1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/blkdev.h> 10 #include <linux/mm.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/task.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mman.h> 15 #include <linux/slab.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/swap.h> 18 #include <linux/vmalloc.h> 19 #include <linux/pagemap.h> 20 #include <linux/namei.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/blk-cgroup.h> 23 #include <linux/random.h> 24 #include <linux/writeback.h> 25 #include <linux/proc_fs.h> 26 #include <linux/seq_file.h> 27 #include <linux/init.h> 28 #include <linux/ksm.h> 29 #include <linux/rmap.h> 30 #include <linux/security.h> 31 #include <linux/backing-dev.h> 32 #include <linux/mutex.h> 33 #include <linux/capability.h> 34 #include <linux/syscalls.h> 35 #include <linux/memcontrol.h> 36 #include <linux/poll.h> 37 #include <linux/oom.h> 38 #include <linux/swapfile.h> 39 #include <linux/export.h> 40 #include <linux/swap_slots.h> 41 #include <linux/sort.h> 42 #include <linux/completion.h> 43 #include <linux/suspend.h> 44 #include <linux/zswap.h> 45 #include <linux/plist.h> 46 47 #include <asm/tlbflush.h> 48 #include <linux/swapops.h> 49 #include <linux/swap_cgroup.h> 50 #include "internal.h" 51 #include "swap.h" 52 53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 54 unsigned char); 55 static void free_swap_count_continuations(struct swap_info_struct *); 56 57 static DEFINE_SPINLOCK(swap_lock); 58 static unsigned int nr_swapfiles; 59 atomic_long_t nr_swap_pages; 60 /* 61 * Some modules use swappable objects and may try to swap them out under 62 * memory pressure (via the shrinker). Before doing so, they may wish to 63 * check to see if any swap space is available. 64 */ 65 EXPORT_SYMBOL_GPL(nr_swap_pages); 66 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 67 long total_swap_pages; 68 static int least_priority = -1; 69 unsigned long swapfile_maximum_size; 70 #ifdef CONFIG_MIGRATION 71 bool swap_migration_ad_supported; 72 #endif /* CONFIG_MIGRATION */ 73 74 static const char Bad_file[] = "Bad swap file entry "; 75 static const char Unused_file[] = "Unused swap file entry "; 76 static const char Bad_offset[] = "Bad swap offset entry "; 77 static const char Unused_offset[] = "Unused swap offset entry "; 78 79 /* 80 * all active swap_info_structs 81 * protected with swap_lock, and ordered by priority. 82 */ 83 static PLIST_HEAD(swap_active_head); 84 85 /* 86 * all available (active, not full) swap_info_structs 87 * protected with swap_avail_lock, ordered by priority. 88 * This is used by folio_alloc_swap() instead of swap_active_head 89 * because swap_active_head includes all swap_info_structs, 90 * but folio_alloc_swap() doesn't need to look at full ones. 91 * This uses its own lock instead of swap_lock because when a 92 * swap_info_struct changes between not-full/full, it needs to 93 * add/remove itself to/from this list, but the swap_info_struct->lock 94 * is held and the locking order requires swap_lock to be taken 95 * before any swap_info_struct->lock. 96 */ 97 static struct plist_head *swap_avail_heads; 98 static DEFINE_SPINLOCK(swap_avail_lock); 99 100 static struct swap_info_struct *swap_info[MAX_SWAPFILES]; 101 102 static DEFINE_MUTEX(swapon_mutex); 103 104 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 105 /* Activity counter to indicate that a swapon or swapoff has occurred */ 106 static atomic_t proc_poll_event = ATOMIC_INIT(0); 107 108 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 109 110 static struct swap_info_struct *swap_type_to_swap_info(int type) 111 { 112 if (type >= MAX_SWAPFILES) 113 return NULL; 114 115 return READ_ONCE(swap_info[type]); /* rcu_dereference() */ 116 } 117 118 static inline unsigned char swap_count(unsigned char ent) 119 { 120 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 121 } 122 123 /* Reclaim the swap entry anyway if possible */ 124 #define TTRS_ANYWAY 0x1 125 /* 126 * Reclaim the swap entry if there are no more mappings of the 127 * corresponding page 128 */ 129 #define TTRS_UNMAPPED 0x2 130 /* Reclaim the swap entry if swap is getting full*/ 131 #define TTRS_FULL 0x4 132 133 /* returns 1 if swap entry is freed */ 134 static int __try_to_reclaim_swap(struct swap_info_struct *si, 135 unsigned long offset, unsigned long flags) 136 { 137 swp_entry_t entry = swp_entry(si->type, offset); 138 struct folio *folio; 139 int ret = 0; 140 141 folio = filemap_get_folio(swap_address_space(entry), offset); 142 if (IS_ERR(folio)) 143 return 0; 144 /* 145 * When this function is called from scan_swap_map_slots() and it's 146 * called by vmscan.c at reclaiming folios. So we hold a folio lock 147 * here. We have to use trylock for avoiding deadlock. This is a special 148 * case and you should use folio_free_swap() with explicit folio_lock() 149 * in usual operations. 150 */ 151 if (folio_trylock(folio)) { 152 if ((flags & TTRS_ANYWAY) || 153 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) || 154 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio))) 155 ret = folio_free_swap(folio); 156 folio_unlock(folio); 157 } 158 folio_put(folio); 159 return ret; 160 } 161 162 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 163 { 164 struct rb_node *rb = rb_first(&sis->swap_extent_root); 165 return rb_entry(rb, struct swap_extent, rb_node); 166 } 167 168 static inline struct swap_extent *next_se(struct swap_extent *se) 169 { 170 struct rb_node *rb = rb_next(&se->rb_node); 171 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 172 } 173 174 /* 175 * swapon tell device that all the old swap contents can be discarded, 176 * to allow the swap device to optimize its wear-levelling. 177 */ 178 static int discard_swap(struct swap_info_struct *si) 179 { 180 struct swap_extent *se; 181 sector_t start_block; 182 sector_t nr_blocks; 183 int err = 0; 184 185 /* Do not discard the swap header page! */ 186 se = first_se(si); 187 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 188 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 189 if (nr_blocks) { 190 err = blkdev_issue_discard(si->bdev, start_block, 191 nr_blocks, GFP_KERNEL); 192 if (err) 193 return err; 194 cond_resched(); 195 } 196 197 for (se = next_se(se); se; se = next_se(se)) { 198 start_block = se->start_block << (PAGE_SHIFT - 9); 199 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 200 201 err = blkdev_issue_discard(si->bdev, start_block, 202 nr_blocks, GFP_KERNEL); 203 if (err) 204 break; 205 206 cond_resched(); 207 } 208 return err; /* That will often be -EOPNOTSUPP */ 209 } 210 211 static struct swap_extent * 212 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 213 { 214 struct swap_extent *se; 215 struct rb_node *rb; 216 217 rb = sis->swap_extent_root.rb_node; 218 while (rb) { 219 se = rb_entry(rb, struct swap_extent, rb_node); 220 if (offset < se->start_page) 221 rb = rb->rb_left; 222 else if (offset >= se->start_page + se->nr_pages) 223 rb = rb->rb_right; 224 else 225 return se; 226 } 227 /* It *must* be present */ 228 BUG(); 229 } 230 231 sector_t swap_folio_sector(struct folio *folio) 232 { 233 struct swap_info_struct *sis = swp_swap_info(folio->swap); 234 struct swap_extent *se; 235 sector_t sector; 236 pgoff_t offset; 237 238 offset = swp_offset(folio->swap); 239 se = offset_to_swap_extent(sis, offset); 240 sector = se->start_block + (offset - se->start_page); 241 return sector << (PAGE_SHIFT - 9); 242 } 243 244 /* 245 * swap allocation tell device that a cluster of swap can now be discarded, 246 * to allow the swap device to optimize its wear-levelling. 247 */ 248 static void discard_swap_cluster(struct swap_info_struct *si, 249 pgoff_t start_page, pgoff_t nr_pages) 250 { 251 struct swap_extent *se = offset_to_swap_extent(si, start_page); 252 253 while (nr_pages) { 254 pgoff_t offset = start_page - se->start_page; 255 sector_t start_block = se->start_block + offset; 256 sector_t nr_blocks = se->nr_pages - offset; 257 258 if (nr_blocks > nr_pages) 259 nr_blocks = nr_pages; 260 start_page += nr_blocks; 261 nr_pages -= nr_blocks; 262 263 start_block <<= PAGE_SHIFT - 9; 264 nr_blocks <<= PAGE_SHIFT - 9; 265 if (blkdev_issue_discard(si->bdev, start_block, 266 nr_blocks, GFP_NOIO)) 267 break; 268 269 se = next_se(se); 270 } 271 } 272 273 #ifdef CONFIG_THP_SWAP 274 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 275 276 #define swap_entry_size(size) (size) 277 #else 278 #define SWAPFILE_CLUSTER 256 279 280 /* 281 * Define swap_entry_size() as constant to let compiler to optimize 282 * out some code if !CONFIG_THP_SWAP 283 */ 284 #define swap_entry_size(size) 1 285 #endif 286 #define LATENCY_LIMIT 256 287 288 static inline void cluster_set_flag(struct swap_cluster_info *info, 289 unsigned int flag) 290 { 291 info->flags = flag; 292 } 293 294 static inline unsigned int cluster_count(struct swap_cluster_info *info) 295 { 296 return info->data; 297 } 298 299 static inline void cluster_set_count(struct swap_cluster_info *info, 300 unsigned int c) 301 { 302 info->data = c; 303 } 304 305 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 306 unsigned int c, unsigned int f) 307 { 308 info->flags = f; 309 info->data = c; 310 } 311 312 static inline unsigned int cluster_next(struct swap_cluster_info *info) 313 { 314 return info->data; 315 } 316 317 static inline void cluster_set_next(struct swap_cluster_info *info, 318 unsigned int n) 319 { 320 info->data = n; 321 } 322 323 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 324 unsigned int n, unsigned int f) 325 { 326 info->flags = f; 327 info->data = n; 328 } 329 330 static inline bool cluster_is_free(struct swap_cluster_info *info) 331 { 332 return info->flags & CLUSTER_FLAG_FREE; 333 } 334 335 static inline bool cluster_is_null(struct swap_cluster_info *info) 336 { 337 return info->flags & CLUSTER_FLAG_NEXT_NULL; 338 } 339 340 static inline void cluster_set_null(struct swap_cluster_info *info) 341 { 342 info->flags = CLUSTER_FLAG_NEXT_NULL; 343 info->data = 0; 344 } 345 346 static inline bool cluster_is_huge(struct swap_cluster_info *info) 347 { 348 if (IS_ENABLED(CONFIG_THP_SWAP)) 349 return info->flags & CLUSTER_FLAG_HUGE; 350 return false; 351 } 352 353 static inline void cluster_clear_huge(struct swap_cluster_info *info) 354 { 355 info->flags &= ~CLUSTER_FLAG_HUGE; 356 } 357 358 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 359 unsigned long offset) 360 { 361 struct swap_cluster_info *ci; 362 363 ci = si->cluster_info; 364 if (ci) { 365 ci += offset / SWAPFILE_CLUSTER; 366 spin_lock(&ci->lock); 367 } 368 return ci; 369 } 370 371 static inline void unlock_cluster(struct swap_cluster_info *ci) 372 { 373 if (ci) 374 spin_unlock(&ci->lock); 375 } 376 377 /* 378 * Determine the locking method in use for this device. Return 379 * swap_cluster_info if SSD-style cluster-based locking is in place. 380 */ 381 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 382 struct swap_info_struct *si, unsigned long offset) 383 { 384 struct swap_cluster_info *ci; 385 386 /* Try to use fine-grained SSD-style locking if available: */ 387 ci = lock_cluster(si, offset); 388 /* Otherwise, fall back to traditional, coarse locking: */ 389 if (!ci) 390 spin_lock(&si->lock); 391 392 return ci; 393 } 394 395 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 396 struct swap_cluster_info *ci) 397 { 398 if (ci) 399 unlock_cluster(ci); 400 else 401 spin_unlock(&si->lock); 402 } 403 404 static inline bool cluster_list_empty(struct swap_cluster_list *list) 405 { 406 return cluster_is_null(&list->head); 407 } 408 409 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 410 { 411 return cluster_next(&list->head); 412 } 413 414 static void cluster_list_init(struct swap_cluster_list *list) 415 { 416 cluster_set_null(&list->head); 417 cluster_set_null(&list->tail); 418 } 419 420 static void cluster_list_add_tail(struct swap_cluster_list *list, 421 struct swap_cluster_info *ci, 422 unsigned int idx) 423 { 424 if (cluster_list_empty(list)) { 425 cluster_set_next_flag(&list->head, idx, 0); 426 cluster_set_next_flag(&list->tail, idx, 0); 427 } else { 428 struct swap_cluster_info *ci_tail; 429 unsigned int tail = cluster_next(&list->tail); 430 431 /* 432 * Nested cluster lock, but both cluster locks are 433 * only acquired when we held swap_info_struct->lock 434 */ 435 ci_tail = ci + tail; 436 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 437 cluster_set_next(ci_tail, idx); 438 spin_unlock(&ci_tail->lock); 439 cluster_set_next_flag(&list->tail, idx, 0); 440 } 441 } 442 443 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 444 struct swap_cluster_info *ci) 445 { 446 unsigned int idx; 447 448 idx = cluster_next(&list->head); 449 if (cluster_next(&list->tail) == idx) { 450 cluster_set_null(&list->head); 451 cluster_set_null(&list->tail); 452 } else 453 cluster_set_next_flag(&list->head, 454 cluster_next(&ci[idx]), 0); 455 456 return idx; 457 } 458 459 /* Add a cluster to discard list and schedule it to do discard */ 460 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 461 unsigned int idx) 462 { 463 /* 464 * If scan_swap_map_slots() can't find a free cluster, it will check 465 * si->swap_map directly. To make sure the discarding cluster isn't 466 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied). 467 * It will be cleared after discard 468 */ 469 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 470 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 471 472 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 473 474 schedule_work(&si->discard_work); 475 } 476 477 static void __free_cluster(struct swap_info_struct *si, unsigned long idx) 478 { 479 struct swap_cluster_info *ci = si->cluster_info; 480 481 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); 482 cluster_list_add_tail(&si->free_clusters, ci, idx); 483 } 484 485 /* 486 * Doing discard actually. After a cluster discard is finished, the cluster 487 * will be added to free cluster list. caller should hold si->lock. 488 */ 489 static void swap_do_scheduled_discard(struct swap_info_struct *si) 490 { 491 struct swap_cluster_info *info, *ci; 492 unsigned int idx; 493 494 info = si->cluster_info; 495 496 while (!cluster_list_empty(&si->discard_clusters)) { 497 idx = cluster_list_del_first(&si->discard_clusters, info); 498 spin_unlock(&si->lock); 499 500 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 501 SWAPFILE_CLUSTER); 502 503 spin_lock(&si->lock); 504 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 505 __free_cluster(si, idx); 506 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 507 0, SWAPFILE_CLUSTER); 508 unlock_cluster(ci); 509 } 510 } 511 512 static void swap_discard_work(struct work_struct *work) 513 { 514 struct swap_info_struct *si; 515 516 si = container_of(work, struct swap_info_struct, discard_work); 517 518 spin_lock(&si->lock); 519 swap_do_scheduled_discard(si); 520 spin_unlock(&si->lock); 521 } 522 523 static void swap_users_ref_free(struct percpu_ref *ref) 524 { 525 struct swap_info_struct *si; 526 527 si = container_of(ref, struct swap_info_struct, users); 528 complete(&si->comp); 529 } 530 531 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) 532 { 533 struct swap_cluster_info *ci = si->cluster_info; 534 535 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); 536 cluster_list_del_first(&si->free_clusters, ci); 537 cluster_set_count_flag(ci + idx, 0, 0); 538 } 539 540 static void free_cluster(struct swap_info_struct *si, unsigned long idx) 541 { 542 struct swap_cluster_info *ci = si->cluster_info + idx; 543 544 VM_BUG_ON(cluster_count(ci) != 0); 545 /* 546 * If the swap is discardable, prepare discard the cluster 547 * instead of free it immediately. The cluster will be freed 548 * after discard. 549 */ 550 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 551 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 552 swap_cluster_schedule_discard(si, idx); 553 return; 554 } 555 556 __free_cluster(si, idx); 557 } 558 559 /* 560 * The cluster corresponding to page_nr will be used. The cluster will be 561 * removed from free cluster list and its usage counter will be increased. 562 */ 563 static void inc_cluster_info_page(struct swap_info_struct *p, 564 struct swap_cluster_info *cluster_info, unsigned long page_nr) 565 { 566 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 567 568 if (!cluster_info) 569 return; 570 if (cluster_is_free(&cluster_info[idx])) 571 alloc_cluster(p, idx); 572 573 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 574 cluster_set_count(&cluster_info[idx], 575 cluster_count(&cluster_info[idx]) + 1); 576 } 577 578 /* 579 * The cluster corresponding to page_nr decreases one usage. If the usage 580 * counter becomes 0, which means no page in the cluster is in using, we can 581 * optionally discard the cluster and add it to free cluster list. 582 */ 583 static void dec_cluster_info_page(struct swap_info_struct *p, 584 struct swap_cluster_info *cluster_info, unsigned long page_nr) 585 { 586 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 587 588 if (!cluster_info) 589 return; 590 591 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 592 cluster_set_count(&cluster_info[idx], 593 cluster_count(&cluster_info[idx]) - 1); 594 595 if (cluster_count(&cluster_info[idx]) == 0) 596 free_cluster(p, idx); 597 } 598 599 /* 600 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free 601 * cluster list. Avoiding such abuse to avoid list corruption. 602 */ 603 static bool 604 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 605 unsigned long offset) 606 { 607 struct percpu_cluster *percpu_cluster; 608 bool conflict; 609 610 offset /= SWAPFILE_CLUSTER; 611 conflict = !cluster_list_empty(&si->free_clusters) && 612 offset != cluster_list_first(&si->free_clusters) && 613 cluster_is_free(&si->cluster_info[offset]); 614 615 if (!conflict) 616 return false; 617 618 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 619 cluster_set_null(&percpu_cluster->index); 620 return true; 621 } 622 623 /* 624 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 625 * might involve allocating a new cluster for current CPU too. 626 */ 627 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 628 unsigned long *offset, unsigned long *scan_base) 629 { 630 struct percpu_cluster *cluster; 631 struct swap_cluster_info *ci; 632 unsigned long tmp, max; 633 634 new_cluster: 635 cluster = this_cpu_ptr(si->percpu_cluster); 636 if (cluster_is_null(&cluster->index)) { 637 if (!cluster_list_empty(&si->free_clusters)) { 638 cluster->index = si->free_clusters.head; 639 cluster->next = cluster_next(&cluster->index) * 640 SWAPFILE_CLUSTER; 641 } else if (!cluster_list_empty(&si->discard_clusters)) { 642 /* 643 * we don't have free cluster but have some clusters in 644 * discarding, do discard now and reclaim them, then 645 * reread cluster_next_cpu since we dropped si->lock 646 */ 647 swap_do_scheduled_discard(si); 648 *scan_base = this_cpu_read(*si->cluster_next_cpu); 649 *offset = *scan_base; 650 goto new_cluster; 651 } else 652 return false; 653 } 654 655 /* 656 * Other CPUs can use our cluster if they can't find a free cluster, 657 * check if there is still free entry in the cluster 658 */ 659 tmp = cluster->next; 660 max = min_t(unsigned long, si->max, 661 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); 662 if (tmp < max) { 663 ci = lock_cluster(si, tmp); 664 while (tmp < max) { 665 if (!si->swap_map[tmp]) 666 break; 667 tmp++; 668 } 669 unlock_cluster(ci); 670 } 671 if (tmp >= max) { 672 cluster_set_null(&cluster->index); 673 goto new_cluster; 674 } 675 cluster->next = tmp + 1; 676 *offset = tmp; 677 *scan_base = tmp; 678 return true; 679 } 680 681 static void __del_from_avail_list(struct swap_info_struct *p) 682 { 683 int nid; 684 685 assert_spin_locked(&p->lock); 686 for_each_node(nid) 687 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); 688 } 689 690 static void del_from_avail_list(struct swap_info_struct *p) 691 { 692 spin_lock(&swap_avail_lock); 693 __del_from_avail_list(p); 694 spin_unlock(&swap_avail_lock); 695 } 696 697 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 698 unsigned int nr_entries) 699 { 700 unsigned int end = offset + nr_entries - 1; 701 702 if (offset == si->lowest_bit) 703 si->lowest_bit += nr_entries; 704 if (end == si->highest_bit) 705 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries); 706 WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries); 707 if (si->inuse_pages == si->pages) { 708 si->lowest_bit = si->max; 709 si->highest_bit = 0; 710 del_from_avail_list(si); 711 } 712 } 713 714 static void add_to_avail_list(struct swap_info_struct *p) 715 { 716 int nid; 717 718 spin_lock(&swap_avail_lock); 719 for_each_node(nid) 720 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); 721 spin_unlock(&swap_avail_lock); 722 } 723 724 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 725 unsigned int nr_entries) 726 { 727 unsigned long begin = offset; 728 unsigned long end = offset + nr_entries - 1; 729 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 730 731 if (offset < si->lowest_bit) 732 si->lowest_bit = offset; 733 if (end > si->highest_bit) { 734 bool was_full = !si->highest_bit; 735 736 WRITE_ONCE(si->highest_bit, end); 737 if (was_full && (si->flags & SWP_WRITEOK)) 738 add_to_avail_list(si); 739 } 740 atomic_long_add(nr_entries, &nr_swap_pages); 741 WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries); 742 if (si->flags & SWP_BLKDEV) 743 swap_slot_free_notify = 744 si->bdev->bd_disk->fops->swap_slot_free_notify; 745 else 746 swap_slot_free_notify = NULL; 747 while (offset <= end) { 748 arch_swap_invalidate_page(si->type, offset); 749 zswap_invalidate(si->type, offset); 750 if (swap_slot_free_notify) 751 swap_slot_free_notify(si->bdev, offset); 752 offset++; 753 } 754 clear_shadow_from_swap_cache(si->type, begin, end); 755 } 756 757 static void set_cluster_next(struct swap_info_struct *si, unsigned long next) 758 { 759 unsigned long prev; 760 761 if (!(si->flags & SWP_SOLIDSTATE)) { 762 si->cluster_next = next; 763 return; 764 } 765 766 prev = this_cpu_read(*si->cluster_next_cpu); 767 /* 768 * Cross the swap address space size aligned trunk, choose 769 * another trunk randomly to avoid lock contention on swap 770 * address space if possible. 771 */ 772 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) != 773 (next >> SWAP_ADDRESS_SPACE_SHIFT)) { 774 /* No free swap slots available */ 775 if (si->highest_bit <= si->lowest_bit) 776 return; 777 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit); 778 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES); 779 next = max_t(unsigned int, next, si->lowest_bit); 780 } 781 this_cpu_write(*si->cluster_next_cpu, next); 782 } 783 784 static bool swap_offset_available_and_locked(struct swap_info_struct *si, 785 unsigned long offset) 786 { 787 if (data_race(!si->swap_map[offset])) { 788 spin_lock(&si->lock); 789 return true; 790 } 791 792 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 793 spin_lock(&si->lock); 794 return true; 795 } 796 797 return false; 798 } 799 800 static int scan_swap_map_slots(struct swap_info_struct *si, 801 unsigned char usage, int nr, 802 swp_entry_t slots[]) 803 { 804 struct swap_cluster_info *ci; 805 unsigned long offset; 806 unsigned long scan_base; 807 unsigned long last_in_cluster = 0; 808 int latency_ration = LATENCY_LIMIT; 809 int n_ret = 0; 810 bool scanned_many = false; 811 812 /* 813 * We try to cluster swap pages by allocating them sequentially 814 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 815 * way, however, we resort to first-free allocation, starting 816 * a new cluster. This prevents us from scattering swap pages 817 * all over the entire swap partition, so that we reduce 818 * overall disk seek times between swap pages. -- sct 819 * But we do now try to find an empty cluster. -Andrea 820 * And we let swap pages go all over an SSD partition. Hugh 821 */ 822 823 si->flags += SWP_SCANNING; 824 /* 825 * Use percpu scan base for SSD to reduce lock contention on 826 * cluster and swap cache. For HDD, sequential access is more 827 * important. 828 */ 829 if (si->flags & SWP_SOLIDSTATE) 830 scan_base = this_cpu_read(*si->cluster_next_cpu); 831 else 832 scan_base = si->cluster_next; 833 offset = scan_base; 834 835 /* SSD algorithm */ 836 if (si->cluster_info) { 837 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 838 goto scan; 839 } else if (unlikely(!si->cluster_nr--)) { 840 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 841 si->cluster_nr = SWAPFILE_CLUSTER - 1; 842 goto checks; 843 } 844 845 spin_unlock(&si->lock); 846 847 /* 848 * If seek is expensive, start searching for new cluster from 849 * start of partition, to minimize the span of allocated swap. 850 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 851 * case, just handled by scan_swap_map_try_ssd_cluster() above. 852 */ 853 scan_base = offset = si->lowest_bit; 854 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 855 856 /* Locate the first empty (unaligned) cluster */ 857 for (; last_in_cluster <= si->highest_bit; offset++) { 858 if (si->swap_map[offset]) 859 last_in_cluster = offset + SWAPFILE_CLUSTER; 860 else if (offset == last_in_cluster) { 861 spin_lock(&si->lock); 862 offset -= SWAPFILE_CLUSTER - 1; 863 si->cluster_next = offset; 864 si->cluster_nr = SWAPFILE_CLUSTER - 1; 865 goto checks; 866 } 867 if (unlikely(--latency_ration < 0)) { 868 cond_resched(); 869 latency_ration = LATENCY_LIMIT; 870 } 871 } 872 873 offset = scan_base; 874 spin_lock(&si->lock); 875 si->cluster_nr = SWAPFILE_CLUSTER - 1; 876 } 877 878 checks: 879 if (si->cluster_info) { 880 while (scan_swap_map_ssd_cluster_conflict(si, offset)) { 881 /* take a break if we already got some slots */ 882 if (n_ret) 883 goto done; 884 if (!scan_swap_map_try_ssd_cluster(si, &offset, 885 &scan_base)) 886 goto scan; 887 } 888 } 889 if (!(si->flags & SWP_WRITEOK)) 890 goto no_page; 891 if (!si->highest_bit) 892 goto no_page; 893 if (offset > si->highest_bit) 894 scan_base = offset = si->lowest_bit; 895 896 ci = lock_cluster(si, offset); 897 /* reuse swap entry of cache-only swap if not busy. */ 898 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 899 int swap_was_freed; 900 unlock_cluster(ci); 901 spin_unlock(&si->lock); 902 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 903 spin_lock(&si->lock); 904 /* entry was freed successfully, try to use this again */ 905 if (swap_was_freed) 906 goto checks; 907 goto scan; /* check next one */ 908 } 909 910 if (si->swap_map[offset]) { 911 unlock_cluster(ci); 912 if (!n_ret) 913 goto scan; 914 else 915 goto done; 916 } 917 WRITE_ONCE(si->swap_map[offset], usage); 918 inc_cluster_info_page(si, si->cluster_info, offset); 919 unlock_cluster(ci); 920 921 swap_range_alloc(si, offset, 1); 922 slots[n_ret++] = swp_entry(si->type, offset); 923 924 /* got enough slots or reach max slots? */ 925 if ((n_ret == nr) || (offset >= si->highest_bit)) 926 goto done; 927 928 /* search for next available slot */ 929 930 /* time to take a break? */ 931 if (unlikely(--latency_ration < 0)) { 932 if (n_ret) 933 goto done; 934 spin_unlock(&si->lock); 935 cond_resched(); 936 spin_lock(&si->lock); 937 latency_ration = LATENCY_LIMIT; 938 } 939 940 /* try to get more slots in cluster */ 941 if (si->cluster_info) { 942 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 943 goto checks; 944 } else if (si->cluster_nr && !si->swap_map[++offset]) { 945 /* non-ssd case, still more slots in cluster? */ 946 --si->cluster_nr; 947 goto checks; 948 } 949 950 /* 951 * Even if there's no free clusters available (fragmented), 952 * try to scan a little more quickly with lock held unless we 953 * have scanned too many slots already. 954 */ 955 if (!scanned_many) { 956 unsigned long scan_limit; 957 958 if (offset < scan_base) 959 scan_limit = scan_base; 960 else 961 scan_limit = si->highest_bit; 962 for (; offset <= scan_limit && --latency_ration > 0; 963 offset++) { 964 if (!si->swap_map[offset]) 965 goto checks; 966 } 967 } 968 969 done: 970 set_cluster_next(si, offset + 1); 971 si->flags -= SWP_SCANNING; 972 return n_ret; 973 974 scan: 975 spin_unlock(&si->lock); 976 while (++offset <= READ_ONCE(si->highest_bit)) { 977 if (unlikely(--latency_ration < 0)) { 978 cond_resched(); 979 latency_ration = LATENCY_LIMIT; 980 scanned_many = true; 981 } 982 if (swap_offset_available_and_locked(si, offset)) 983 goto checks; 984 } 985 offset = si->lowest_bit; 986 while (offset < scan_base) { 987 if (unlikely(--latency_ration < 0)) { 988 cond_resched(); 989 latency_ration = LATENCY_LIMIT; 990 scanned_many = true; 991 } 992 if (swap_offset_available_and_locked(si, offset)) 993 goto checks; 994 offset++; 995 } 996 spin_lock(&si->lock); 997 998 no_page: 999 si->flags -= SWP_SCANNING; 1000 return n_ret; 1001 } 1002 1003 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) 1004 { 1005 unsigned long idx; 1006 struct swap_cluster_info *ci; 1007 unsigned long offset; 1008 1009 /* 1010 * Should not even be attempting cluster allocations when huge 1011 * page swap is disabled. Warn and fail the allocation. 1012 */ 1013 if (!IS_ENABLED(CONFIG_THP_SWAP)) { 1014 VM_WARN_ON_ONCE(1); 1015 return 0; 1016 } 1017 1018 if (cluster_list_empty(&si->free_clusters)) 1019 return 0; 1020 1021 idx = cluster_list_first(&si->free_clusters); 1022 offset = idx * SWAPFILE_CLUSTER; 1023 ci = lock_cluster(si, offset); 1024 alloc_cluster(si, idx); 1025 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); 1026 1027 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER); 1028 unlock_cluster(ci); 1029 swap_range_alloc(si, offset, SWAPFILE_CLUSTER); 1030 *slot = swp_entry(si->type, offset); 1031 1032 return 1; 1033 } 1034 1035 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) 1036 { 1037 unsigned long offset = idx * SWAPFILE_CLUSTER; 1038 struct swap_cluster_info *ci; 1039 1040 ci = lock_cluster(si, offset); 1041 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER); 1042 cluster_set_count_flag(ci, 0, 0); 1043 free_cluster(si, idx); 1044 unlock_cluster(ci); 1045 swap_range_free(si, offset, SWAPFILE_CLUSTER); 1046 } 1047 1048 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size) 1049 { 1050 unsigned long size = swap_entry_size(entry_size); 1051 struct swap_info_struct *si, *next; 1052 long avail_pgs; 1053 int n_ret = 0; 1054 int node; 1055 1056 /* Only single cluster request supported */ 1057 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER); 1058 1059 spin_lock(&swap_avail_lock); 1060 1061 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 1062 if (avail_pgs <= 0) { 1063 spin_unlock(&swap_avail_lock); 1064 goto noswap; 1065 } 1066 1067 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs); 1068 1069 atomic_long_sub(n_goal * size, &nr_swap_pages); 1070 1071 start_over: 1072 node = numa_node_id(); 1073 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1074 /* requeue si to after same-priority siblings */ 1075 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1076 spin_unlock(&swap_avail_lock); 1077 spin_lock(&si->lock); 1078 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 1079 spin_lock(&swap_avail_lock); 1080 if (plist_node_empty(&si->avail_lists[node])) { 1081 spin_unlock(&si->lock); 1082 goto nextsi; 1083 } 1084 WARN(!si->highest_bit, 1085 "swap_info %d in list but !highest_bit\n", 1086 si->type); 1087 WARN(!(si->flags & SWP_WRITEOK), 1088 "swap_info %d in list but !SWP_WRITEOK\n", 1089 si->type); 1090 __del_from_avail_list(si); 1091 spin_unlock(&si->lock); 1092 goto nextsi; 1093 } 1094 if (size == SWAPFILE_CLUSTER) { 1095 if (si->flags & SWP_BLKDEV) 1096 n_ret = swap_alloc_cluster(si, swp_entries); 1097 } else 1098 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 1099 n_goal, swp_entries); 1100 spin_unlock(&si->lock); 1101 if (n_ret || size == SWAPFILE_CLUSTER) 1102 goto check_out; 1103 cond_resched(); 1104 1105 spin_lock(&swap_avail_lock); 1106 nextsi: 1107 /* 1108 * if we got here, it's likely that si was almost full before, 1109 * and since scan_swap_map_slots() can drop the si->lock, 1110 * multiple callers probably all tried to get a page from the 1111 * same si and it filled up before we could get one; or, the si 1112 * filled up between us dropping swap_avail_lock and taking 1113 * si->lock. Since we dropped the swap_avail_lock, the 1114 * swap_avail_head list may have been modified; so if next is 1115 * still in the swap_avail_head list then try it, otherwise 1116 * start over if we have not gotten any slots. 1117 */ 1118 if (plist_node_empty(&next->avail_lists[node])) 1119 goto start_over; 1120 } 1121 1122 spin_unlock(&swap_avail_lock); 1123 1124 check_out: 1125 if (n_ret < n_goal) 1126 atomic_long_add((long)(n_goal - n_ret) * size, 1127 &nr_swap_pages); 1128 noswap: 1129 return n_ret; 1130 } 1131 1132 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1133 { 1134 struct swap_info_struct *p; 1135 unsigned long offset; 1136 1137 if (!entry.val) 1138 goto out; 1139 p = swp_swap_info(entry); 1140 if (!p) 1141 goto bad_nofile; 1142 if (data_race(!(p->flags & SWP_USED))) 1143 goto bad_device; 1144 offset = swp_offset(entry); 1145 if (offset >= p->max) 1146 goto bad_offset; 1147 if (data_race(!p->swap_map[swp_offset(entry)])) 1148 goto bad_free; 1149 return p; 1150 1151 bad_free: 1152 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); 1153 goto out; 1154 bad_offset: 1155 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1156 goto out; 1157 bad_device: 1158 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); 1159 goto out; 1160 bad_nofile: 1161 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1162 out: 1163 return NULL; 1164 } 1165 1166 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1167 struct swap_info_struct *q) 1168 { 1169 struct swap_info_struct *p; 1170 1171 p = _swap_info_get(entry); 1172 1173 if (p != q) { 1174 if (q != NULL) 1175 spin_unlock(&q->lock); 1176 if (p != NULL) 1177 spin_lock(&p->lock); 1178 } 1179 return p; 1180 } 1181 1182 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, 1183 unsigned long offset, 1184 unsigned char usage) 1185 { 1186 unsigned char count; 1187 unsigned char has_cache; 1188 1189 count = p->swap_map[offset]; 1190 1191 has_cache = count & SWAP_HAS_CACHE; 1192 count &= ~SWAP_HAS_CACHE; 1193 1194 if (usage == SWAP_HAS_CACHE) { 1195 VM_BUG_ON(!has_cache); 1196 has_cache = 0; 1197 } else if (count == SWAP_MAP_SHMEM) { 1198 /* 1199 * Or we could insist on shmem.c using a special 1200 * swap_shmem_free() and free_shmem_swap_and_cache()... 1201 */ 1202 count = 0; 1203 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1204 if (count == COUNT_CONTINUED) { 1205 if (swap_count_continued(p, offset, count)) 1206 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1207 else 1208 count = SWAP_MAP_MAX; 1209 } else 1210 count--; 1211 } 1212 1213 usage = count | has_cache; 1214 if (usage) 1215 WRITE_ONCE(p->swap_map[offset], usage); 1216 else 1217 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE); 1218 1219 return usage; 1220 } 1221 1222 /* 1223 * When we get a swap entry, if there aren't some other ways to 1224 * prevent swapoff, such as the folio in swap cache is locked, page 1225 * table lock is held, etc., the swap entry may become invalid because 1226 * of swapoff. Then, we need to enclose all swap related functions 1227 * with get_swap_device() and put_swap_device(), unless the swap 1228 * functions call get/put_swap_device() by themselves. 1229 * 1230 * Check whether swap entry is valid in the swap device. If so, 1231 * return pointer to swap_info_struct, and keep the swap entry valid 1232 * via preventing the swap device from being swapoff, until 1233 * put_swap_device() is called. Otherwise return NULL. 1234 * 1235 * Notice that swapoff or swapoff+swapon can still happen before the 1236 * percpu_ref_tryget_live() in get_swap_device() or after the 1237 * percpu_ref_put() in put_swap_device() if there isn't any other way 1238 * to prevent swapoff. The caller must be prepared for that. For 1239 * example, the following situation is possible. 1240 * 1241 * CPU1 CPU2 1242 * do_swap_page() 1243 * ... swapoff+swapon 1244 * __read_swap_cache_async() 1245 * swapcache_prepare() 1246 * __swap_duplicate() 1247 * // check swap_map 1248 * // verify PTE not changed 1249 * 1250 * In __swap_duplicate(), the swap_map need to be checked before 1251 * changing partly because the specified swap entry may be for another 1252 * swap device which has been swapoff. And in do_swap_page(), after 1253 * the page is read from the swap device, the PTE is verified not 1254 * changed with the page table locked to check whether the swap device 1255 * has been swapoff or swapoff+swapon. 1256 */ 1257 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1258 { 1259 struct swap_info_struct *si; 1260 unsigned long offset; 1261 1262 if (!entry.val) 1263 goto out; 1264 si = swp_swap_info(entry); 1265 if (!si) 1266 goto bad_nofile; 1267 if (!percpu_ref_tryget_live(&si->users)) 1268 goto out; 1269 /* 1270 * Guarantee the si->users are checked before accessing other 1271 * fields of swap_info_struct. 1272 * 1273 * Paired with the spin_unlock() after setup_swap_info() in 1274 * enable_swap_info(). 1275 */ 1276 smp_rmb(); 1277 offset = swp_offset(entry); 1278 if (offset >= si->max) 1279 goto put_out; 1280 1281 return si; 1282 bad_nofile: 1283 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1284 out: 1285 return NULL; 1286 put_out: 1287 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1288 percpu_ref_put(&si->users); 1289 return NULL; 1290 } 1291 1292 static unsigned char __swap_entry_free(struct swap_info_struct *p, 1293 swp_entry_t entry) 1294 { 1295 struct swap_cluster_info *ci; 1296 unsigned long offset = swp_offset(entry); 1297 unsigned char usage; 1298 1299 ci = lock_cluster_or_swap_info(p, offset); 1300 usage = __swap_entry_free_locked(p, offset, 1); 1301 unlock_cluster_or_swap_info(p, ci); 1302 if (!usage) 1303 free_swap_slot(entry); 1304 1305 return usage; 1306 } 1307 1308 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 1309 { 1310 struct swap_cluster_info *ci; 1311 unsigned long offset = swp_offset(entry); 1312 unsigned char count; 1313 1314 ci = lock_cluster(p, offset); 1315 count = p->swap_map[offset]; 1316 VM_BUG_ON(count != SWAP_HAS_CACHE); 1317 p->swap_map[offset] = 0; 1318 dec_cluster_info_page(p, p->cluster_info, offset); 1319 unlock_cluster(ci); 1320 1321 mem_cgroup_uncharge_swap(entry, 1); 1322 swap_range_free(p, offset, 1); 1323 } 1324 1325 /* 1326 * Caller has made sure that the swap device corresponding to entry 1327 * is still around or has not been recycled. 1328 */ 1329 void swap_free(swp_entry_t entry) 1330 { 1331 struct swap_info_struct *p; 1332 1333 p = _swap_info_get(entry); 1334 if (p) 1335 __swap_entry_free(p, entry); 1336 } 1337 1338 /* 1339 * Called after dropping swapcache to decrease refcnt to swap entries. 1340 */ 1341 void put_swap_folio(struct folio *folio, swp_entry_t entry) 1342 { 1343 unsigned long offset = swp_offset(entry); 1344 unsigned long idx = offset / SWAPFILE_CLUSTER; 1345 struct swap_cluster_info *ci; 1346 struct swap_info_struct *si; 1347 unsigned char *map; 1348 unsigned int i, free_entries = 0; 1349 unsigned char val; 1350 int size = swap_entry_size(folio_nr_pages(folio)); 1351 1352 si = _swap_info_get(entry); 1353 if (!si) 1354 return; 1355 1356 ci = lock_cluster_or_swap_info(si, offset); 1357 if (size == SWAPFILE_CLUSTER) { 1358 VM_BUG_ON(!cluster_is_huge(ci)); 1359 map = si->swap_map + offset; 1360 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1361 val = map[i]; 1362 VM_BUG_ON(!(val & SWAP_HAS_CACHE)); 1363 if (val == SWAP_HAS_CACHE) 1364 free_entries++; 1365 } 1366 cluster_clear_huge(ci); 1367 if (free_entries == SWAPFILE_CLUSTER) { 1368 unlock_cluster_or_swap_info(si, ci); 1369 spin_lock(&si->lock); 1370 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); 1371 swap_free_cluster(si, idx); 1372 spin_unlock(&si->lock); 1373 return; 1374 } 1375 } 1376 for (i = 0; i < size; i++, entry.val++) { 1377 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { 1378 unlock_cluster_or_swap_info(si, ci); 1379 free_swap_slot(entry); 1380 if (i == size - 1) 1381 return; 1382 lock_cluster_or_swap_info(si, offset); 1383 } 1384 } 1385 unlock_cluster_or_swap_info(si, ci); 1386 } 1387 1388 #ifdef CONFIG_THP_SWAP 1389 int split_swap_cluster(swp_entry_t entry) 1390 { 1391 struct swap_info_struct *si; 1392 struct swap_cluster_info *ci; 1393 unsigned long offset = swp_offset(entry); 1394 1395 si = _swap_info_get(entry); 1396 if (!si) 1397 return -EBUSY; 1398 ci = lock_cluster(si, offset); 1399 cluster_clear_huge(ci); 1400 unlock_cluster(ci); 1401 return 0; 1402 } 1403 #endif 1404 1405 static int swp_entry_cmp(const void *ent1, const void *ent2) 1406 { 1407 const swp_entry_t *e1 = ent1, *e2 = ent2; 1408 1409 return (int)swp_type(*e1) - (int)swp_type(*e2); 1410 } 1411 1412 void swapcache_free_entries(swp_entry_t *entries, int n) 1413 { 1414 struct swap_info_struct *p, *prev; 1415 int i; 1416 1417 if (n <= 0) 1418 return; 1419 1420 prev = NULL; 1421 p = NULL; 1422 1423 /* 1424 * Sort swap entries by swap device, so each lock is only taken once. 1425 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1426 * so low that it isn't necessary to optimize further. 1427 */ 1428 if (nr_swapfiles > 1) 1429 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1430 for (i = 0; i < n; ++i) { 1431 p = swap_info_get_cont(entries[i], prev); 1432 if (p) 1433 swap_entry_free(p, entries[i]); 1434 prev = p; 1435 } 1436 if (p) 1437 spin_unlock(&p->lock); 1438 } 1439 1440 int __swap_count(swp_entry_t entry) 1441 { 1442 struct swap_info_struct *si = swp_swap_info(entry); 1443 pgoff_t offset = swp_offset(entry); 1444 1445 return swap_count(si->swap_map[offset]); 1446 } 1447 1448 /* 1449 * How many references to @entry are currently swapped out? 1450 * This does not give an exact answer when swap count is continued, 1451 * but does include the high COUNT_CONTINUED flag to allow for that. 1452 */ 1453 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1454 { 1455 pgoff_t offset = swp_offset(entry); 1456 struct swap_cluster_info *ci; 1457 int count; 1458 1459 ci = lock_cluster_or_swap_info(si, offset); 1460 count = swap_count(si->swap_map[offset]); 1461 unlock_cluster_or_swap_info(si, ci); 1462 return count; 1463 } 1464 1465 /* 1466 * How many references to @entry are currently swapped out? 1467 * This considers COUNT_CONTINUED so it returns exact answer. 1468 */ 1469 int swp_swapcount(swp_entry_t entry) 1470 { 1471 int count, tmp_count, n; 1472 struct swap_info_struct *p; 1473 struct swap_cluster_info *ci; 1474 struct page *page; 1475 pgoff_t offset; 1476 unsigned char *map; 1477 1478 p = _swap_info_get(entry); 1479 if (!p) 1480 return 0; 1481 1482 offset = swp_offset(entry); 1483 1484 ci = lock_cluster_or_swap_info(p, offset); 1485 1486 count = swap_count(p->swap_map[offset]); 1487 if (!(count & COUNT_CONTINUED)) 1488 goto out; 1489 1490 count &= ~COUNT_CONTINUED; 1491 n = SWAP_MAP_MAX + 1; 1492 1493 page = vmalloc_to_page(p->swap_map + offset); 1494 offset &= ~PAGE_MASK; 1495 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1496 1497 do { 1498 page = list_next_entry(page, lru); 1499 map = kmap_local_page(page); 1500 tmp_count = map[offset]; 1501 kunmap_local(map); 1502 1503 count += (tmp_count & ~COUNT_CONTINUED) * n; 1504 n *= (SWAP_CONT_MAX + 1); 1505 } while (tmp_count & COUNT_CONTINUED); 1506 out: 1507 unlock_cluster_or_swap_info(p, ci); 1508 return count; 1509 } 1510 1511 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1512 swp_entry_t entry) 1513 { 1514 struct swap_cluster_info *ci; 1515 unsigned char *map = si->swap_map; 1516 unsigned long roffset = swp_offset(entry); 1517 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); 1518 int i; 1519 bool ret = false; 1520 1521 ci = lock_cluster_or_swap_info(si, offset); 1522 if (!ci || !cluster_is_huge(ci)) { 1523 if (swap_count(map[roffset])) 1524 ret = true; 1525 goto unlock_out; 1526 } 1527 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1528 if (swap_count(map[offset + i])) { 1529 ret = true; 1530 break; 1531 } 1532 } 1533 unlock_out: 1534 unlock_cluster_or_swap_info(si, ci); 1535 return ret; 1536 } 1537 1538 static bool folio_swapped(struct folio *folio) 1539 { 1540 swp_entry_t entry = folio->swap; 1541 struct swap_info_struct *si = _swap_info_get(entry); 1542 1543 if (!si) 1544 return false; 1545 1546 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio))) 1547 return swap_swapcount(si, entry) != 0; 1548 1549 return swap_page_trans_huge_swapped(si, entry); 1550 } 1551 1552 /** 1553 * folio_free_swap() - Free the swap space used for this folio. 1554 * @folio: The folio to remove. 1555 * 1556 * If swap is getting full, or if there are no more mappings of this folio, 1557 * then call folio_free_swap to free its swap space. 1558 * 1559 * Return: true if we were able to release the swap space. 1560 */ 1561 bool folio_free_swap(struct folio *folio) 1562 { 1563 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1564 1565 if (!folio_test_swapcache(folio)) 1566 return false; 1567 if (folio_test_writeback(folio)) 1568 return false; 1569 if (folio_swapped(folio)) 1570 return false; 1571 1572 /* 1573 * Once hibernation has begun to create its image of memory, 1574 * there's a danger that one of the calls to folio_free_swap() 1575 * - most probably a call from __try_to_reclaim_swap() while 1576 * hibernation is allocating its own swap pages for the image, 1577 * but conceivably even a call from memory reclaim - will free 1578 * the swap from a folio which has already been recorded in the 1579 * image as a clean swapcache folio, and then reuse its swap for 1580 * another page of the image. On waking from hibernation, the 1581 * original folio might be freed under memory pressure, then 1582 * later read back in from swap, now with the wrong data. 1583 * 1584 * Hibernation suspends storage while it is writing the image 1585 * to disk so check that here. 1586 */ 1587 if (pm_suspended_storage()) 1588 return false; 1589 1590 delete_from_swap_cache(folio); 1591 folio_set_dirty(folio); 1592 return true; 1593 } 1594 1595 /* 1596 * Free the swap entry like above, but also try to 1597 * free the page cache entry if it is the last user. 1598 */ 1599 int free_swap_and_cache(swp_entry_t entry) 1600 { 1601 struct swap_info_struct *p; 1602 unsigned char count; 1603 1604 if (non_swap_entry(entry)) 1605 return 1; 1606 1607 p = _swap_info_get(entry); 1608 if (p) { 1609 count = __swap_entry_free(p, entry); 1610 if (count == SWAP_HAS_CACHE && 1611 !swap_page_trans_huge_swapped(p, entry)) 1612 __try_to_reclaim_swap(p, swp_offset(entry), 1613 TTRS_UNMAPPED | TTRS_FULL); 1614 } 1615 return p != NULL; 1616 } 1617 1618 #ifdef CONFIG_HIBERNATION 1619 1620 swp_entry_t get_swap_page_of_type(int type) 1621 { 1622 struct swap_info_struct *si = swap_type_to_swap_info(type); 1623 swp_entry_t entry = {0}; 1624 1625 if (!si) 1626 goto fail; 1627 1628 /* This is called for allocating swap entry, not cache */ 1629 spin_lock(&si->lock); 1630 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry)) 1631 atomic_long_dec(&nr_swap_pages); 1632 spin_unlock(&si->lock); 1633 fail: 1634 return entry; 1635 } 1636 1637 /* 1638 * Find the swap type that corresponds to given device (if any). 1639 * 1640 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1641 * from 0, in which the swap header is expected to be located. 1642 * 1643 * This is needed for the suspend to disk (aka swsusp). 1644 */ 1645 int swap_type_of(dev_t device, sector_t offset) 1646 { 1647 int type; 1648 1649 if (!device) 1650 return -1; 1651 1652 spin_lock(&swap_lock); 1653 for (type = 0; type < nr_swapfiles; type++) { 1654 struct swap_info_struct *sis = swap_info[type]; 1655 1656 if (!(sis->flags & SWP_WRITEOK)) 1657 continue; 1658 1659 if (device == sis->bdev->bd_dev) { 1660 struct swap_extent *se = first_se(sis); 1661 1662 if (se->start_block == offset) { 1663 spin_unlock(&swap_lock); 1664 return type; 1665 } 1666 } 1667 } 1668 spin_unlock(&swap_lock); 1669 return -ENODEV; 1670 } 1671 1672 int find_first_swap(dev_t *device) 1673 { 1674 int type; 1675 1676 spin_lock(&swap_lock); 1677 for (type = 0; type < nr_swapfiles; type++) { 1678 struct swap_info_struct *sis = swap_info[type]; 1679 1680 if (!(sis->flags & SWP_WRITEOK)) 1681 continue; 1682 *device = sis->bdev->bd_dev; 1683 spin_unlock(&swap_lock); 1684 return type; 1685 } 1686 spin_unlock(&swap_lock); 1687 return -ENODEV; 1688 } 1689 1690 /* 1691 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1692 * corresponding to given index in swap_info (swap type). 1693 */ 1694 sector_t swapdev_block(int type, pgoff_t offset) 1695 { 1696 struct swap_info_struct *si = swap_type_to_swap_info(type); 1697 struct swap_extent *se; 1698 1699 if (!si || !(si->flags & SWP_WRITEOK)) 1700 return 0; 1701 se = offset_to_swap_extent(si, offset); 1702 return se->start_block + (offset - se->start_page); 1703 } 1704 1705 /* 1706 * Return either the total number of swap pages of given type, or the number 1707 * of free pages of that type (depending on @free) 1708 * 1709 * This is needed for software suspend 1710 */ 1711 unsigned int count_swap_pages(int type, int free) 1712 { 1713 unsigned int n = 0; 1714 1715 spin_lock(&swap_lock); 1716 if ((unsigned int)type < nr_swapfiles) { 1717 struct swap_info_struct *sis = swap_info[type]; 1718 1719 spin_lock(&sis->lock); 1720 if (sis->flags & SWP_WRITEOK) { 1721 n = sis->pages; 1722 if (free) 1723 n -= sis->inuse_pages; 1724 } 1725 spin_unlock(&sis->lock); 1726 } 1727 spin_unlock(&swap_lock); 1728 return n; 1729 } 1730 #endif /* CONFIG_HIBERNATION */ 1731 1732 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1733 { 1734 return pte_same(pte_swp_clear_flags(pte), swp_pte); 1735 } 1736 1737 /* 1738 * No need to decide whether this PTE shares the swap entry with others, 1739 * just let do_wp_page work it out if a write is requested later - to 1740 * force COW, vm_page_prot omits write permission from any private vma. 1741 */ 1742 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1743 unsigned long addr, swp_entry_t entry, struct folio *folio) 1744 { 1745 struct page *page; 1746 struct folio *swapcache; 1747 spinlock_t *ptl; 1748 pte_t *pte, new_pte, old_pte; 1749 bool hwpoisoned = false; 1750 int ret = 1; 1751 1752 swapcache = folio; 1753 folio = ksm_might_need_to_copy(folio, vma, addr); 1754 if (unlikely(!folio)) 1755 return -ENOMEM; 1756 else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 1757 hwpoisoned = true; 1758 folio = swapcache; 1759 } 1760 1761 page = folio_file_page(folio, swp_offset(entry)); 1762 if (PageHWPoison(page)) 1763 hwpoisoned = true; 1764 1765 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1766 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte), 1767 swp_entry_to_pte(entry)))) { 1768 ret = 0; 1769 goto out; 1770 } 1771 1772 old_pte = ptep_get(pte); 1773 1774 if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) { 1775 swp_entry_t swp_entry; 1776 1777 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1778 if (hwpoisoned) { 1779 swp_entry = make_hwpoison_entry(page); 1780 } else { 1781 swp_entry = make_poisoned_swp_entry(); 1782 } 1783 new_pte = swp_entry_to_pte(swp_entry); 1784 ret = 0; 1785 goto setpte; 1786 } 1787 1788 /* 1789 * Some architectures may have to restore extra metadata to the page 1790 * when reading from swap. This metadata may be indexed by swap entry 1791 * so this must be called before swap_free(). 1792 */ 1793 arch_swap_restore(entry, folio); 1794 1795 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1796 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1797 folio_get(folio); 1798 if (folio == swapcache) { 1799 rmap_t rmap_flags = RMAP_NONE; 1800 1801 /* 1802 * See do_swap_page(): writeback would be problematic. 1803 * However, we do a folio_wait_writeback() just before this 1804 * call and have the folio locked. 1805 */ 1806 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 1807 if (pte_swp_exclusive(old_pte)) 1808 rmap_flags |= RMAP_EXCLUSIVE; 1809 1810 folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags); 1811 } else { /* ksm created a completely new copy */ 1812 folio_add_new_anon_rmap(folio, vma, addr); 1813 folio_add_lru_vma(folio, vma); 1814 } 1815 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot)); 1816 if (pte_swp_soft_dirty(old_pte)) 1817 new_pte = pte_mksoft_dirty(new_pte); 1818 if (pte_swp_uffd_wp(old_pte)) 1819 new_pte = pte_mkuffd_wp(new_pte); 1820 setpte: 1821 set_pte_at(vma->vm_mm, addr, pte, new_pte); 1822 swap_free(entry); 1823 out: 1824 if (pte) 1825 pte_unmap_unlock(pte, ptl); 1826 if (folio != swapcache) { 1827 folio_unlock(folio); 1828 folio_put(folio); 1829 } 1830 return ret; 1831 } 1832 1833 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1834 unsigned long addr, unsigned long end, 1835 unsigned int type) 1836 { 1837 pte_t *pte = NULL; 1838 struct swap_info_struct *si; 1839 1840 si = swap_info[type]; 1841 do { 1842 struct folio *folio; 1843 unsigned long offset; 1844 unsigned char swp_count; 1845 swp_entry_t entry; 1846 int ret; 1847 pte_t ptent; 1848 1849 if (!pte++) { 1850 pte = pte_offset_map(pmd, addr); 1851 if (!pte) 1852 break; 1853 } 1854 1855 ptent = ptep_get_lockless(pte); 1856 1857 if (!is_swap_pte(ptent)) 1858 continue; 1859 1860 entry = pte_to_swp_entry(ptent); 1861 if (swp_type(entry) != type) 1862 continue; 1863 1864 offset = swp_offset(entry); 1865 pte_unmap(pte); 1866 pte = NULL; 1867 1868 folio = swap_cache_get_folio(entry, vma, addr); 1869 if (!folio) { 1870 struct page *page; 1871 struct vm_fault vmf = { 1872 .vma = vma, 1873 .address = addr, 1874 .real_address = addr, 1875 .pmd = pmd, 1876 }; 1877 1878 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 1879 &vmf); 1880 if (page) 1881 folio = page_folio(page); 1882 } 1883 if (!folio) { 1884 swp_count = READ_ONCE(si->swap_map[offset]); 1885 if (swp_count == 0 || swp_count == SWAP_MAP_BAD) 1886 continue; 1887 return -ENOMEM; 1888 } 1889 1890 folio_lock(folio); 1891 folio_wait_writeback(folio); 1892 ret = unuse_pte(vma, pmd, addr, entry, folio); 1893 if (ret < 0) { 1894 folio_unlock(folio); 1895 folio_put(folio); 1896 return ret; 1897 } 1898 1899 folio_free_swap(folio); 1900 folio_unlock(folio); 1901 folio_put(folio); 1902 } while (addr += PAGE_SIZE, addr != end); 1903 1904 if (pte) 1905 pte_unmap(pte); 1906 return 0; 1907 } 1908 1909 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1910 unsigned long addr, unsigned long end, 1911 unsigned int type) 1912 { 1913 pmd_t *pmd; 1914 unsigned long next; 1915 int ret; 1916 1917 pmd = pmd_offset(pud, addr); 1918 do { 1919 cond_resched(); 1920 next = pmd_addr_end(addr, end); 1921 ret = unuse_pte_range(vma, pmd, addr, next, type); 1922 if (ret) 1923 return ret; 1924 } while (pmd++, addr = next, addr != end); 1925 return 0; 1926 } 1927 1928 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 1929 unsigned long addr, unsigned long end, 1930 unsigned int type) 1931 { 1932 pud_t *pud; 1933 unsigned long next; 1934 int ret; 1935 1936 pud = pud_offset(p4d, addr); 1937 do { 1938 next = pud_addr_end(addr, end); 1939 if (pud_none_or_clear_bad(pud)) 1940 continue; 1941 ret = unuse_pmd_range(vma, pud, addr, next, type); 1942 if (ret) 1943 return ret; 1944 } while (pud++, addr = next, addr != end); 1945 return 0; 1946 } 1947 1948 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 1949 unsigned long addr, unsigned long end, 1950 unsigned int type) 1951 { 1952 p4d_t *p4d; 1953 unsigned long next; 1954 int ret; 1955 1956 p4d = p4d_offset(pgd, addr); 1957 do { 1958 next = p4d_addr_end(addr, end); 1959 if (p4d_none_or_clear_bad(p4d)) 1960 continue; 1961 ret = unuse_pud_range(vma, p4d, addr, next, type); 1962 if (ret) 1963 return ret; 1964 } while (p4d++, addr = next, addr != end); 1965 return 0; 1966 } 1967 1968 static int unuse_vma(struct vm_area_struct *vma, unsigned int type) 1969 { 1970 pgd_t *pgd; 1971 unsigned long addr, end, next; 1972 int ret; 1973 1974 addr = vma->vm_start; 1975 end = vma->vm_end; 1976 1977 pgd = pgd_offset(vma->vm_mm, addr); 1978 do { 1979 next = pgd_addr_end(addr, end); 1980 if (pgd_none_or_clear_bad(pgd)) 1981 continue; 1982 ret = unuse_p4d_range(vma, pgd, addr, next, type); 1983 if (ret) 1984 return ret; 1985 } while (pgd++, addr = next, addr != end); 1986 return 0; 1987 } 1988 1989 static int unuse_mm(struct mm_struct *mm, unsigned int type) 1990 { 1991 struct vm_area_struct *vma; 1992 int ret = 0; 1993 VMA_ITERATOR(vmi, mm, 0); 1994 1995 mmap_read_lock(mm); 1996 for_each_vma(vmi, vma) { 1997 if (vma->anon_vma) { 1998 ret = unuse_vma(vma, type); 1999 if (ret) 2000 break; 2001 } 2002 2003 cond_resched(); 2004 } 2005 mmap_read_unlock(mm); 2006 return ret; 2007 } 2008 2009 /* 2010 * Scan swap_map from current position to next entry still in use. 2011 * Return 0 if there are no inuse entries after prev till end of 2012 * the map. 2013 */ 2014 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 2015 unsigned int prev) 2016 { 2017 unsigned int i; 2018 unsigned char count; 2019 2020 /* 2021 * No need for swap_lock here: we're just looking 2022 * for whether an entry is in use, not modifying it; false 2023 * hits are okay, and sys_swapoff() has already prevented new 2024 * allocations from this area (while holding swap_lock). 2025 */ 2026 for (i = prev + 1; i < si->max; i++) { 2027 count = READ_ONCE(si->swap_map[i]); 2028 if (count && swap_count(count) != SWAP_MAP_BAD) 2029 break; 2030 if ((i % LATENCY_LIMIT) == 0) 2031 cond_resched(); 2032 } 2033 2034 if (i == si->max) 2035 i = 0; 2036 2037 return i; 2038 } 2039 2040 static int try_to_unuse(unsigned int type) 2041 { 2042 struct mm_struct *prev_mm; 2043 struct mm_struct *mm; 2044 struct list_head *p; 2045 int retval = 0; 2046 struct swap_info_struct *si = swap_info[type]; 2047 struct folio *folio; 2048 swp_entry_t entry; 2049 unsigned int i; 2050 2051 if (!READ_ONCE(si->inuse_pages)) 2052 return 0; 2053 2054 retry: 2055 retval = shmem_unuse(type); 2056 if (retval) 2057 return retval; 2058 2059 prev_mm = &init_mm; 2060 mmget(prev_mm); 2061 2062 spin_lock(&mmlist_lock); 2063 p = &init_mm.mmlist; 2064 while (READ_ONCE(si->inuse_pages) && 2065 !signal_pending(current) && 2066 (p = p->next) != &init_mm.mmlist) { 2067 2068 mm = list_entry(p, struct mm_struct, mmlist); 2069 if (!mmget_not_zero(mm)) 2070 continue; 2071 spin_unlock(&mmlist_lock); 2072 mmput(prev_mm); 2073 prev_mm = mm; 2074 retval = unuse_mm(mm, type); 2075 if (retval) { 2076 mmput(prev_mm); 2077 return retval; 2078 } 2079 2080 /* 2081 * Make sure that we aren't completely killing 2082 * interactive performance. 2083 */ 2084 cond_resched(); 2085 spin_lock(&mmlist_lock); 2086 } 2087 spin_unlock(&mmlist_lock); 2088 2089 mmput(prev_mm); 2090 2091 i = 0; 2092 while (READ_ONCE(si->inuse_pages) && 2093 !signal_pending(current) && 2094 (i = find_next_to_unuse(si, i)) != 0) { 2095 2096 entry = swp_entry(type, i); 2097 folio = filemap_get_folio(swap_address_space(entry), i); 2098 if (IS_ERR(folio)) 2099 continue; 2100 2101 /* 2102 * It is conceivable that a racing task removed this folio from 2103 * swap cache just before we acquired the page lock. The folio 2104 * might even be back in swap cache on another swap area. But 2105 * that is okay, folio_free_swap() only removes stale folios. 2106 */ 2107 folio_lock(folio); 2108 folio_wait_writeback(folio); 2109 folio_free_swap(folio); 2110 folio_unlock(folio); 2111 folio_put(folio); 2112 } 2113 2114 /* 2115 * Lets check again to see if there are still swap entries in the map. 2116 * If yes, we would need to do retry the unuse logic again. 2117 * Under global memory pressure, swap entries can be reinserted back 2118 * into process space after the mmlist loop above passes over them. 2119 * 2120 * Limit the number of retries? No: when mmget_not_zero() 2121 * above fails, that mm is likely to be freeing swap from 2122 * exit_mmap(), which proceeds at its own independent pace; 2123 * and even shmem_writepage() could have been preempted after 2124 * folio_alloc_swap(), temporarily hiding that swap. It's easy 2125 * and robust (though cpu-intensive) just to keep retrying. 2126 */ 2127 if (READ_ONCE(si->inuse_pages)) { 2128 if (!signal_pending(current)) 2129 goto retry; 2130 return -EINTR; 2131 } 2132 2133 return 0; 2134 } 2135 2136 /* 2137 * After a successful try_to_unuse, if no swap is now in use, we know 2138 * we can empty the mmlist. swap_lock must be held on entry and exit. 2139 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2140 * added to the mmlist just after page_duplicate - before would be racy. 2141 */ 2142 static void drain_mmlist(void) 2143 { 2144 struct list_head *p, *next; 2145 unsigned int type; 2146 2147 for (type = 0; type < nr_swapfiles; type++) 2148 if (swap_info[type]->inuse_pages) 2149 return; 2150 spin_lock(&mmlist_lock); 2151 list_for_each_safe(p, next, &init_mm.mmlist) 2152 list_del_init(p); 2153 spin_unlock(&mmlist_lock); 2154 } 2155 2156 /* 2157 * Free all of a swapdev's extent information 2158 */ 2159 static void destroy_swap_extents(struct swap_info_struct *sis) 2160 { 2161 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2162 struct rb_node *rb = sis->swap_extent_root.rb_node; 2163 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2164 2165 rb_erase(rb, &sis->swap_extent_root); 2166 kfree(se); 2167 } 2168 2169 if (sis->flags & SWP_ACTIVATED) { 2170 struct file *swap_file = sis->swap_file; 2171 struct address_space *mapping = swap_file->f_mapping; 2172 2173 sis->flags &= ~SWP_ACTIVATED; 2174 if (mapping->a_ops->swap_deactivate) 2175 mapping->a_ops->swap_deactivate(swap_file); 2176 } 2177 } 2178 2179 /* 2180 * Add a block range (and the corresponding page range) into this swapdev's 2181 * extent tree. 2182 * 2183 * This function rather assumes that it is called in ascending page order. 2184 */ 2185 int 2186 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2187 unsigned long nr_pages, sector_t start_block) 2188 { 2189 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2190 struct swap_extent *se; 2191 struct swap_extent *new_se; 2192 2193 /* 2194 * place the new node at the right most since the 2195 * function is called in ascending page order. 2196 */ 2197 while (*link) { 2198 parent = *link; 2199 link = &parent->rb_right; 2200 } 2201 2202 if (parent) { 2203 se = rb_entry(parent, struct swap_extent, rb_node); 2204 BUG_ON(se->start_page + se->nr_pages != start_page); 2205 if (se->start_block + se->nr_pages == start_block) { 2206 /* Merge it */ 2207 se->nr_pages += nr_pages; 2208 return 0; 2209 } 2210 } 2211 2212 /* No merge, insert a new extent. */ 2213 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2214 if (new_se == NULL) 2215 return -ENOMEM; 2216 new_se->start_page = start_page; 2217 new_se->nr_pages = nr_pages; 2218 new_se->start_block = start_block; 2219 2220 rb_link_node(&new_se->rb_node, parent, link); 2221 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2222 return 1; 2223 } 2224 EXPORT_SYMBOL_GPL(add_swap_extent); 2225 2226 /* 2227 * A `swap extent' is a simple thing which maps a contiguous range of pages 2228 * onto a contiguous range of disk blocks. A rbtree of swap extents is 2229 * built at swapon time and is then used at swap_writepage/swap_read_folio 2230 * time for locating where on disk a page belongs. 2231 * 2232 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2233 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2234 * swap files identically. 2235 * 2236 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2237 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2238 * swapfiles are handled *identically* after swapon time. 2239 * 2240 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2241 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray 2242 * blocks are found which do not fall within the PAGE_SIZE alignment 2243 * requirements, they are simply tossed out - we will never use those blocks 2244 * for swapping. 2245 * 2246 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2247 * prevents users from writing to the swap device, which will corrupt memory. 2248 * 2249 * The amount of disk space which a single swap extent represents varies. 2250 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2251 * extents in the rbtree. - akpm. 2252 */ 2253 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2254 { 2255 struct file *swap_file = sis->swap_file; 2256 struct address_space *mapping = swap_file->f_mapping; 2257 struct inode *inode = mapping->host; 2258 int ret; 2259 2260 if (S_ISBLK(inode->i_mode)) { 2261 ret = add_swap_extent(sis, 0, sis->max, 0); 2262 *span = sis->pages; 2263 return ret; 2264 } 2265 2266 if (mapping->a_ops->swap_activate) { 2267 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2268 if (ret < 0) 2269 return ret; 2270 sis->flags |= SWP_ACTIVATED; 2271 if ((sis->flags & SWP_FS_OPS) && 2272 sio_pool_init() != 0) { 2273 destroy_swap_extents(sis); 2274 return -ENOMEM; 2275 } 2276 return ret; 2277 } 2278 2279 return generic_swapfile_activate(sis, swap_file, span); 2280 } 2281 2282 static int swap_node(struct swap_info_struct *p) 2283 { 2284 struct block_device *bdev; 2285 2286 if (p->bdev) 2287 bdev = p->bdev; 2288 else 2289 bdev = p->swap_file->f_inode->i_sb->s_bdev; 2290 2291 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2292 } 2293 2294 static void setup_swap_info(struct swap_info_struct *p, int prio, 2295 unsigned char *swap_map, 2296 struct swap_cluster_info *cluster_info) 2297 { 2298 int i; 2299 2300 if (prio >= 0) 2301 p->prio = prio; 2302 else 2303 p->prio = --least_priority; 2304 /* 2305 * the plist prio is negated because plist ordering is 2306 * low-to-high, while swap ordering is high-to-low 2307 */ 2308 p->list.prio = -p->prio; 2309 for_each_node(i) { 2310 if (p->prio >= 0) 2311 p->avail_lists[i].prio = -p->prio; 2312 else { 2313 if (swap_node(p) == i) 2314 p->avail_lists[i].prio = 1; 2315 else 2316 p->avail_lists[i].prio = -p->prio; 2317 } 2318 } 2319 p->swap_map = swap_map; 2320 p->cluster_info = cluster_info; 2321 } 2322 2323 static void _enable_swap_info(struct swap_info_struct *p) 2324 { 2325 p->flags |= SWP_WRITEOK; 2326 atomic_long_add(p->pages, &nr_swap_pages); 2327 total_swap_pages += p->pages; 2328 2329 assert_spin_locked(&swap_lock); 2330 /* 2331 * both lists are plists, and thus priority ordered. 2332 * swap_active_head needs to be priority ordered for swapoff(), 2333 * which on removal of any swap_info_struct with an auto-assigned 2334 * (i.e. negative) priority increments the auto-assigned priority 2335 * of any lower-priority swap_info_structs. 2336 * swap_avail_head needs to be priority ordered for folio_alloc_swap(), 2337 * which allocates swap pages from the highest available priority 2338 * swap_info_struct. 2339 */ 2340 plist_add(&p->list, &swap_active_head); 2341 2342 /* add to available list iff swap device is not full */ 2343 if (p->highest_bit) 2344 add_to_avail_list(p); 2345 } 2346 2347 static void enable_swap_info(struct swap_info_struct *p, int prio, 2348 unsigned char *swap_map, 2349 struct swap_cluster_info *cluster_info) 2350 { 2351 zswap_swapon(p->type); 2352 2353 spin_lock(&swap_lock); 2354 spin_lock(&p->lock); 2355 setup_swap_info(p, prio, swap_map, cluster_info); 2356 spin_unlock(&p->lock); 2357 spin_unlock(&swap_lock); 2358 /* 2359 * Finished initializing swap device, now it's safe to reference it. 2360 */ 2361 percpu_ref_resurrect(&p->users); 2362 spin_lock(&swap_lock); 2363 spin_lock(&p->lock); 2364 _enable_swap_info(p); 2365 spin_unlock(&p->lock); 2366 spin_unlock(&swap_lock); 2367 } 2368 2369 static void reinsert_swap_info(struct swap_info_struct *p) 2370 { 2371 spin_lock(&swap_lock); 2372 spin_lock(&p->lock); 2373 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2374 _enable_swap_info(p); 2375 spin_unlock(&p->lock); 2376 spin_unlock(&swap_lock); 2377 } 2378 2379 bool has_usable_swap(void) 2380 { 2381 bool ret = true; 2382 2383 spin_lock(&swap_lock); 2384 if (plist_head_empty(&swap_active_head)) 2385 ret = false; 2386 spin_unlock(&swap_lock); 2387 return ret; 2388 } 2389 2390 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2391 { 2392 struct swap_info_struct *p = NULL; 2393 unsigned char *swap_map; 2394 struct swap_cluster_info *cluster_info; 2395 struct file *swap_file, *victim; 2396 struct address_space *mapping; 2397 struct inode *inode; 2398 struct filename *pathname; 2399 int err, found = 0; 2400 unsigned int old_block_size; 2401 2402 if (!capable(CAP_SYS_ADMIN)) 2403 return -EPERM; 2404 2405 BUG_ON(!current->mm); 2406 2407 pathname = getname(specialfile); 2408 if (IS_ERR(pathname)) 2409 return PTR_ERR(pathname); 2410 2411 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2412 err = PTR_ERR(victim); 2413 if (IS_ERR(victim)) 2414 goto out; 2415 2416 mapping = victim->f_mapping; 2417 spin_lock(&swap_lock); 2418 plist_for_each_entry(p, &swap_active_head, list) { 2419 if (p->flags & SWP_WRITEOK) { 2420 if (p->swap_file->f_mapping == mapping) { 2421 found = 1; 2422 break; 2423 } 2424 } 2425 } 2426 if (!found) { 2427 err = -EINVAL; 2428 spin_unlock(&swap_lock); 2429 goto out_dput; 2430 } 2431 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2432 vm_unacct_memory(p->pages); 2433 else { 2434 err = -ENOMEM; 2435 spin_unlock(&swap_lock); 2436 goto out_dput; 2437 } 2438 spin_lock(&p->lock); 2439 del_from_avail_list(p); 2440 if (p->prio < 0) { 2441 struct swap_info_struct *si = p; 2442 int nid; 2443 2444 plist_for_each_entry_continue(si, &swap_active_head, list) { 2445 si->prio++; 2446 si->list.prio--; 2447 for_each_node(nid) { 2448 if (si->avail_lists[nid].prio != 1) 2449 si->avail_lists[nid].prio--; 2450 } 2451 } 2452 least_priority++; 2453 } 2454 plist_del(&p->list, &swap_active_head); 2455 atomic_long_sub(p->pages, &nr_swap_pages); 2456 total_swap_pages -= p->pages; 2457 p->flags &= ~SWP_WRITEOK; 2458 spin_unlock(&p->lock); 2459 spin_unlock(&swap_lock); 2460 2461 disable_swap_slots_cache_lock(); 2462 2463 set_current_oom_origin(); 2464 err = try_to_unuse(p->type); 2465 clear_current_oom_origin(); 2466 2467 if (err) { 2468 /* re-insert swap space back into swap_list */ 2469 reinsert_swap_info(p); 2470 reenable_swap_slots_cache_unlock(); 2471 goto out_dput; 2472 } 2473 2474 reenable_swap_slots_cache_unlock(); 2475 2476 /* 2477 * Wait for swap operations protected by get/put_swap_device() 2478 * to complete. 2479 * 2480 * We need synchronize_rcu() here to protect the accessing to 2481 * the swap cache data structure. 2482 */ 2483 percpu_ref_kill(&p->users); 2484 synchronize_rcu(); 2485 wait_for_completion(&p->comp); 2486 2487 flush_work(&p->discard_work); 2488 2489 destroy_swap_extents(p); 2490 if (p->flags & SWP_CONTINUED) 2491 free_swap_count_continuations(p); 2492 2493 if (!p->bdev || !bdev_nonrot(p->bdev)) 2494 atomic_dec(&nr_rotate_swap); 2495 2496 mutex_lock(&swapon_mutex); 2497 spin_lock(&swap_lock); 2498 spin_lock(&p->lock); 2499 drain_mmlist(); 2500 2501 /* wait for anyone still in scan_swap_map_slots */ 2502 p->highest_bit = 0; /* cuts scans short */ 2503 while (p->flags >= SWP_SCANNING) { 2504 spin_unlock(&p->lock); 2505 spin_unlock(&swap_lock); 2506 schedule_timeout_uninterruptible(1); 2507 spin_lock(&swap_lock); 2508 spin_lock(&p->lock); 2509 } 2510 2511 swap_file = p->swap_file; 2512 old_block_size = p->old_block_size; 2513 p->swap_file = NULL; 2514 p->max = 0; 2515 swap_map = p->swap_map; 2516 p->swap_map = NULL; 2517 cluster_info = p->cluster_info; 2518 p->cluster_info = NULL; 2519 spin_unlock(&p->lock); 2520 spin_unlock(&swap_lock); 2521 arch_swap_invalidate_area(p->type); 2522 zswap_swapoff(p->type); 2523 mutex_unlock(&swapon_mutex); 2524 free_percpu(p->percpu_cluster); 2525 p->percpu_cluster = NULL; 2526 free_percpu(p->cluster_next_cpu); 2527 p->cluster_next_cpu = NULL; 2528 vfree(swap_map); 2529 kvfree(cluster_info); 2530 /* Destroy swap account information */ 2531 swap_cgroup_swapoff(p->type); 2532 exit_swap_address_space(p->type); 2533 2534 inode = mapping->host; 2535 if (p->bdev_handle) { 2536 set_blocksize(p->bdev, old_block_size); 2537 bdev_release(p->bdev_handle); 2538 p->bdev_handle = NULL; 2539 } 2540 2541 inode_lock(inode); 2542 inode->i_flags &= ~S_SWAPFILE; 2543 inode_unlock(inode); 2544 filp_close(swap_file, NULL); 2545 2546 /* 2547 * Clear the SWP_USED flag after all resources are freed so that swapon 2548 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2549 * not hold p->lock after we cleared its SWP_WRITEOK. 2550 */ 2551 spin_lock(&swap_lock); 2552 p->flags = 0; 2553 spin_unlock(&swap_lock); 2554 2555 err = 0; 2556 atomic_inc(&proc_poll_event); 2557 wake_up_interruptible(&proc_poll_wait); 2558 2559 out_dput: 2560 filp_close(victim, NULL); 2561 out: 2562 putname(pathname); 2563 return err; 2564 } 2565 2566 #ifdef CONFIG_PROC_FS 2567 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2568 { 2569 struct seq_file *seq = file->private_data; 2570 2571 poll_wait(file, &proc_poll_wait, wait); 2572 2573 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2574 seq->poll_event = atomic_read(&proc_poll_event); 2575 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2576 } 2577 2578 return EPOLLIN | EPOLLRDNORM; 2579 } 2580 2581 /* iterator */ 2582 static void *swap_start(struct seq_file *swap, loff_t *pos) 2583 { 2584 struct swap_info_struct *si; 2585 int type; 2586 loff_t l = *pos; 2587 2588 mutex_lock(&swapon_mutex); 2589 2590 if (!l) 2591 return SEQ_START_TOKEN; 2592 2593 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2594 if (!(si->flags & SWP_USED) || !si->swap_map) 2595 continue; 2596 if (!--l) 2597 return si; 2598 } 2599 2600 return NULL; 2601 } 2602 2603 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2604 { 2605 struct swap_info_struct *si = v; 2606 int type; 2607 2608 if (v == SEQ_START_TOKEN) 2609 type = 0; 2610 else 2611 type = si->type + 1; 2612 2613 ++(*pos); 2614 for (; (si = swap_type_to_swap_info(type)); type++) { 2615 if (!(si->flags & SWP_USED) || !si->swap_map) 2616 continue; 2617 return si; 2618 } 2619 2620 return NULL; 2621 } 2622 2623 static void swap_stop(struct seq_file *swap, void *v) 2624 { 2625 mutex_unlock(&swapon_mutex); 2626 } 2627 2628 static int swap_show(struct seq_file *swap, void *v) 2629 { 2630 struct swap_info_struct *si = v; 2631 struct file *file; 2632 int len; 2633 unsigned long bytes, inuse; 2634 2635 if (si == SEQ_START_TOKEN) { 2636 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 2637 return 0; 2638 } 2639 2640 bytes = K(si->pages); 2641 inuse = K(READ_ONCE(si->inuse_pages)); 2642 2643 file = si->swap_file; 2644 len = seq_file_path(swap, file, " \t\n\\"); 2645 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n", 2646 len < 40 ? 40 - len : 1, " ", 2647 S_ISBLK(file_inode(file)->i_mode) ? 2648 "partition" : "file\t", 2649 bytes, bytes < 10000000 ? "\t" : "", 2650 inuse, inuse < 10000000 ? "\t" : "", 2651 si->prio); 2652 return 0; 2653 } 2654 2655 static const struct seq_operations swaps_op = { 2656 .start = swap_start, 2657 .next = swap_next, 2658 .stop = swap_stop, 2659 .show = swap_show 2660 }; 2661 2662 static int swaps_open(struct inode *inode, struct file *file) 2663 { 2664 struct seq_file *seq; 2665 int ret; 2666 2667 ret = seq_open(file, &swaps_op); 2668 if (ret) 2669 return ret; 2670 2671 seq = file->private_data; 2672 seq->poll_event = atomic_read(&proc_poll_event); 2673 return 0; 2674 } 2675 2676 static const struct proc_ops swaps_proc_ops = { 2677 .proc_flags = PROC_ENTRY_PERMANENT, 2678 .proc_open = swaps_open, 2679 .proc_read = seq_read, 2680 .proc_lseek = seq_lseek, 2681 .proc_release = seq_release, 2682 .proc_poll = swaps_poll, 2683 }; 2684 2685 static int __init procswaps_init(void) 2686 { 2687 proc_create("swaps", 0, NULL, &swaps_proc_ops); 2688 return 0; 2689 } 2690 __initcall(procswaps_init); 2691 #endif /* CONFIG_PROC_FS */ 2692 2693 #ifdef MAX_SWAPFILES_CHECK 2694 static int __init max_swapfiles_check(void) 2695 { 2696 MAX_SWAPFILES_CHECK(); 2697 return 0; 2698 } 2699 late_initcall(max_swapfiles_check); 2700 #endif 2701 2702 static struct swap_info_struct *alloc_swap_info(void) 2703 { 2704 struct swap_info_struct *p; 2705 struct swap_info_struct *defer = NULL; 2706 unsigned int type; 2707 int i; 2708 2709 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2710 if (!p) 2711 return ERR_PTR(-ENOMEM); 2712 2713 if (percpu_ref_init(&p->users, swap_users_ref_free, 2714 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { 2715 kvfree(p); 2716 return ERR_PTR(-ENOMEM); 2717 } 2718 2719 spin_lock(&swap_lock); 2720 for (type = 0; type < nr_swapfiles; type++) { 2721 if (!(swap_info[type]->flags & SWP_USED)) 2722 break; 2723 } 2724 if (type >= MAX_SWAPFILES) { 2725 spin_unlock(&swap_lock); 2726 percpu_ref_exit(&p->users); 2727 kvfree(p); 2728 return ERR_PTR(-EPERM); 2729 } 2730 if (type >= nr_swapfiles) { 2731 p->type = type; 2732 /* 2733 * Publish the swap_info_struct after initializing it. 2734 * Note that kvzalloc() above zeroes all its fields. 2735 */ 2736 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ 2737 nr_swapfiles++; 2738 } else { 2739 defer = p; 2740 p = swap_info[type]; 2741 /* 2742 * Do not memset this entry: a racing procfs swap_next() 2743 * would be relying on p->type to remain valid. 2744 */ 2745 } 2746 p->swap_extent_root = RB_ROOT; 2747 plist_node_init(&p->list, 0); 2748 for_each_node(i) 2749 plist_node_init(&p->avail_lists[i], 0); 2750 p->flags = SWP_USED; 2751 spin_unlock(&swap_lock); 2752 if (defer) { 2753 percpu_ref_exit(&defer->users); 2754 kvfree(defer); 2755 } 2756 spin_lock_init(&p->lock); 2757 spin_lock_init(&p->cont_lock); 2758 init_completion(&p->comp); 2759 2760 return p; 2761 } 2762 2763 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2764 { 2765 int error; 2766 2767 if (S_ISBLK(inode->i_mode)) { 2768 p->bdev_handle = bdev_open_by_dev(inode->i_rdev, 2769 BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL); 2770 if (IS_ERR(p->bdev_handle)) { 2771 error = PTR_ERR(p->bdev_handle); 2772 p->bdev_handle = NULL; 2773 return error; 2774 } 2775 p->bdev = p->bdev_handle->bdev; 2776 p->old_block_size = block_size(p->bdev); 2777 error = set_blocksize(p->bdev, PAGE_SIZE); 2778 if (error < 0) 2779 return error; 2780 /* 2781 * Zoned block devices contain zones that have a sequential 2782 * write only restriction. Hence zoned block devices are not 2783 * suitable for swapping. Disallow them here. 2784 */ 2785 if (bdev_is_zoned(p->bdev)) 2786 return -EINVAL; 2787 p->flags |= SWP_BLKDEV; 2788 } else if (S_ISREG(inode->i_mode)) { 2789 p->bdev = inode->i_sb->s_bdev; 2790 } 2791 2792 return 0; 2793 } 2794 2795 2796 /* 2797 * Find out how many pages are allowed for a single swap device. There 2798 * are two limiting factors: 2799 * 1) the number of bits for the swap offset in the swp_entry_t type, and 2800 * 2) the number of bits in the swap pte, as defined by the different 2801 * architectures. 2802 * 2803 * In order to find the largest possible bit mask, a swap entry with 2804 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 2805 * decoded to a swp_entry_t again, and finally the swap offset is 2806 * extracted. 2807 * 2808 * This will mask all the bits from the initial ~0UL mask that can't 2809 * be encoded in either the swp_entry_t or the architecture definition 2810 * of a swap pte. 2811 */ 2812 unsigned long generic_max_swapfile_size(void) 2813 { 2814 return swp_offset(pte_to_swp_entry( 2815 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2816 } 2817 2818 /* Can be overridden by an architecture for additional checks. */ 2819 __weak unsigned long arch_max_swapfile_size(void) 2820 { 2821 return generic_max_swapfile_size(); 2822 } 2823 2824 static unsigned long read_swap_header(struct swap_info_struct *p, 2825 union swap_header *swap_header, 2826 struct inode *inode) 2827 { 2828 int i; 2829 unsigned long maxpages; 2830 unsigned long swapfilepages; 2831 unsigned long last_page; 2832 2833 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2834 pr_err("Unable to find swap-space signature\n"); 2835 return 0; 2836 } 2837 2838 /* swap partition endianness hack... */ 2839 if (swab32(swap_header->info.version) == 1) { 2840 swab32s(&swap_header->info.version); 2841 swab32s(&swap_header->info.last_page); 2842 swab32s(&swap_header->info.nr_badpages); 2843 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2844 return 0; 2845 for (i = 0; i < swap_header->info.nr_badpages; i++) 2846 swab32s(&swap_header->info.badpages[i]); 2847 } 2848 /* Check the swap header's sub-version */ 2849 if (swap_header->info.version != 1) { 2850 pr_warn("Unable to handle swap header version %d\n", 2851 swap_header->info.version); 2852 return 0; 2853 } 2854 2855 p->lowest_bit = 1; 2856 p->cluster_next = 1; 2857 p->cluster_nr = 0; 2858 2859 maxpages = swapfile_maximum_size; 2860 last_page = swap_header->info.last_page; 2861 if (!last_page) { 2862 pr_warn("Empty swap-file\n"); 2863 return 0; 2864 } 2865 if (last_page > maxpages) { 2866 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2867 K(maxpages), K(last_page)); 2868 } 2869 if (maxpages > last_page) { 2870 maxpages = last_page + 1; 2871 /* p->max is an unsigned int: don't overflow it */ 2872 if ((unsigned int)maxpages == 0) 2873 maxpages = UINT_MAX; 2874 } 2875 p->highest_bit = maxpages - 1; 2876 2877 if (!maxpages) 2878 return 0; 2879 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2880 if (swapfilepages && maxpages > swapfilepages) { 2881 pr_warn("Swap area shorter than signature indicates\n"); 2882 return 0; 2883 } 2884 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2885 return 0; 2886 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2887 return 0; 2888 2889 return maxpages; 2890 } 2891 2892 #define SWAP_CLUSTER_INFO_COLS \ 2893 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 2894 #define SWAP_CLUSTER_SPACE_COLS \ 2895 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 2896 #define SWAP_CLUSTER_COLS \ 2897 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 2898 2899 static int setup_swap_map_and_extents(struct swap_info_struct *p, 2900 union swap_header *swap_header, 2901 unsigned char *swap_map, 2902 struct swap_cluster_info *cluster_info, 2903 unsigned long maxpages, 2904 sector_t *span) 2905 { 2906 unsigned int j, k; 2907 unsigned int nr_good_pages; 2908 int nr_extents; 2909 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2910 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 2911 unsigned long i, idx; 2912 2913 nr_good_pages = maxpages - 1; /* omit header page */ 2914 2915 cluster_list_init(&p->free_clusters); 2916 cluster_list_init(&p->discard_clusters); 2917 2918 for (i = 0; i < swap_header->info.nr_badpages; i++) { 2919 unsigned int page_nr = swap_header->info.badpages[i]; 2920 if (page_nr == 0 || page_nr > swap_header->info.last_page) 2921 return -EINVAL; 2922 if (page_nr < maxpages) { 2923 swap_map[page_nr] = SWAP_MAP_BAD; 2924 nr_good_pages--; 2925 /* 2926 * Haven't marked the cluster free yet, no list 2927 * operation involved 2928 */ 2929 inc_cluster_info_page(p, cluster_info, page_nr); 2930 } 2931 } 2932 2933 /* Haven't marked the cluster free yet, no list operation involved */ 2934 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 2935 inc_cluster_info_page(p, cluster_info, i); 2936 2937 if (nr_good_pages) { 2938 swap_map[0] = SWAP_MAP_BAD; 2939 /* 2940 * Not mark the cluster free yet, no list 2941 * operation involved 2942 */ 2943 inc_cluster_info_page(p, cluster_info, 0); 2944 p->max = maxpages; 2945 p->pages = nr_good_pages; 2946 nr_extents = setup_swap_extents(p, span); 2947 if (nr_extents < 0) 2948 return nr_extents; 2949 nr_good_pages = p->pages; 2950 } 2951 if (!nr_good_pages) { 2952 pr_warn("Empty swap-file\n"); 2953 return -EINVAL; 2954 } 2955 2956 if (!cluster_info) 2957 return nr_extents; 2958 2959 2960 /* 2961 * Reduce false cache line sharing between cluster_info and 2962 * sharing same address space. 2963 */ 2964 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 2965 j = (k + col) % SWAP_CLUSTER_COLS; 2966 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 2967 idx = i * SWAP_CLUSTER_COLS + j; 2968 if (idx >= nr_clusters) 2969 continue; 2970 if (cluster_count(&cluster_info[idx])) 2971 continue; 2972 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 2973 cluster_list_add_tail(&p->free_clusters, cluster_info, 2974 idx); 2975 } 2976 } 2977 return nr_extents; 2978 } 2979 2980 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 2981 { 2982 struct swap_info_struct *p; 2983 struct filename *name; 2984 struct file *swap_file = NULL; 2985 struct address_space *mapping; 2986 struct dentry *dentry; 2987 int prio; 2988 int error; 2989 union swap_header *swap_header; 2990 int nr_extents; 2991 sector_t span; 2992 unsigned long maxpages; 2993 unsigned char *swap_map = NULL; 2994 struct swap_cluster_info *cluster_info = NULL; 2995 struct page *page = NULL; 2996 struct inode *inode = NULL; 2997 bool inced_nr_rotate_swap = false; 2998 2999 if (swap_flags & ~SWAP_FLAGS_VALID) 3000 return -EINVAL; 3001 3002 if (!capable(CAP_SYS_ADMIN)) 3003 return -EPERM; 3004 3005 if (!swap_avail_heads) 3006 return -ENOMEM; 3007 3008 p = alloc_swap_info(); 3009 if (IS_ERR(p)) 3010 return PTR_ERR(p); 3011 3012 INIT_WORK(&p->discard_work, swap_discard_work); 3013 3014 name = getname(specialfile); 3015 if (IS_ERR(name)) { 3016 error = PTR_ERR(name); 3017 name = NULL; 3018 goto bad_swap; 3019 } 3020 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 3021 if (IS_ERR(swap_file)) { 3022 error = PTR_ERR(swap_file); 3023 swap_file = NULL; 3024 goto bad_swap; 3025 } 3026 3027 p->swap_file = swap_file; 3028 mapping = swap_file->f_mapping; 3029 dentry = swap_file->f_path.dentry; 3030 inode = mapping->host; 3031 3032 error = claim_swapfile(p, inode); 3033 if (unlikely(error)) 3034 goto bad_swap; 3035 3036 inode_lock(inode); 3037 if (d_unlinked(dentry) || cant_mount(dentry)) { 3038 error = -ENOENT; 3039 goto bad_swap_unlock_inode; 3040 } 3041 if (IS_SWAPFILE(inode)) { 3042 error = -EBUSY; 3043 goto bad_swap_unlock_inode; 3044 } 3045 3046 /* 3047 * Read the swap header. 3048 */ 3049 if (!mapping->a_ops->read_folio) { 3050 error = -EINVAL; 3051 goto bad_swap_unlock_inode; 3052 } 3053 page = read_mapping_page(mapping, 0, swap_file); 3054 if (IS_ERR(page)) { 3055 error = PTR_ERR(page); 3056 goto bad_swap_unlock_inode; 3057 } 3058 swap_header = kmap(page); 3059 3060 maxpages = read_swap_header(p, swap_header, inode); 3061 if (unlikely(!maxpages)) { 3062 error = -EINVAL; 3063 goto bad_swap_unlock_inode; 3064 } 3065 3066 /* OK, set up the swap map and apply the bad block list */ 3067 swap_map = vzalloc(maxpages); 3068 if (!swap_map) { 3069 error = -ENOMEM; 3070 goto bad_swap_unlock_inode; 3071 } 3072 3073 if (p->bdev && bdev_stable_writes(p->bdev)) 3074 p->flags |= SWP_STABLE_WRITES; 3075 3076 if (p->bdev && bdev_synchronous(p->bdev)) 3077 p->flags |= SWP_SYNCHRONOUS_IO; 3078 3079 if (p->bdev && bdev_nonrot(p->bdev)) { 3080 int cpu; 3081 unsigned long ci, nr_cluster; 3082 3083 p->flags |= SWP_SOLIDSTATE; 3084 p->cluster_next_cpu = alloc_percpu(unsigned int); 3085 if (!p->cluster_next_cpu) { 3086 error = -ENOMEM; 3087 goto bad_swap_unlock_inode; 3088 } 3089 /* 3090 * select a random position to start with to help wear leveling 3091 * SSD 3092 */ 3093 for_each_possible_cpu(cpu) { 3094 per_cpu(*p->cluster_next_cpu, cpu) = 3095 get_random_u32_inclusive(1, p->highest_bit); 3096 } 3097 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3098 3099 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), 3100 GFP_KERNEL); 3101 if (!cluster_info) { 3102 error = -ENOMEM; 3103 goto bad_swap_unlock_inode; 3104 } 3105 3106 for (ci = 0; ci < nr_cluster; ci++) 3107 spin_lock_init(&((cluster_info + ci)->lock)); 3108 3109 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 3110 if (!p->percpu_cluster) { 3111 error = -ENOMEM; 3112 goto bad_swap_unlock_inode; 3113 } 3114 for_each_possible_cpu(cpu) { 3115 struct percpu_cluster *cluster; 3116 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 3117 cluster_set_null(&cluster->index); 3118 } 3119 } else { 3120 atomic_inc(&nr_rotate_swap); 3121 inced_nr_rotate_swap = true; 3122 } 3123 3124 error = swap_cgroup_swapon(p->type, maxpages); 3125 if (error) 3126 goto bad_swap_unlock_inode; 3127 3128 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 3129 cluster_info, maxpages, &span); 3130 if (unlikely(nr_extents < 0)) { 3131 error = nr_extents; 3132 goto bad_swap_unlock_inode; 3133 } 3134 3135 if ((swap_flags & SWAP_FLAG_DISCARD) && 3136 p->bdev && bdev_max_discard_sectors(p->bdev)) { 3137 /* 3138 * When discard is enabled for swap with no particular 3139 * policy flagged, we set all swap discard flags here in 3140 * order to sustain backward compatibility with older 3141 * swapon(8) releases. 3142 */ 3143 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3144 SWP_PAGE_DISCARD); 3145 3146 /* 3147 * By flagging sys_swapon, a sysadmin can tell us to 3148 * either do single-time area discards only, or to just 3149 * perform discards for released swap page-clusters. 3150 * Now it's time to adjust the p->flags accordingly. 3151 */ 3152 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3153 p->flags &= ~SWP_PAGE_DISCARD; 3154 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3155 p->flags &= ~SWP_AREA_DISCARD; 3156 3157 /* issue a swapon-time discard if it's still required */ 3158 if (p->flags & SWP_AREA_DISCARD) { 3159 int err = discard_swap(p); 3160 if (unlikely(err)) 3161 pr_err("swapon: discard_swap(%p): %d\n", 3162 p, err); 3163 } 3164 } 3165 3166 error = init_swap_address_space(p->type, maxpages); 3167 if (error) 3168 goto bad_swap_unlock_inode; 3169 3170 /* 3171 * Flush any pending IO and dirty mappings before we start using this 3172 * swap device. 3173 */ 3174 inode->i_flags |= S_SWAPFILE; 3175 error = inode_drain_writes(inode); 3176 if (error) { 3177 inode->i_flags &= ~S_SWAPFILE; 3178 goto free_swap_address_space; 3179 } 3180 3181 mutex_lock(&swapon_mutex); 3182 prio = -1; 3183 if (swap_flags & SWAP_FLAG_PREFER) 3184 prio = 3185 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3186 enable_swap_info(p, prio, swap_map, cluster_info); 3187 3188 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n", 3189 K(p->pages), name->name, p->prio, nr_extents, 3190 K((unsigned long long)span), 3191 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 3192 (p->flags & SWP_DISCARDABLE) ? "D" : "", 3193 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 3194 (p->flags & SWP_PAGE_DISCARD) ? "c" : ""); 3195 3196 mutex_unlock(&swapon_mutex); 3197 atomic_inc(&proc_poll_event); 3198 wake_up_interruptible(&proc_poll_wait); 3199 3200 error = 0; 3201 goto out; 3202 free_swap_address_space: 3203 exit_swap_address_space(p->type); 3204 bad_swap_unlock_inode: 3205 inode_unlock(inode); 3206 bad_swap: 3207 free_percpu(p->percpu_cluster); 3208 p->percpu_cluster = NULL; 3209 free_percpu(p->cluster_next_cpu); 3210 p->cluster_next_cpu = NULL; 3211 if (p->bdev_handle) { 3212 set_blocksize(p->bdev, p->old_block_size); 3213 bdev_release(p->bdev_handle); 3214 p->bdev_handle = NULL; 3215 } 3216 inode = NULL; 3217 destroy_swap_extents(p); 3218 swap_cgroup_swapoff(p->type); 3219 spin_lock(&swap_lock); 3220 p->swap_file = NULL; 3221 p->flags = 0; 3222 spin_unlock(&swap_lock); 3223 vfree(swap_map); 3224 kvfree(cluster_info); 3225 if (inced_nr_rotate_swap) 3226 atomic_dec(&nr_rotate_swap); 3227 if (swap_file) 3228 filp_close(swap_file, NULL); 3229 out: 3230 if (page && !IS_ERR(page)) { 3231 kunmap(page); 3232 put_page(page); 3233 } 3234 if (name) 3235 putname(name); 3236 if (inode) 3237 inode_unlock(inode); 3238 if (!error) 3239 enable_swap_slots_cache(); 3240 return error; 3241 } 3242 3243 void si_swapinfo(struct sysinfo *val) 3244 { 3245 unsigned int type; 3246 unsigned long nr_to_be_unused = 0; 3247 3248 spin_lock(&swap_lock); 3249 for (type = 0; type < nr_swapfiles; type++) { 3250 struct swap_info_struct *si = swap_info[type]; 3251 3252 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3253 nr_to_be_unused += READ_ONCE(si->inuse_pages); 3254 } 3255 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3256 val->totalswap = total_swap_pages + nr_to_be_unused; 3257 spin_unlock(&swap_lock); 3258 } 3259 3260 /* 3261 * Verify that a swap entry is valid and increment its swap map count. 3262 * 3263 * Returns error code in following case. 3264 * - success -> 0 3265 * - swp_entry is invalid -> EINVAL 3266 * - swp_entry is migration entry -> EINVAL 3267 * - swap-cache reference is requested but there is already one. -> EEXIST 3268 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3269 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3270 */ 3271 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 3272 { 3273 struct swap_info_struct *p; 3274 struct swap_cluster_info *ci; 3275 unsigned long offset; 3276 unsigned char count; 3277 unsigned char has_cache; 3278 int err; 3279 3280 p = swp_swap_info(entry); 3281 3282 offset = swp_offset(entry); 3283 ci = lock_cluster_or_swap_info(p, offset); 3284 3285 count = p->swap_map[offset]; 3286 3287 /* 3288 * swapin_readahead() doesn't check if a swap entry is valid, so the 3289 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3290 */ 3291 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3292 err = -ENOENT; 3293 goto unlock_out; 3294 } 3295 3296 has_cache = count & SWAP_HAS_CACHE; 3297 count &= ~SWAP_HAS_CACHE; 3298 err = 0; 3299 3300 if (usage == SWAP_HAS_CACHE) { 3301 3302 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 3303 if (!has_cache && count) 3304 has_cache = SWAP_HAS_CACHE; 3305 else if (has_cache) /* someone else added cache */ 3306 err = -EEXIST; 3307 else /* no users remaining */ 3308 err = -ENOENT; 3309 3310 } else if (count || has_cache) { 3311 3312 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3313 count += usage; 3314 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3315 err = -EINVAL; 3316 else if (swap_count_continued(p, offset, count)) 3317 count = COUNT_CONTINUED; 3318 else 3319 err = -ENOMEM; 3320 } else 3321 err = -ENOENT; /* unused swap entry */ 3322 3323 WRITE_ONCE(p->swap_map[offset], count | has_cache); 3324 3325 unlock_out: 3326 unlock_cluster_or_swap_info(p, ci); 3327 return err; 3328 } 3329 3330 /* 3331 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3332 * (in which case its reference count is never incremented). 3333 */ 3334 void swap_shmem_alloc(swp_entry_t entry) 3335 { 3336 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3337 } 3338 3339 /* 3340 * Increase reference count of swap entry by 1. 3341 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3342 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3343 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3344 * might occur if a page table entry has got corrupted. 3345 */ 3346 int swap_duplicate(swp_entry_t entry) 3347 { 3348 int err = 0; 3349 3350 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3351 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3352 return err; 3353 } 3354 3355 /* 3356 * @entry: swap entry for which we allocate swap cache. 3357 * 3358 * Called when allocating swap cache for existing swap entry, 3359 * This can return error codes. Returns 0 at success. 3360 * -EEXIST means there is a swap cache. 3361 * Note: return code is different from swap_duplicate(). 3362 */ 3363 int swapcache_prepare(swp_entry_t entry) 3364 { 3365 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3366 } 3367 3368 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3369 { 3370 return swap_type_to_swap_info(swp_type(entry)); 3371 } 3372 3373 /* 3374 * out-of-line methods to avoid include hell. 3375 */ 3376 struct address_space *swapcache_mapping(struct folio *folio) 3377 { 3378 return swp_swap_info(folio->swap)->swap_file->f_mapping; 3379 } 3380 EXPORT_SYMBOL_GPL(swapcache_mapping); 3381 3382 pgoff_t __page_file_index(struct page *page) 3383 { 3384 swp_entry_t swap = page_swap_entry(page); 3385 return swp_offset(swap); 3386 } 3387 EXPORT_SYMBOL_GPL(__page_file_index); 3388 3389 /* 3390 * add_swap_count_continuation - called when a swap count is duplicated 3391 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3392 * page of the original vmalloc'ed swap_map, to hold the continuation count 3393 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3394 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3395 * 3396 * These continuation pages are seldom referenced: the common paths all work 3397 * on the original swap_map, only referring to a continuation page when the 3398 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3399 * 3400 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3401 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3402 * can be called after dropping locks. 3403 */ 3404 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3405 { 3406 struct swap_info_struct *si; 3407 struct swap_cluster_info *ci; 3408 struct page *head; 3409 struct page *page; 3410 struct page *list_page; 3411 pgoff_t offset; 3412 unsigned char count; 3413 int ret = 0; 3414 3415 /* 3416 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3417 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3418 */ 3419 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3420 3421 si = get_swap_device(entry); 3422 if (!si) { 3423 /* 3424 * An acceptable race has occurred since the failing 3425 * __swap_duplicate(): the swap device may be swapoff 3426 */ 3427 goto outer; 3428 } 3429 spin_lock(&si->lock); 3430 3431 offset = swp_offset(entry); 3432 3433 ci = lock_cluster(si, offset); 3434 3435 count = swap_count(si->swap_map[offset]); 3436 3437 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3438 /* 3439 * The higher the swap count, the more likely it is that tasks 3440 * will race to add swap count continuation: we need to avoid 3441 * over-provisioning. 3442 */ 3443 goto out; 3444 } 3445 3446 if (!page) { 3447 ret = -ENOMEM; 3448 goto out; 3449 } 3450 3451 head = vmalloc_to_page(si->swap_map + offset); 3452 offset &= ~PAGE_MASK; 3453 3454 spin_lock(&si->cont_lock); 3455 /* 3456 * Page allocation does not initialize the page's lru field, 3457 * but it does always reset its private field. 3458 */ 3459 if (!page_private(head)) { 3460 BUG_ON(count & COUNT_CONTINUED); 3461 INIT_LIST_HEAD(&head->lru); 3462 set_page_private(head, SWP_CONTINUED); 3463 si->flags |= SWP_CONTINUED; 3464 } 3465 3466 list_for_each_entry(list_page, &head->lru, lru) { 3467 unsigned char *map; 3468 3469 /* 3470 * If the previous map said no continuation, but we've found 3471 * a continuation page, free our allocation and use this one. 3472 */ 3473 if (!(count & COUNT_CONTINUED)) 3474 goto out_unlock_cont; 3475 3476 map = kmap_local_page(list_page) + offset; 3477 count = *map; 3478 kunmap_local(map); 3479 3480 /* 3481 * If this continuation count now has some space in it, 3482 * free our allocation and use this one. 3483 */ 3484 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3485 goto out_unlock_cont; 3486 } 3487 3488 list_add_tail(&page->lru, &head->lru); 3489 page = NULL; /* now it's attached, don't free it */ 3490 out_unlock_cont: 3491 spin_unlock(&si->cont_lock); 3492 out: 3493 unlock_cluster(ci); 3494 spin_unlock(&si->lock); 3495 put_swap_device(si); 3496 outer: 3497 if (page) 3498 __free_page(page); 3499 return ret; 3500 } 3501 3502 /* 3503 * swap_count_continued - when the original swap_map count is incremented 3504 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3505 * into, carry if so, or else fail until a new continuation page is allocated; 3506 * when the original swap_map count is decremented from 0 with continuation, 3507 * borrow from the continuation and report whether it still holds more. 3508 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3509 * lock. 3510 */ 3511 static bool swap_count_continued(struct swap_info_struct *si, 3512 pgoff_t offset, unsigned char count) 3513 { 3514 struct page *head; 3515 struct page *page; 3516 unsigned char *map; 3517 bool ret; 3518 3519 head = vmalloc_to_page(si->swap_map + offset); 3520 if (page_private(head) != SWP_CONTINUED) { 3521 BUG_ON(count & COUNT_CONTINUED); 3522 return false; /* need to add count continuation */ 3523 } 3524 3525 spin_lock(&si->cont_lock); 3526 offset &= ~PAGE_MASK; 3527 page = list_next_entry(head, lru); 3528 map = kmap_local_page(page) + offset; 3529 3530 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3531 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3532 3533 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3534 /* 3535 * Think of how you add 1 to 999 3536 */ 3537 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3538 kunmap_local(map); 3539 page = list_next_entry(page, lru); 3540 BUG_ON(page == head); 3541 map = kmap_local_page(page) + offset; 3542 } 3543 if (*map == SWAP_CONT_MAX) { 3544 kunmap_local(map); 3545 page = list_next_entry(page, lru); 3546 if (page == head) { 3547 ret = false; /* add count continuation */ 3548 goto out; 3549 } 3550 map = kmap_local_page(page) + offset; 3551 init_map: *map = 0; /* we didn't zero the page */ 3552 } 3553 *map += 1; 3554 kunmap_local(map); 3555 while ((page = list_prev_entry(page, lru)) != head) { 3556 map = kmap_local_page(page) + offset; 3557 *map = COUNT_CONTINUED; 3558 kunmap_local(map); 3559 } 3560 ret = true; /* incremented */ 3561 3562 } else { /* decrementing */ 3563 /* 3564 * Think of how you subtract 1 from 1000 3565 */ 3566 BUG_ON(count != COUNT_CONTINUED); 3567 while (*map == COUNT_CONTINUED) { 3568 kunmap_local(map); 3569 page = list_next_entry(page, lru); 3570 BUG_ON(page == head); 3571 map = kmap_local_page(page) + offset; 3572 } 3573 BUG_ON(*map == 0); 3574 *map -= 1; 3575 if (*map == 0) 3576 count = 0; 3577 kunmap_local(map); 3578 while ((page = list_prev_entry(page, lru)) != head) { 3579 map = kmap_local_page(page) + offset; 3580 *map = SWAP_CONT_MAX | count; 3581 count = COUNT_CONTINUED; 3582 kunmap_local(map); 3583 } 3584 ret = count == COUNT_CONTINUED; 3585 } 3586 out: 3587 spin_unlock(&si->cont_lock); 3588 return ret; 3589 } 3590 3591 /* 3592 * free_swap_count_continuations - swapoff free all the continuation pages 3593 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3594 */ 3595 static void free_swap_count_continuations(struct swap_info_struct *si) 3596 { 3597 pgoff_t offset; 3598 3599 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3600 struct page *head; 3601 head = vmalloc_to_page(si->swap_map + offset); 3602 if (page_private(head)) { 3603 struct page *page, *next; 3604 3605 list_for_each_entry_safe(page, next, &head->lru, lru) { 3606 list_del(&page->lru); 3607 __free_page(page); 3608 } 3609 } 3610 } 3611 } 3612 3613 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3614 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp) 3615 { 3616 struct swap_info_struct *si, *next; 3617 int nid = folio_nid(folio); 3618 3619 if (!(gfp & __GFP_IO)) 3620 return; 3621 3622 if (!blk_cgroup_congested()) 3623 return; 3624 3625 /* 3626 * We've already scheduled a throttle, avoid taking the global swap 3627 * lock. 3628 */ 3629 if (current->throttle_disk) 3630 return; 3631 3632 spin_lock(&swap_avail_lock); 3633 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], 3634 avail_lists[nid]) { 3635 if (si->bdev) { 3636 blkcg_schedule_throttle(si->bdev->bd_disk, true); 3637 break; 3638 } 3639 } 3640 spin_unlock(&swap_avail_lock); 3641 } 3642 #endif 3643 3644 static int __init swapfile_init(void) 3645 { 3646 int nid; 3647 3648 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3649 GFP_KERNEL); 3650 if (!swap_avail_heads) { 3651 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3652 return -ENOMEM; 3653 } 3654 3655 for_each_node(nid) 3656 plist_head_init(&swap_avail_heads[nid]); 3657 3658 swapfile_maximum_size = arch_max_swapfile_size(); 3659 3660 #ifdef CONFIG_MIGRATION 3661 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS)) 3662 swap_migration_ad_supported = true; 3663 #endif /* CONFIG_MIGRATION */ 3664 3665 return 0; 3666 } 3667 subsys_initcall(swapfile_init); 3668