xref: /linux/mm/swapfile.c (revision 76f623d2d4283cc36a9c8a5b585df74638f1efa5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 #include <linux/suspend.h>
44 #include <linux/zswap.h>
45 #include <linux/plist.h>
46 
47 #include <asm/tlbflush.h>
48 #include <linux/swapops.h>
49 #include <linux/swap_cgroup.h>
50 #include "internal.h"
51 #include "swap.h"
52 
53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
54 				 unsigned char);
55 static void free_swap_count_continuations(struct swap_info_struct *);
56 
57 static DEFINE_SPINLOCK(swap_lock);
58 static unsigned int nr_swapfiles;
59 atomic_long_t nr_swap_pages;
60 /*
61  * Some modules use swappable objects and may try to swap them out under
62  * memory pressure (via the shrinker). Before doing so, they may wish to
63  * check to see if any swap space is available.
64  */
65 EXPORT_SYMBOL_GPL(nr_swap_pages);
66 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
67 long total_swap_pages;
68 static int least_priority = -1;
69 unsigned long swapfile_maximum_size;
70 #ifdef CONFIG_MIGRATION
71 bool swap_migration_ad_supported;
72 #endif	/* CONFIG_MIGRATION */
73 
74 static const char Bad_file[] = "Bad swap file entry ";
75 static const char Unused_file[] = "Unused swap file entry ";
76 static const char Bad_offset[] = "Bad swap offset entry ";
77 static const char Unused_offset[] = "Unused swap offset entry ";
78 
79 /*
80  * all active swap_info_structs
81  * protected with swap_lock, and ordered by priority.
82  */
83 static PLIST_HEAD(swap_active_head);
84 
85 /*
86  * all available (active, not full) swap_info_structs
87  * protected with swap_avail_lock, ordered by priority.
88  * This is used by folio_alloc_swap() instead of swap_active_head
89  * because swap_active_head includes all swap_info_structs,
90  * but folio_alloc_swap() doesn't need to look at full ones.
91  * This uses its own lock instead of swap_lock because when a
92  * swap_info_struct changes between not-full/full, it needs to
93  * add/remove itself to/from this list, but the swap_info_struct->lock
94  * is held and the locking order requires swap_lock to be taken
95  * before any swap_info_struct->lock.
96  */
97 static struct plist_head *swap_avail_heads;
98 static DEFINE_SPINLOCK(swap_avail_lock);
99 
100 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
101 
102 static DEFINE_MUTEX(swapon_mutex);
103 
104 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
105 /* Activity counter to indicate that a swapon or swapoff has occurred */
106 static atomic_t proc_poll_event = ATOMIC_INIT(0);
107 
108 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
109 
110 static struct swap_info_struct *swap_type_to_swap_info(int type)
111 {
112 	if (type >= MAX_SWAPFILES)
113 		return NULL;
114 
115 	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
116 }
117 
118 static inline unsigned char swap_count(unsigned char ent)
119 {
120 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
121 }
122 
123 /* Reclaim the swap entry anyway if possible */
124 #define TTRS_ANYWAY		0x1
125 /*
126  * Reclaim the swap entry if there are no more mappings of the
127  * corresponding page
128  */
129 #define TTRS_UNMAPPED		0x2
130 /* Reclaim the swap entry if swap is getting full*/
131 #define TTRS_FULL		0x4
132 
133 /* returns 1 if swap entry is freed */
134 static int __try_to_reclaim_swap(struct swap_info_struct *si,
135 				 unsigned long offset, unsigned long flags)
136 {
137 	swp_entry_t entry = swp_entry(si->type, offset);
138 	struct folio *folio;
139 	int ret = 0;
140 
141 	folio = filemap_get_folio(swap_address_space(entry), offset);
142 	if (IS_ERR(folio))
143 		return 0;
144 	/*
145 	 * When this function is called from scan_swap_map_slots() and it's
146 	 * called by vmscan.c at reclaiming folios. So we hold a folio lock
147 	 * here. We have to use trylock for avoiding deadlock. This is a special
148 	 * case and you should use folio_free_swap() with explicit folio_lock()
149 	 * in usual operations.
150 	 */
151 	if (folio_trylock(folio)) {
152 		if ((flags & TTRS_ANYWAY) ||
153 		    ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
154 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
155 			ret = folio_free_swap(folio);
156 		folio_unlock(folio);
157 	}
158 	folio_put(folio);
159 	return ret;
160 }
161 
162 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
163 {
164 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
165 	return rb_entry(rb, struct swap_extent, rb_node);
166 }
167 
168 static inline struct swap_extent *next_se(struct swap_extent *se)
169 {
170 	struct rb_node *rb = rb_next(&se->rb_node);
171 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
172 }
173 
174 /*
175  * swapon tell device that all the old swap contents can be discarded,
176  * to allow the swap device to optimize its wear-levelling.
177  */
178 static int discard_swap(struct swap_info_struct *si)
179 {
180 	struct swap_extent *se;
181 	sector_t start_block;
182 	sector_t nr_blocks;
183 	int err = 0;
184 
185 	/* Do not discard the swap header page! */
186 	se = first_se(si);
187 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
188 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
189 	if (nr_blocks) {
190 		err = blkdev_issue_discard(si->bdev, start_block,
191 				nr_blocks, GFP_KERNEL);
192 		if (err)
193 			return err;
194 		cond_resched();
195 	}
196 
197 	for (se = next_se(se); se; se = next_se(se)) {
198 		start_block = se->start_block << (PAGE_SHIFT - 9);
199 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
200 
201 		err = blkdev_issue_discard(si->bdev, start_block,
202 				nr_blocks, GFP_KERNEL);
203 		if (err)
204 			break;
205 
206 		cond_resched();
207 	}
208 	return err;		/* That will often be -EOPNOTSUPP */
209 }
210 
211 static struct swap_extent *
212 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
213 {
214 	struct swap_extent *se;
215 	struct rb_node *rb;
216 
217 	rb = sis->swap_extent_root.rb_node;
218 	while (rb) {
219 		se = rb_entry(rb, struct swap_extent, rb_node);
220 		if (offset < se->start_page)
221 			rb = rb->rb_left;
222 		else if (offset >= se->start_page + se->nr_pages)
223 			rb = rb->rb_right;
224 		else
225 			return se;
226 	}
227 	/* It *must* be present */
228 	BUG();
229 }
230 
231 sector_t swap_folio_sector(struct folio *folio)
232 {
233 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
234 	struct swap_extent *se;
235 	sector_t sector;
236 	pgoff_t offset;
237 
238 	offset = swp_offset(folio->swap);
239 	se = offset_to_swap_extent(sis, offset);
240 	sector = se->start_block + (offset - se->start_page);
241 	return sector << (PAGE_SHIFT - 9);
242 }
243 
244 /*
245  * swap allocation tell device that a cluster of swap can now be discarded,
246  * to allow the swap device to optimize its wear-levelling.
247  */
248 static void discard_swap_cluster(struct swap_info_struct *si,
249 				 pgoff_t start_page, pgoff_t nr_pages)
250 {
251 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
252 
253 	while (nr_pages) {
254 		pgoff_t offset = start_page - se->start_page;
255 		sector_t start_block = se->start_block + offset;
256 		sector_t nr_blocks = se->nr_pages - offset;
257 
258 		if (nr_blocks > nr_pages)
259 			nr_blocks = nr_pages;
260 		start_page += nr_blocks;
261 		nr_pages -= nr_blocks;
262 
263 		start_block <<= PAGE_SHIFT - 9;
264 		nr_blocks <<= PAGE_SHIFT - 9;
265 		if (blkdev_issue_discard(si->bdev, start_block,
266 					nr_blocks, GFP_NOIO))
267 			break;
268 
269 		se = next_se(se);
270 	}
271 }
272 
273 #ifdef CONFIG_THP_SWAP
274 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
275 
276 #define swap_entry_size(size)	(size)
277 #else
278 #define SWAPFILE_CLUSTER	256
279 
280 /*
281  * Define swap_entry_size() as constant to let compiler to optimize
282  * out some code if !CONFIG_THP_SWAP
283  */
284 #define swap_entry_size(size)	1
285 #endif
286 #define LATENCY_LIMIT		256
287 
288 static inline void cluster_set_flag(struct swap_cluster_info *info,
289 	unsigned int flag)
290 {
291 	info->flags = flag;
292 }
293 
294 static inline unsigned int cluster_count(struct swap_cluster_info *info)
295 {
296 	return info->data;
297 }
298 
299 static inline void cluster_set_count(struct swap_cluster_info *info,
300 				     unsigned int c)
301 {
302 	info->data = c;
303 }
304 
305 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
306 					 unsigned int c, unsigned int f)
307 {
308 	info->flags = f;
309 	info->data = c;
310 }
311 
312 static inline unsigned int cluster_next(struct swap_cluster_info *info)
313 {
314 	return info->data;
315 }
316 
317 static inline void cluster_set_next(struct swap_cluster_info *info,
318 				    unsigned int n)
319 {
320 	info->data = n;
321 }
322 
323 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
324 					 unsigned int n, unsigned int f)
325 {
326 	info->flags = f;
327 	info->data = n;
328 }
329 
330 static inline bool cluster_is_free(struct swap_cluster_info *info)
331 {
332 	return info->flags & CLUSTER_FLAG_FREE;
333 }
334 
335 static inline bool cluster_is_null(struct swap_cluster_info *info)
336 {
337 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
338 }
339 
340 static inline void cluster_set_null(struct swap_cluster_info *info)
341 {
342 	info->flags = CLUSTER_FLAG_NEXT_NULL;
343 	info->data = 0;
344 }
345 
346 static inline bool cluster_is_huge(struct swap_cluster_info *info)
347 {
348 	if (IS_ENABLED(CONFIG_THP_SWAP))
349 		return info->flags & CLUSTER_FLAG_HUGE;
350 	return false;
351 }
352 
353 static inline void cluster_clear_huge(struct swap_cluster_info *info)
354 {
355 	info->flags &= ~CLUSTER_FLAG_HUGE;
356 }
357 
358 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
359 						     unsigned long offset)
360 {
361 	struct swap_cluster_info *ci;
362 
363 	ci = si->cluster_info;
364 	if (ci) {
365 		ci += offset / SWAPFILE_CLUSTER;
366 		spin_lock(&ci->lock);
367 	}
368 	return ci;
369 }
370 
371 static inline void unlock_cluster(struct swap_cluster_info *ci)
372 {
373 	if (ci)
374 		spin_unlock(&ci->lock);
375 }
376 
377 /*
378  * Determine the locking method in use for this device.  Return
379  * swap_cluster_info if SSD-style cluster-based locking is in place.
380  */
381 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
382 		struct swap_info_struct *si, unsigned long offset)
383 {
384 	struct swap_cluster_info *ci;
385 
386 	/* Try to use fine-grained SSD-style locking if available: */
387 	ci = lock_cluster(si, offset);
388 	/* Otherwise, fall back to traditional, coarse locking: */
389 	if (!ci)
390 		spin_lock(&si->lock);
391 
392 	return ci;
393 }
394 
395 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
396 					       struct swap_cluster_info *ci)
397 {
398 	if (ci)
399 		unlock_cluster(ci);
400 	else
401 		spin_unlock(&si->lock);
402 }
403 
404 static inline bool cluster_list_empty(struct swap_cluster_list *list)
405 {
406 	return cluster_is_null(&list->head);
407 }
408 
409 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
410 {
411 	return cluster_next(&list->head);
412 }
413 
414 static void cluster_list_init(struct swap_cluster_list *list)
415 {
416 	cluster_set_null(&list->head);
417 	cluster_set_null(&list->tail);
418 }
419 
420 static void cluster_list_add_tail(struct swap_cluster_list *list,
421 				  struct swap_cluster_info *ci,
422 				  unsigned int idx)
423 {
424 	if (cluster_list_empty(list)) {
425 		cluster_set_next_flag(&list->head, idx, 0);
426 		cluster_set_next_flag(&list->tail, idx, 0);
427 	} else {
428 		struct swap_cluster_info *ci_tail;
429 		unsigned int tail = cluster_next(&list->tail);
430 
431 		/*
432 		 * Nested cluster lock, but both cluster locks are
433 		 * only acquired when we held swap_info_struct->lock
434 		 */
435 		ci_tail = ci + tail;
436 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
437 		cluster_set_next(ci_tail, idx);
438 		spin_unlock(&ci_tail->lock);
439 		cluster_set_next_flag(&list->tail, idx, 0);
440 	}
441 }
442 
443 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
444 					   struct swap_cluster_info *ci)
445 {
446 	unsigned int idx;
447 
448 	idx = cluster_next(&list->head);
449 	if (cluster_next(&list->tail) == idx) {
450 		cluster_set_null(&list->head);
451 		cluster_set_null(&list->tail);
452 	} else
453 		cluster_set_next_flag(&list->head,
454 				      cluster_next(&ci[idx]), 0);
455 
456 	return idx;
457 }
458 
459 /* Add a cluster to discard list and schedule it to do discard */
460 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
461 		unsigned int idx)
462 {
463 	/*
464 	 * If scan_swap_map_slots() can't find a free cluster, it will check
465 	 * si->swap_map directly. To make sure the discarding cluster isn't
466 	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
467 	 * It will be cleared after discard
468 	 */
469 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
470 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
471 
472 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
473 
474 	schedule_work(&si->discard_work);
475 }
476 
477 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
478 {
479 	struct swap_cluster_info *ci = si->cluster_info;
480 
481 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
482 	cluster_list_add_tail(&si->free_clusters, ci, idx);
483 }
484 
485 /*
486  * Doing discard actually. After a cluster discard is finished, the cluster
487  * will be added to free cluster list. caller should hold si->lock.
488 */
489 static void swap_do_scheduled_discard(struct swap_info_struct *si)
490 {
491 	struct swap_cluster_info *info, *ci;
492 	unsigned int idx;
493 
494 	info = si->cluster_info;
495 
496 	while (!cluster_list_empty(&si->discard_clusters)) {
497 		idx = cluster_list_del_first(&si->discard_clusters, info);
498 		spin_unlock(&si->lock);
499 
500 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
501 				SWAPFILE_CLUSTER);
502 
503 		spin_lock(&si->lock);
504 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
505 		__free_cluster(si, idx);
506 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
507 				0, SWAPFILE_CLUSTER);
508 		unlock_cluster(ci);
509 	}
510 }
511 
512 static void swap_discard_work(struct work_struct *work)
513 {
514 	struct swap_info_struct *si;
515 
516 	si = container_of(work, struct swap_info_struct, discard_work);
517 
518 	spin_lock(&si->lock);
519 	swap_do_scheduled_discard(si);
520 	spin_unlock(&si->lock);
521 }
522 
523 static void swap_users_ref_free(struct percpu_ref *ref)
524 {
525 	struct swap_info_struct *si;
526 
527 	si = container_of(ref, struct swap_info_struct, users);
528 	complete(&si->comp);
529 }
530 
531 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
532 {
533 	struct swap_cluster_info *ci = si->cluster_info;
534 
535 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
536 	cluster_list_del_first(&si->free_clusters, ci);
537 	cluster_set_count_flag(ci + idx, 0, 0);
538 }
539 
540 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
541 {
542 	struct swap_cluster_info *ci = si->cluster_info + idx;
543 
544 	VM_BUG_ON(cluster_count(ci) != 0);
545 	/*
546 	 * If the swap is discardable, prepare discard the cluster
547 	 * instead of free it immediately. The cluster will be freed
548 	 * after discard.
549 	 */
550 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
551 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
552 		swap_cluster_schedule_discard(si, idx);
553 		return;
554 	}
555 
556 	__free_cluster(si, idx);
557 }
558 
559 /*
560  * The cluster corresponding to page_nr will be used. The cluster will be
561  * removed from free cluster list and its usage counter will be increased.
562  */
563 static void inc_cluster_info_page(struct swap_info_struct *p,
564 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
565 {
566 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
567 
568 	if (!cluster_info)
569 		return;
570 	if (cluster_is_free(&cluster_info[idx]))
571 		alloc_cluster(p, idx);
572 
573 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
574 	cluster_set_count(&cluster_info[idx],
575 		cluster_count(&cluster_info[idx]) + 1);
576 }
577 
578 /*
579  * The cluster corresponding to page_nr decreases one usage. If the usage
580  * counter becomes 0, which means no page in the cluster is in using, we can
581  * optionally discard the cluster and add it to free cluster list.
582  */
583 static void dec_cluster_info_page(struct swap_info_struct *p,
584 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
585 {
586 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
587 
588 	if (!cluster_info)
589 		return;
590 
591 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
592 	cluster_set_count(&cluster_info[idx],
593 		cluster_count(&cluster_info[idx]) - 1);
594 
595 	if (cluster_count(&cluster_info[idx]) == 0)
596 		free_cluster(p, idx);
597 }
598 
599 /*
600  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
601  * cluster list. Avoiding such abuse to avoid list corruption.
602  */
603 static bool
604 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
605 	unsigned long offset)
606 {
607 	struct percpu_cluster *percpu_cluster;
608 	bool conflict;
609 
610 	offset /= SWAPFILE_CLUSTER;
611 	conflict = !cluster_list_empty(&si->free_clusters) &&
612 		offset != cluster_list_first(&si->free_clusters) &&
613 		cluster_is_free(&si->cluster_info[offset]);
614 
615 	if (!conflict)
616 		return false;
617 
618 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
619 	cluster_set_null(&percpu_cluster->index);
620 	return true;
621 }
622 
623 /*
624  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
625  * might involve allocating a new cluster for current CPU too.
626  */
627 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
628 	unsigned long *offset, unsigned long *scan_base)
629 {
630 	struct percpu_cluster *cluster;
631 	struct swap_cluster_info *ci;
632 	unsigned long tmp, max;
633 
634 new_cluster:
635 	cluster = this_cpu_ptr(si->percpu_cluster);
636 	if (cluster_is_null(&cluster->index)) {
637 		if (!cluster_list_empty(&si->free_clusters)) {
638 			cluster->index = si->free_clusters.head;
639 			cluster->next = cluster_next(&cluster->index) *
640 					SWAPFILE_CLUSTER;
641 		} else if (!cluster_list_empty(&si->discard_clusters)) {
642 			/*
643 			 * we don't have free cluster but have some clusters in
644 			 * discarding, do discard now and reclaim them, then
645 			 * reread cluster_next_cpu since we dropped si->lock
646 			 */
647 			swap_do_scheduled_discard(si);
648 			*scan_base = this_cpu_read(*si->cluster_next_cpu);
649 			*offset = *scan_base;
650 			goto new_cluster;
651 		} else
652 			return false;
653 	}
654 
655 	/*
656 	 * Other CPUs can use our cluster if they can't find a free cluster,
657 	 * check if there is still free entry in the cluster
658 	 */
659 	tmp = cluster->next;
660 	max = min_t(unsigned long, si->max,
661 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
662 	if (tmp < max) {
663 		ci = lock_cluster(si, tmp);
664 		while (tmp < max) {
665 			if (!si->swap_map[tmp])
666 				break;
667 			tmp++;
668 		}
669 		unlock_cluster(ci);
670 	}
671 	if (tmp >= max) {
672 		cluster_set_null(&cluster->index);
673 		goto new_cluster;
674 	}
675 	cluster->next = tmp + 1;
676 	*offset = tmp;
677 	*scan_base = tmp;
678 	return true;
679 }
680 
681 static void __del_from_avail_list(struct swap_info_struct *p)
682 {
683 	int nid;
684 
685 	assert_spin_locked(&p->lock);
686 	for_each_node(nid)
687 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
688 }
689 
690 static void del_from_avail_list(struct swap_info_struct *p)
691 {
692 	spin_lock(&swap_avail_lock);
693 	__del_from_avail_list(p);
694 	spin_unlock(&swap_avail_lock);
695 }
696 
697 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
698 			     unsigned int nr_entries)
699 {
700 	unsigned int end = offset + nr_entries - 1;
701 
702 	if (offset == si->lowest_bit)
703 		si->lowest_bit += nr_entries;
704 	if (end == si->highest_bit)
705 		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
706 	WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
707 	if (si->inuse_pages == si->pages) {
708 		si->lowest_bit = si->max;
709 		si->highest_bit = 0;
710 		del_from_avail_list(si);
711 	}
712 }
713 
714 static void add_to_avail_list(struct swap_info_struct *p)
715 {
716 	int nid;
717 
718 	spin_lock(&swap_avail_lock);
719 	for_each_node(nid)
720 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
721 	spin_unlock(&swap_avail_lock);
722 }
723 
724 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
725 			    unsigned int nr_entries)
726 {
727 	unsigned long begin = offset;
728 	unsigned long end = offset + nr_entries - 1;
729 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
730 
731 	if (offset < si->lowest_bit)
732 		si->lowest_bit = offset;
733 	if (end > si->highest_bit) {
734 		bool was_full = !si->highest_bit;
735 
736 		WRITE_ONCE(si->highest_bit, end);
737 		if (was_full && (si->flags & SWP_WRITEOK))
738 			add_to_avail_list(si);
739 	}
740 	atomic_long_add(nr_entries, &nr_swap_pages);
741 	WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
742 	if (si->flags & SWP_BLKDEV)
743 		swap_slot_free_notify =
744 			si->bdev->bd_disk->fops->swap_slot_free_notify;
745 	else
746 		swap_slot_free_notify = NULL;
747 	while (offset <= end) {
748 		arch_swap_invalidate_page(si->type, offset);
749 		zswap_invalidate(si->type, offset);
750 		if (swap_slot_free_notify)
751 			swap_slot_free_notify(si->bdev, offset);
752 		offset++;
753 	}
754 	clear_shadow_from_swap_cache(si->type, begin, end);
755 }
756 
757 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
758 {
759 	unsigned long prev;
760 
761 	if (!(si->flags & SWP_SOLIDSTATE)) {
762 		si->cluster_next = next;
763 		return;
764 	}
765 
766 	prev = this_cpu_read(*si->cluster_next_cpu);
767 	/*
768 	 * Cross the swap address space size aligned trunk, choose
769 	 * another trunk randomly to avoid lock contention on swap
770 	 * address space if possible.
771 	 */
772 	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
773 	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
774 		/* No free swap slots available */
775 		if (si->highest_bit <= si->lowest_bit)
776 			return;
777 		next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
778 		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
779 		next = max_t(unsigned int, next, si->lowest_bit);
780 	}
781 	this_cpu_write(*si->cluster_next_cpu, next);
782 }
783 
784 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
785 					     unsigned long offset)
786 {
787 	if (data_race(!si->swap_map[offset])) {
788 		spin_lock(&si->lock);
789 		return true;
790 	}
791 
792 	if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
793 		spin_lock(&si->lock);
794 		return true;
795 	}
796 
797 	return false;
798 }
799 
800 static int scan_swap_map_slots(struct swap_info_struct *si,
801 			       unsigned char usage, int nr,
802 			       swp_entry_t slots[])
803 {
804 	struct swap_cluster_info *ci;
805 	unsigned long offset;
806 	unsigned long scan_base;
807 	unsigned long last_in_cluster = 0;
808 	int latency_ration = LATENCY_LIMIT;
809 	int n_ret = 0;
810 	bool scanned_many = false;
811 
812 	/*
813 	 * We try to cluster swap pages by allocating them sequentially
814 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
815 	 * way, however, we resort to first-free allocation, starting
816 	 * a new cluster.  This prevents us from scattering swap pages
817 	 * all over the entire swap partition, so that we reduce
818 	 * overall disk seek times between swap pages.  -- sct
819 	 * But we do now try to find an empty cluster.  -Andrea
820 	 * And we let swap pages go all over an SSD partition.  Hugh
821 	 */
822 
823 	si->flags += SWP_SCANNING;
824 	/*
825 	 * Use percpu scan base for SSD to reduce lock contention on
826 	 * cluster and swap cache.  For HDD, sequential access is more
827 	 * important.
828 	 */
829 	if (si->flags & SWP_SOLIDSTATE)
830 		scan_base = this_cpu_read(*si->cluster_next_cpu);
831 	else
832 		scan_base = si->cluster_next;
833 	offset = scan_base;
834 
835 	/* SSD algorithm */
836 	if (si->cluster_info) {
837 		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
838 			goto scan;
839 	} else if (unlikely(!si->cluster_nr--)) {
840 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
841 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
842 			goto checks;
843 		}
844 
845 		spin_unlock(&si->lock);
846 
847 		/*
848 		 * If seek is expensive, start searching for new cluster from
849 		 * start of partition, to minimize the span of allocated swap.
850 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
851 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
852 		 */
853 		scan_base = offset = si->lowest_bit;
854 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
855 
856 		/* Locate the first empty (unaligned) cluster */
857 		for (; last_in_cluster <= si->highest_bit; offset++) {
858 			if (si->swap_map[offset])
859 				last_in_cluster = offset + SWAPFILE_CLUSTER;
860 			else if (offset == last_in_cluster) {
861 				spin_lock(&si->lock);
862 				offset -= SWAPFILE_CLUSTER - 1;
863 				si->cluster_next = offset;
864 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
865 				goto checks;
866 			}
867 			if (unlikely(--latency_ration < 0)) {
868 				cond_resched();
869 				latency_ration = LATENCY_LIMIT;
870 			}
871 		}
872 
873 		offset = scan_base;
874 		spin_lock(&si->lock);
875 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
876 	}
877 
878 checks:
879 	if (si->cluster_info) {
880 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
881 		/* take a break if we already got some slots */
882 			if (n_ret)
883 				goto done;
884 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
885 							&scan_base))
886 				goto scan;
887 		}
888 	}
889 	if (!(si->flags & SWP_WRITEOK))
890 		goto no_page;
891 	if (!si->highest_bit)
892 		goto no_page;
893 	if (offset > si->highest_bit)
894 		scan_base = offset = si->lowest_bit;
895 
896 	ci = lock_cluster(si, offset);
897 	/* reuse swap entry of cache-only swap if not busy. */
898 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
899 		int swap_was_freed;
900 		unlock_cluster(ci);
901 		spin_unlock(&si->lock);
902 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
903 		spin_lock(&si->lock);
904 		/* entry was freed successfully, try to use this again */
905 		if (swap_was_freed)
906 			goto checks;
907 		goto scan; /* check next one */
908 	}
909 
910 	if (si->swap_map[offset]) {
911 		unlock_cluster(ci);
912 		if (!n_ret)
913 			goto scan;
914 		else
915 			goto done;
916 	}
917 	WRITE_ONCE(si->swap_map[offset], usage);
918 	inc_cluster_info_page(si, si->cluster_info, offset);
919 	unlock_cluster(ci);
920 
921 	swap_range_alloc(si, offset, 1);
922 	slots[n_ret++] = swp_entry(si->type, offset);
923 
924 	/* got enough slots or reach max slots? */
925 	if ((n_ret == nr) || (offset >= si->highest_bit))
926 		goto done;
927 
928 	/* search for next available slot */
929 
930 	/* time to take a break? */
931 	if (unlikely(--latency_ration < 0)) {
932 		if (n_ret)
933 			goto done;
934 		spin_unlock(&si->lock);
935 		cond_resched();
936 		spin_lock(&si->lock);
937 		latency_ration = LATENCY_LIMIT;
938 	}
939 
940 	/* try to get more slots in cluster */
941 	if (si->cluster_info) {
942 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
943 			goto checks;
944 	} else if (si->cluster_nr && !si->swap_map[++offset]) {
945 		/* non-ssd case, still more slots in cluster? */
946 		--si->cluster_nr;
947 		goto checks;
948 	}
949 
950 	/*
951 	 * Even if there's no free clusters available (fragmented),
952 	 * try to scan a little more quickly with lock held unless we
953 	 * have scanned too many slots already.
954 	 */
955 	if (!scanned_many) {
956 		unsigned long scan_limit;
957 
958 		if (offset < scan_base)
959 			scan_limit = scan_base;
960 		else
961 			scan_limit = si->highest_bit;
962 		for (; offset <= scan_limit && --latency_ration > 0;
963 		     offset++) {
964 			if (!si->swap_map[offset])
965 				goto checks;
966 		}
967 	}
968 
969 done:
970 	set_cluster_next(si, offset + 1);
971 	si->flags -= SWP_SCANNING;
972 	return n_ret;
973 
974 scan:
975 	spin_unlock(&si->lock);
976 	while (++offset <= READ_ONCE(si->highest_bit)) {
977 		if (unlikely(--latency_ration < 0)) {
978 			cond_resched();
979 			latency_ration = LATENCY_LIMIT;
980 			scanned_many = true;
981 		}
982 		if (swap_offset_available_and_locked(si, offset))
983 			goto checks;
984 	}
985 	offset = si->lowest_bit;
986 	while (offset < scan_base) {
987 		if (unlikely(--latency_ration < 0)) {
988 			cond_resched();
989 			latency_ration = LATENCY_LIMIT;
990 			scanned_many = true;
991 		}
992 		if (swap_offset_available_and_locked(si, offset))
993 			goto checks;
994 		offset++;
995 	}
996 	spin_lock(&si->lock);
997 
998 no_page:
999 	si->flags -= SWP_SCANNING;
1000 	return n_ret;
1001 }
1002 
1003 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1004 {
1005 	unsigned long idx;
1006 	struct swap_cluster_info *ci;
1007 	unsigned long offset;
1008 
1009 	/*
1010 	 * Should not even be attempting cluster allocations when huge
1011 	 * page swap is disabled.  Warn and fail the allocation.
1012 	 */
1013 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1014 		VM_WARN_ON_ONCE(1);
1015 		return 0;
1016 	}
1017 
1018 	if (cluster_list_empty(&si->free_clusters))
1019 		return 0;
1020 
1021 	idx = cluster_list_first(&si->free_clusters);
1022 	offset = idx * SWAPFILE_CLUSTER;
1023 	ci = lock_cluster(si, offset);
1024 	alloc_cluster(si, idx);
1025 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1026 
1027 	memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1028 	unlock_cluster(ci);
1029 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1030 	*slot = swp_entry(si->type, offset);
1031 
1032 	return 1;
1033 }
1034 
1035 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1036 {
1037 	unsigned long offset = idx * SWAPFILE_CLUSTER;
1038 	struct swap_cluster_info *ci;
1039 
1040 	ci = lock_cluster(si, offset);
1041 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1042 	cluster_set_count_flag(ci, 0, 0);
1043 	free_cluster(si, idx);
1044 	unlock_cluster(ci);
1045 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1046 }
1047 
1048 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1049 {
1050 	unsigned long size = swap_entry_size(entry_size);
1051 	struct swap_info_struct *si, *next;
1052 	long avail_pgs;
1053 	int n_ret = 0;
1054 	int node;
1055 
1056 	/* Only single cluster request supported */
1057 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1058 
1059 	spin_lock(&swap_avail_lock);
1060 
1061 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1062 	if (avail_pgs <= 0) {
1063 		spin_unlock(&swap_avail_lock);
1064 		goto noswap;
1065 	}
1066 
1067 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1068 
1069 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1070 
1071 start_over:
1072 	node = numa_node_id();
1073 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1074 		/* requeue si to after same-priority siblings */
1075 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1076 		spin_unlock(&swap_avail_lock);
1077 		spin_lock(&si->lock);
1078 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1079 			spin_lock(&swap_avail_lock);
1080 			if (plist_node_empty(&si->avail_lists[node])) {
1081 				spin_unlock(&si->lock);
1082 				goto nextsi;
1083 			}
1084 			WARN(!si->highest_bit,
1085 			     "swap_info %d in list but !highest_bit\n",
1086 			     si->type);
1087 			WARN(!(si->flags & SWP_WRITEOK),
1088 			     "swap_info %d in list but !SWP_WRITEOK\n",
1089 			     si->type);
1090 			__del_from_avail_list(si);
1091 			spin_unlock(&si->lock);
1092 			goto nextsi;
1093 		}
1094 		if (size == SWAPFILE_CLUSTER) {
1095 			if (si->flags & SWP_BLKDEV)
1096 				n_ret = swap_alloc_cluster(si, swp_entries);
1097 		} else
1098 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1099 						    n_goal, swp_entries);
1100 		spin_unlock(&si->lock);
1101 		if (n_ret || size == SWAPFILE_CLUSTER)
1102 			goto check_out;
1103 		cond_resched();
1104 
1105 		spin_lock(&swap_avail_lock);
1106 nextsi:
1107 		/*
1108 		 * if we got here, it's likely that si was almost full before,
1109 		 * and since scan_swap_map_slots() can drop the si->lock,
1110 		 * multiple callers probably all tried to get a page from the
1111 		 * same si and it filled up before we could get one; or, the si
1112 		 * filled up between us dropping swap_avail_lock and taking
1113 		 * si->lock. Since we dropped the swap_avail_lock, the
1114 		 * swap_avail_head list may have been modified; so if next is
1115 		 * still in the swap_avail_head list then try it, otherwise
1116 		 * start over if we have not gotten any slots.
1117 		 */
1118 		if (plist_node_empty(&next->avail_lists[node]))
1119 			goto start_over;
1120 	}
1121 
1122 	spin_unlock(&swap_avail_lock);
1123 
1124 check_out:
1125 	if (n_ret < n_goal)
1126 		atomic_long_add((long)(n_goal - n_ret) * size,
1127 				&nr_swap_pages);
1128 noswap:
1129 	return n_ret;
1130 }
1131 
1132 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1133 {
1134 	struct swap_info_struct *p;
1135 	unsigned long offset;
1136 
1137 	if (!entry.val)
1138 		goto out;
1139 	p = swp_swap_info(entry);
1140 	if (!p)
1141 		goto bad_nofile;
1142 	if (data_race(!(p->flags & SWP_USED)))
1143 		goto bad_device;
1144 	offset = swp_offset(entry);
1145 	if (offset >= p->max)
1146 		goto bad_offset;
1147 	if (data_race(!p->swap_map[swp_offset(entry)]))
1148 		goto bad_free;
1149 	return p;
1150 
1151 bad_free:
1152 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1153 	goto out;
1154 bad_offset:
1155 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1156 	goto out;
1157 bad_device:
1158 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1159 	goto out;
1160 bad_nofile:
1161 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1162 out:
1163 	return NULL;
1164 }
1165 
1166 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1167 					struct swap_info_struct *q)
1168 {
1169 	struct swap_info_struct *p;
1170 
1171 	p = _swap_info_get(entry);
1172 
1173 	if (p != q) {
1174 		if (q != NULL)
1175 			spin_unlock(&q->lock);
1176 		if (p != NULL)
1177 			spin_lock(&p->lock);
1178 	}
1179 	return p;
1180 }
1181 
1182 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1183 					      unsigned long offset,
1184 					      unsigned char usage)
1185 {
1186 	unsigned char count;
1187 	unsigned char has_cache;
1188 
1189 	count = p->swap_map[offset];
1190 
1191 	has_cache = count & SWAP_HAS_CACHE;
1192 	count &= ~SWAP_HAS_CACHE;
1193 
1194 	if (usage == SWAP_HAS_CACHE) {
1195 		VM_BUG_ON(!has_cache);
1196 		has_cache = 0;
1197 	} else if (count == SWAP_MAP_SHMEM) {
1198 		/*
1199 		 * Or we could insist on shmem.c using a special
1200 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1201 		 */
1202 		count = 0;
1203 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1204 		if (count == COUNT_CONTINUED) {
1205 			if (swap_count_continued(p, offset, count))
1206 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1207 			else
1208 				count = SWAP_MAP_MAX;
1209 		} else
1210 			count--;
1211 	}
1212 
1213 	usage = count | has_cache;
1214 	if (usage)
1215 		WRITE_ONCE(p->swap_map[offset], usage);
1216 	else
1217 		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1218 
1219 	return usage;
1220 }
1221 
1222 /*
1223  * When we get a swap entry, if there aren't some other ways to
1224  * prevent swapoff, such as the folio in swap cache is locked, page
1225  * table lock is held, etc., the swap entry may become invalid because
1226  * of swapoff.  Then, we need to enclose all swap related functions
1227  * with get_swap_device() and put_swap_device(), unless the swap
1228  * functions call get/put_swap_device() by themselves.
1229  *
1230  * Check whether swap entry is valid in the swap device.  If so,
1231  * return pointer to swap_info_struct, and keep the swap entry valid
1232  * via preventing the swap device from being swapoff, until
1233  * put_swap_device() is called.  Otherwise return NULL.
1234  *
1235  * Notice that swapoff or swapoff+swapon can still happen before the
1236  * percpu_ref_tryget_live() in get_swap_device() or after the
1237  * percpu_ref_put() in put_swap_device() if there isn't any other way
1238  * to prevent swapoff.  The caller must be prepared for that.  For
1239  * example, the following situation is possible.
1240  *
1241  *   CPU1				CPU2
1242  *   do_swap_page()
1243  *     ...				swapoff+swapon
1244  *     __read_swap_cache_async()
1245  *       swapcache_prepare()
1246  *         __swap_duplicate()
1247  *           // check swap_map
1248  *     // verify PTE not changed
1249  *
1250  * In __swap_duplicate(), the swap_map need to be checked before
1251  * changing partly because the specified swap entry may be for another
1252  * swap device which has been swapoff.  And in do_swap_page(), after
1253  * the page is read from the swap device, the PTE is verified not
1254  * changed with the page table locked to check whether the swap device
1255  * has been swapoff or swapoff+swapon.
1256  */
1257 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1258 {
1259 	struct swap_info_struct *si;
1260 	unsigned long offset;
1261 
1262 	if (!entry.val)
1263 		goto out;
1264 	si = swp_swap_info(entry);
1265 	if (!si)
1266 		goto bad_nofile;
1267 	if (!percpu_ref_tryget_live(&si->users))
1268 		goto out;
1269 	/*
1270 	 * Guarantee the si->users are checked before accessing other
1271 	 * fields of swap_info_struct.
1272 	 *
1273 	 * Paired with the spin_unlock() after setup_swap_info() in
1274 	 * enable_swap_info().
1275 	 */
1276 	smp_rmb();
1277 	offset = swp_offset(entry);
1278 	if (offset >= si->max)
1279 		goto put_out;
1280 
1281 	return si;
1282 bad_nofile:
1283 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1284 out:
1285 	return NULL;
1286 put_out:
1287 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1288 	percpu_ref_put(&si->users);
1289 	return NULL;
1290 }
1291 
1292 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1293 				       swp_entry_t entry)
1294 {
1295 	struct swap_cluster_info *ci;
1296 	unsigned long offset = swp_offset(entry);
1297 	unsigned char usage;
1298 
1299 	ci = lock_cluster_or_swap_info(p, offset);
1300 	usage = __swap_entry_free_locked(p, offset, 1);
1301 	unlock_cluster_or_swap_info(p, ci);
1302 	if (!usage)
1303 		free_swap_slot(entry);
1304 
1305 	return usage;
1306 }
1307 
1308 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1309 {
1310 	struct swap_cluster_info *ci;
1311 	unsigned long offset = swp_offset(entry);
1312 	unsigned char count;
1313 
1314 	ci = lock_cluster(p, offset);
1315 	count = p->swap_map[offset];
1316 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1317 	p->swap_map[offset] = 0;
1318 	dec_cluster_info_page(p, p->cluster_info, offset);
1319 	unlock_cluster(ci);
1320 
1321 	mem_cgroup_uncharge_swap(entry, 1);
1322 	swap_range_free(p, offset, 1);
1323 }
1324 
1325 /*
1326  * Caller has made sure that the swap device corresponding to entry
1327  * is still around or has not been recycled.
1328  */
1329 void swap_free(swp_entry_t entry)
1330 {
1331 	struct swap_info_struct *p;
1332 
1333 	p = _swap_info_get(entry);
1334 	if (p)
1335 		__swap_entry_free(p, entry);
1336 }
1337 
1338 /*
1339  * Called after dropping swapcache to decrease refcnt to swap entries.
1340  */
1341 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1342 {
1343 	unsigned long offset = swp_offset(entry);
1344 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1345 	struct swap_cluster_info *ci;
1346 	struct swap_info_struct *si;
1347 	unsigned char *map;
1348 	unsigned int i, free_entries = 0;
1349 	unsigned char val;
1350 	int size = swap_entry_size(folio_nr_pages(folio));
1351 
1352 	si = _swap_info_get(entry);
1353 	if (!si)
1354 		return;
1355 
1356 	ci = lock_cluster_or_swap_info(si, offset);
1357 	if (size == SWAPFILE_CLUSTER) {
1358 		VM_BUG_ON(!cluster_is_huge(ci));
1359 		map = si->swap_map + offset;
1360 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1361 			val = map[i];
1362 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1363 			if (val == SWAP_HAS_CACHE)
1364 				free_entries++;
1365 		}
1366 		cluster_clear_huge(ci);
1367 		if (free_entries == SWAPFILE_CLUSTER) {
1368 			unlock_cluster_or_swap_info(si, ci);
1369 			spin_lock(&si->lock);
1370 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1371 			swap_free_cluster(si, idx);
1372 			spin_unlock(&si->lock);
1373 			return;
1374 		}
1375 	}
1376 	for (i = 0; i < size; i++, entry.val++) {
1377 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1378 			unlock_cluster_or_swap_info(si, ci);
1379 			free_swap_slot(entry);
1380 			if (i == size - 1)
1381 				return;
1382 			lock_cluster_or_swap_info(si, offset);
1383 		}
1384 	}
1385 	unlock_cluster_or_swap_info(si, ci);
1386 }
1387 
1388 #ifdef CONFIG_THP_SWAP
1389 int split_swap_cluster(swp_entry_t entry)
1390 {
1391 	struct swap_info_struct *si;
1392 	struct swap_cluster_info *ci;
1393 	unsigned long offset = swp_offset(entry);
1394 
1395 	si = _swap_info_get(entry);
1396 	if (!si)
1397 		return -EBUSY;
1398 	ci = lock_cluster(si, offset);
1399 	cluster_clear_huge(ci);
1400 	unlock_cluster(ci);
1401 	return 0;
1402 }
1403 #endif
1404 
1405 static int swp_entry_cmp(const void *ent1, const void *ent2)
1406 {
1407 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1408 
1409 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1410 }
1411 
1412 void swapcache_free_entries(swp_entry_t *entries, int n)
1413 {
1414 	struct swap_info_struct *p, *prev;
1415 	int i;
1416 
1417 	if (n <= 0)
1418 		return;
1419 
1420 	prev = NULL;
1421 	p = NULL;
1422 
1423 	/*
1424 	 * Sort swap entries by swap device, so each lock is only taken once.
1425 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1426 	 * so low that it isn't necessary to optimize further.
1427 	 */
1428 	if (nr_swapfiles > 1)
1429 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1430 	for (i = 0; i < n; ++i) {
1431 		p = swap_info_get_cont(entries[i], prev);
1432 		if (p)
1433 			swap_entry_free(p, entries[i]);
1434 		prev = p;
1435 	}
1436 	if (p)
1437 		spin_unlock(&p->lock);
1438 }
1439 
1440 int __swap_count(swp_entry_t entry)
1441 {
1442 	struct swap_info_struct *si = swp_swap_info(entry);
1443 	pgoff_t offset = swp_offset(entry);
1444 
1445 	return swap_count(si->swap_map[offset]);
1446 }
1447 
1448 /*
1449  * How many references to @entry are currently swapped out?
1450  * This does not give an exact answer when swap count is continued,
1451  * but does include the high COUNT_CONTINUED flag to allow for that.
1452  */
1453 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1454 {
1455 	pgoff_t offset = swp_offset(entry);
1456 	struct swap_cluster_info *ci;
1457 	int count;
1458 
1459 	ci = lock_cluster_or_swap_info(si, offset);
1460 	count = swap_count(si->swap_map[offset]);
1461 	unlock_cluster_or_swap_info(si, ci);
1462 	return count;
1463 }
1464 
1465 /*
1466  * How many references to @entry are currently swapped out?
1467  * This considers COUNT_CONTINUED so it returns exact answer.
1468  */
1469 int swp_swapcount(swp_entry_t entry)
1470 {
1471 	int count, tmp_count, n;
1472 	struct swap_info_struct *p;
1473 	struct swap_cluster_info *ci;
1474 	struct page *page;
1475 	pgoff_t offset;
1476 	unsigned char *map;
1477 
1478 	p = _swap_info_get(entry);
1479 	if (!p)
1480 		return 0;
1481 
1482 	offset = swp_offset(entry);
1483 
1484 	ci = lock_cluster_or_swap_info(p, offset);
1485 
1486 	count = swap_count(p->swap_map[offset]);
1487 	if (!(count & COUNT_CONTINUED))
1488 		goto out;
1489 
1490 	count &= ~COUNT_CONTINUED;
1491 	n = SWAP_MAP_MAX + 1;
1492 
1493 	page = vmalloc_to_page(p->swap_map + offset);
1494 	offset &= ~PAGE_MASK;
1495 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1496 
1497 	do {
1498 		page = list_next_entry(page, lru);
1499 		map = kmap_local_page(page);
1500 		tmp_count = map[offset];
1501 		kunmap_local(map);
1502 
1503 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1504 		n *= (SWAP_CONT_MAX + 1);
1505 	} while (tmp_count & COUNT_CONTINUED);
1506 out:
1507 	unlock_cluster_or_swap_info(p, ci);
1508 	return count;
1509 }
1510 
1511 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1512 					 swp_entry_t entry)
1513 {
1514 	struct swap_cluster_info *ci;
1515 	unsigned char *map = si->swap_map;
1516 	unsigned long roffset = swp_offset(entry);
1517 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1518 	int i;
1519 	bool ret = false;
1520 
1521 	ci = lock_cluster_or_swap_info(si, offset);
1522 	if (!ci || !cluster_is_huge(ci)) {
1523 		if (swap_count(map[roffset]))
1524 			ret = true;
1525 		goto unlock_out;
1526 	}
1527 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1528 		if (swap_count(map[offset + i])) {
1529 			ret = true;
1530 			break;
1531 		}
1532 	}
1533 unlock_out:
1534 	unlock_cluster_or_swap_info(si, ci);
1535 	return ret;
1536 }
1537 
1538 static bool folio_swapped(struct folio *folio)
1539 {
1540 	swp_entry_t entry = folio->swap;
1541 	struct swap_info_struct *si = _swap_info_get(entry);
1542 
1543 	if (!si)
1544 		return false;
1545 
1546 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1547 		return swap_swapcount(si, entry) != 0;
1548 
1549 	return swap_page_trans_huge_swapped(si, entry);
1550 }
1551 
1552 /**
1553  * folio_free_swap() - Free the swap space used for this folio.
1554  * @folio: The folio to remove.
1555  *
1556  * If swap is getting full, or if there are no more mappings of this folio,
1557  * then call folio_free_swap to free its swap space.
1558  *
1559  * Return: true if we were able to release the swap space.
1560  */
1561 bool folio_free_swap(struct folio *folio)
1562 {
1563 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1564 
1565 	if (!folio_test_swapcache(folio))
1566 		return false;
1567 	if (folio_test_writeback(folio))
1568 		return false;
1569 	if (folio_swapped(folio))
1570 		return false;
1571 
1572 	/*
1573 	 * Once hibernation has begun to create its image of memory,
1574 	 * there's a danger that one of the calls to folio_free_swap()
1575 	 * - most probably a call from __try_to_reclaim_swap() while
1576 	 * hibernation is allocating its own swap pages for the image,
1577 	 * but conceivably even a call from memory reclaim - will free
1578 	 * the swap from a folio which has already been recorded in the
1579 	 * image as a clean swapcache folio, and then reuse its swap for
1580 	 * another page of the image.  On waking from hibernation, the
1581 	 * original folio might be freed under memory pressure, then
1582 	 * later read back in from swap, now with the wrong data.
1583 	 *
1584 	 * Hibernation suspends storage while it is writing the image
1585 	 * to disk so check that here.
1586 	 */
1587 	if (pm_suspended_storage())
1588 		return false;
1589 
1590 	delete_from_swap_cache(folio);
1591 	folio_set_dirty(folio);
1592 	return true;
1593 }
1594 
1595 /*
1596  * Free the swap entry like above, but also try to
1597  * free the page cache entry if it is the last user.
1598  */
1599 int free_swap_and_cache(swp_entry_t entry)
1600 {
1601 	struct swap_info_struct *p;
1602 	unsigned char count;
1603 
1604 	if (non_swap_entry(entry))
1605 		return 1;
1606 
1607 	p = _swap_info_get(entry);
1608 	if (p) {
1609 		count = __swap_entry_free(p, entry);
1610 		if (count == SWAP_HAS_CACHE &&
1611 		    !swap_page_trans_huge_swapped(p, entry))
1612 			__try_to_reclaim_swap(p, swp_offset(entry),
1613 					      TTRS_UNMAPPED | TTRS_FULL);
1614 	}
1615 	return p != NULL;
1616 }
1617 
1618 #ifdef CONFIG_HIBERNATION
1619 
1620 swp_entry_t get_swap_page_of_type(int type)
1621 {
1622 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1623 	swp_entry_t entry = {0};
1624 
1625 	if (!si)
1626 		goto fail;
1627 
1628 	/* This is called for allocating swap entry, not cache */
1629 	spin_lock(&si->lock);
1630 	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1631 		atomic_long_dec(&nr_swap_pages);
1632 	spin_unlock(&si->lock);
1633 fail:
1634 	return entry;
1635 }
1636 
1637 /*
1638  * Find the swap type that corresponds to given device (if any).
1639  *
1640  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1641  * from 0, in which the swap header is expected to be located.
1642  *
1643  * This is needed for the suspend to disk (aka swsusp).
1644  */
1645 int swap_type_of(dev_t device, sector_t offset)
1646 {
1647 	int type;
1648 
1649 	if (!device)
1650 		return -1;
1651 
1652 	spin_lock(&swap_lock);
1653 	for (type = 0; type < nr_swapfiles; type++) {
1654 		struct swap_info_struct *sis = swap_info[type];
1655 
1656 		if (!(sis->flags & SWP_WRITEOK))
1657 			continue;
1658 
1659 		if (device == sis->bdev->bd_dev) {
1660 			struct swap_extent *se = first_se(sis);
1661 
1662 			if (se->start_block == offset) {
1663 				spin_unlock(&swap_lock);
1664 				return type;
1665 			}
1666 		}
1667 	}
1668 	spin_unlock(&swap_lock);
1669 	return -ENODEV;
1670 }
1671 
1672 int find_first_swap(dev_t *device)
1673 {
1674 	int type;
1675 
1676 	spin_lock(&swap_lock);
1677 	for (type = 0; type < nr_swapfiles; type++) {
1678 		struct swap_info_struct *sis = swap_info[type];
1679 
1680 		if (!(sis->flags & SWP_WRITEOK))
1681 			continue;
1682 		*device = sis->bdev->bd_dev;
1683 		spin_unlock(&swap_lock);
1684 		return type;
1685 	}
1686 	spin_unlock(&swap_lock);
1687 	return -ENODEV;
1688 }
1689 
1690 /*
1691  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1692  * corresponding to given index in swap_info (swap type).
1693  */
1694 sector_t swapdev_block(int type, pgoff_t offset)
1695 {
1696 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1697 	struct swap_extent *se;
1698 
1699 	if (!si || !(si->flags & SWP_WRITEOK))
1700 		return 0;
1701 	se = offset_to_swap_extent(si, offset);
1702 	return se->start_block + (offset - se->start_page);
1703 }
1704 
1705 /*
1706  * Return either the total number of swap pages of given type, or the number
1707  * of free pages of that type (depending on @free)
1708  *
1709  * This is needed for software suspend
1710  */
1711 unsigned int count_swap_pages(int type, int free)
1712 {
1713 	unsigned int n = 0;
1714 
1715 	spin_lock(&swap_lock);
1716 	if ((unsigned int)type < nr_swapfiles) {
1717 		struct swap_info_struct *sis = swap_info[type];
1718 
1719 		spin_lock(&sis->lock);
1720 		if (sis->flags & SWP_WRITEOK) {
1721 			n = sis->pages;
1722 			if (free)
1723 				n -= sis->inuse_pages;
1724 		}
1725 		spin_unlock(&sis->lock);
1726 	}
1727 	spin_unlock(&swap_lock);
1728 	return n;
1729 }
1730 #endif /* CONFIG_HIBERNATION */
1731 
1732 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1733 {
1734 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1735 }
1736 
1737 /*
1738  * No need to decide whether this PTE shares the swap entry with others,
1739  * just let do_wp_page work it out if a write is requested later - to
1740  * force COW, vm_page_prot omits write permission from any private vma.
1741  */
1742 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1743 		unsigned long addr, swp_entry_t entry, struct folio *folio)
1744 {
1745 	struct page *page;
1746 	struct folio *swapcache;
1747 	spinlock_t *ptl;
1748 	pte_t *pte, new_pte, old_pte;
1749 	bool hwpoisoned = false;
1750 	int ret = 1;
1751 
1752 	swapcache = folio;
1753 	folio = ksm_might_need_to_copy(folio, vma, addr);
1754 	if (unlikely(!folio))
1755 		return -ENOMEM;
1756 	else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
1757 		hwpoisoned = true;
1758 		folio = swapcache;
1759 	}
1760 
1761 	page = folio_file_page(folio, swp_offset(entry));
1762 	if (PageHWPoison(page))
1763 		hwpoisoned = true;
1764 
1765 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1766 	if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
1767 						swp_entry_to_pte(entry)))) {
1768 		ret = 0;
1769 		goto out;
1770 	}
1771 
1772 	old_pte = ptep_get(pte);
1773 
1774 	if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
1775 		swp_entry_t swp_entry;
1776 
1777 		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1778 		if (hwpoisoned) {
1779 			swp_entry = make_hwpoison_entry(page);
1780 		} else {
1781 			swp_entry = make_poisoned_swp_entry();
1782 		}
1783 		new_pte = swp_entry_to_pte(swp_entry);
1784 		ret = 0;
1785 		goto setpte;
1786 	}
1787 
1788 	/*
1789 	 * Some architectures may have to restore extra metadata to the page
1790 	 * when reading from swap. This metadata may be indexed by swap entry
1791 	 * so this must be called before swap_free().
1792 	 */
1793 	arch_swap_restore(entry, folio);
1794 
1795 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1796 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1797 	folio_get(folio);
1798 	if (folio == swapcache) {
1799 		rmap_t rmap_flags = RMAP_NONE;
1800 
1801 		/*
1802 		 * See do_swap_page(): writeback would be problematic.
1803 		 * However, we do a folio_wait_writeback() just before this
1804 		 * call and have the folio locked.
1805 		 */
1806 		VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
1807 		if (pte_swp_exclusive(old_pte))
1808 			rmap_flags |= RMAP_EXCLUSIVE;
1809 
1810 		folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
1811 	} else { /* ksm created a completely new copy */
1812 		folio_add_new_anon_rmap(folio, vma, addr);
1813 		folio_add_lru_vma(folio, vma);
1814 	}
1815 	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1816 	if (pte_swp_soft_dirty(old_pte))
1817 		new_pte = pte_mksoft_dirty(new_pte);
1818 	if (pte_swp_uffd_wp(old_pte))
1819 		new_pte = pte_mkuffd_wp(new_pte);
1820 setpte:
1821 	set_pte_at(vma->vm_mm, addr, pte, new_pte);
1822 	swap_free(entry);
1823 out:
1824 	if (pte)
1825 		pte_unmap_unlock(pte, ptl);
1826 	if (folio != swapcache) {
1827 		folio_unlock(folio);
1828 		folio_put(folio);
1829 	}
1830 	return ret;
1831 }
1832 
1833 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1834 			unsigned long addr, unsigned long end,
1835 			unsigned int type)
1836 {
1837 	pte_t *pte = NULL;
1838 	struct swap_info_struct *si;
1839 
1840 	si = swap_info[type];
1841 	do {
1842 		struct folio *folio;
1843 		unsigned long offset;
1844 		unsigned char swp_count;
1845 		swp_entry_t entry;
1846 		int ret;
1847 		pte_t ptent;
1848 
1849 		if (!pte++) {
1850 			pte = pte_offset_map(pmd, addr);
1851 			if (!pte)
1852 				break;
1853 		}
1854 
1855 		ptent = ptep_get_lockless(pte);
1856 
1857 		if (!is_swap_pte(ptent))
1858 			continue;
1859 
1860 		entry = pte_to_swp_entry(ptent);
1861 		if (swp_type(entry) != type)
1862 			continue;
1863 
1864 		offset = swp_offset(entry);
1865 		pte_unmap(pte);
1866 		pte = NULL;
1867 
1868 		folio = swap_cache_get_folio(entry, vma, addr);
1869 		if (!folio) {
1870 			struct page *page;
1871 			struct vm_fault vmf = {
1872 				.vma = vma,
1873 				.address = addr,
1874 				.real_address = addr,
1875 				.pmd = pmd,
1876 			};
1877 
1878 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1879 						&vmf);
1880 			if (page)
1881 				folio = page_folio(page);
1882 		}
1883 		if (!folio) {
1884 			swp_count = READ_ONCE(si->swap_map[offset]);
1885 			if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1886 				continue;
1887 			return -ENOMEM;
1888 		}
1889 
1890 		folio_lock(folio);
1891 		folio_wait_writeback(folio);
1892 		ret = unuse_pte(vma, pmd, addr, entry, folio);
1893 		if (ret < 0) {
1894 			folio_unlock(folio);
1895 			folio_put(folio);
1896 			return ret;
1897 		}
1898 
1899 		folio_free_swap(folio);
1900 		folio_unlock(folio);
1901 		folio_put(folio);
1902 	} while (addr += PAGE_SIZE, addr != end);
1903 
1904 	if (pte)
1905 		pte_unmap(pte);
1906 	return 0;
1907 }
1908 
1909 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1910 				unsigned long addr, unsigned long end,
1911 				unsigned int type)
1912 {
1913 	pmd_t *pmd;
1914 	unsigned long next;
1915 	int ret;
1916 
1917 	pmd = pmd_offset(pud, addr);
1918 	do {
1919 		cond_resched();
1920 		next = pmd_addr_end(addr, end);
1921 		ret = unuse_pte_range(vma, pmd, addr, next, type);
1922 		if (ret)
1923 			return ret;
1924 	} while (pmd++, addr = next, addr != end);
1925 	return 0;
1926 }
1927 
1928 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1929 				unsigned long addr, unsigned long end,
1930 				unsigned int type)
1931 {
1932 	pud_t *pud;
1933 	unsigned long next;
1934 	int ret;
1935 
1936 	pud = pud_offset(p4d, addr);
1937 	do {
1938 		next = pud_addr_end(addr, end);
1939 		if (pud_none_or_clear_bad(pud))
1940 			continue;
1941 		ret = unuse_pmd_range(vma, pud, addr, next, type);
1942 		if (ret)
1943 			return ret;
1944 	} while (pud++, addr = next, addr != end);
1945 	return 0;
1946 }
1947 
1948 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1949 				unsigned long addr, unsigned long end,
1950 				unsigned int type)
1951 {
1952 	p4d_t *p4d;
1953 	unsigned long next;
1954 	int ret;
1955 
1956 	p4d = p4d_offset(pgd, addr);
1957 	do {
1958 		next = p4d_addr_end(addr, end);
1959 		if (p4d_none_or_clear_bad(p4d))
1960 			continue;
1961 		ret = unuse_pud_range(vma, p4d, addr, next, type);
1962 		if (ret)
1963 			return ret;
1964 	} while (p4d++, addr = next, addr != end);
1965 	return 0;
1966 }
1967 
1968 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1969 {
1970 	pgd_t *pgd;
1971 	unsigned long addr, end, next;
1972 	int ret;
1973 
1974 	addr = vma->vm_start;
1975 	end = vma->vm_end;
1976 
1977 	pgd = pgd_offset(vma->vm_mm, addr);
1978 	do {
1979 		next = pgd_addr_end(addr, end);
1980 		if (pgd_none_or_clear_bad(pgd))
1981 			continue;
1982 		ret = unuse_p4d_range(vma, pgd, addr, next, type);
1983 		if (ret)
1984 			return ret;
1985 	} while (pgd++, addr = next, addr != end);
1986 	return 0;
1987 }
1988 
1989 static int unuse_mm(struct mm_struct *mm, unsigned int type)
1990 {
1991 	struct vm_area_struct *vma;
1992 	int ret = 0;
1993 	VMA_ITERATOR(vmi, mm, 0);
1994 
1995 	mmap_read_lock(mm);
1996 	for_each_vma(vmi, vma) {
1997 		if (vma->anon_vma) {
1998 			ret = unuse_vma(vma, type);
1999 			if (ret)
2000 				break;
2001 		}
2002 
2003 		cond_resched();
2004 	}
2005 	mmap_read_unlock(mm);
2006 	return ret;
2007 }
2008 
2009 /*
2010  * Scan swap_map from current position to next entry still in use.
2011  * Return 0 if there are no inuse entries after prev till end of
2012  * the map.
2013  */
2014 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2015 					unsigned int prev)
2016 {
2017 	unsigned int i;
2018 	unsigned char count;
2019 
2020 	/*
2021 	 * No need for swap_lock here: we're just looking
2022 	 * for whether an entry is in use, not modifying it; false
2023 	 * hits are okay, and sys_swapoff() has already prevented new
2024 	 * allocations from this area (while holding swap_lock).
2025 	 */
2026 	for (i = prev + 1; i < si->max; i++) {
2027 		count = READ_ONCE(si->swap_map[i]);
2028 		if (count && swap_count(count) != SWAP_MAP_BAD)
2029 			break;
2030 		if ((i % LATENCY_LIMIT) == 0)
2031 			cond_resched();
2032 	}
2033 
2034 	if (i == si->max)
2035 		i = 0;
2036 
2037 	return i;
2038 }
2039 
2040 static int try_to_unuse(unsigned int type)
2041 {
2042 	struct mm_struct *prev_mm;
2043 	struct mm_struct *mm;
2044 	struct list_head *p;
2045 	int retval = 0;
2046 	struct swap_info_struct *si = swap_info[type];
2047 	struct folio *folio;
2048 	swp_entry_t entry;
2049 	unsigned int i;
2050 
2051 	if (!READ_ONCE(si->inuse_pages))
2052 		return 0;
2053 
2054 retry:
2055 	retval = shmem_unuse(type);
2056 	if (retval)
2057 		return retval;
2058 
2059 	prev_mm = &init_mm;
2060 	mmget(prev_mm);
2061 
2062 	spin_lock(&mmlist_lock);
2063 	p = &init_mm.mmlist;
2064 	while (READ_ONCE(si->inuse_pages) &&
2065 	       !signal_pending(current) &&
2066 	       (p = p->next) != &init_mm.mmlist) {
2067 
2068 		mm = list_entry(p, struct mm_struct, mmlist);
2069 		if (!mmget_not_zero(mm))
2070 			continue;
2071 		spin_unlock(&mmlist_lock);
2072 		mmput(prev_mm);
2073 		prev_mm = mm;
2074 		retval = unuse_mm(mm, type);
2075 		if (retval) {
2076 			mmput(prev_mm);
2077 			return retval;
2078 		}
2079 
2080 		/*
2081 		 * Make sure that we aren't completely killing
2082 		 * interactive performance.
2083 		 */
2084 		cond_resched();
2085 		spin_lock(&mmlist_lock);
2086 	}
2087 	spin_unlock(&mmlist_lock);
2088 
2089 	mmput(prev_mm);
2090 
2091 	i = 0;
2092 	while (READ_ONCE(si->inuse_pages) &&
2093 	       !signal_pending(current) &&
2094 	       (i = find_next_to_unuse(si, i)) != 0) {
2095 
2096 		entry = swp_entry(type, i);
2097 		folio = filemap_get_folio(swap_address_space(entry), i);
2098 		if (IS_ERR(folio))
2099 			continue;
2100 
2101 		/*
2102 		 * It is conceivable that a racing task removed this folio from
2103 		 * swap cache just before we acquired the page lock. The folio
2104 		 * might even be back in swap cache on another swap area. But
2105 		 * that is okay, folio_free_swap() only removes stale folios.
2106 		 */
2107 		folio_lock(folio);
2108 		folio_wait_writeback(folio);
2109 		folio_free_swap(folio);
2110 		folio_unlock(folio);
2111 		folio_put(folio);
2112 	}
2113 
2114 	/*
2115 	 * Lets check again to see if there are still swap entries in the map.
2116 	 * If yes, we would need to do retry the unuse logic again.
2117 	 * Under global memory pressure, swap entries can be reinserted back
2118 	 * into process space after the mmlist loop above passes over them.
2119 	 *
2120 	 * Limit the number of retries? No: when mmget_not_zero()
2121 	 * above fails, that mm is likely to be freeing swap from
2122 	 * exit_mmap(), which proceeds at its own independent pace;
2123 	 * and even shmem_writepage() could have been preempted after
2124 	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2125 	 * and robust (though cpu-intensive) just to keep retrying.
2126 	 */
2127 	if (READ_ONCE(si->inuse_pages)) {
2128 		if (!signal_pending(current))
2129 			goto retry;
2130 		return -EINTR;
2131 	}
2132 
2133 	return 0;
2134 }
2135 
2136 /*
2137  * After a successful try_to_unuse, if no swap is now in use, we know
2138  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2139  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2140  * added to the mmlist just after page_duplicate - before would be racy.
2141  */
2142 static void drain_mmlist(void)
2143 {
2144 	struct list_head *p, *next;
2145 	unsigned int type;
2146 
2147 	for (type = 0; type < nr_swapfiles; type++)
2148 		if (swap_info[type]->inuse_pages)
2149 			return;
2150 	spin_lock(&mmlist_lock);
2151 	list_for_each_safe(p, next, &init_mm.mmlist)
2152 		list_del_init(p);
2153 	spin_unlock(&mmlist_lock);
2154 }
2155 
2156 /*
2157  * Free all of a swapdev's extent information
2158  */
2159 static void destroy_swap_extents(struct swap_info_struct *sis)
2160 {
2161 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2162 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2163 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2164 
2165 		rb_erase(rb, &sis->swap_extent_root);
2166 		kfree(se);
2167 	}
2168 
2169 	if (sis->flags & SWP_ACTIVATED) {
2170 		struct file *swap_file = sis->swap_file;
2171 		struct address_space *mapping = swap_file->f_mapping;
2172 
2173 		sis->flags &= ~SWP_ACTIVATED;
2174 		if (mapping->a_ops->swap_deactivate)
2175 			mapping->a_ops->swap_deactivate(swap_file);
2176 	}
2177 }
2178 
2179 /*
2180  * Add a block range (and the corresponding page range) into this swapdev's
2181  * extent tree.
2182  *
2183  * This function rather assumes that it is called in ascending page order.
2184  */
2185 int
2186 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2187 		unsigned long nr_pages, sector_t start_block)
2188 {
2189 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2190 	struct swap_extent *se;
2191 	struct swap_extent *new_se;
2192 
2193 	/*
2194 	 * place the new node at the right most since the
2195 	 * function is called in ascending page order.
2196 	 */
2197 	while (*link) {
2198 		parent = *link;
2199 		link = &parent->rb_right;
2200 	}
2201 
2202 	if (parent) {
2203 		se = rb_entry(parent, struct swap_extent, rb_node);
2204 		BUG_ON(se->start_page + se->nr_pages != start_page);
2205 		if (se->start_block + se->nr_pages == start_block) {
2206 			/* Merge it */
2207 			se->nr_pages += nr_pages;
2208 			return 0;
2209 		}
2210 	}
2211 
2212 	/* No merge, insert a new extent. */
2213 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2214 	if (new_se == NULL)
2215 		return -ENOMEM;
2216 	new_se->start_page = start_page;
2217 	new_se->nr_pages = nr_pages;
2218 	new_se->start_block = start_block;
2219 
2220 	rb_link_node(&new_se->rb_node, parent, link);
2221 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2222 	return 1;
2223 }
2224 EXPORT_SYMBOL_GPL(add_swap_extent);
2225 
2226 /*
2227  * A `swap extent' is a simple thing which maps a contiguous range of pages
2228  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2229  * built at swapon time and is then used at swap_writepage/swap_read_folio
2230  * time for locating where on disk a page belongs.
2231  *
2232  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2233  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2234  * swap files identically.
2235  *
2236  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2237  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2238  * swapfiles are handled *identically* after swapon time.
2239  *
2240  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2241  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2242  * blocks are found which do not fall within the PAGE_SIZE alignment
2243  * requirements, they are simply tossed out - we will never use those blocks
2244  * for swapping.
2245  *
2246  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2247  * prevents users from writing to the swap device, which will corrupt memory.
2248  *
2249  * The amount of disk space which a single swap extent represents varies.
2250  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2251  * extents in the rbtree. - akpm.
2252  */
2253 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2254 {
2255 	struct file *swap_file = sis->swap_file;
2256 	struct address_space *mapping = swap_file->f_mapping;
2257 	struct inode *inode = mapping->host;
2258 	int ret;
2259 
2260 	if (S_ISBLK(inode->i_mode)) {
2261 		ret = add_swap_extent(sis, 0, sis->max, 0);
2262 		*span = sis->pages;
2263 		return ret;
2264 	}
2265 
2266 	if (mapping->a_ops->swap_activate) {
2267 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2268 		if (ret < 0)
2269 			return ret;
2270 		sis->flags |= SWP_ACTIVATED;
2271 		if ((sis->flags & SWP_FS_OPS) &&
2272 		    sio_pool_init() != 0) {
2273 			destroy_swap_extents(sis);
2274 			return -ENOMEM;
2275 		}
2276 		return ret;
2277 	}
2278 
2279 	return generic_swapfile_activate(sis, swap_file, span);
2280 }
2281 
2282 static int swap_node(struct swap_info_struct *p)
2283 {
2284 	struct block_device *bdev;
2285 
2286 	if (p->bdev)
2287 		bdev = p->bdev;
2288 	else
2289 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2290 
2291 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2292 }
2293 
2294 static void setup_swap_info(struct swap_info_struct *p, int prio,
2295 			    unsigned char *swap_map,
2296 			    struct swap_cluster_info *cluster_info)
2297 {
2298 	int i;
2299 
2300 	if (prio >= 0)
2301 		p->prio = prio;
2302 	else
2303 		p->prio = --least_priority;
2304 	/*
2305 	 * the plist prio is negated because plist ordering is
2306 	 * low-to-high, while swap ordering is high-to-low
2307 	 */
2308 	p->list.prio = -p->prio;
2309 	for_each_node(i) {
2310 		if (p->prio >= 0)
2311 			p->avail_lists[i].prio = -p->prio;
2312 		else {
2313 			if (swap_node(p) == i)
2314 				p->avail_lists[i].prio = 1;
2315 			else
2316 				p->avail_lists[i].prio = -p->prio;
2317 		}
2318 	}
2319 	p->swap_map = swap_map;
2320 	p->cluster_info = cluster_info;
2321 }
2322 
2323 static void _enable_swap_info(struct swap_info_struct *p)
2324 {
2325 	p->flags |= SWP_WRITEOK;
2326 	atomic_long_add(p->pages, &nr_swap_pages);
2327 	total_swap_pages += p->pages;
2328 
2329 	assert_spin_locked(&swap_lock);
2330 	/*
2331 	 * both lists are plists, and thus priority ordered.
2332 	 * swap_active_head needs to be priority ordered for swapoff(),
2333 	 * which on removal of any swap_info_struct with an auto-assigned
2334 	 * (i.e. negative) priority increments the auto-assigned priority
2335 	 * of any lower-priority swap_info_structs.
2336 	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2337 	 * which allocates swap pages from the highest available priority
2338 	 * swap_info_struct.
2339 	 */
2340 	plist_add(&p->list, &swap_active_head);
2341 
2342 	/* add to available list iff swap device is not full */
2343 	if (p->highest_bit)
2344 		add_to_avail_list(p);
2345 }
2346 
2347 static void enable_swap_info(struct swap_info_struct *p, int prio,
2348 				unsigned char *swap_map,
2349 				struct swap_cluster_info *cluster_info)
2350 {
2351 	zswap_swapon(p->type);
2352 
2353 	spin_lock(&swap_lock);
2354 	spin_lock(&p->lock);
2355 	setup_swap_info(p, prio, swap_map, cluster_info);
2356 	spin_unlock(&p->lock);
2357 	spin_unlock(&swap_lock);
2358 	/*
2359 	 * Finished initializing swap device, now it's safe to reference it.
2360 	 */
2361 	percpu_ref_resurrect(&p->users);
2362 	spin_lock(&swap_lock);
2363 	spin_lock(&p->lock);
2364 	_enable_swap_info(p);
2365 	spin_unlock(&p->lock);
2366 	spin_unlock(&swap_lock);
2367 }
2368 
2369 static void reinsert_swap_info(struct swap_info_struct *p)
2370 {
2371 	spin_lock(&swap_lock);
2372 	spin_lock(&p->lock);
2373 	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2374 	_enable_swap_info(p);
2375 	spin_unlock(&p->lock);
2376 	spin_unlock(&swap_lock);
2377 }
2378 
2379 bool has_usable_swap(void)
2380 {
2381 	bool ret = true;
2382 
2383 	spin_lock(&swap_lock);
2384 	if (plist_head_empty(&swap_active_head))
2385 		ret = false;
2386 	spin_unlock(&swap_lock);
2387 	return ret;
2388 }
2389 
2390 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2391 {
2392 	struct swap_info_struct *p = NULL;
2393 	unsigned char *swap_map;
2394 	struct swap_cluster_info *cluster_info;
2395 	struct file *swap_file, *victim;
2396 	struct address_space *mapping;
2397 	struct inode *inode;
2398 	struct filename *pathname;
2399 	int err, found = 0;
2400 	unsigned int old_block_size;
2401 
2402 	if (!capable(CAP_SYS_ADMIN))
2403 		return -EPERM;
2404 
2405 	BUG_ON(!current->mm);
2406 
2407 	pathname = getname(specialfile);
2408 	if (IS_ERR(pathname))
2409 		return PTR_ERR(pathname);
2410 
2411 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2412 	err = PTR_ERR(victim);
2413 	if (IS_ERR(victim))
2414 		goto out;
2415 
2416 	mapping = victim->f_mapping;
2417 	spin_lock(&swap_lock);
2418 	plist_for_each_entry(p, &swap_active_head, list) {
2419 		if (p->flags & SWP_WRITEOK) {
2420 			if (p->swap_file->f_mapping == mapping) {
2421 				found = 1;
2422 				break;
2423 			}
2424 		}
2425 	}
2426 	if (!found) {
2427 		err = -EINVAL;
2428 		spin_unlock(&swap_lock);
2429 		goto out_dput;
2430 	}
2431 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2432 		vm_unacct_memory(p->pages);
2433 	else {
2434 		err = -ENOMEM;
2435 		spin_unlock(&swap_lock);
2436 		goto out_dput;
2437 	}
2438 	spin_lock(&p->lock);
2439 	del_from_avail_list(p);
2440 	if (p->prio < 0) {
2441 		struct swap_info_struct *si = p;
2442 		int nid;
2443 
2444 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2445 			si->prio++;
2446 			si->list.prio--;
2447 			for_each_node(nid) {
2448 				if (si->avail_lists[nid].prio != 1)
2449 					si->avail_lists[nid].prio--;
2450 			}
2451 		}
2452 		least_priority++;
2453 	}
2454 	plist_del(&p->list, &swap_active_head);
2455 	atomic_long_sub(p->pages, &nr_swap_pages);
2456 	total_swap_pages -= p->pages;
2457 	p->flags &= ~SWP_WRITEOK;
2458 	spin_unlock(&p->lock);
2459 	spin_unlock(&swap_lock);
2460 
2461 	disable_swap_slots_cache_lock();
2462 
2463 	set_current_oom_origin();
2464 	err = try_to_unuse(p->type);
2465 	clear_current_oom_origin();
2466 
2467 	if (err) {
2468 		/* re-insert swap space back into swap_list */
2469 		reinsert_swap_info(p);
2470 		reenable_swap_slots_cache_unlock();
2471 		goto out_dput;
2472 	}
2473 
2474 	reenable_swap_slots_cache_unlock();
2475 
2476 	/*
2477 	 * Wait for swap operations protected by get/put_swap_device()
2478 	 * to complete.
2479 	 *
2480 	 * We need synchronize_rcu() here to protect the accessing to
2481 	 * the swap cache data structure.
2482 	 */
2483 	percpu_ref_kill(&p->users);
2484 	synchronize_rcu();
2485 	wait_for_completion(&p->comp);
2486 
2487 	flush_work(&p->discard_work);
2488 
2489 	destroy_swap_extents(p);
2490 	if (p->flags & SWP_CONTINUED)
2491 		free_swap_count_continuations(p);
2492 
2493 	if (!p->bdev || !bdev_nonrot(p->bdev))
2494 		atomic_dec(&nr_rotate_swap);
2495 
2496 	mutex_lock(&swapon_mutex);
2497 	spin_lock(&swap_lock);
2498 	spin_lock(&p->lock);
2499 	drain_mmlist();
2500 
2501 	/* wait for anyone still in scan_swap_map_slots */
2502 	p->highest_bit = 0;		/* cuts scans short */
2503 	while (p->flags >= SWP_SCANNING) {
2504 		spin_unlock(&p->lock);
2505 		spin_unlock(&swap_lock);
2506 		schedule_timeout_uninterruptible(1);
2507 		spin_lock(&swap_lock);
2508 		spin_lock(&p->lock);
2509 	}
2510 
2511 	swap_file = p->swap_file;
2512 	old_block_size = p->old_block_size;
2513 	p->swap_file = NULL;
2514 	p->max = 0;
2515 	swap_map = p->swap_map;
2516 	p->swap_map = NULL;
2517 	cluster_info = p->cluster_info;
2518 	p->cluster_info = NULL;
2519 	spin_unlock(&p->lock);
2520 	spin_unlock(&swap_lock);
2521 	arch_swap_invalidate_area(p->type);
2522 	zswap_swapoff(p->type);
2523 	mutex_unlock(&swapon_mutex);
2524 	free_percpu(p->percpu_cluster);
2525 	p->percpu_cluster = NULL;
2526 	free_percpu(p->cluster_next_cpu);
2527 	p->cluster_next_cpu = NULL;
2528 	vfree(swap_map);
2529 	kvfree(cluster_info);
2530 	/* Destroy swap account information */
2531 	swap_cgroup_swapoff(p->type);
2532 	exit_swap_address_space(p->type);
2533 
2534 	inode = mapping->host;
2535 	if (p->bdev_handle) {
2536 		set_blocksize(p->bdev, old_block_size);
2537 		bdev_release(p->bdev_handle);
2538 		p->bdev_handle = NULL;
2539 	}
2540 
2541 	inode_lock(inode);
2542 	inode->i_flags &= ~S_SWAPFILE;
2543 	inode_unlock(inode);
2544 	filp_close(swap_file, NULL);
2545 
2546 	/*
2547 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2548 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2549 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2550 	 */
2551 	spin_lock(&swap_lock);
2552 	p->flags = 0;
2553 	spin_unlock(&swap_lock);
2554 
2555 	err = 0;
2556 	atomic_inc(&proc_poll_event);
2557 	wake_up_interruptible(&proc_poll_wait);
2558 
2559 out_dput:
2560 	filp_close(victim, NULL);
2561 out:
2562 	putname(pathname);
2563 	return err;
2564 }
2565 
2566 #ifdef CONFIG_PROC_FS
2567 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2568 {
2569 	struct seq_file *seq = file->private_data;
2570 
2571 	poll_wait(file, &proc_poll_wait, wait);
2572 
2573 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2574 		seq->poll_event = atomic_read(&proc_poll_event);
2575 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2576 	}
2577 
2578 	return EPOLLIN | EPOLLRDNORM;
2579 }
2580 
2581 /* iterator */
2582 static void *swap_start(struct seq_file *swap, loff_t *pos)
2583 {
2584 	struct swap_info_struct *si;
2585 	int type;
2586 	loff_t l = *pos;
2587 
2588 	mutex_lock(&swapon_mutex);
2589 
2590 	if (!l)
2591 		return SEQ_START_TOKEN;
2592 
2593 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2594 		if (!(si->flags & SWP_USED) || !si->swap_map)
2595 			continue;
2596 		if (!--l)
2597 			return si;
2598 	}
2599 
2600 	return NULL;
2601 }
2602 
2603 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2604 {
2605 	struct swap_info_struct *si = v;
2606 	int type;
2607 
2608 	if (v == SEQ_START_TOKEN)
2609 		type = 0;
2610 	else
2611 		type = si->type + 1;
2612 
2613 	++(*pos);
2614 	for (; (si = swap_type_to_swap_info(type)); type++) {
2615 		if (!(si->flags & SWP_USED) || !si->swap_map)
2616 			continue;
2617 		return si;
2618 	}
2619 
2620 	return NULL;
2621 }
2622 
2623 static void swap_stop(struct seq_file *swap, void *v)
2624 {
2625 	mutex_unlock(&swapon_mutex);
2626 }
2627 
2628 static int swap_show(struct seq_file *swap, void *v)
2629 {
2630 	struct swap_info_struct *si = v;
2631 	struct file *file;
2632 	int len;
2633 	unsigned long bytes, inuse;
2634 
2635 	if (si == SEQ_START_TOKEN) {
2636 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2637 		return 0;
2638 	}
2639 
2640 	bytes = K(si->pages);
2641 	inuse = K(READ_ONCE(si->inuse_pages));
2642 
2643 	file = si->swap_file;
2644 	len = seq_file_path(swap, file, " \t\n\\");
2645 	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2646 			len < 40 ? 40 - len : 1, " ",
2647 			S_ISBLK(file_inode(file)->i_mode) ?
2648 				"partition" : "file\t",
2649 			bytes, bytes < 10000000 ? "\t" : "",
2650 			inuse, inuse < 10000000 ? "\t" : "",
2651 			si->prio);
2652 	return 0;
2653 }
2654 
2655 static const struct seq_operations swaps_op = {
2656 	.start =	swap_start,
2657 	.next =		swap_next,
2658 	.stop =		swap_stop,
2659 	.show =		swap_show
2660 };
2661 
2662 static int swaps_open(struct inode *inode, struct file *file)
2663 {
2664 	struct seq_file *seq;
2665 	int ret;
2666 
2667 	ret = seq_open(file, &swaps_op);
2668 	if (ret)
2669 		return ret;
2670 
2671 	seq = file->private_data;
2672 	seq->poll_event = atomic_read(&proc_poll_event);
2673 	return 0;
2674 }
2675 
2676 static const struct proc_ops swaps_proc_ops = {
2677 	.proc_flags	= PROC_ENTRY_PERMANENT,
2678 	.proc_open	= swaps_open,
2679 	.proc_read	= seq_read,
2680 	.proc_lseek	= seq_lseek,
2681 	.proc_release	= seq_release,
2682 	.proc_poll	= swaps_poll,
2683 };
2684 
2685 static int __init procswaps_init(void)
2686 {
2687 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2688 	return 0;
2689 }
2690 __initcall(procswaps_init);
2691 #endif /* CONFIG_PROC_FS */
2692 
2693 #ifdef MAX_SWAPFILES_CHECK
2694 static int __init max_swapfiles_check(void)
2695 {
2696 	MAX_SWAPFILES_CHECK();
2697 	return 0;
2698 }
2699 late_initcall(max_swapfiles_check);
2700 #endif
2701 
2702 static struct swap_info_struct *alloc_swap_info(void)
2703 {
2704 	struct swap_info_struct *p;
2705 	struct swap_info_struct *defer = NULL;
2706 	unsigned int type;
2707 	int i;
2708 
2709 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2710 	if (!p)
2711 		return ERR_PTR(-ENOMEM);
2712 
2713 	if (percpu_ref_init(&p->users, swap_users_ref_free,
2714 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2715 		kvfree(p);
2716 		return ERR_PTR(-ENOMEM);
2717 	}
2718 
2719 	spin_lock(&swap_lock);
2720 	for (type = 0; type < nr_swapfiles; type++) {
2721 		if (!(swap_info[type]->flags & SWP_USED))
2722 			break;
2723 	}
2724 	if (type >= MAX_SWAPFILES) {
2725 		spin_unlock(&swap_lock);
2726 		percpu_ref_exit(&p->users);
2727 		kvfree(p);
2728 		return ERR_PTR(-EPERM);
2729 	}
2730 	if (type >= nr_swapfiles) {
2731 		p->type = type;
2732 		/*
2733 		 * Publish the swap_info_struct after initializing it.
2734 		 * Note that kvzalloc() above zeroes all its fields.
2735 		 */
2736 		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2737 		nr_swapfiles++;
2738 	} else {
2739 		defer = p;
2740 		p = swap_info[type];
2741 		/*
2742 		 * Do not memset this entry: a racing procfs swap_next()
2743 		 * would be relying on p->type to remain valid.
2744 		 */
2745 	}
2746 	p->swap_extent_root = RB_ROOT;
2747 	plist_node_init(&p->list, 0);
2748 	for_each_node(i)
2749 		plist_node_init(&p->avail_lists[i], 0);
2750 	p->flags = SWP_USED;
2751 	spin_unlock(&swap_lock);
2752 	if (defer) {
2753 		percpu_ref_exit(&defer->users);
2754 		kvfree(defer);
2755 	}
2756 	spin_lock_init(&p->lock);
2757 	spin_lock_init(&p->cont_lock);
2758 	init_completion(&p->comp);
2759 
2760 	return p;
2761 }
2762 
2763 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2764 {
2765 	int error;
2766 
2767 	if (S_ISBLK(inode->i_mode)) {
2768 		p->bdev_handle = bdev_open_by_dev(inode->i_rdev,
2769 				BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL);
2770 		if (IS_ERR(p->bdev_handle)) {
2771 			error = PTR_ERR(p->bdev_handle);
2772 			p->bdev_handle = NULL;
2773 			return error;
2774 		}
2775 		p->bdev = p->bdev_handle->bdev;
2776 		p->old_block_size = block_size(p->bdev);
2777 		error = set_blocksize(p->bdev, PAGE_SIZE);
2778 		if (error < 0)
2779 			return error;
2780 		/*
2781 		 * Zoned block devices contain zones that have a sequential
2782 		 * write only restriction.  Hence zoned block devices are not
2783 		 * suitable for swapping.  Disallow them here.
2784 		 */
2785 		if (bdev_is_zoned(p->bdev))
2786 			return -EINVAL;
2787 		p->flags |= SWP_BLKDEV;
2788 	} else if (S_ISREG(inode->i_mode)) {
2789 		p->bdev = inode->i_sb->s_bdev;
2790 	}
2791 
2792 	return 0;
2793 }
2794 
2795 
2796 /*
2797  * Find out how many pages are allowed for a single swap device. There
2798  * are two limiting factors:
2799  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2800  * 2) the number of bits in the swap pte, as defined by the different
2801  * architectures.
2802  *
2803  * In order to find the largest possible bit mask, a swap entry with
2804  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2805  * decoded to a swp_entry_t again, and finally the swap offset is
2806  * extracted.
2807  *
2808  * This will mask all the bits from the initial ~0UL mask that can't
2809  * be encoded in either the swp_entry_t or the architecture definition
2810  * of a swap pte.
2811  */
2812 unsigned long generic_max_swapfile_size(void)
2813 {
2814 	return swp_offset(pte_to_swp_entry(
2815 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2816 }
2817 
2818 /* Can be overridden by an architecture for additional checks. */
2819 __weak unsigned long arch_max_swapfile_size(void)
2820 {
2821 	return generic_max_swapfile_size();
2822 }
2823 
2824 static unsigned long read_swap_header(struct swap_info_struct *p,
2825 					union swap_header *swap_header,
2826 					struct inode *inode)
2827 {
2828 	int i;
2829 	unsigned long maxpages;
2830 	unsigned long swapfilepages;
2831 	unsigned long last_page;
2832 
2833 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2834 		pr_err("Unable to find swap-space signature\n");
2835 		return 0;
2836 	}
2837 
2838 	/* swap partition endianness hack... */
2839 	if (swab32(swap_header->info.version) == 1) {
2840 		swab32s(&swap_header->info.version);
2841 		swab32s(&swap_header->info.last_page);
2842 		swab32s(&swap_header->info.nr_badpages);
2843 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2844 			return 0;
2845 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2846 			swab32s(&swap_header->info.badpages[i]);
2847 	}
2848 	/* Check the swap header's sub-version */
2849 	if (swap_header->info.version != 1) {
2850 		pr_warn("Unable to handle swap header version %d\n",
2851 			swap_header->info.version);
2852 		return 0;
2853 	}
2854 
2855 	p->lowest_bit  = 1;
2856 	p->cluster_next = 1;
2857 	p->cluster_nr = 0;
2858 
2859 	maxpages = swapfile_maximum_size;
2860 	last_page = swap_header->info.last_page;
2861 	if (!last_page) {
2862 		pr_warn("Empty swap-file\n");
2863 		return 0;
2864 	}
2865 	if (last_page > maxpages) {
2866 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2867 			K(maxpages), K(last_page));
2868 	}
2869 	if (maxpages > last_page) {
2870 		maxpages = last_page + 1;
2871 		/* p->max is an unsigned int: don't overflow it */
2872 		if ((unsigned int)maxpages == 0)
2873 			maxpages = UINT_MAX;
2874 	}
2875 	p->highest_bit = maxpages - 1;
2876 
2877 	if (!maxpages)
2878 		return 0;
2879 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2880 	if (swapfilepages && maxpages > swapfilepages) {
2881 		pr_warn("Swap area shorter than signature indicates\n");
2882 		return 0;
2883 	}
2884 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2885 		return 0;
2886 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2887 		return 0;
2888 
2889 	return maxpages;
2890 }
2891 
2892 #define SWAP_CLUSTER_INFO_COLS						\
2893 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2894 #define SWAP_CLUSTER_SPACE_COLS						\
2895 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2896 #define SWAP_CLUSTER_COLS						\
2897 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2898 
2899 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2900 					union swap_header *swap_header,
2901 					unsigned char *swap_map,
2902 					struct swap_cluster_info *cluster_info,
2903 					unsigned long maxpages,
2904 					sector_t *span)
2905 {
2906 	unsigned int j, k;
2907 	unsigned int nr_good_pages;
2908 	int nr_extents;
2909 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2910 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2911 	unsigned long i, idx;
2912 
2913 	nr_good_pages = maxpages - 1;	/* omit header page */
2914 
2915 	cluster_list_init(&p->free_clusters);
2916 	cluster_list_init(&p->discard_clusters);
2917 
2918 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2919 		unsigned int page_nr = swap_header->info.badpages[i];
2920 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2921 			return -EINVAL;
2922 		if (page_nr < maxpages) {
2923 			swap_map[page_nr] = SWAP_MAP_BAD;
2924 			nr_good_pages--;
2925 			/*
2926 			 * Haven't marked the cluster free yet, no list
2927 			 * operation involved
2928 			 */
2929 			inc_cluster_info_page(p, cluster_info, page_nr);
2930 		}
2931 	}
2932 
2933 	/* Haven't marked the cluster free yet, no list operation involved */
2934 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2935 		inc_cluster_info_page(p, cluster_info, i);
2936 
2937 	if (nr_good_pages) {
2938 		swap_map[0] = SWAP_MAP_BAD;
2939 		/*
2940 		 * Not mark the cluster free yet, no list
2941 		 * operation involved
2942 		 */
2943 		inc_cluster_info_page(p, cluster_info, 0);
2944 		p->max = maxpages;
2945 		p->pages = nr_good_pages;
2946 		nr_extents = setup_swap_extents(p, span);
2947 		if (nr_extents < 0)
2948 			return nr_extents;
2949 		nr_good_pages = p->pages;
2950 	}
2951 	if (!nr_good_pages) {
2952 		pr_warn("Empty swap-file\n");
2953 		return -EINVAL;
2954 	}
2955 
2956 	if (!cluster_info)
2957 		return nr_extents;
2958 
2959 
2960 	/*
2961 	 * Reduce false cache line sharing between cluster_info and
2962 	 * sharing same address space.
2963 	 */
2964 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2965 		j = (k + col) % SWAP_CLUSTER_COLS;
2966 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2967 			idx = i * SWAP_CLUSTER_COLS + j;
2968 			if (idx >= nr_clusters)
2969 				continue;
2970 			if (cluster_count(&cluster_info[idx]))
2971 				continue;
2972 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2973 			cluster_list_add_tail(&p->free_clusters, cluster_info,
2974 					      idx);
2975 		}
2976 	}
2977 	return nr_extents;
2978 }
2979 
2980 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2981 {
2982 	struct swap_info_struct *p;
2983 	struct filename *name;
2984 	struct file *swap_file = NULL;
2985 	struct address_space *mapping;
2986 	struct dentry *dentry;
2987 	int prio;
2988 	int error;
2989 	union swap_header *swap_header;
2990 	int nr_extents;
2991 	sector_t span;
2992 	unsigned long maxpages;
2993 	unsigned char *swap_map = NULL;
2994 	struct swap_cluster_info *cluster_info = NULL;
2995 	struct page *page = NULL;
2996 	struct inode *inode = NULL;
2997 	bool inced_nr_rotate_swap = false;
2998 
2999 	if (swap_flags & ~SWAP_FLAGS_VALID)
3000 		return -EINVAL;
3001 
3002 	if (!capable(CAP_SYS_ADMIN))
3003 		return -EPERM;
3004 
3005 	if (!swap_avail_heads)
3006 		return -ENOMEM;
3007 
3008 	p = alloc_swap_info();
3009 	if (IS_ERR(p))
3010 		return PTR_ERR(p);
3011 
3012 	INIT_WORK(&p->discard_work, swap_discard_work);
3013 
3014 	name = getname(specialfile);
3015 	if (IS_ERR(name)) {
3016 		error = PTR_ERR(name);
3017 		name = NULL;
3018 		goto bad_swap;
3019 	}
3020 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3021 	if (IS_ERR(swap_file)) {
3022 		error = PTR_ERR(swap_file);
3023 		swap_file = NULL;
3024 		goto bad_swap;
3025 	}
3026 
3027 	p->swap_file = swap_file;
3028 	mapping = swap_file->f_mapping;
3029 	dentry = swap_file->f_path.dentry;
3030 	inode = mapping->host;
3031 
3032 	error = claim_swapfile(p, inode);
3033 	if (unlikely(error))
3034 		goto bad_swap;
3035 
3036 	inode_lock(inode);
3037 	if (d_unlinked(dentry) || cant_mount(dentry)) {
3038 		error = -ENOENT;
3039 		goto bad_swap_unlock_inode;
3040 	}
3041 	if (IS_SWAPFILE(inode)) {
3042 		error = -EBUSY;
3043 		goto bad_swap_unlock_inode;
3044 	}
3045 
3046 	/*
3047 	 * Read the swap header.
3048 	 */
3049 	if (!mapping->a_ops->read_folio) {
3050 		error = -EINVAL;
3051 		goto bad_swap_unlock_inode;
3052 	}
3053 	page = read_mapping_page(mapping, 0, swap_file);
3054 	if (IS_ERR(page)) {
3055 		error = PTR_ERR(page);
3056 		goto bad_swap_unlock_inode;
3057 	}
3058 	swap_header = kmap(page);
3059 
3060 	maxpages = read_swap_header(p, swap_header, inode);
3061 	if (unlikely(!maxpages)) {
3062 		error = -EINVAL;
3063 		goto bad_swap_unlock_inode;
3064 	}
3065 
3066 	/* OK, set up the swap map and apply the bad block list */
3067 	swap_map = vzalloc(maxpages);
3068 	if (!swap_map) {
3069 		error = -ENOMEM;
3070 		goto bad_swap_unlock_inode;
3071 	}
3072 
3073 	if (p->bdev && bdev_stable_writes(p->bdev))
3074 		p->flags |= SWP_STABLE_WRITES;
3075 
3076 	if (p->bdev && bdev_synchronous(p->bdev))
3077 		p->flags |= SWP_SYNCHRONOUS_IO;
3078 
3079 	if (p->bdev && bdev_nonrot(p->bdev)) {
3080 		int cpu;
3081 		unsigned long ci, nr_cluster;
3082 
3083 		p->flags |= SWP_SOLIDSTATE;
3084 		p->cluster_next_cpu = alloc_percpu(unsigned int);
3085 		if (!p->cluster_next_cpu) {
3086 			error = -ENOMEM;
3087 			goto bad_swap_unlock_inode;
3088 		}
3089 		/*
3090 		 * select a random position to start with to help wear leveling
3091 		 * SSD
3092 		 */
3093 		for_each_possible_cpu(cpu) {
3094 			per_cpu(*p->cluster_next_cpu, cpu) =
3095 				get_random_u32_inclusive(1, p->highest_bit);
3096 		}
3097 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3098 
3099 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3100 					GFP_KERNEL);
3101 		if (!cluster_info) {
3102 			error = -ENOMEM;
3103 			goto bad_swap_unlock_inode;
3104 		}
3105 
3106 		for (ci = 0; ci < nr_cluster; ci++)
3107 			spin_lock_init(&((cluster_info + ci)->lock));
3108 
3109 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3110 		if (!p->percpu_cluster) {
3111 			error = -ENOMEM;
3112 			goto bad_swap_unlock_inode;
3113 		}
3114 		for_each_possible_cpu(cpu) {
3115 			struct percpu_cluster *cluster;
3116 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3117 			cluster_set_null(&cluster->index);
3118 		}
3119 	} else {
3120 		atomic_inc(&nr_rotate_swap);
3121 		inced_nr_rotate_swap = true;
3122 	}
3123 
3124 	error = swap_cgroup_swapon(p->type, maxpages);
3125 	if (error)
3126 		goto bad_swap_unlock_inode;
3127 
3128 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3129 		cluster_info, maxpages, &span);
3130 	if (unlikely(nr_extents < 0)) {
3131 		error = nr_extents;
3132 		goto bad_swap_unlock_inode;
3133 	}
3134 
3135 	if ((swap_flags & SWAP_FLAG_DISCARD) &&
3136 	    p->bdev && bdev_max_discard_sectors(p->bdev)) {
3137 		/*
3138 		 * When discard is enabled for swap with no particular
3139 		 * policy flagged, we set all swap discard flags here in
3140 		 * order to sustain backward compatibility with older
3141 		 * swapon(8) releases.
3142 		 */
3143 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3144 			     SWP_PAGE_DISCARD);
3145 
3146 		/*
3147 		 * By flagging sys_swapon, a sysadmin can tell us to
3148 		 * either do single-time area discards only, or to just
3149 		 * perform discards for released swap page-clusters.
3150 		 * Now it's time to adjust the p->flags accordingly.
3151 		 */
3152 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3153 			p->flags &= ~SWP_PAGE_DISCARD;
3154 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3155 			p->flags &= ~SWP_AREA_DISCARD;
3156 
3157 		/* issue a swapon-time discard if it's still required */
3158 		if (p->flags & SWP_AREA_DISCARD) {
3159 			int err = discard_swap(p);
3160 			if (unlikely(err))
3161 				pr_err("swapon: discard_swap(%p): %d\n",
3162 					p, err);
3163 		}
3164 	}
3165 
3166 	error = init_swap_address_space(p->type, maxpages);
3167 	if (error)
3168 		goto bad_swap_unlock_inode;
3169 
3170 	/*
3171 	 * Flush any pending IO and dirty mappings before we start using this
3172 	 * swap device.
3173 	 */
3174 	inode->i_flags |= S_SWAPFILE;
3175 	error = inode_drain_writes(inode);
3176 	if (error) {
3177 		inode->i_flags &= ~S_SWAPFILE;
3178 		goto free_swap_address_space;
3179 	}
3180 
3181 	mutex_lock(&swapon_mutex);
3182 	prio = -1;
3183 	if (swap_flags & SWAP_FLAG_PREFER)
3184 		prio =
3185 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3186 	enable_swap_info(p, prio, swap_map, cluster_info);
3187 
3188 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3189 		K(p->pages), name->name, p->prio, nr_extents,
3190 		K((unsigned long long)span),
3191 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3192 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3193 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3194 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "");
3195 
3196 	mutex_unlock(&swapon_mutex);
3197 	atomic_inc(&proc_poll_event);
3198 	wake_up_interruptible(&proc_poll_wait);
3199 
3200 	error = 0;
3201 	goto out;
3202 free_swap_address_space:
3203 	exit_swap_address_space(p->type);
3204 bad_swap_unlock_inode:
3205 	inode_unlock(inode);
3206 bad_swap:
3207 	free_percpu(p->percpu_cluster);
3208 	p->percpu_cluster = NULL;
3209 	free_percpu(p->cluster_next_cpu);
3210 	p->cluster_next_cpu = NULL;
3211 	if (p->bdev_handle) {
3212 		set_blocksize(p->bdev, p->old_block_size);
3213 		bdev_release(p->bdev_handle);
3214 		p->bdev_handle = NULL;
3215 	}
3216 	inode = NULL;
3217 	destroy_swap_extents(p);
3218 	swap_cgroup_swapoff(p->type);
3219 	spin_lock(&swap_lock);
3220 	p->swap_file = NULL;
3221 	p->flags = 0;
3222 	spin_unlock(&swap_lock);
3223 	vfree(swap_map);
3224 	kvfree(cluster_info);
3225 	if (inced_nr_rotate_swap)
3226 		atomic_dec(&nr_rotate_swap);
3227 	if (swap_file)
3228 		filp_close(swap_file, NULL);
3229 out:
3230 	if (page && !IS_ERR(page)) {
3231 		kunmap(page);
3232 		put_page(page);
3233 	}
3234 	if (name)
3235 		putname(name);
3236 	if (inode)
3237 		inode_unlock(inode);
3238 	if (!error)
3239 		enable_swap_slots_cache();
3240 	return error;
3241 }
3242 
3243 void si_swapinfo(struct sysinfo *val)
3244 {
3245 	unsigned int type;
3246 	unsigned long nr_to_be_unused = 0;
3247 
3248 	spin_lock(&swap_lock);
3249 	for (type = 0; type < nr_swapfiles; type++) {
3250 		struct swap_info_struct *si = swap_info[type];
3251 
3252 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3253 			nr_to_be_unused += READ_ONCE(si->inuse_pages);
3254 	}
3255 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3256 	val->totalswap = total_swap_pages + nr_to_be_unused;
3257 	spin_unlock(&swap_lock);
3258 }
3259 
3260 /*
3261  * Verify that a swap entry is valid and increment its swap map count.
3262  *
3263  * Returns error code in following case.
3264  * - success -> 0
3265  * - swp_entry is invalid -> EINVAL
3266  * - swp_entry is migration entry -> EINVAL
3267  * - swap-cache reference is requested but there is already one. -> EEXIST
3268  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3269  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3270  */
3271 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3272 {
3273 	struct swap_info_struct *p;
3274 	struct swap_cluster_info *ci;
3275 	unsigned long offset;
3276 	unsigned char count;
3277 	unsigned char has_cache;
3278 	int err;
3279 
3280 	p = swp_swap_info(entry);
3281 
3282 	offset = swp_offset(entry);
3283 	ci = lock_cluster_or_swap_info(p, offset);
3284 
3285 	count = p->swap_map[offset];
3286 
3287 	/*
3288 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3289 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3290 	 */
3291 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3292 		err = -ENOENT;
3293 		goto unlock_out;
3294 	}
3295 
3296 	has_cache = count & SWAP_HAS_CACHE;
3297 	count &= ~SWAP_HAS_CACHE;
3298 	err = 0;
3299 
3300 	if (usage == SWAP_HAS_CACHE) {
3301 
3302 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3303 		if (!has_cache && count)
3304 			has_cache = SWAP_HAS_CACHE;
3305 		else if (has_cache)		/* someone else added cache */
3306 			err = -EEXIST;
3307 		else				/* no users remaining */
3308 			err = -ENOENT;
3309 
3310 	} else if (count || has_cache) {
3311 
3312 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3313 			count += usage;
3314 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3315 			err = -EINVAL;
3316 		else if (swap_count_continued(p, offset, count))
3317 			count = COUNT_CONTINUED;
3318 		else
3319 			err = -ENOMEM;
3320 	} else
3321 		err = -ENOENT;			/* unused swap entry */
3322 
3323 	WRITE_ONCE(p->swap_map[offset], count | has_cache);
3324 
3325 unlock_out:
3326 	unlock_cluster_or_swap_info(p, ci);
3327 	return err;
3328 }
3329 
3330 /*
3331  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3332  * (in which case its reference count is never incremented).
3333  */
3334 void swap_shmem_alloc(swp_entry_t entry)
3335 {
3336 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3337 }
3338 
3339 /*
3340  * Increase reference count of swap entry by 1.
3341  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3342  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3343  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3344  * might occur if a page table entry has got corrupted.
3345  */
3346 int swap_duplicate(swp_entry_t entry)
3347 {
3348 	int err = 0;
3349 
3350 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3351 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3352 	return err;
3353 }
3354 
3355 /*
3356  * @entry: swap entry for which we allocate swap cache.
3357  *
3358  * Called when allocating swap cache for existing swap entry,
3359  * This can return error codes. Returns 0 at success.
3360  * -EEXIST means there is a swap cache.
3361  * Note: return code is different from swap_duplicate().
3362  */
3363 int swapcache_prepare(swp_entry_t entry)
3364 {
3365 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3366 }
3367 
3368 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3369 {
3370 	return swap_type_to_swap_info(swp_type(entry));
3371 }
3372 
3373 /*
3374  * out-of-line methods to avoid include hell.
3375  */
3376 struct address_space *swapcache_mapping(struct folio *folio)
3377 {
3378 	return swp_swap_info(folio->swap)->swap_file->f_mapping;
3379 }
3380 EXPORT_SYMBOL_GPL(swapcache_mapping);
3381 
3382 pgoff_t __page_file_index(struct page *page)
3383 {
3384 	swp_entry_t swap = page_swap_entry(page);
3385 	return swp_offset(swap);
3386 }
3387 EXPORT_SYMBOL_GPL(__page_file_index);
3388 
3389 /*
3390  * add_swap_count_continuation - called when a swap count is duplicated
3391  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3392  * page of the original vmalloc'ed swap_map, to hold the continuation count
3393  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3394  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3395  *
3396  * These continuation pages are seldom referenced: the common paths all work
3397  * on the original swap_map, only referring to a continuation page when the
3398  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3399  *
3400  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3401  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3402  * can be called after dropping locks.
3403  */
3404 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3405 {
3406 	struct swap_info_struct *si;
3407 	struct swap_cluster_info *ci;
3408 	struct page *head;
3409 	struct page *page;
3410 	struct page *list_page;
3411 	pgoff_t offset;
3412 	unsigned char count;
3413 	int ret = 0;
3414 
3415 	/*
3416 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3417 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3418 	 */
3419 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3420 
3421 	si = get_swap_device(entry);
3422 	if (!si) {
3423 		/*
3424 		 * An acceptable race has occurred since the failing
3425 		 * __swap_duplicate(): the swap device may be swapoff
3426 		 */
3427 		goto outer;
3428 	}
3429 	spin_lock(&si->lock);
3430 
3431 	offset = swp_offset(entry);
3432 
3433 	ci = lock_cluster(si, offset);
3434 
3435 	count = swap_count(si->swap_map[offset]);
3436 
3437 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3438 		/*
3439 		 * The higher the swap count, the more likely it is that tasks
3440 		 * will race to add swap count continuation: we need to avoid
3441 		 * over-provisioning.
3442 		 */
3443 		goto out;
3444 	}
3445 
3446 	if (!page) {
3447 		ret = -ENOMEM;
3448 		goto out;
3449 	}
3450 
3451 	head = vmalloc_to_page(si->swap_map + offset);
3452 	offset &= ~PAGE_MASK;
3453 
3454 	spin_lock(&si->cont_lock);
3455 	/*
3456 	 * Page allocation does not initialize the page's lru field,
3457 	 * but it does always reset its private field.
3458 	 */
3459 	if (!page_private(head)) {
3460 		BUG_ON(count & COUNT_CONTINUED);
3461 		INIT_LIST_HEAD(&head->lru);
3462 		set_page_private(head, SWP_CONTINUED);
3463 		si->flags |= SWP_CONTINUED;
3464 	}
3465 
3466 	list_for_each_entry(list_page, &head->lru, lru) {
3467 		unsigned char *map;
3468 
3469 		/*
3470 		 * If the previous map said no continuation, but we've found
3471 		 * a continuation page, free our allocation and use this one.
3472 		 */
3473 		if (!(count & COUNT_CONTINUED))
3474 			goto out_unlock_cont;
3475 
3476 		map = kmap_local_page(list_page) + offset;
3477 		count = *map;
3478 		kunmap_local(map);
3479 
3480 		/*
3481 		 * If this continuation count now has some space in it,
3482 		 * free our allocation and use this one.
3483 		 */
3484 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3485 			goto out_unlock_cont;
3486 	}
3487 
3488 	list_add_tail(&page->lru, &head->lru);
3489 	page = NULL;			/* now it's attached, don't free it */
3490 out_unlock_cont:
3491 	spin_unlock(&si->cont_lock);
3492 out:
3493 	unlock_cluster(ci);
3494 	spin_unlock(&si->lock);
3495 	put_swap_device(si);
3496 outer:
3497 	if (page)
3498 		__free_page(page);
3499 	return ret;
3500 }
3501 
3502 /*
3503  * swap_count_continued - when the original swap_map count is incremented
3504  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3505  * into, carry if so, or else fail until a new continuation page is allocated;
3506  * when the original swap_map count is decremented from 0 with continuation,
3507  * borrow from the continuation and report whether it still holds more.
3508  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3509  * lock.
3510  */
3511 static bool swap_count_continued(struct swap_info_struct *si,
3512 				 pgoff_t offset, unsigned char count)
3513 {
3514 	struct page *head;
3515 	struct page *page;
3516 	unsigned char *map;
3517 	bool ret;
3518 
3519 	head = vmalloc_to_page(si->swap_map + offset);
3520 	if (page_private(head) != SWP_CONTINUED) {
3521 		BUG_ON(count & COUNT_CONTINUED);
3522 		return false;		/* need to add count continuation */
3523 	}
3524 
3525 	spin_lock(&si->cont_lock);
3526 	offset &= ~PAGE_MASK;
3527 	page = list_next_entry(head, lru);
3528 	map = kmap_local_page(page) + offset;
3529 
3530 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3531 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3532 
3533 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3534 		/*
3535 		 * Think of how you add 1 to 999
3536 		 */
3537 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3538 			kunmap_local(map);
3539 			page = list_next_entry(page, lru);
3540 			BUG_ON(page == head);
3541 			map = kmap_local_page(page) + offset;
3542 		}
3543 		if (*map == SWAP_CONT_MAX) {
3544 			kunmap_local(map);
3545 			page = list_next_entry(page, lru);
3546 			if (page == head) {
3547 				ret = false;	/* add count continuation */
3548 				goto out;
3549 			}
3550 			map = kmap_local_page(page) + offset;
3551 init_map:		*map = 0;		/* we didn't zero the page */
3552 		}
3553 		*map += 1;
3554 		kunmap_local(map);
3555 		while ((page = list_prev_entry(page, lru)) != head) {
3556 			map = kmap_local_page(page) + offset;
3557 			*map = COUNT_CONTINUED;
3558 			kunmap_local(map);
3559 		}
3560 		ret = true;			/* incremented */
3561 
3562 	} else {				/* decrementing */
3563 		/*
3564 		 * Think of how you subtract 1 from 1000
3565 		 */
3566 		BUG_ON(count != COUNT_CONTINUED);
3567 		while (*map == COUNT_CONTINUED) {
3568 			kunmap_local(map);
3569 			page = list_next_entry(page, lru);
3570 			BUG_ON(page == head);
3571 			map = kmap_local_page(page) + offset;
3572 		}
3573 		BUG_ON(*map == 0);
3574 		*map -= 1;
3575 		if (*map == 0)
3576 			count = 0;
3577 		kunmap_local(map);
3578 		while ((page = list_prev_entry(page, lru)) != head) {
3579 			map = kmap_local_page(page) + offset;
3580 			*map = SWAP_CONT_MAX | count;
3581 			count = COUNT_CONTINUED;
3582 			kunmap_local(map);
3583 		}
3584 		ret = count == COUNT_CONTINUED;
3585 	}
3586 out:
3587 	spin_unlock(&si->cont_lock);
3588 	return ret;
3589 }
3590 
3591 /*
3592  * free_swap_count_continuations - swapoff free all the continuation pages
3593  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3594  */
3595 static void free_swap_count_continuations(struct swap_info_struct *si)
3596 {
3597 	pgoff_t offset;
3598 
3599 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3600 		struct page *head;
3601 		head = vmalloc_to_page(si->swap_map + offset);
3602 		if (page_private(head)) {
3603 			struct page *page, *next;
3604 
3605 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3606 				list_del(&page->lru);
3607 				__free_page(page);
3608 			}
3609 		}
3610 	}
3611 }
3612 
3613 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3614 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3615 {
3616 	struct swap_info_struct *si, *next;
3617 	int nid = folio_nid(folio);
3618 
3619 	if (!(gfp & __GFP_IO))
3620 		return;
3621 
3622 	if (!blk_cgroup_congested())
3623 		return;
3624 
3625 	/*
3626 	 * We've already scheduled a throttle, avoid taking the global swap
3627 	 * lock.
3628 	 */
3629 	if (current->throttle_disk)
3630 		return;
3631 
3632 	spin_lock(&swap_avail_lock);
3633 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3634 				  avail_lists[nid]) {
3635 		if (si->bdev) {
3636 			blkcg_schedule_throttle(si->bdev->bd_disk, true);
3637 			break;
3638 		}
3639 	}
3640 	spin_unlock(&swap_avail_lock);
3641 }
3642 #endif
3643 
3644 static int __init swapfile_init(void)
3645 {
3646 	int nid;
3647 
3648 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3649 					 GFP_KERNEL);
3650 	if (!swap_avail_heads) {
3651 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3652 		return -ENOMEM;
3653 	}
3654 
3655 	for_each_node(nid)
3656 		plist_head_init(&swap_avail_heads[nid]);
3657 
3658 	swapfile_maximum_size = arch_max_swapfile_size();
3659 
3660 #ifdef CONFIG_MIGRATION
3661 	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3662 		swap_migration_ad_supported = true;
3663 #endif	/* CONFIG_MIGRATION */
3664 
3665 	return 0;
3666 }
3667 subsys_initcall(swapfile_init);
3668