_held(&si->lock);
1047 		si->flags |= SWP_WRITEOK;
1048 	} else {
1049 		if (!(READ_ONCE(si->flags) & SWP_WRITEOK))
1050 			goto skip;
1051 	}
1052 
1053 	if (!(atomic_long_read(&si->inuse_pages) & SWAP_USAGE_OFFLIST_BIT))
1054 		goto skip;
1055 
1056 	val = atomic_long_fetch_and_relaxed(~SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages);
1057 
1058 	/*
1059 	 * When device is full and device is on the plist, only one updater will
1060 	 * see (inuse_pages == si->pages) and will call del_from_avail_list. If
1061 	 * that updater happen to be here, just skip adding.
1062 	 */
1063 	pages = si->pages;
1064 	if (val == pages) {
1065 		/* Just like the cmpxchg in del_from_avail_list */
1066 		if (atomic_long_try_cmpxchg(&si->inuse_pages, &pages,
1067 					    pages | SWAP_USAGE_OFFLIST_BIT))
1068 			goto skip;
1069 	}
1070 
1071 	for_each_node(nid)
1072 		plist_add(&si->avail_lists[nid], &swap_avail_heads[nid]);
1073 
1074 skip:
1075 	spin_unlock(&swap_avail_lock);
1076 }
1077 
1078 /*
1079  * swap_usage_add / swap_usage_sub of each slot are serialized by ci->lock
1080  * within each cluster, so the total contribution to the global counter should
1081  * always be positive and cannot exceed the total number of usable slots.
1082  */
1083 static bool swap_usage_add(struct swap_info_struct *si, unsigned int nr_entries)
1084 {
1085 	long val = atomic_long_add_return_relaxed(nr_entries, &si->inuse_pages);
1086 
1087 	/*
1088 	 * If device is full, and SWAP_USAGE_OFFLIST_BIT is not set,
1089 	 * remove it from the plist.
1090 	 */
1091 	if (unlikely(val == si->pages)) {
1092 		del_from_avail_list(si, false);
1093 		return true;
1094 	}
1095 
1096 	return false;
1097 }
1098 
1099 static void swap_usage_sub(struct swap_info_struct *si, unsigned int nr_entries)
1100 {
1101 	long val = atomic_long_sub_return_relaxed(nr_entries, &si->inuse_pages);
1102 
1103 	/*
1104 	 * If device is not full, and SWAP_USAGE_OFFLIST_BIT is set,
1105 	 * add it to the plist.
1106 	 */
1107 	if (unlikely(val & SWAP_USAGE_OFFLIST_BIT))
1108 		add_to_avail_list(si, false);
1109 }
1110 
1111 static void swap_range_alloc(struct swap_info_struct *si,
1112 			     unsigned int nr_entries)
1113 {
1114 	if (swap_usage_add(si, nr_entries)) {
1115 		if (vm_swap_full())
1116 			schedule_work(&si->reclaim_work);
1117 	}
1118 }
1119 
1120 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
1121 			    unsigned int nr_entries)
1122 {
1123 	unsigned long begin = offset;
1124 	unsigned long end = offset + nr_entries - 1;
1125 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
1126 	unsigned int i;
1127 
1128 	/*
1129 	 * Use atomic clear_bit operations only on zeromap instead of non-atomic
1130 	 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes.
1131 	 */
1132 	for (i = 0; i < nr_entries; i++) {
1133 		clear_bit(offset + i, si->zeromap);
1134 		zswap_invalidate(swp_entry(si->type, offset + i));
1135 	}
1136 
1137 	if (si->flags & SWP_BLKDEV)
1138 		swap_slot_free_notify =
1139 			si->bdev->bd_disk->fops->swap_slot_free_notify;
1140 	else
1141 		swap_slot_free_notify = NULL;
1142 	while (offset <= end) {
1143 		arch_swap_invalidate_page(si->type, offset);
1144 		if (swap_slot_free_notify)
1145 			swap_slot_free_notify(si->bdev, offset);
1146 		offset++;
1147 	}
1148 	clear_shadow_from_swap_cache(si->type, begin, end);
1149 
1150 	/*
1151 	 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
1152 	 * only after the above cleanups are done.
1153 	 */
1154 	smp_wmb();
1155 	atomic_long_add(nr_entries, &nr_swap_pages);
1156 	swap_usage_sub(si, nr_entries);
1157 }
1158 
1159 static bool get_swap_device_info(struct swap_info_struct *si)
1160 {
1161 	if (!percpu_ref_tryget_live(&si->users))
1162 		return false;
1163 	/*
1164 	 * Guarantee the si->users are checked before accessing other
1165 	 * fields of swap_info_struct, and si->flags (SWP_WRITEOK) is
1166 	 * up to dated.
1167 	 *
1168 	 * Paired with the spin_unlock() after setup_swap_info() in
1169 	 * enable_swap_info(), and smp_wmb() in swapoff.
1170 	 */
1171 	smp_rmb();
1172 	return true;
1173 }
1174 
1175 /*
1176  * Fast path try to get swap entries with specified order from current
1177  * CPU's swap entry pool (a cluster).
1178  */
1179 static bool swap_alloc_fast(swp_entry_t *entry,
1180 			    int order)
1181 {
1182 	struct swap_cluster_info *ci;
1183 	struct swap_info_struct *si;
1184 	unsigned int offset, found = SWAP_ENTRY_INVALID;
1185 
1186 	/*
1187 	 * Once allocated, swap_info_struct will never be completely freed,
1188 	 * so checking it's liveness by get_swap_device_info is enough.
1189 	 */
1190 	si = this_cpu_read(percpu_swap_cluster.si[order]);
1191 	offset = this_cpu_read(percpu_swap_cluster.offset[order]);
1192 	if (!si || !offset || !get_swap_device_info(si))
1193 		return false;
1194 
1195 	ci = lock_cluster(si, offset);
1196 	if (cluster_is_usable(ci, order)) {
1197 		if (cluster_is_empty(ci))
1198 			offset = cluster_offset(si, ci);
1199 		found = alloc_swap_scan_cluster(si, ci, offset, order, SWAP_HAS_CACHE);
1200 		if (found)
1201 			*entry = swp_entry(si->type, found);
1202 	} else {
1203 		unlock_cluster(ci);
1204 	}
1205 
1206 	put_swap_device(si);
1207 	return !!found;
1208 }
1209 
1210 /* Rotate the device and switch to a new cluster */
1211 static bool swap_alloc_slow(swp_entry_t *entry,
1212 			    int order)
1213 {
1214 	int node;
1215 	unsigned long offset;
1216 	struct swap_info_struct *si, *next;
1217 
1218 	node = numa_node_id();
1219 	spin_lock(&swap_avail_lock);
1220 start_over:
1221 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1222 		/* Rotate the device and switch to a new cluster */
1223 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1224 		spin_unlock(&swap_avail_lock);
1225 		if (get_swap_device_info(si)) {
1226 			offset = cluster_alloc_swap_entry(si, order, SWAP_HAS_CACHE);
1227 			put_swap_device(si);
1228 			if (offset) {
1229 				*entry = swp_entry(si->type, offset);
1230 				return true;
1231 			}
1232 			if (order)
1233 				return false;
1234 		}
1235 
1236 		spin_lock(&swap_avail_lock);
1237 		/*
1238 		 * if we got here, it's likely that si was almost full before,
1239 		 * and since scan_swap_map_slots() can drop the si->lock,
1240 		 * multiple callers probably all tried to get a page from the
1241 		 * same si and it filled up before we could get one; or, the si
1242 		 * filled up between us dropping swap_avail_lock and taking
1243 		 * si->lock. Since we dropped the swap_avail_lock, the
1244 		 * swap_avail_head list may have been modified; so if next is
1245 		 * still in the swap_avail_head list then try it, otherwise
1246 		 * start over if we have not gotten any slots.
1247 		 */
1248 		if (plist_node_empty(&next->avail_lists[node]))
1249 			goto start_over;
1250 	}
1251 	spin_unlock(&swap_avail_lock);
1252 	return false;
1253 }
1254 
1255 /**
1256  * folio_alloc_swap - allocate swap space for a folio
1257  * @folio: folio we want to move to swap
1258  * @gfp: gfp mask for shadow nodes
1259  *
1260  * Allocate swap space for the folio and add the folio to the
1261  * swap cache.
1262  *
1263  * Context: Caller needs to hold the folio lock.
1264  * Return: Whether the folio was added to the swap cache.
1265  */
1266 int folio_alloc_swap(struct folio *folio, gfp_t gfp)
1267 {
1268 	unsigned int order = folio_order(folio);
1269 	unsigned int size = 1 << order;
1270 	swp_entry_t entry = {};
1271 
1272 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1273 	VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
1274 
1275 	/*
1276 	 * Should not even be attempting large allocations when huge
1277 	 * page swap is disabled. Warn and fail the allocation.
1278 	 */
1279 	if (order && (!IS_ENABLED(CONFIG_THP_SWAP) || size > SWAPFILE_CLUSTER)) {
1280 		VM_WARN_ON_ONCE(1);
1281 		return -EINVAL;
1282 	}
1283 
1284 	local_lock(&percpu_swap_cluster.lock);
1285 	if (!swap_alloc_fast(&entry, order))
1286 		swap_alloc_slow(&entry, order);
1287 	local_unlock(&percpu_swap_cluster.lock);
1288 
1289 	/* Need to call this even if allocation failed, for MEMCG_SWAP_FAIL. */
1290 	if (mem_cgroup_try_charge_swap(folio, entry))
1291 		goto out_free;
1292 
1293 	if (!entry.val)
1294 		return -ENOMEM;
1295 
1296 	/*
1297 	 * XArray node allocations from PF_MEMALLOC contexts could
1298 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
1299 	 * stops emergency reserves from being allocated.
1300 	 *
1301 	 * TODO: this could cause a theoretical memory reclaim
1302 	 * deadlock in the swap out path.
1303 	 */
1304 	if (add_to_swap_cache(folio, entry, gfp | __GFP_NOMEMALLOC, NULL))
1305 		goto out_free;
1306 
1307 	atomic_long_sub(size, &nr_swap_pages);
1308 	return 0;
1309 
1310 out_free:
1311 	put_swap_folio(folio, entry);
1312 	return -ENOMEM;
1313 }
1314 
1315 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1316 {
1317 	struct swap_info_struct *si;
1318 	unsigned long offset;
1319 
1320 	if (!entry.val)
1321 		goto out;
1322 	si = swp_swap_info(entry);
1323 	if (!si)
1324 		goto bad_nofile;
1325 	if (data_race(!(si->flags & SWP_USED)))
1326 		goto bad_device;
1327 	offset = swp_offset(entry);
1328 	if (offset >= si->max)
1329 		goto bad_offset;
1330 	if (data_race(!si->swap_map[swp_offset(entry)]))
1331 		goto bad_free;
1332 	return si;
1333 
1334 bad_free:
1335 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1336 	goto out;
1337 bad_offset:
1338 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1339 	goto out;
1340 bad_device:
1341 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1342 	goto out;
1343 bad_nofile:
1344 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1345 out:
1346 	return NULL;
1347 }
1348 
1349 static unsigned char __swap_entry_free_locked(struct swap_info_struct *si,
1350 					      unsigned long offset,
1351 					      unsigned char usage)
1352 {
1353 	unsigned char count;
1354 	unsigned char has_cache;
1355 
1356 	count = si->swap_map[offset];
1357 
1358 	has_cache = count & SWAP_HAS_CACHE;
1359 	count &= ~SWAP_HAS_CACHE;
1360 
1361 	if (usage == SWAP_HAS_CACHE) {
1362 		VM_BUG_ON(!has_cache);
1363 		has_cache = 0;
1364 	} else if (count == SWAP_MAP_SHMEM) {
1365 		/*
1366 		 * Or we could insist on shmem.c using a special
1367 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1368 		 */
1369 		count = 0;
1370 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1371 		if (count == COUNT_CONTINUED) {
1372 			if (swap_count_continued(si, offset, count))
1373 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1374 			else
1375 				count = SWAP_MAP_MAX;
1376 		} else
1377 			count--;
1378 	}
1379 
1380 	usage = count | has_cache;
1381 	if (usage)
1382 		WRITE_ONCE(si->swap_map[offset], usage);
1383 	else
1384 		WRITE_ONCE(si->swap_map[offset], SWAP_HAS_CACHE);
1385 
1386 	return usage;
1387 }
1388 
1389 /*
1390  * When we get a swap entry, if there aren't some other ways to
1391  * prevent swapoff, such as the folio in swap cache is locked, RCU
1392  * reader side is locked, etc., the swap entry may become invalid
1393  * because of swapoff.  Then, we need to enclose all swap related
1394  * functions with get_swap_device() and put_swap_device(), unless the
1395  * swap functions call get/put_swap_device() by themselves.
1396  *
1397  * RCU reader side lock (including any spinlock) is sufficient to
1398  * prevent swapoff, because synchronize_rcu() is called in swapoff()
1399  * before freeing data structures.
1400  *
1401  * Check whether swap entry is valid in the swap device.  If so,
1402  * return pointer to swap_info_struct, and keep the swap entry valid
1403  * via preventing the swap device from being swapoff, until
1404  * put_swap_device() is called.  Otherwise return NULL.
1405  *
1406  * Notice that swapoff or swapoff+swapon can still happen before the
1407  * percpu_ref_tryget_live() in get_swap_device() or after the
1408  * percpu_ref_put() in put_swap_device() if there isn't any other way
1409  * to prevent swapoff.  The caller must be prepared for that.  For
1410  * example, the following situation is possible.
1411  *
1412  *   CPU1				CPU2
1413  *   do_swap_page()
1414  *     ...				swapoff+swapon
1415  *     __read_swap_cache_async()
1416  *       swapcache_prepare()
1417  *         __swap_duplicate()
1418  *           // check swap_map
1419  *     // verify PTE not changed
1420  *
1421  * In __swap_duplicate(), the swap_map need to be checked before
1422  * changing partly because the specified swap entry may be for another
1423  * swap device which has been swapoff.  And in do_swap_page(), after
1424  * the page is read from the swap device, the PTE is verified not
1425  * changed with the page table locked to check whether the swap device
1426  * has been swapoff or swapoff+swapon.
1427  */
1428 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1429 {
1430 	struct swap_info_struct *si;
1431 	unsigned long offset;
1432 
1433 	if (!entry.val)
1434 		goto out;
1435 	si = swp_swap_info(entry);
1436 	if (!si)
1437 		goto bad_nofile;
1438 	if (!get_swap_device_info(si))
1439 		goto out;
1440 	offset = swp_offset(entry);
1441 	if (offset >= si->max)
1442 		goto put_out;
1443 
1444 	return si;
1445 bad_nofile:
1446 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1447 out:
1448 	return NULL;
1449 put_out:
1450 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1451 	percpu_ref_put(&si->users);
1452 	return NULL;
1453 }
1454 
1455 static unsigned char __swap_entry_free(struct swap_info_struct *si,
1456 				       swp_entry_t entry)
1457 {
1458 	struct swap_cluster_info *ci;
1459 	unsigned long offset = swp_offset(entry);
1460 	unsigned char usage;
1461 
1462 	ci = lock_cluster(si, offset);
1463 	usage = __swap_entry_free_locked(si, offset, 1);
1464 	if (!usage)
1465 		swap_entry_range_free(si, ci, swp_entry(si->type, offset), 1);
1466 	unlock_cluster(ci);
1467 
1468 	return usage;
1469 }
1470 
1471 static bool __swap_entries_free(struct swap_info_struct *si,
1472 		swp_entry_t entry, int nr)
1473 {
1474 	unsigned long offset = swp_offset(entry);
1475 	unsigned int type = swp_type(entry);
1476 	struct swap_cluster_info *ci;
1477 	bool has_cache = false;
1478 	unsigned char count;
1479 	int i;
1480 
1481 	if (nr <= 1 || swap_count(data_race(si->swap_map[offset])) != 1)
1482 		goto fallback;
1483 	/* cross into another cluster */
1484 	if (nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER)
1485 		goto fallback;
1486 
1487 	ci = lock_cluster(si, offset);
1488 	if (!swap_is_last_map(si, offset, nr, &has_cache)) {
1489 		unlock_cluster(ci);
1490 		goto fallback;
1491 	}
1492 	for (i = 0; i < nr; i++)
1493 		WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE);
1494 	if (!has_cache)
1495 		swap_entry_range_free(si, ci, entry, nr);
1496 	unlock_cluster(ci);
1497 
1498 	return has_cache;
1499 
1500 fallback:
1501 	for (i = 0; i < nr; i++) {
1502 		if (data_race(si->swap_map[offset + i])) {
1503 			count = __swap_entry_free(si, swp_entry(type, offset + i));
1504 			if (count == SWAP_HAS_CACHE)
1505 				has_cache = true;
1506 		} else {
1507 			WARN_ON_ONCE(1);
1508 		}
1509 	}
1510 	return has_cache;
1511 }
1512 
1513 /*
1514  * Drop the last HAS_CACHE flag of swap entries, caller have to
1515  * ensure all entries belong to the same cgroup.
1516  */
1517 static void swap_entry_range_free(struct swap_info_struct *si,
1518 				  struct swap_cluster_info *ci,
1519 				  swp_entry_t entry, unsigned int nr_pages)
1520 {
1521 	unsigned long offset = swp_offset(entry);
1522 	unsigned char *map = si->swap_map + offset;
1523 	unsigned char *map_end = map + nr_pages;
1524 
1525 	/* It should never free entries across different clusters */
1526 	VM_BUG_ON(ci != offset_to_cluster(si, offset + nr_pages - 1));
1527 	VM_BUG_ON(cluster_is_empty(ci));
1528 	VM_BUG_ON(ci->count < nr_pages);
1529 
1530 	ci->count -= nr_pages;
1531 	do {
1532 		VM_BUG_ON(*map != SWAP_HAS_CACHE);
1533 		*map = 0;
1534 	} while (++map < map_end);
1535 
1536 	mem_cgroup_uncharge_swap(entry, nr_pages);
1537 	swap_range_free(si, offset, nr_pages);
1538 
1539 	if (!ci->count)
1540 		free_cluster(si, ci);
1541 	else
1542 		partial_free_cluster(si, ci);
1543 }
1544 
1545 static void cluster_swap_free_nr(struct swap_info_struct *si,
1546 		unsigned long offset, int nr_pages,
1547 		unsigned char usage)
1548 {
1549 	struct swap_cluster_info *ci;
1550 	unsigned long end = offset + nr_pages;
1551 
1552 	ci = lock_cluster(si, offset);
1553 	do {
1554 		if (!__swap_entry_free_locked(si, offset, usage))
1555 			swap_entry_range_free(si, ci, swp_entry(si->type, offset), 1);
1556 	} while (++offset < end);
1557 	unlock_cluster(ci);
1558 }
1559 
1560 /*
1561  * Caller has made sure that the swap device corresponding to entry
1562  * is still around or has not been recycled.
1563  */
1564 void swap_free_nr(swp_entry_t entry, int nr_pages)
1565 {
1566 	int nr;
1567 	struct swap_info_struct *sis;
1568 	unsigned long offset = swp_offset(entry);
1569 
1570 	sis = _swap_info_get(entry);
1571 	if (!sis)
1572 		return;
1573 
1574 	while (nr_pages) {
1575 		nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
1576 		cluster_swap_free_nr(sis, offset, nr, 1);
1577 		offset += nr;
1578 		nr_pages -= nr;
1579 	}
1580 }
1581 
1582 /*
1583  * Called after dropping swapcache to decrease refcnt to swap entries.
1584  */
1585 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1586 {
1587 	unsigned long offset = swp_offset(entry);
1588 	struct swap_cluster_info *ci;
1589 	struct swap_info_struct *si;
1590 	int size = 1 << swap_entry_order(folio_order(folio));
1591 
1592 	si = _swap_info_get(entry);
1593 	if (!si)
1594 		return;
1595 
1596 	ci = lock_cluster(si, offset);
1597 	if (swap_only_has_cache(si, offset, size))
1598 		swap_entry_range_free(si, ci, entry, size);
1599 	else {
1600 		for (int i = 0; i < size; i++, entry.val++) {
1601 			if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE))
1602 				swap_entry_range_free(si, ci, entry, 1);
1603 		}
1604 	}
1605 	unlock_cluster(ci);
1606 }
1607 
1608 int __swap_count(swp_entry_t entry)
1609 {
1610 	struct swap_info_struct *si = swp_swap_info(entry);
1611 	pgoff_t offset = swp_offset(entry);
1612 
1613 	return swap_count(si->swap_map[offset]);
1614 }
1615 
1616 /*
1617  * How many references to @entry are currently swapped out?
1618  * This does not give an exact answer when swap count is continued,
1619  * but does include the high COUNT_CONTINUED flag to allow for that.
1620  */
1621 bool swap_entry_swapped(struct swap_info_struct *si, swp_entry_t entry)
1622 {
1623 	pgoff_t offset = swp_offset(entry);
1624 	struct swap_cluster_info *ci;
1625 	int count;
1626 
1627 	ci = lock_cluster(si, offset);
1628 	count = swap_count(si->swap_map[offset]);
1629 	unlock_cluster(ci);
1630 	return !!count;
1631 }
1632 
1633 /*
1634  * How many references to @entry are currently swapped out?
1635  * This considers COUNT_CONTINUED so it returns exact answer.
1636  */
1637 int swp_swapcount(swp_entry_t entry)
1638 {
1639 	int count, tmp_count, n;
1640 	struct swap_info_struct *si;
1641 	struct swap_cluster_info *ci;
1642 	struct page *page;
1643 	pgoff_t offset;
1644 	unsigned char *map;
1645 
1646 	si = _swap_info_get(entry);
1647 	if (!si)
1648 		return 0;
1649 
1650 	offset = swp_offset(entry);
1651 
1652 	ci = lock_cluster(si, offset);
1653 
1654 	count = swap_count(si->swap_map[offset]);
1655 	if (!(count & COUNT_CONTINUED))
1656 		goto out;
1657 
1658 	count &= ~COUNT_CONTINUED;
1659 	n = SWAP_MAP_MAX + 1;
1660 
1661 	page = vmalloc_to_page(si->swap_map + offset);
1662 	offset &= ~PAGE_MASK;
1663 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1664 
1665 	do {
1666 		page = list_next_entry(page, lru);
1667 		map = kmap_local_page(page);
1668 		tmp_count = map[offset];
1669 		kunmap_local(map);
1670 
1671 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1672 		n *= (SWAP_CONT_MAX + 1);
1673 	} while (tmp_count & COUNT_CONTINUED);
1674 out:
1675 	unlock_cluster(ci);
1676 	return count;
1677 }
1678 
1679 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1680 					 swp_entry_t entry, int order)
1681 {
1682 	struct swap_cluster_info *ci;
1683 	unsigned char *map = si->swap_map;
1684 	unsigned int nr_pages = 1 << order;
1685 	unsigned long roffset = swp_offset(entry);
1686 	unsigned long offset = round_down(roffset, nr_pages);
1687 	int i;
1688 	bool ret = false;
1689 
1690 	ci = lock_cluster(si, offset);
1691 	if (nr_pages == 1) {
1692 		if (swap_count(map[roffset]))
1693 			ret = true;
1694 		goto unlock_out;
1695 	}
1696 	for (i = 0; i < nr_pages; i++) {
1697 		if (swap_count(map[offset + i])) {
1698 			ret = true;
1699 			break;
1700 		}
1701 	}
1702 unlock_out:
1703 	unlock_cluster(ci);
1704 	return ret;
1705 }
1706 
1707 static bool folio_swapped(struct folio *folio)
1708 {
1709 	swp_entry_t entry = folio->swap;
1710 	struct swap_info_struct *si = _swap_info_get(entry);
1711 
1712 	if (!si)
1713 		return false;
1714 
1715 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1716 		return swap_entry_swapped(si, entry);
1717 
1718 	return swap_page_trans_huge_swapped(si, entry, folio_order(folio));
1719 }
1720 
1721 static bool folio_swapcache_freeable(struct folio *folio)
1722 {
1723 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1724 
1725 	if (!folio_test_swapcache(folio))
1726 		return false;
1727 	if (folio_test_writeback(folio))
1728 		return false;
1729 
1730 	/*
1731 	 * Once hibernation has begun to create its image of memory,
1732 	 * there's a danger that one of the calls to folio_free_swap()
1733 	 * - most probably a call from __try_to_reclaim_swap() while
1734 	 * hibernation is allocating its own swap pages for the image,
1735 	 * but conceivably even a call from memory reclaim - will free
1736 	 * the swap from a folio which has already been recorded in the
1737 	 * image as a clean swapcache folio, and then reuse its swap for
1738 	 * another page of the image.  On waking from hibernation, the
1739 	 * original folio might be freed under memory pressure, then
1740 	 * later read back in from swap, now with the wrong data.
1741 	 *
1742 	 * Hibernation suspends storage while it is writing the image
1743 	 * to disk so check that here.
1744 	 */
1745 	if (pm_suspended_storage())
1746 		return false;
1747 
1748 	return true;
1749 }
1750 
1751 /**
1752  * folio_free_swap() - Free the swap space used for this folio.
1753  * @folio: The folio to remove.
1754  *
1755  * If swap is getting full, or if there are no more mappings of this folio,
1756  * then call folio_free_swap to free its swap space.
1757  *
1758  * Return: true if we were able to release the swap space.
1759  */
1760 bool folio_free_swap(struct folio *folio)
1761 {
1762 	if (!folio_swapcache_freeable(folio))
1763 		return false;
1764 	if (folio_swapped(folio))
1765 		return false;
1766 
1767 	delete_from_swap_cache(folio);
1768 	folio_set_dirty(folio);
1769 	return true;
1770 }
1771 
1772 /**
1773  * free_swap_and_cache_nr() - Release reference on range of swap entries and
1774  *                            reclaim their cache if no more references remain.
1775  * @entry: First entry of range.
1776  * @nr: Number of entries in range.
1777  *
1778  * For each swap entry in the contiguous range, release a reference. If any swap
1779  * entries become free, try to reclaim their underlying folios, if present. The
1780  * offset range is defined by [entry.offset, entry.offset + nr).
1781  */
1782 void free_swap_and_cache_nr(swp_entry_t entry, int nr)
1783 {
1784 	const unsigned long start_offset = swp_offset(entry);
1785 	const unsigned long end_offset = start_offset + nr;
1786 	struct swap_info_struct *si;
1787 	bool any_only_cache = false;
1788 	unsigned long offset;
1789 
1790 	si = get_swap_device(entry);
1791 	if (!si)
1792 		return;
1793 
1794 	if (WARN_ON(end_offset > si->max))
1795 		goto out;
1796 
1797 	/*
1798 	 * First free all entries in the range.
1799 	 */
1800 	any_only_cache = __swap_entries_free(si, entry, nr);
1801 
1802 	/*
1803 	 * Short-circuit the below loop if none of the entries had their
1804 	 * reference drop to zero.
1805 	 */
1806 	if (!any_only_cache)
1807 		goto out;
1808 
1809 	/*
1810 	 * Now go back over the range trying to reclaim the swap cache. This is
1811 	 * more efficient for large folios because we will only try to reclaim
1812 	 * the swap once per folio in the common case. If we do
1813 	 * __swap_entry_free() and __try_to_reclaim_swap() in the same loop, the
1814 	 * latter will get a reference and lock the folio for every individual
1815 	 * page but will only succeed once the swap slot for every subpage is
1816 	 * zero.
1817 	 */
1818 	for (offset = start_offset; offset < end_offset; offset += nr) {
1819 		nr = 1;
1820 		if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1821 			/*
1822 			 * Folios are always naturally aligned in swap so
1823 			 * advance forward to the next boundary. Zero means no
1824 			 * folio was found for the swap entry, so advance by 1
1825 			 * in this case. Negative value means folio was found
1826 			 * but could not be reclaimed. Here we can still advance
1827 			 * to the next boundary.
1828 			 */
1829 			nr = __try_to_reclaim_swap(si, offset,
1830 						   TTRS_UNMAPPED | TTRS_FULL);
1831 			if (nr == 0)
1832 				nr = 1;
1833 			else if (nr < 0)
1834 				nr = -nr;
1835 			nr = ALIGN(offset + 1, nr) - offset;
1836 		}
1837 	}
1838 
1839 out:
1840 	put_swap_device(si);
1841 }
1842 
1843 #ifdef CONFIG_HIBERNATION
1844 
1845 swp_entry_t get_swap_page_of_type(int type)
1846 {
1847 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1848 	unsigned long offset;
1849 	swp_entry_t entry = {0};
1850 
1851 	if (!si)
1852 		goto fail;
1853 
1854 	/* This is called for allocating swap entry, not cache */
1855 	if (get_swap_device_info(si)) {
1856 		if (si->flags & SWP_WRITEOK) {
1857 			offset = cluster_alloc_swap_entry(si, 0, 1);
1858 			if (offset) {
1859 				entry = swp_entry(si->type, offset);
1860 				atomic_long_dec(&nr_swap_pages);
1861 			}
1862 		}
1863 		put_swap_device(si);
1864 	}
1865 fail:
1866 	return entry;
1867 }
1868 
1869 /*
1870  * Find the swap type that corresponds to given device (if any).
1871  *
1872  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1873  * from 0, in which the swap header is expected to be located.
1874  *
1875  * This is needed for the suspend to disk (aka swsusp).
1876  */
1877 int swap_type_of(dev_t device, sector_t offset)
1878 {
1879 	int type;
1880 
1881 	if (!device)
1882 		return -1;
1883 
1884 	spin_lock(&swap_lock);
1885 	for (type = 0; type < nr_swapfiles; type++) {
1886 		struct swap_info_struct *sis = swap_info[type];
1887 
1888 		if (!(sis->flags & SWP_WRITEOK))
1889 			continue;
1890 
1891 		if (device == sis->bdev->bd_dev) {
1892 			struct swap_extent *se = first_se(sis);
1893 
1894 			if (se->start_block == offset) {
1895 				spin_unlock(&swap_lock);
1896 				return type;
1897 			}
1898 		}
1899 	}
1900 	spin_unlock(&swap_lock);
1901 	return -ENODEV;
1902 }
1903 
1904 int find_first_swap(dev_t *device)
1905 {
1906 	int type;
1907 
1908 	spin_lock(&swap_lock);
1909 	for (type = 0; type < nr_swapfiles; type++) {
1910 		struct swap_info_struct *sis = swap_info[type];
1911 
1912 		if (!(sis->flags & SWP_WRITEOK))
1913 			continue;
1914 		*device = sis->bdev->bd_dev;
1915 		spin_unlock(&swap_lock);
1916 		return type;
1917 	}
1918 	spin_unlock(&swap_lock);
1919 	return -ENODEV;
1920 }
1921 
1922 /*
1923  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1924  * corresponding to given index in swap_info (swap type).
1925  */
1926 sector_t swapdev_block(int type, pgoff_t offset)
1927 {
1928 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1929 	struct swap_extent *se;
1930 
1931 	if (!si || !(si->flags & SWP_WRITEOK))
1932 		return 0;
1933 	se = offset_to_swap_extent(si, offset);
1934 	return se->start_block + (offset - se->start_page);
1935 }
1936 
1937 /*
1938  * Return either the total number of swap pages of given type, or the number
1939  * of free pages of that type (depending on @free)
1940  *
1941  * This is needed for software suspend
1942  */
1943 unsigned int count_swap_pages(int type, int free)
1944 {
1945 	unsigned int n = 0;
1946 
1947 	spin_lock(&swap_lock);
1948 	if ((unsigned int)type < nr_swapfiles) {
1949 		struct swap_info_struct *sis = swap_info[type];
1950 
1951 		spin_lock(&sis->lock);
1952 		if (sis->flags & SWP_WRITEOK) {
1953 			n = sis->pages;
1954 			if (free)
1955 				n -= swap_usage_in_pages(sis);
1956 		}
1957 		spin_unlock(&sis->lock);
1958 	}
1959 	spin_unlock(&swap_lock);
1960 	return n;
1961 }
1962 #endif /* CONFIG_HIBERNATION */
1963 
1964 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1965 {
1966 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1967 }
1968 
1969 /*
1970  * No need to decide whether this PTE shares the swap entry with others,
1971  * just let do_wp_page work it out if a write is requested later - to
1972  * force COW, vm_page_prot omits write permission from any private vma.
1973  */
1974 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1975 		unsigned long addr, swp_entry_t entry, struct folio *folio)
1976 {
1977 	struct page *page;
1978 	struct folio *swapcache;
1979 	spinlock_t *ptl;
1980 	pte_t *pte, new_pte, old_pte;
1981 	bool hwpoisoned = false;
1982 	int ret = 1;
1983 
1984 	swapcache = folio;
1985 	folio = ksm_might_need_to_copy(folio, vma, addr);
1986 	if (unlikely(!folio))
1987 		return -ENOMEM;
1988 	else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
1989 		hwpoisoned = true;
1990 		folio = swapcache;
1991 	}
1992 
1993 	page = folio_file_page(folio, swp_offset(entry));
1994 	if (PageHWPoison(page))
1995 		hwpoisoned = true;
1996 
1997 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1998 	if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
1999 						swp_entry_to_pte(entry)))) {
2000 		ret = 0;
2001 		goto out;
2002 	}
2003 
2004 	old_pte = ptep_get(pte);
2005 
2006 	if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
2007 		swp_entry_t swp_entry;
2008 
2009 		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2010 		if (hwpoisoned) {
2011 			swp_entry = make_hwpoison_entry(page);
2012 		} else {
2013 			swp_entry = make_poisoned_swp_entry();
2014 		}
2015 		new_pte = swp_entry_to_pte(swp_entry);
2016 		ret = 0;
2017 		goto setpte;
2018 	}
2019 
2020 	/*
2021 	 * Some architectures may have to restore extra metadata to the page
2022 	 * when reading from swap. This metadata may be indexed by swap entry
2023 	 * so this must be called before swap_free().
2024 	 */
2025 	arch_swap_restore(folio_swap(entry, folio), folio);
2026 
2027 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2028 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
2029 	folio_get(folio);
2030 	if (folio == swapcache) {
2031 		rmap_t rmap_flags = RMAP_NONE;
2032 
2033 		/*
2034 		 * See do_swap_page(): writeback would be problematic.
2035 		 * However, we do a folio_wait_writeback() just before this
2036 		 * call and have the folio locked.
2037 		 */
2038 		VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
2039 		if (pte_swp_exclusive(old_pte))
2040 			rmap_flags |= RMAP_EXCLUSIVE;
2041 		/*
2042 		 * We currently only expect small !anon folios, which are either
2043 		 * fully exclusive or fully shared. If we ever get large folios
2044 		 * here, we have to be careful.
2045 		 */
2046 		if (!folio_test_anon(folio)) {
2047 			VM_WARN_ON_ONCE(folio_test_large(folio));
2048 			VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
2049 			folio_add_new_anon_rmap(folio, vma, addr, rmap_flags);
2050 		} else {
2051 			folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
2052 		}
2053 	} else { /* ksm created a completely new copy */
2054 		folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
2055 		folio_add_lru_vma(folio, vma);
2056 	}
2057 	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
2058 	if (pte_swp_soft_dirty(old_pte))
2059 		new_pte = pte_mksoft_dirty(new_pte);
2060 	if (pte_swp_uffd_wp(old_pte))
2061 		new_pte = pte_mkuffd_wp(new_pte);
2062 setpte:
2063 	set_pte_at(vma->vm_mm, addr, pte, new_pte);
2064 	swap_free(entry);
2065 out:
2066 	if (pte)
2067 		pte_unmap_unlock(pte, ptl);
2068 	if (folio != swapcache) {
2069 		folio_unlock(folio);
2070 		folio_put(folio);
2071 	}
2072 	return ret;
2073 }
2074 
2075 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
2076 			unsigned long addr, unsigned long end,
2077 			unsigned int type)
2078 {
2079 	pte_t *pte = NULL;
2080 	struct swap_info_struct *si;
2081 
2082 	si = swap_info[type];
2083 	do {
2084 		struct folio *folio;
2085 		unsigned long offset;
2086 		unsigned char swp_count;
2087 		swp_entry_t entry;
2088 		int ret;
2089 		pte_t ptent;
2090 
2091 		if (!pte++) {
2092 			pte = pte_offset_map(pmd, addr);
2093 			if (!pte)
2094 				break;
2095 		}
2096 
2097 		ptent = ptep_get_lockless(pte);
2098 
2099 		if (!is_swap_pte(ptent))
2100 			continue;
2101 
2102 		entry = pte_to_swp_entry(ptent);
2103 		if (swp_type(entry) != type)
2104 			continue;
2105 
2106 		offset = swp_offset(entry);
2107 		pte_unmap(pte);
2108 		pte = NULL;
2109 
2110 		folio = swap_cache_get_folio(entry, vma, addr);
2111 		if (!folio) {
2112 			struct vm_fault vmf = {
2113 				.vma = vma,
2114 				.address = addr,
2115 				.real_address = addr,
2116 				.pmd = pmd,
2117 			};
2118 
2119 			folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2120 						&vmf);
2121 		}
2122 		if (!folio) {
2123 			swp_count = READ_ONCE(si->swap_map[offset]);
2124 			if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
2125 				continue;
2126 			return -ENOMEM;
2127 		}
2128 
2129 		folio_lock(folio);
2130 		folio_wait_writeback(folio);
2131 		ret = unuse_pte(vma, pmd, addr, entry, folio);
2132 		if (ret < 0) {
2133 			folio_unlock(folio);
2134 			folio_put(folio);
2135 			return ret;
2136 		}
2137 
2138 		folio_free_swap(folio);
2139 		folio_unlock(folio);
2140 		folio_put(folio);
2141 	} while (addr += PAGE_SIZE, addr != end);
2142 
2143 	if (pte)
2144 		pte_unmap(pte);
2145 	return 0;
2146 }
2147 
2148 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2149 				unsigned long addr, unsigned long end,
2150 				unsigned int type)
2151 {
2152 	pmd_t *pmd;
2153 	unsigned long next;
2154 	int ret;
2155 
2156 	pmd = pmd_offset(pud, addr);
2157 	do {
2158 		cond_resched();
2159 		next = pmd_addr_end(addr, end);
2160 		ret = unuse_pte_range(vma, pmd, addr, next, type);
2161 		if (ret)
2162 			return ret;
2163 	} while (pmd++, addr = next, addr != end);
2164 	return 0;
2165 }
2166 
2167 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2168 				unsigned long addr, unsigned long end,
2169 				unsigned int type)
2170 {
2171 	pud_t *pud;
2172 	unsigned long next;
2173 	int ret;
2174 
2175 	pud = pud_offset(p4d, addr);
2176 	do {
2177 		next = pud_addr_end(addr, end);
2178 		if (pud_none_or_clear_bad(pud))
2179 			continue;
2180 		ret = unuse_pmd_range(vma, pud, addr, next, type);
2181 		if (ret)
2182 			return ret;
2183 	} while (pud++, addr = next, addr != end);
2184 	return 0;
2185 }
2186 
2187 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2188 				unsigned long addr, unsigned long end,
2189 				unsigned int type)
2190 {
2191 	p4d_t *p4d;
2192 	unsigned long next;
2193 	int ret;
2194 
2195 	p4d = p4d_offset(pgd, addr);
2196 	do {
2197 		next = p4d_addr_end(addr, end);
2198 		if (p4d_none_or_clear_bad(p4d))
2199 			continue;
2200 		ret = unuse_pud_range(vma, p4d, addr, next, type);
2201 		if (ret)
2202 			return ret;
2203 	} while (p4d++, addr = next, addr != end);
2204 	return 0;
2205 }
2206 
2207 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
2208 {
2209 	pgd_t *pgd;
2210 	unsigned long addr, end, next;
2211 	int ret;
2212 
2213 	addr = vma->vm_start;
2214 	end = vma->vm_end;
2215 
2216 	pgd = pgd_offset(vma->vm_mm, addr);
2217 	do {
2218 		next = pgd_addr_end(addr, end);
2219 		if (pgd_none_or_clear_bad(pgd))
2220 			continue;
2221 		ret = unuse_p4d_range(vma, pgd, addr, next, type);
2222 		if (ret)
2223 			return ret;
2224 	} while (pgd++, addr = next, addr != end);
2225 	return 0;
2226 }
2227 
2228 static int unuse_mm(struct mm_struct *mm, unsigned int type)
2229 {
2230 	struct vm_area_struct *vma;
2231 	int ret = 0;
2232 	VMA_ITERATOR(vmi, mm, 0);
2233 
2234 	mmap_read_lock(mm);
2235 	for_each_vma(vmi, vma) {
2236 		if (vma->anon_vma && !is_vm_hugetlb_page(vma)) {
2237 			ret = unuse_vma(vma, type);
2238 			if (ret)
2239 				break;
2240 		}
2241 
2242 		cond_resched();
2243 	}
2244 	mmap_read_unlock(mm);
2245 	return ret;
2246 }
2247 
2248 /*
2249  * Scan swap_map from current position to next entry still in use.
2250  * Return 0 if there are no inuse entries after prev till end of
2251  * the map.
2252  */
2253 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2254 					unsigned int prev)
2255 {
2256 	unsigned int i;
2257 	unsigned char count;
2258 
2259 	/*
2260 	 * No need for swap_lock here: we're just looking
2261 	 * for whether an entry is in use, not modifying it; false
2262 	 * hits are okay, and sys_swapoff() has already prevented new
2263 	 * allocations from this area (while holding swap_lock).
2264 	 */
2265 	for (i = prev + 1; i < si->max; i++) {
2266 		count = READ_ONCE(si->swap_map[i]);
2267 		if (count && swap_count(count) != SWAP_MAP_BAD)
2268 			break;
2269 		if ((i % LATENCY_LIMIT) == 0)
2270 			cond_resched();
2271 	}
2272 
2273 	if (i == si->max)
2274 		i = 0;
2275 
2276 	return i;
2277 }
2278 
2279 static int try_to_unuse(unsigned int type)
2280 {
2281 	struct mm_struct *prev_mm;
2282 	struct mm_struct *mm;
2283 	struct list_head *p;
2284 	int retval = 0;
2285 	struct swap_info_struct *si = swap_info[type];
2286 	struct folio *folio;
2287 	swp_entry_t entry;
2288 	unsigned int i;
2289 
2290 	if (!swap_usage_in_pages(si))
2291 		goto success;
2292 
2293 retry:
2294 	retval = shmem_unuse(type);
2295 	if (retval)
2296 		return retval;
2297 
2298 	prev_mm = &init_mm;
2299 	mmget(prev_mm);
2300 
2301 	spin_lock(&mmlist_lock);
2302 	p = &init_mm.mmlist;
2303 	while (swap_usage_in_pages(si) &&
2304 	       !signal_pending(current) &&
2305 	       (p = p->next) != &init_mm.mmlist) {
2306 
2307 		mm = list_entry(p, struct mm_struct, mmlist);
2308 		if (!mmget_not_zero(mm))
2309 			continue;
2310 		spin_unlock(&mmlist_lock);
2311 		mmput(prev_mm);
2312 		prev_mm = mm;
2313 		retval = unuse_mm(mm, type);
2314 		if (retval) {
2315 			mmput(prev_mm);
2316 			return retval;
2317 		}
2318 
2319 		/*
2320 		 * Make sure that we aren't completely killing
2321 		 * interactive performance.
2322 		 */
2323 		cond_resched();
2324 		spin_lock(&mmlist_lock);
2325 	}
2326 	spin_unlock(&mmlist_lock);
2327 
2328 	mmput(prev_mm);
2329 
2330 	i = 0;
2331 	while (swap_usage_in_pages(si) &&
2332 	       !signal_pending(current) &&
2333 	       (i = find_next_to_unuse(si, i)) != 0) {
2334 
2335 		entry = swp_entry(type, i);
2336 		folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry));
2337 		if (IS_ERR(folio))
2338 			continue;
2339 
2340 		/*
2341 		 * It is conceivable that a racing task removed this folio from
2342 		 * swap cache just before we acquired the page lock. The folio
2343 		 * might even be back in swap cache on another swap area. But
2344 		 * that is okay, folio_free_swap() only removes stale folios.
2345 		 */
2346 		folio_lock(folio);
2347 		folio_wait_writeback(folio);
2348 		folio_free_swap(folio);
2349 		folio_unlock(folio);
2350 		folio_put(folio);
2351 	}
2352 
2353 	/*
2354 	 * Lets check again to see if there are still swap entries in the map.
2355 	 * If yes, we would need to do retry the unuse logic again.
2356 	 * Under global memory pressure, swap entries can be reinserted back
2357 	 * into process space after the mmlist loop above passes over them.
2358 	 *
2359 	 * Limit the number of retries? No: when mmget_not_zero()
2360 	 * above fails, that mm is likely to be freeing swap from
2361 	 * exit_mmap(), which proceeds at its own independent pace;
2362 	 * and even shmem_writepage() could have been preempted after
2363 	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2364 	 * and robust (though cpu-intensive) just to keep retrying.
2365 	 */
2366 	if (swap_usage_in_pages(si)) {
2367 		if (!signal_pending(current))
2368 			goto retry;
2369 		return -EINTR;
2370 	}
2371 
2372 success:
2373 	/*
2374 	 * Make sure that further cleanups after try_to_unuse() returns happen
2375 	 * after swap_range_free() reduces si->inuse_pages to 0.
2376 	 */
2377 	smp_mb();
2378 	return 0;
2379 }
2380 
2381 /*
2382  * After a successful try_to_unuse, if no swap is now in use, we know
2383  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2384  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2385  * added to the mmlist just after page_duplicate - before would be racy.
2386  */
2387 static void drain_mmlist(void)
2388 {
2389 	struct list_head *p, *next;
2390 	unsigned int type;
2391 
2392 	for (type = 0; type < nr_swapfiles; type++)
2393 		if (swap_usage_in_pages(swap_info[type]))
2394 			return;
2395 	spin_lock(&mmlist_lock);
2396 	list_for_each_safe(p, next, &init_mm.mmlist)
2397 		list_del_init(p);
2398 	spin_unlock(&mmlist_lock);
2399 }
2400 
2401 /*
2402  * Free all of a swapdev's extent information
2403  */
2404 static void destroy_swap_extents(struct swap_info_struct *sis)
2405 {
2406 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2407 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2408 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2409 
2410 		rb_erase(rb, &sis->swap_extent_root);
2411 		kfree(se);
2412 	}
2413 
2414 	if (sis->flags & SWP_ACTIVATED) {
2415 		struct file *swap_file = sis->swap_file;
2416 		struct address_space *mapping = swap_file->f_mapping;
2417 
2418 		sis->flags &= ~SWP_ACTIVATED;
2419 		if (mapping->a_ops->swap_deactivate)
2420 			mapping->a_ops->swap_deactivate(swap_file);
2421 	}
2422 }
2423 
2424 /*
2425  * Add a block range (and the corresponding page range) into this swapdev's
2426  * extent tree.
2427  *
2428  * This function rather assumes that it is called in ascending page order.
2429  */
2430 int
2431 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2432 		unsigned long nr_pages, sector_t start_block)
2433 {
2434 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2435 	struct swap_extent *se;
2436 	struct swap_extent *new_se;
2437 
2438 	/*
2439 	 * place the new node at the right most since the
2440 	 * function is called in ascending page order.
2441 	 */
2442 	while (*link) {
2443 		parent = *link;
2444 		link = &parent->rb_right;
2445 	}
2446 
2447 	if (parent) {
2448 		se = rb_entry(parent, struct swap_extent, rb_node);
2449 		BUG_ON(se->start_page + se->nr_pages != start_page);
2450 		if (se->start_block + se->nr_pages == start_block) {
2451 			/* Merge it */
2452 			se->nr_pages += nr_pages;
2453 			return 0;
2454 		}
2455 	}
2456 
2457 	/* No merge, insert a new extent. */
2458 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2459 	if (new_se == NULL)
2460 		return -ENOMEM;
2461 	new_se->start_page = start_page;
2462 	new_se->nr_pages = nr_pages;
2463 	new_se->start_block = start_block;
2464 
2465 	rb_link_node(&new_se->rb_node, parent, link);
2466 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2467 	return 1;
2468 }
2469 EXPORT_SYMBOL_GPL(add_swap_extent);
2470 
2471 /*
2472  * A `swap extent' is a simple thing which maps a contiguous range of pages
2473  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2474  * built at swapon time and is then used at swap_writepage/swap_read_folio
2475  * time for locating where on disk a page belongs.
2476  *
2477  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2478  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2479  * swap files identically.
2480  *
2481  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2482  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2483  * swapfiles are handled *identically* after swapon time.
2484  *
2485  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2486  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2487  * blocks are found which do not fall within the PAGE_SIZE alignment
2488  * requirements, they are simply tossed out - we will never use those blocks
2489  * for swapping.
2490  *
2491  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2492  * prevents users from writing to the swap device, which will corrupt memory.
2493  *
2494  * The amount of disk space which a single swap extent represents varies.
2495  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2496  * extents in the rbtree. - akpm.
2497  */
2498 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2499 {
2500 	struct file *swap_file = sis->swap_file;
2501 	struct address_space *mapping = swap_file->f_mapping;
2502 	struct inode *inode = mapping->host;
2503 	int ret;
2504 
2505 	if (S_ISBLK(inode->i_mode)) {
2506 		ret = add_swap_extent(sis, 0, sis->max, 0);
2507 		*span = sis->pages;
2508 		return ret;
2509 	}
2510 
2511 	if (mapping->a_ops->swap_activate) {
2512 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2513 		if (ret < 0)
2514 			return ret;
2515 		sis->flags |= SWP_ACTIVATED;
2516 		if ((sis->flags & SWP_FS_OPS) &&
2517 		    sio_pool_init() != 0) {
2518 			destroy_swap_extents(sis);
2519 			return -ENOMEM;
2520 		}
2521 		return ret;
2522 	}
2523 
2524 	return generic_swapfile_activate(sis, swap_file, span);
2525 }
2526 
2527 static int swap_node(struct swap_info_struct *si)
2528 {
2529 	struct block_device *bdev;
2530 
2531 	if (si->bdev)
2532 		bdev = si->bdev;
2533 	else
2534 		bdev = si->swap_file->f_inode->i_sb->s_bdev;
2535 
2536 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2537 }
2538 
2539 static void setup_swap_info(struct swap_info_struct *si, int prio,
2540 			    unsigned char *swap_map,
2541 			    struct swap_cluster_info *cluster_info,
2542 			    unsigned long *zeromap)
2543 {
2544 	int i;
2545 
2546 	if (prio >= 0)
2547 		si->prio = prio;
2548 	else
2549 		si->prio = --least_priority;
2550 	/*
2551 	 * the plist prio is negated because plist ordering is
2552 	 * low-to-high, while swap ordering is high-to-low
2553 	 */
2554 	si->list.prio = -si->prio;
2555 	for_each_node(i) {
2556 		if (si->prio >= 0)
2557 			si->avail_lists[i].prio = -si->prio;
2558 		else {
2559 			if (swap_node(si) == i)
2560 				si->avail_lists[i].prio = 1;
2561 			else
2562 				si->avail_lists[i].prio = -si->prio;
2563 		}
2564 	}
2565 	si->swap_map = swap_map;
2566 	si->cluster_info = cluster_info;
2567 	si->zeromap = zeromap;
2568 }
2569 
2570 static void _enable_swap_info(struct swap_info_struct *si)
2571 {
2572 	atomic_long_add(si->pages, &nr_swap_pages);
2573 	total_swap_pages += si->pages;
2574 
2575 	assert_spin_locked(&swap_lock);
2576 	/*
2577 	 * both lists are plists, and thus priority ordered.
2578 	 * swap_active_head needs to be priority ordered for swapoff(),
2579 	 * which on removal of any swap_info_struct with an auto-assigned
2580 	 * (i.e. negative) priority increments the auto-assigned priority
2581 	 * of any lower-priority swap_info_structs.
2582 	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2583 	 * which allocates swap pages from the highest available priority
2584 	 * swap_info_struct.
2585 	 */
2586 	plist_add(&si->list, &swap_active_head);
2587 
2588 	/* Add back to available list */
2589 	add_to_avail_list(si, true);
2590 }
2591 
2592 static void enable_swap_info(struct swap_info_struct *si, int prio,
2593 				unsigned char *swap_map,
2594 				struct swap_cluster_info *cluster_info,
2595 				unsigned long *zeromap)
2596 {
2597 	spin_lock(&swap_lock);
2598 	spin_lock(&si->lock);
2599 	setup_swap_info(si, prio, swap_map, cluster_info, zeromap);
2600 	spin_unlock(&si->lock);
2601 	spin_unlock(&swap_lock);
2602 	/*
2603 	 * Finished initializing swap device, now it's safe to reference it.
2604 	 */
2605 	percpu_ref_resurrect(&si->users);
2606 	spin_lock(&swap_lock);
2607 	spin_lock(&si->lock);
2608 	_enable_swap_info(si);
2609 	spin_unlock(&si->lock);
2610 	spin_unlock(&swap_lock);
2611 }
2612 
2613 static void reinsert_swap_info(struct swap_info_struct *si)
2614 {
2615 	spin_lock(&swap_lock);
2616 	spin_lock(&si->lock);
2617 	setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap);
2618 	_enable_swap_info(si);
2619 	spin_unlock(&si->lock);
2620 	spin_unlock(&swap_lock);
2621 }
2622 
2623 /*
2624  * Called after clearing SWP_WRITEOK, ensures cluster_alloc_range
2625  * see the updated flags, so there will be no more allocations.
2626  */
2627 static void wait_for_allocation(struct swap_info_struct *si)
2628 {
2629 	unsigned long offset;
2630 	unsigned long end = ALIGN(si->max, SWAPFILE_CLUSTER);
2631 	struct swap_cluster_info *ci;
2632 
2633 	BUG_ON(si->flags & SWP_WRITEOK);
2634 
2635 	for (offset = 0; offset < end; offset += SWAPFILE_CLUSTER) {
2636 		ci = lock_cluster(si, offset);
2637 		unlock_cluster(ci);
2638 	}
2639 }
2640 
2641 /*
2642  * Called after swap device's reference count is dead, so
2643  * neither scan nor allocation will use it.
2644  */
2645 static void flush_percpu_swap_cluster(struct swap_info_struct *si)
2646 {
2647 	int cpu, i;
2648 	struct swap_info_struct **pcp_si;
2649 
2650 	for_each_possible_cpu(cpu) {
2651 		pcp_si = per_cpu_ptr(percpu_swap_cluster.si, cpu);
2652 		/*
2653 		 * Invalidate the percpu swap cluster cache, si->users
2654 		 * is dead, so no new user will point to it, just flush
2655 		 * any existing user.
2656 		 */
2657 		for (i = 0; i < SWAP_NR_ORDERS; i++)
2658 			cmpxchg(&pcp_si[i], si, NULL);
2659 	}
2660 }
2661 
2662 
2663 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2664 {
2665 	struct swap_info_struct *p = NULL;
2666 	unsigned char *swap_map;
2667 	unsigned long *zeromap;
2668 	struct swap_cluster_info *cluster_info;
2669 	struct file *swap_file, *victim;
2670 	struct address_space *mapping;
2671 	struct inode *inode;
2672 	struct filename *pathname;
2673 	int err, found = 0;
2674 
2675 	if (!capable(CAP_SYS_ADMIN))
2676 		return -EPERM;
2677 
2678 	BUG_ON(!current->mm);
2679 
2680 	pathname = getname(specialfile);
2681 	if (IS_ERR(pathname))
2682 		return PTR_ERR(pathname);
2683 
2684 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2685 	err = PTR_ERR(victim);
2686 	if (IS_ERR(victim))
2687 		goto out;
2688 
2689 	mapping = victim->f_mapping;
2690 	spin_lock(&swap_lock);
2691 	plist_for_each_entry(p, &swap_active_head, list) {
2692 		if (p->flags & SWP_WRITEOK) {
2693 			if (p->swap_file->f_mapping == mapping) {
2694 				found = 1;
2695 				break;
2696 			}
2697 		}
2698 	}
2699 	if (!found) {
2700 		err = -EINVAL;
2701 		spin_unlock(&swap_lock);
2702 		goto out_dput;
2703 	}
2704 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2705 		vm_unacct_memory(p->pages);
2706 	else {
2707 		err = -ENOMEM;
2708 		spin_unlock(&swap_lock);
2709 		goto out_dput;
2710 	}
2711 	spin_lock(&p->lock);
2712 	del_from_avail_list(p, true);
2713 	if (p->prio < 0) {
2714 		struct swap_info_struct *si = p;
2715 		int nid;
2716 
2717 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2718 			si->prio++;
2719 			si->list.prio--;
2720 			for_each_node(nid) {
2721 				if (si->avail_lists[nid].prio != 1)
2722 					si->avail_lists[nid].prio--;
2723 			}
2724 		}
2725 		least_priority++;
2726 	}
2727 	plist_del(&p->list, &swap_active_head);
2728 	atomic_long_sub(p->pages, &nr_swap_pages);
2729 	total_swap_pages -= p->pages;
2730 	spin_unlock(&p->lock);
2731 	spin_unlock(&swap_lock);
2732 
2733 	wait_for_allocation(p);
2734 
2735 	set_current_oom_origin();
2736 	err = try_to_unuse(p->type);
2737 	clear_current_oom_origin();
2738 
2739 	if (err) {
2740 		/* re-insert swap space back into swap_list */
2741 		reinsert_swap_info(p);
2742 		goto out_dput;
2743 	}
2744 
2745 	/*
2746 	 * Wait for swap operations protected by get/put_swap_device()
2747 	 * to complete.  Because of synchronize_rcu() here, all swap
2748 	 * operations protected by RCU reader side lock (including any
2749 	 * spinlock) will be waited too.  This makes it easy to
2750 	 * prevent folio_test_swapcache() and the following swap cache
2751 	 * operations from racing with swapoff.
2752 	 */
2753 	percpu_ref_kill(&p->users);
2754 	synchronize_rcu();
2755 	wait_for_completion(&p->comp);
2756 
2757 	flush_work(&p->discard_work);
2758 	flush_work(&p->reclaim_work);
2759 	flush_percpu_swap_cluster(p);
2760 
2761 	destroy_swap_extents(p);
2762 	if (p->flags & SWP_CONTINUED)
2763 		free_swap_count_continuations(p);
2764 
2765 	if (!p->bdev || !bdev_nonrot(p->bdev))
2766 		atomic_dec(&nr_rotate_swap);
2767 
2768 	mutex_lock(&swapon_mutex);
2769 	spin_lock(&swap_lock);
2770 	spin_lock(&p->lock);
2771 	drain_mmlist();
2772 
2773 	swap_file = p->swap_file;
2774 	p->swap_file = NULL;
2775 	p->max = 0;
2776 	swap_map = p->swap_map;
2777 	p->swap_map = NULL;
2778 	zeromap = p->zeromap;
2779 	p->zeromap = NULL;
2780 	cluster_info = p->cluster_info;
2781 	p->cluster_info = NULL;
2782 	spin_unlock(&p->lock);
2783 	spin_unlock(&swap_lock);
2784 	arch_swap_invalidate_area(p->type);
2785 	zswap_swapoff(p->type);
2786 	mutex_unlock(&swapon_mutex);
2787 	kfree(p->global_cluster);
2788 	p->global_cluster = NULL;
2789 	vfree(swap_map);
2790 	kvfree(zeromap);
2791 	kvfree(cluster_info);
2792 	/* Destroy swap account information */
2793 	swap_cgroup_swapoff(p->type);
2794 	exit_swap_address_space(p->type);
2795 
2796 	inode = mapping->host;
2797 
2798 	inode_lock(inode);
2799 	inode->i_flags &= ~S_SWAPFILE;
2800 	inode_unlock(inode);
2801 	filp_close(swap_file, NULL);
2802 
2803 	/*
2804 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2805 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2806 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2807 	 */
2808 	spin_lock(&swap_lock);
2809 	p->flags = 0;
2810 	spin_unlock(&swap_lock);
2811 
2812 	err = 0;
2813 	atomic_inc(&proc_poll_event);
2814 	wake_up_interruptible(&proc_poll_wait);
2815 
2816 out_dput:
2817 	filp_close(victim, NULL);
2818 out:
2819 	putname(pathname);
2820 	return err;
2821 }
2822 
2823 #ifdef CONFIG_PROC_FS
2824 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2825 {
2826 	struct seq_file *seq = file->private_data;
2827 
2828 	poll_wait(file, &proc_poll_wait, wait);
2829 
2830 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2831 		seq->poll_event = atomic_read(&proc_poll_event);
2832 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2833 	}
2834 
2835 	return EPOLLIN | EPOLLRDNORM;
2836 }
2837 
2838 /* iterator */
2839 static void *swap_start(struct seq_file *swap, loff_t *pos)
2840 {
2841 	struct swap_info_struct *si;
2842 	int type;
2843 	loff_t l = *pos;
2844 
2845 	mutex_lock(&swapon_mutex);
2846 
2847 	if (!l)
2848 		return SEQ_START_TOKEN;
2849 
2850 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2851 		if (!(si->flags & SWP_USED) || !si->swap_map)
2852 			continue;
2853 		if (!--l)
2854 			return si;
2855 	}
2856 
2857 	return NULL;
2858 }
2859 
2860 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2861 {
2862 	struct swap_info_struct *si = v;
2863 	int type;
2864 
2865 	if (v == SEQ_START_TOKEN)
2866 		type = 0;
2867 	else
2868 		type = si->type + 1;
2869 
2870 	++(*pos);
2871 	for (; (si = swap_type_to_swap_info(type)); type++) {
2872 		if (!(si->flags & SWP_USED) || !si->swap_map)
2873 			continue;
2874 		return si;
2875 	}
2876 
2877 	return NULL;
2878 }
2879 
2880 static void swap_stop(struct seq_file *swap, void *v)
2881 {
2882 	mutex_unlock(&swapon_mutex);
2883 }
2884 
2885 static int swap_show(struct seq_file *swap, void *v)
2886 {
2887 	struct swap_info_struct *si = v;
2888 	struct file *file;
2889 	int len;
2890 	unsigned long bytes, inuse;
2891 
2892 	if (si == SEQ_START_TOKEN) {
2893 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2894 		return 0;
2895 	}
2896 
2897 	bytes = K(si->pages);
2898 	inuse = K(swap_usage_in_pages(si));
2899 
2900 	file = si->swap_file;
2901 	len = seq_file_path(swap, file, " \t\n\\");
2902 	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2903 			len < 40 ? 40 - len : 1, " ",
2904 			S_ISBLK(file_inode(file)->i_mode) ?
2905 				"partition" : "file\t",
2906 			bytes, bytes < 10000000 ? "\t" : "",
2907 			inuse, inuse < 10000000 ? "\t" : "",
2908 			si->prio);
2909 	return 0;
2910 }
2911 
2912 static const struct seq_operations swaps_op = {
2913 	.start =	swap_start,
2914 	.next =		swap_next,
2915 	.stop =		swap_stop,
2916 	.show =		swap_show
2917 };
2918 
2919 static int swaps_open(struct inode *inode, struct file *file)
2920 {
2921 	struct seq_file *seq;
2922 	int ret;
2923 
2924 	ret = seq_open(file, &swaps_op);
2925 	if (ret)
2926 		return ret;
2927 
2928 	seq = file->private_data;
2929 	seq->poll_event = atomic_read(&proc_poll_event);
2930 	return 0;
2931 }
2932 
2933 static const struct proc_ops swaps_proc_ops = {
2934 	.proc_flags	= PROC_ENTRY_PERMANENT,
2935 	.proc_open	= swaps_open,
2936 	.proc_read	= seq_read,
2937 	.proc_lseek	= seq_lseek,
2938 	.proc_release	= seq_release,
2939 	.proc_poll	= swaps_poll,
2940 };
2941 
2942 static int __init procswaps_init(void)
2943 {
2944 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2945 	return 0;
2946 }
2947 __initcall(procswaps_init);
2948 #endif /* CONFIG_PROC_FS */
2949 
2950 #ifdef MAX_SWAPFILES_CHECK
2951 static int __init max_swapfiles_check(void)
2952 {
2953 	MAX_SWAPFILES_CHECK();
2954 	return 0;
2955 }
2956 late_initcall(max_swapfiles_check);
2957 #endif
2958 
2959 static struct swap_info_struct *alloc_swap_info(void)
2960 {
2961 	struct swap_info_struct *p;
2962 	struct swap_info_struct *defer = NULL;
2963 	unsigned int type;
2964 	int i;
2965 
2966 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2967 	if (!p)
2968 		return ERR_PTR(-ENOMEM);
2969 
2970 	if (percpu_ref_init(&p->users, swap_users_ref_free,
2971 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2972 		kvfree(p);
2973 		return ERR_PTR(-ENOMEM);
2974 	}
2975 
2976 	spin_lock(&swap_lock);
2977 	for (type = 0; type < nr_swapfiles; type++) {
2978 		if (!(swap_info[type]->flags & SWP_USED))
2979 			break;
2980 	}
2981 	if (type >= MAX_SWAPFILES) {
2982 		spin_unlock(&swap_lock);
2983 		percpu_ref_exit(&p->users);
2984 		kvfree(p);
2985 		return ERR_PTR(-EPERM);
2986 	}
2987 	if (type >= nr_swapfiles) {
2988 		p->type = type;
2989 		/*
2990 		 * Publish the swap_info_struct after initializing it.
2991 		 * Note that kvzalloc() above zeroes all its fields.
2992 		 */
2993 		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2994 		nr_swapfiles++;
2995 	} else {
2996 		defer = p;
2997 		p = swap_info[type];
2998 		/*
2999 		 * Do not memset this entry: a racing procfs swap_next()
3000 		 * would be relying on p->type to remain valid.
3001 		 */
3002 	}
3003 	p->swap_extent_root = RB_ROOT;
3004 	plist_node_init(&p->list, 0);
3005 	for_each_node(i)
3006 		plist_node_init(&p->avail_lists[i], 0);
3007 	p->flags = SWP_USED;
3008 	spin_unlock(&swap_lock);
3009 	if (defer) {
3010 		percpu_ref_exit(&defer->users);
3011 		kvfree(defer);
3012 	}
3013 	spin_lock_init(&p->lock);
3014 	spin_lock_init(&p->cont_lock);
3015 	atomic_long_set(&p->inuse_pages, SWAP_USAGE_OFFLIST_BIT);
3016 	init_completion(&p->comp);
3017 
3018 	return p;
3019 }
3020 
3021 static int claim_swapfile(struct swap_info_struct *si, struct inode *inode)
3022 {
3023 	if (S_ISBLK(inode->i_mode)) {
3024 		si->bdev = I_BDEV(inode);
3025 		/*
3026 		 * Zoned block devices contain zones that have a sequential
3027 		 * write only restriction.  Hence zoned block devices are not
3028 		 * suitable for swapping.  Disallow them here.
3029 		 */
3030 		if (bdev_is_zoned(si->bdev))
3031 			return -EINVAL;
3032 		si->flags |= SWP_BLKDEV;
3033 	} else if (S_ISREG(inode->i_mode)) {
3034 		si->bdev = inode->i_sb->s_bdev;
3035 	}
3036 
3037 	return 0;
3038 }
3039 
3040 
3041 /*
3042  * Find out how many pages are allowed for a single swap device. There
3043  * are two limiting factors:
3044  * 1) the number of bits for the swap offset in the swp_entry_t type, and
3045  * 2) the number of bits in the swap pte, as defined by the different
3046  * architectures.
3047  *
3048  * In order to find the largest possible bit mask, a swap entry with
3049  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
3050  * decoded to a swp_entry_t again, and finally the swap offset is
3051  * extracted.
3052  *
3053  * This will mask all the bits from the initial ~0UL mask that can't
3054  * be encoded in either the swp_entry_t or the architecture definition
3055  * of a swap pte.
3056  */
3057 unsigned long generic_max_swapfile_size(void)
3058 {
3059 	return swp_offset(pte_to_swp_entry(
3060 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
3061 }
3062 
3063 /* Can be overridden by an architecture for additional checks. */
3064 __weak unsigned long arch_max_swapfile_size(void)
3065 {
3066 	return generic_max_swapfile_size();
3067 }
3068 
3069 static unsigned long read_swap_header(struct swap_info_struct *si,
3070 					union swap_header *swap_header,
3071 					struct inode *inode)
3072 {
3073 	int i;
3074 	unsigned long maxpages;
3075 	unsigned long swapfilepages;
3076 	unsigned long last_page;
3077 
3078 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
3079 		pr_err("Unable to find swap-space signature\n");
3080 		return 0;
3081 	}
3082 
3083 	/* swap partition endianness hack... */
3084 	if (swab32(swap_header->info.version) == 1) {
3085 		swab32s(&swap_header->info.version);
3086 		swab32s(&swap_header->info.last_page);
3087 		swab32s(&swap_header->info.nr_badpages);
3088 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3089 			return 0;
3090 		for (i = 0; i < swap_header->info.nr_badpages; i++)
3091 			swab32s(&swap_header->info.badpages[i]);
3092 	}
3093 	/* Check the swap header's sub-version */
3094 	if (swap_header->info.version != 1) {
3095 		pr_warn("Unable to handle swap header version %d\n",
3096 			swap_header->info.version);
3097 		return 0;
3098 	}
3099 
3100 	maxpages = swapfile_maximum_size;
3101 	last_page = swap_header->info.last_page;
3102 	if (!last_page) {
3103 		pr_warn("Empty swap-file\n");
3104 		return 0;
3105 	}
3106 	if (last_page > maxpages) {
3107 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3108 			K(maxpages), K(last_page));
3109 	}
3110 	if (maxpages > last_page) {
3111 		maxpages = last_page + 1;
3112 		/* p->max is an unsigned int: don't overflow it */
3113 		if ((unsigned int)maxpages == 0)
3114 			maxpages = UINT_MAX;
3115 	}
3116 
3117 	if (!maxpages)
3118 		return 0;
3119 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3120 	if (swapfilepages && maxpages > swapfilepages) {
3121 		pr_warn("Swap area shorter than signature indicates\n");
3122 		return 0;
3123 	}
3124 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3125 		return 0;
3126 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3127 		return 0;
3128 
3129 	return maxpages;
3130 }
3131 
3132 static int setup_swap_map_and_extents(struct swap_info_struct *si,
3133 					union swap_header *swap_header,
3134 					unsigned char *swap_map,
3135 					unsigned long maxpages,
3136 					sector_t *span)
3137 {
3138 	unsigned int nr_good_pages;
3139 	unsigned long i;
3140 	int nr_extents;
3141 
3142 	nr_good_pages = maxpages - 1;	/* omit header page */
3143 
3144 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3145 		unsigned int page_nr = swap_header->info.badpages[i];
3146 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3147 			return -EINVAL;
3148 		if (page_nr < maxpages) {
3149 			swap_map[page_nr] = SWAP_MAP_BAD;
3150 			nr_good_pages--;
3151 		}
3152 	}
3153 
3154 	if (nr_good_pages) {
3155 		swap_map[0] = SWAP_MAP_BAD;
3156 		si->max = maxpages;
3157 		si->pages = nr_good_pages;
3158 		nr_extents = setup_swap_extents(si, span);
3159 		if (nr_extents < 0)
3160 			return nr_extents;
3161 		nr_good_pages = si->pages;
3162 	}
3163 	if (!nr_good_pages) {
3164 		pr_warn("Empty swap-file\n");
3165 		return -EINVAL;
3166 	}
3167 
3168 	return nr_extents;
3169 }
3170 
3171 #define SWAP_CLUSTER_INFO_COLS						\
3172 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3173 #define SWAP_CLUSTER_SPACE_COLS						\
3174 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3175 #define SWAP_CLUSTER_COLS						\
3176 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3177 
3178 static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si,
3179 						union swap_header *swap_header,
3180 						unsigned long maxpages)
3181 {
3182 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3183 	struct swap_cluster_info *cluster_info;
3184 	unsigned long i, j, idx;
3185 	int err = -ENOMEM;
3186 
3187 	cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL);
3188 	if (!cluster_info)
3189 		goto err;
3190 
3191 	for (i = 0; i < nr_clusters; i++)
3192 		spin_lock_init(&cluster_info[i].lock);
3193 
3194 	if (!(si->flags & SWP_SOLIDSTATE)) {
3195 		si->global_cluster = kmalloc(sizeof(*si->global_cluster),
3196 				     GFP_KERNEL);
3197 		if (!si->global_cluster)
3198 			goto err_free;
3199 		for (i = 0; i < SWAP_NR_ORDERS; i++)
3200 			si->global_cluster->next[i] = SWAP_ENTRY_INVALID;
3201 		spin_lock_init(&si->global_cluster_lock);
3202 	}
3203 
3204 	/*
3205 	 * Mark unusable pages as unavailable. The clusters aren't
3206 	 * marked free yet, so no list operations are involved yet.
3207 	 *
3208 	 * See setup_swap_map_and_extents(): header page, bad pages,
3209 	 * and the EOF part of the last cluster.
3210 	 */
3211 	inc_cluster_info_page(si, cluster_info, 0);
3212 	for (i = 0; i < swap_header->info.nr_badpages; i++)
3213 		inc_cluster_info_page(si, cluster_info,
3214 				      swap_header->info.badpages[i]);
3215 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3216 		inc_cluster_info_page(si, cluster_info, i);
3217 
3218 	INIT_LIST_HEAD(&si->free_clusters);
3219 	INIT_LIST_HEAD(&si->full_clusters);
3220 	INIT_LIST_HEAD(&si->discard_clusters);
3221 
3222 	for (i = 0; i < SWAP_NR_ORDERS; i++) {
3223 		INIT_LIST_HEAD(&si->nonfull_clusters[i]);
3224 		INIT_LIST_HEAD(&si->frag_clusters[i]);
3225 		atomic_long_set(&si->frag_cluster_nr[i], 0);
3226 	}
3227 
3228 	/*
3229 	 * Reduce false cache line sharing between cluster_info and
3230 	 * sharing same address space.
3231 	 */
3232 	for (j = 0; j < SWAP_CLUSTER_COLS; j++) {
3233 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3234 			struct swap_cluster_info *ci;
3235 			idx = i * SWAP_CLUSTER_COLS + j;
3236 			ci = cluster_info + idx;
3237 			if (idx >= nr_clusters)
3238 				continue;
3239 			if (ci->count) {
3240 				ci->flags = CLUSTER_FLAG_NONFULL;
3241 				list_add_tail(&ci->list, &si->nonfull_clusters[0]);
3242 				continue;
3243 			}
3244 			ci->flags = CLUSTER_FLAG_FREE;
3245 			list_add_tail(&ci->list, &si->free_clusters);
3246 		}
3247 	}
3248 
3249 	return cluster_info;
3250 
3251 err_free:
3252 	kvfree(cluster_info);
3253 err:
3254 	return ERR_PTR(err);
3255 }
3256 
3257 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3258 {
3259 	struct swap_info_struct *si;
3260 	struct filename *name;
3261 	struct file *swap_file = NULL;
3262 	struct address_space *mapping;
3263 	struct dentry *dentry;
3264 	int prio;
3265 	int error;
3266 	union swap_header *swap_header;
3267 	int nr_extents;
3268 	sector_t span;
3269 	unsigned long maxpages;
3270 	unsigned char *swap_map = NULL;
3271 	unsigned long *zeromap = NULL;
3272 	struct swap_cluster_info *cluster_info = NULL;
3273 	struct folio *folio = NULL;
3274 	struct inode *inode = NULL;
3275 	bool inced_nr_rotate_swap = false;
3276 
3277 	if (swap_flags & ~SWAP_FLAGS_VALID)
3278 		return -EINVAL;
3279 
3280 	if (!capable(CAP_SYS_ADMIN))
3281 		return -EPERM;
3282 
3283 	if (!swap_avail_heads)
3284 		return -ENOMEM;
3285 
3286 	si = alloc_swap_info();
3287 	if (IS_ERR(si))
3288 		return PTR_ERR(si);
3289 
3290 	INIT_WORK(&si->discard_work, swap_discard_work);
3291 	INIT_WORK(&si->reclaim_work, swap_reclaim_work);
3292 
3293 	name = getname(specialfile);
3294 	if (IS_ERR(name)) {
3295 		error = PTR_ERR(name);
3296 		name = NULL;
3297 		goto bad_swap;
3298 	}
3299 	swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
3300 	if (IS_ERR(swap_file)) {
3301 		error = PTR_ERR(swap_file);
3302 		swap_file = NULL;
3303 		goto bad_swap;
3304 	}
3305 
3306 	si->swap_file = swap_file;
3307 	mapping = swap_file->f_mapping;
3308 	dentry = swap_file->f_path.dentry;
3309 	inode = mapping->host;
3310 
3311 	error = claim_swapfile(si, inode);
3312 	if (unlikely(error))
3313 		goto bad_swap;
3314 
3315 	inode_lock(inode);
3316 	if (d_unlinked(dentry) || cant_mount(dentry)) {
3317 		error = -ENOENT;
3318 		goto bad_swap_unlock_inode;
3319 	}
3320 	if (IS_SWAPFILE(inode)) {
3321 		error = -EBUSY;
3322 		goto bad_swap_unlock_inode;
3323 	}
3324 
3325 	/*
3326 	 * Read the swap header.
3327 	 */
3328 	if (!mapping->a_ops->read_folio) {
3329 		error = -EINVAL;
3330 		goto bad_swap_unlock_inode;
3331 	}
3332 	folio = read_mapping_folio(mapping, 0, swap_file);
3333 	if (IS_ERR(folio)) {
3334 		error = PTR_ERR(folio);
3335 		goto bad_swap_unlock_inode;
3336 	}
3337 	swap_header = kmap_local_folio(folio, 0);
3338 
3339 	maxpages = read_swap_header(si, swap_header, inode);
3340 	if (unlikely(!maxpages)) {
3341 		error = -EINVAL;
3342 		goto bad_swap_unlock_inode;
3343 	}
3344 
3345 	/* OK, set up the swap map and apply the bad block list */
3346 	swap_map = vzalloc(maxpages);
3347 	if (!swap_map) {
3348 		error = -ENOMEM;
3349 		goto bad_swap_unlock_inode;
3350 	}
3351 
3352 	error = swap_cgroup_swapon(si->type, maxpages);
3353 	if (error)
3354 		goto bad_swap_unlock_inode;
3355 
3356 	nr_extents = setup_swap_map_and_extents(si, swap_header, swap_map,
3357 						maxpages, &span);
3358 	if (unlikely(nr_extents < 0)) {
3359 		error = nr_extents;
3360 		goto bad_swap_unlock_inode;
3361 	}
3362 
3363 	/*
3364 	 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might
3365 	 * be above MAX_PAGE_ORDER incase of a large swap file.
3366 	 */
3367 	zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long),
3368 				    GFP_KERNEL | __GFP_ZERO);
3369 	if (!zeromap) {
3370 		error = -ENOMEM;
3371 		goto bad_swap_unlock_inode;
3372 	}
3373 
3374 	if (si->bdev && bdev_stable_writes(si->bdev))
3375 		si->flags |= SWP_STABLE_WRITES;
3376 
3377 	if (si->bdev && bdev_synchronous(si->bdev))
3378 		si->flags |= SWP_SYNCHRONOUS_IO;
3379 
3380 	if (si->bdev && bdev_nonrot(si->bdev)) {
3381 		si->flags |= SWP_SOLIDSTATE;
3382 	} else {
3383 		atomic_inc(&nr_rotate_swap);
3384 		inced_nr_rotate_swap = true;
3385 	}
3386 
3387 	cluster_info = setup_clusters(si, swap_header, maxpages);
3388 	if (IS_ERR(cluster_info)) {
3389 		error = PTR_ERR(cluster_info);
3390 		cluster_info = NULL;
3391 		goto bad_swap_unlock_inode;
3392 	}
3393 
3394 	if ((swap_flags & SWAP_FLAG_DISCARD) &&
3395 	    si->bdev && bdev_max_discard_sectors(si->bdev)) {
3396 		/*
3397 		 * When discard is enabled for swap with no particular
3398 		 * policy flagged, we set all swap discard flags here in
3399 		 * order to sustain backward compatibility with older
3400 		 * swapon(8) releases.
3401 		 */
3402 		si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3403 			     SWP_PAGE_DISCARD);
3404 
3405 		/*
3406 		 * By flagging sys_swapon, a sysadmin can tell us to
3407 		 * either do single-time area discards only, or to just
3408 		 * perform discards for released swap page-clusters.
3409 		 * Now it's time to adjust the p->flags accordingly.
3410 		 */
3411 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3412 			si->flags &= ~SWP_PAGE_DISCARD;
3413 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3414 			si->flags &= ~SWP_AREA_DISCARD;
3415 
3416 		/* issue a swapon-time discard if it's still required */
3417 		if (si->flags & SWP_AREA_DISCARD) {
3418 			int err = discard_swap(si);
3419 			if (unlikely(err))
3420 				pr_err("swapon: discard_swap(%p): %d\n",
3421 					si, err);
3422 		}
3423 	}
3424 
3425 	error = init_swap_address_space(si->type, maxpages);
3426 	if (error)
3427 		goto bad_swap_unlock_inode;
3428 
3429 	error = zswap_swapon(si->type, maxpages);
3430 	if (error)
3431 		goto free_swap_address_space;
3432 
3433 	/*
3434 	 * Flush any pending IO and dirty mappings before we start using this
3435 	 * swap device.
3436 	 */
3437 	inode->i_flags |= S_SWAPFILE;
3438 	error = inode_drain_writes(inode);
3439 	if (error) {
3440 		inode->i_flags &= ~S_SWAPFILE;
3441 		goto free_swap_zswap;
3442 	}
3443 
3444 	mutex_lock(&swapon_mutex);
3445 	prio = -1;
3446 	if (swap_flags & SWAP_FLAG_PREFER)
3447 		prio = swap_flags & SWAP_FLAG_PRIO_MASK;
3448 	enable_swap_info(si, prio, swap_map, cluster_info, zeromap);
3449 
3450 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3451 		K(si->pages), name->name, si->prio, nr_extents,
3452 		K((unsigned long long)span),
3453 		(si->flags & SWP_SOLIDSTATE) ? "SS" : "",
3454 		(si->flags & SWP_DISCARDABLE) ? "D" : "",
3455 		(si->flags & SWP_AREA_DISCARD) ? "s" : "",
3456 		(si->flags & SWP_PAGE_DISCARD) ? "c" : "");
3457 
3458 	mutex_unlock(&swapon_mutex);
3459 	atomic_inc(&proc_poll_event);
3460 	wake_up_interruptible(&proc_poll_wait);
3461 
3462 	error = 0;
3463 	goto out;
3464 free_swap_zswap:
3465 	zswap_swapoff(si->type);
3466 free_swap_address_space:
3467 	exit_swap_address_space(si->type);
3468 bad_swap_unlock_inode:
3469 	inode_unlock(inode);
3470 bad_swap:
3471 	kfree(si->global_cluster);
3472 	si->global_cluster = NULL;
3473 	inode = NULL;
3474 	destroy_swap_extents(si);
3475 	swap_cgroup_swapoff(si->type);
3476 	spin_lock(&swap_lock);
3477 	si->swap_file = NULL;
3478 	si->flags = 0;
3479 	spin_unlock(&swap_lock);
3480 	vfree(swap_map);
3481 	kvfree(zeromap);
3482 	kvfree(cluster_info);
3483 	if (inced_nr_rotate_swap)
3484 		atomic_dec(&nr_rotate_swap);
3485 	if (swap_file)
3486 		filp_close(swap_file, NULL);
3487 out:
3488 	if (!IS_ERR_OR_NULL(folio))
3489 		folio_release_kmap(folio, swap_header);
3490 	if (name)
3491 		putname(name);
3492 	if (inode)
3493 		inode_unlock(inode);
3494 	return error;
3495 }
3496 
3497 void si_swapinfo(struct sysinfo *val)
3498 {
3499 	unsigned int type;
3500 	unsigned long nr_to_be_unused = 0;
3501 
3502 	spin_lock(&swap_lock);
3503 	for (type = 0; type < nr_swapfiles; type++) {
3504 		struct swap_info_struct *si = swap_info[type];
3505 
3506 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3507 			nr_to_be_unused += swap_usage_in_pages(si);
3508 	}
3509 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3510 	val->totalswap = total_swap_pages + nr_to_be_unused;
3511 	spin_unlock(&swap_lock);
3512 }
3513 
3514 /*
3515  * Verify that nr swap entries are valid and increment their swap map counts.
3516  *
3517  * Returns error code in following case.
3518  * - success -> 0
3519  * - swp_entry is invalid -> EINVAL
3520  * - swap-cache reference is requested but there is already one. -> EEXIST
3521  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3522  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3523  */
3524 static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr)
3525 {
3526 	struct swap_info_struct *si;
3527 	struct swap_cluster_info *ci;
3528 	unsigned long offset;
3529 	unsigned char count;
3530 	unsigned char has_cache;
3531 	int err, i;
3532 
3533 	si = swp_swap_info(entry);
3534 	if (WARN_ON_ONCE(!si)) {
3535 		pr_err("%s%08lx\n", Bad_file, entry.val);
3536 		return -EINVAL;
3537 	}
3538 
3539 	offset = swp_offset(entry);
3540 	VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
3541 	VM_WARN_ON(usage == 1 && nr > 1);
3542 	ci = lock_cluster(si, offset);
3543 
3544 	err = 0;
3545 	for (i = 0; i < nr; i++) {
3546 		count = si->swap_map[offset + i];
3547 
3548 		/*
3549 		 * swapin_readahead() doesn't check if a swap entry is valid, so the
3550 		 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3551 		 */
3552 		if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3553 			err = -ENOENT;
3554 			goto unlock_out;
3555 		}
3556 
3557 		has_cache = count & SWAP_HAS_CACHE;
3558 		count &= ~SWAP_HAS_CACHE;
3559 
3560 		if (!count && !has_cache) {
3561 			err = -ENOENT;
3562 		} else if (usage == SWAP_HAS_CACHE) {
3563 			if (has_cache)
3564 				err = -EEXIST;
3565 		} else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) {
3566 			err = -EINVAL;
3567 		}
3568 
3569 		if (err)
3570 			goto unlock_out;
3571 	}
3572 
3573 	for (i = 0; i < nr; i++) {
3574 		count = si->swap_map[offset + i];
3575 		has_cache = count & SWAP_HAS_CACHE;
3576 		count &= ~SWAP_HAS_CACHE;
3577 
3578 		if (usage == SWAP_HAS_CACHE)
3579 			has_cache = SWAP_HAS_CACHE;
3580 		else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3581 			count += usage;
3582 		else if (swap_count_continued(si, offset + i, count))
3583 			count = COUNT_CONTINUED;
3584 		else {
3585 			/*
3586 			 * Don't need to rollback changes, because if
3587 			 * usage == 1, there must be nr == 1.
3588 			 */
3589 			err = -ENOMEM;
3590 			goto unlock_out;
3591 		}
3592 
3593 		WRITE_ONCE(si->swap_map[offset + i], count | has_cache);
3594 	}
3595 
3596 unlock_out:
3597 	unlock_cluster(ci);
3598 	return err;
3599 }
3600 
3601 /*
3602  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3603  * (in which case its reference count is never incremented).
3604  */
3605 void swap_shmem_alloc(swp_entry_t entry, int nr)
3606 {
3607 	__swap_duplicate(entry, SWAP_MAP_SHMEM, nr);
3608 }
3609 
3610 /*
3611  * Increase reference count of swap entry by 1.
3612  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3613  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3614  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3615  * might occur if a page table entry has got corrupted.
3616  */
3617 int swap_duplicate(swp_entry_t entry)
3618 {
3619 	int err = 0;
3620 
3621 	while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM)
3622 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3623 	return err;
3624 }
3625 
3626 /*
3627  * @entry: first swap entry from which we allocate nr swap cache.
3628  *
3629  * Called when allocating swap cache for existing swap entries,
3630  * This can return error codes. Returns 0 at success.
3631  * -EEXIST means there is a swap cache.
3632  * Note: return code is different from swap_duplicate().
3633  */
3634 int swapcache_prepare(swp_entry_t entry, int nr)
3635 {
3636 	return __swap_duplicate(entry, SWAP_HAS_CACHE, nr);
3637 }
3638 
3639 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr)
3640 {
3641 	unsigned long offset = swp_offset(entry);
3642 
3643 	cluster_swap_free_nr(si, offset, nr, SWAP_HAS_CACHE);
3644 }
3645 
3646 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3647 {
3648 	return swap_type_to_swap_info(swp_type(entry));
3649 }
3650 
3651 /*
3652  * out-of-line methods to avoid include hell.
3653  */
3654 struct address_space *swapcache_mapping(struct folio *folio)
3655 {
3656 	return swp_swap_info(folio->swap)->swap_file->f_mapping;
3657 }
3658 EXPORT_SYMBOL_GPL(swapcache_mapping);
3659 
3660 pgoff_t __folio_swap_cache_index(struct folio *folio)
3661 {
3662 	return swap_cache_index(folio->swap);
3663 }
3664 EXPORT_SYMBOL_GPL(__folio_swap_cache_index);
3665 
3666 /*
3667  * add_swap_count_continuation - called when a swap count is duplicated
3668  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3669  * page of the original vmalloc'ed swap_map, to hold the continuation count
3670  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3671  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3672  *
3673  * These continuation pages are seldom referenced: the common paths all work
3674  * on the original swap_map, only referring to a continuation page when the
3675  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3676  *
3677  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3678  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3679  * can be called after dropping locks.
3680  */
3681 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3682 {
3683 	struct swap_info_struct *si;
3684 	struct swap_cluster_info *ci;
3685 	struct page *head;
3686 	struct page *page;
3687 	struct page *list_page;
3688 	pgoff_t offset;
3689 	unsigned char count;
3690 	int ret = 0;
3691 
3692 	/*
3693 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3694 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3695 	 */
3696 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3697 
3698 	si = get_swap_device(entry);
3699 	if (!si) {
3700 		/*
3701 		 * An acceptable race has occurred since the failing
3702 		 * __swap_duplicate(): the swap device may be swapoff
3703 		 */
3704 		goto outer;
3705 	}
3706 
3707 	offset = swp_offset(entry);
3708 
3709 	ci = lock_cluster(si, offset);
3710 
3711 	count = swap_count(si->swap_map[offset]);
3712 
3713 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3714 		/*
3715 		 * The higher the swap count, the more likely it is that tasks
3716 		 * will race to add swap count continuation: we need to avoid
3717 		 * over-provisioning.
3718 		 */
3719 		goto out;
3720 	}
3721 
3722 	if (!page) {
3723 		ret = -ENOMEM;
3724 		goto out;
3725 	}
3726 
3727 	head = vmalloc_to_page(si->swap_map + offset);
3728 	offset &= ~PAGE_MASK;
3729 
3730 	spin_lock(&si->cont_lock);
3731 	/*
3732 	 * Page allocation does not initialize the page's lru field,
3733 	 * but it does always reset its private field.
3734 	 */
3735 	if (!page_private(head)) {
3736 		BUG_ON(count & COUNT_CONTINUED);
3737 		INIT_LIST_HEAD(&head->lru);
3738 		set_page_private(head, SWP_CONTINUED);
3739 		si->flags |= SWP_CONTINUED;
3740 	}
3741 
3742 	list_for_each_entry(list_page, &head->lru, lru) {
3743 		unsigned char *map;
3744 
3745 		/*
3746 		 * If the previous map said no continuation, but we've found
3747 		 * a continuation page, free our allocation and use this one.
3748 		 */
3749 		if (!(count & COUNT_CONTINUED))
3750 			goto out_unlock_cont;
3751 
3752 		map = kmap_local_page(list_page) + offset;
3753 		count = *map;
3754 		kunmap_local(map);
3755 
3756 		/*
3757 		 * If this continuation count now has some space in it,
3758 		 * free our allocation and use this one.
3759 		 */
3760 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3761 			goto out_unlock_cont;
3762 	}
3763 
3764 	list_add_tail(&page->lru, &head->lru);
3765 	page = NULL;			/* now it's attached, don't free it */
3766 out_unlock_cont:
3767 	spin_unlock(&si->cont_lock);
3768 out:
3769 	unlock_cluster(ci);
3770 	put_swap_device(si);
3771 outer:
3772 	if (page)
3773 		__free_page(page);
3774 	return ret;
3775 }
3776 
3777 /*
3778  * swap_count_continued - when the original swap_map count is incremented
3779  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3780  * into, carry if so, or else fail until a new continuation page is allocated;
3781  * when the original swap_map count is decremented from 0 with continuation,
3782  * borrow from the continuation and report whether it still holds more.
3783  * Called while __swap_duplicate() or caller of __swap_entry_free_locked()
3784  * holds cluster lock.
3785  */
3786 static bool swap_count_continued(struct swap_info_struct *si,
3787 				 pgoff_t offset, unsigned char count)
3788 {
3789 	struct page *head;
3790 	struct page *page;
3791 	unsigned char *map;
3792 	bool ret;
3793 
3794 	head = vmalloc_to_page(si->swap_map + offset);
3795 	if (page_private(head) != SWP_CONTINUED) {
3796 		BUG_ON(count & COUNT_CONTINUED);
3797 		return false;		/* need to add count continuation */
3798 	}
3799 
3800 	spin_lock(&si->cont_lock);
3801 	offset &= ~PAGE_MASK;
3802 	page = list_next_entry(head, lru);
3803 	map = kmap_local_page(page) + offset;
3804 
3805 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3806 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3807 
3808 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3809 		/*
3810 		 * Think of how you add 1 to 999
3811 		 */
3812 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3813 			kunmap_local(map);
3814 			page = list_next_entry(page, lru);
3815 			BUG_ON(page == head);
3816 			map = kmap_local_page(page) + offset;
3817 		}
3818 		if (*map == SWAP_CONT_MAX) {
3819 			kunmap_local(map);
3820 			page = list_next_entry(page, lru);
3821 			if (page == head) {
3822 				ret = false;	/* add count continuation */
3823 				goto out;
3824 			}
3825 			map = kmap_local_page(page) + offset;
3826 init_map:		*map = 0;		/* we didn't zero the page */
3827 		}
3828 		*map += 1;
3829 		kunmap_local(map);
3830 		while ((page = list_prev_entry(page, lru)) != head) {
3831 			map = kmap_local_page(page) + offset;
3832 			*map = COUNT_CONTINUED;
3833 			kunmap_local(map);
3834 		}
3835 		ret = true;			/* incremented */
3836 
3837 	} else {				/* decrementing */
3838 		/*
3839 		 * Think of how you subtract 1 from 1000
3840 		 */
3841 		BUG_ON(count != COUNT_CONTINUED);
3842 		while (*map == COUNT_CONTINUED) {
3843 			kunmap_local(map);
3844 			page = list_next_entry(page, lru);
3845 			BUG_ON(page == head);
3846 			map = kmap_local_page(page) + offset;
3847 		}
3848 		BUG_ON(*map == 0);
3849 		*map -= 1;
3850 		if (*map == 0)
3851 			count = 0;
3852 		kunmap_local(map);
3853 		while ((page = list_prev_entry(page, lru)) != head) {
3854 			map = kmap_local_page(page) + offset;
3855 			*map = SWAP_CONT_MAX | count;
3856 			count = COUNT_CONTINUED;
3857 			kunmap_local(map);
3858 		}
3859 		ret = count == COUNT_CONTINUED;
3860 	}
3861 out:
3862 	spin_unlock(&si->cont_lock);
3863 	return ret;
3864 }
3865 
3866 /*
3867  * free_swap_count_continuations - swapoff free all the continuation pages
3868  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3869  */
3870 static void free_swap_count_continuations(struct swap_info_struct *si)
3871 {
3872 	pgoff_t offset;
3873 
3874 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3875 		struct page *head;
3876 		head = vmalloc_to_page(si->swap_map + offset);
3877 		if (page_private(head)) {
3878 			struct page *page, *next;
3879 
3880 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3881 				list_del(&page->lru);
3882 				__free_page(page);
3883 			}
3884 		}
3885 	}
3886 }
3887 
3888 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3889 static bool __has_usable_swap(void)
3890 {
3891 	return !plist_head_empty(&swap_active_head);
3892 }
3893 
3894 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3895 {
3896 	struct swap_info_struct *si, *next;
3897 	int nid = folio_nid(folio);
3898 
3899 	if (!(gfp & __GFP_IO))
3900 		return;
3901 
3902 	if (!__has_usable_swap())
3903 		return;
3904 
3905 	if (!blk_cgroup_congested())
3906 		return;
3907 
3908 	/*
3909 	 * We've already scheduled a throttle, avoid taking the global swap
3910 	 * lock.
3911 	 */
3912 	if (current->throttle_disk)
3913 		return;
3914 
3915 	spin_lock(&swap_avail_lock);
3916 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3917 				  avail_lists[nid]) {
3918 		if (si->bdev) {
3919 			blkcg_schedule_throttle(si->bdev->bd_disk, true);
3920 			break;
3921 		}
3922 	}
3923 	spin_unlock(&swap_avail_lock);
3924 }
3925 #endif
3926 
3927 static int __init swapfile_init(void)
3928 {
3929 	int nid;
3930 
3931 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3932 					 GFP_KERNEL);
3933 	if (!swap_avail_heads) {
3934 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3935 		return -ENOMEM;
3936 	}
3937 
3938 	for_each_node(nid)
3939 		plist_head_init(&swap_avail_heads[nid]);
3940 
3941 	swapfile_maximum_size = arch_max_swapfile_size();
3942 
3943 #ifdef CONFIG_MIGRATION
3944 	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3945 		swap_migration_ad_supported = true;
3946 #endif	/* CONFIG_MIGRATION */
3947 
3948 	return 0;
3949 }
3950 subsys_initcall(swapfile_init);
3951