xref: /linux/mm/swapfile.c (revision 7760b6421b6c1b49550885ecdfa9cf720ead6eed)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/sort.h>
41 #include <linux/completion.h>
42 #include <linux/suspend.h>
43 #include <linux/zswap.h>
44 #include <linux/plist.h>
45 
46 #include <asm/tlbflush.h>
47 #include <linux/swapops.h>
48 #include <linux/swap_cgroup.h>
49 #include "internal.h"
50 #include "swap.h"
51 
52 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
53 				 unsigned char);
54 static void free_swap_count_continuations(struct swap_info_struct *);
55 static void swap_entries_free(struct swap_info_struct *si,
56 			      struct swap_cluster_info *ci,
57 			      swp_entry_t entry, unsigned int nr_pages);
58 static void swap_range_alloc(struct swap_info_struct *si,
59 			     unsigned int nr_entries);
60 static bool folio_swapcache_freeable(struct folio *folio);
61 static struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
62 					      unsigned long offset);
63 static inline void unlock_cluster(struct swap_cluster_info *ci);
64 
65 static DEFINE_SPINLOCK(swap_lock);
66 static unsigned int nr_swapfiles;
67 atomic_long_t nr_swap_pages;
68 /*
69  * Some modules use swappable objects and may try to swap them out under
70  * memory pressure (via the shrinker). Before doing so, they may wish to
71  * check to see if any swap space is available.
72  */
73 EXPORT_SYMBOL_GPL(nr_swap_pages);
74 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
75 long total_swap_pages;
76 static int least_priority = -1;
77 unsigned long swapfile_maximum_size;
78 #ifdef CONFIG_MIGRATION
79 bool swap_migration_ad_supported;
80 #endif	/* CONFIG_MIGRATION */
81 
82 static const char Bad_file[] = "Bad swap file entry ";
83 static const char Unused_file[] = "Unused swap file entry ";
84 static const char Bad_offset[] = "Bad swap offset entry ";
85 static const char Unused_offset[] = "Unused swap offset entry ";
86 
87 /*
88  * all active swap_info_structs
89  * protected with swap_lock, and ordered by priority.
90  */
91 static PLIST_HEAD(swap_active_head);
92 
93 /*
94  * all available (active, not full) swap_info_structs
95  * protected with swap_avail_lock, ordered by priority.
96  * This is used by folio_alloc_swap() instead of swap_active_head
97  * because swap_active_head includes all swap_info_structs,
98  * but folio_alloc_swap() doesn't need to look at full ones.
99  * This uses its own lock instead of swap_lock because when a
100  * swap_info_struct changes between not-full/full, it needs to
101  * add/remove itself to/from this list, but the swap_info_struct->lock
102  * is held and the locking order requires swap_lock to be taken
103  * before any swap_info_struct->lock.
104  */
105 static struct plist_head *swap_avail_heads;
106 static DEFINE_SPINLOCK(swap_avail_lock);
107 
108 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
109 
110 static DEFINE_MUTEX(swapon_mutex);
111 
112 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
113 /* Activity counter to indicate that a swapon or swapoff has occurred */
114 static atomic_t proc_poll_event = ATOMIC_INIT(0);
115 
116 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
117 
118 struct percpu_swap_cluster {
119 	struct swap_info_struct *si[SWAP_NR_ORDERS];
120 	unsigned long offset[SWAP_NR_ORDERS];
121 	local_lock_t lock;
122 };
123 
124 static DEFINE_PER_CPU(struct percpu_swap_cluster, percpu_swap_cluster) = {
125 	.si = { NULL },
126 	.offset = { SWAP_ENTRY_INVALID },
127 	.lock = INIT_LOCAL_LOCK(),
128 };
129 
130 static struct swap_info_struct *swap_type_to_swap_info(int type)
131 {
132 	if (type >= MAX_SWAPFILES)
133 		return NULL;
134 
135 	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
136 }
137 
138 static inline unsigned char swap_count(unsigned char ent)
139 {
140 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
141 }
142 
143 /*
144  * Use the second highest bit of inuse_pages counter as the indicator
145  * if one swap device is on the available plist, so the atomic can
146  * still be updated arithmetically while having special data embedded.
147  *
148  * inuse_pages counter is the only thing indicating if a device should
149  * be on avail_lists or not (except swapon / swapoff). By embedding the
150  * off-list bit in the atomic counter, updates no longer need any lock
151  * to check the list status.
152  *
153  * This bit will be set if the device is not on the plist and not
154  * usable, will be cleared if the device is on the plist.
155  */
156 #define SWAP_USAGE_OFFLIST_BIT (1UL << (BITS_PER_TYPE(atomic_t) - 2))
157 #define SWAP_USAGE_COUNTER_MASK (~SWAP_USAGE_OFFLIST_BIT)
158 static long swap_usage_in_pages(struct swap_info_struct *si)
159 {
160 	return atomic_long_read(&si->inuse_pages) & SWAP_USAGE_COUNTER_MASK;
161 }
162 
163 /* Reclaim the swap entry anyway if possible */
164 #define TTRS_ANYWAY		0x1
165 /*
166  * Reclaim the swap entry if there are no more mappings of the
167  * corresponding page
168  */
169 #define TTRS_UNMAPPED		0x2
170 /* Reclaim the swap entry if swap is getting full */
171 #define TTRS_FULL		0x4
172 
173 static bool swap_only_has_cache(struct swap_info_struct *si,
174 			      unsigned long offset, int nr_pages)
175 {
176 	unsigned char *map = si->swap_map + offset;
177 	unsigned char *map_end = map + nr_pages;
178 
179 	do {
180 		VM_BUG_ON(!(*map & SWAP_HAS_CACHE));
181 		if (*map != SWAP_HAS_CACHE)
182 			return false;
183 	} while (++map < map_end);
184 
185 	return true;
186 }
187 
188 static bool swap_is_last_map(struct swap_info_struct *si,
189 		unsigned long offset, int nr_pages, bool *has_cache)
190 {
191 	unsigned char *map = si->swap_map + offset;
192 	unsigned char *map_end = map + nr_pages;
193 	unsigned char count = *map;
194 
195 	if (swap_count(count) != 1 && swap_count(count) != SWAP_MAP_SHMEM)
196 		return false;
197 
198 	while (++map < map_end) {
199 		if (*map != count)
200 			return false;
201 	}
202 
203 	*has_cache = !!(count & SWAP_HAS_CACHE);
204 	return true;
205 }
206 
207 /*
208  * returns number of pages in the folio that backs the swap entry. If positive,
209  * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
210  * folio was associated with the swap entry.
211  */
212 static int __try_to_reclaim_swap(struct swap_info_struct *si,
213 				 unsigned long offset, unsigned long flags)
214 {
215 	swp_entry_t entry = swp_entry(si->type, offset);
216 	struct address_space *address_space = swap_address_space(entry);
217 	struct swap_cluster_info *ci;
218 	struct folio *folio;
219 	int ret, nr_pages;
220 	bool need_reclaim;
221 
222 again:
223 	folio = filemap_get_folio(address_space, swap_cache_index(entry));
224 	if (IS_ERR(folio))
225 		return 0;
226 
227 	nr_pages = folio_nr_pages(folio);
228 	ret = -nr_pages;
229 
230 	/*
231 	 * When this function is called from scan_swap_map_slots() and it's
232 	 * called by vmscan.c at reclaiming folios. So we hold a folio lock
233 	 * here. We have to use trylock for avoiding deadlock. This is a special
234 	 * case and you should use folio_free_swap() with explicit folio_lock()
235 	 * in usual operations.
236 	 */
237 	if (!folio_trylock(folio))
238 		goto out;
239 
240 	/*
241 	 * Offset could point to the middle of a large folio, or folio
242 	 * may no longer point to the expected offset before it's locked.
243 	 */
244 	entry = folio->swap;
245 	if (offset < swp_offset(entry) || offset >= swp_offset(entry) + nr_pages) {
246 		folio_unlock(folio);
247 		folio_put(folio);
248 		goto again;
249 	}
250 	offset = swp_offset(entry);
251 
252 	need_reclaim = ((flags & TTRS_ANYWAY) ||
253 			((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
254 			((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)));
255 	if (!need_reclaim || !folio_swapcache_freeable(folio))
256 		goto out_unlock;
257 
258 	/*
259 	 * It's safe to delete the folio from swap cache only if the folio's
260 	 * swap_map is HAS_CACHE only, which means the slots have no page table
261 	 * reference or pending writeback, and can't be allocated to others.
262 	 */
263 	ci = lock_cluster(si, offset);
264 	need_reclaim = swap_only_has_cache(si, offset, nr_pages);
265 	unlock_cluster(ci);
266 	if (!need_reclaim)
267 		goto out_unlock;
268 
269 	delete_from_swap_cache(folio);
270 	folio_set_dirty(folio);
271 	ret = nr_pages;
272 out_unlock:
273 	folio_unlock(folio);
274 out:
275 	folio_put(folio);
276 	return ret;
277 }
278 
279 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
280 {
281 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
282 	return rb_entry(rb, struct swap_extent, rb_node);
283 }
284 
285 static inline struct swap_extent *next_se(struct swap_extent *se)
286 {
287 	struct rb_node *rb = rb_next(&se->rb_node);
288 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
289 }
290 
291 /*
292  * swapon tell device that all the old swap contents can be discarded,
293  * to allow the swap device to optimize its wear-levelling.
294  */
295 static int discard_swap(struct swap_info_struct *si)
296 {
297 	struct swap_extent *se;
298 	sector_t start_block;
299 	sector_t nr_blocks;
300 	int err = 0;
301 
302 	/* Do not discard the swap header page! */
303 	se = first_se(si);
304 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
305 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
306 	if (nr_blocks) {
307 		err = blkdev_issue_discard(si->bdev, start_block,
308 				nr_blocks, GFP_KERNEL);
309 		if (err)
310 			return err;
311 		cond_resched();
312 	}
313 
314 	for (se = next_se(se); se; se = next_se(se)) {
315 		start_block = se->start_block << (PAGE_SHIFT - 9);
316 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
317 
318 		err = blkdev_issue_discard(si->bdev, start_block,
319 				nr_blocks, GFP_KERNEL);
320 		if (err)
321 			break;
322 
323 		cond_resched();
324 	}
325 	return err;		/* That will often be -EOPNOTSUPP */
326 }
327 
328 static struct swap_extent *
329 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
330 {
331 	struct swap_extent *se;
332 	struct rb_node *rb;
333 
334 	rb = sis->swap_extent_root.rb_node;
335 	while (rb) {
336 		se = rb_entry(rb, struct swap_extent, rb_node);
337 		if (offset < se->start_page)
338 			rb = rb->rb_left;
339 		else if (offset >= se->start_page + se->nr_pages)
340 			rb = rb->rb_right;
341 		else
342 			return se;
343 	}
344 	/* It *must* be present */
345 	BUG();
346 }
347 
348 sector_t swap_folio_sector(struct folio *folio)
349 {
350 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
351 	struct swap_extent *se;
352 	sector_t sector;
353 	pgoff_t offset;
354 
355 	offset = swp_offset(folio->swap);
356 	se = offset_to_swap_extent(sis, offset);
357 	sector = se->start_block + (offset - se->start_page);
358 	return sector << (PAGE_SHIFT - 9);
359 }
360 
361 /*
362  * swap allocation tell device that a cluster of swap can now be discarded,
363  * to allow the swap device to optimize its wear-levelling.
364  */
365 static void discard_swap_cluster(struct swap_info_struct *si,
366 				 pgoff_t start_page, pgoff_t nr_pages)
367 {
368 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
369 
370 	while (nr_pages) {
371 		pgoff_t offset = start_page - se->start_page;
372 		sector_t start_block = se->start_block + offset;
373 		sector_t nr_blocks = se->nr_pages - offset;
374 
375 		if (nr_blocks > nr_pages)
376 			nr_blocks = nr_pages;
377 		start_page += nr_blocks;
378 		nr_pages -= nr_blocks;
379 
380 		start_block <<= PAGE_SHIFT - 9;
381 		nr_blocks <<= PAGE_SHIFT - 9;
382 		if (blkdev_issue_discard(si->bdev, start_block,
383 					nr_blocks, GFP_NOIO))
384 			break;
385 
386 		se = next_se(se);
387 	}
388 }
389 
390 #ifdef CONFIG_THP_SWAP
391 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
392 
393 #define swap_entry_order(order)	(order)
394 #else
395 #define SWAPFILE_CLUSTER	256
396 
397 /*
398  * Define swap_entry_order() as constant to let compiler to optimize
399  * out some code if !CONFIG_THP_SWAP
400  */
401 #define swap_entry_order(order)	0
402 #endif
403 #define LATENCY_LIMIT		256
404 
405 static inline bool cluster_is_empty(struct swap_cluster_info *info)
406 {
407 	return info->count == 0;
408 }
409 
410 static inline bool cluster_is_discard(struct swap_cluster_info *info)
411 {
412 	return info->flags == CLUSTER_FLAG_DISCARD;
413 }
414 
415 static inline bool cluster_is_usable(struct swap_cluster_info *ci, int order)
416 {
417 	if (unlikely(ci->flags > CLUSTER_FLAG_USABLE))
418 		return false;
419 	if (!order)
420 		return true;
421 	return cluster_is_empty(ci) || order == ci->order;
422 }
423 
424 static inline unsigned int cluster_index(struct swap_info_struct *si,
425 					 struct swap_cluster_info *ci)
426 {
427 	return ci - si->cluster_info;
428 }
429 
430 static inline struct swap_cluster_info *offset_to_cluster(struct swap_info_struct *si,
431 							  unsigned long offset)
432 {
433 	return &si->cluster_info[offset / SWAPFILE_CLUSTER];
434 }
435 
436 static inline unsigned int cluster_offset(struct swap_info_struct *si,
437 					  struct swap_cluster_info *ci)
438 {
439 	return cluster_index(si, ci) * SWAPFILE_CLUSTER;
440 }
441 
442 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
443 						     unsigned long offset)
444 {
445 	struct swap_cluster_info *ci;
446 
447 	ci = offset_to_cluster(si, offset);
448 	spin_lock(&ci->lock);
449 
450 	return ci;
451 }
452 
453 static inline void unlock_cluster(struct swap_cluster_info *ci)
454 {
455 	spin_unlock(&ci->lock);
456 }
457 
458 static void move_cluster(struct swap_info_struct *si,
459 			 struct swap_cluster_info *ci, struct list_head *list,
460 			 enum swap_cluster_flags new_flags)
461 {
462 	VM_WARN_ON(ci->flags == new_flags);
463 
464 	BUILD_BUG_ON(1 << sizeof(ci->flags) * BITS_PER_BYTE < CLUSTER_FLAG_MAX);
465 	lockdep_assert_held(&ci->lock);
466 
467 	spin_lock(&si->lock);
468 	if (ci->flags == CLUSTER_FLAG_NONE)
469 		list_add_tail(&ci->list, list);
470 	else
471 		list_move_tail(&ci->list, list);
472 	spin_unlock(&si->lock);
473 	ci->flags = new_flags;
474 }
475 
476 /* Add a cluster to discard list and schedule it to do discard */
477 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
478 		struct swap_cluster_info *ci)
479 {
480 	VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);
481 	move_cluster(si, ci, &si->discard_clusters, CLUSTER_FLAG_DISCARD);
482 	schedule_work(&si->discard_work);
483 }
484 
485 static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
486 {
487 	lockdep_assert_held(&ci->lock);
488 	move_cluster(si, ci, &si->free_clusters, CLUSTER_FLAG_FREE);
489 	ci->order = 0;
490 }
491 
492 /*
493  * Isolate and lock the first cluster that is not contented on a list,
494  * clean its flag before taken off-list. Cluster flag must be in sync
495  * with list status, so cluster updaters can always know the cluster
496  * list status without touching si lock.
497  *
498  * Note it's possible that all clusters on a list are contented so
499  * this returns NULL for an non-empty list.
500  */
501 static struct swap_cluster_info *isolate_lock_cluster(
502 		struct swap_info_struct *si, struct list_head *list)
503 {
504 	struct swap_cluster_info *ci, *ret = NULL;
505 
506 	spin_lock(&si->lock);
507 
508 	if (unlikely(!(si->flags & SWP_WRITEOK)))
509 		goto out;
510 
511 	list_for_each_entry(ci, list, list) {
512 		if (!spin_trylock(&ci->lock))
513 			continue;
514 
515 		/* We may only isolate and clear flags of following lists */
516 		VM_BUG_ON(!ci->flags);
517 		VM_BUG_ON(ci->flags > CLUSTER_FLAG_USABLE &&
518 			  ci->flags != CLUSTER_FLAG_FULL);
519 
520 		list_del(&ci->list);
521 		ci->flags = CLUSTER_FLAG_NONE;
522 		ret = ci;
523 		break;
524 	}
525 out:
526 	spin_unlock(&si->lock);
527 
528 	return ret;
529 }
530 
531 /*
532  * Doing discard actually. After a cluster discard is finished, the cluster
533  * will be added to free cluster list. Discard cluster is a bit special as
534  * they don't participate in allocation or reclaim, so clusters marked as
535  * CLUSTER_FLAG_DISCARD must remain off-list or on discard list.
536  */
537 static bool swap_do_scheduled_discard(struct swap_info_struct *si)
538 {
539 	struct swap_cluster_info *ci;
540 	bool ret = false;
541 	unsigned int idx;
542 
543 	spin_lock(&si->lock);
544 	while (!list_empty(&si->discard_clusters)) {
545 		ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list);
546 		/*
547 		 * Delete the cluster from list to prepare for discard, but keep
548 		 * the CLUSTER_FLAG_DISCARD flag, percpu_swap_cluster could be
549 		 * pointing to it, or ran into by relocate_cluster.
550 		 */
551 		list_del(&ci->list);
552 		idx = cluster_index(si, ci);
553 		spin_unlock(&si->lock);
554 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
555 				SWAPFILE_CLUSTER);
556 
557 		spin_lock(&ci->lock);
558 		/*
559 		 * Discard is done, clear its flags as it's off-list, then
560 		 * return the cluster to allocation list.
561 		 */
562 		ci->flags = CLUSTER_FLAG_NONE;
563 		__free_cluster(si, ci);
564 		spin_unlock(&ci->lock);
565 		ret = true;
566 		spin_lock(&si->lock);
567 	}
568 	spin_unlock(&si->lock);
569 	return ret;
570 }
571 
572 static void swap_discard_work(struct work_struct *work)
573 {
574 	struct swap_info_struct *si;
575 
576 	si = container_of(work, struct swap_info_struct, discard_work);
577 
578 	swap_do_scheduled_discard(si);
579 }
580 
581 static void swap_users_ref_free(struct percpu_ref *ref)
582 {
583 	struct swap_info_struct *si;
584 
585 	si = container_of(ref, struct swap_info_struct, users);
586 	complete(&si->comp);
587 }
588 
589 /*
590  * Must be called after freeing if ci->count == 0, moves the cluster to free
591  * or discard list.
592  */
593 static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
594 {
595 	VM_BUG_ON(ci->count != 0);
596 	VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);
597 	lockdep_assert_held(&ci->lock);
598 
599 	/*
600 	 * If the swap is discardable, prepare discard the cluster
601 	 * instead of free it immediately. The cluster will be freed
602 	 * after discard.
603 	 */
604 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
605 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
606 		swap_cluster_schedule_discard(si, ci);
607 		return;
608 	}
609 
610 	__free_cluster(si, ci);
611 }
612 
613 /*
614  * Must be called after freeing if ci->count != 0, moves the cluster to
615  * nonfull list.
616  */
617 static void partial_free_cluster(struct swap_info_struct *si,
618 				 struct swap_cluster_info *ci)
619 {
620 	VM_BUG_ON(!ci->count || ci->count == SWAPFILE_CLUSTER);
621 	lockdep_assert_held(&ci->lock);
622 
623 	if (ci->flags != CLUSTER_FLAG_NONFULL)
624 		move_cluster(si, ci, &si->nonfull_clusters[ci->order],
625 			     CLUSTER_FLAG_NONFULL);
626 }
627 
628 /*
629  * Must be called after allocation, moves the cluster to full or frag list.
630  * Note: allocation doesn't acquire si lock, and may drop the ci lock for
631  * reclaim, so the cluster could be any where when called.
632  */
633 static void relocate_cluster(struct swap_info_struct *si,
634 			     struct swap_cluster_info *ci)
635 {
636 	lockdep_assert_held(&ci->lock);
637 
638 	/* Discard cluster must remain off-list or on discard list */
639 	if (cluster_is_discard(ci))
640 		return;
641 
642 	if (!ci->count) {
643 		if (ci->flags != CLUSTER_FLAG_FREE)
644 			free_cluster(si, ci);
645 	} else if (ci->count != SWAPFILE_CLUSTER) {
646 		if (ci->flags != CLUSTER_FLAG_FRAG)
647 			move_cluster(si, ci, &si->frag_clusters[ci->order],
648 				     CLUSTER_FLAG_FRAG);
649 	} else {
650 		if (ci->flags != CLUSTER_FLAG_FULL)
651 			move_cluster(si, ci, &si->full_clusters,
652 				     CLUSTER_FLAG_FULL);
653 	}
654 }
655 
656 /*
657  * The cluster corresponding to page_nr will be used. The cluster will not be
658  * added to free cluster list and its usage counter will be increased by 1.
659  * Only used for initialization.
660  */
661 static void inc_cluster_info_page(struct swap_info_struct *si,
662 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
663 {
664 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
665 	struct swap_cluster_info *ci;
666 
667 	ci = cluster_info + idx;
668 	ci->count++;
669 
670 	VM_BUG_ON(ci->count > SWAPFILE_CLUSTER);
671 	VM_BUG_ON(ci->flags);
672 }
673 
674 static bool cluster_reclaim_range(struct swap_info_struct *si,
675 				  struct swap_cluster_info *ci,
676 				  unsigned long start, unsigned long end)
677 {
678 	unsigned char *map = si->swap_map;
679 	unsigned long offset = start;
680 	int nr_reclaim;
681 
682 	spin_unlock(&ci->lock);
683 	do {
684 		switch (READ_ONCE(map[offset])) {
685 		case 0:
686 			offset++;
687 			break;
688 		case SWAP_HAS_CACHE:
689 			nr_reclaim = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
690 			if (nr_reclaim > 0)
691 				offset += nr_reclaim;
692 			else
693 				goto out;
694 			break;
695 		default:
696 			goto out;
697 		}
698 	} while (offset < end);
699 out:
700 	spin_lock(&ci->lock);
701 	/*
702 	 * Recheck the range no matter reclaim succeeded or not, the slot
703 	 * could have been be freed while we are not holding the lock.
704 	 */
705 	for (offset = start; offset < end; offset++)
706 		if (READ_ONCE(map[offset]))
707 			return false;
708 
709 	return true;
710 }
711 
712 static bool cluster_scan_range(struct swap_info_struct *si,
713 			       struct swap_cluster_info *ci,
714 			       unsigned long start, unsigned int nr_pages,
715 			       bool *need_reclaim)
716 {
717 	unsigned long offset, end = start + nr_pages;
718 	unsigned char *map = si->swap_map;
719 
720 	if (cluster_is_empty(ci))
721 		return true;
722 
723 	for (offset = start; offset < end; offset++) {
724 		switch (READ_ONCE(map[offset])) {
725 		case 0:
726 			continue;
727 		case SWAP_HAS_CACHE:
728 			if (!vm_swap_full())
729 				return false;
730 			*need_reclaim = true;
731 			continue;
732 		default:
733 			return false;
734 		}
735 	}
736 
737 	return true;
738 }
739 
740 static bool cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci,
741 				unsigned int start, unsigned char usage,
742 				unsigned int order)
743 {
744 	unsigned int nr_pages = 1 << order;
745 
746 	lockdep_assert_held(&ci->lock);
747 
748 	if (!(si->flags & SWP_WRITEOK))
749 		return false;
750 
751 	/*
752 	 * The first allocation in a cluster makes the
753 	 * cluster exclusive to this order
754 	 */
755 	if (cluster_is_empty(ci))
756 		ci->order = order;
757 
758 	memset(si->swap_map + start, usage, nr_pages);
759 	swap_range_alloc(si, nr_pages);
760 	ci->count += nr_pages;
761 
762 	return true;
763 }
764 
765 /* Try use a new cluster for current CPU and allocate from it. */
766 static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si,
767 					    struct swap_cluster_info *ci,
768 					    unsigned long offset,
769 					    unsigned int order,
770 					    unsigned char usage)
771 {
772 	unsigned int next = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID;
773 	unsigned long start = ALIGN_DOWN(offset, SWAPFILE_CLUSTER);
774 	unsigned long end = min(start + SWAPFILE_CLUSTER, si->max);
775 	unsigned int nr_pages = 1 << order;
776 	bool need_reclaim, ret;
777 
778 	lockdep_assert_held(&ci->lock);
779 
780 	if (end < nr_pages || ci->count + nr_pages > SWAPFILE_CLUSTER)
781 		goto out;
782 
783 	for (end -= nr_pages; offset <= end; offset += nr_pages) {
784 		need_reclaim = false;
785 		if (!cluster_scan_range(si, ci, offset, nr_pages, &need_reclaim))
786 			continue;
787 		if (need_reclaim) {
788 			ret = cluster_reclaim_range(si, ci, offset, offset + nr_pages);
789 			/*
790 			 * Reclaim drops ci->lock and cluster could be used
791 			 * by another order. Not checking flag as off-list
792 			 * cluster has no flag set, and change of list
793 			 * won't cause fragmentation.
794 			 */
795 			if (!cluster_is_usable(ci, order))
796 				goto out;
797 			if (cluster_is_empty(ci))
798 				offset = start;
799 			/* Reclaim failed but cluster is usable, try next */
800 			if (!ret)
801 				continue;
802 		}
803 		if (!cluster_alloc_range(si, ci, offset, usage, order))
804 			break;
805 		found = offset;
806 		offset += nr_pages;
807 		if (ci->count < SWAPFILE_CLUSTER && offset <= end)
808 			next = offset;
809 		break;
810 	}
811 out:
812 	relocate_cluster(si, ci);
813 	unlock_cluster(ci);
814 	if (si->flags & SWP_SOLIDSTATE) {
815 		this_cpu_write(percpu_swap_cluster.offset[order], next);
816 		this_cpu_write(percpu_swap_cluster.si[order], si);
817 	} else {
818 		si->global_cluster->next[order] = next;
819 	}
820 	return found;
821 }
822 
823 static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force)
824 {
825 	long to_scan = 1;
826 	unsigned long offset, end;
827 	struct swap_cluster_info *ci;
828 	unsigned char *map = si->swap_map;
829 	int nr_reclaim;
830 
831 	if (force)
832 		to_scan = swap_usage_in_pages(si) / SWAPFILE_CLUSTER;
833 
834 	while ((ci = isolate_lock_cluster(si, &si->full_clusters))) {
835 		offset = cluster_offset(si, ci);
836 		end = min(si->max, offset + SWAPFILE_CLUSTER);
837 		to_scan--;
838 
839 		while (offset < end) {
840 			if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) {
841 				spin_unlock(&ci->lock);
842 				nr_reclaim = __try_to_reclaim_swap(si, offset,
843 								   TTRS_ANYWAY);
844 				spin_lock(&ci->lock);
845 				if (nr_reclaim) {
846 					offset += abs(nr_reclaim);
847 					continue;
848 				}
849 			}
850 			offset++;
851 		}
852 
853 		/* in case no swap cache is reclaimed */
854 		if (ci->flags == CLUSTER_FLAG_NONE)
855 			relocate_cluster(si, ci);
856 
857 		unlock_cluster(ci);
858 		if (to_scan <= 0)
859 			break;
860 	}
861 }
862 
863 static void swap_reclaim_work(struct work_struct *work)
864 {
865 	struct swap_info_struct *si;
866 
867 	si = container_of(work, struct swap_info_struct, reclaim_work);
868 
869 	swap_reclaim_full_clusters(si, true);
870 }
871 
872 /*
873  * Try to allocate swap entries with specified order and try set a new
874  * cluster for current CPU too.
875  */
876 static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order,
877 					      unsigned char usage)
878 {
879 	struct swap_cluster_info *ci;
880 	unsigned int offset = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID;
881 
882 	/*
883 	 * Swapfile is not block device so unable
884 	 * to allocate large entries.
885 	 */
886 	if (order && !(si->flags & SWP_BLKDEV))
887 		return 0;
888 
889 	if (!(si->flags & SWP_SOLIDSTATE)) {
890 		/* Serialize HDD SWAP allocation for each device. */
891 		spin_lock(&si->global_cluster_lock);
892 		offset = si->global_cluster->next[order];
893 		if (offset == SWAP_ENTRY_INVALID)
894 			goto new_cluster;
895 
896 		ci = lock_cluster(si, offset);
897 		/* Cluster could have been used by another order */
898 		if (cluster_is_usable(ci, order)) {
899 			if (cluster_is_empty(ci))
900 				offset = cluster_offset(si, ci);
901 			found = alloc_swap_scan_cluster(si, ci, offset,
902 							order, usage);
903 		} else {
904 			unlock_cluster(ci);
905 		}
906 		if (found)
907 			goto done;
908 	}
909 
910 new_cluster:
911 	/*
912 	 * If the device need discard, prefer new cluster over nonfull
913 	 * to spread out the writes.
914 	 */
915 	if (si->flags & SWP_PAGE_DISCARD) {
916 		ci = isolate_lock_cluster(si, &si->free_clusters);
917 		if (ci) {
918 			found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
919 							order, usage);
920 			if (found)
921 				goto done;
922 		}
923 	}
924 
925 	if (order < PMD_ORDER) {
926 		while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[order]))) {
927 			found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
928 							order, usage);
929 			if (found)
930 				goto done;
931 		}
932 	}
933 
934 	if (!(si->flags & SWP_PAGE_DISCARD)) {
935 		ci = isolate_lock_cluster(si, &si->free_clusters);
936 		if (ci) {
937 			found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
938 							order, usage);
939 			if (found)
940 				goto done;
941 		}
942 	}
943 
944 	/* Try reclaim full clusters if free and nonfull lists are drained */
945 	if (vm_swap_full())
946 		swap_reclaim_full_clusters(si, false);
947 
948 	if (order < PMD_ORDER) {
949 		/*
950 		 * Scan only one fragment cluster is good enough. Order 0
951 		 * allocation will surely success, and large allocation
952 		 * failure is not critical. Scanning one cluster still
953 		 * keeps the list rotated and reclaimed (for HAS_CACHE).
954 		 */
955 		ci = isolate_lock_cluster(si, &si->frag_clusters[order]);
956 		if (ci) {
957 			found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
958 							order, usage);
959 			if (found)
960 				goto done;
961 		}
962 	}
963 
964 	/*
965 	 * We don't have free cluster but have some clusters in discarding,
966 	 * do discard now and reclaim them.
967 	 */
968 	if ((si->flags & SWP_PAGE_DISCARD) && swap_do_scheduled_discard(si))
969 		goto new_cluster;
970 
971 	if (order)
972 		goto done;
973 
974 	/* Order 0 stealing from higher order */
975 	for (int o = 1; o < SWAP_NR_ORDERS; o++) {
976 		/*
977 		 * Clusters here have at least one usable slots and can't fail order 0
978 		 * allocation, but reclaim may drop si->lock and race with another user.
979 		 */
980 		while ((ci = isolate_lock_cluster(si, &si->frag_clusters[o]))) {
981 			found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
982 							0, usage);
983 			if (found)
984 				goto done;
985 		}
986 
987 		while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[o]))) {
988 			found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
989 							0, usage);
990 			if (found)
991 				goto done;
992 		}
993 	}
994 done:
995 	if (!(si->flags & SWP_SOLIDSTATE))
996 		spin_unlock(&si->global_cluster_lock);
997 	return found;
998 }
999 
1000 /* SWAP_USAGE_OFFLIST_BIT can only be set by this helper. */
1001 static void del_from_avail_list(struct swap_info_struct *si, bool swapoff)
1002 {
1003 	int nid;
1004 	unsigned long pages;
1005 
1006 	spin_lock(&swap_avail_lock);
1007 
1008 	if (swapoff) {
1009 		/*
1010 		 * Forcefully remove it. Clear the SWP_WRITEOK flags for
1011 		 * swapoff here so it's synchronized by both si->lock and
1012 		 * swap_avail_lock, to ensure the result can be seen by
1013 		 * add_to_avail_list.
1014 		 */
1015 		lockdep_assert_held(&si->lock);
1016 		si->flags &= ~SWP_WRITEOK;
1017 		atomic_long_or(SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages);
1018 	} else {
1019 		/*
1020 		 * If not called by swapoff, take it off-list only if it's
1021 		 * full and SWAP_USAGE_OFFLIST_BIT is not set (strictly
1022 		 * si->inuse_pages == pages), any concurrent slot freeing,
1023 		 * or device already removed from plist by someone else
1024 		 * will make this return false.
1025 		 */
1026 		pages = si->pages;
1027 		if (!atomic_long_try_cmpxchg(&si->inuse_pages, &pages,
1028 					     pages | SWAP_USAGE_OFFLIST_BIT))
1029 			goto skip;
1030 	}
1031 
1032 	for_each_node(nid)
1033 		plist_del(&si->avail_lists[nid], &swap_avail_heads[nid]);
1034 
1035 skip:
1036 	spin_unlock(&swap_avail_lock);
1037 }
1038 
1039 /* SWAP_USAGE_OFFLIST_BIT can only be cleared by this helper. */
1040 static void add_to_avail_list(struct swap_info_struct *si, bool swapon)
1041 {
1042 	int nid;
1043 	long val;
1044 	unsigned long pages;
1045 
1046 	spin_lock(&swap_avail_lock);
1047 
1048 	/* Corresponding to SWP_WRITEOK clearing in del_from_avail_list */
1049 	if (swapon) {
1050 		lockdep_assert_held(&si->lock);
1051 		si->flags |= SWP_WRITEOK;
1052 	} else {
1053 		if (!(READ_ONCE(si->flags) & SWP_WRITEOK))
1054 			goto skip;
1055 	}
1056 
1057 	if (!(atomic_long_read(&si->inuse_pages) & SWAP_USAGE_OFFLIST_BIT))
1058 		goto skip;
1059 
1060 	val = atomic_long_fetch_and_relaxed(~SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages);
1061 
1062 	/*
1063 	 * When device is full and device is on the plist, only one updater will
1064 	 * see (inuse_pages == si->pages) and will call del_from_avail_list. If
1065 	 * that updater happen to be here, just skip adding.
1066 	 */
1067 	pages = si->pages;
1068 	if (val == pages) {
1069 		/* Just like the cmpxchg in del_from_avail_list */
1070 		if (atomic_long_try_cmpxchg(&si->inuse_pages, &pages,
1071 					    pages | SWAP_USAGE_OFFLIST_BIT))
1072 			goto skip;
1073 	}
1074 
1075 	for_each_node(nid)
1076 		plist_add(&si->avail_lists[nid], &swap_avail_heads[nid]);
1077 
1078 skip:
1079 	spin_unlock(&swap_avail_lock);
1080 }
1081 
1082 /*
1083  * swap_usage_add / swap_usage_sub of each slot are serialized by ci->lock
1084  * within each cluster, so the total contribution to the global counter should
1085  * always be positive and cannot exceed the total number of usable slots.
1086  */
1087 static bool swap_usage_add(struct swap_info_struct *si, unsigned int nr_entries)
1088 {
1089 	long val = atomic_long_add_return_relaxed(nr_entries, &si->inuse_pages);
1090 
1091 	/*
1092 	 * If device is full, and SWAP_USAGE_OFFLIST_BIT is not set,
1093 	 * remove it from the plist.
1094 	 */
1095 	if (unlikely(val == si->pages)) {
1096 		del_from_avail_list(si, false);
1097 		return true;
1098 	}
1099 
1100 	return false;
1101 }
1102 
1103 static void swap_usage_sub(struct swap_info_struct *si, unsigned int nr_entries)
1104 {
1105 	long val = atomic_long_sub_return_relaxed(nr_entries, &si->inuse_pages);
1106 
1107 	/*
1108 	 * If device is not full, and SWAP_USAGE_OFFLIST_BIT is set,
1109 	 * add it to the plist.
1110 	 */
1111 	if (unlikely(val & SWAP_USAGE_OFFLIST_BIT))
1112 		add_to_avail_list(si, false);
1113 }
1114 
1115 static void swap_range_alloc(struct swap_info_struct *si,
1116 			     unsigned int nr_entries)
1117 {
1118 	if (swap_usage_add(si, nr_entries)) {
1119 		if (vm_swap_full())
1120 			schedule_work(&si->reclaim_work);
1121 	}
1122 	atomic_long_sub(nr_entries, &nr_swap_pages);
1123 }
1124 
1125 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
1126 			    unsigned int nr_entries)
1127 {
1128 	unsigned long begin = offset;
1129 	unsigned long end = offset + nr_entries - 1;
1130 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
1131 	unsigned int i;
1132 
1133 	/*
1134 	 * Use atomic clear_bit operations only on zeromap instead of non-atomic
1135 	 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes.
1136 	 */
1137 	for (i = 0; i < nr_entries; i++) {
1138 		clear_bit(offset + i, si->zeromap);
1139 		zswap_invalidate(swp_entry(si->type, offset + i));
1140 	}
1141 
1142 	if (si->flags & SWP_BLKDEV)
1143 		swap_slot_free_notify =
1144 			si->bdev->bd_disk->fops->swap_slot_free_notify;
1145 	else
1146 		swap_slot_free_notify = NULL;
1147 	while (offset <= end) {
1148 		arch_swap_invalidate_page(si->type, offset);
1149 		if (swap_slot_free_notify)
1150 			swap_slot_free_notify(si->bdev, offset);
1151 		offset++;
1152 	}
1153 	clear_shadow_from_swap_cache(si->type, begin, end);
1154 
1155 	/*
1156 	 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
1157 	 * only after the above cleanups are done.
1158 	 */
1159 	smp_wmb();
1160 	atomic_long_add(nr_entries, &nr_swap_pages);
1161 	swap_usage_sub(si, nr_entries);
1162 }
1163 
1164 static bool get_swap_device_info(struct swap_info_struct *si)
1165 {
1166 	if (!percpu_ref_tryget_live(&si->users))
1167 		return false;
1168 	/*
1169 	 * Guarantee the si->users are checked before accessing other
1170 	 * fields of swap_info_struct, and si->flags (SWP_WRITEOK) is
1171 	 * up to dated.
1172 	 *
1173 	 * Paired with the spin_unlock() after setup_swap_info() in
1174 	 * enable_swap_info(), and smp_wmb() in swapoff.
1175 	 */
1176 	smp_rmb();
1177 	return true;
1178 }
1179 
1180 /*
1181  * Fast path try to get swap entries with specified order from current
1182  * CPU's swap entry pool (a cluster).
1183  */
1184 static bool swap_alloc_fast(swp_entry_t *entry,
1185 			    int order)
1186 {
1187 	struct swap_cluster_info *ci;
1188 	struct swap_info_struct *si;
1189 	unsigned int offset, found = SWAP_ENTRY_INVALID;
1190 
1191 	/*
1192 	 * Once allocated, swap_info_struct will never be completely freed,
1193 	 * so checking it's liveness by get_swap_device_info is enough.
1194 	 */
1195 	si = this_cpu_read(percpu_swap_cluster.si[order]);
1196 	offset = this_cpu_read(percpu_swap_cluster.offset[order]);
1197 	if (!si || !offset || !get_swap_device_info(si))
1198 		return false;
1199 
1200 	ci = lock_cluster(si, offset);
1201 	if (cluster_is_usable(ci, order)) {
1202 		if (cluster_is_empty(ci))
1203 			offset = cluster_offset(si, ci);
1204 		found = alloc_swap_scan_cluster(si, ci, offset, order, SWAP_HAS_CACHE);
1205 		if (found)
1206 			*entry = swp_entry(si->type, found);
1207 	} else {
1208 		unlock_cluster(ci);
1209 	}
1210 
1211 	put_swap_device(si);
1212 	return !!found;
1213 }
1214 
1215 /* Rotate the device and switch to a new cluster */
1216 static bool swap_alloc_slow(swp_entry_t *entry,
1217 			    int order)
1218 {
1219 	int node;
1220 	unsigned long offset;
1221 	struct swap_info_struct *si, *next;
1222 
1223 	node = numa_node_id();
1224 	spin_lock(&swap_avail_lock);
1225 start_over:
1226 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1227 		/* Rotate the device and switch to a new cluster */
1228 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1229 		spin_unlock(&swap_avail_lock);
1230 		if (get_swap_device_info(si)) {
1231 			offset = cluster_alloc_swap_entry(si, order, SWAP_HAS_CACHE);
1232 			put_swap_device(si);
1233 			if (offset) {
1234 				*entry = swp_entry(si->type, offset);
1235 				return true;
1236 			}
1237 			if (order)
1238 				return false;
1239 		}
1240 
1241 		spin_lock(&swap_avail_lock);
1242 		/*
1243 		 * if we got here, it's likely that si was almost full before,
1244 		 * and since scan_swap_map_slots() can drop the si->lock,
1245 		 * multiple callers probably all tried to get a page from the
1246 		 * same si and it filled up before we could get one; or, the si
1247 		 * filled up between us dropping swap_avail_lock and taking
1248 		 * si->lock. Since we dropped the swap_avail_lock, the
1249 		 * swap_avail_head list may have been modified; so if next is
1250 		 * still in the swap_avail_head list then try it, otherwise
1251 		 * start over if we have not gotten any slots.
1252 		 */
1253 		if (plist_node_empty(&next->avail_lists[node]))
1254 			goto start_over;
1255 	}
1256 	spin_unlock(&swap_avail_lock);
1257 	return false;
1258 }
1259 
1260 /**
1261  * folio_alloc_swap - allocate swap space for a folio
1262  * @folio: folio we want to move to swap
1263  * @gfp: gfp mask for shadow nodes
1264  *
1265  * Allocate swap space for the folio and add the folio to the
1266  * swap cache.
1267  *
1268  * Context: Caller needs to hold the folio lock.
1269  * Return: Whether the folio was added to the swap cache.
1270  */
1271 int folio_alloc_swap(struct folio *folio, gfp_t gfp)
1272 {
1273 	unsigned int order = folio_order(folio);
1274 	unsigned int size = 1 << order;
1275 	swp_entry_t entry = {};
1276 
1277 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1278 	VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
1279 
1280 	if (order) {
1281 		/*
1282 		 * Reject large allocation when THP_SWAP is disabled,
1283 		 * the caller should split the folio and try again.
1284 		 */
1285 		if (!IS_ENABLED(CONFIG_THP_SWAP))
1286 			return -EAGAIN;
1287 
1288 		/*
1289 		 * Allocation size should never exceed cluster size
1290 		 * (HPAGE_PMD_SIZE).
1291 		 */
1292 		if (size > SWAPFILE_CLUSTER) {
1293 			VM_WARN_ON_ONCE(1);
1294 			return -EINVAL;
1295 		}
1296 	}
1297 
1298 	local_lock(&percpu_swap_cluster.lock);
1299 	if (!swap_alloc_fast(&entry, order))
1300 		swap_alloc_slow(&entry, order);
1301 	local_unlock(&percpu_swap_cluster.lock);
1302 
1303 	/* Need to call this even if allocation failed, for MEMCG_SWAP_FAIL. */
1304 	if (mem_cgroup_try_charge_swap(folio, entry))
1305 		goto out_free;
1306 
1307 	if (!entry.val)
1308 		return -ENOMEM;
1309 
1310 	/*
1311 	 * XArray node allocations from PF_MEMALLOC contexts could
1312 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
1313 	 * stops emergency reserves from being allocated.
1314 	 *
1315 	 * TODO: this could cause a theoretical memory reclaim
1316 	 * deadlock in the swap out path.
1317 	 */
1318 	if (add_to_swap_cache(folio, entry, gfp | __GFP_NOMEMALLOC, NULL))
1319 		goto out_free;
1320 
1321 	return 0;
1322 
1323 out_free:
1324 	put_swap_folio(folio, entry);
1325 	return -ENOMEM;
1326 }
1327 
1328 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1329 {
1330 	struct swap_info_struct *si;
1331 	unsigned long offset;
1332 
1333 	if (!entry.val)
1334 		goto out;
1335 	si = swp_swap_info(entry);
1336 	if (!si)
1337 		goto bad_nofile;
1338 	if (data_race(!(si->flags & SWP_USED)))
1339 		goto bad_device;
1340 	offset = swp_offset(entry);
1341 	if (offset >= si->max)
1342 		goto bad_offset;
1343 	if (data_race(!si->swap_map[swp_offset(entry)]))
1344 		goto bad_free;
1345 	return si;
1346 
1347 bad_free:
1348 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1349 	goto out;
1350 bad_offset:
1351 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1352 	goto out;
1353 bad_device:
1354 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1355 	goto out;
1356 bad_nofile:
1357 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1358 out:
1359 	return NULL;
1360 }
1361 
1362 static unsigned char swap_entry_put_locked(struct swap_info_struct *si,
1363 					   struct swap_cluster_info *ci,
1364 					   swp_entry_t entry,
1365 					   unsigned char usage)
1366 {
1367 	unsigned long offset = swp_offset(entry);
1368 	unsigned char count;
1369 	unsigned char has_cache;
1370 
1371 	count = si->swap_map[offset];
1372 
1373 	has_cache = count & SWAP_HAS_CACHE;
1374 	count &= ~SWAP_HAS_CACHE;
1375 
1376 	if (usage == SWAP_HAS_CACHE) {
1377 		VM_BUG_ON(!has_cache);
1378 		has_cache = 0;
1379 	} else if (count == SWAP_MAP_SHMEM) {
1380 		/*
1381 		 * Or we could insist on shmem.c using a special
1382 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1383 		 */
1384 		count = 0;
1385 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1386 		if (count == COUNT_CONTINUED) {
1387 			if (swap_count_continued(si, offset, count))
1388 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1389 			else
1390 				count = SWAP_MAP_MAX;
1391 		} else
1392 			count--;
1393 	}
1394 
1395 	usage = count | has_cache;
1396 	if (usage)
1397 		WRITE_ONCE(si->swap_map[offset], usage);
1398 	else
1399 		swap_entries_free(si, ci, entry, 1);
1400 
1401 	return usage;
1402 }
1403 
1404 /*
1405  * When we get a swap entry, if there aren't some other ways to
1406  * prevent swapoff, such as the folio in swap cache is locked, RCU
1407  * reader side is locked, etc., the swap entry may become invalid
1408  * because of swapoff.  Then, we need to enclose all swap related
1409  * functions with get_swap_device() and put_swap_device(), unless the
1410  * swap functions call get/put_swap_device() by themselves.
1411  *
1412  * RCU reader side lock (including any spinlock) is sufficient to
1413  * prevent swapoff, because synchronize_rcu() is called in swapoff()
1414  * before freeing data structures.
1415  *
1416  * Check whether swap entry is valid in the swap device.  If so,
1417  * return pointer to swap_info_struct, and keep the swap entry valid
1418  * via preventing the swap device from being swapoff, until
1419  * put_swap_device() is called.  Otherwise return NULL.
1420  *
1421  * Notice that swapoff or swapoff+swapon can still happen before the
1422  * percpu_ref_tryget_live() in get_swap_device() or after the
1423  * percpu_ref_put() in put_swap_device() if there isn't any other way
1424  * to prevent swapoff.  The caller must be prepared for that.  For
1425  * example, the following situation is possible.
1426  *
1427  *   CPU1				CPU2
1428  *   do_swap_page()
1429  *     ...				swapoff+swapon
1430  *     __read_swap_cache_async()
1431  *       swapcache_prepare()
1432  *         __swap_duplicate()
1433  *           // check swap_map
1434  *     // verify PTE not changed
1435  *
1436  * In __swap_duplicate(), the swap_map need to be checked before
1437  * changing partly because the specified swap entry may be for another
1438  * swap device which has been swapoff.  And in do_swap_page(), after
1439  * the page is read from the swap device, the PTE is verified not
1440  * changed with the page table locked to check whether the swap device
1441  * has been swapoff or swapoff+swapon.
1442  */
1443 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1444 {
1445 	struct swap_info_struct *si;
1446 	unsigned long offset;
1447 
1448 	if (!entry.val)
1449 		goto out;
1450 	si = swp_swap_info(entry);
1451 	if (!si)
1452 		goto bad_nofile;
1453 	if (!get_swap_device_info(si))
1454 		goto out;
1455 	offset = swp_offset(entry);
1456 	if (offset >= si->max)
1457 		goto put_out;
1458 
1459 	return si;
1460 bad_nofile:
1461 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1462 out:
1463 	return NULL;
1464 put_out:
1465 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1466 	percpu_ref_put(&si->users);
1467 	return NULL;
1468 }
1469 
1470 static void swap_entries_put_cache(struct swap_info_struct *si,
1471 				   swp_entry_t entry, int nr)
1472 {
1473 	unsigned long offset = swp_offset(entry);
1474 	struct swap_cluster_info *ci;
1475 
1476 	ci = lock_cluster(si, offset);
1477 	if (swap_only_has_cache(si, offset, nr))
1478 		swap_entries_free(si, ci, entry, nr);
1479 	else {
1480 		for (int i = 0; i < nr; i++, entry.val++)
1481 			swap_entry_put_locked(si, ci, entry, SWAP_HAS_CACHE);
1482 	}
1483 	unlock_cluster(ci);
1484 }
1485 
1486 static bool swap_entries_put_map(struct swap_info_struct *si,
1487 				 swp_entry_t entry, int nr)
1488 {
1489 	unsigned long offset = swp_offset(entry);
1490 	struct swap_cluster_info *ci;
1491 	bool has_cache = false;
1492 	unsigned char count;
1493 	int i;
1494 
1495 	if (nr <= 1)
1496 		goto fallback;
1497 	count = swap_count(data_race(si->swap_map[offset]));
1498 	if (count != 1 && count != SWAP_MAP_SHMEM)
1499 		goto fallback;
1500 
1501 	ci = lock_cluster(si, offset);
1502 	if (!swap_is_last_map(si, offset, nr, &has_cache)) {
1503 		goto locked_fallback;
1504 	}
1505 	if (!has_cache)
1506 		swap_entries_free(si, ci, entry, nr);
1507 	else
1508 		for (i = 0; i < nr; i++)
1509 			WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE);
1510 	unlock_cluster(ci);
1511 
1512 	return has_cache;
1513 
1514 fallback:
1515 	ci = lock_cluster(si, offset);
1516 locked_fallback:
1517 	for (i = 0; i < nr; i++, entry.val++) {
1518 		count = swap_entry_put_locked(si, ci, entry, 1);
1519 		if (count == SWAP_HAS_CACHE)
1520 			has_cache = true;
1521 	}
1522 	unlock_cluster(ci);
1523 	return has_cache;
1524 
1525 }
1526 
1527 /*
1528  * Only functions with "_nr" suffix are able to free entries spanning
1529  * cross multi clusters, so ensure the range is within a single cluster
1530  * when freeing entries with functions without "_nr" suffix.
1531  */
1532 static bool swap_entries_put_map_nr(struct swap_info_struct *si,
1533 				    swp_entry_t entry, int nr)
1534 {
1535 	int cluster_nr, cluster_rest;
1536 	unsigned long offset = swp_offset(entry);
1537 	bool has_cache = false;
1538 
1539 	cluster_rest = SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER;
1540 	while (nr) {
1541 		cluster_nr = min(nr, cluster_rest);
1542 		has_cache |= swap_entries_put_map(si, entry, cluster_nr);
1543 		cluster_rest = SWAPFILE_CLUSTER;
1544 		nr -= cluster_nr;
1545 		entry.val += cluster_nr;
1546 	}
1547 
1548 	return has_cache;
1549 }
1550 
1551 /*
1552  * Check if it's the last ref of swap entry in the freeing path.
1553  * Qualified vlaue includes 1, SWAP_HAS_CACHE or SWAP_MAP_SHMEM.
1554  */
1555 static inline bool __maybe_unused swap_is_last_ref(unsigned char count)
1556 {
1557 	return (count == SWAP_HAS_CACHE) || (count == 1) ||
1558 	       (count == SWAP_MAP_SHMEM);
1559 }
1560 
1561 /*
1562  * Drop the last ref of swap entries, caller have to ensure all entries
1563  * belong to the same cgroup and cluster.
1564  */
1565 static void swap_entries_free(struct swap_info_struct *si,
1566 			      struct swap_cluster_info *ci,
1567 			      swp_entry_t entry, unsigned int nr_pages)
1568 {
1569 	unsigned long offset = swp_offset(entry);
1570 	unsigned char *map = si->swap_map + offset;
1571 	unsigned char *map_end = map + nr_pages;
1572 
1573 	/* It should never free entries across different clusters */
1574 	VM_BUG_ON(ci != offset_to_cluster(si, offset + nr_pages - 1));
1575 	VM_BUG_ON(cluster_is_empty(ci));
1576 	VM_BUG_ON(ci->count < nr_pages);
1577 
1578 	ci->count -= nr_pages;
1579 	do {
1580 		VM_BUG_ON(!swap_is_last_ref(*map));
1581 		*map = 0;
1582 	} while (++map < map_end);
1583 
1584 	mem_cgroup_uncharge_swap(entry, nr_pages);
1585 	swap_range_free(si, offset, nr_pages);
1586 
1587 	if (!ci->count)
1588 		free_cluster(si, ci);
1589 	else
1590 		partial_free_cluster(si, ci);
1591 }
1592 
1593 /*
1594  * Caller has made sure that the swap device corresponding to entry
1595  * is still around or has not been recycled.
1596  */
1597 void swap_free_nr(swp_entry_t entry, int nr_pages)
1598 {
1599 	int nr;
1600 	struct swap_info_struct *sis;
1601 	unsigned long offset = swp_offset(entry);
1602 
1603 	sis = _swap_info_get(entry);
1604 	if (!sis)
1605 		return;
1606 
1607 	while (nr_pages) {
1608 		nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
1609 		swap_entries_put_map(sis, swp_entry(sis->type, offset), nr);
1610 		offset += nr;
1611 		nr_pages -= nr;
1612 	}
1613 }
1614 
1615 /*
1616  * Called after dropping swapcache to decrease refcnt to swap entries.
1617  */
1618 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1619 {
1620 	struct swap_info_struct *si;
1621 	int size = 1 << swap_entry_order(folio_order(folio));
1622 
1623 	si = _swap_info_get(entry);
1624 	if (!si)
1625 		return;
1626 
1627 	swap_entries_put_cache(si, entry, size);
1628 }
1629 
1630 int __swap_count(swp_entry_t entry)
1631 {
1632 	struct swap_info_struct *si = swp_swap_info(entry);
1633 	pgoff_t offset = swp_offset(entry);
1634 
1635 	return swap_count(si->swap_map[offset]);
1636 }
1637 
1638 /*
1639  * How many references to @entry are currently swapped out?
1640  * This does not give an exact answer when swap count is continued,
1641  * but does include the high COUNT_CONTINUED flag to allow for that.
1642  */
1643 bool swap_entry_swapped(struct swap_info_struct *si, swp_entry_t entry)
1644 {
1645 	pgoff_t offset = swp_offset(entry);
1646 	struct swap_cluster_info *ci;
1647 	int count;
1648 
1649 	ci = lock_cluster(si, offset);
1650 	count = swap_count(si->swap_map[offset]);
1651 	unlock_cluster(ci);
1652 	return !!count;
1653 }
1654 
1655 /*
1656  * How many references to @entry are currently swapped out?
1657  * This considers COUNT_CONTINUED so it returns exact answer.
1658  */
1659 int swp_swapcount(swp_entry_t entry)
1660 {
1661 	int count, tmp_count, n;
1662 	struct swap_info_struct *si;
1663 	struct swap_cluster_info *ci;
1664 	struct page *page;
1665 	pgoff_t offset;
1666 	unsigned char *map;
1667 
1668 	si = _swap_info_get(entry);
1669 	if (!si)
1670 		return 0;
1671 
1672 	offset = swp_offset(entry);
1673 
1674 	ci = lock_cluster(si, offset);
1675 
1676 	count = swap_count(si->swap_map[offset]);
1677 	if (!(count & COUNT_CONTINUED))
1678 		goto out;
1679 
1680 	count &= ~COUNT_CONTINUED;
1681 	n = SWAP_MAP_MAX + 1;
1682 
1683 	page = vmalloc_to_page(si->swap_map + offset);
1684 	offset &= ~PAGE_MASK;
1685 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1686 
1687 	do {
1688 		page = list_next_entry(page, lru);
1689 		map = kmap_local_page(page);
1690 		tmp_count = map[offset];
1691 		kunmap_local(map);
1692 
1693 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1694 		n *= (SWAP_CONT_MAX + 1);
1695 	} while (tmp_count & COUNT_CONTINUED);
1696 out:
1697 	unlock_cluster(ci);
1698 	return count;
1699 }
1700 
1701 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1702 					 swp_entry_t entry, int order)
1703 {
1704 	struct swap_cluster_info *ci;
1705 	unsigned char *map = si->swap_map;
1706 	unsigned int nr_pages = 1 << order;
1707 	unsigned long roffset = swp_offset(entry);
1708 	unsigned long offset = round_down(roffset, nr_pages);
1709 	int i;
1710 	bool ret = false;
1711 
1712 	ci = lock_cluster(si, offset);
1713 	if (nr_pages == 1) {
1714 		if (swap_count(map[roffset]))
1715 			ret = true;
1716 		goto unlock_out;
1717 	}
1718 	for (i = 0; i < nr_pages; i++) {
1719 		if (swap_count(map[offset + i])) {
1720 			ret = true;
1721 			break;
1722 		}
1723 	}
1724 unlock_out:
1725 	unlock_cluster(ci);
1726 	return ret;
1727 }
1728 
1729 static bool folio_swapped(struct folio *folio)
1730 {
1731 	swp_entry_t entry = folio->swap;
1732 	struct swap_info_struct *si = _swap_info_get(entry);
1733 
1734 	if (!si)
1735 		return false;
1736 
1737 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1738 		return swap_entry_swapped(si, entry);
1739 
1740 	return swap_page_trans_huge_swapped(si, entry, folio_order(folio));
1741 }
1742 
1743 static bool folio_swapcache_freeable(struct folio *folio)
1744 {
1745 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1746 
1747 	if (!folio_test_swapcache(folio))
1748 		return false;
1749 	if (folio_test_writeback(folio))
1750 		return false;
1751 
1752 	/*
1753 	 * Once hibernation has begun to create its image of memory,
1754 	 * there's a danger that one of the calls to folio_free_swap()
1755 	 * - most probably a call from __try_to_reclaim_swap() while
1756 	 * hibernation is allocating its own swap pages for the image,
1757 	 * but conceivably even a call from memory reclaim - will free
1758 	 * the swap from a folio which has already been recorded in the
1759 	 * image as a clean swapcache folio, and then reuse its swap for
1760 	 * another page of the image.  On waking from hibernation, the
1761 	 * original folio might be freed under memory pressure, then
1762 	 * later read back in from swap, now with the wrong data.
1763 	 *
1764 	 * Hibernation suspends storage while it is writing the image
1765 	 * to disk so check that here.
1766 	 */
1767 	if (pm_suspended_storage())
1768 		return false;
1769 
1770 	return true;
1771 }
1772 
1773 /**
1774  * folio_free_swap() - Free the swap space used for this folio.
1775  * @folio: The folio to remove.
1776  *
1777  * If swap is getting full, or if there are no more mappings of this folio,
1778  * then call folio_free_swap to free its swap space.
1779  *
1780  * Return: true if we were able to release the swap space.
1781  */
1782 bool folio_free_swap(struct folio *folio)
1783 {
1784 	if (!folio_swapcache_freeable(folio))
1785 		return false;
1786 	if (folio_swapped(folio))
1787 		return false;
1788 
1789 	delete_from_swap_cache(folio);
1790 	folio_set_dirty(folio);
1791 	return true;
1792 }
1793 
1794 /**
1795  * free_swap_and_cache_nr() - Release reference on range of swap entries and
1796  *                            reclaim their cache if no more references remain.
1797  * @entry: First entry of range.
1798  * @nr: Number of entries in range.
1799  *
1800  * For each swap entry in the contiguous range, release a reference. If any swap
1801  * entries become free, try to reclaim their underlying folios, if present. The
1802  * offset range is defined by [entry.offset, entry.offset + nr).
1803  */
1804 void free_swap_and_cache_nr(swp_entry_t entry, int nr)
1805 {
1806 	const unsigned long start_offset = swp_offset(entry);
1807 	const unsigned long end_offset = start_offset + nr;
1808 	struct swap_info_struct *si;
1809 	bool any_only_cache = false;
1810 	unsigned long offset;
1811 
1812 	si = get_swap_device(entry);
1813 	if (!si)
1814 		return;
1815 
1816 	if (WARN_ON(end_offset > si->max))
1817 		goto out;
1818 
1819 	/*
1820 	 * First free all entries in the range.
1821 	 */
1822 	any_only_cache = swap_entries_put_map_nr(si, entry, nr);
1823 
1824 	/*
1825 	 * Short-circuit the below loop if none of the entries had their
1826 	 * reference drop to zero.
1827 	 */
1828 	if (!any_only_cache)
1829 		goto out;
1830 
1831 	/*
1832 	 * Now go back over the range trying to reclaim the swap cache.
1833 	 */
1834 	for (offset = start_offset; offset < end_offset; offset += nr) {
1835 		nr = 1;
1836 		if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1837 			/*
1838 			 * Folios are always naturally aligned in swap so
1839 			 * advance forward to the next boundary. Zero means no
1840 			 * folio was found for the swap entry, so advance by 1
1841 			 * in this case. Negative value means folio was found
1842 			 * but could not be reclaimed. Here we can still advance
1843 			 * to the next boundary.
1844 			 */
1845 			nr = __try_to_reclaim_swap(si, offset,
1846 						   TTRS_UNMAPPED | TTRS_FULL);
1847 			if (nr == 0)
1848 				nr = 1;
1849 			else if (nr < 0)
1850 				nr = -nr;
1851 			nr = ALIGN(offset + 1, nr) - offset;
1852 		}
1853 	}
1854 
1855 out:
1856 	put_swap_device(si);
1857 }
1858 
1859 #ifdef CONFIG_HIBERNATION
1860 
1861 swp_entry_t get_swap_page_of_type(int type)
1862 {
1863 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1864 	unsigned long offset;
1865 	swp_entry_t entry = {0};
1866 
1867 	if (!si)
1868 		goto fail;
1869 
1870 	/* This is called for allocating swap entry, not cache */
1871 	if (get_swap_device_info(si)) {
1872 		if (si->flags & SWP_WRITEOK) {
1873 			offset = cluster_alloc_swap_entry(si, 0, 1);
1874 			if (offset) {
1875 				entry = swp_entry(si->type, offset);
1876 				atomic_long_dec(&nr_swap_pages);
1877 			}
1878 		}
1879 		put_swap_device(si);
1880 	}
1881 fail:
1882 	return entry;
1883 }
1884 
1885 /*
1886  * Find the swap type that corresponds to given device (if any).
1887  *
1888  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1889  * from 0, in which the swap header is expected to be located.
1890  *
1891  * This is needed for the suspend to disk (aka swsusp).
1892  */
1893 int swap_type_of(dev_t device, sector_t offset)
1894 {
1895 	int type;
1896 
1897 	if (!device)
1898 		return -1;
1899 
1900 	spin_lock(&swap_lock);
1901 	for (type = 0; type < nr_swapfiles; type++) {
1902 		struct swap_info_struct *sis = swap_info[type];
1903 
1904 		if (!(sis->flags & SWP_WRITEOK))
1905 			continue;
1906 
1907 		if (device == sis->bdev->bd_dev) {
1908 			struct swap_extent *se = first_se(sis);
1909 
1910 			if (se->start_block == offset) {
1911 				spin_unlock(&swap_lock);
1912 				return type;
1913 			}
1914 		}
1915 	}
1916 	spin_unlock(&swap_lock);
1917 	return -ENODEV;
1918 }
1919 
1920 int find_first_swap(dev_t *device)
1921 {
1922 	int type;
1923 
1924 	spin_lock(&swap_lock);
1925 	for (type = 0; type < nr_swapfiles; type++) {
1926 		struct swap_info_struct *sis = swap_info[type];
1927 
1928 		if (!(sis->flags & SWP_WRITEOK))
1929 			continue;
1930 		*device = sis->bdev->bd_dev;
1931 		spin_unlock(&swap_lock);
1932 		return type;
1933 	}
1934 	spin_unlock(&swap_lock);
1935 	return -ENODEV;
1936 }
1937 
1938 /*
1939  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1940  * corresponding to given index in swap_info (swap type).
1941  */
1942 sector_t swapdev_block(int type, pgoff_t offset)
1943 {
1944 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1945 	struct swap_extent *se;
1946 
1947 	if (!si || !(si->flags & SWP_WRITEOK))
1948 		return 0;
1949 	se = offset_to_swap_extent(si, offset);
1950 	return se->start_block + (offset - se->start_page);
1951 }
1952 
1953 /*
1954  * Return either the total number of swap pages of given type, or the number
1955  * of free pages of that type (depending on @free)
1956  *
1957  * This is needed for software suspend
1958  */
1959 unsigned int count_swap_pages(int type, int free)
1960 {
1961 	unsigned int n = 0;
1962 
1963 	spin_lock(&swap_lock);
1964 	if ((unsigned int)type < nr_swapfiles) {
1965 		struct swap_info_struct *sis = swap_info[type];
1966 
1967 		spin_lock(&sis->lock);
1968 		if (sis->flags & SWP_WRITEOK) {
1969 			n = sis->pages;
1970 			if (free)
1971 				n -= swap_usage_in_pages(sis);
1972 		}
1973 		spin_unlock(&sis->lock);
1974 	}
1975 	spin_unlock(&swap_lock);
1976 	return n;
1977 }
1978 #endif /* CONFIG_HIBERNATION */
1979 
1980 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1981 {
1982 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1983 }
1984 
1985 /*
1986  * No need to decide whether this PTE shares the swap entry with others,
1987  * just let do_wp_page work it out if a write is requested later - to
1988  * force COW, vm_page_prot omits write permission from any private vma.
1989  */
1990 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1991 		unsigned long addr, swp_entry_t entry, struct folio *folio)
1992 {
1993 	struct page *page;
1994 	struct folio *swapcache;
1995 	spinlock_t *ptl;
1996 	pte_t *pte, new_pte, old_pte;
1997 	bool hwpoisoned = false;
1998 	int ret = 1;
1999 
2000 	swapcache = folio;
2001 	folio = ksm_might_need_to_copy(folio, vma, addr);
2002 	if (unlikely(!folio))
2003 		return -ENOMEM;
2004 	else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
2005 		hwpoisoned = true;
2006 		folio = swapcache;
2007 	}
2008 
2009 	page = folio_file_page(folio, swp_offset(entry));
2010 	if (PageHWPoison(page))
2011 		hwpoisoned = true;
2012 
2013 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
2014 	if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
2015 						swp_entry_to_pte(entry)))) {
2016 		ret = 0;
2017 		goto out;
2018 	}
2019 
2020 	old_pte = ptep_get(pte);
2021 
2022 	if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
2023 		swp_entry_t swp_entry;
2024 
2025 		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2026 		if (hwpoisoned) {
2027 			swp_entry = make_hwpoison_entry(page);
2028 		} else {
2029 			swp_entry = make_poisoned_swp_entry();
2030 		}
2031 		new_pte = swp_entry_to_pte(swp_entry);
2032 		ret = 0;
2033 		goto setpte;
2034 	}
2035 
2036 	/*
2037 	 * Some architectures may have to restore extra metadata to the page
2038 	 * when reading from swap. This metadata may be indexed by swap entry
2039 	 * so this must be called before swap_free().
2040 	 */
2041 	arch_swap_restore(folio_swap(entry, folio), folio);
2042 
2043 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2044 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
2045 	folio_get(folio);
2046 	if (folio == swapcache) {
2047 		rmap_t rmap_flags = RMAP_NONE;
2048 
2049 		/*
2050 		 * See do_swap_page(): writeback would be problematic.
2051 		 * However, we do a folio_wait_writeback() just before this
2052 		 * call and have the folio locked.
2053 		 */
2054 		VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
2055 		if (pte_swp_exclusive(old_pte))
2056 			rmap_flags |= RMAP_EXCLUSIVE;
2057 		/*
2058 		 * We currently only expect small !anon folios, which are either
2059 		 * fully exclusive or fully shared. If we ever get large folios
2060 		 * here, we have to be careful.
2061 		 */
2062 		if (!folio_test_anon(folio)) {
2063 			VM_WARN_ON_ONCE(folio_test_large(folio));
2064 			VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
2065 			folio_add_new_anon_rmap(folio, vma, addr, rmap_flags);
2066 		} else {
2067 			folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
2068 		}
2069 	} else { /* ksm created a completely new copy */
2070 		folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
2071 		folio_add_lru_vma(folio, vma);
2072 	}
2073 	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
2074 	if (pte_swp_soft_dirty(old_pte))
2075 		new_pte = pte_mksoft_dirty(new_pte);
2076 	if (pte_swp_uffd_wp(old_pte))
2077 		new_pte = pte_mkuffd_wp(new_pte);
2078 setpte:
2079 	set_pte_at(vma->vm_mm, addr, pte, new_pte);
2080 	swap_free(entry);
2081 out:
2082 	if (pte)
2083 		pte_unmap_unlock(pte, ptl);
2084 	if (folio != swapcache) {
2085 		folio_unlock(folio);
2086 		folio_put(folio);
2087 	}
2088 	return ret;
2089 }
2090 
2091 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
2092 			unsigned long addr, unsigned long end,
2093 			unsigned int type)
2094 {
2095 	pte_t *pte = NULL;
2096 	struct swap_info_struct *si;
2097 
2098 	si = swap_info[type];
2099 	do {
2100 		struct folio *folio;
2101 		unsigned long offset;
2102 		unsigned char swp_count;
2103 		swp_entry_t entry;
2104 		int ret;
2105 		pte_t ptent;
2106 
2107 		if (!pte++) {
2108 			pte = pte_offset_map(pmd, addr);
2109 			if (!pte)
2110 				break;
2111 		}
2112 
2113 		ptent = ptep_get_lockless(pte);
2114 
2115 		if (!is_swap_pte(ptent))
2116 			continue;
2117 
2118 		entry = pte_to_swp_entry(ptent);
2119 		if (swp_type(entry) != type)
2120 			continue;
2121 
2122 		offset = swp_offset(entry);
2123 		pte_unmap(pte);
2124 		pte = NULL;
2125 
2126 		folio = swap_cache_get_folio(entry, vma, addr);
2127 		if (!folio) {
2128 			struct vm_fault vmf = {
2129 				.vma = vma,
2130 				.address = addr,
2131 				.real_address = addr,
2132 				.pmd = pmd,
2133 			};
2134 
2135 			folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2136 						&vmf);
2137 		}
2138 		if (!folio) {
2139 			swp_count = READ_ONCE(si->swap_map[offset]);
2140 			if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
2141 				continue;
2142 			return -ENOMEM;
2143 		}
2144 
2145 		folio_lock(folio);
2146 		folio_wait_writeback(folio);
2147 		ret = unuse_pte(vma, pmd, addr, entry, folio);
2148 		if (ret < 0) {
2149 			folio_unlock(folio);
2150 			folio_put(folio);
2151 			return ret;
2152 		}
2153 
2154 		folio_free_swap(folio);
2155 		folio_unlock(folio);
2156 		folio_put(folio);
2157 	} while (addr += PAGE_SIZE, addr != end);
2158 
2159 	if (pte)
2160 		pte_unmap(pte);
2161 	return 0;
2162 }
2163 
2164 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2165 				unsigned long addr, unsigned long end,
2166 				unsigned int type)
2167 {
2168 	pmd_t *pmd;
2169 	unsigned long next;
2170 	int ret;
2171 
2172 	pmd = pmd_offset(pud, addr);
2173 	do {
2174 		cond_resched();
2175 		next = pmd_addr_end(addr, end);
2176 		ret = unuse_pte_range(vma, pmd, addr, next, type);
2177 		if (ret)
2178 			return ret;
2179 	} while (pmd++, addr = next, addr != end);
2180 	return 0;
2181 }
2182 
2183 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2184 				unsigned long addr, unsigned long end,
2185 				unsigned int type)
2186 {
2187 	pud_t *pud;
2188 	unsigned long next;
2189 	int ret;
2190 
2191 	pud = pud_offset(p4d, addr);
2192 	do {
2193 		next = pud_addr_end(addr, end);
2194 		if (pud_none_or_clear_bad(pud))
2195 			continue;
2196 		ret = unuse_pmd_range(vma, pud, addr, next, type);
2197 		if (ret)
2198 			return ret;
2199 	} while (pud++, addr = next, addr != end);
2200 	return 0;
2201 }
2202 
2203 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2204 				unsigned long addr, unsigned long end,
2205 				unsigned int type)
2206 {
2207 	p4d_t *p4d;
2208 	unsigned long next;
2209 	int ret;
2210 
2211 	p4d = p4d_offset(pgd, addr);
2212 	do {
2213 		next = p4d_addr_end(addr, end);
2214 		if (p4d_none_or_clear_bad(p4d))
2215 			continue;
2216 		ret = unuse_pud_range(vma, p4d, addr, next, type);
2217 		if (ret)
2218 			return ret;
2219 	} while (p4d++, addr = next, addr != end);
2220 	return 0;
2221 }
2222 
2223 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
2224 {
2225 	pgd_t *pgd;
2226 	unsigned long addr, end, next;
2227 	int ret;
2228 
2229 	addr = vma->vm_start;
2230 	end = vma->vm_end;
2231 
2232 	pgd = pgd_offset(vma->vm_mm, addr);
2233 	do {
2234 		next = pgd_addr_end(addr, end);
2235 		if (pgd_none_or_clear_bad(pgd))
2236 			continue;
2237 		ret = unuse_p4d_range(vma, pgd, addr, next, type);
2238 		if (ret)
2239 			return ret;
2240 	} while (pgd++, addr = next, addr != end);
2241 	return 0;
2242 }
2243 
2244 static int unuse_mm(struct mm_struct *mm, unsigned int type)
2245 {
2246 	struct vm_area_struct *vma;
2247 	int ret = 0;
2248 	VMA_ITERATOR(vmi, mm, 0);
2249 
2250 	mmap_read_lock(mm);
2251 	for_each_vma(vmi, vma) {
2252 		if (vma->anon_vma && !is_vm_hugetlb_page(vma)) {
2253 			ret = unuse_vma(vma, type);
2254 			if (ret)
2255 				break;
2256 		}
2257 
2258 		cond_resched();
2259 	}
2260 	mmap_read_unlock(mm);
2261 	return ret;
2262 }
2263 
2264 /*
2265  * Scan swap_map from current position to next entry still in use.
2266  * Return 0 if there are no inuse entries after prev till end of
2267  * the map.
2268  */
2269 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2270 					unsigned int prev)
2271 {
2272 	unsigned int i;
2273 	unsigned char count;
2274 
2275 	/*
2276 	 * No need for swap_lock here: we're just looking
2277 	 * for whether an entry is in use, not modifying it; false
2278 	 * hits are okay, and sys_swapoff() has already prevented new
2279 	 * allocations from this area (while holding swap_lock).
2280 	 */
2281 	for (i = prev + 1; i < si->max; i++) {
2282 		count = READ_ONCE(si->swap_map[i]);
2283 		if (count && swap_count(count) != SWAP_MAP_BAD)
2284 			break;
2285 		if ((i % LATENCY_LIMIT) == 0)
2286 			cond_resched();
2287 	}
2288 
2289 	if (i == si->max)
2290 		i = 0;
2291 
2292 	return i;
2293 }
2294 
2295 static int try_to_unuse(unsigned int type)
2296 {
2297 	struct mm_struct *prev_mm;
2298 	struct mm_struct *mm;
2299 	struct list_head *p;
2300 	int retval = 0;
2301 	struct swap_info_struct *si = swap_info[type];
2302 	struct folio *folio;
2303 	swp_entry_t entry;
2304 	unsigned int i;
2305 
2306 	if (!swap_usage_in_pages(si))
2307 		goto success;
2308 
2309 retry:
2310 	retval = shmem_unuse(type);
2311 	if (retval)
2312 		return retval;
2313 
2314 	prev_mm = &init_mm;
2315 	mmget(prev_mm);
2316 
2317 	spin_lock(&mmlist_lock);
2318 	p = &init_mm.mmlist;
2319 	while (swap_usage_in_pages(si) &&
2320 	       !signal_pending(current) &&
2321 	       (p = p->next) != &init_mm.mmlist) {
2322 
2323 		mm = list_entry(p, struct mm_struct, mmlist);
2324 		if (!mmget_not_zero(mm))
2325 			continue;
2326 		spin_unlock(&mmlist_lock);
2327 		mmput(prev_mm);
2328 		prev_mm = mm;
2329 		retval = unuse_mm(mm, type);
2330 		if (retval) {
2331 			mmput(prev_mm);
2332 			return retval;
2333 		}
2334 
2335 		/*
2336 		 * Make sure that we aren't completely killing
2337 		 * interactive performance.
2338 		 */
2339 		cond_resched();
2340 		spin_lock(&mmlist_lock);
2341 	}
2342 	spin_unlock(&mmlist_lock);
2343 
2344 	mmput(prev_mm);
2345 
2346 	i = 0;
2347 	while (swap_usage_in_pages(si) &&
2348 	       !signal_pending(current) &&
2349 	       (i = find_next_to_unuse(si, i)) != 0) {
2350 
2351 		entry = swp_entry(type, i);
2352 		folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry));
2353 		if (IS_ERR(folio))
2354 			continue;
2355 
2356 		/*
2357 		 * It is conceivable that a racing task removed this folio from
2358 		 * swap cache just before we acquired the page lock. The folio
2359 		 * might even be back in swap cache on another swap area. But
2360 		 * that is okay, folio_free_swap() only removes stale folios.
2361 		 */
2362 		folio_lock(folio);
2363 		folio_wait_writeback(folio);
2364 		folio_free_swap(folio);
2365 		folio_unlock(folio);
2366 		folio_put(folio);
2367 	}
2368 
2369 	/*
2370 	 * Lets check again to see if there are still swap entries in the map.
2371 	 * If yes, we would need to do retry the unuse logic again.
2372 	 * Under global memory pressure, swap entries can be reinserted back
2373 	 * into process space after the mmlist loop above passes over them.
2374 	 *
2375 	 * Limit the number of retries? No: when mmget_not_zero()
2376 	 * above fails, that mm is likely to be freeing swap from
2377 	 * exit_mmap(), which proceeds at its own independent pace;
2378 	 * and even shmem_writeout() could have been preempted after
2379 	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2380 	 * and robust (though cpu-intensive) just to keep retrying.
2381 	 */
2382 	if (swap_usage_in_pages(si)) {
2383 		if (!signal_pending(current))
2384 			goto retry;
2385 		return -EINTR;
2386 	}
2387 
2388 success:
2389 	/*
2390 	 * Make sure that further cleanups after try_to_unuse() returns happen
2391 	 * after swap_range_free() reduces si->inuse_pages to 0.
2392 	 */
2393 	smp_mb();
2394 	return 0;
2395 }
2396 
2397 /*
2398  * After a successful try_to_unuse, if no swap is now in use, we know
2399  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2400  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2401  * added to the mmlist just after page_duplicate - before would be racy.
2402  */
2403 static void drain_mmlist(void)
2404 {
2405 	struct list_head *p, *next;
2406 	unsigned int type;
2407 
2408 	for (type = 0; type < nr_swapfiles; type++)
2409 		if (swap_usage_in_pages(swap_info[type]))
2410 			return;
2411 	spin_lock(&mmlist_lock);
2412 	list_for_each_safe(p, next, &init_mm.mmlist)
2413 		list_del_init(p);
2414 	spin_unlock(&mmlist_lock);
2415 }
2416 
2417 /*
2418  * Free all of a swapdev's extent information
2419  */
2420 static void destroy_swap_extents(struct swap_info_struct *sis)
2421 {
2422 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2423 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2424 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2425 
2426 		rb_erase(rb, &sis->swap_extent_root);
2427 		kfree(se);
2428 	}
2429 
2430 	if (sis->flags & SWP_ACTIVATED) {
2431 		struct file *swap_file = sis->swap_file;
2432 		struct address_space *mapping = swap_file->f_mapping;
2433 
2434 		sis->flags &= ~SWP_ACTIVATED;
2435 		if (mapping->a_ops->swap_deactivate)
2436 			mapping->a_ops->swap_deactivate(swap_file);
2437 	}
2438 }
2439 
2440 /*
2441  * Add a block range (and the corresponding page range) into this swapdev's
2442  * extent tree.
2443  *
2444  * This function rather assumes that it is called in ascending page order.
2445  */
2446 int
2447 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2448 		unsigned long nr_pages, sector_t start_block)
2449 {
2450 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2451 	struct swap_extent *se;
2452 	struct swap_extent *new_se;
2453 
2454 	/*
2455 	 * place the new node at the right most since the
2456 	 * function is called in ascending page order.
2457 	 */
2458 	while (*link) {
2459 		parent = *link;
2460 		link = &parent->rb_right;
2461 	}
2462 
2463 	if (parent) {
2464 		se = rb_entry(parent, struct swap_extent, rb_node);
2465 		BUG_ON(se->start_page + se->nr_pages != start_page);
2466 		if (se->start_block + se->nr_pages == start_block) {
2467 			/* Merge it */
2468 			se->nr_pages += nr_pages;
2469 			return 0;
2470 		}
2471 	}
2472 
2473 	/* No merge, insert a new extent. */
2474 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2475 	if (new_se == NULL)
2476 		return -ENOMEM;
2477 	new_se->start_page = start_page;
2478 	new_se->nr_pages = nr_pages;
2479 	new_se->start_block = start_block;
2480 
2481 	rb_link_node(&new_se->rb_node, parent, link);
2482 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2483 	return 1;
2484 }
2485 EXPORT_SYMBOL_GPL(add_swap_extent);
2486 
2487 /*
2488  * A `swap extent' is a simple thing which maps a contiguous range of pages
2489  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2490  * built at swapon time and is then used at swap_writepage/swap_read_folio
2491  * time for locating where on disk a page belongs.
2492  *
2493  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2494  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2495  * swap files identically.
2496  *
2497  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2498  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2499  * swapfiles are handled *identically* after swapon time.
2500  *
2501  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2502  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2503  * blocks are found which do not fall within the PAGE_SIZE alignment
2504  * requirements, they are simply tossed out - we will never use those blocks
2505  * for swapping.
2506  *
2507  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2508  * prevents users from writing to the swap device, which will corrupt memory.
2509  *
2510  * The amount of disk space which a single swap extent represents varies.
2511  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2512  * extents in the rbtree. - akpm.
2513  */
2514 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2515 {
2516 	struct file *swap_file = sis->swap_file;
2517 	struct address_space *mapping = swap_file->f_mapping;
2518 	struct inode *inode = mapping->host;
2519 	int ret;
2520 
2521 	if (S_ISBLK(inode->i_mode)) {
2522 		ret = add_swap_extent(sis, 0, sis->max, 0);
2523 		*span = sis->pages;
2524 		return ret;
2525 	}
2526 
2527 	if (mapping->a_ops->swap_activate) {
2528 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2529 		if (ret < 0)
2530 			return ret;
2531 		sis->flags |= SWP_ACTIVATED;
2532 		if ((sis->flags & SWP_FS_OPS) &&
2533 		    sio_pool_init() != 0) {
2534 			destroy_swap_extents(sis);
2535 			return -ENOMEM;
2536 		}
2537 		return ret;
2538 	}
2539 
2540 	return generic_swapfile_activate(sis, swap_file, span);
2541 }
2542 
2543 static int swap_node(struct swap_info_struct *si)
2544 {
2545 	struct block_device *bdev;
2546 
2547 	if (si->bdev)
2548 		bdev = si->bdev;
2549 	else
2550 		bdev = si->swap_file->f_inode->i_sb->s_bdev;
2551 
2552 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2553 }
2554 
2555 static void setup_swap_info(struct swap_info_struct *si, int prio,
2556 			    unsigned char *swap_map,
2557 			    struct swap_cluster_info *cluster_info,
2558 			    unsigned long *zeromap)
2559 {
2560 	int i;
2561 
2562 	if (prio >= 0)
2563 		si->prio = prio;
2564 	else
2565 		si->prio = --least_priority;
2566 	/*
2567 	 * the plist prio is negated because plist ordering is
2568 	 * low-to-high, while swap ordering is high-to-low
2569 	 */
2570 	si->list.prio = -si->prio;
2571 	for_each_node(i) {
2572 		if (si->prio >= 0)
2573 			si->avail_lists[i].prio = -si->prio;
2574 		else {
2575 			if (swap_node(si) == i)
2576 				si->avail_lists[i].prio = 1;
2577 			else
2578 				si->avail_lists[i].prio = -si->prio;
2579 		}
2580 	}
2581 	si->swap_map = swap_map;
2582 	si->cluster_info = cluster_info;
2583 	si->zeromap = zeromap;
2584 }
2585 
2586 static void _enable_swap_info(struct swap_info_struct *si)
2587 {
2588 	atomic_long_add(si->pages, &nr_swap_pages);
2589 	total_swap_pages += si->pages;
2590 
2591 	assert_spin_locked(&swap_lock);
2592 	/*
2593 	 * both lists are plists, and thus priority ordered.
2594 	 * swap_active_head needs to be priority ordered for swapoff(),
2595 	 * which on removal of any swap_info_struct with an auto-assigned
2596 	 * (i.e. negative) priority increments the auto-assigned priority
2597 	 * of any lower-priority swap_info_structs.
2598 	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2599 	 * which allocates swap pages from the highest available priority
2600 	 * swap_info_struct.
2601 	 */
2602 	plist_add(&si->list, &swap_active_head);
2603 
2604 	/* Add back to available list */
2605 	add_to_avail_list(si, true);
2606 }
2607 
2608 static void enable_swap_info(struct swap_info_struct *si, int prio,
2609 				unsigned char *swap_map,
2610 				struct swap_cluster_info *cluster_info,
2611 				unsigned long *zeromap)
2612 {
2613 	spin_lock(&swap_lock);
2614 	spin_lock(&si->lock);
2615 	setup_swap_info(si, prio, swap_map, cluster_info, zeromap);
2616 	spin_unlock(&si->lock);
2617 	spin_unlock(&swap_lock);
2618 	/*
2619 	 * Finished initializing swap device, now it's safe to reference it.
2620 	 */
2621 	percpu_ref_resurrect(&si->users);
2622 	spin_lock(&swap_lock);
2623 	spin_lock(&si->lock);
2624 	_enable_swap_info(si);
2625 	spin_unlock(&si->lock);
2626 	spin_unlock(&swap_lock);
2627 }
2628 
2629 static void reinsert_swap_info(struct swap_info_struct *si)
2630 {
2631 	spin_lock(&swap_lock);
2632 	spin_lock(&si->lock);
2633 	setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap);
2634 	_enable_swap_info(si);
2635 	spin_unlock(&si->lock);
2636 	spin_unlock(&swap_lock);
2637 }
2638 
2639 /*
2640  * Called after clearing SWP_WRITEOK, ensures cluster_alloc_range
2641  * see the updated flags, so there will be no more allocations.
2642  */
2643 static void wait_for_allocation(struct swap_info_struct *si)
2644 {
2645 	unsigned long offset;
2646 	unsigned long end = ALIGN(si->max, SWAPFILE_CLUSTER);
2647 	struct swap_cluster_info *ci;
2648 
2649 	BUG_ON(si->flags & SWP_WRITEOK);
2650 
2651 	for (offset = 0; offset < end; offset += SWAPFILE_CLUSTER) {
2652 		ci = lock_cluster(si, offset);
2653 		unlock_cluster(ci);
2654 	}
2655 }
2656 
2657 /*
2658  * Called after swap device's reference count is dead, so
2659  * neither scan nor allocation will use it.
2660  */
2661 static void flush_percpu_swap_cluster(struct swap_info_struct *si)
2662 {
2663 	int cpu, i;
2664 	struct swap_info_struct **pcp_si;
2665 
2666 	for_each_possible_cpu(cpu) {
2667 		pcp_si = per_cpu_ptr(percpu_swap_cluster.si, cpu);
2668 		/*
2669 		 * Invalidate the percpu swap cluster cache, si->users
2670 		 * is dead, so no new user will point to it, just flush
2671 		 * any existing user.
2672 		 */
2673 		for (i = 0; i < SWAP_NR_ORDERS; i++)
2674 			cmpxchg(&pcp_si[i], si, NULL);
2675 	}
2676 }
2677 
2678 
2679 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2680 {
2681 	struct swap_info_struct *p = NULL;
2682 	unsigned char *swap_map;
2683 	unsigned long *zeromap;
2684 	struct swap_cluster_info *cluster_info;
2685 	struct file *swap_file, *victim;
2686 	struct address_space *mapping;
2687 	struct inode *inode;
2688 	struct filename *pathname;
2689 	int err, found = 0;
2690 
2691 	if (!capable(CAP_SYS_ADMIN))
2692 		return -EPERM;
2693 
2694 	BUG_ON(!current->mm);
2695 
2696 	pathname = getname(specialfile);
2697 	if (IS_ERR(pathname))
2698 		return PTR_ERR(pathname);
2699 
2700 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2701 	err = PTR_ERR(victim);
2702 	if (IS_ERR(victim))
2703 		goto out;
2704 
2705 	mapping = victim->f_mapping;
2706 	spin_lock(&swap_lock);
2707 	plist_for_each_entry(p, &swap_active_head, list) {
2708 		if (p->flags & SWP_WRITEOK) {
2709 			if (p->swap_file->f_mapping == mapping) {
2710 				found = 1;
2711 				break;
2712 			}
2713 		}
2714 	}
2715 	if (!found) {
2716 		err = -EINVAL;
2717 		spin_unlock(&swap_lock);
2718 		goto out_dput;
2719 	}
2720 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2721 		vm_unacct_memory(p->pages);
2722 	else {
2723 		err = -ENOMEM;
2724 		spin_unlock(&swap_lock);
2725 		goto out_dput;
2726 	}
2727 	spin_lock(&p->lock);
2728 	del_from_avail_list(p, true);
2729 	if (p->prio < 0) {
2730 		struct swap_info_struct *si = p;
2731 		int nid;
2732 
2733 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2734 			si->prio++;
2735 			si->list.prio--;
2736 			for_each_node(nid) {
2737 				if (si->avail_lists[nid].prio != 1)
2738 					si->avail_lists[nid].prio--;
2739 			}
2740 		}
2741 		least_priority++;
2742 	}
2743 	plist_del(&p->list, &swap_active_head);
2744 	atomic_long_sub(p->pages, &nr_swap_pages);
2745 	total_swap_pages -= p->pages;
2746 	spin_unlock(&p->lock);
2747 	spin_unlock(&swap_lock);
2748 
2749 	wait_for_allocation(p);
2750 
2751 	set_current_oom_origin();
2752 	err = try_to_unuse(p->type);
2753 	clear_current_oom_origin();
2754 
2755 	if (err) {
2756 		/* re-insert swap space back into swap_list */
2757 		reinsert_swap_info(p);
2758 		goto out_dput;
2759 	}
2760 
2761 	/*
2762 	 * Wait for swap operations protected by get/put_swap_device()
2763 	 * to complete.  Because of synchronize_rcu() here, all swap
2764 	 * operations protected by RCU reader side lock (including any
2765 	 * spinlock) will be waited too.  This makes it easy to
2766 	 * prevent folio_test_swapcache() and the following swap cache
2767 	 * operations from racing with swapoff.
2768 	 */
2769 	percpu_ref_kill(&p->users);
2770 	synchronize_rcu();
2771 	wait_for_completion(&p->comp);
2772 
2773 	flush_work(&p->discard_work);
2774 	flush_work(&p->reclaim_work);
2775 	flush_percpu_swap_cluster(p);
2776 
2777 	destroy_swap_extents(p);
2778 	if (p->flags & SWP_CONTINUED)
2779 		free_swap_count_continuations(p);
2780 
2781 	if (!p->bdev || !bdev_nonrot(p->bdev))
2782 		atomic_dec(&nr_rotate_swap);
2783 
2784 	mutex_lock(&swapon_mutex);
2785 	spin_lock(&swap_lock);
2786 	spin_lock(&p->lock);
2787 	drain_mmlist();
2788 
2789 	swap_file = p->swap_file;
2790 	p->swap_file = NULL;
2791 	p->max = 0;
2792 	swap_map = p->swap_map;
2793 	p->swap_map = NULL;
2794 	zeromap = p->zeromap;
2795 	p->zeromap = NULL;
2796 	cluster_info = p->cluster_info;
2797 	p->cluster_info = NULL;
2798 	spin_unlock(&p->lock);
2799 	spin_unlock(&swap_lock);
2800 	arch_swap_invalidate_area(p->type);
2801 	zswap_swapoff(p->type);
2802 	mutex_unlock(&swapon_mutex);
2803 	kfree(p->global_cluster);
2804 	p->global_cluster = NULL;
2805 	vfree(swap_map);
2806 	kvfree(zeromap);
2807 	kvfree(cluster_info);
2808 	/* Destroy swap account information */
2809 	swap_cgroup_swapoff(p->type);
2810 	exit_swap_address_space(p->type);
2811 
2812 	inode = mapping->host;
2813 
2814 	inode_lock(inode);
2815 	inode->i_flags &= ~S_SWAPFILE;
2816 	inode_unlock(inode);
2817 	filp_close(swap_file, NULL);
2818 
2819 	/*
2820 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2821 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2822 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2823 	 */
2824 	spin_lock(&swap_lock);
2825 	p->flags = 0;
2826 	spin_unlock(&swap_lock);
2827 
2828 	err = 0;
2829 	atomic_inc(&proc_poll_event);
2830 	wake_up_interruptible(&proc_poll_wait);
2831 
2832 out_dput:
2833 	filp_close(victim, NULL);
2834 out:
2835 	putname(pathname);
2836 	return err;
2837 }
2838 
2839 #ifdef CONFIG_PROC_FS
2840 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2841 {
2842 	struct seq_file *seq = file->private_data;
2843 
2844 	poll_wait(file, &proc_poll_wait, wait);
2845 
2846 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2847 		seq->poll_event = atomic_read(&proc_poll_event);
2848 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2849 	}
2850 
2851 	return EPOLLIN | EPOLLRDNORM;
2852 }
2853 
2854 /* iterator */
2855 static void *swap_start(struct seq_file *swap, loff_t *pos)
2856 {
2857 	struct swap_info_struct *si;
2858 	int type;
2859 	loff_t l = *pos;
2860 
2861 	mutex_lock(&swapon_mutex);
2862 
2863 	if (!l)
2864 		return SEQ_START_TOKEN;
2865 
2866 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2867 		if (!(si->flags & SWP_USED) || !si->swap_map)
2868 			continue;
2869 		if (!--l)
2870 			return si;
2871 	}
2872 
2873 	return NULL;
2874 }
2875 
2876 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2877 {
2878 	struct swap_info_struct *si = v;
2879 	int type;
2880 
2881 	if (v == SEQ_START_TOKEN)
2882 		type = 0;
2883 	else
2884 		type = si->type + 1;
2885 
2886 	++(*pos);
2887 	for (; (si = swap_type_to_swap_info(type)); type++) {
2888 		if (!(si->flags & SWP_USED) || !si->swap_map)
2889 			continue;
2890 		return si;
2891 	}
2892 
2893 	return NULL;
2894 }
2895 
2896 static void swap_stop(struct seq_file *swap, void *v)
2897 {
2898 	mutex_unlock(&swapon_mutex);
2899 }
2900 
2901 static int swap_show(struct seq_file *swap, void *v)
2902 {
2903 	struct swap_info_struct *si = v;
2904 	struct file *file;
2905 	int len;
2906 	unsigned long bytes, inuse;
2907 
2908 	if (si == SEQ_START_TOKEN) {
2909 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2910 		return 0;
2911 	}
2912 
2913 	bytes = K(si->pages);
2914 	inuse = K(swap_usage_in_pages(si));
2915 
2916 	file = si->swap_file;
2917 	len = seq_file_path(swap, file, " \t\n\\");
2918 	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2919 			len < 40 ? 40 - len : 1, " ",
2920 			S_ISBLK(file_inode(file)->i_mode) ?
2921 				"partition" : "file\t",
2922 			bytes, bytes < 10000000 ? "\t" : "",
2923 			inuse, inuse < 10000000 ? "\t" : "",
2924 			si->prio);
2925 	return 0;
2926 }
2927 
2928 static const struct seq_operations swaps_op = {
2929 	.start =	swap_start,
2930 	.next =		swap_next,
2931 	.stop =		swap_stop,
2932 	.show =		swap_show
2933 };
2934 
2935 static int swaps_open(struct inode *inode, struct file *file)
2936 {
2937 	struct seq_file *seq;
2938 	int ret;
2939 
2940 	ret = seq_open(file, &swaps_op);
2941 	if (ret)
2942 		return ret;
2943 
2944 	seq = file->private_data;
2945 	seq->poll_event = atomic_read(&proc_poll_event);
2946 	return 0;
2947 }
2948 
2949 static const struct proc_ops swaps_proc_ops = {
2950 	.proc_flags	= PROC_ENTRY_PERMANENT,
2951 	.proc_open	= swaps_open,
2952 	.proc_read	= seq_read,
2953 	.proc_lseek	= seq_lseek,
2954 	.proc_release	= seq_release,
2955 	.proc_poll	= swaps_poll,
2956 };
2957 
2958 static int __init procswaps_init(void)
2959 {
2960 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2961 	return 0;
2962 }
2963 __initcall(procswaps_init);
2964 #endif /* CONFIG_PROC_FS */
2965 
2966 #ifdef MAX_SWAPFILES_CHECK
2967 static int __init max_swapfiles_check(void)
2968 {
2969 	MAX_SWAPFILES_CHECK();
2970 	return 0;
2971 }
2972 late_initcall(max_swapfiles_check);
2973 #endif
2974 
2975 static struct swap_info_struct *alloc_swap_info(void)
2976 {
2977 	struct swap_info_struct *p;
2978 	struct swap_info_struct *defer = NULL;
2979 	unsigned int type;
2980 	int i;
2981 
2982 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2983 	if (!p)
2984 		return ERR_PTR(-ENOMEM);
2985 
2986 	if (percpu_ref_init(&p->users, swap_users_ref_free,
2987 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2988 		kvfree(p);
2989 		return ERR_PTR(-ENOMEM);
2990 	}
2991 
2992 	spin_lock(&swap_lock);
2993 	for (type = 0; type < nr_swapfiles; type++) {
2994 		if (!(swap_info[type]->flags & SWP_USED))
2995 			break;
2996 	}
2997 	if (type >= MAX_SWAPFILES) {
2998 		spin_unlock(&swap_lock);
2999 		percpu_ref_exit(&p->users);
3000 		kvfree(p);
3001 		return ERR_PTR(-EPERM);
3002 	}
3003 	if (type >= nr_swapfiles) {
3004 		p->type = type;
3005 		/*
3006 		 * Publish the swap_info_struct after initializing it.
3007 		 * Note that kvzalloc() above zeroes all its fields.
3008 		 */
3009 		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
3010 		nr_swapfiles++;
3011 	} else {
3012 		defer = p;
3013 		p = swap_info[type];
3014 		/*
3015 		 * Do not memset this entry: a racing procfs swap_next()
3016 		 * would be relying on p->type to remain valid.
3017 		 */
3018 	}
3019 	p->swap_extent_root = RB_ROOT;
3020 	plist_node_init(&p->list, 0);
3021 	for_each_node(i)
3022 		plist_node_init(&p->avail_lists[i], 0);
3023 	p->flags = SWP_USED;
3024 	spin_unlock(&swap_lock);
3025 	if (defer) {
3026 		percpu_ref_exit(&defer->users);
3027 		kvfree(defer);
3028 	}
3029 	spin_lock_init(&p->lock);
3030 	spin_lock_init(&p->cont_lock);
3031 	atomic_long_set(&p->inuse_pages, SWAP_USAGE_OFFLIST_BIT);
3032 	init_completion(&p->comp);
3033 
3034 	return p;
3035 }
3036 
3037 static int claim_swapfile(struct swap_info_struct *si, struct inode *inode)
3038 {
3039 	if (S_ISBLK(inode->i_mode)) {
3040 		si->bdev = I_BDEV(inode);
3041 		/*
3042 		 * Zoned block devices contain zones that have a sequential
3043 		 * write only restriction.  Hence zoned block devices are not
3044 		 * suitable for swapping.  Disallow them here.
3045 		 */
3046 		if (bdev_is_zoned(si->bdev))
3047 			return -EINVAL;
3048 		si->flags |= SWP_BLKDEV;
3049 	} else if (S_ISREG(inode->i_mode)) {
3050 		si->bdev = inode->i_sb->s_bdev;
3051 	}
3052 
3053 	return 0;
3054 }
3055 
3056 
3057 /*
3058  * Find out how many pages are allowed for a single swap device. There
3059  * are two limiting factors:
3060  * 1) the number of bits for the swap offset in the swp_entry_t type, and
3061  * 2) the number of bits in the swap pte, as defined by the different
3062  * architectures.
3063  *
3064  * In order to find the largest possible bit mask, a swap entry with
3065  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
3066  * decoded to a swp_entry_t again, and finally the swap offset is
3067  * extracted.
3068  *
3069  * This will mask all the bits from the initial ~0UL mask that can't
3070  * be encoded in either the swp_entry_t or the architecture definition
3071  * of a swap pte.
3072  */
3073 unsigned long generic_max_swapfile_size(void)
3074 {
3075 	return swp_offset(pte_to_swp_entry(
3076 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
3077 }
3078 
3079 /* Can be overridden by an architecture for additional checks. */
3080 __weak unsigned long arch_max_swapfile_size(void)
3081 {
3082 	return generic_max_swapfile_size();
3083 }
3084 
3085 static unsigned long read_swap_header(struct swap_info_struct *si,
3086 					union swap_header *swap_header,
3087 					struct inode *inode)
3088 {
3089 	int i;
3090 	unsigned long maxpages;
3091 	unsigned long swapfilepages;
3092 	unsigned long last_page;
3093 
3094 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
3095 		pr_err("Unable to find swap-space signature\n");
3096 		return 0;
3097 	}
3098 
3099 	/* swap partition endianness hack... */
3100 	if (swab32(swap_header->info.version) == 1) {
3101 		swab32s(&swap_header->info.version);
3102 		swab32s(&swap_header->info.last_page);
3103 		swab32s(&swap_header->info.nr_badpages);
3104 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3105 			return 0;
3106 		for (i = 0; i < swap_header->info.nr_badpages; i++)
3107 			swab32s(&swap_header->info.badpages[i]);
3108 	}
3109 	/* Check the swap header's sub-version */
3110 	if (swap_header->info.version != 1) {
3111 		pr_warn("Unable to handle swap header version %d\n",
3112 			swap_header->info.version);
3113 		return 0;
3114 	}
3115 
3116 	maxpages = swapfile_maximum_size;
3117 	last_page = swap_header->info.last_page;
3118 	if (!last_page) {
3119 		pr_warn("Empty swap-file\n");
3120 		return 0;
3121 	}
3122 	if (last_page > maxpages) {
3123 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3124 			K(maxpages), K(last_page));
3125 	}
3126 	if (maxpages > last_page) {
3127 		maxpages = last_page + 1;
3128 		/* p->max is an unsigned int: don't overflow it */
3129 		if ((unsigned int)maxpages == 0)
3130 			maxpages = UINT_MAX;
3131 	}
3132 
3133 	if (!maxpages)
3134 		return 0;
3135 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3136 	if (swapfilepages && maxpages > swapfilepages) {
3137 		pr_warn("Swap area shorter than signature indicates\n");
3138 		return 0;
3139 	}
3140 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3141 		return 0;
3142 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3143 		return 0;
3144 
3145 	return maxpages;
3146 }
3147 
3148 static int setup_swap_map(struct swap_info_struct *si,
3149 			  union swap_header *swap_header,
3150 			  unsigned char *swap_map,
3151 			  unsigned long maxpages)
3152 {
3153 	unsigned long i;
3154 
3155 	swap_map[0] = SWAP_MAP_BAD; /* omit header page */
3156 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3157 		unsigned int page_nr = swap_header->info.badpages[i];
3158 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3159 			return -EINVAL;
3160 		if (page_nr < maxpages) {
3161 			swap_map[page_nr] = SWAP_MAP_BAD;
3162 			si->pages--;
3163 		}
3164 	}
3165 
3166 	if (!si->pages) {
3167 		pr_warn("Empty swap-file\n");
3168 		return -EINVAL;
3169 	}
3170 
3171 	return 0;
3172 }
3173 
3174 #define SWAP_CLUSTER_INFO_COLS						\
3175 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3176 #define SWAP_CLUSTER_SPACE_COLS						\
3177 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3178 #define SWAP_CLUSTER_COLS						\
3179 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3180 
3181 static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si,
3182 						union swap_header *swap_header,
3183 						unsigned long maxpages)
3184 {
3185 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3186 	struct swap_cluster_info *cluster_info;
3187 	unsigned long i, j, idx;
3188 	int err = -ENOMEM;
3189 
3190 	cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL);
3191 	if (!cluster_info)
3192 		goto err;
3193 
3194 	for (i = 0; i < nr_clusters; i++)
3195 		spin_lock_init(&cluster_info[i].lock);
3196 
3197 	if (!(si->flags & SWP_SOLIDSTATE)) {
3198 		si->global_cluster = kmalloc(sizeof(*si->global_cluster),
3199 				     GFP_KERNEL);
3200 		if (!si->global_cluster)
3201 			goto err_free;
3202 		for (i = 0; i < SWAP_NR_ORDERS; i++)
3203 			si->global_cluster->next[i] = SWAP_ENTRY_INVALID;
3204 		spin_lock_init(&si->global_cluster_lock);
3205 	}
3206 
3207 	/*
3208 	 * Mark unusable pages as unavailable. The clusters aren't
3209 	 * marked free yet, so no list operations are involved yet.
3210 	 *
3211 	 * See setup_swap_map(): header page, bad pages,
3212 	 * and the EOF part of the last cluster.
3213 	 */
3214 	inc_cluster_info_page(si, cluster_info, 0);
3215 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3216 		unsigned int page_nr = swap_header->info.badpages[i];
3217 
3218 		if (page_nr >= maxpages)
3219 			continue;
3220 		inc_cluster_info_page(si, cluster_info, page_nr);
3221 	}
3222 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3223 		inc_cluster_info_page(si, cluster_info, i);
3224 
3225 	INIT_LIST_HEAD(&si->free_clusters);
3226 	INIT_LIST_HEAD(&si->full_clusters);
3227 	INIT_LIST_HEAD(&si->discard_clusters);
3228 
3229 	for (i = 0; i < SWAP_NR_ORDERS; i++) {
3230 		INIT_LIST_HEAD(&si->nonfull_clusters[i]);
3231 		INIT_LIST_HEAD(&si->frag_clusters[i]);
3232 	}
3233 
3234 	/*
3235 	 * Reduce false cache line sharing between cluster_info and
3236 	 * sharing same address space.
3237 	 */
3238 	for (j = 0; j < SWAP_CLUSTER_COLS; j++) {
3239 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3240 			struct swap_cluster_info *ci;
3241 			idx = i * SWAP_CLUSTER_COLS + j;
3242 			ci = cluster_info + idx;
3243 			if (idx >= nr_clusters)
3244 				continue;
3245 			if (ci->count) {
3246 				ci->flags = CLUSTER_FLAG_NONFULL;
3247 				list_add_tail(&ci->list, &si->nonfull_clusters[0]);
3248 				continue;
3249 			}
3250 			ci->flags = CLUSTER_FLAG_FREE;
3251 			list_add_tail(&ci->list, &si->free_clusters);
3252 		}
3253 	}
3254 
3255 	return cluster_info;
3256 
3257 err_free:
3258 	kvfree(cluster_info);
3259 err:
3260 	return ERR_PTR(err);
3261 }
3262 
3263 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3264 {
3265 	struct swap_info_struct *si;
3266 	struct filename *name;
3267 	struct file *swap_file = NULL;
3268 	struct address_space *mapping;
3269 	struct dentry *dentry;
3270 	int prio;
3271 	int error;
3272 	union swap_header *swap_header;
3273 	int nr_extents;
3274 	sector_t span;
3275 	unsigned long maxpages;
3276 	unsigned char *swap_map = NULL;
3277 	unsigned long *zeromap = NULL;
3278 	struct swap_cluster_info *cluster_info = NULL;
3279 	struct folio *folio = NULL;
3280 	struct inode *inode = NULL;
3281 	bool inced_nr_rotate_swap = false;
3282 
3283 	if (swap_flags & ~SWAP_FLAGS_VALID)
3284 		return -EINVAL;
3285 
3286 	if (!capable(CAP_SYS_ADMIN))
3287 		return -EPERM;
3288 
3289 	if (!swap_avail_heads)
3290 		return -ENOMEM;
3291 
3292 	si = alloc_swap_info();
3293 	if (IS_ERR(si))
3294 		return PTR_ERR(si);
3295 
3296 	INIT_WORK(&si->discard_work, swap_discard_work);
3297 	INIT_WORK(&si->reclaim_work, swap_reclaim_work);
3298 
3299 	name = getname(specialfile);
3300 	if (IS_ERR(name)) {
3301 		error = PTR_ERR(name);
3302 		name = NULL;
3303 		goto bad_swap;
3304 	}
3305 	swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
3306 	if (IS_ERR(swap_file)) {
3307 		error = PTR_ERR(swap_file);
3308 		swap_file = NULL;
3309 		goto bad_swap;
3310 	}
3311 
3312 	si->swap_file = swap_file;
3313 	mapping = swap_file->f_mapping;
3314 	dentry = swap_file->f_path.dentry;
3315 	inode = mapping->host;
3316 
3317 	error = claim_swapfile(si, inode);
3318 	if (unlikely(error))
3319 		goto bad_swap;
3320 
3321 	inode_lock(inode);
3322 	if (d_unlinked(dentry) || cant_mount(dentry)) {
3323 		error = -ENOENT;
3324 		goto bad_swap_unlock_inode;
3325 	}
3326 	if (IS_SWAPFILE(inode)) {
3327 		error = -EBUSY;
3328 		goto bad_swap_unlock_inode;
3329 	}
3330 
3331 	/*
3332 	 * The swap subsystem needs a major overhaul to support this.
3333 	 * It doesn't work yet so just disable it for now.
3334 	 */
3335 	if (mapping_min_folio_order(mapping) > 0) {
3336 		error = -EINVAL;
3337 		goto bad_swap_unlock_inode;
3338 	}
3339 
3340 	/*
3341 	 * Read the swap header.
3342 	 */
3343 	if (!mapping->a_ops->read_folio) {
3344 		error = -EINVAL;
3345 		goto bad_swap_unlock_inode;
3346 	}
3347 	folio = read_mapping_folio(mapping, 0, swap_file);
3348 	if (IS_ERR(folio)) {
3349 		error = PTR_ERR(folio);
3350 		goto bad_swap_unlock_inode;
3351 	}
3352 	swap_header = kmap_local_folio(folio, 0);
3353 
3354 	maxpages = read_swap_header(si, swap_header, inode);
3355 	if (unlikely(!maxpages)) {
3356 		error = -EINVAL;
3357 		goto bad_swap_unlock_inode;
3358 	}
3359 
3360 	si->max = maxpages;
3361 	si->pages = maxpages - 1;
3362 	nr_extents = setup_swap_extents(si, &span);
3363 	if (nr_extents < 0) {
3364 		error = nr_extents;
3365 		goto bad_swap_unlock_inode;
3366 	}
3367 	if (si->pages != si->max - 1) {
3368 		pr_err("swap:%u != (max:%u - 1)\n", si->pages, si->max);
3369 		error = -EINVAL;
3370 		goto bad_swap_unlock_inode;
3371 	}
3372 
3373 	maxpages = si->max;
3374 
3375 	/* OK, set up the swap map and apply the bad block list */
3376 	swap_map = vzalloc(maxpages);
3377 	if (!swap_map) {
3378 		error = -ENOMEM;
3379 		goto bad_swap_unlock_inode;
3380 	}
3381 
3382 	error = swap_cgroup_swapon(si->type, maxpages);
3383 	if (error)
3384 		goto bad_swap_unlock_inode;
3385 
3386 	error = setup_swap_map(si, swap_header, swap_map, maxpages);
3387 	if (error)
3388 		goto bad_swap_unlock_inode;
3389 
3390 	/*
3391 	 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might
3392 	 * be above MAX_PAGE_ORDER incase of a large swap file.
3393 	 */
3394 	zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long),
3395 				    GFP_KERNEL | __GFP_ZERO);
3396 	if (!zeromap) {
3397 		error = -ENOMEM;
3398 		goto bad_swap_unlock_inode;
3399 	}
3400 
3401 	if (si->bdev && bdev_stable_writes(si->bdev))
3402 		si->flags |= SWP_STABLE_WRITES;
3403 
3404 	if (si->bdev && bdev_synchronous(si->bdev))
3405 		si->flags |= SWP_SYNCHRONOUS_IO;
3406 
3407 	if (si->bdev && bdev_nonrot(si->bdev)) {
3408 		si->flags |= SWP_SOLIDSTATE;
3409 	} else {
3410 		atomic_inc(&nr_rotate_swap);
3411 		inced_nr_rotate_swap = true;
3412 	}
3413 
3414 	cluster_info = setup_clusters(si, swap_header, maxpages);
3415 	if (IS_ERR(cluster_info)) {
3416 		error = PTR_ERR(cluster_info);
3417 		cluster_info = NULL;
3418 		goto bad_swap_unlock_inode;
3419 	}
3420 
3421 	if ((swap_flags & SWAP_FLAG_DISCARD) &&
3422 	    si->bdev && bdev_max_discard_sectors(si->bdev)) {
3423 		/*
3424 		 * When discard is enabled for swap with no particular
3425 		 * policy flagged, we set all swap discard flags here in
3426 		 * order to sustain backward compatibility with older
3427 		 * swapon(8) releases.
3428 		 */
3429 		si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3430 			     SWP_PAGE_DISCARD);
3431 
3432 		/*
3433 		 * By flagging sys_swapon, a sysadmin can tell us to
3434 		 * either do single-time area discards only, or to just
3435 		 * perform discards for released swap page-clusters.
3436 		 * Now it's time to adjust the p->flags accordingly.
3437 		 */
3438 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3439 			si->flags &= ~SWP_PAGE_DISCARD;
3440 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3441 			si->flags &= ~SWP_AREA_DISCARD;
3442 
3443 		/* issue a swapon-time discard if it's still required */
3444 		if (si->flags & SWP_AREA_DISCARD) {
3445 			int err = discard_swap(si);
3446 			if (unlikely(err))
3447 				pr_err("swapon: discard_swap(%p): %d\n",
3448 					si, err);
3449 		}
3450 	}
3451 
3452 	error = init_swap_address_space(si->type, maxpages);
3453 	if (error)
3454 		goto bad_swap_unlock_inode;
3455 
3456 	error = zswap_swapon(si->type, maxpages);
3457 	if (error)
3458 		goto free_swap_address_space;
3459 
3460 	/*
3461 	 * Flush any pending IO and dirty mappings before we start using this
3462 	 * swap device.
3463 	 */
3464 	inode->i_flags |= S_SWAPFILE;
3465 	error = inode_drain_writes(inode);
3466 	if (error) {
3467 		inode->i_flags &= ~S_SWAPFILE;
3468 		goto free_swap_zswap;
3469 	}
3470 
3471 	mutex_lock(&swapon_mutex);
3472 	prio = -1;
3473 	if (swap_flags & SWAP_FLAG_PREFER)
3474 		prio = swap_flags & SWAP_FLAG_PRIO_MASK;
3475 	enable_swap_info(si, prio, swap_map, cluster_info, zeromap);
3476 
3477 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3478 		K(si->pages), name->name, si->prio, nr_extents,
3479 		K((unsigned long long)span),
3480 		(si->flags & SWP_SOLIDSTATE) ? "SS" : "",
3481 		(si->flags & SWP_DISCARDABLE) ? "D" : "",
3482 		(si->flags & SWP_AREA_DISCARD) ? "s" : "",
3483 		(si->flags & SWP_PAGE_DISCARD) ? "c" : "");
3484 
3485 	mutex_unlock(&swapon_mutex);
3486 	atomic_inc(&proc_poll_event);
3487 	wake_up_interruptible(&proc_poll_wait);
3488 
3489 	error = 0;
3490 	goto out;
3491 free_swap_zswap:
3492 	zswap_swapoff(si->type);
3493 free_swap_address_space:
3494 	exit_swap_address_space(si->type);
3495 bad_swap_unlock_inode:
3496 	inode_unlock(inode);
3497 bad_swap:
3498 	kfree(si->global_cluster);
3499 	si->global_cluster = NULL;
3500 	inode = NULL;
3501 	destroy_swap_extents(si);
3502 	swap_cgroup_swapoff(si->type);
3503 	spin_lock(&swap_lock);
3504 	si->swap_file = NULL;
3505 	si->flags = 0;
3506 	spin_unlock(&swap_lock);
3507 	vfree(swap_map);
3508 	kvfree(zeromap);
3509 	kvfree(cluster_info);
3510 	if (inced_nr_rotate_swap)
3511 		atomic_dec(&nr_rotate_swap);
3512 	if (swap_file)
3513 		filp_close(swap_file, NULL);
3514 out:
3515 	if (!IS_ERR_OR_NULL(folio))
3516 		folio_release_kmap(folio, swap_header);
3517 	if (name)
3518 		putname(name);
3519 	if (inode)
3520 		inode_unlock(inode);
3521 	return error;
3522 }
3523 
3524 void si_swapinfo(struct sysinfo *val)
3525 {
3526 	unsigned int type;
3527 	unsigned long nr_to_be_unused = 0;
3528 
3529 	spin_lock(&swap_lock);
3530 	for (type = 0; type < nr_swapfiles; type++) {
3531 		struct swap_info_struct *si = swap_info[type];
3532 
3533 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3534 			nr_to_be_unused += swap_usage_in_pages(si);
3535 	}
3536 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3537 	val->totalswap = total_swap_pages + nr_to_be_unused;
3538 	spin_unlock(&swap_lock);
3539 }
3540 
3541 /*
3542  * Verify that nr swap entries are valid and increment their swap map counts.
3543  *
3544  * Returns error code in following case.
3545  * - success -> 0
3546  * - swp_entry is invalid -> EINVAL
3547  * - swap-cache reference is requested but there is already one. -> EEXIST
3548  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3549  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3550  */
3551 static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr)
3552 {
3553 	struct swap_info_struct *si;
3554 	struct swap_cluster_info *ci;
3555 	unsigned long offset;
3556 	unsigned char count;
3557 	unsigned char has_cache;
3558 	int err, i;
3559 
3560 	si = swp_swap_info(entry);
3561 	if (WARN_ON_ONCE(!si)) {
3562 		pr_err("%s%08lx\n", Bad_file, entry.val);
3563 		return -EINVAL;
3564 	}
3565 
3566 	offset = swp_offset(entry);
3567 	VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
3568 	VM_WARN_ON(usage == 1 && nr > 1);
3569 	ci = lock_cluster(si, offset);
3570 
3571 	err = 0;
3572 	for (i = 0; i < nr; i++) {
3573 		count = si->swap_map[offset + i];
3574 
3575 		/*
3576 		 * swapin_readahead() doesn't check if a swap entry is valid, so the
3577 		 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3578 		 */
3579 		if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3580 			err = -ENOENT;
3581 			goto unlock_out;
3582 		}
3583 
3584 		has_cache = count & SWAP_HAS_CACHE;
3585 		count &= ~SWAP_HAS_CACHE;
3586 
3587 		if (!count && !has_cache) {
3588 			err = -ENOENT;
3589 		} else if (usage == SWAP_HAS_CACHE) {
3590 			if (has_cache)
3591 				err = -EEXIST;
3592 		} else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) {
3593 			err = -EINVAL;
3594 		}
3595 
3596 		if (err)
3597 			goto unlock_out;
3598 	}
3599 
3600 	for (i = 0; i < nr; i++) {
3601 		count = si->swap_map[offset + i];
3602 		has_cache = count & SWAP_HAS_CACHE;
3603 		count &= ~SWAP_HAS_CACHE;
3604 
3605 		if (usage == SWAP_HAS_CACHE)
3606 			has_cache = SWAP_HAS_CACHE;
3607 		else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3608 			count += usage;
3609 		else if (swap_count_continued(si, offset + i, count))
3610 			count = COUNT_CONTINUED;
3611 		else {
3612 			/*
3613 			 * Don't need to rollback changes, because if
3614 			 * usage == 1, there must be nr == 1.
3615 			 */
3616 			err = -ENOMEM;
3617 			goto unlock_out;
3618 		}
3619 
3620 		WRITE_ONCE(si->swap_map[offset + i], count | has_cache);
3621 	}
3622 
3623 unlock_out:
3624 	unlock_cluster(ci);
3625 	return err;
3626 }
3627 
3628 /*
3629  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3630  * (in which case its reference count is never incremented).
3631  */
3632 void swap_shmem_alloc(swp_entry_t entry, int nr)
3633 {
3634 	__swap_duplicate(entry, SWAP_MAP_SHMEM, nr);
3635 }
3636 
3637 /*
3638  * Increase reference count of swap entry by 1.
3639  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3640  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3641  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3642  * might occur if a page table entry has got corrupted.
3643  */
3644 int swap_duplicate(swp_entry_t entry)
3645 {
3646 	int err = 0;
3647 
3648 	while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM)
3649 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3650 	return err;
3651 }
3652 
3653 /*
3654  * @entry: first swap entry from which we allocate nr swap cache.
3655  *
3656  * Called when allocating swap cache for existing swap entries,
3657  * This can return error codes. Returns 0 at success.
3658  * -EEXIST means there is a swap cache.
3659  * Note: return code is different from swap_duplicate().
3660  */
3661 int swapcache_prepare(swp_entry_t entry, int nr)
3662 {
3663 	return __swap_duplicate(entry, SWAP_HAS_CACHE, nr);
3664 }
3665 
3666 /*
3667  * Caller should ensure entries belong to the same folio so
3668  * the entries won't span cross cluster boundary.
3669  */
3670 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr)
3671 {
3672 	swap_entries_put_cache(si, entry, nr);
3673 }
3674 
3675 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3676 {
3677 	return swap_type_to_swap_info(swp_type(entry));
3678 }
3679 
3680 /*
3681  * add_swap_count_continuation - called when a swap count is duplicated
3682  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3683  * page of the original vmalloc'ed swap_map, to hold the continuation count
3684  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3685  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3686  *
3687  * These continuation pages are seldom referenced: the common paths all work
3688  * on the original swap_map, only referring to a continuation page when the
3689  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3690  *
3691  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3692  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3693  * can be called after dropping locks.
3694  */
3695 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3696 {
3697 	struct swap_info_struct *si;
3698 	struct swap_cluster_info *ci;
3699 	struct page *head;
3700 	struct page *page;
3701 	struct page *list_page;
3702 	pgoff_t offset;
3703 	unsigned char count;
3704 	int ret = 0;
3705 
3706 	/*
3707 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3708 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3709 	 */
3710 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3711 
3712 	si = get_swap_device(entry);
3713 	if (!si) {
3714 		/*
3715 		 * An acceptable race has occurred since the failing
3716 		 * __swap_duplicate(): the swap device may be swapoff
3717 		 */
3718 		goto outer;
3719 	}
3720 
3721 	offset = swp_offset(entry);
3722 
3723 	ci = lock_cluster(si, offset);
3724 
3725 	count = swap_count(si->swap_map[offset]);
3726 
3727 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3728 		/*
3729 		 * The higher the swap count, the more likely it is that tasks
3730 		 * will race to add swap count continuation: we need to avoid
3731 		 * over-provisioning.
3732 		 */
3733 		goto out;
3734 	}
3735 
3736 	if (!page) {
3737 		ret = -ENOMEM;
3738 		goto out;
3739 	}
3740 
3741 	head = vmalloc_to_page(si->swap_map + offset);
3742 	offset &= ~PAGE_MASK;
3743 
3744 	spin_lock(&si->cont_lock);
3745 	/*
3746 	 * Page allocation does not initialize the page's lru field,
3747 	 * but it does always reset its private field.
3748 	 */
3749 	if (!page_private(head)) {
3750 		BUG_ON(count & COUNT_CONTINUED);
3751 		INIT_LIST_HEAD(&head->lru);
3752 		set_page_private(head, SWP_CONTINUED);
3753 		si->flags |= SWP_CONTINUED;
3754 	}
3755 
3756 	list_for_each_entry(list_page, &head->lru, lru) {
3757 		unsigned char *map;
3758 
3759 		/*
3760 		 * If the previous map said no continuation, but we've found
3761 		 * a continuation page, free our allocation and use this one.
3762 		 */
3763 		if (!(count & COUNT_CONTINUED))
3764 			goto out_unlock_cont;
3765 
3766 		map = kmap_local_page(list_page) + offset;
3767 		count = *map;
3768 		kunmap_local(map);
3769 
3770 		/*
3771 		 * If this continuation count now has some space in it,
3772 		 * free our allocation and use this one.
3773 		 */
3774 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3775 			goto out_unlock_cont;
3776 	}
3777 
3778 	list_add_tail(&page->lru, &head->lru);
3779 	page = NULL;			/* now it's attached, don't free it */
3780 out_unlock_cont:
3781 	spin_unlock(&si->cont_lock);
3782 out:
3783 	unlock_cluster(ci);
3784 	put_swap_device(si);
3785 outer:
3786 	if (page)
3787 		__free_page(page);
3788 	return ret;
3789 }
3790 
3791 /*
3792  * swap_count_continued - when the original swap_map count is incremented
3793  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3794  * into, carry if so, or else fail until a new continuation page is allocated;
3795  * when the original swap_map count is decremented from 0 with continuation,
3796  * borrow from the continuation and report whether it still holds more.
3797  * Called while __swap_duplicate() or caller of swap_entry_put_locked()
3798  * holds cluster lock.
3799  */
3800 static bool swap_count_continued(struct swap_info_struct *si,
3801 				 pgoff_t offset, unsigned char count)
3802 {
3803 	struct page *head;
3804 	struct page *page;
3805 	unsigned char *map;
3806 	bool ret;
3807 
3808 	head = vmalloc_to_page(si->swap_map + offset);
3809 	if (page_private(head) != SWP_CONTINUED) {
3810 		BUG_ON(count & COUNT_CONTINUED);
3811 		return false;		/* need to add count continuation */
3812 	}
3813 
3814 	spin_lock(&si->cont_lock);
3815 	offset &= ~PAGE_MASK;
3816 	page = list_next_entry(head, lru);
3817 	map = kmap_local_page(page) + offset;
3818 
3819 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3820 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3821 
3822 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3823 		/*
3824 		 * Think of how you add 1 to 999
3825 		 */
3826 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3827 			kunmap_local(map);
3828 			page = list_next_entry(page, lru);
3829 			BUG_ON(page == head);
3830 			map = kmap_local_page(page) + offset;
3831 		}
3832 		if (*map == SWAP_CONT_MAX) {
3833 			kunmap_local(map);
3834 			page = list_next_entry(page, lru);
3835 			if (page == head) {
3836 				ret = false;	/* add count continuation */
3837 				goto out;
3838 			}
3839 			map = kmap_local_page(page) + offset;
3840 init_map:		*map = 0;		/* we didn't zero the page */
3841 		}
3842 		*map += 1;
3843 		kunmap_local(map);
3844 		while ((page = list_prev_entry(page, lru)) != head) {
3845 			map = kmap_local_page(page) + offset;
3846 			*map = COUNT_CONTINUED;
3847 			kunmap_local(map);
3848 		}
3849 		ret = true;			/* incremented */
3850 
3851 	} else {				/* decrementing */
3852 		/*
3853 		 * Think of how you subtract 1 from 1000
3854 		 */
3855 		BUG_ON(count != COUNT_CONTINUED);
3856 		while (*map == COUNT_CONTINUED) {
3857 			kunmap_local(map);
3858 			page = list_next_entry(page, lru);
3859 			BUG_ON(page == head);
3860 			map = kmap_local_page(page) + offset;
3861 		}
3862 		BUG_ON(*map == 0);
3863 		*map -= 1;
3864 		if (*map == 0)
3865 			count = 0;
3866 		kunmap_local(map);
3867 		while ((page = list_prev_entry(page, lru)) != head) {
3868 			map = kmap_local_page(page) + offset;
3869 			*map = SWAP_CONT_MAX | count;
3870 			count = COUNT_CONTINUED;
3871 			kunmap_local(map);
3872 		}
3873 		ret = count == COUNT_CONTINUED;
3874 	}
3875 out:
3876 	spin_unlock(&si->cont_lock);
3877 	return ret;
3878 }
3879 
3880 /*
3881  * free_swap_count_continuations - swapoff free all the continuation pages
3882  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3883  */
3884 static void free_swap_count_continuations(struct swap_info_struct *si)
3885 {
3886 	pgoff_t offset;
3887 
3888 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3889 		struct page *head;
3890 		head = vmalloc_to_page(si->swap_map + offset);
3891 		if (page_private(head)) {
3892 			struct page *page, *next;
3893 
3894 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3895 				list_del(&page->lru);
3896 				__free_page(page);
3897 			}
3898 		}
3899 	}
3900 }
3901 
3902 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3903 static bool __has_usable_swap(void)
3904 {
3905 	return !plist_head_empty(&swap_active_head);
3906 }
3907 
3908 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3909 {
3910 	struct swap_info_struct *si, *next;
3911 	int nid = folio_nid(folio);
3912 
3913 	if (!(gfp & __GFP_IO))
3914 		return;
3915 
3916 	if (!__has_usable_swap())
3917 		return;
3918 
3919 	if (!blk_cgroup_congested())
3920 		return;
3921 
3922 	/*
3923 	 * We've already scheduled a throttle, avoid taking the global swap
3924 	 * lock.
3925 	 */
3926 	if (current->throttle_disk)
3927 		return;
3928 
3929 	spin_lock(&swap_avail_lock);
3930 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3931 				  avail_lists[nid]) {
3932 		if (si->bdev) {
3933 			blkcg_schedule_throttle(si->bdev->bd_disk, true);
3934 			break;
3935 		}
3936 	}
3937 	spin_unlock(&swap_avail_lock);
3938 }
3939 #endif
3940 
3941 static int __init swapfile_init(void)
3942 {
3943 	int nid;
3944 
3945 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3946 					 GFP_KERNEL);
3947 	if (!swap_avail_heads) {
3948 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3949 		return -ENOMEM;
3950 	}
3951 
3952 	for_each_node(nid)
3953 		plist_head_init(&swap_avail_heads[nid]);
3954 
3955 	swapfile_maximum_size = arch_max_swapfile_size();
3956 
3957 #ifdef CONFIG_MIGRATION
3958 	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3959 		swap_migration_ad_supported = true;
3960 #endif	/* CONFIG_MIGRATION */
3961 
3962 	return 0;
3963 }
3964 subsys_initcall(swapfile_init);
3965