1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/blkdev.h> 10 #include <linux/mm.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/task.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mman.h> 15 #include <linux/slab.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/swap.h> 18 #include <linux/vmalloc.h> 19 #include <linux/pagemap.h> 20 #include <linux/namei.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/blk-cgroup.h> 23 #include <linux/random.h> 24 #include <linux/writeback.h> 25 #include <linux/proc_fs.h> 26 #include <linux/seq_file.h> 27 #include <linux/init.h> 28 #include <linux/ksm.h> 29 #include <linux/rmap.h> 30 #include <linux/security.h> 31 #include <linux/backing-dev.h> 32 #include <linux/mutex.h> 33 #include <linux/capability.h> 34 #include <linux/syscalls.h> 35 #include <linux/memcontrol.h> 36 #include <linux/poll.h> 37 #include <linux/oom.h> 38 #include <linux/swapfile.h> 39 #include <linux/export.h> 40 #include <linux/sort.h> 41 #include <linux/completion.h> 42 #include <linux/suspend.h> 43 #include <linux/zswap.h> 44 #include <linux/plist.h> 45 46 #include <asm/tlbflush.h> 47 #include <linux/swapops.h> 48 #include <linux/swap_cgroup.h> 49 #include "internal.h" 50 #include "swap.h" 51 52 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 53 unsigned char); 54 static void free_swap_count_continuations(struct swap_info_struct *); 55 static void swap_entries_free(struct swap_info_struct *si, 56 struct swap_cluster_info *ci, 57 swp_entry_t entry, unsigned int nr_pages); 58 static void swap_range_alloc(struct swap_info_struct *si, 59 unsigned int nr_entries); 60 static bool folio_swapcache_freeable(struct folio *folio); 61 static struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 62 unsigned long offset); 63 static inline void unlock_cluster(struct swap_cluster_info *ci); 64 65 static DEFINE_SPINLOCK(swap_lock); 66 static unsigned int nr_swapfiles; 67 atomic_long_t nr_swap_pages; 68 /* 69 * Some modules use swappable objects and may try to swap them out under 70 * memory pressure (via the shrinker). Before doing so, they may wish to 71 * check to see if any swap space is available. 72 */ 73 EXPORT_SYMBOL_GPL(nr_swap_pages); 74 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 75 long total_swap_pages; 76 static int least_priority = -1; 77 unsigned long swapfile_maximum_size; 78 #ifdef CONFIG_MIGRATION 79 bool swap_migration_ad_supported; 80 #endif /* CONFIG_MIGRATION */ 81 82 static const char Bad_file[] = "Bad swap file entry "; 83 static const char Unused_file[] = "Unused swap file entry "; 84 static const char Bad_offset[] = "Bad swap offset entry "; 85 static const char Unused_offset[] = "Unused swap offset entry "; 86 87 /* 88 * all active swap_info_structs 89 * protected with swap_lock, and ordered by priority. 90 */ 91 static PLIST_HEAD(swap_active_head); 92 93 /* 94 * all available (active, not full) swap_info_structs 95 * protected with swap_avail_lock, ordered by priority. 96 * This is used by folio_alloc_swap() instead of swap_active_head 97 * because swap_active_head includes all swap_info_structs, 98 * but folio_alloc_swap() doesn't need to look at full ones. 99 * This uses its own lock instead of swap_lock because when a 100 * swap_info_struct changes between not-full/full, it needs to 101 * add/remove itself to/from this list, but the swap_info_struct->lock 102 * is held and the locking order requires swap_lock to be taken 103 * before any swap_info_struct->lock. 104 */ 105 static struct plist_head *swap_avail_heads; 106 static DEFINE_SPINLOCK(swap_avail_lock); 107 108 static struct swap_info_struct *swap_info[MAX_SWAPFILES]; 109 110 static DEFINE_MUTEX(swapon_mutex); 111 112 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 113 /* Activity counter to indicate that a swapon or swapoff has occurred */ 114 static atomic_t proc_poll_event = ATOMIC_INIT(0); 115 116 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 117 118 struct percpu_swap_cluster { 119 struct swap_info_struct *si[SWAP_NR_ORDERS]; 120 unsigned long offset[SWAP_NR_ORDERS]; 121 local_lock_t lock; 122 }; 123 124 static DEFINE_PER_CPU(struct percpu_swap_cluster, percpu_swap_cluster) = { 125 .si = { NULL }, 126 .offset = { SWAP_ENTRY_INVALID }, 127 .lock = INIT_LOCAL_LOCK(), 128 }; 129 130 static struct swap_info_struct *swap_type_to_swap_info(int type) 131 { 132 if (type >= MAX_SWAPFILES) 133 return NULL; 134 135 return READ_ONCE(swap_info[type]); /* rcu_dereference() */ 136 } 137 138 static inline unsigned char swap_count(unsigned char ent) 139 { 140 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 141 } 142 143 /* 144 * Use the second highest bit of inuse_pages counter as the indicator 145 * if one swap device is on the available plist, so the atomic can 146 * still be updated arithmetically while having special data embedded. 147 * 148 * inuse_pages counter is the only thing indicating if a device should 149 * be on avail_lists or not (except swapon / swapoff). By embedding the 150 * off-list bit in the atomic counter, updates no longer need any lock 151 * to check the list status. 152 * 153 * This bit will be set if the device is not on the plist and not 154 * usable, will be cleared if the device is on the plist. 155 */ 156 #define SWAP_USAGE_OFFLIST_BIT (1UL << (BITS_PER_TYPE(atomic_t) - 2)) 157 #define SWAP_USAGE_COUNTER_MASK (~SWAP_USAGE_OFFLIST_BIT) 158 static long swap_usage_in_pages(struct swap_info_struct *si) 159 { 160 return atomic_long_read(&si->inuse_pages) & SWAP_USAGE_COUNTER_MASK; 161 } 162 163 /* Reclaim the swap entry anyway if possible */ 164 #define TTRS_ANYWAY 0x1 165 /* 166 * Reclaim the swap entry if there are no more mappings of the 167 * corresponding page 168 */ 169 #define TTRS_UNMAPPED 0x2 170 /* Reclaim the swap entry if swap is getting full */ 171 #define TTRS_FULL 0x4 172 173 static bool swap_only_has_cache(struct swap_info_struct *si, 174 unsigned long offset, int nr_pages) 175 { 176 unsigned char *map = si->swap_map + offset; 177 unsigned char *map_end = map + nr_pages; 178 179 do { 180 VM_BUG_ON(!(*map & SWAP_HAS_CACHE)); 181 if (*map != SWAP_HAS_CACHE) 182 return false; 183 } while (++map < map_end); 184 185 return true; 186 } 187 188 static bool swap_is_last_map(struct swap_info_struct *si, 189 unsigned long offset, int nr_pages, bool *has_cache) 190 { 191 unsigned char *map = si->swap_map + offset; 192 unsigned char *map_end = map + nr_pages; 193 unsigned char count = *map; 194 195 if (swap_count(count) != 1 && swap_count(count) != SWAP_MAP_SHMEM) 196 return false; 197 198 while (++map < map_end) { 199 if (*map != count) 200 return false; 201 } 202 203 *has_cache = !!(count & SWAP_HAS_CACHE); 204 return true; 205 } 206 207 /* 208 * returns number of pages in the folio that backs the swap entry. If positive, 209 * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no 210 * folio was associated with the swap entry. 211 */ 212 static int __try_to_reclaim_swap(struct swap_info_struct *si, 213 unsigned long offset, unsigned long flags) 214 { 215 swp_entry_t entry = swp_entry(si->type, offset); 216 struct address_space *address_space = swap_address_space(entry); 217 struct swap_cluster_info *ci; 218 struct folio *folio; 219 int ret, nr_pages; 220 bool need_reclaim; 221 222 again: 223 folio = filemap_get_folio(address_space, swap_cache_index(entry)); 224 if (IS_ERR(folio)) 225 return 0; 226 227 nr_pages = folio_nr_pages(folio); 228 ret = -nr_pages; 229 230 /* 231 * When this function is called from scan_swap_map_slots() and it's 232 * called by vmscan.c at reclaiming folios. So we hold a folio lock 233 * here. We have to use trylock for avoiding deadlock. This is a special 234 * case and you should use folio_free_swap() with explicit folio_lock() 235 * in usual operations. 236 */ 237 if (!folio_trylock(folio)) 238 goto out; 239 240 /* 241 * Offset could point to the middle of a large folio, or folio 242 * may no longer point to the expected offset before it's locked. 243 */ 244 entry = folio->swap; 245 if (offset < swp_offset(entry) || offset >= swp_offset(entry) + nr_pages) { 246 folio_unlock(folio); 247 folio_put(folio); 248 goto again; 249 } 250 offset = swp_offset(entry); 251 252 need_reclaim = ((flags & TTRS_ANYWAY) || 253 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) || 254 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio))); 255 if (!need_reclaim || !folio_swapcache_freeable(folio)) 256 goto out_unlock; 257 258 /* 259 * It's safe to delete the folio from swap cache only if the folio's 260 * swap_map is HAS_CACHE only, which means the slots have no page table 261 * reference or pending writeback, and can't be allocated to others. 262 */ 263 ci = lock_cluster(si, offset); 264 need_reclaim = swap_only_has_cache(si, offset, nr_pages); 265 unlock_cluster(ci); 266 if (!need_reclaim) 267 goto out_unlock; 268 269 delete_from_swap_cache(folio); 270 folio_set_dirty(folio); 271 ret = nr_pages; 272 out_unlock: 273 folio_unlock(folio); 274 out: 275 folio_put(folio); 276 return ret; 277 } 278 279 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 280 { 281 struct rb_node *rb = rb_first(&sis->swap_extent_root); 282 return rb_entry(rb, struct swap_extent, rb_node); 283 } 284 285 static inline struct swap_extent *next_se(struct swap_extent *se) 286 { 287 struct rb_node *rb = rb_next(&se->rb_node); 288 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 289 } 290 291 /* 292 * swapon tell device that all the old swap contents can be discarded, 293 * to allow the swap device to optimize its wear-levelling. 294 */ 295 static int discard_swap(struct swap_info_struct *si) 296 { 297 struct swap_extent *se; 298 sector_t start_block; 299 sector_t nr_blocks; 300 int err = 0; 301 302 /* Do not discard the swap header page! */ 303 se = first_se(si); 304 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 305 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 306 if (nr_blocks) { 307 err = blkdev_issue_discard(si->bdev, start_block, 308 nr_blocks, GFP_KERNEL); 309 if (err) 310 return err; 311 cond_resched(); 312 } 313 314 for (se = next_se(se); se; se = next_se(se)) { 315 start_block = se->start_block << (PAGE_SHIFT - 9); 316 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 317 318 err = blkdev_issue_discard(si->bdev, start_block, 319 nr_blocks, GFP_KERNEL); 320 if (err) 321 break; 322 323 cond_resched(); 324 } 325 return err; /* That will often be -EOPNOTSUPP */ 326 } 327 328 static struct swap_extent * 329 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 330 { 331 struct swap_extent *se; 332 struct rb_node *rb; 333 334 rb = sis->swap_extent_root.rb_node; 335 while (rb) { 336 se = rb_entry(rb, struct swap_extent, rb_node); 337 if (offset < se->start_page) 338 rb = rb->rb_left; 339 else if (offset >= se->start_page + se->nr_pages) 340 rb = rb->rb_right; 341 else 342 return se; 343 } 344 /* It *must* be present */ 345 BUG(); 346 } 347 348 sector_t swap_folio_sector(struct folio *folio) 349 { 350 struct swap_info_struct *sis = swp_swap_info(folio->swap); 351 struct swap_extent *se; 352 sector_t sector; 353 pgoff_t offset; 354 355 offset = swp_offset(folio->swap); 356 se = offset_to_swap_extent(sis, offset); 357 sector = se->start_block + (offset - se->start_page); 358 return sector << (PAGE_SHIFT - 9); 359 } 360 361 /* 362 * swap allocation tell device that a cluster of swap can now be discarded, 363 * to allow the swap device to optimize its wear-levelling. 364 */ 365 static void discard_swap_cluster(struct swap_info_struct *si, 366 pgoff_t start_page, pgoff_t nr_pages) 367 { 368 struct swap_extent *se = offset_to_swap_extent(si, start_page); 369 370 while (nr_pages) { 371 pgoff_t offset = start_page - se->start_page; 372 sector_t start_block = se->start_block + offset; 373 sector_t nr_blocks = se->nr_pages - offset; 374 375 if (nr_blocks > nr_pages) 376 nr_blocks = nr_pages; 377 start_page += nr_blocks; 378 nr_pages -= nr_blocks; 379 380 start_block <<= PAGE_SHIFT - 9; 381 nr_blocks <<= PAGE_SHIFT - 9; 382 if (blkdev_issue_discard(si->bdev, start_block, 383 nr_blocks, GFP_NOIO)) 384 break; 385 386 se = next_se(se); 387 } 388 } 389 390 #ifdef CONFIG_THP_SWAP 391 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 392 393 #define swap_entry_order(order) (order) 394 #else 395 #define SWAPFILE_CLUSTER 256 396 397 /* 398 * Define swap_entry_order() as constant to let compiler to optimize 399 * out some code if !CONFIG_THP_SWAP 400 */ 401 #define swap_entry_order(order) 0 402 #endif 403 #define LATENCY_LIMIT 256 404 405 static inline bool cluster_is_empty(struct swap_cluster_info *info) 406 { 407 return info->count == 0; 408 } 409 410 static inline bool cluster_is_discard(struct swap_cluster_info *info) 411 { 412 return info->flags == CLUSTER_FLAG_DISCARD; 413 } 414 415 static inline bool cluster_is_usable(struct swap_cluster_info *ci, int order) 416 { 417 if (unlikely(ci->flags > CLUSTER_FLAG_USABLE)) 418 return false; 419 if (!order) 420 return true; 421 return cluster_is_empty(ci) || order == ci->order; 422 } 423 424 static inline unsigned int cluster_index(struct swap_info_struct *si, 425 struct swap_cluster_info *ci) 426 { 427 return ci - si->cluster_info; 428 } 429 430 static inline struct swap_cluster_info *offset_to_cluster(struct swap_info_struct *si, 431 unsigned long offset) 432 { 433 return &si->cluster_info[offset / SWAPFILE_CLUSTER]; 434 } 435 436 static inline unsigned int cluster_offset(struct swap_info_struct *si, 437 struct swap_cluster_info *ci) 438 { 439 return cluster_index(si, ci) * SWAPFILE_CLUSTER; 440 } 441 442 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 443 unsigned long offset) 444 { 445 struct swap_cluster_info *ci; 446 447 ci = offset_to_cluster(si, offset); 448 spin_lock(&ci->lock); 449 450 return ci; 451 } 452 453 static inline void unlock_cluster(struct swap_cluster_info *ci) 454 { 455 spin_unlock(&ci->lock); 456 } 457 458 static void move_cluster(struct swap_info_struct *si, 459 struct swap_cluster_info *ci, struct list_head *list, 460 enum swap_cluster_flags new_flags) 461 { 462 VM_WARN_ON(ci->flags == new_flags); 463 464 BUILD_BUG_ON(1 << sizeof(ci->flags) * BITS_PER_BYTE < CLUSTER_FLAG_MAX); 465 lockdep_assert_held(&ci->lock); 466 467 spin_lock(&si->lock); 468 if (ci->flags == CLUSTER_FLAG_NONE) 469 list_add_tail(&ci->list, list); 470 else 471 list_move_tail(&ci->list, list); 472 spin_unlock(&si->lock); 473 ci->flags = new_flags; 474 } 475 476 /* Add a cluster to discard list and schedule it to do discard */ 477 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 478 struct swap_cluster_info *ci) 479 { 480 VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE); 481 move_cluster(si, ci, &si->discard_clusters, CLUSTER_FLAG_DISCARD); 482 schedule_work(&si->discard_work); 483 } 484 485 static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci) 486 { 487 lockdep_assert_held(&ci->lock); 488 move_cluster(si, ci, &si->free_clusters, CLUSTER_FLAG_FREE); 489 ci->order = 0; 490 } 491 492 /* 493 * Isolate and lock the first cluster that is not contented on a list, 494 * clean its flag before taken off-list. Cluster flag must be in sync 495 * with list status, so cluster updaters can always know the cluster 496 * list status without touching si lock. 497 * 498 * Note it's possible that all clusters on a list are contented so 499 * this returns NULL for an non-empty list. 500 */ 501 static struct swap_cluster_info *isolate_lock_cluster( 502 struct swap_info_struct *si, struct list_head *list) 503 { 504 struct swap_cluster_info *ci, *ret = NULL; 505 506 spin_lock(&si->lock); 507 508 if (unlikely(!(si->flags & SWP_WRITEOK))) 509 goto out; 510 511 list_for_each_entry(ci, list, list) { 512 if (!spin_trylock(&ci->lock)) 513 continue; 514 515 /* We may only isolate and clear flags of following lists */ 516 VM_BUG_ON(!ci->flags); 517 VM_BUG_ON(ci->flags > CLUSTER_FLAG_USABLE && 518 ci->flags != CLUSTER_FLAG_FULL); 519 520 list_del(&ci->list); 521 ci->flags = CLUSTER_FLAG_NONE; 522 ret = ci; 523 break; 524 } 525 out: 526 spin_unlock(&si->lock); 527 528 return ret; 529 } 530 531 /* 532 * Doing discard actually. After a cluster discard is finished, the cluster 533 * will be added to free cluster list. Discard cluster is a bit special as 534 * they don't participate in allocation or reclaim, so clusters marked as 535 * CLUSTER_FLAG_DISCARD must remain off-list or on discard list. 536 */ 537 static bool swap_do_scheduled_discard(struct swap_info_struct *si) 538 { 539 struct swap_cluster_info *ci; 540 bool ret = false; 541 unsigned int idx; 542 543 spin_lock(&si->lock); 544 while (!list_empty(&si->discard_clusters)) { 545 ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list); 546 /* 547 * Delete the cluster from list to prepare for discard, but keep 548 * the CLUSTER_FLAG_DISCARD flag, percpu_swap_cluster could be 549 * pointing to it, or ran into by relocate_cluster. 550 */ 551 list_del(&ci->list); 552 idx = cluster_index(si, ci); 553 spin_unlock(&si->lock); 554 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 555 SWAPFILE_CLUSTER); 556 557 spin_lock(&ci->lock); 558 /* 559 * Discard is done, clear its flags as it's off-list, then 560 * return the cluster to allocation list. 561 */ 562 ci->flags = CLUSTER_FLAG_NONE; 563 __free_cluster(si, ci); 564 spin_unlock(&ci->lock); 565 ret = true; 566 spin_lock(&si->lock); 567 } 568 spin_unlock(&si->lock); 569 return ret; 570 } 571 572 static void swap_discard_work(struct work_struct *work) 573 { 574 struct swap_info_struct *si; 575 576 si = container_of(work, struct swap_info_struct, discard_work); 577 578 swap_do_scheduled_discard(si); 579 } 580 581 static void swap_users_ref_free(struct percpu_ref *ref) 582 { 583 struct swap_info_struct *si; 584 585 si = container_of(ref, struct swap_info_struct, users); 586 complete(&si->comp); 587 } 588 589 /* 590 * Must be called after freeing if ci->count == 0, moves the cluster to free 591 * or discard list. 592 */ 593 static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci) 594 { 595 VM_BUG_ON(ci->count != 0); 596 VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE); 597 lockdep_assert_held(&ci->lock); 598 599 /* 600 * If the swap is discardable, prepare discard the cluster 601 * instead of free it immediately. The cluster will be freed 602 * after discard. 603 */ 604 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 605 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 606 swap_cluster_schedule_discard(si, ci); 607 return; 608 } 609 610 __free_cluster(si, ci); 611 } 612 613 /* 614 * Must be called after freeing if ci->count != 0, moves the cluster to 615 * nonfull list. 616 */ 617 static void partial_free_cluster(struct swap_info_struct *si, 618 struct swap_cluster_info *ci) 619 { 620 VM_BUG_ON(!ci->count || ci->count == SWAPFILE_CLUSTER); 621 lockdep_assert_held(&ci->lock); 622 623 if (ci->flags != CLUSTER_FLAG_NONFULL) 624 move_cluster(si, ci, &si->nonfull_clusters[ci->order], 625 CLUSTER_FLAG_NONFULL); 626 } 627 628 /* 629 * Must be called after allocation, moves the cluster to full or frag list. 630 * Note: allocation doesn't acquire si lock, and may drop the ci lock for 631 * reclaim, so the cluster could be any where when called. 632 */ 633 static void relocate_cluster(struct swap_info_struct *si, 634 struct swap_cluster_info *ci) 635 { 636 lockdep_assert_held(&ci->lock); 637 638 /* Discard cluster must remain off-list or on discard list */ 639 if (cluster_is_discard(ci)) 640 return; 641 642 if (!ci->count) { 643 if (ci->flags != CLUSTER_FLAG_FREE) 644 free_cluster(si, ci); 645 } else if (ci->count != SWAPFILE_CLUSTER) { 646 if (ci->flags != CLUSTER_FLAG_FRAG) 647 move_cluster(si, ci, &si->frag_clusters[ci->order], 648 CLUSTER_FLAG_FRAG); 649 } else { 650 if (ci->flags != CLUSTER_FLAG_FULL) 651 move_cluster(si, ci, &si->full_clusters, 652 CLUSTER_FLAG_FULL); 653 } 654 } 655 656 /* 657 * The cluster corresponding to page_nr will be used. The cluster will not be 658 * added to free cluster list and its usage counter will be increased by 1. 659 * Only used for initialization. 660 */ 661 static void inc_cluster_info_page(struct swap_info_struct *si, 662 struct swap_cluster_info *cluster_info, unsigned long page_nr) 663 { 664 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 665 struct swap_cluster_info *ci; 666 667 ci = cluster_info + idx; 668 ci->count++; 669 670 VM_BUG_ON(ci->count > SWAPFILE_CLUSTER); 671 VM_BUG_ON(ci->flags); 672 } 673 674 static bool cluster_reclaim_range(struct swap_info_struct *si, 675 struct swap_cluster_info *ci, 676 unsigned long start, unsigned long end) 677 { 678 unsigned char *map = si->swap_map; 679 unsigned long offset = start; 680 int nr_reclaim; 681 682 spin_unlock(&ci->lock); 683 do { 684 switch (READ_ONCE(map[offset])) { 685 case 0: 686 offset++; 687 break; 688 case SWAP_HAS_CACHE: 689 nr_reclaim = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 690 if (nr_reclaim > 0) 691 offset += nr_reclaim; 692 else 693 goto out; 694 break; 695 default: 696 goto out; 697 } 698 } while (offset < end); 699 out: 700 spin_lock(&ci->lock); 701 /* 702 * Recheck the range no matter reclaim succeeded or not, the slot 703 * could have been be freed while we are not holding the lock. 704 */ 705 for (offset = start; offset < end; offset++) 706 if (READ_ONCE(map[offset])) 707 return false; 708 709 return true; 710 } 711 712 static bool cluster_scan_range(struct swap_info_struct *si, 713 struct swap_cluster_info *ci, 714 unsigned long start, unsigned int nr_pages, 715 bool *need_reclaim) 716 { 717 unsigned long offset, end = start + nr_pages; 718 unsigned char *map = si->swap_map; 719 720 if (cluster_is_empty(ci)) 721 return true; 722 723 for (offset = start; offset < end; offset++) { 724 switch (READ_ONCE(map[offset])) { 725 case 0: 726 continue; 727 case SWAP_HAS_CACHE: 728 if (!vm_swap_full()) 729 return false; 730 *need_reclaim = true; 731 continue; 732 default: 733 return false; 734 } 735 } 736 737 return true; 738 } 739 740 static bool cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci, 741 unsigned int start, unsigned char usage, 742 unsigned int order) 743 { 744 unsigned int nr_pages = 1 << order; 745 746 lockdep_assert_held(&ci->lock); 747 748 if (!(si->flags & SWP_WRITEOK)) 749 return false; 750 751 /* 752 * The first allocation in a cluster makes the 753 * cluster exclusive to this order 754 */ 755 if (cluster_is_empty(ci)) 756 ci->order = order; 757 758 memset(si->swap_map + start, usage, nr_pages); 759 swap_range_alloc(si, nr_pages); 760 ci->count += nr_pages; 761 762 return true; 763 } 764 765 /* Try use a new cluster for current CPU and allocate from it. */ 766 static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si, 767 struct swap_cluster_info *ci, 768 unsigned long offset, 769 unsigned int order, 770 unsigned char usage) 771 { 772 unsigned int next = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID; 773 unsigned long start = ALIGN_DOWN(offset, SWAPFILE_CLUSTER); 774 unsigned long end = min(start + SWAPFILE_CLUSTER, si->max); 775 unsigned int nr_pages = 1 << order; 776 bool need_reclaim, ret; 777 778 lockdep_assert_held(&ci->lock); 779 780 if (end < nr_pages || ci->count + nr_pages > SWAPFILE_CLUSTER) 781 goto out; 782 783 for (end -= nr_pages; offset <= end; offset += nr_pages) { 784 need_reclaim = false; 785 if (!cluster_scan_range(si, ci, offset, nr_pages, &need_reclaim)) 786 continue; 787 if (need_reclaim) { 788 ret = cluster_reclaim_range(si, ci, offset, offset + nr_pages); 789 /* 790 * Reclaim drops ci->lock and cluster could be used 791 * by another order. Not checking flag as off-list 792 * cluster has no flag set, and change of list 793 * won't cause fragmentation. 794 */ 795 if (!cluster_is_usable(ci, order)) 796 goto out; 797 if (cluster_is_empty(ci)) 798 offset = start; 799 /* Reclaim failed but cluster is usable, try next */ 800 if (!ret) 801 continue; 802 } 803 if (!cluster_alloc_range(si, ci, offset, usage, order)) 804 break; 805 found = offset; 806 offset += nr_pages; 807 if (ci->count < SWAPFILE_CLUSTER && offset <= end) 808 next = offset; 809 break; 810 } 811 out: 812 relocate_cluster(si, ci); 813 unlock_cluster(ci); 814 if (si->flags & SWP_SOLIDSTATE) { 815 this_cpu_write(percpu_swap_cluster.offset[order], next); 816 this_cpu_write(percpu_swap_cluster.si[order], si); 817 } else { 818 si->global_cluster->next[order] = next; 819 } 820 return found; 821 } 822 823 static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force) 824 { 825 long to_scan = 1; 826 unsigned long offset, end; 827 struct swap_cluster_info *ci; 828 unsigned char *map = si->swap_map; 829 int nr_reclaim; 830 831 if (force) 832 to_scan = swap_usage_in_pages(si) / SWAPFILE_CLUSTER; 833 834 while ((ci = isolate_lock_cluster(si, &si->full_clusters))) { 835 offset = cluster_offset(si, ci); 836 end = min(si->max, offset + SWAPFILE_CLUSTER); 837 to_scan--; 838 839 while (offset < end) { 840 if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) { 841 spin_unlock(&ci->lock); 842 nr_reclaim = __try_to_reclaim_swap(si, offset, 843 TTRS_ANYWAY); 844 spin_lock(&ci->lock); 845 if (nr_reclaim) { 846 offset += abs(nr_reclaim); 847 continue; 848 } 849 } 850 offset++; 851 } 852 853 /* in case no swap cache is reclaimed */ 854 if (ci->flags == CLUSTER_FLAG_NONE) 855 relocate_cluster(si, ci); 856 857 unlock_cluster(ci); 858 if (to_scan <= 0) 859 break; 860 } 861 } 862 863 static void swap_reclaim_work(struct work_struct *work) 864 { 865 struct swap_info_struct *si; 866 867 si = container_of(work, struct swap_info_struct, reclaim_work); 868 869 swap_reclaim_full_clusters(si, true); 870 } 871 872 /* 873 * Try to allocate swap entries with specified order and try set a new 874 * cluster for current CPU too. 875 */ 876 static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order, 877 unsigned char usage) 878 { 879 struct swap_cluster_info *ci; 880 unsigned int offset = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID; 881 882 /* 883 * Swapfile is not block device so unable 884 * to allocate large entries. 885 */ 886 if (order && !(si->flags & SWP_BLKDEV)) 887 return 0; 888 889 if (!(si->flags & SWP_SOLIDSTATE)) { 890 /* Serialize HDD SWAP allocation for each device. */ 891 spin_lock(&si->global_cluster_lock); 892 offset = si->global_cluster->next[order]; 893 if (offset == SWAP_ENTRY_INVALID) 894 goto new_cluster; 895 896 ci = lock_cluster(si, offset); 897 /* Cluster could have been used by another order */ 898 if (cluster_is_usable(ci, order)) { 899 if (cluster_is_empty(ci)) 900 offset = cluster_offset(si, ci); 901 found = alloc_swap_scan_cluster(si, ci, offset, 902 order, usage); 903 } else { 904 unlock_cluster(ci); 905 } 906 if (found) 907 goto done; 908 } 909 910 new_cluster: 911 /* 912 * If the device need discard, prefer new cluster over nonfull 913 * to spread out the writes. 914 */ 915 if (si->flags & SWP_PAGE_DISCARD) { 916 ci = isolate_lock_cluster(si, &si->free_clusters); 917 if (ci) { 918 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci), 919 order, usage); 920 if (found) 921 goto done; 922 } 923 } 924 925 if (order < PMD_ORDER) { 926 while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[order]))) { 927 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci), 928 order, usage); 929 if (found) 930 goto done; 931 } 932 } 933 934 if (!(si->flags & SWP_PAGE_DISCARD)) { 935 ci = isolate_lock_cluster(si, &si->free_clusters); 936 if (ci) { 937 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci), 938 order, usage); 939 if (found) 940 goto done; 941 } 942 } 943 944 /* Try reclaim full clusters if free and nonfull lists are drained */ 945 if (vm_swap_full()) 946 swap_reclaim_full_clusters(si, false); 947 948 if (order < PMD_ORDER) { 949 /* 950 * Scan only one fragment cluster is good enough. Order 0 951 * allocation will surely success, and large allocation 952 * failure is not critical. Scanning one cluster still 953 * keeps the list rotated and reclaimed (for HAS_CACHE). 954 */ 955 ci = isolate_lock_cluster(si, &si->frag_clusters[order]); 956 if (ci) { 957 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci), 958 order, usage); 959 if (found) 960 goto done; 961 } 962 } 963 964 /* 965 * We don't have free cluster but have some clusters in discarding, 966 * do discard now and reclaim them. 967 */ 968 if ((si->flags & SWP_PAGE_DISCARD) && swap_do_scheduled_discard(si)) 969 goto new_cluster; 970 971 if (order) 972 goto done; 973 974 /* Order 0 stealing from higher order */ 975 for (int o = 1; o < SWAP_NR_ORDERS; o++) { 976 /* 977 * Clusters here have at least one usable slots and can't fail order 0 978 * allocation, but reclaim may drop si->lock and race with another user. 979 */ 980 while ((ci = isolate_lock_cluster(si, &si->frag_clusters[o]))) { 981 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci), 982 0, usage); 983 if (found) 984 goto done; 985 } 986 987 while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[o]))) { 988 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci), 989 0, usage); 990 if (found) 991 goto done; 992 } 993 } 994 done: 995 if (!(si->flags & SWP_SOLIDSTATE)) 996 spin_unlock(&si->global_cluster_lock); 997 return found; 998 } 999 1000 /* SWAP_USAGE_OFFLIST_BIT can only be set by this helper. */ 1001 static void del_from_avail_list(struct swap_info_struct *si, bool swapoff) 1002 { 1003 int nid; 1004 unsigned long pages; 1005 1006 spin_lock(&swap_avail_lock); 1007 1008 if (swapoff) { 1009 /* 1010 * Forcefully remove it. Clear the SWP_WRITEOK flags for 1011 * swapoff here so it's synchronized by both si->lock and 1012 * swap_avail_lock, to ensure the result can be seen by 1013 * add_to_avail_list. 1014 */ 1015 lockdep_assert_held(&si->lock); 1016 si->flags &= ~SWP_WRITEOK; 1017 atomic_long_or(SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages); 1018 } else { 1019 /* 1020 * If not called by swapoff, take it off-list only if it's 1021 * full and SWAP_USAGE_OFFLIST_BIT is not set (strictly 1022 * si->inuse_pages == pages), any concurrent slot freeing, 1023 * or device already removed from plist by someone else 1024 * will make this return false. 1025 */ 1026 pages = si->pages; 1027 if (!atomic_long_try_cmpxchg(&si->inuse_pages, &pages, 1028 pages | SWAP_USAGE_OFFLIST_BIT)) 1029 goto skip; 1030 } 1031 1032 for_each_node(nid) 1033 plist_del(&si->avail_lists[nid], &swap_avail_heads[nid]); 1034 1035 skip: 1036 spin_unlock(&swap_avail_lock); 1037 } 1038 1039 /* SWAP_USAGE_OFFLIST_BIT can only be cleared by this helper. */ 1040 static void add_to_avail_list(struct swap_info_struct *si, bool swapon) 1041 { 1042 int nid; 1043 long val; 1044 unsigned long pages; 1045 1046 spin_lock(&swap_avail_lock); 1047 1048 /* Corresponding to SWP_WRITEOK clearing in del_from_avail_list */ 1049 if (swapon) { 1050 lockdep_assert_held(&si->lock); 1051 si->flags |= SWP_WRITEOK; 1052 } else { 1053 if (!(READ_ONCE(si->flags) & SWP_WRITEOK)) 1054 goto skip; 1055 } 1056 1057 if (!(atomic_long_read(&si->inuse_pages) & SWAP_USAGE_OFFLIST_BIT)) 1058 goto skip; 1059 1060 val = atomic_long_fetch_and_relaxed(~SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages); 1061 1062 /* 1063 * When device is full and device is on the plist, only one updater will 1064 * see (inuse_pages == si->pages) and will call del_from_avail_list. If 1065 * that updater happen to be here, just skip adding. 1066 */ 1067 pages = si->pages; 1068 if (val == pages) { 1069 /* Just like the cmpxchg in del_from_avail_list */ 1070 if (atomic_long_try_cmpxchg(&si->inuse_pages, &pages, 1071 pages | SWAP_USAGE_OFFLIST_BIT)) 1072 goto skip; 1073 } 1074 1075 for_each_node(nid) 1076 plist_add(&si->avail_lists[nid], &swap_avail_heads[nid]); 1077 1078 skip: 1079 spin_unlock(&swap_avail_lock); 1080 } 1081 1082 /* 1083 * swap_usage_add / swap_usage_sub of each slot are serialized by ci->lock 1084 * within each cluster, so the total contribution to the global counter should 1085 * always be positive and cannot exceed the total number of usable slots. 1086 */ 1087 static bool swap_usage_add(struct swap_info_struct *si, unsigned int nr_entries) 1088 { 1089 long val = atomic_long_add_return_relaxed(nr_entries, &si->inuse_pages); 1090 1091 /* 1092 * If device is full, and SWAP_USAGE_OFFLIST_BIT is not set, 1093 * remove it from the plist. 1094 */ 1095 if (unlikely(val == si->pages)) { 1096 del_from_avail_list(si, false); 1097 return true; 1098 } 1099 1100 return false; 1101 } 1102 1103 static void swap_usage_sub(struct swap_info_struct *si, unsigned int nr_entries) 1104 { 1105 long val = atomic_long_sub_return_relaxed(nr_entries, &si->inuse_pages); 1106 1107 /* 1108 * If device is not full, and SWAP_USAGE_OFFLIST_BIT is set, 1109 * add it to the plist. 1110 */ 1111 if (unlikely(val & SWAP_USAGE_OFFLIST_BIT)) 1112 add_to_avail_list(si, false); 1113 } 1114 1115 static void swap_range_alloc(struct swap_info_struct *si, 1116 unsigned int nr_entries) 1117 { 1118 if (swap_usage_add(si, nr_entries)) { 1119 if (vm_swap_full()) 1120 schedule_work(&si->reclaim_work); 1121 } 1122 atomic_long_sub(nr_entries, &nr_swap_pages); 1123 } 1124 1125 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 1126 unsigned int nr_entries) 1127 { 1128 unsigned long begin = offset; 1129 unsigned long end = offset + nr_entries - 1; 1130 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 1131 unsigned int i; 1132 1133 /* 1134 * Use atomic clear_bit operations only on zeromap instead of non-atomic 1135 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes. 1136 */ 1137 for (i = 0; i < nr_entries; i++) { 1138 clear_bit(offset + i, si->zeromap); 1139 zswap_invalidate(swp_entry(si->type, offset + i)); 1140 } 1141 1142 if (si->flags & SWP_BLKDEV) 1143 swap_slot_free_notify = 1144 si->bdev->bd_disk->fops->swap_slot_free_notify; 1145 else 1146 swap_slot_free_notify = NULL; 1147 while (offset <= end) { 1148 arch_swap_invalidate_page(si->type, offset); 1149 if (swap_slot_free_notify) 1150 swap_slot_free_notify(si->bdev, offset); 1151 offset++; 1152 } 1153 clear_shadow_from_swap_cache(si->type, begin, end); 1154 1155 /* 1156 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0 1157 * only after the above cleanups are done. 1158 */ 1159 smp_wmb(); 1160 atomic_long_add(nr_entries, &nr_swap_pages); 1161 swap_usage_sub(si, nr_entries); 1162 } 1163 1164 static bool get_swap_device_info(struct swap_info_struct *si) 1165 { 1166 if (!percpu_ref_tryget_live(&si->users)) 1167 return false; 1168 /* 1169 * Guarantee the si->users are checked before accessing other 1170 * fields of swap_info_struct, and si->flags (SWP_WRITEOK) is 1171 * up to dated. 1172 * 1173 * Paired with the spin_unlock() after setup_swap_info() in 1174 * enable_swap_info(), and smp_wmb() in swapoff. 1175 */ 1176 smp_rmb(); 1177 return true; 1178 } 1179 1180 /* 1181 * Fast path try to get swap entries with specified order from current 1182 * CPU's swap entry pool (a cluster). 1183 */ 1184 static bool swap_alloc_fast(swp_entry_t *entry, 1185 int order) 1186 { 1187 struct swap_cluster_info *ci; 1188 struct swap_info_struct *si; 1189 unsigned int offset, found = SWAP_ENTRY_INVALID; 1190 1191 /* 1192 * Once allocated, swap_info_struct will never be completely freed, 1193 * so checking it's liveness by get_swap_device_info is enough. 1194 */ 1195 si = this_cpu_read(percpu_swap_cluster.si[order]); 1196 offset = this_cpu_read(percpu_swap_cluster.offset[order]); 1197 if (!si || !offset || !get_swap_device_info(si)) 1198 return false; 1199 1200 ci = lock_cluster(si, offset); 1201 if (cluster_is_usable(ci, order)) { 1202 if (cluster_is_empty(ci)) 1203 offset = cluster_offset(si, ci); 1204 found = alloc_swap_scan_cluster(si, ci, offset, order, SWAP_HAS_CACHE); 1205 if (found) 1206 *entry = swp_entry(si->type, found); 1207 } else { 1208 unlock_cluster(ci); 1209 } 1210 1211 put_swap_device(si); 1212 return !!found; 1213 } 1214 1215 /* Rotate the device and switch to a new cluster */ 1216 static bool swap_alloc_slow(swp_entry_t *entry, 1217 int order) 1218 { 1219 int node; 1220 unsigned long offset; 1221 struct swap_info_struct *si, *next; 1222 1223 node = numa_node_id(); 1224 spin_lock(&swap_avail_lock); 1225 start_over: 1226 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1227 /* Rotate the device and switch to a new cluster */ 1228 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1229 spin_unlock(&swap_avail_lock); 1230 if (get_swap_device_info(si)) { 1231 offset = cluster_alloc_swap_entry(si, order, SWAP_HAS_CACHE); 1232 put_swap_device(si); 1233 if (offset) { 1234 *entry = swp_entry(si->type, offset); 1235 return true; 1236 } 1237 if (order) 1238 return false; 1239 } 1240 1241 spin_lock(&swap_avail_lock); 1242 /* 1243 * if we got here, it's likely that si was almost full before, 1244 * and since scan_swap_map_slots() can drop the si->lock, 1245 * multiple callers probably all tried to get a page from the 1246 * same si and it filled up before we could get one; or, the si 1247 * filled up between us dropping swap_avail_lock and taking 1248 * si->lock. Since we dropped the swap_avail_lock, the 1249 * swap_avail_head list may have been modified; so if next is 1250 * still in the swap_avail_head list then try it, otherwise 1251 * start over if we have not gotten any slots. 1252 */ 1253 if (plist_node_empty(&next->avail_lists[node])) 1254 goto start_over; 1255 } 1256 spin_unlock(&swap_avail_lock); 1257 return false; 1258 } 1259 1260 /** 1261 * folio_alloc_swap - allocate swap space for a folio 1262 * @folio: folio we want to move to swap 1263 * @gfp: gfp mask for shadow nodes 1264 * 1265 * Allocate swap space for the folio and add the folio to the 1266 * swap cache. 1267 * 1268 * Context: Caller needs to hold the folio lock. 1269 * Return: Whether the folio was added to the swap cache. 1270 */ 1271 int folio_alloc_swap(struct folio *folio, gfp_t gfp) 1272 { 1273 unsigned int order = folio_order(folio); 1274 unsigned int size = 1 << order; 1275 swp_entry_t entry = {}; 1276 1277 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1278 VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio); 1279 1280 if (order) { 1281 /* 1282 * Reject large allocation when THP_SWAP is disabled, 1283 * the caller should split the folio and try again. 1284 */ 1285 if (!IS_ENABLED(CONFIG_THP_SWAP)) 1286 return -EAGAIN; 1287 1288 /* 1289 * Allocation size should never exceed cluster size 1290 * (HPAGE_PMD_SIZE). 1291 */ 1292 if (size > SWAPFILE_CLUSTER) { 1293 VM_WARN_ON_ONCE(1); 1294 return -EINVAL; 1295 } 1296 } 1297 1298 local_lock(&percpu_swap_cluster.lock); 1299 if (!swap_alloc_fast(&entry, order)) 1300 swap_alloc_slow(&entry, order); 1301 local_unlock(&percpu_swap_cluster.lock); 1302 1303 /* Need to call this even if allocation failed, for MEMCG_SWAP_FAIL. */ 1304 if (mem_cgroup_try_charge_swap(folio, entry)) 1305 goto out_free; 1306 1307 if (!entry.val) 1308 return -ENOMEM; 1309 1310 /* 1311 * XArray node allocations from PF_MEMALLOC contexts could 1312 * completely exhaust the page allocator. __GFP_NOMEMALLOC 1313 * stops emergency reserves from being allocated. 1314 * 1315 * TODO: this could cause a theoretical memory reclaim 1316 * deadlock in the swap out path. 1317 */ 1318 if (add_to_swap_cache(folio, entry, gfp | __GFP_NOMEMALLOC, NULL)) 1319 goto out_free; 1320 1321 return 0; 1322 1323 out_free: 1324 put_swap_folio(folio, entry); 1325 return -ENOMEM; 1326 } 1327 1328 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1329 { 1330 struct swap_info_struct *si; 1331 unsigned long offset; 1332 1333 if (!entry.val) 1334 goto out; 1335 si = swp_swap_info(entry); 1336 if (!si) 1337 goto bad_nofile; 1338 if (data_race(!(si->flags & SWP_USED))) 1339 goto bad_device; 1340 offset = swp_offset(entry); 1341 if (offset >= si->max) 1342 goto bad_offset; 1343 if (data_race(!si->swap_map[swp_offset(entry)])) 1344 goto bad_free; 1345 return si; 1346 1347 bad_free: 1348 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); 1349 goto out; 1350 bad_offset: 1351 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1352 goto out; 1353 bad_device: 1354 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); 1355 goto out; 1356 bad_nofile: 1357 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1358 out: 1359 return NULL; 1360 } 1361 1362 static unsigned char swap_entry_put_locked(struct swap_info_struct *si, 1363 struct swap_cluster_info *ci, 1364 swp_entry_t entry, 1365 unsigned char usage) 1366 { 1367 unsigned long offset = swp_offset(entry); 1368 unsigned char count; 1369 unsigned char has_cache; 1370 1371 count = si->swap_map[offset]; 1372 1373 has_cache = count & SWAP_HAS_CACHE; 1374 count &= ~SWAP_HAS_CACHE; 1375 1376 if (usage == SWAP_HAS_CACHE) { 1377 VM_BUG_ON(!has_cache); 1378 has_cache = 0; 1379 } else if (count == SWAP_MAP_SHMEM) { 1380 /* 1381 * Or we could insist on shmem.c using a special 1382 * swap_shmem_free() and free_shmem_swap_and_cache()... 1383 */ 1384 count = 0; 1385 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1386 if (count == COUNT_CONTINUED) { 1387 if (swap_count_continued(si, offset, count)) 1388 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1389 else 1390 count = SWAP_MAP_MAX; 1391 } else 1392 count--; 1393 } 1394 1395 usage = count | has_cache; 1396 if (usage) 1397 WRITE_ONCE(si->swap_map[offset], usage); 1398 else 1399 swap_entries_free(si, ci, entry, 1); 1400 1401 return usage; 1402 } 1403 1404 /* 1405 * When we get a swap entry, if there aren't some other ways to 1406 * prevent swapoff, such as the folio in swap cache is locked, RCU 1407 * reader side is locked, etc., the swap entry may become invalid 1408 * because of swapoff. Then, we need to enclose all swap related 1409 * functions with get_swap_device() and put_swap_device(), unless the 1410 * swap functions call get/put_swap_device() by themselves. 1411 * 1412 * RCU reader side lock (including any spinlock) is sufficient to 1413 * prevent swapoff, because synchronize_rcu() is called in swapoff() 1414 * before freeing data structures. 1415 * 1416 * Check whether swap entry is valid in the swap device. If so, 1417 * return pointer to swap_info_struct, and keep the swap entry valid 1418 * via preventing the swap device from being swapoff, until 1419 * put_swap_device() is called. Otherwise return NULL. 1420 * 1421 * Notice that swapoff or swapoff+swapon can still happen before the 1422 * percpu_ref_tryget_live() in get_swap_device() or after the 1423 * percpu_ref_put() in put_swap_device() if there isn't any other way 1424 * to prevent swapoff. The caller must be prepared for that. For 1425 * example, the following situation is possible. 1426 * 1427 * CPU1 CPU2 1428 * do_swap_page() 1429 * ... swapoff+swapon 1430 * __read_swap_cache_async() 1431 * swapcache_prepare() 1432 * __swap_duplicate() 1433 * // check swap_map 1434 * // verify PTE not changed 1435 * 1436 * In __swap_duplicate(), the swap_map need to be checked before 1437 * changing partly because the specified swap entry may be for another 1438 * swap device which has been swapoff. And in do_swap_page(), after 1439 * the page is read from the swap device, the PTE is verified not 1440 * changed with the page table locked to check whether the swap device 1441 * has been swapoff or swapoff+swapon. 1442 */ 1443 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1444 { 1445 struct swap_info_struct *si; 1446 unsigned long offset; 1447 1448 if (!entry.val) 1449 goto out; 1450 si = swp_swap_info(entry); 1451 if (!si) 1452 goto bad_nofile; 1453 if (!get_swap_device_info(si)) 1454 goto out; 1455 offset = swp_offset(entry); 1456 if (offset >= si->max) 1457 goto put_out; 1458 1459 return si; 1460 bad_nofile: 1461 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1462 out: 1463 return NULL; 1464 put_out: 1465 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1466 percpu_ref_put(&si->users); 1467 return NULL; 1468 } 1469 1470 static void swap_entries_put_cache(struct swap_info_struct *si, 1471 swp_entry_t entry, int nr) 1472 { 1473 unsigned long offset = swp_offset(entry); 1474 struct swap_cluster_info *ci; 1475 1476 ci = lock_cluster(si, offset); 1477 if (swap_only_has_cache(si, offset, nr)) 1478 swap_entries_free(si, ci, entry, nr); 1479 else { 1480 for (int i = 0; i < nr; i++, entry.val++) 1481 swap_entry_put_locked(si, ci, entry, SWAP_HAS_CACHE); 1482 } 1483 unlock_cluster(ci); 1484 } 1485 1486 static bool swap_entries_put_map(struct swap_info_struct *si, 1487 swp_entry_t entry, int nr) 1488 { 1489 unsigned long offset = swp_offset(entry); 1490 struct swap_cluster_info *ci; 1491 bool has_cache = false; 1492 unsigned char count; 1493 int i; 1494 1495 if (nr <= 1) 1496 goto fallback; 1497 count = swap_count(data_race(si->swap_map[offset])); 1498 if (count != 1 && count != SWAP_MAP_SHMEM) 1499 goto fallback; 1500 1501 ci = lock_cluster(si, offset); 1502 if (!swap_is_last_map(si, offset, nr, &has_cache)) { 1503 goto locked_fallback; 1504 } 1505 if (!has_cache) 1506 swap_entries_free(si, ci, entry, nr); 1507 else 1508 for (i = 0; i < nr; i++) 1509 WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE); 1510 unlock_cluster(ci); 1511 1512 return has_cache; 1513 1514 fallback: 1515 ci = lock_cluster(si, offset); 1516 locked_fallback: 1517 for (i = 0; i < nr; i++, entry.val++) { 1518 count = swap_entry_put_locked(si, ci, entry, 1); 1519 if (count == SWAP_HAS_CACHE) 1520 has_cache = true; 1521 } 1522 unlock_cluster(ci); 1523 return has_cache; 1524 1525 } 1526 1527 /* 1528 * Only functions with "_nr" suffix are able to free entries spanning 1529 * cross multi clusters, so ensure the range is within a single cluster 1530 * when freeing entries with functions without "_nr" suffix. 1531 */ 1532 static bool swap_entries_put_map_nr(struct swap_info_struct *si, 1533 swp_entry_t entry, int nr) 1534 { 1535 int cluster_nr, cluster_rest; 1536 unsigned long offset = swp_offset(entry); 1537 bool has_cache = false; 1538 1539 cluster_rest = SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER; 1540 while (nr) { 1541 cluster_nr = min(nr, cluster_rest); 1542 has_cache |= swap_entries_put_map(si, entry, cluster_nr); 1543 cluster_rest = SWAPFILE_CLUSTER; 1544 nr -= cluster_nr; 1545 entry.val += cluster_nr; 1546 } 1547 1548 return has_cache; 1549 } 1550 1551 /* 1552 * Check if it's the last ref of swap entry in the freeing path. 1553 * Qualified vlaue includes 1, SWAP_HAS_CACHE or SWAP_MAP_SHMEM. 1554 */ 1555 static inline bool __maybe_unused swap_is_last_ref(unsigned char count) 1556 { 1557 return (count == SWAP_HAS_CACHE) || (count == 1) || 1558 (count == SWAP_MAP_SHMEM); 1559 } 1560 1561 /* 1562 * Drop the last ref of swap entries, caller have to ensure all entries 1563 * belong to the same cgroup and cluster. 1564 */ 1565 static void swap_entries_free(struct swap_info_struct *si, 1566 struct swap_cluster_info *ci, 1567 swp_entry_t entry, unsigned int nr_pages) 1568 { 1569 unsigned long offset = swp_offset(entry); 1570 unsigned char *map = si->swap_map + offset; 1571 unsigned char *map_end = map + nr_pages; 1572 1573 /* It should never free entries across different clusters */ 1574 VM_BUG_ON(ci != offset_to_cluster(si, offset + nr_pages - 1)); 1575 VM_BUG_ON(cluster_is_empty(ci)); 1576 VM_BUG_ON(ci->count < nr_pages); 1577 1578 ci->count -= nr_pages; 1579 do { 1580 VM_BUG_ON(!swap_is_last_ref(*map)); 1581 *map = 0; 1582 } while (++map < map_end); 1583 1584 mem_cgroup_uncharge_swap(entry, nr_pages); 1585 swap_range_free(si, offset, nr_pages); 1586 1587 if (!ci->count) 1588 free_cluster(si, ci); 1589 else 1590 partial_free_cluster(si, ci); 1591 } 1592 1593 /* 1594 * Caller has made sure that the swap device corresponding to entry 1595 * is still around or has not been recycled. 1596 */ 1597 void swap_free_nr(swp_entry_t entry, int nr_pages) 1598 { 1599 int nr; 1600 struct swap_info_struct *sis; 1601 unsigned long offset = swp_offset(entry); 1602 1603 sis = _swap_info_get(entry); 1604 if (!sis) 1605 return; 1606 1607 while (nr_pages) { 1608 nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER); 1609 swap_entries_put_map(sis, swp_entry(sis->type, offset), nr); 1610 offset += nr; 1611 nr_pages -= nr; 1612 } 1613 } 1614 1615 /* 1616 * Called after dropping swapcache to decrease refcnt to swap entries. 1617 */ 1618 void put_swap_folio(struct folio *folio, swp_entry_t entry) 1619 { 1620 struct swap_info_struct *si; 1621 int size = 1 << swap_entry_order(folio_order(folio)); 1622 1623 si = _swap_info_get(entry); 1624 if (!si) 1625 return; 1626 1627 swap_entries_put_cache(si, entry, size); 1628 } 1629 1630 int __swap_count(swp_entry_t entry) 1631 { 1632 struct swap_info_struct *si = swp_swap_info(entry); 1633 pgoff_t offset = swp_offset(entry); 1634 1635 return swap_count(si->swap_map[offset]); 1636 } 1637 1638 /* 1639 * How many references to @entry are currently swapped out? 1640 * This does not give an exact answer when swap count is continued, 1641 * but does include the high COUNT_CONTINUED flag to allow for that. 1642 */ 1643 bool swap_entry_swapped(struct swap_info_struct *si, swp_entry_t entry) 1644 { 1645 pgoff_t offset = swp_offset(entry); 1646 struct swap_cluster_info *ci; 1647 int count; 1648 1649 ci = lock_cluster(si, offset); 1650 count = swap_count(si->swap_map[offset]); 1651 unlock_cluster(ci); 1652 return !!count; 1653 } 1654 1655 /* 1656 * How many references to @entry are currently swapped out? 1657 * This considers COUNT_CONTINUED so it returns exact answer. 1658 */ 1659 int swp_swapcount(swp_entry_t entry) 1660 { 1661 int count, tmp_count, n; 1662 struct swap_info_struct *si; 1663 struct swap_cluster_info *ci; 1664 struct page *page; 1665 pgoff_t offset; 1666 unsigned char *map; 1667 1668 si = _swap_info_get(entry); 1669 if (!si) 1670 return 0; 1671 1672 offset = swp_offset(entry); 1673 1674 ci = lock_cluster(si, offset); 1675 1676 count = swap_count(si->swap_map[offset]); 1677 if (!(count & COUNT_CONTINUED)) 1678 goto out; 1679 1680 count &= ~COUNT_CONTINUED; 1681 n = SWAP_MAP_MAX + 1; 1682 1683 page = vmalloc_to_page(si->swap_map + offset); 1684 offset &= ~PAGE_MASK; 1685 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1686 1687 do { 1688 page = list_next_entry(page, lru); 1689 map = kmap_local_page(page); 1690 tmp_count = map[offset]; 1691 kunmap_local(map); 1692 1693 count += (tmp_count & ~COUNT_CONTINUED) * n; 1694 n *= (SWAP_CONT_MAX + 1); 1695 } while (tmp_count & COUNT_CONTINUED); 1696 out: 1697 unlock_cluster(ci); 1698 return count; 1699 } 1700 1701 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1702 swp_entry_t entry, int order) 1703 { 1704 struct swap_cluster_info *ci; 1705 unsigned char *map = si->swap_map; 1706 unsigned int nr_pages = 1 << order; 1707 unsigned long roffset = swp_offset(entry); 1708 unsigned long offset = round_down(roffset, nr_pages); 1709 int i; 1710 bool ret = false; 1711 1712 ci = lock_cluster(si, offset); 1713 if (nr_pages == 1) { 1714 if (swap_count(map[roffset])) 1715 ret = true; 1716 goto unlock_out; 1717 } 1718 for (i = 0; i < nr_pages; i++) { 1719 if (swap_count(map[offset + i])) { 1720 ret = true; 1721 break; 1722 } 1723 } 1724 unlock_out: 1725 unlock_cluster(ci); 1726 return ret; 1727 } 1728 1729 static bool folio_swapped(struct folio *folio) 1730 { 1731 swp_entry_t entry = folio->swap; 1732 struct swap_info_struct *si = _swap_info_get(entry); 1733 1734 if (!si) 1735 return false; 1736 1737 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio))) 1738 return swap_entry_swapped(si, entry); 1739 1740 return swap_page_trans_huge_swapped(si, entry, folio_order(folio)); 1741 } 1742 1743 static bool folio_swapcache_freeable(struct folio *folio) 1744 { 1745 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1746 1747 if (!folio_test_swapcache(folio)) 1748 return false; 1749 if (folio_test_writeback(folio)) 1750 return false; 1751 1752 /* 1753 * Once hibernation has begun to create its image of memory, 1754 * there's a danger that one of the calls to folio_free_swap() 1755 * - most probably a call from __try_to_reclaim_swap() while 1756 * hibernation is allocating its own swap pages for the image, 1757 * but conceivably even a call from memory reclaim - will free 1758 * the swap from a folio which has already been recorded in the 1759 * image as a clean swapcache folio, and then reuse its swap for 1760 * another page of the image. On waking from hibernation, the 1761 * original folio might be freed under memory pressure, then 1762 * later read back in from swap, now with the wrong data. 1763 * 1764 * Hibernation suspends storage while it is writing the image 1765 * to disk so check that here. 1766 */ 1767 if (pm_suspended_storage()) 1768 return false; 1769 1770 return true; 1771 } 1772 1773 /** 1774 * folio_free_swap() - Free the swap space used for this folio. 1775 * @folio: The folio to remove. 1776 * 1777 * If swap is getting full, or if there are no more mappings of this folio, 1778 * then call folio_free_swap to free its swap space. 1779 * 1780 * Return: true if we were able to release the swap space. 1781 */ 1782 bool folio_free_swap(struct folio *folio) 1783 { 1784 if (!folio_swapcache_freeable(folio)) 1785 return false; 1786 if (folio_swapped(folio)) 1787 return false; 1788 1789 delete_from_swap_cache(folio); 1790 folio_set_dirty(folio); 1791 return true; 1792 } 1793 1794 /** 1795 * free_swap_and_cache_nr() - Release reference on range of swap entries and 1796 * reclaim their cache if no more references remain. 1797 * @entry: First entry of range. 1798 * @nr: Number of entries in range. 1799 * 1800 * For each swap entry in the contiguous range, release a reference. If any swap 1801 * entries become free, try to reclaim their underlying folios, if present. The 1802 * offset range is defined by [entry.offset, entry.offset + nr). 1803 */ 1804 void free_swap_and_cache_nr(swp_entry_t entry, int nr) 1805 { 1806 const unsigned long start_offset = swp_offset(entry); 1807 const unsigned long end_offset = start_offset + nr; 1808 struct swap_info_struct *si; 1809 bool any_only_cache = false; 1810 unsigned long offset; 1811 1812 si = get_swap_device(entry); 1813 if (!si) 1814 return; 1815 1816 if (WARN_ON(end_offset > si->max)) 1817 goto out; 1818 1819 /* 1820 * First free all entries in the range. 1821 */ 1822 any_only_cache = swap_entries_put_map_nr(si, entry, nr); 1823 1824 /* 1825 * Short-circuit the below loop if none of the entries had their 1826 * reference drop to zero. 1827 */ 1828 if (!any_only_cache) 1829 goto out; 1830 1831 /* 1832 * Now go back over the range trying to reclaim the swap cache. 1833 */ 1834 for (offset = start_offset; offset < end_offset; offset += nr) { 1835 nr = 1; 1836 if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 1837 /* 1838 * Folios are always naturally aligned in swap so 1839 * advance forward to the next boundary. Zero means no 1840 * folio was found for the swap entry, so advance by 1 1841 * in this case. Negative value means folio was found 1842 * but could not be reclaimed. Here we can still advance 1843 * to the next boundary. 1844 */ 1845 nr = __try_to_reclaim_swap(si, offset, 1846 TTRS_UNMAPPED | TTRS_FULL); 1847 if (nr == 0) 1848 nr = 1; 1849 else if (nr < 0) 1850 nr = -nr; 1851 nr = ALIGN(offset + 1, nr) - offset; 1852 } 1853 } 1854 1855 out: 1856 put_swap_device(si); 1857 } 1858 1859 #ifdef CONFIG_HIBERNATION 1860 1861 swp_entry_t get_swap_page_of_type(int type) 1862 { 1863 struct swap_info_struct *si = swap_type_to_swap_info(type); 1864 unsigned long offset; 1865 swp_entry_t entry = {0}; 1866 1867 if (!si) 1868 goto fail; 1869 1870 /* This is called for allocating swap entry, not cache */ 1871 if (get_swap_device_info(si)) { 1872 if (si->flags & SWP_WRITEOK) { 1873 offset = cluster_alloc_swap_entry(si, 0, 1); 1874 if (offset) { 1875 entry = swp_entry(si->type, offset); 1876 atomic_long_dec(&nr_swap_pages); 1877 } 1878 } 1879 put_swap_device(si); 1880 } 1881 fail: 1882 return entry; 1883 } 1884 1885 /* 1886 * Find the swap type that corresponds to given device (if any). 1887 * 1888 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1889 * from 0, in which the swap header is expected to be located. 1890 * 1891 * This is needed for the suspend to disk (aka swsusp). 1892 */ 1893 int swap_type_of(dev_t device, sector_t offset) 1894 { 1895 int type; 1896 1897 if (!device) 1898 return -1; 1899 1900 spin_lock(&swap_lock); 1901 for (type = 0; type < nr_swapfiles; type++) { 1902 struct swap_info_struct *sis = swap_info[type]; 1903 1904 if (!(sis->flags & SWP_WRITEOK)) 1905 continue; 1906 1907 if (device == sis->bdev->bd_dev) { 1908 struct swap_extent *se = first_se(sis); 1909 1910 if (se->start_block == offset) { 1911 spin_unlock(&swap_lock); 1912 return type; 1913 } 1914 } 1915 } 1916 spin_unlock(&swap_lock); 1917 return -ENODEV; 1918 } 1919 1920 int find_first_swap(dev_t *device) 1921 { 1922 int type; 1923 1924 spin_lock(&swap_lock); 1925 for (type = 0; type < nr_swapfiles; type++) { 1926 struct swap_info_struct *sis = swap_info[type]; 1927 1928 if (!(sis->flags & SWP_WRITEOK)) 1929 continue; 1930 *device = sis->bdev->bd_dev; 1931 spin_unlock(&swap_lock); 1932 return type; 1933 } 1934 spin_unlock(&swap_lock); 1935 return -ENODEV; 1936 } 1937 1938 /* 1939 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1940 * corresponding to given index in swap_info (swap type). 1941 */ 1942 sector_t swapdev_block(int type, pgoff_t offset) 1943 { 1944 struct swap_info_struct *si = swap_type_to_swap_info(type); 1945 struct swap_extent *se; 1946 1947 if (!si || !(si->flags & SWP_WRITEOK)) 1948 return 0; 1949 se = offset_to_swap_extent(si, offset); 1950 return se->start_block + (offset - se->start_page); 1951 } 1952 1953 /* 1954 * Return either the total number of swap pages of given type, or the number 1955 * of free pages of that type (depending on @free) 1956 * 1957 * This is needed for software suspend 1958 */ 1959 unsigned int count_swap_pages(int type, int free) 1960 { 1961 unsigned int n = 0; 1962 1963 spin_lock(&swap_lock); 1964 if ((unsigned int)type < nr_swapfiles) { 1965 struct swap_info_struct *sis = swap_info[type]; 1966 1967 spin_lock(&sis->lock); 1968 if (sis->flags & SWP_WRITEOK) { 1969 n = sis->pages; 1970 if (free) 1971 n -= swap_usage_in_pages(sis); 1972 } 1973 spin_unlock(&sis->lock); 1974 } 1975 spin_unlock(&swap_lock); 1976 return n; 1977 } 1978 #endif /* CONFIG_HIBERNATION */ 1979 1980 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1981 { 1982 return pte_same(pte_swp_clear_flags(pte), swp_pte); 1983 } 1984 1985 /* 1986 * No need to decide whether this PTE shares the swap entry with others, 1987 * just let do_wp_page work it out if a write is requested later - to 1988 * force COW, vm_page_prot omits write permission from any private vma. 1989 */ 1990 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1991 unsigned long addr, swp_entry_t entry, struct folio *folio) 1992 { 1993 struct page *page; 1994 struct folio *swapcache; 1995 spinlock_t *ptl; 1996 pte_t *pte, new_pte, old_pte; 1997 bool hwpoisoned = false; 1998 int ret = 1; 1999 2000 swapcache = folio; 2001 folio = ksm_might_need_to_copy(folio, vma, addr); 2002 if (unlikely(!folio)) 2003 return -ENOMEM; 2004 else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 2005 hwpoisoned = true; 2006 folio = swapcache; 2007 } 2008 2009 page = folio_file_page(folio, swp_offset(entry)); 2010 if (PageHWPoison(page)) 2011 hwpoisoned = true; 2012 2013 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 2014 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte), 2015 swp_entry_to_pte(entry)))) { 2016 ret = 0; 2017 goto out; 2018 } 2019 2020 old_pte = ptep_get(pte); 2021 2022 if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) { 2023 swp_entry_t swp_entry; 2024 2025 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 2026 if (hwpoisoned) { 2027 swp_entry = make_hwpoison_entry(page); 2028 } else { 2029 swp_entry = make_poisoned_swp_entry(); 2030 } 2031 new_pte = swp_entry_to_pte(swp_entry); 2032 ret = 0; 2033 goto setpte; 2034 } 2035 2036 /* 2037 * Some architectures may have to restore extra metadata to the page 2038 * when reading from swap. This metadata may be indexed by swap entry 2039 * so this must be called before swap_free(). 2040 */ 2041 arch_swap_restore(folio_swap(entry, folio), folio); 2042 2043 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 2044 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 2045 folio_get(folio); 2046 if (folio == swapcache) { 2047 rmap_t rmap_flags = RMAP_NONE; 2048 2049 /* 2050 * See do_swap_page(): writeback would be problematic. 2051 * However, we do a folio_wait_writeback() just before this 2052 * call and have the folio locked. 2053 */ 2054 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 2055 if (pte_swp_exclusive(old_pte)) 2056 rmap_flags |= RMAP_EXCLUSIVE; 2057 /* 2058 * We currently only expect small !anon folios, which are either 2059 * fully exclusive or fully shared. If we ever get large folios 2060 * here, we have to be careful. 2061 */ 2062 if (!folio_test_anon(folio)) { 2063 VM_WARN_ON_ONCE(folio_test_large(folio)); 2064 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 2065 folio_add_new_anon_rmap(folio, vma, addr, rmap_flags); 2066 } else { 2067 folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags); 2068 } 2069 } else { /* ksm created a completely new copy */ 2070 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 2071 folio_add_lru_vma(folio, vma); 2072 } 2073 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot)); 2074 if (pte_swp_soft_dirty(old_pte)) 2075 new_pte = pte_mksoft_dirty(new_pte); 2076 if (pte_swp_uffd_wp(old_pte)) 2077 new_pte = pte_mkuffd_wp(new_pte); 2078 setpte: 2079 set_pte_at(vma->vm_mm, addr, pte, new_pte); 2080 swap_free(entry); 2081 out: 2082 if (pte) 2083 pte_unmap_unlock(pte, ptl); 2084 if (folio != swapcache) { 2085 folio_unlock(folio); 2086 folio_put(folio); 2087 } 2088 return ret; 2089 } 2090 2091 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 2092 unsigned long addr, unsigned long end, 2093 unsigned int type) 2094 { 2095 pte_t *pte = NULL; 2096 struct swap_info_struct *si; 2097 2098 si = swap_info[type]; 2099 do { 2100 struct folio *folio; 2101 unsigned long offset; 2102 unsigned char swp_count; 2103 swp_entry_t entry; 2104 int ret; 2105 pte_t ptent; 2106 2107 if (!pte++) { 2108 pte = pte_offset_map(pmd, addr); 2109 if (!pte) 2110 break; 2111 } 2112 2113 ptent = ptep_get_lockless(pte); 2114 2115 if (!is_swap_pte(ptent)) 2116 continue; 2117 2118 entry = pte_to_swp_entry(ptent); 2119 if (swp_type(entry) != type) 2120 continue; 2121 2122 offset = swp_offset(entry); 2123 pte_unmap(pte); 2124 pte = NULL; 2125 2126 folio = swap_cache_get_folio(entry, vma, addr); 2127 if (!folio) { 2128 struct vm_fault vmf = { 2129 .vma = vma, 2130 .address = addr, 2131 .real_address = addr, 2132 .pmd = pmd, 2133 }; 2134 2135 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 2136 &vmf); 2137 } 2138 if (!folio) { 2139 swp_count = READ_ONCE(si->swap_map[offset]); 2140 if (swp_count == 0 || swp_count == SWAP_MAP_BAD) 2141 continue; 2142 return -ENOMEM; 2143 } 2144 2145 folio_lock(folio); 2146 folio_wait_writeback(folio); 2147 ret = unuse_pte(vma, pmd, addr, entry, folio); 2148 if (ret < 0) { 2149 folio_unlock(folio); 2150 folio_put(folio); 2151 return ret; 2152 } 2153 2154 folio_free_swap(folio); 2155 folio_unlock(folio); 2156 folio_put(folio); 2157 } while (addr += PAGE_SIZE, addr != end); 2158 2159 if (pte) 2160 pte_unmap(pte); 2161 return 0; 2162 } 2163 2164 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 2165 unsigned long addr, unsigned long end, 2166 unsigned int type) 2167 { 2168 pmd_t *pmd; 2169 unsigned long next; 2170 int ret; 2171 2172 pmd = pmd_offset(pud, addr); 2173 do { 2174 cond_resched(); 2175 next = pmd_addr_end(addr, end); 2176 ret = unuse_pte_range(vma, pmd, addr, next, type); 2177 if (ret) 2178 return ret; 2179 } while (pmd++, addr = next, addr != end); 2180 return 0; 2181 } 2182 2183 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 2184 unsigned long addr, unsigned long end, 2185 unsigned int type) 2186 { 2187 pud_t *pud; 2188 unsigned long next; 2189 int ret; 2190 2191 pud = pud_offset(p4d, addr); 2192 do { 2193 next = pud_addr_end(addr, end); 2194 if (pud_none_or_clear_bad(pud)) 2195 continue; 2196 ret = unuse_pmd_range(vma, pud, addr, next, type); 2197 if (ret) 2198 return ret; 2199 } while (pud++, addr = next, addr != end); 2200 return 0; 2201 } 2202 2203 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 2204 unsigned long addr, unsigned long end, 2205 unsigned int type) 2206 { 2207 p4d_t *p4d; 2208 unsigned long next; 2209 int ret; 2210 2211 p4d = p4d_offset(pgd, addr); 2212 do { 2213 next = p4d_addr_end(addr, end); 2214 if (p4d_none_or_clear_bad(p4d)) 2215 continue; 2216 ret = unuse_pud_range(vma, p4d, addr, next, type); 2217 if (ret) 2218 return ret; 2219 } while (p4d++, addr = next, addr != end); 2220 return 0; 2221 } 2222 2223 static int unuse_vma(struct vm_area_struct *vma, unsigned int type) 2224 { 2225 pgd_t *pgd; 2226 unsigned long addr, end, next; 2227 int ret; 2228 2229 addr = vma->vm_start; 2230 end = vma->vm_end; 2231 2232 pgd = pgd_offset(vma->vm_mm, addr); 2233 do { 2234 next = pgd_addr_end(addr, end); 2235 if (pgd_none_or_clear_bad(pgd)) 2236 continue; 2237 ret = unuse_p4d_range(vma, pgd, addr, next, type); 2238 if (ret) 2239 return ret; 2240 } while (pgd++, addr = next, addr != end); 2241 return 0; 2242 } 2243 2244 static int unuse_mm(struct mm_struct *mm, unsigned int type) 2245 { 2246 struct vm_area_struct *vma; 2247 int ret = 0; 2248 VMA_ITERATOR(vmi, mm, 0); 2249 2250 mmap_read_lock(mm); 2251 for_each_vma(vmi, vma) { 2252 if (vma->anon_vma && !is_vm_hugetlb_page(vma)) { 2253 ret = unuse_vma(vma, type); 2254 if (ret) 2255 break; 2256 } 2257 2258 cond_resched(); 2259 } 2260 mmap_read_unlock(mm); 2261 return ret; 2262 } 2263 2264 /* 2265 * Scan swap_map from current position to next entry still in use. 2266 * Return 0 if there are no inuse entries after prev till end of 2267 * the map. 2268 */ 2269 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 2270 unsigned int prev) 2271 { 2272 unsigned int i; 2273 unsigned char count; 2274 2275 /* 2276 * No need for swap_lock here: we're just looking 2277 * for whether an entry is in use, not modifying it; false 2278 * hits are okay, and sys_swapoff() has already prevented new 2279 * allocations from this area (while holding swap_lock). 2280 */ 2281 for (i = prev + 1; i < si->max; i++) { 2282 count = READ_ONCE(si->swap_map[i]); 2283 if (count && swap_count(count) != SWAP_MAP_BAD) 2284 break; 2285 if ((i % LATENCY_LIMIT) == 0) 2286 cond_resched(); 2287 } 2288 2289 if (i == si->max) 2290 i = 0; 2291 2292 return i; 2293 } 2294 2295 static int try_to_unuse(unsigned int type) 2296 { 2297 struct mm_struct *prev_mm; 2298 struct mm_struct *mm; 2299 struct list_head *p; 2300 int retval = 0; 2301 struct swap_info_struct *si = swap_info[type]; 2302 struct folio *folio; 2303 swp_entry_t entry; 2304 unsigned int i; 2305 2306 if (!swap_usage_in_pages(si)) 2307 goto success; 2308 2309 retry: 2310 retval = shmem_unuse(type); 2311 if (retval) 2312 return retval; 2313 2314 prev_mm = &init_mm; 2315 mmget(prev_mm); 2316 2317 spin_lock(&mmlist_lock); 2318 p = &init_mm.mmlist; 2319 while (swap_usage_in_pages(si) && 2320 !signal_pending(current) && 2321 (p = p->next) != &init_mm.mmlist) { 2322 2323 mm = list_entry(p, struct mm_struct, mmlist); 2324 if (!mmget_not_zero(mm)) 2325 continue; 2326 spin_unlock(&mmlist_lock); 2327 mmput(prev_mm); 2328 prev_mm = mm; 2329 retval = unuse_mm(mm, type); 2330 if (retval) { 2331 mmput(prev_mm); 2332 return retval; 2333 } 2334 2335 /* 2336 * Make sure that we aren't completely killing 2337 * interactive performance. 2338 */ 2339 cond_resched(); 2340 spin_lock(&mmlist_lock); 2341 } 2342 spin_unlock(&mmlist_lock); 2343 2344 mmput(prev_mm); 2345 2346 i = 0; 2347 while (swap_usage_in_pages(si) && 2348 !signal_pending(current) && 2349 (i = find_next_to_unuse(si, i)) != 0) { 2350 2351 entry = swp_entry(type, i); 2352 folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry)); 2353 if (IS_ERR(folio)) 2354 continue; 2355 2356 /* 2357 * It is conceivable that a racing task removed this folio from 2358 * swap cache just before we acquired the page lock. The folio 2359 * might even be back in swap cache on another swap area. But 2360 * that is okay, folio_free_swap() only removes stale folios. 2361 */ 2362 folio_lock(folio); 2363 folio_wait_writeback(folio); 2364 folio_free_swap(folio); 2365 folio_unlock(folio); 2366 folio_put(folio); 2367 } 2368 2369 /* 2370 * Lets check again to see if there are still swap entries in the map. 2371 * If yes, we would need to do retry the unuse logic again. 2372 * Under global memory pressure, swap entries can be reinserted back 2373 * into process space after the mmlist loop above passes over them. 2374 * 2375 * Limit the number of retries? No: when mmget_not_zero() 2376 * above fails, that mm is likely to be freeing swap from 2377 * exit_mmap(), which proceeds at its own independent pace; 2378 * and even shmem_writeout() could have been preempted after 2379 * folio_alloc_swap(), temporarily hiding that swap. It's easy 2380 * and robust (though cpu-intensive) just to keep retrying. 2381 */ 2382 if (swap_usage_in_pages(si)) { 2383 if (!signal_pending(current)) 2384 goto retry; 2385 return -EINTR; 2386 } 2387 2388 success: 2389 /* 2390 * Make sure that further cleanups after try_to_unuse() returns happen 2391 * after swap_range_free() reduces si->inuse_pages to 0. 2392 */ 2393 smp_mb(); 2394 return 0; 2395 } 2396 2397 /* 2398 * After a successful try_to_unuse, if no swap is now in use, we know 2399 * we can empty the mmlist. swap_lock must be held on entry and exit. 2400 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2401 * added to the mmlist just after page_duplicate - before would be racy. 2402 */ 2403 static void drain_mmlist(void) 2404 { 2405 struct list_head *p, *next; 2406 unsigned int type; 2407 2408 for (type = 0; type < nr_swapfiles; type++) 2409 if (swap_usage_in_pages(swap_info[type])) 2410 return; 2411 spin_lock(&mmlist_lock); 2412 list_for_each_safe(p, next, &init_mm.mmlist) 2413 list_del_init(p); 2414 spin_unlock(&mmlist_lock); 2415 } 2416 2417 /* 2418 * Free all of a swapdev's extent information 2419 */ 2420 static void destroy_swap_extents(struct swap_info_struct *sis) 2421 { 2422 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2423 struct rb_node *rb = sis->swap_extent_root.rb_node; 2424 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2425 2426 rb_erase(rb, &sis->swap_extent_root); 2427 kfree(se); 2428 } 2429 2430 if (sis->flags & SWP_ACTIVATED) { 2431 struct file *swap_file = sis->swap_file; 2432 struct address_space *mapping = swap_file->f_mapping; 2433 2434 sis->flags &= ~SWP_ACTIVATED; 2435 if (mapping->a_ops->swap_deactivate) 2436 mapping->a_ops->swap_deactivate(swap_file); 2437 } 2438 } 2439 2440 /* 2441 * Add a block range (and the corresponding page range) into this swapdev's 2442 * extent tree. 2443 * 2444 * This function rather assumes that it is called in ascending page order. 2445 */ 2446 int 2447 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2448 unsigned long nr_pages, sector_t start_block) 2449 { 2450 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2451 struct swap_extent *se; 2452 struct swap_extent *new_se; 2453 2454 /* 2455 * place the new node at the right most since the 2456 * function is called in ascending page order. 2457 */ 2458 while (*link) { 2459 parent = *link; 2460 link = &parent->rb_right; 2461 } 2462 2463 if (parent) { 2464 se = rb_entry(parent, struct swap_extent, rb_node); 2465 BUG_ON(se->start_page + se->nr_pages != start_page); 2466 if (se->start_block + se->nr_pages == start_block) { 2467 /* Merge it */ 2468 se->nr_pages += nr_pages; 2469 return 0; 2470 } 2471 } 2472 2473 /* No merge, insert a new extent. */ 2474 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2475 if (new_se == NULL) 2476 return -ENOMEM; 2477 new_se->start_page = start_page; 2478 new_se->nr_pages = nr_pages; 2479 new_se->start_block = start_block; 2480 2481 rb_link_node(&new_se->rb_node, parent, link); 2482 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2483 return 1; 2484 } 2485 EXPORT_SYMBOL_GPL(add_swap_extent); 2486 2487 /* 2488 * A `swap extent' is a simple thing which maps a contiguous range of pages 2489 * onto a contiguous range of disk blocks. A rbtree of swap extents is 2490 * built at swapon time and is then used at swap_writepage/swap_read_folio 2491 * time for locating where on disk a page belongs. 2492 * 2493 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2494 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2495 * swap files identically. 2496 * 2497 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2498 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2499 * swapfiles are handled *identically* after swapon time. 2500 * 2501 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2502 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray 2503 * blocks are found which do not fall within the PAGE_SIZE alignment 2504 * requirements, they are simply tossed out - we will never use those blocks 2505 * for swapping. 2506 * 2507 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2508 * prevents users from writing to the swap device, which will corrupt memory. 2509 * 2510 * The amount of disk space which a single swap extent represents varies. 2511 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2512 * extents in the rbtree. - akpm. 2513 */ 2514 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2515 { 2516 struct file *swap_file = sis->swap_file; 2517 struct address_space *mapping = swap_file->f_mapping; 2518 struct inode *inode = mapping->host; 2519 int ret; 2520 2521 if (S_ISBLK(inode->i_mode)) { 2522 ret = add_swap_extent(sis, 0, sis->max, 0); 2523 *span = sis->pages; 2524 return ret; 2525 } 2526 2527 if (mapping->a_ops->swap_activate) { 2528 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2529 if (ret < 0) 2530 return ret; 2531 sis->flags |= SWP_ACTIVATED; 2532 if ((sis->flags & SWP_FS_OPS) && 2533 sio_pool_init() != 0) { 2534 destroy_swap_extents(sis); 2535 return -ENOMEM; 2536 } 2537 return ret; 2538 } 2539 2540 return generic_swapfile_activate(sis, swap_file, span); 2541 } 2542 2543 static int swap_node(struct swap_info_struct *si) 2544 { 2545 struct block_device *bdev; 2546 2547 if (si->bdev) 2548 bdev = si->bdev; 2549 else 2550 bdev = si->swap_file->f_inode->i_sb->s_bdev; 2551 2552 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2553 } 2554 2555 static void setup_swap_info(struct swap_info_struct *si, int prio, 2556 unsigned char *swap_map, 2557 struct swap_cluster_info *cluster_info, 2558 unsigned long *zeromap) 2559 { 2560 int i; 2561 2562 if (prio >= 0) 2563 si->prio = prio; 2564 else 2565 si->prio = --least_priority; 2566 /* 2567 * the plist prio is negated because plist ordering is 2568 * low-to-high, while swap ordering is high-to-low 2569 */ 2570 si->list.prio = -si->prio; 2571 for_each_node(i) { 2572 if (si->prio >= 0) 2573 si->avail_lists[i].prio = -si->prio; 2574 else { 2575 if (swap_node(si) == i) 2576 si->avail_lists[i].prio = 1; 2577 else 2578 si->avail_lists[i].prio = -si->prio; 2579 } 2580 } 2581 si->swap_map = swap_map; 2582 si->cluster_info = cluster_info; 2583 si->zeromap = zeromap; 2584 } 2585 2586 static void _enable_swap_info(struct swap_info_struct *si) 2587 { 2588 atomic_long_add(si->pages, &nr_swap_pages); 2589 total_swap_pages += si->pages; 2590 2591 assert_spin_locked(&swap_lock); 2592 /* 2593 * both lists are plists, and thus priority ordered. 2594 * swap_active_head needs to be priority ordered for swapoff(), 2595 * which on removal of any swap_info_struct with an auto-assigned 2596 * (i.e. negative) priority increments the auto-assigned priority 2597 * of any lower-priority swap_info_structs. 2598 * swap_avail_head needs to be priority ordered for folio_alloc_swap(), 2599 * which allocates swap pages from the highest available priority 2600 * swap_info_struct. 2601 */ 2602 plist_add(&si->list, &swap_active_head); 2603 2604 /* Add back to available list */ 2605 add_to_avail_list(si, true); 2606 } 2607 2608 static void enable_swap_info(struct swap_info_struct *si, int prio, 2609 unsigned char *swap_map, 2610 struct swap_cluster_info *cluster_info, 2611 unsigned long *zeromap) 2612 { 2613 spin_lock(&swap_lock); 2614 spin_lock(&si->lock); 2615 setup_swap_info(si, prio, swap_map, cluster_info, zeromap); 2616 spin_unlock(&si->lock); 2617 spin_unlock(&swap_lock); 2618 /* 2619 * Finished initializing swap device, now it's safe to reference it. 2620 */ 2621 percpu_ref_resurrect(&si->users); 2622 spin_lock(&swap_lock); 2623 spin_lock(&si->lock); 2624 _enable_swap_info(si); 2625 spin_unlock(&si->lock); 2626 spin_unlock(&swap_lock); 2627 } 2628 2629 static void reinsert_swap_info(struct swap_info_struct *si) 2630 { 2631 spin_lock(&swap_lock); 2632 spin_lock(&si->lock); 2633 setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap); 2634 _enable_swap_info(si); 2635 spin_unlock(&si->lock); 2636 spin_unlock(&swap_lock); 2637 } 2638 2639 /* 2640 * Called after clearing SWP_WRITEOK, ensures cluster_alloc_range 2641 * see the updated flags, so there will be no more allocations. 2642 */ 2643 static void wait_for_allocation(struct swap_info_struct *si) 2644 { 2645 unsigned long offset; 2646 unsigned long end = ALIGN(si->max, SWAPFILE_CLUSTER); 2647 struct swap_cluster_info *ci; 2648 2649 BUG_ON(si->flags & SWP_WRITEOK); 2650 2651 for (offset = 0; offset < end; offset += SWAPFILE_CLUSTER) { 2652 ci = lock_cluster(si, offset); 2653 unlock_cluster(ci); 2654 } 2655 } 2656 2657 /* 2658 * Called after swap device's reference count is dead, so 2659 * neither scan nor allocation will use it. 2660 */ 2661 static void flush_percpu_swap_cluster(struct swap_info_struct *si) 2662 { 2663 int cpu, i; 2664 struct swap_info_struct **pcp_si; 2665 2666 for_each_possible_cpu(cpu) { 2667 pcp_si = per_cpu_ptr(percpu_swap_cluster.si, cpu); 2668 /* 2669 * Invalidate the percpu swap cluster cache, si->users 2670 * is dead, so no new user will point to it, just flush 2671 * any existing user. 2672 */ 2673 for (i = 0; i < SWAP_NR_ORDERS; i++) 2674 cmpxchg(&pcp_si[i], si, NULL); 2675 } 2676 } 2677 2678 2679 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2680 { 2681 struct swap_info_struct *p = NULL; 2682 unsigned char *swap_map; 2683 unsigned long *zeromap; 2684 struct swap_cluster_info *cluster_info; 2685 struct file *swap_file, *victim; 2686 struct address_space *mapping; 2687 struct inode *inode; 2688 struct filename *pathname; 2689 int err, found = 0; 2690 2691 if (!capable(CAP_SYS_ADMIN)) 2692 return -EPERM; 2693 2694 BUG_ON(!current->mm); 2695 2696 pathname = getname(specialfile); 2697 if (IS_ERR(pathname)) 2698 return PTR_ERR(pathname); 2699 2700 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2701 err = PTR_ERR(victim); 2702 if (IS_ERR(victim)) 2703 goto out; 2704 2705 mapping = victim->f_mapping; 2706 spin_lock(&swap_lock); 2707 plist_for_each_entry(p, &swap_active_head, list) { 2708 if (p->flags & SWP_WRITEOK) { 2709 if (p->swap_file->f_mapping == mapping) { 2710 found = 1; 2711 break; 2712 } 2713 } 2714 } 2715 if (!found) { 2716 err = -EINVAL; 2717 spin_unlock(&swap_lock); 2718 goto out_dput; 2719 } 2720 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2721 vm_unacct_memory(p->pages); 2722 else { 2723 err = -ENOMEM; 2724 spin_unlock(&swap_lock); 2725 goto out_dput; 2726 } 2727 spin_lock(&p->lock); 2728 del_from_avail_list(p, true); 2729 if (p->prio < 0) { 2730 struct swap_info_struct *si = p; 2731 int nid; 2732 2733 plist_for_each_entry_continue(si, &swap_active_head, list) { 2734 si->prio++; 2735 si->list.prio--; 2736 for_each_node(nid) { 2737 if (si->avail_lists[nid].prio != 1) 2738 si->avail_lists[nid].prio--; 2739 } 2740 } 2741 least_priority++; 2742 } 2743 plist_del(&p->list, &swap_active_head); 2744 atomic_long_sub(p->pages, &nr_swap_pages); 2745 total_swap_pages -= p->pages; 2746 spin_unlock(&p->lock); 2747 spin_unlock(&swap_lock); 2748 2749 wait_for_allocation(p); 2750 2751 set_current_oom_origin(); 2752 err = try_to_unuse(p->type); 2753 clear_current_oom_origin(); 2754 2755 if (err) { 2756 /* re-insert swap space back into swap_list */ 2757 reinsert_swap_info(p); 2758 goto out_dput; 2759 } 2760 2761 /* 2762 * Wait for swap operations protected by get/put_swap_device() 2763 * to complete. Because of synchronize_rcu() here, all swap 2764 * operations protected by RCU reader side lock (including any 2765 * spinlock) will be waited too. This makes it easy to 2766 * prevent folio_test_swapcache() and the following swap cache 2767 * operations from racing with swapoff. 2768 */ 2769 percpu_ref_kill(&p->users); 2770 synchronize_rcu(); 2771 wait_for_completion(&p->comp); 2772 2773 flush_work(&p->discard_work); 2774 flush_work(&p->reclaim_work); 2775 flush_percpu_swap_cluster(p); 2776 2777 destroy_swap_extents(p); 2778 if (p->flags & SWP_CONTINUED) 2779 free_swap_count_continuations(p); 2780 2781 if (!p->bdev || !bdev_nonrot(p->bdev)) 2782 atomic_dec(&nr_rotate_swap); 2783 2784 mutex_lock(&swapon_mutex); 2785 spin_lock(&swap_lock); 2786 spin_lock(&p->lock); 2787 drain_mmlist(); 2788 2789 swap_file = p->swap_file; 2790 p->swap_file = NULL; 2791 p->max = 0; 2792 swap_map = p->swap_map; 2793 p->swap_map = NULL; 2794 zeromap = p->zeromap; 2795 p->zeromap = NULL; 2796 cluster_info = p->cluster_info; 2797 p->cluster_info = NULL; 2798 spin_unlock(&p->lock); 2799 spin_unlock(&swap_lock); 2800 arch_swap_invalidate_area(p->type); 2801 zswap_swapoff(p->type); 2802 mutex_unlock(&swapon_mutex); 2803 kfree(p->global_cluster); 2804 p->global_cluster = NULL; 2805 vfree(swap_map); 2806 kvfree(zeromap); 2807 kvfree(cluster_info); 2808 /* Destroy swap account information */ 2809 swap_cgroup_swapoff(p->type); 2810 exit_swap_address_space(p->type); 2811 2812 inode = mapping->host; 2813 2814 inode_lock(inode); 2815 inode->i_flags &= ~S_SWAPFILE; 2816 inode_unlock(inode); 2817 filp_close(swap_file, NULL); 2818 2819 /* 2820 * Clear the SWP_USED flag after all resources are freed so that swapon 2821 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2822 * not hold p->lock after we cleared its SWP_WRITEOK. 2823 */ 2824 spin_lock(&swap_lock); 2825 p->flags = 0; 2826 spin_unlock(&swap_lock); 2827 2828 err = 0; 2829 atomic_inc(&proc_poll_event); 2830 wake_up_interruptible(&proc_poll_wait); 2831 2832 out_dput: 2833 filp_close(victim, NULL); 2834 out: 2835 putname(pathname); 2836 return err; 2837 } 2838 2839 #ifdef CONFIG_PROC_FS 2840 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2841 { 2842 struct seq_file *seq = file->private_data; 2843 2844 poll_wait(file, &proc_poll_wait, wait); 2845 2846 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2847 seq->poll_event = atomic_read(&proc_poll_event); 2848 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2849 } 2850 2851 return EPOLLIN | EPOLLRDNORM; 2852 } 2853 2854 /* iterator */ 2855 static void *swap_start(struct seq_file *swap, loff_t *pos) 2856 { 2857 struct swap_info_struct *si; 2858 int type; 2859 loff_t l = *pos; 2860 2861 mutex_lock(&swapon_mutex); 2862 2863 if (!l) 2864 return SEQ_START_TOKEN; 2865 2866 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2867 if (!(si->flags & SWP_USED) || !si->swap_map) 2868 continue; 2869 if (!--l) 2870 return si; 2871 } 2872 2873 return NULL; 2874 } 2875 2876 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2877 { 2878 struct swap_info_struct *si = v; 2879 int type; 2880 2881 if (v == SEQ_START_TOKEN) 2882 type = 0; 2883 else 2884 type = si->type + 1; 2885 2886 ++(*pos); 2887 for (; (si = swap_type_to_swap_info(type)); type++) { 2888 if (!(si->flags & SWP_USED) || !si->swap_map) 2889 continue; 2890 return si; 2891 } 2892 2893 return NULL; 2894 } 2895 2896 static void swap_stop(struct seq_file *swap, void *v) 2897 { 2898 mutex_unlock(&swapon_mutex); 2899 } 2900 2901 static int swap_show(struct seq_file *swap, void *v) 2902 { 2903 struct swap_info_struct *si = v; 2904 struct file *file; 2905 int len; 2906 unsigned long bytes, inuse; 2907 2908 if (si == SEQ_START_TOKEN) { 2909 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 2910 return 0; 2911 } 2912 2913 bytes = K(si->pages); 2914 inuse = K(swap_usage_in_pages(si)); 2915 2916 file = si->swap_file; 2917 len = seq_file_path(swap, file, " \t\n\\"); 2918 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n", 2919 len < 40 ? 40 - len : 1, " ", 2920 S_ISBLK(file_inode(file)->i_mode) ? 2921 "partition" : "file\t", 2922 bytes, bytes < 10000000 ? "\t" : "", 2923 inuse, inuse < 10000000 ? "\t" : "", 2924 si->prio); 2925 return 0; 2926 } 2927 2928 static const struct seq_operations swaps_op = { 2929 .start = swap_start, 2930 .next = swap_next, 2931 .stop = swap_stop, 2932 .show = swap_show 2933 }; 2934 2935 static int swaps_open(struct inode *inode, struct file *file) 2936 { 2937 struct seq_file *seq; 2938 int ret; 2939 2940 ret = seq_open(file, &swaps_op); 2941 if (ret) 2942 return ret; 2943 2944 seq = file->private_data; 2945 seq->poll_event = atomic_read(&proc_poll_event); 2946 return 0; 2947 } 2948 2949 static const struct proc_ops swaps_proc_ops = { 2950 .proc_flags = PROC_ENTRY_PERMANENT, 2951 .proc_open = swaps_open, 2952 .proc_read = seq_read, 2953 .proc_lseek = seq_lseek, 2954 .proc_release = seq_release, 2955 .proc_poll = swaps_poll, 2956 }; 2957 2958 static int __init procswaps_init(void) 2959 { 2960 proc_create("swaps", 0, NULL, &swaps_proc_ops); 2961 return 0; 2962 } 2963 __initcall(procswaps_init); 2964 #endif /* CONFIG_PROC_FS */ 2965 2966 #ifdef MAX_SWAPFILES_CHECK 2967 static int __init max_swapfiles_check(void) 2968 { 2969 MAX_SWAPFILES_CHECK(); 2970 return 0; 2971 } 2972 late_initcall(max_swapfiles_check); 2973 #endif 2974 2975 static struct swap_info_struct *alloc_swap_info(void) 2976 { 2977 struct swap_info_struct *p; 2978 struct swap_info_struct *defer = NULL; 2979 unsigned int type; 2980 int i; 2981 2982 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2983 if (!p) 2984 return ERR_PTR(-ENOMEM); 2985 2986 if (percpu_ref_init(&p->users, swap_users_ref_free, 2987 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { 2988 kvfree(p); 2989 return ERR_PTR(-ENOMEM); 2990 } 2991 2992 spin_lock(&swap_lock); 2993 for (type = 0; type < nr_swapfiles; type++) { 2994 if (!(swap_info[type]->flags & SWP_USED)) 2995 break; 2996 } 2997 if (type >= MAX_SWAPFILES) { 2998 spin_unlock(&swap_lock); 2999 percpu_ref_exit(&p->users); 3000 kvfree(p); 3001 return ERR_PTR(-EPERM); 3002 } 3003 if (type >= nr_swapfiles) { 3004 p->type = type; 3005 /* 3006 * Publish the swap_info_struct after initializing it. 3007 * Note that kvzalloc() above zeroes all its fields. 3008 */ 3009 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ 3010 nr_swapfiles++; 3011 } else { 3012 defer = p; 3013 p = swap_info[type]; 3014 /* 3015 * Do not memset this entry: a racing procfs swap_next() 3016 * would be relying on p->type to remain valid. 3017 */ 3018 } 3019 p->swap_extent_root = RB_ROOT; 3020 plist_node_init(&p->list, 0); 3021 for_each_node(i) 3022 plist_node_init(&p->avail_lists[i], 0); 3023 p->flags = SWP_USED; 3024 spin_unlock(&swap_lock); 3025 if (defer) { 3026 percpu_ref_exit(&defer->users); 3027 kvfree(defer); 3028 } 3029 spin_lock_init(&p->lock); 3030 spin_lock_init(&p->cont_lock); 3031 atomic_long_set(&p->inuse_pages, SWAP_USAGE_OFFLIST_BIT); 3032 init_completion(&p->comp); 3033 3034 return p; 3035 } 3036 3037 static int claim_swapfile(struct swap_info_struct *si, struct inode *inode) 3038 { 3039 if (S_ISBLK(inode->i_mode)) { 3040 si->bdev = I_BDEV(inode); 3041 /* 3042 * Zoned block devices contain zones that have a sequential 3043 * write only restriction. Hence zoned block devices are not 3044 * suitable for swapping. Disallow them here. 3045 */ 3046 if (bdev_is_zoned(si->bdev)) 3047 return -EINVAL; 3048 si->flags |= SWP_BLKDEV; 3049 } else if (S_ISREG(inode->i_mode)) { 3050 si->bdev = inode->i_sb->s_bdev; 3051 } 3052 3053 return 0; 3054 } 3055 3056 3057 /* 3058 * Find out how many pages are allowed for a single swap device. There 3059 * are two limiting factors: 3060 * 1) the number of bits for the swap offset in the swp_entry_t type, and 3061 * 2) the number of bits in the swap pte, as defined by the different 3062 * architectures. 3063 * 3064 * In order to find the largest possible bit mask, a swap entry with 3065 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 3066 * decoded to a swp_entry_t again, and finally the swap offset is 3067 * extracted. 3068 * 3069 * This will mask all the bits from the initial ~0UL mask that can't 3070 * be encoded in either the swp_entry_t or the architecture definition 3071 * of a swap pte. 3072 */ 3073 unsigned long generic_max_swapfile_size(void) 3074 { 3075 return swp_offset(pte_to_swp_entry( 3076 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 3077 } 3078 3079 /* Can be overridden by an architecture for additional checks. */ 3080 __weak unsigned long arch_max_swapfile_size(void) 3081 { 3082 return generic_max_swapfile_size(); 3083 } 3084 3085 static unsigned long read_swap_header(struct swap_info_struct *si, 3086 union swap_header *swap_header, 3087 struct inode *inode) 3088 { 3089 int i; 3090 unsigned long maxpages; 3091 unsigned long swapfilepages; 3092 unsigned long last_page; 3093 3094 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 3095 pr_err("Unable to find swap-space signature\n"); 3096 return 0; 3097 } 3098 3099 /* swap partition endianness hack... */ 3100 if (swab32(swap_header->info.version) == 1) { 3101 swab32s(&swap_header->info.version); 3102 swab32s(&swap_header->info.last_page); 3103 swab32s(&swap_header->info.nr_badpages); 3104 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 3105 return 0; 3106 for (i = 0; i < swap_header->info.nr_badpages; i++) 3107 swab32s(&swap_header->info.badpages[i]); 3108 } 3109 /* Check the swap header's sub-version */ 3110 if (swap_header->info.version != 1) { 3111 pr_warn("Unable to handle swap header version %d\n", 3112 swap_header->info.version); 3113 return 0; 3114 } 3115 3116 maxpages = swapfile_maximum_size; 3117 last_page = swap_header->info.last_page; 3118 if (!last_page) { 3119 pr_warn("Empty swap-file\n"); 3120 return 0; 3121 } 3122 if (last_page > maxpages) { 3123 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 3124 K(maxpages), K(last_page)); 3125 } 3126 if (maxpages > last_page) { 3127 maxpages = last_page + 1; 3128 /* p->max is an unsigned int: don't overflow it */ 3129 if ((unsigned int)maxpages == 0) 3130 maxpages = UINT_MAX; 3131 } 3132 3133 if (!maxpages) 3134 return 0; 3135 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 3136 if (swapfilepages && maxpages > swapfilepages) { 3137 pr_warn("Swap area shorter than signature indicates\n"); 3138 return 0; 3139 } 3140 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 3141 return 0; 3142 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 3143 return 0; 3144 3145 return maxpages; 3146 } 3147 3148 static int setup_swap_map(struct swap_info_struct *si, 3149 union swap_header *swap_header, 3150 unsigned char *swap_map, 3151 unsigned long maxpages) 3152 { 3153 unsigned long i; 3154 3155 swap_map[0] = SWAP_MAP_BAD; /* omit header page */ 3156 for (i = 0; i < swap_header->info.nr_badpages; i++) { 3157 unsigned int page_nr = swap_header->info.badpages[i]; 3158 if (page_nr == 0 || page_nr > swap_header->info.last_page) 3159 return -EINVAL; 3160 if (page_nr < maxpages) { 3161 swap_map[page_nr] = SWAP_MAP_BAD; 3162 si->pages--; 3163 } 3164 } 3165 3166 if (!si->pages) { 3167 pr_warn("Empty swap-file\n"); 3168 return -EINVAL; 3169 } 3170 3171 return 0; 3172 } 3173 3174 #define SWAP_CLUSTER_INFO_COLS \ 3175 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 3176 #define SWAP_CLUSTER_SPACE_COLS \ 3177 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 3178 #define SWAP_CLUSTER_COLS \ 3179 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 3180 3181 static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si, 3182 union swap_header *swap_header, 3183 unsigned long maxpages) 3184 { 3185 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3186 struct swap_cluster_info *cluster_info; 3187 unsigned long i, j, idx; 3188 int err = -ENOMEM; 3189 3190 cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL); 3191 if (!cluster_info) 3192 goto err; 3193 3194 for (i = 0; i < nr_clusters; i++) 3195 spin_lock_init(&cluster_info[i].lock); 3196 3197 if (!(si->flags & SWP_SOLIDSTATE)) { 3198 si->global_cluster = kmalloc(sizeof(*si->global_cluster), 3199 GFP_KERNEL); 3200 if (!si->global_cluster) 3201 goto err_free; 3202 for (i = 0; i < SWAP_NR_ORDERS; i++) 3203 si->global_cluster->next[i] = SWAP_ENTRY_INVALID; 3204 spin_lock_init(&si->global_cluster_lock); 3205 } 3206 3207 /* 3208 * Mark unusable pages as unavailable. The clusters aren't 3209 * marked free yet, so no list operations are involved yet. 3210 * 3211 * See setup_swap_map(): header page, bad pages, 3212 * and the EOF part of the last cluster. 3213 */ 3214 inc_cluster_info_page(si, cluster_info, 0); 3215 for (i = 0; i < swap_header->info.nr_badpages; i++) { 3216 unsigned int page_nr = swap_header->info.badpages[i]; 3217 3218 if (page_nr >= maxpages) 3219 continue; 3220 inc_cluster_info_page(si, cluster_info, page_nr); 3221 } 3222 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 3223 inc_cluster_info_page(si, cluster_info, i); 3224 3225 INIT_LIST_HEAD(&si->free_clusters); 3226 INIT_LIST_HEAD(&si->full_clusters); 3227 INIT_LIST_HEAD(&si->discard_clusters); 3228 3229 for (i = 0; i < SWAP_NR_ORDERS; i++) { 3230 INIT_LIST_HEAD(&si->nonfull_clusters[i]); 3231 INIT_LIST_HEAD(&si->frag_clusters[i]); 3232 } 3233 3234 /* 3235 * Reduce false cache line sharing between cluster_info and 3236 * sharing same address space. 3237 */ 3238 for (j = 0; j < SWAP_CLUSTER_COLS; j++) { 3239 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 3240 struct swap_cluster_info *ci; 3241 idx = i * SWAP_CLUSTER_COLS + j; 3242 ci = cluster_info + idx; 3243 if (idx >= nr_clusters) 3244 continue; 3245 if (ci->count) { 3246 ci->flags = CLUSTER_FLAG_NONFULL; 3247 list_add_tail(&ci->list, &si->nonfull_clusters[0]); 3248 continue; 3249 } 3250 ci->flags = CLUSTER_FLAG_FREE; 3251 list_add_tail(&ci->list, &si->free_clusters); 3252 } 3253 } 3254 3255 return cluster_info; 3256 3257 err_free: 3258 kvfree(cluster_info); 3259 err: 3260 return ERR_PTR(err); 3261 } 3262 3263 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 3264 { 3265 struct swap_info_struct *si; 3266 struct filename *name; 3267 struct file *swap_file = NULL; 3268 struct address_space *mapping; 3269 struct dentry *dentry; 3270 int prio; 3271 int error; 3272 union swap_header *swap_header; 3273 int nr_extents; 3274 sector_t span; 3275 unsigned long maxpages; 3276 unsigned char *swap_map = NULL; 3277 unsigned long *zeromap = NULL; 3278 struct swap_cluster_info *cluster_info = NULL; 3279 struct folio *folio = NULL; 3280 struct inode *inode = NULL; 3281 bool inced_nr_rotate_swap = false; 3282 3283 if (swap_flags & ~SWAP_FLAGS_VALID) 3284 return -EINVAL; 3285 3286 if (!capable(CAP_SYS_ADMIN)) 3287 return -EPERM; 3288 3289 if (!swap_avail_heads) 3290 return -ENOMEM; 3291 3292 si = alloc_swap_info(); 3293 if (IS_ERR(si)) 3294 return PTR_ERR(si); 3295 3296 INIT_WORK(&si->discard_work, swap_discard_work); 3297 INIT_WORK(&si->reclaim_work, swap_reclaim_work); 3298 3299 name = getname(specialfile); 3300 if (IS_ERR(name)) { 3301 error = PTR_ERR(name); 3302 name = NULL; 3303 goto bad_swap; 3304 } 3305 swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0); 3306 if (IS_ERR(swap_file)) { 3307 error = PTR_ERR(swap_file); 3308 swap_file = NULL; 3309 goto bad_swap; 3310 } 3311 3312 si->swap_file = swap_file; 3313 mapping = swap_file->f_mapping; 3314 dentry = swap_file->f_path.dentry; 3315 inode = mapping->host; 3316 3317 error = claim_swapfile(si, inode); 3318 if (unlikely(error)) 3319 goto bad_swap; 3320 3321 inode_lock(inode); 3322 if (d_unlinked(dentry) || cant_mount(dentry)) { 3323 error = -ENOENT; 3324 goto bad_swap_unlock_inode; 3325 } 3326 if (IS_SWAPFILE(inode)) { 3327 error = -EBUSY; 3328 goto bad_swap_unlock_inode; 3329 } 3330 3331 /* 3332 * The swap subsystem needs a major overhaul to support this. 3333 * It doesn't work yet so just disable it for now. 3334 */ 3335 if (mapping_min_folio_order(mapping) > 0) { 3336 error = -EINVAL; 3337 goto bad_swap_unlock_inode; 3338 } 3339 3340 /* 3341 * Read the swap header. 3342 */ 3343 if (!mapping->a_ops->read_folio) { 3344 error = -EINVAL; 3345 goto bad_swap_unlock_inode; 3346 } 3347 folio = read_mapping_folio(mapping, 0, swap_file); 3348 if (IS_ERR(folio)) { 3349 error = PTR_ERR(folio); 3350 goto bad_swap_unlock_inode; 3351 } 3352 swap_header = kmap_local_folio(folio, 0); 3353 3354 maxpages = read_swap_header(si, swap_header, inode); 3355 if (unlikely(!maxpages)) { 3356 error = -EINVAL; 3357 goto bad_swap_unlock_inode; 3358 } 3359 3360 si->max = maxpages; 3361 si->pages = maxpages - 1; 3362 nr_extents = setup_swap_extents(si, &span); 3363 if (nr_extents < 0) { 3364 error = nr_extents; 3365 goto bad_swap_unlock_inode; 3366 } 3367 if (si->pages != si->max - 1) { 3368 pr_err("swap:%u != (max:%u - 1)\n", si->pages, si->max); 3369 error = -EINVAL; 3370 goto bad_swap_unlock_inode; 3371 } 3372 3373 maxpages = si->max; 3374 3375 /* OK, set up the swap map and apply the bad block list */ 3376 swap_map = vzalloc(maxpages); 3377 if (!swap_map) { 3378 error = -ENOMEM; 3379 goto bad_swap_unlock_inode; 3380 } 3381 3382 error = swap_cgroup_swapon(si->type, maxpages); 3383 if (error) 3384 goto bad_swap_unlock_inode; 3385 3386 error = setup_swap_map(si, swap_header, swap_map, maxpages); 3387 if (error) 3388 goto bad_swap_unlock_inode; 3389 3390 /* 3391 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might 3392 * be above MAX_PAGE_ORDER incase of a large swap file. 3393 */ 3394 zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long), 3395 GFP_KERNEL | __GFP_ZERO); 3396 if (!zeromap) { 3397 error = -ENOMEM; 3398 goto bad_swap_unlock_inode; 3399 } 3400 3401 if (si->bdev && bdev_stable_writes(si->bdev)) 3402 si->flags |= SWP_STABLE_WRITES; 3403 3404 if (si->bdev && bdev_synchronous(si->bdev)) 3405 si->flags |= SWP_SYNCHRONOUS_IO; 3406 3407 if (si->bdev && bdev_nonrot(si->bdev)) { 3408 si->flags |= SWP_SOLIDSTATE; 3409 } else { 3410 atomic_inc(&nr_rotate_swap); 3411 inced_nr_rotate_swap = true; 3412 } 3413 3414 cluster_info = setup_clusters(si, swap_header, maxpages); 3415 if (IS_ERR(cluster_info)) { 3416 error = PTR_ERR(cluster_info); 3417 cluster_info = NULL; 3418 goto bad_swap_unlock_inode; 3419 } 3420 3421 if ((swap_flags & SWAP_FLAG_DISCARD) && 3422 si->bdev && bdev_max_discard_sectors(si->bdev)) { 3423 /* 3424 * When discard is enabled for swap with no particular 3425 * policy flagged, we set all swap discard flags here in 3426 * order to sustain backward compatibility with older 3427 * swapon(8) releases. 3428 */ 3429 si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3430 SWP_PAGE_DISCARD); 3431 3432 /* 3433 * By flagging sys_swapon, a sysadmin can tell us to 3434 * either do single-time area discards only, or to just 3435 * perform discards for released swap page-clusters. 3436 * Now it's time to adjust the p->flags accordingly. 3437 */ 3438 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3439 si->flags &= ~SWP_PAGE_DISCARD; 3440 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3441 si->flags &= ~SWP_AREA_DISCARD; 3442 3443 /* issue a swapon-time discard if it's still required */ 3444 if (si->flags & SWP_AREA_DISCARD) { 3445 int err = discard_swap(si); 3446 if (unlikely(err)) 3447 pr_err("swapon: discard_swap(%p): %d\n", 3448 si, err); 3449 } 3450 } 3451 3452 error = init_swap_address_space(si->type, maxpages); 3453 if (error) 3454 goto bad_swap_unlock_inode; 3455 3456 error = zswap_swapon(si->type, maxpages); 3457 if (error) 3458 goto free_swap_address_space; 3459 3460 /* 3461 * Flush any pending IO and dirty mappings before we start using this 3462 * swap device. 3463 */ 3464 inode->i_flags |= S_SWAPFILE; 3465 error = inode_drain_writes(inode); 3466 if (error) { 3467 inode->i_flags &= ~S_SWAPFILE; 3468 goto free_swap_zswap; 3469 } 3470 3471 mutex_lock(&swapon_mutex); 3472 prio = -1; 3473 if (swap_flags & SWAP_FLAG_PREFER) 3474 prio = swap_flags & SWAP_FLAG_PRIO_MASK; 3475 enable_swap_info(si, prio, swap_map, cluster_info, zeromap); 3476 3477 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n", 3478 K(si->pages), name->name, si->prio, nr_extents, 3479 K((unsigned long long)span), 3480 (si->flags & SWP_SOLIDSTATE) ? "SS" : "", 3481 (si->flags & SWP_DISCARDABLE) ? "D" : "", 3482 (si->flags & SWP_AREA_DISCARD) ? "s" : "", 3483 (si->flags & SWP_PAGE_DISCARD) ? "c" : ""); 3484 3485 mutex_unlock(&swapon_mutex); 3486 atomic_inc(&proc_poll_event); 3487 wake_up_interruptible(&proc_poll_wait); 3488 3489 error = 0; 3490 goto out; 3491 free_swap_zswap: 3492 zswap_swapoff(si->type); 3493 free_swap_address_space: 3494 exit_swap_address_space(si->type); 3495 bad_swap_unlock_inode: 3496 inode_unlock(inode); 3497 bad_swap: 3498 kfree(si->global_cluster); 3499 si->global_cluster = NULL; 3500 inode = NULL; 3501 destroy_swap_extents(si); 3502 swap_cgroup_swapoff(si->type); 3503 spin_lock(&swap_lock); 3504 si->swap_file = NULL; 3505 si->flags = 0; 3506 spin_unlock(&swap_lock); 3507 vfree(swap_map); 3508 kvfree(zeromap); 3509 kvfree(cluster_info); 3510 if (inced_nr_rotate_swap) 3511 atomic_dec(&nr_rotate_swap); 3512 if (swap_file) 3513 filp_close(swap_file, NULL); 3514 out: 3515 if (!IS_ERR_OR_NULL(folio)) 3516 folio_release_kmap(folio, swap_header); 3517 if (name) 3518 putname(name); 3519 if (inode) 3520 inode_unlock(inode); 3521 return error; 3522 } 3523 3524 void si_swapinfo(struct sysinfo *val) 3525 { 3526 unsigned int type; 3527 unsigned long nr_to_be_unused = 0; 3528 3529 spin_lock(&swap_lock); 3530 for (type = 0; type < nr_swapfiles; type++) { 3531 struct swap_info_struct *si = swap_info[type]; 3532 3533 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3534 nr_to_be_unused += swap_usage_in_pages(si); 3535 } 3536 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3537 val->totalswap = total_swap_pages + nr_to_be_unused; 3538 spin_unlock(&swap_lock); 3539 } 3540 3541 /* 3542 * Verify that nr swap entries are valid and increment their swap map counts. 3543 * 3544 * Returns error code in following case. 3545 * - success -> 0 3546 * - swp_entry is invalid -> EINVAL 3547 * - swap-cache reference is requested but there is already one. -> EEXIST 3548 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3549 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3550 */ 3551 static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr) 3552 { 3553 struct swap_info_struct *si; 3554 struct swap_cluster_info *ci; 3555 unsigned long offset; 3556 unsigned char count; 3557 unsigned char has_cache; 3558 int err, i; 3559 3560 si = swp_swap_info(entry); 3561 if (WARN_ON_ONCE(!si)) { 3562 pr_err("%s%08lx\n", Bad_file, entry.val); 3563 return -EINVAL; 3564 } 3565 3566 offset = swp_offset(entry); 3567 VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER); 3568 VM_WARN_ON(usage == 1 && nr > 1); 3569 ci = lock_cluster(si, offset); 3570 3571 err = 0; 3572 for (i = 0; i < nr; i++) { 3573 count = si->swap_map[offset + i]; 3574 3575 /* 3576 * swapin_readahead() doesn't check if a swap entry is valid, so the 3577 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3578 */ 3579 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3580 err = -ENOENT; 3581 goto unlock_out; 3582 } 3583 3584 has_cache = count & SWAP_HAS_CACHE; 3585 count &= ~SWAP_HAS_CACHE; 3586 3587 if (!count && !has_cache) { 3588 err = -ENOENT; 3589 } else if (usage == SWAP_HAS_CACHE) { 3590 if (has_cache) 3591 err = -EEXIST; 3592 } else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) { 3593 err = -EINVAL; 3594 } 3595 3596 if (err) 3597 goto unlock_out; 3598 } 3599 3600 for (i = 0; i < nr; i++) { 3601 count = si->swap_map[offset + i]; 3602 has_cache = count & SWAP_HAS_CACHE; 3603 count &= ~SWAP_HAS_CACHE; 3604 3605 if (usage == SWAP_HAS_CACHE) 3606 has_cache = SWAP_HAS_CACHE; 3607 else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3608 count += usage; 3609 else if (swap_count_continued(si, offset + i, count)) 3610 count = COUNT_CONTINUED; 3611 else { 3612 /* 3613 * Don't need to rollback changes, because if 3614 * usage == 1, there must be nr == 1. 3615 */ 3616 err = -ENOMEM; 3617 goto unlock_out; 3618 } 3619 3620 WRITE_ONCE(si->swap_map[offset + i], count | has_cache); 3621 } 3622 3623 unlock_out: 3624 unlock_cluster(ci); 3625 return err; 3626 } 3627 3628 /* 3629 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3630 * (in which case its reference count is never incremented). 3631 */ 3632 void swap_shmem_alloc(swp_entry_t entry, int nr) 3633 { 3634 __swap_duplicate(entry, SWAP_MAP_SHMEM, nr); 3635 } 3636 3637 /* 3638 * Increase reference count of swap entry by 1. 3639 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3640 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3641 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3642 * might occur if a page table entry has got corrupted. 3643 */ 3644 int swap_duplicate(swp_entry_t entry) 3645 { 3646 int err = 0; 3647 3648 while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM) 3649 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3650 return err; 3651 } 3652 3653 /* 3654 * @entry: first swap entry from which we allocate nr swap cache. 3655 * 3656 * Called when allocating swap cache for existing swap entries, 3657 * This can return error codes. Returns 0 at success. 3658 * -EEXIST means there is a swap cache. 3659 * Note: return code is different from swap_duplicate(). 3660 */ 3661 int swapcache_prepare(swp_entry_t entry, int nr) 3662 { 3663 return __swap_duplicate(entry, SWAP_HAS_CACHE, nr); 3664 } 3665 3666 /* 3667 * Caller should ensure entries belong to the same folio so 3668 * the entries won't span cross cluster boundary. 3669 */ 3670 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr) 3671 { 3672 swap_entries_put_cache(si, entry, nr); 3673 } 3674 3675 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3676 { 3677 return swap_type_to_swap_info(swp_type(entry)); 3678 } 3679 3680 /* 3681 * add_swap_count_continuation - called when a swap count is duplicated 3682 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3683 * page of the original vmalloc'ed swap_map, to hold the continuation count 3684 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3685 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3686 * 3687 * These continuation pages are seldom referenced: the common paths all work 3688 * on the original swap_map, only referring to a continuation page when the 3689 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3690 * 3691 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3692 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3693 * can be called after dropping locks. 3694 */ 3695 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3696 { 3697 struct swap_info_struct *si; 3698 struct swap_cluster_info *ci; 3699 struct page *head; 3700 struct page *page; 3701 struct page *list_page; 3702 pgoff_t offset; 3703 unsigned char count; 3704 int ret = 0; 3705 3706 /* 3707 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3708 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3709 */ 3710 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3711 3712 si = get_swap_device(entry); 3713 if (!si) { 3714 /* 3715 * An acceptable race has occurred since the failing 3716 * __swap_duplicate(): the swap device may be swapoff 3717 */ 3718 goto outer; 3719 } 3720 3721 offset = swp_offset(entry); 3722 3723 ci = lock_cluster(si, offset); 3724 3725 count = swap_count(si->swap_map[offset]); 3726 3727 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3728 /* 3729 * The higher the swap count, the more likely it is that tasks 3730 * will race to add swap count continuation: we need to avoid 3731 * over-provisioning. 3732 */ 3733 goto out; 3734 } 3735 3736 if (!page) { 3737 ret = -ENOMEM; 3738 goto out; 3739 } 3740 3741 head = vmalloc_to_page(si->swap_map + offset); 3742 offset &= ~PAGE_MASK; 3743 3744 spin_lock(&si->cont_lock); 3745 /* 3746 * Page allocation does not initialize the page's lru field, 3747 * but it does always reset its private field. 3748 */ 3749 if (!page_private(head)) { 3750 BUG_ON(count & COUNT_CONTINUED); 3751 INIT_LIST_HEAD(&head->lru); 3752 set_page_private(head, SWP_CONTINUED); 3753 si->flags |= SWP_CONTINUED; 3754 } 3755 3756 list_for_each_entry(list_page, &head->lru, lru) { 3757 unsigned char *map; 3758 3759 /* 3760 * If the previous map said no continuation, but we've found 3761 * a continuation page, free our allocation and use this one. 3762 */ 3763 if (!(count & COUNT_CONTINUED)) 3764 goto out_unlock_cont; 3765 3766 map = kmap_local_page(list_page) + offset; 3767 count = *map; 3768 kunmap_local(map); 3769 3770 /* 3771 * If this continuation count now has some space in it, 3772 * free our allocation and use this one. 3773 */ 3774 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3775 goto out_unlock_cont; 3776 } 3777 3778 list_add_tail(&page->lru, &head->lru); 3779 page = NULL; /* now it's attached, don't free it */ 3780 out_unlock_cont: 3781 spin_unlock(&si->cont_lock); 3782 out: 3783 unlock_cluster(ci); 3784 put_swap_device(si); 3785 outer: 3786 if (page) 3787 __free_page(page); 3788 return ret; 3789 } 3790 3791 /* 3792 * swap_count_continued - when the original swap_map count is incremented 3793 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3794 * into, carry if so, or else fail until a new continuation page is allocated; 3795 * when the original swap_map count is decremented from 0 with continuation, 3796 * borrow from the continuation and report whether it still holds more. 3797 * Called while __swap_duplicate() or caller of swap_entry_put_locked() 3798 * holds cluster lock. 3799 */ 3800 static bool swap_count_continued(struct swap_info_struct *si, 3801 pgoff_t offset, unsigned char count) 3802 { 3803 struct page *head; 3804 struct page *page; 3805 unsigned char *map; 3806 bool ret; 3807 3808 head = vmalloc_to_page(si->swap_map + offset); 3809 if (page_private(head) != SWP_CONTINUED) { 3810 BUG_ON(count & COUNT_CONTINUED); 3811 return false; /* need to add count continuation */ 3812 } 3813 3814 spin_lock(&si->cont_lock); 3815 offset &= ~PAGE_MASK; 3816 page = list_next_entry(head, lru); 3817 map = kmap_local_page(page) + offset; 3818 3819 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3820 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3821 3822 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3823 /* 3824 * Think of how you add 1 to 999 3825 */ 3826 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3827 kunmap_local(map); 3828 page = list_next_entry(page, lru); 3829 BUG_ON(page == head); 3830 map = kmap_local_page(page) + offset; 3831 } 3832 if (*map == SWAP_CONT_MAX) { 3833 kunmap_local(map); 3834 page = list_next_entry(page, lru); 3835 if (page == head) { 3836 ret = false; /* add count continuation */ 3837 goto out; 3838 } 3839 map = kmap_local_page(page) + offset; 3840 init_map: *map = 0; /* we didn't zero the page */ 3841 } 3842 *map += 1; 3843 kunmap_local(map); 3844 while ((page = list_prev_entry(page, lru)) != head) { 3845 map = kmap_local_page(page) + offset; 3846 *map = COUNT_CONTINUED; 3847 kunmap_local(map); 3848 } 3849 ret = true; /* incremented */ 3850 3851 } else { /* decrementing */ 3852 /* 3853 * Think of how you subtract 1 from 1000 3854 */ 3855 BUG_ON(count != COUNT_CONTINUED); 3856 while (*map == COUNT_CONTINUED) { 3857 kunmap_local(map); 3858 page = list_next_entry(page, lru); 3859 BUG_ON(page == head); 3860 map = kmap_local_page(page) + offset; 3861 } 3862 BUG_ON(*map == 0); 3863 *map -= 1; 3864 if (*map == 0) 3865 count = 0; 3866 kunmap_local(map); 3867 while ((page = list_prev_entry(page, lru)) != head) { 3868 map = kmap_local_page(page) + offset; 3869 *map = SWAP_CONT_MAX | count; 3870 count = COUNT_CONTINUED; 3871 kunmap_local(map); 3872 } 3873 ret = count == COUNT_CONTINUED; 3874 } 3875 out: 3876 spin_unlock(&si->cont_lock); 3877 return ret; 3878 } 3879 3880 /* 3881 * free_swap_count_continuations - swapoff free all the continuation pages 3882 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3883 */ 3884 static void free_swap_count_continuations(struct swap_info_struct *si) 3885 { 3886 pgoff_t offset; 3887 3888 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3889 struct page *head; 3890 head = vmalloc_to_page(si->swap_map + offset); 3891 if (page_private(head)) { 3892 struct page *page, *next; 3893 3894 list_for_each_entry_safe(page, next, &head->lru, lru) { 3895 list_del(&page->lru); 3896 __free_page(page); 3897 } 3898 } 3899 } 3900 } 3901 3902 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3903 static bool __has_usable_swap(void) 3904 { 3905 return !plist_head_empty(&swap_active_head); 3906 } 3907 3908 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp) 3909 { 3910 struct swap_info_struct *si, *next; 3911 int nid = folio_nid(folio); 3912 3913 if (!(gfp & __GFP_IO)) 3914 return; 3915 3916 if (!__has_usable_swap()) 3917 return; 3918 3919 if (!blk_cgroup_congested()) 3920 return; 3921 3922 /* 3923 * We've already scheduled a throttle, avoid taking the global swap 3924 * lock. 3925 */ 3926 if (current->throttle_disk) 3927 return; 3928 3929 spin_lock(&swap_avail_lock); 3930 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], 3931 avail_lists[nid]) { 3932 if (si->bdev) { 3933 blkcg_schedule_throttle(si->bdev->bd_disk, true); 3934 break; 3935 } 3936 } 3937 spin_unlock(&swap_avail_lock); 3938 } 3939 #endif 3940 3941 static int __init swapfile_init(void) 3942 { 3943 int nid; 3944 3945 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3946 GFP_KERNEL); 3947 if (!swap_avail_heads) { 3948 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3949 return -ENOMEM; 3950 } 3951 3952 for_each_node(nid) 3953 plist_head_init(&swap_avail_heads[nid]); 3954 3955 swapfile_maximum_size = arch_max_swapfile_size(); 3956 3957 #ifdef CONFIG_MIGRATION 3958 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS)) 3959 swap_migration_ad_supported = true; 3960 #endif /* CONFIG_MIGRATION */ 3961 3962 return 0; 3963 } 3964 subsys_initcall(swapfile_init); 3965