1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/hugetlb.h> 10 #include <linux/mman.h> 11 #include <linux/slab.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/shmem_fs.h> 18 #include <linux/blkdev.h> 19 #include <linux/random.h> 20 #include <linux/writeback.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/init.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/security.h> 27 #include <linux/backing-dev.h> 28 #include <linux/mutex.h> 29 #include <linux/capability.h> 30 #include <linux/syscalls.h> 31 #include <linux/memcontrol.h> 32 #include <linux/poll.h> 33 #include <linux/oom.h> 34 35 #include <asm/pgtable.h> 36 #include <asm/tlbflush.h> 37 #include <linux/swapops.h> 38 #include <linux/page_cgroup.h> 39 40 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 41 unsigned char); 42 static void free_swap_count_continuations(struct swap_info_struct *); 43 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 44 45 static DEFINE_SPINLOCK(swap_lock); 46 static unsigned int nr_swapfiles; 47 long nr_swap_pages; 48 long total_swap_pages; 49 static int least_priority; 50 51 static const char Bad_file[] = "Bad swap file entry "; 52 static const char Unused_file[] = "Unused swap file entry "; 53 static const char Bad_offset[] = "Bad swap offset entry "; 54 static const char Unused_offset[] = "Unused swap offset entry "; 55 56 static struct swap_list_t swap_list = {-1, -1}; 57 58 static struct swap_info_struct *swap_info[MAX_SWAPFILES]; 59 60 static DEFINE_MUTEX(swapon_mutex); 61 62 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 63 /* Activity counter to indicate that a swapon or swapoff has occurred */ 64 static atomic_t proc_poll_event = ATOMIC_INIT(0); 65 66 static inline unsigned char swap_count(unsigned char ent) 67 { 68 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */ 69 } 70 71 /* returns 1 if swap entry is freed */ 72 static int 73 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) 74 { 75 swp_entry_t entry = swp_entry(si->type, offset); 76 struct page *page; 77 int ret = 0; 78 79 page = find_get_page(&swapper_space, entry.val); 80 if (!page) 81 return 0; 82 /* 83 * This function is called from scan_swap_map() and it's called 84 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. 85 * We have to use trylock for avoiding deadlock. This is a special 86 * case and you should use try_to_free_swap() with explicit lock_page() 87 * in usual operations. 88 */ 89 if (trylock_page(page)) { 90 ret = try_to_free_swap(page); 91 unlock_page(page); 92 } 93 page_cache_release(page); 94 return ret; 95 } 96 97 /* 98 * swapon tell device that all the old swap contents can be discarded, 99 * to allow the swap device to optimize its wear-levelling. 100 */ 101 static int discard_swap(struct swap_info_struct *si) 102 { 103 struct swap_extent *se; 104 sector_t start_block; 105 sector_t nr_blocks; 106 int err = 0; 107 108 /* Do not discard the swap header page! */ 109 se = &si->first_swap_extent; 110 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 111 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 112 if (nr_blocks) { 113 err = blkdev_issue_discard(si->bdev, start_block, 114 nr_blocks, GFP_KERNEL, 0); 115 if (err) 116 return err; 117 cond_resched(); 118 } 119 120 list_for_each_entry(se, &si->first_swap_extent.list, list) { 121 start_block = se->start_block << (PAGE_SHIFT - 9); 122 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 123 124 err = blkdev_issue_discard(si->bdev, start_block, 125 nr_blocks, GFP_KERNEL, 0); 126 if (err) 127 break; 128 129 cond_resched(); 130 } 131 return err; /* That will often be -EOPNOTSUPP */ 132 } 133 134 /* 135 * swap allocation tell device that a cluster of swap can now be discarded, 136 * to allow the swap device to optimize its wear-levelling. 137 */ 138 static void discard_swap_cluster(struct swap_info_struct *si, 139 pgoff_t start_page, pgoff_t nr_pages) 140 { 141 struct swap_extent *se = si->curr_swap_extent; 142 int found_extent = 0; 143 144 while (nr_pages) { 145 struct list_head *lh; 146 147 if (se->start_page <= start_page && 148 start_page < se->start_page + se->nr_pages) { 149 pgoff_t offset = start_page - se->start_page; 150 sector_t start_block = se->start_block + offset; 151 sector_t nr_blocks = se->nr_pages - offset; 152 153 if (nr_blocks > nr_pages) 154 nr_blocks = nr_pages; 155 start_page += nr_blocks; 156 nr_pages -= nr_blocks; 157 158 if (!found_extent++) 159 si->curr_swap_extent = se; 160 161 start_block <<= PAGE_SHIFT - 9; 162 nr_blocks <<= PAGE_SHIFT - 9; 163 if (blkdev_issue_discard(si->bdev, start_block, 164 nr_blocks, GFP_NOIO, 0)) 165 break; 166 } 167 168 lh = se->list.next; 169 se = list_entry(lh, struct swap_extent, list); 170 } 171 } 172 173 static int wait_for_discard(void *word) 174 { 175 schedule(); 176 return 0; 177 } 178 179 #define SWAPFILE_CLUSTER 256 180 #define LATENCY_LIMIT 256 181 182 static unsigned long scan_swap_map(struct swap_info_struct *si, 183 unsigned char usage) 184 { 185 unsigned long offset; 186 unsigned long scan_base; 187 unsigned long last_in_cluster = 0; 188 int latency_ration = LATENCY_LIMIT; 189 int found_free_cluster = 0; 190 191 /* 192 * We try to cluster swap pages by allocating them sequentially 193 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 194 * way, however, we resort to first-free allocation, starting 195 * a new cluster. This prevents us from scattering swap pages 196 * all over the entire swap partition, so that we reduce 197 * overall disk seek times between swap pages. -- sct 198 * But we do now try to find an empty cluster. -Andrea 199 * And we let swap pages go all over an SSD partition. Hugh 200 */ 201 202 si->flags += SWP_SCANNING; 203 scan_base = offset = si->cluster_next; 204 205 if (unlikely(!si->cluster_nr--)) { 206 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 207 si->cluster_nr = SWAPFILE_CLUSTER - 1; 208 goto checks; 209 } 210 if (si->flags & SWP_DISCARDABLE) { 211 /* 212 * Start range check on racing allocations, in case 213 * they overlap the cluster we eventually decide on 214 * (we scan without swap_lock to allow preemption). 215 * It's hardly conceivable that cluster_nr could be 216 * wrapped during our scan, but don't depend on it. 217 */ 218 if (si->lowest_alloc) 219 goto checks; 220 si->lowest_alloc = si->max; 221 si->highest_alloc = 0; 222 } 223 spin_unlock(&swap_lock); 224 225 /* 226 * If seek is expensive, start searching for new cluster from 227 * start of partition, to minimize the span of allocated swap. 228 * But if seek is cheap, search from our current position, so 229 * that swap is allocated from all over the partition: if the 230 * Flash Translation Layer only remaps within limited zones, 231 * we don't want to wear out the first zone too quickly. 232 */ 233 if (!(si->flags & SWP_SOLIDSTATE)) 234 scan_base = offset = si->lowest_bit; 235 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 236 237 /* Locate the first empty (unaligned) cluster */ 238 for (; last_in_cluster <= si->highest_bit; offset++) { 239 if (si->swap_map[offset]) 240 last_in_cluster = offset + SWAPFILE_CLUSTER; 241 else if (offset == last_in_cluster) { 242 spin_lock(&swap_lock); 243 offset -= SWAPFILE_CLUSTER - 1; 244 si->cluster_next = offset; 245 si->cluster_nr = SWAPFILE_CLUSTER - 1; 246 found_free_cluster = 1; 247 goto checks; 248 } 249 if (unlikely(--latency_ration < 0)) { 250 cond_resched(); 251 latency_ration = LATENCY_LIMIT; 252 } 253 } 254 255 offset = si->lowest_bit; 256 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 257 258 /* Locate the first empty (unaligned) cluster */ 259 for (; last_in_cluster < scan_base; offset++) { 260 if (si->swap_map[offset]) 261 last_in_cluster = offset + SWAPFILE_CLUSTER; 262 else if (offset == last_in_cluster) { 263 spin_lock(&swap_lock); 264 offset -= SWAPFILE_CLUSTER - 1; 265 si->cluster_next = offset; 266 si->cluster_nr = SWAPFILE_CLUSTER - 1; 267 found_free_cluster = 1; 268 goto checks; 269 } 270 if (unlikely(--latency_ration < 0)) { 271 cond_resched(); 272 latency_ration = LATENCY_LIMIT; 273 } 274 } 275 276 offset = scan_base; 277 spin_lock(&swap_lock); 278 si->cluster_nr = SWAPFILE_CLUSTER - 1; 279 si->lowest_alloc = 0; 280 } 281 282 checks: 283 if (!(si->flags & SWP_WRITEOK)) 284 goto no_page; 285 if (!si->highest_bit) 286 goto no_page; 287 if (offset > si->highest_bit) 288 scan_base = offset = si->lowest_bit; 289 290 /* reuse swap entry of cache-only swap if not busy. */ 291 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 292 int swap_was_freed; 293 spin_unlock(&swap_lock); 294 swap_was_freed = __try_to_reclaim_swap(si, offset); 295 spin_lock(&swap_lock); 296 /* entry was freed successfully, try to use this again */ 297 if (swap_was_freed) 298 goto checks; 299 goto scan; /* check next one */ 300 } 301 302 if (si->swap_map[offset]) 303 goto scan; 304 305 if (offset == si->lowest_bit) 306 si->lowest_bit++; 307 if (offset == si->highest_bit) 308 si->highest_bit--; 309 si->inuse_pages++; 310 if (si->inuse_pages == si->pages) { 311 si->lowest_bit = si->max; 312 si->highest_bit = 0; 313 } 314 si->swap_map[offset] = usage; 315 si->cluster_next = offset + 1; 316 si->flags -= SWP_SCANNING; 317 318 if (si->lowest_alloc) { 319 /* 320 * Only set when SWP_DISCARDABLE, and there's a scan 321 * for a free cluster in progress or just completed. 322 */ 323 if (found_free_cluster) { 324 /* 325 * To optimize wear-levelling, discard the 326 * old data of the cluster, taking care not to 327 * discard any of its pages that have already 328 * been allocated by racing tasks (offset has 329 * already stepped over any at the beginning). 330 */ 331 if (offset < si->highest_alloc && 332 si->lowest_alloc <= last_in_cluster) 333 last_in_cluster = si->lowest_alloc - 1; 334 si->flags |= SWP_DISCARDING; 335 spin_unlock(&swap_lock); 336 337 if (offset < last_in_cluster) 338 discard_swap_cluster(si, offset, 339 last_in_cluster - offset + 1); 340 341 spin_lock(&swap_lock); 342 si->lowest_alloc = 0; 343 si->flags &= ~SWP_DISCARDING; 344 345 smp_mb(); /* wake_up_bit advises this */ 346 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING)); 347 348 } else if (si->flags & SWP_DISCARDING) { 349 /* 350 * Delay using pages allocated by racing tasks 351 * until the whole discard has been issued. We 352 * could defer that delay until swap_writepage, 353 * but it's easier to keep this self-contained. 354 */ 355 spin_unlock(&swap_lock); 356 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING), 357 wait_for_discard, TASK_UNINTERRUPTIBLE); 358 spin_lock(&swap_lock); 359 } else { 360 /* 361 * Note pages allocated by racing tasks while 362 * scan for a free cluster is in progress, so 363 * that its final discard can exclude them. 364 */ 365 if (offset < si->lowest_alloc) 366 si->lowest_alloc = offset; 367 if (offset > si->highest_alloc) 368 si->highest_alloc = offset; 369 } 370 } 371 return offset; 372 373 scan: 374 spin_unlock(&swap_lock); 375 while (++offset <= si->highest_bit) { 376 if (!si->swap_map[offset]) { 377 spin_lock(&swap_lock); 378 goto checks; 379 } 380 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 381 spin_lock(&swap_lock); 382 goto checks; 383 } 384 if (unlikely(--latency_ration < 0)) { 385 cond_resched(); 386 latency_ration = LATENCY_LIMIT; 387 } 388 } 389 offset = si->lowest_bit; 390 while (++offset < scan_base) { 391 if (!si->swap_map[offset]) { 392 spin_lock(&swap_lock); 393 goto checks; 394 } 395 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 396 spin_lock(&swap_lock); 397 goto checks; 398 } 399 if (unlikely(--latency_ration < 0)) { 400 cond_resched(); 401 latency_ration = LATENCY_LIMIT; 402 } 403 } 404 spin_lock(&swap_lock); 405 406 no_page: 407 si->flags -= SWP_SCANNING; 408 return 0; 409 } 410 411 swp_entry_t get_swap_page(void) 412 { 413 struct swap_info_struct *si; 414 pgoff_t offset; 415 int type, next; 416 int wrapped = 0; 417 418 spin_lock(&swap_lock); 419 if (nr_swap_pages <= 0) 420 goto noswap; 421 nr_swap_pages--; 422 423 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { 424 si = swap_info[type]; 425 next = si->next; 426 if (next < 0 || 427 (!wrapped && si->prio != swap_info[next]->prio)) { 428 next = swap_list.head; 429 wrapped++; 430 } 431 432 if (!si->highest_bit) 433 continue; 434 if (!(si->flags & SWP_WRITEOK)) 435 continue; 436 437 swap_list.next = next; 438 /* This is called for allocating swap entry for cache */ 439 offset = scan_swap_map(si, SWAP_HAS_CACHE); 440 if (offset) { 441 spin_unlock(&swap_lock); 442 return swp_entry(type, offset); 443 } 444 next = swap_list.next; 445 } 446 447 nr_swap_pages++; 448 noswap: 449 spin_unlock(&swap_lock); 450 return (swp_entry_t) {0}; 451 } 452 453 /* The only caller of this function is now susupend routine */ 454 swp_entry_t get_swap_page_of_type(int type) 455 { 456 struct swap_info_struct *si; 457 pgoff_t offset; 458 459 spin_lock(&swap_lock); 460 si = swap_info[type]; 461 if (si && (si->flags & SWP_WRITEOK)) { 462 nr_swap_pages--; 463 /* This is called for allocating swap entry, not cache */ 464 offset = scan_swap_map(si, 1); 465 if (offset) { 466 spin_unlock(&swap_lock); 467 return swp_entry(type, offset); 468 } 469 nr_swap_pages++; 470 } 471 spin_unlock(&swap_lock); 472 return (swp_entry_t) {0}; 473 } 474 475 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 476 { 477 struct swap_info_struct *p; 478 unsigned long offset, type; 479 480 if (!entry.val) 481 goto out; 482 type = swp_type(entry); 483 if (type >= nr_swapfiles) 484 goto bad_nofile; 485 p = swap_info[type]; 486 if (!(p->flags & SWP_USED)) 487 goto bad_device; 488 offset = swp_offset(entry); 489 if (offset >= p->max) 490 goto bad_offset; 491 if (!p->swap_map[offset]) 492 goto bad_free; 493 spin_lock(&swap_lock); 494 return p; 495 496 bad_free: 497 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); 498 goto out; 499 bad_offset: 500 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); 501 goto out; 502 bad_device: 503 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); 504 goto out; 505 bad_nofile: 506 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); 507 out: 508 return NULL; 509 } 510 511 static unsigned char swap_entry_free(struct swap_info_struct *p, 512 swp_entry_t entry, unsigned char usage) 513 { 514 unsigned long offset = swp_offset(entry); 515 unsigned char count; 516 unsigned char has_cache; 517 518 count = p->swap_map[offset]; 519 has_cache = count & SWAP_HAS_CACHE; 520 count &= ~SWAP_HAS_CACHE; 521 522 if (usage == SWAP_HAS_CACHE) { 523 VM_BUG_ON(!has_cache); 524 has_cache = 0; 525 } else if (count == SWAP_MAP_SHMEM) { 526 /* 527 * Or we could insist on shmem.c using a special 528 * swap_shmem_free() and free_shmem_swap_and_cache()... 529 */ 530 count = 0; 531 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 532 if (count == COUNT_CONTINUED) { 533 if (swap_count_continued(p, offset, count)) 534 count = SWAP_MAP_MAX | COUNT_CONTINUED; 535 else 536 count = SWAP_MAP_MAX; 537 } else 538 count--; 539 } 540 541 if (!count) 542 mem_cgroup_uncharge_swap(entry); 543 544 usage = count | has_cache; 545 p->swap_map[offset] = usage; 546 547 /* free if no reference */ 548 if (!usage) { 549 struct gendisk *disk = p->bdev->bd_disk; 550 if (offset < p->lowest_bit) 551 p->lowest_bit = offset; 552 if (offset > p->highest_bit) 553 p->highest_bit = offset; 554 if (swap_list.next >= 0 && 555 p->prio > swap_info[swap_list.next]->prio) 556 swap_list.next = p->type; 557 nr_swap_pages++; 558 p->inuse_pages--; 559 if ((p->flags & SWP_BLKDEV) && 560 disk->fops->swap_slot_free_notify) 561 disk->fops->swap_slot_free_notify(p->bdev, offset); 562 } 563 564 return usage; 565 } 566 567 /* 568 * Caller has made sure that the swapdevice corresponding to entry 569 * is still around or has not been recycled. 570 */ 571 void swap_free(swp_entry_t entry) 572 { 573 struct swap_info_struct *p; 574 575 p = swap_info_get(entry); 576 if (p) { 577 swap_entry_free(p, entry, 1); 578 spin_unlock(&swap_lock); 579 } 580 } 581 582 /* 583 * Called after dropping swapcache to decrease refcnt to swap entries. 584 */ 585 void swapcache_free(swp_entry_t entry, struct page *page) 586 { 587 struct swap_info_struct *p; 588 unsigned char count; 589 590 p = swap_info_get(entry); 591 if (p) { 592 count = swap_entry_free(p, entry, SWAP_HAS_CACHE); 593 if (page) 594 mem_cgroup_uncharge_swapcache(page, entry, count != 0); 595 spin_unlock(&swap_lock); 596 } 597 } 598 599 /* 600 * How many references to page are currently swapped out? 601 * This does not give an exact answer when swap count is continued, 602 * but does include the high COUNT_CONTINUED flag to allow for that. 603 */ 604 int page_swapcount(struct page *page) 605 { 606 int count = 0; 607 struct swap_info_struct *p; 608 swp_entry_t entry; 609 610 entry.val = page_private(page); 611 p = swap_info_get(entry); 612 if (p) { 613 count = swap_count(p->swap_map[swp_offset(entry)]); 614 spin_unlock(&swap_lock); 615 } 616 return count; 617 } 618 619 /* 620 * We can write to an anon page without COW if there are no other references 621 * to it. And as a side-effect, free up its swap: because the old content 622 * on disk will never be read, and seeking back there to write new content 623 * later would only waste time away from clustering. 624 */ 625 int reuse_swap_page(struct page *page) 626 { 627 int count; 628 629 VM_BUG_ON(!PageLocked(page)); 630 if (unlikely(PageKsm(page))) 631 return 0; 632 count = page_mapcount(page); 633 if (count <= 1 && PageSwapCache(page)) { 634 count += page_swapcount(page); 635 if (count == 1 && !PageWriteback(page)) { 636 delete_from_swap_cache(page); 637 SetPageDirty(page); 638 } 639 } 640 return count <= 1; 641 } 642 643 /* 644 * If swap is getting full, or if there are no more mappings of this page, 645 * then try_to_free_swap is called to free its swap space. 646 */ 647 int try_to_free_swap(struct page *page) 648 { 649 VM_BUG_ON(!PageLocked(page)); 650 651 if (!PageSwapCache(page)) 652 return 0; 653 if (PageWriteback(page)) 654 return 0; 655 if (page_swapcount(page)) 656 return 0; 657 658 /* 659 * Once hibernation has begun to create its image of memory, 660 * there's a danger that one of the calls to try_to_free_swap() 661 * - most probably a call from __try_to_reclaim_swap() while 662 * hibernation is allocating its own swap pages for the image, 663 * but conceivably even a call from memory reclaim - will free 664 * the swap from a page which has already been recorded in the 665 * image as a clean swapcache page, and then reuse its swap for 666 * another page of the image. On waking from hibernation, the 667 * original page might be freed under memory pressure, then 668 * later read back in from swap, now with the wrong data. 669 * 670 * Hibration suspends storage while it is writing the image 671 * to disk so check that here. 672 */ 673 if (pm_suspended_storage()) 674 return 0; 675 676 delete_from_swap_cache(page); 677 SetPageDirty(page); 678 return 1; 679 } 680 681 /* 682 * Free the swap entry like above, but also try to 683 * free the page cache entry if it is the last user. 684 */ 685 int free_swap_and_cache(swp_entry_t entry) 686 { 687 struct swap_info_struct *p; 688 struct page *page = NULL; 689 690 if (non_swap_entry(entry)) 691 return 1; 692 693 p = swap_info_get(entry); 694 if (p) { 695 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) { 696 page = find_get_page(&swapper_space, entry.val); 697 if (page && !trylock_page(page)) { 698 page_cache_release(page); 699 page = NULL; 700 } 701 } 702 spin_unlock(&swap_lock); 703 } 704 if (page) { 705 /* 706 * Not mapped elsewhere, or swap space full? Free it! 707 * Also recheck PageSwapCache now page is locked (above). 708 */ 709 if (PageSwapCache(page) && !PageWriteback(page) && 710 (!page_mapped(page) || vm_swap_full())) { 711 delete_from_swap_cache(page); 712 SetPageDirty(page); 713 } 714 unlock_page(page); 715 page_cache_release(page); 716 } 717 return p != NULL; 718 } 719 720 #ifdef CONFIG_HIBERNATION 721 /* 722 * Find the swap type that corresponds to given device (if any). 723 * 724 * @offset - number of the PAGE_SIZE-sized block of the device, starting 725 * from 0, in which the swap header is expected to be located. 726 * 727 * This is needed for the suspend to disk (aka swsusp). 728 */ 729 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 730 { 731 struct block_device *bdev = NULL; 732 int type; 733 734 if (device) 735 bdev = bdget(device); 736 737 spin_lock(&swap_lock); 738 for (type = 0; type < nr_swapfiles; type++) { 739 struct swap_info_struct *sis = swap_info[type]; 740 741 if (!(sis->flags & SWP_WRITEOK)) 742 continue; 743 744 if (!bdev) { 745 if (bdev_p) 746 *bdev_p = bdgrab(sis->bdev); 747 748 spin_unlock(&swap_lock); 749 return type; 750 } 751 if (bdev == sis->bdev) { 752 struct swap_extent *se = &sis->first_swap_extent; 753 754 if (se->start_block == offset) { 755 if (bdev_p) 756 *bdev_p = bdgrab(sis->bdev); 757 758 spin_unlock(&swap_lock); 759 bdput(bdev); 760 return type; 761 } 762 } 763 } 764 spin_unlock(&swap_lock); 765 if (bdev) 766 bdput(bdev); 767 768 return -ENODEV; 769 } 770 771 /* 772 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 773 * corresponding to given index in swap_info (swap type). 774 */ 775 sector_t swapdev_block(int type, pgoff_t offset) 776 { 777 struct block_device *bdev; 778 779 if ((unsigned int)type >= nr_swapfiles) 780 return 0; 781 if (!(swap_info[type]->flags & SWP_WRITEOK)) 782 return 0; 783 return map_swap_entry(swp_entry(type, offset), &bdev); 784 } 785 786 /* 787 * Return either the total number of swap pages of given type, or the number 788 * of free pages of that type (depending on @free) 789 * 790 * This is needed for software suspend 791 */ 792 unsigned int count_swap_pages(int type, int free) 793 { 794 unsigned int n = 0; 795 796 spin_lock(&swap_lock); 797 if ((unsigned int)type < nr_swapfiles) { 798 struct swap_info_struct *sis = swap_info[type]; 799 800 if (sis->flags & SWP_WRITEOK) { 801 n = sis->pages; 802 if (free) 803 n -= sis->inuse_pages; 804 } 805 } 806 spin_unlock(&swap_lock); 807 return n; 808 } 809 #endif /* CONFIG_HIBERNATION */ 810 811 /* 812 * No need to decide whether this PTE shares the swap entry with others, 813 * just let do_wp_page work it out if a write is requested later - to 814 * force COW, vm_page_prot omits write permission from any private vma. 815 */ 816 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 817 unsigned long addr, swp_entry_t entry, struct page *page) 818 { 819 struct mem_cgroup *memcg; 820 spinlock_t *ptl; 821 pte_t *pte; 822 int ret = 1; 823 824 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, 825 GFP_KERNEL, &memcg)) { 826 ret = -ENOMEM; 827 goto out_nolock; 828 } 829 830 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 831 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) { 832 if (ret > 0) 833 mem_cgroup_cancel_charge_swapin(memcg); 834 ret = 0; 835 goto out; 836 } 837 838 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 839 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 840 get_page(page); 841 set_pte_at(vma->vm_mm, addr, pte, 842 pte_mkold(mk_pte(page, vma->vm_page_prot))); 843 page_add_anon_rmap(page, vma, addr); 844 mem_cgroup_commit_charge_swapin(page, memcg); 845 swap_free(entry); 846 /* 847 * Move the page to the active list so it is not 848 * immediately swapped out again after swapon. 849 */ 850 activate_page(page); 851 out: 852 pte_unmap_unlock(pte, ptl); 853 out_nolock: 854 return ret; 855 } 856 857 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 858 unsigned long addr, unsigned long end, 859 swp_entry_t entry, struct page *page) 860 { 861 pte_t swp_pte = swp_entry_to_pte(entry); 862 pte_t *pte; 863 int ret = 0; 864 865 /* 866 * We don't actually need pte lock while scanning for swp_pte: since 867 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 868 * page table while we're scanning; though it could get zapped, and on 869 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 870 * of unmatched parts which look like swp_pte, so unuse_pte must 871 * recheck under pte lock. Scanning without pte lock lets it be 872 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 873 */ 874 pte = pte_offset_map(pmd, addr); 875 do { 876 /* 877 * swapoff spends a _lot_ of time in this loop! 878 * Test inline before going to call unuse_pte. 879 */ 880 if (unlikely(pte_same(*pte, swp_pte))) { 881 pte_unmap(pte); 882 ret = unuse_pte(vma, pmd, addr, entry, page); 883 if (ret) 884 goto out; 885 pte = pte_offset_map(pmd, addr); 886 } 887 } while (pte++, addr += PAGE_SIZE, addr != end); 888 pte_unmap(pte - 1); 889 out: 890 return ret; 891 } 892 893 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 894 unsigned long addr, unsigned long end, 895 swp_entry_t entry, struct page *page) 896 { 897 pmd_t *pmd; 898 unsigned long next; 899 int ret; 900 901 pmd = pmd_offset(pud, addr); 902 do { 903 next = pmd_addr_end(addr, end); 904 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 905 continue; 906 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 907 if (ret) 908 return ret; 909 } while (pmd++, addr = next, addr != end); 910 return 0; 911 } 912 913 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 914 unsigned long addr, unsigned long end, 915 swp_entry_t entry, struct page *page) 916 { 917 pud_t *pud; 918 unsigned long next; 919 int ret; 920 921 pud = pud_offset(pgd, addr); 922 do { 923 next = pud_addr_end(addr, end); 924 if (pud_none_or_clear_bad(pud)) 925 continue; 926 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 927 if (ret) 928 return ret; 929 } while (pud++, addr = next, addr != end); 930 return 0; 931 } 932 933 static int unuse_vma(struct vm_area_struct *vma, 934 swp_entry_t entry, struct page *page) 935 { 936 pgd_t *pgd; 937 unsigned long addr, end, next; 938 int ret; 939 940 if (page_anon_vma(page)) { 941 addr = page_address_in_vma(page, vma); 942 if (addr == -EFAULT) 943 return 0; 944 else 945 end = addr + PAGE_SIZE; 946 } else { 947 addr = vma->vm_start; 948 end = vma->vm_end; 949 } 950 951 pgd = pgd_offset(vma->vm_mm, addr); 952 do { 953 next = pgd_addr_end(addr, end); 954 if (pgd_none_or_clear_bad(pgd)) 955 continue; 956 ret = unuse_pud_range(vma, pgd, addr, next, entry, page); 957 if (ret) 958 return ret; 959 } while (pgd++, addr = next, addr != end); 960 return 0; 961 } 962 963 static int unuse_mm(struct mm_struct *mm, 964 swp_entry_t entry, struct page *page) 965 { 966 struct vm_area_struct *vma; 967 int ret = 0; 968 969 if (!down_read_trylock(&mm->mmap_sem)) { 970 /* 971 * Activate page so shrink_inactive_list is unlikely to unmap 972 * its ptes while lock is dropped, so swapoff can make progress. 973 */ 974 activate_page(page); 975 unlock_page(page); 976 down_read(&mm->mmap_sem); 977 lock_page(page); 978 } 979 for (vma = mm->mmap; vma; vma = vma->vm_next) { 980 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 981 break; 982 } 983 up_read(&mm->mmap_sem); 984 return (ret < 0)? ret: 0; 985 } 986 987 /* 988 * Scan swap_map from current position to next entry still in use. 989 * Recycle to start on reaching the end, returning 0 when empty. 990 */ 991 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 992 unsigned int prev) 993 { 994 unsigned int max = si->max; 995 unsigned int i = prev; 996 unsigned char count; 997 998 /* 999 * No need for swap_lock here: we're just looking 1000 * for whether an entry is in use, not modifying it; false 1001 * hits are okay, and sys_swapoff() has already prevented new 1002 * allocations from this area (while holding swap_lock). 1003 */ 1004 for (;;) { 1005 if (++i >= max) { 1006 if (!prev) { 1007 i = 0; 1008 break; 1009 } 1010 /* 1011 * No entries in use at top of swap_map, 1012 * loop back to start and recheck there. 1013 */ 1014 max = prev + 1; 1015 prev = 0; 1016 i = 1; 1017 } 1018 count = si->swap_map[i]; 1019 if (count && swap_count(count) != SWAP_MAP_BAD) 1020 break; 1021 } 1022 return i; 1023 } 1024 1025 /* 1026 * We completely avoid races by reading each swap page in advance, 1027 * and then search for the process using it. All the necessary 1028 * page table adjustments can then be made atomically. 1029 */ 1030 static int try_to_unuse(unsigned int type) 1031 { 1032 struct swap_info_struct *si = swap_info[type]; 1033 struct mm_struct *start_mm; 1034 unsigned char *swap_map; 1035 unsigned char swcount; 1036 struct page *page; 1037 swp_entry_t entry; 1038 unsigned int i = 0; 1039 int retval = 0; 1040 1041 /* 1042 * When searching mms for an entry, a good strategy is to 1043 * start at the first mm we freed the previous entry from 1044 * (though actually we don't notice whether we or coincidence 1045 * freed the entry). Initialize this start_mm with a hold. 1046 * 1047 * A simpler strategy would be to start at the last mm we 1048 * freed the previous entry from; but that would take less 1049 * advantage of mmlist ordering, which clusters forked mms 1050 * together, child after parent. If we race with dup_mmap(), we 1051 * prefer to resolve parent before child, lest we miss entries 1052 * duplicated after we scanned child: using last mm would invert 1053 * that. 1054 */ 1055 start_mm = &init_mm; 1056 atomic_inc(&init_mm.mm_users); 1057 1058 /* 1059 * Keep on scanning until all entries have gone. Usually, 1060 * one pass through swap_map is enough, but not necessarily: 1061 * there are races when an instance of an entry might be missed. 1062 */ 1063 while ((i = find_next_to_unuse(si, i)) != 0) { 1064 if (signal_pending(current)) { 1065 retval = -EINTR; 1066 break; 1067 } 1068 1069 /* 1070 * Get a page for the entry, using the existing swap 1071 * cache page if there is one. Otherwise, get a clean 1072 * page and read the swap into it. 1073 */ 1074 swap_map = &si->swap_map[i]; 1075 entry = swp_entry(type, i); 1076 page = read_swap_cache_async(entry, 1077 GFP_HIGHUSER_MOVABLE, NULL, 0); 1078 if (!page) { 1079 /* 1080 * Either swap_duplicate() failed because entry 1081 * has been freed independently, and will not be 1082 * reused since sys_swapoff() already disabled 1083 * allocation from here, or alloc_page() failed. 1084 */ 1085 if (!*swap_map) 1086 continue; 1087 retval = -ENOMEM; 1088 break; 1089 } 1090 1091 /* 1092 * Don't hold on to start_mm if it looks like exiting. 1093 */ 1094 if (atomic_read(&start_mm->mm_users) == 1) { 1095 mmput(start_mm); 1096 start_mm = &init_mm; 1097 atomic_inc(&init_mm.mm_users); 1098 } 1099 1100 /* 1101 * Wait for and lock page. When do_swap_page races with 1102 * try_to_unuse, do_swap_page can handle the fault much 1103 * faster than try_to_unuse can locate the entry. This 1104 * apparently redundant "wait_on_page_locked" lets try_to_unuse 1105 * defer to do_swap_page in such a case - in some tests, 1106 * do_swap_page and try_to_unuse repeatedly compete. 1107 */ 1108 wait_on_page_locked(page); 1109 wait_on_page_writeback(page); 1110 lock_page(page); 1111 wait_on_page_writeback(page); 1112 1113 /* 1114 * Remove all references to entry. 1115 */ 1116 swcount = *swap_map; 1117 if (swap_count(swcount) == SWAP_MAP_SHMEM) { 1118 retval = shmem_unuse(entry, page); 1119 /* page has already been unlocked and released */ 1120 if (retval < 0) 1121 break; 1122 continue; 1123 } 1124 if (swap_count(swcount) && start_mm != &init_mm) 1125 retval = unuse_mm(start_mm, entry, page); 1126 1127 if (swap_count(*swap_map)) { 1128 int set_start_mm = (*swap_map >= swcount); 1129 struct list_head *p = &start_mm->mmlist; 1130 struct mm_struct *new_start_mm = start_mm; 1131 struct mm_struct *prev_mm = start_mm; 1132 struct mm_struct *mm; 1133 1134 atomic_inc(&new_start_mm->mm_users); 1135 atomic_inc(&prev_mm->mm_users); 1136 spin_lock(&mmlist_lock); 1137 while (swap_count(*swap_map) && !retval && 1138 (p = p->next) != &start_mm->mmlist) { 1139 mm = list_entry(p, struct mm_struct, mmlist); 1140 if (!atomic_inc_not_zero(&mm->mm_users)) 1141 continue; 1142 spin_unlock(&mmlist_lock); 1143 mmput(prev_mm); 1144 prev_mm = mm; 1145 1146 cond_resched(); 1147 1148 swcount = *swap_map; 1149 if (!swap_count(swcount)) /* any usage ? */ 1150 ; 1151 else if (mm == &init_mm) 1152 set_start_mm = 1; 1153 else 1154 retval = unuse_mm(mm, entry, page); 1155 1156 if (set_start_mm && *swap_map < swcount) { 1157 mmput(new_start_mm); 1158 atomic_inc(&mm->mm_users); 1159 new_start_mm = mm; 1160 set_start_mm = 0; 1161 } 1162 spin_lock(&mmlist_lock); 1163 } 1164 spin_unlock(&mmlist_lock); 1165 mmput(prev_mm); 1166 mmput(start_mm); 1167 start_mm = new_start_mm; 1168 } 1169 if (retval) { 1170 unlock_page(page); 1171 page_cache_release(page); 1172 break; 1173 } 1174 1175 /* 1176 * If a reference remains (rare), we would like to leave 1177 * the page in the swap cache; but try_to_unmap could 1178 * then re-duplicate the entry once we drop page lock, 1179 * so we might loop indefinitely; also, that page could 1180 * not be swapped out to other storage meanwhile. So: 1181 * delete from cache even if there's another reference, 1182 * after ensuring that the data has been saved to disk - 1183 * since if the reference remains (rarer), it will be 1184 * read from disk into another page. Splitting into two 1185 * pages would be incorrect if swap supported "shared 1186 * private" pages, but they are handled by tmpfs files. 1187 * 1188 * Given how unuse_vma() targets one particular offset 1189 * in an anon_vma, once the anon_vma has been determined, 1190 * this splitting happens to be just what is needed to 1191 * handle where KSM pages have been swapped out: re-reading 1192 * is unnecessarily slow, but we can fix that later on. 1193 */ 1194 if (swap_count(*swap_map) && 1195 PageDirty(page) && PageSwapCache(page)) { 1196 struct writeback_control wbc = { 1197 .sync_mode = WB_SYNC_NONE, 1198 }; 1199 1200 swap_writepage(page, &wbc); 1201 lock_page(page); 1202 wait_on_page_writeback(page); 1203 } 1204 1205 /* 1206 * It is conceivable that a racing task removed this page from 1207 * swap cache just before we acquired the page lock at the top, 1208 * or while we dropped it in unuse_mm(). The page might even 1209 * be back in swap cache on another swap area: that we must not 1210 * delete, since it may not have been written out to swap yet. 1211 */ 1212 if (PageSwapCache(page) && 1213 likely(page_private(page) == entry.val)) 1214 delete_from_swap_cache(page); 1215 1216 /* 1217 * So we could skip searching mms once swap count went 1218 * to 1, we did not mark any present ptes as dirty: must 1219 * mark page dirty so shrink_page_list will preserve it. 1220 */ 1221 SetPageDirty(page); 1222 unlock_page(page); 1223 page_cache_release(page); 1224 1225 /* 1226 * Make sure that we aren't completely killing 1227 * interactive performance. 1228 */ 1229 cond_resched(); 1230 } 1231 1232 mmput(start_mm); 1233 return retval; 1234 } 1235 1236 /* 1237 * After a successful try_to_unuse, if no swap is now in use, we know 1238 * we can empty the mmlist. swap_lock must be held on entry and exit. 1239 * Note that mmlist_lock nests inside swap_lock, and an mm must be 1240 * added to the mmlist just after page_duplicate - before would be racy. 1241 */ 1242 static void drain_mmlist(void) 1243 { 1244 struct list_head *p, *next; 1245 unsigned int type; 1246 1247 for (type = 0; type < nr_swapfiles; type++) 1248 if (swap_info[type]->inuse_pages) 1249 return; 1250 spin_lock(&mmlist_lock); 1251 list_for_each_safe(p, next, &init_mm.mmlist) 1252 list_del_init(p); 1253 spin_unlock(&mmlist_lock); 1254 } 1255 1256 /* 1257 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 1258 * corresponds to page offset for the specified swap entry. 1259 * Note that the type of this function is sector_t, but it returns page offset 1260 * into the bdev, not sector offset. 1261 */ 1262 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 1263 { 1264 struct swap_info_struct *sis; 1265 struct swap_extent *start_se; 1266 struct swap_extent *se; 1267 pgoff_t offset; 1268 1269 sis = swap_info[swp_type(entry)]; 1270 *bdev = sis->bdev; 1271 1272 offset = swp_offset(entry); 1273 start_se = sis->curr_swap_extent; 1274 se = start_se; 1275 1276 for ( ; ; ) { 1277 struct list_head *lh; 1278 1279 if (se->start_page <= offset && 1280 offset < (se->start_page + se->nr_pages)) { 1281 return se->start_block + (offset - se->start_page); 1282 } 1283 lh = se->list.next; 1284 se = list_entry(lh, struct swap_extent, list); 1285 sis->curr_swap_extent = se; 1286 BUG_ON(se == start_se); /* It *must* be present */ 1287 } 1288 } 1289 1290 /* 1291 * Returns the page offset into bdev for the specified page's swap entry. 1292 */ 1293 sector_t map_swap_page(struct page *page, struct block_device **bdev) 1294 { 1295 swp_entry_t entry; 1296 entry.val = page_private(page); 1297 return map_swap_entry(entry, bdev); 1298 } 1299 1300 /* 1301 * Free all of a swapdev's extent information 1302 */ 1303 static void destroy_swap_extents(struct swap_info_struct *sis) 1304 { 1305 while (!list_empty(&sis->first_swap_extent.list)) { 1306 struct swap_extent *se; 1307 1308 se = list_entry(sis->first_swap_extent.list.next, 1309 struct swap_extent, list); 1310 list_del(&se->list); 1311 kfree(se); 1312 } 1313 } 1314 1315 /* 1316 * Add a block range (and the corresponding page range) into this swapdev's 1317 * extent list. The extent list is kept sorted in page order. 1318 * 1319 * This function rather assumes that it is called in ascending page order. 1320 */ 1321 static int 1322 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 1323 unsigned long nr_pages, sector_t start_block) 1324 { 1325 struct swap_extent *se; 1326 struct swap_extent *new_se; 1327 struct list_head *lh; 1328 1329 if (start_page == 0) { 1330 se = &sis->first_swap_extent; 1331 sis->curr_swap_extent = se; 1332 se->start_page = 0; 1333 se->nr_pages = nr_pages; 1334 se->start_block = start_block; 1335 return 1; 1336 } else { 1337 lh = sis->first_swap_extent.list.prev; /* Highest extent */ 1338 se = list_entry(lh, struct swap_extent, list); 1339 BUG_ON(se->start_page + se->nr_pages != start_page); 1340 if (se->start_block + se->nr_pages == start_block) { 1341 /* Merge it */ 1342 se->nr_pages += nr_pages; 1343 return 0; 1344 } 1345 } 1346 1347 /* 1348 * No merge. Insert a new extent, preserving ordering. 1349 */ 1350 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 1351 if (new_se == NULL) 1352 return -ENOMEM; 1353 new_se->start_page = start_page; 1354 new_se->nr_pages = nr_pages; 1355 new_se->start_block = start_block; 1356 1357 list_add_tail(&new_se->list, &sis->first_swap_extent.list); 1358 return 1; 1359 } 1360 1361 /* 1362 * A `swap extent' is a simple thing which maps a contiguous range of pages 1363 * onto a contiguous range of disk blocks. An ordered list of swap extents 1364 * is built at swapon time and is then used at swap_writepage/swap_readpage 1365 * time for locating where on disk a page belongs. 1366 * 1367 * If the swapfile is an S_ISBLK block device, a single extent is installed. 1368 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 1369 * swap files identically. 1370 * 1371 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 1372 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 1373 * swapfiles are handled *identically* after swapon time. 1374 * 1375 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 1376 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 1377 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 1378 * requirements, they are simply tossed out - we will never use those blocks 1379 * for swapping. 1380 * 1381 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 1382 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 1383 * which will scribble on the fs. 1384 * 1385 * The amount of disk space which a single swap extent represents varies. 1386 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 1387 * extents in the list. To avoid much list walking, we cache the previous 1388 * search location in `curr_swap_extent', and start new searches from there. 1389 * This is extremely effective. The average number of iterations in 1390 * map_swap_page() has been measured at about 0.3 per page. - akpm. 1391 */ 1392 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 1393 { 1394 struct inode *inode; 1395 unsigned blocks_per_page; 1396 unsigned long page_no; 1397 unsigned blkbits; 1398 sector_t probe_block; 1399 sector_t last_block; 1400 sector_t lowest_block = -1; 1401 sector_t highest_block = 0; 1402 int nr_extents = 0; 1403 int ret; 1404 1405 inode = sis->swap_file->f_mapping->host; 1406 if (S_ISBLK(inode->i_mode)) { 1407 ret = add_swap_extent(sis, 0, sis->max, 0); 1408 *span = sis->pages; 1409 goto out; 1410 } 1411 1412 blkbits = inode->i_blkbits; 1413 blocks_per_page = PAGE_SIZE >> blkbits; 1414 1415 /* 1416 * Map all the blocks into the extent list. This code doesn't try 1417 * to be very smart. 1418 */ 1419 probe_block = 0; 1420 page_no = 0; 1421 last_block = i_size_read(inode) >> blkbits; 1422 while ((probe_block + blocks_per_page) <= last_block && 1423 page_no < sis->max) { 1424 unsigned block_in_page; 1425 sector_t first_block; 1426 1427 first_block = bmap(inode, probe_block); 1428 if (first_block == 0) 1429 goto bad_bmap; 1430 1431 /* 1432 * It must be PAGE_SIZE aligned on-disk 1433 */ 1434 if (first_block & (blocks_per_page - 1)) { 1435 probe_block++; 1436 goto reprobe; 1437 } 1438 1439 for (block_in_page = 1; block_in_page < blocks_per_page; 1440 block_in_page++) { 1441 sector_t block; 1442 1443 block = bmap(inode, probe_block + block_in_page); 1444 if (block == 0) 1445 goto bad_bmap; 1446 if (block != first_block + block_in_page) { 1447 /* Discontiguity */ 1448 probe_block++; 1449 goto reprobe; 1450 } 1451 } 1452 1453 first_block >>= (PAGE_SHIFT - blkbits); 1454 if (page_no) { /* exclude the header page */ 1455 if (first_block < lowest_block) 1456 lowest_block = first_block; 1457 if (first_block > highest_block) 1458 highest_block = first_block; 1459 } 1460 1461 /* 1462 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 1463 */ 1464 ret = add_swap_extent(sis, page_no, 1, first_block); 1465 if (ret < 0) 1466 goto out; 1467 nr_extents += ret; 1468 page_no++; 1469 probe_block += blocks_per_page; 1470 reprobe: 1471 continue; 1472 } 1473 ret = nr_extents; 1474 *span = 1 + highest_block - lowest_block; 1475 if (page_no == 0) 1476 page_no = 1; /* force Empty message */ 1477 sis->max = page_no; 1478 sis->pages = page_no - 1; 1479 sis->highest_bit = page_no - 1; 1480 out: 1481 return ret; 1482 bad_bmap: 1483 printk(KERN_ERR "swapon: swapfile has holes\n"); 1484 ret = -EINVAL; 1485 goto out; 1486 } 1487 1488 static void enable_swap_info(struct swap_info_struct *p, int prio, 1489 unsigned char *swap_map) 1490 { 1491 int i, prev; 1492 1493 spin_lock(&swap_lock); 1494 if (prio >= 0) 1495 p->prio = prio; 1496 else 1497 p->prio = --least_priority; 1498 p->swap_map = swap_map; 1499 p->flags |= SWP_WRITEOK; 1500 nr_swap_pages += p->pages; 1501 total_swap_pages += p->pages; 1502 1503 /* insert swap space into swap_list: */ 1504 prev = -1; 1505 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) { 1506 if (p->prio >= swap_info[i]->prio) 1507 break; 1508 prev = i; 1509 } 1510 p->next = i; 1511 if (prev < 0) 1512 swap_list.head = swap_list.next = p->type; 1513 else 1514 swap_info[prev]->next = p->type; 1515 spin_unlock(&swap_lock); 1516 } 1517 1518 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 1519 { 1520 struct swap_info_struct *p = NULL; 1521 unsigned char *swap_map; 1522 struct file *swap_file, *victim; 1523 struct address_space *mapping; 1524 struct inode *inode; 1525 char *pathname; 1526 int oom_score_adj; 1527 int i, type, prev; 1528 int err; 1529 1530 if (!capable(CAP_SYS_ADMIN)) 1531 return -EPERM; 1532 1533 BUG_ON(!current->mm); 1534 1535 pathname = getname(specialfile); 1536 err = PTR_ERR(pathname); 1537 if (IS_ERR(pathname)) 1538 goto out; 1539 1540 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0); 1541 putname(pathname); 1542 err = PTR_ERR(victim); 1543 if (IS_ERR(victim)) 1544 goto out; 1545 1546 mapping = victim->f_mapping; 1547 prev = -1; 1548 spin_lock(&swap_lock); 1549 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) { 1550 p = swap_info[type]; 1551 if (p->flags & SWP_WRITEOK) { 1552 if (p->swap_file->f_mapping == mapping) 1553 break; 1554 } 1555 prev = type; 1556 } 1557 if (type < 0) { 1558 err = -EINVAL; 1559 spin_unlock(&swap_lock); 1560 goto out_dput; 1561 } 1562 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 1563 vm_unacct_memory(p->pages); 1564 else { 1565 err = -ENOMEM; 1566 spin_unlock(&swap_lock); 1567 goto out_dput; 1568 } 1569 if (prev < 0) 1570 swap_list.head = p->next; 1571 else 1572 swap_info[prev]->next = p->next; 1573 if (type == swap_list.next) { 1574 /* just pick something that's safe... */ 1575 swap_list.next = swap_list.head; 1576 } 1577 if (p->prio < 0) { 1578 for (i = p->next; i >= 0; i = swap_info[i]->next) 1579 swap_info[i]->prio = p->prio--; 1580 least_priority++; 1581 } 1582 nr_swap_pages -= p->pages; 1583 total_swap_pages -= p->pages; 1584 p->flags &= ~SWP_WRITEOK; 1585 spin_unlock(&swap_lock); 1586 1587 oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX); 1588 err = try_to_unuse(type); 1589 compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX, oom_score_adj); 1590 1591 if (err) { 1592 /* 1593 * reading p->prio and p->swap_map outside the lock is 1594 * safe here because only sys_swapon and sys_swapoff 1595 * change them, and there can be no other sys_swapon or 1596 * sys_swapoff for this swap_info_struct at this point. 1597 */ 1598 /* re-insert swap space back into swap_list */ 1599 enable_swap_info(p, p->prio, p->swap_map); 1600 goto out_dput; 1601 } 1602 1603 destroy_swap_extents(p); 1604 if (p->flags & SWP_CONTINUED) 1605 free_swap_count_continuations(p); 1606 1607 mutex_lock(&swapon_mutex); 1608 spin_lock(&swap_lock); 1609 drain_mmlist(); 1610 1611 /* wait for anyone still in scan_swap_map */ 1612 p->highest_bit = 0; /* cuts scans short */ 1613 while (p->flags >= SWP_SCANNING) { 1614 spin_unlock(&swap_lock); 1615 schedule_timeout_uninterruptible(1); 1616 spin_lock(&swap_lock); 1617 } 1618 1619 swap_file = p->swap_file; 1620 p->swap_file = NULL; 1621 p->max = 0; 1622 swap_map = p->swap_map; 1623 p->swap_map = NULL; 1624 p->flags = 0; 1625 spin_unlock(&swap_lock); 1626 mutex_unlock(&swapon_mutex); 1627 vfree(swap_map); 1628 /* Destroy swap account informatin */ 1629 swap_cgroup_swapoff(type); 1630 1631 inode = mapping->host; 1632 if (S_ISBLK(inode->i_mode)) { 1633 struct block_device *bdev = I_BDEV(inode); 1634 set_blocksize(bdev, p->old_block_size); 1635 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 1636 } else { 1637 mutex_lock(&inode->i_mutex); 1638 inode->i_flags &= ~S_SWAPFILE; 1639 mutex_unlock(&inode->i_mutex); 1640 } 1641 filp_close(swap_file, NULL); 1642 err = 0; 1643 atomic_inc(&proc_poll_event); 1644 wake_up_interruptible(&proc_poll_wait); 1645 1646 out_dput: 1647 filp_close(victim, NULL); 1648 out: 1649 return err; 1650 } 1651 1652 #ifdef CONFIG_PROC_FS 1653 static unsigned swaps_poll(struct file *file, poll_table *wait) 1654 { 1655 struct seq_file *seq = file->private_data; 1656 1657 poll_wait(file, &proc_poll_wait, wait); 1658 1659 if (seq->poll_event != atomic_read(&proc_poll_event)) { 1660 seq->poll_event = atomic_read(&proc_poll_event); 1661 return POLLIN | POLLRDNORM | POLLERR | POLLPRI; 1662 } 1663 1664 return POLLIN | POLLRDNORM; 1665 } 1666 1667 /* iterator */ 1668 static void *swap_start(struct seq_file *swap, loff_t *pos) 1669 { 1670 struct swap_info_struct *si; 1671 int type; 1672 loff_t l = *pos; 1673 1674 mutex_lock(&swapon_mutex); 1675 1676 if (!l) 1677 return SEQ_START_TOKEN; 1678 1679 for (type = 0; type < nr_swapfiles; type++) { 1680 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 1681 si = swap_info[type]; 1682 if (!(si->flags & SWP_USED) || !si->swap_map) 1683 continue; 1684 if (!--l) 1685 return si; 1686 } 1687 1688 return NULL; 1689 } 1690 1691 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 1692 { 1693 struct swap_info_struct *si = v; 1694 int type; 1695 1696 if (v == SEQ_START_TOKEN) 1697 type = 0; 1698 else 1699 type = si->type + 1; 1700 1701 for (; type < nr_swapfiles; type++) { 1702 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 1703 si = swap_info[type]; 1704 if (!(si->flags & SWP_USED) || !si->swap_map) 1705 continue; 1706 ++*pos; 1707 return si; 1708 } 1709 1710 return NULL; 1711 } 1712 1713 static void swap_stop(struct seq_file *swap, void *v) 1714 { 1715 mutex_unlock(&swapon_mutex); 1716 } 1717 1718 static int swap_show(struct seq_file *swap, void *v) 1719 { 1720 struct swap_info_struct *si = v; 1721 struct file *file; 1722 int len; 1723 1724 if (si == SEQ_START_TOKEN) { 1725 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 1726 return 0; 1727 } 1728 1729 file = si->swap_file; 1730 len = seq_path(swap, &file->f_path, " \t\n\\"); 1731 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 1732 len < 40 ? 40 - len : 1, " ", 1733 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ? 1734 "partition" : "file\t", 1735 si->pages << (PAGE_SHIFT - 10), 1736 si->inuse_pages << (PAGE_SHIFT - 10), 1737 si->prio); 1738 return 0; 1739 } 1740 1741 static const struct seq_operations swaps_op = { 1742 .start = swap_start, 1743 .next = swap_next, 1744 .stop = swap_stop, 1745 .show = swap_show 1746 }; 1747 1748 static int swaps_open(struct inode *inode, struct file *file) 1749 { 1750 struct seq_file *seq; 1751 int ret; 1752 1753 ret = seq_open(file, &swaps_op); 1754 if (ret) 1755 return ret; 1756 1757 seq = file->private_data; 1758 seq->poll_event = atomic_read(&proc_poll_event); 1759 return 0; 1760 } 1761 1762 static const struct file_operations proc_swaps_operations = { 1763 .open = swaps_open, 1764 .read = seq_read, 1765 .llseek = seq_lseek, 1766 .release = seq_release, 1767 .poll = swaps_poll, 1768 }; 1769 1770 static int __init procswaps_init(void) 1771 { 1772 proc_create("swaps", 0, NULL, &proc_swaps_operations); 1773 return 0; 1774 } 1775 __initcall(procswaps_init); 1776 #endif /* CONFIG_PROC_FS */ 1777 1778 #ifdef MAX_SWAPFILES_CHECK 1779 static int __init max_swapfiles_check(void) 1780 { 1781 MAX_SWAPFILES_CHECK(); 1782 return 0; 1783 } 1784 late_initcall(max_swapfiles_check); 1785 #endif 1786 1787 static struct swap_info_struct *alloc_swap_info(void) 1788 { 1789 struct swap_info_struct *p; 1790 unsigned int type; 1791 1792 p = kzalloc(sizeof(*p), GFP_KERNEL); 1793 if (!p) 1794 return ERR_PTR(-ENOMEM); 1795 1796 spin_lock(&swap_lock); 1797 for (type = 0; type < nr_swapfiles; type++) { 1798 if (!(swap_info[type]->flags & SWP_USED)) 1799 break; 1800 } 1801 if (type >= MAX_SWAPFILES) { 1802 spin_unlock(&swap_lock); 1803 kfree(p); 1804 return ERR_PTR(-EPERM); 1805 } 1806 if (type >= nr_swapfiles) { 1807 p->type = type; 1808 swap_info[type] = p; 1809 /* 1810 * Write swap_info[type] before nr_swapfiles, in case a 1811 * racing procfs swap_start() or swap_next() is reading them. 1812 * (We never shrink nr_swapfiles, we never free this entry.) 1813 */ 1814 smp_wmb(); 1815 nr_swapfiles++; 1816 } else { 1817 kfree(p); 1818 p = swap_info[type]; 1819 /* 1820 * Do not memset this entry: a racing procfs swap_next() 1821 * would be relying on p->type to remain valid. 1822 */ 1823 } 1824 INIT_LIST_HEAD(&p->first_swap_extent.list); 1825 p->flags = SWP_USED; 1826 p->next = -1; 1827 spin_unlock(&swap_lock); 1828 1829 return p; 1830 } 1831 1832 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 1833 { 1834 int error; 1835 1836 if (S_ISBLK(inode->i_mode)) { 1837 p->bdev = bdgrab(I_BDEV(inode)); 1838 error = blkdev_get(p->bdev, 1839 FMODE_READ | FMODE_WRITE | FMODE_EXCL, 1840 sys_swapon); 1841 if (error < 0) { 1842 p->bdev = NULL; 1843 return -EINVAL; 1844 } 1845 p->old_block_size = block_size(p->bdev); 1846 error = set_blocksize(p->bdev, PAGE_SIZE); 1847 if (error < 0) 1848 return error; 1849 p->flags |= SWP_BLKDEV; 1850 } else if (S_ISREG(inode->i_mode)) { 1851 p->bdev = inode->i_sb->s_bdev; 1852 mutex_lock(&inode->i_mutex); 1853 if (IS_SWAPFILE(inode)) 1854 return -EBUSY; 1855 } else 1856 return -EINVAL; 1857 1858 return 0; 1859 } 1860 1861 static unsigned long read_swap_header(struct swap_info_struct *p, 1862 union swap_header *swap_header, 1863 struct inode *inode) 1864 { 1865 int i; 1866 unsigned long maxpages; 1867 unsigned long swapfilepages; 1868 1869 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 1870 printk(KERN_ERR "Unable to find swap-space signature\n"); 1871 return 0; 1872 } 1873 1874 /* swap partition endianess hack... */ 1875 if (swab32(swap_header->info.version) == 1) { 1876 swab32s(&swap_header->info.version); 1877 swab32s(&swap_header->info.last_page); 1878 swab32s(&swap_header->info.nr_badpages); 1879 for (i = 0; i < swap_header->info.nr_badpages; i++) 1880 swab32s(&swap_header->info.badpages[i]); 1881 } 1882 /* Check the swap header's sub-version */ 1883 if (swap_header->info.version != 1) { 1884 printk(KERN_WARNING 1885 "Unable to handle swap header version %d\n", 1886 swap_header->info.version); 1887 return 0; 1888 } 1889 1890 p->lowest_bit = 1; 1891 p->cluster_next = 1; 1892 p->cluster_nr = 0; 1893 1894 /* 1895 * Find out how many pages are allowed for a single swap 1896 * device. There are three limiting factors: 1) the number 1897 * of bits for the swap offset in the swp_entry_t type, and 1898 * 2) the number of bits in the swap pte as defined by the 1899 * the different architectures, and 3) the number of free bits 1900 * in an exceptional radix_tree entry. In order to find the 1901 * largest possible bit mask, a swap entry with swap type 0 1902 * and swap offset ~0UL is created, encoded to a swap pte, 1903 * decoded to a swp_entry_t again, and finally the swap 1904 * offset is extracted. This will mask all the bits from 1905 * the initial ~0UL mask that can't be encoded in either 1906 * the swp_entry_t or the architecture definition of a 1907 * swap pte. Then the same is done for a radix_tree entry. 1908 */ 1909 maxpages = swp_offset(pte_to_swp_entry( 1910 swp_entry_to_pte(swp_entry(0, ~0UL)))); 1911 maxpages = swp_offset(radix_to_swp_entry( 1912 swp_to_radix_entry(swp_entry(0, maxpages)))) + 1; 1913 1914 if (maxpages > swap_header->info.last_page) { 1915 maxpages = swap_header->info.last_page + 1; 1916 /* p->max is an unsigned int: don't overflow it */ 1917 if ((unsigned int)maxpages == 0) 1918 maxpages = UINT_MAX; 1919 } 1920 p->highest_bit = maxpages - 1; 1921 1922 if (!maxpages) 1923 return 0; 1924 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 1925 if (swapfilepages && maxpages > swapfilepages) { 1926 printk(KERN_WARNING 1927 "Swap area shorter than signature indicates\n"); 1928 return 0; 1929 } 1930 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 1931 return 0; 1932 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 1933 return 0; 1934 1935 return maxpages; 1936 } 1937 1938 static int setup_swap_map_and_extents(struct swap_info_struct *p, 1939 union swap_header *swap_header, 1940 unsigned char *swap_map, 1941 unsigned long maxpages, 1942 sector_t *span) 1943 { 1944 int i; 1945 unsigned int nr_good_pages; 1946 int nr_extents; 1947 1948 nr_good_pages = maxpages - 1; /* omit header page */ 1949 1950 for (i = 0; i < swap_header->info.nr_badpages; i++) { 1951 unsigned int page_nr = swap_header->info.badpages[i]; 1952 if (page_nr == 0 || page_nr > swap_header->info.last_page) 1953 return -EINVAL; 1954 if (page_nr < maxpages) { 1955 swap_map[page_nr] = SWAP_MAP_BAD; 1956 nr_good_pages--; 1957 } 1958 } 1959 1960 if (nr_good_pages) { 1961 swap_map[0] = SWAP_MAP_BAD; 1962 p->max = maxpages; 1963 p->pages = nr_good_pages; 1964 nr_extents = setup_swap_extents(p, span); 1965 if (nr_extents < 0) 1966 return nr_extents; 1967 nr_good_pages = p->pages; 1968 } 1969 if (!nr_good_pages) { 1970 printk(KERN_WARNING "Empty swap-file\n"); 1971 return -EINVAL; 1972 } 1973 1974 return nr_extents; 1975 } 1976 1977 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 1978 { 1979 struct swap_info_struct *p; 1980 char *name; 1981 struct file *swap_file = NULL; 1982 struct address_space *mapping; 1983 int i; 1984 int prio; 1985 int error; 1986 union swap_header *swap_header; 1987 int nr_extents; 1988 sector_t span; 1989 unsigned long maxpages; 1990 unsigned char *swap_map = NULL; 1991 struct page *page = NULL; 1992 struct inode *inode = NULL; 1993 1994 if (swap_flags & ~SWAP_FLAGS_VALID) 1995 return -EINVAL; 1996 1997 if (!capable(CAP_SYS_ADMIN)) 1998 return -EPERM; 1999 2000 p = alloc_swap_info(); 2001 if (IS_ERR(p)) 2002 return PTR_ERR(p); 2003 2004 name = getname(specialfile); 2005 if (IS_ERR(name)) { 2006 error = PTR_ERR(name); 2007 name = NULL; 2008 goto bad_swap; 2009 } 2010 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0); 2011 if (IS_ERR(swap_file)) { 2012 error = PTR_ERR(swap_file); 2013 swap_file = NULL; 2014 goto bad_swap; 2015 } 2016 2017 p->swap_file = swap_file; 2018 mapping = swap_file->f_mapping; 2019 2020 for (i = 0; i < nr_swapfiles; i++) { 2021 struct swap_info_struct *q = swap_info[i]; 2022 2023 if (q == p || !q->swap_file) 2024 continue; 2025 if (mapping == q->swap_file->f_mapping) { 2026 error = -EBUSY; 2027 goto bad_swap; 2028 } 2029 } 2030 2031 inode = mapping->host; 2032 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */ 2033 error = claim_swapfile(p, inode); 2034 if (unlikely(error)) 2035 goto bad_swap; 2036 2037 /* 2038 * Read the swap header. 2039 */ 2040 if (!mapping->a_ops->readpage) { 2041 error = -EINVAL; 2042 goto bad_swap; 2043 } 2044 page = read_mapping_page(mapping, 0, swap_file); 2045 if (IS_ERR(page)) { 2046 error = PTR_ERR(page); 2047 goto bad_swap; 2048 } 2049 swap_header = kmap(page); 2050 2051 maxpages = read_swap_header(p, swap_header, inode); 2052 if (unlikely(!maxpages)) { 2053 error = -EINVAL; 2054 goto bad_swap; 2055 } 2056 2057 /* OK, set up the swap map and apply the bad block list */ 2058 swap_map = vzalloc(maxpages); 2059 if (!swap_map) { 2060 error = -ENOMEM; 2061 goto bad_swap; 2062 } 2063 2064 error = swap_cgroup_swapon(p->type, maxpages); 2065 if (error) 2066 goto bad_swap; 2067 2068 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 2069 maxpages, &span); 2070 if (unlikely(nr_extents < 0)) { 2071 error = nr_extents; 2072 goto bad_swap; 2073 } 2074 2075 if (p->bdev) { 2076 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) { 2077 p->flags |= SWP_SOLIDSTATE; 2078 p->cluster_next = 1 + (random32() % p->highest_bit); 2079 } 2080 if ((swap_flags & SWAP_FLAG_DISCARD) && discard_swap(p) == 0) 2081 p->flags |= SWP_DISCARDABLE; 2082 } 2083 2084 mutex_lock(&swapon_mutex); 2085 prio = -1; 2086 if (swap_flags & SWAP_FLAG_PREFER) 2087 prio = 2088 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 2089 enable_swap_info(p, prio, swap_map); 2090 2091 printk(KERN_INFO "Adding %uk swap on %s. " 2092 "Priority:%d extents:%d across:%lluk %s%s\n", 2093 p->pages<<(PAGE_SHIFT-10), name, p->prio, 2094 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 2095 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 2096 (p->flags & SWP_DISCARDABLE) ? "D" : ""); 2097 2098 mutex_unlock(&swapon_mutex); 2099 atomic_inc(&proc_poll_event); 2100 wake_up_interruptible(&proc_poll_wait); 2101 2102 if (S_ISREG(inode->i_mode)) 2103 inode->i_flags |= S_SWAPFILE; 2104 error = 0; 2105 goto out; 2106 bad_swap: 2107 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 2108 set_blocksize(p->bdev, p->old_block_size); 2109 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2110 } 2111 destroy_swap_extents(p); 2112 swap_cgroup_swapoff(p->type); 2113 spin_lock(&swap_lock); 2114 p->swap_file = NULL; 2115 p->flags = 0; 2116 spin_unlock(&swap_lock); 2117 vfree(swap_map); 2118 if (swap_file) { 2119 if (inode && S_ISREG(inode->i_mode)) { 2120 mutex_unlock(&inode->i_mutex); 2121 inode = NULL; 2122 } 2123 filp_close(swap_file, NULL); 2124 } 2125 out: 2126 if (page && !IS_ERR(page)) { 2127 kunmap(page); 2128 page_cache_release(page); 2129 } 2130 if (name) 2131 putname(name); 2132 if (inode && S_ISREG(inode->i_mode)) 2133 mutex_unlock(&inode->i_mutex); 2134 return error; 2135 } 2136 2137 void si_swapinfo(struct sysinfo *val) 2138 { 2139 unsigned int type; 2140 unsigned long nr_to_be_unused = 0; 2141 2142 spin_lock(&swap_lock); 2143 for (type = 0; type < nr_swapfiles; type++) { 2144 struct swap_info_struct *si = swap_info[type]; 2145 2146 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 2147 nr_to_be_unused += si->inuse_pages; 2148 } 2149 val->freeswap = nr_swap_pages + nr_to_be_unused; 2150 val->totalswap = total_swap_pages + nr_to_be_unused; 2151 spin_unlock(&swap_lock); 2152 } 2153 2154 /* 2155 * Verify that a swap entry is valid and increment its swap map count. 2156 * 2157 * Returns error code in following case. 2158 * - success -> 0 2159 * - swp_entry is invalid -> EINVAL 2160 * - swp_entry is migration entry -> EINVAL 2161 * - swap-cache reference is requested but there is already one. -> EEXIST 2162 * - swap-cache reference is requested but the entry is not used. -> ENOENT 2163 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 2164 */ 2165 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 2166 { 2167 struct swap_info_struct *p; 2168 unsigned long offset, type; 2169 unsigned char count; 2170 unsigned char has_cache; 2171 int err = -EINVAL; 2172 2173 if (non_swap_entry(entry)) 2174 goto out; 2175 2176 type = swp_type(entry); 2177 if (type >= nr_swapfiles) 2178 goto bad_file; 2179 p = swap_info[type]; 2180 offset = swp_offset(entry); 2181 2182 spin_lock(&swap_lock); 2183 if (unlikely(offset >= p->max)) 2184 goto unlock_out; 2185 2186 count = p->swap_map[offset]; 2187 has_cache = count & SWAP_HAS_CACHE; 2188 count &= ~SWAP_HAS_CACHE; 2189 err = 0; 2190 2191 if (usage == SWAP_HAS_CACHE) { 2192 2193 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 2194 if (!has_cache && count) 2195 has_cache = SWAP_HAS_CACHE; 2196 else if (has_cache) /* someone else added cache */ 2197 err = -EEXIST; 2198 else /* no users remaining */ 2199 err = -ENOENT; 2200 2201 } else if (count || has_cache) { 2202 2203 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 2204 count += usage; 2205 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 2206 err = -EINVAL; 2207 else if (swap_count_continued(p, offset, count)) 2208 count = COUNT_CONTINUED; 2209 else 2210 err = -ENOMEM; 2211 } else 2212 err = -ENOENT; /* unused swap entry */ 2213 2214 p->swap_map[offset] = count | has_cache; 2215 2216 unlock_out: 2217 spin_unlock(&swap_lock); 2218 out: 2219 return err; 2220 2221 bad_file: 2222 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); 2223 goto out; 2224 } 2225 2226 /* 2227 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 2228 * (in which case its reference count is never incremented). 2229 */ 2230 void swap_shmem_alloc(swp_entry_t entry) 2231 { 2232 __swap_duplicate(entry, SWAP_MAP_SHMEM); 2233 } 2234 2235 /* 2236 * Increase reference count of swap entry by 1. 2237 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 2238 * but could not be atomically allocated. Returns 0, just as if it succeeded, 2239 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 2240 * might occur if a page table entry has got corrupted. 2241 */ 2242 int swap_duplicate(swp_entry_t entry) 2243 { 2244 int err = 0; 2245 2246 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 2247 err = add_swap_count_continuation(entry, GFP_ATOMIC); 2248 return err; 2249 } 2250 2251 /* 2252 * @entry: swap entry for which we allocate swap cache. 2253 * 2254 * Called when allocating swap cache for existing swap entry, 2255 * This can return error codes. Returns 0 at success. 2256 * -EBUSY means there is a swap cache. 2257 * Note: return code is different from swap_duplicate(). 2258 */ 2259 int swapcache_prepare(swp_entry_t entry) 2260 { 2261 return __swap_duplicate(entry, SWAP_HAS_CACHE); 2262 } 2263 2264 /* 2265 * add_swap_count_continuation - called when a swap count is duplicated 2266 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 2267 * page of the original vmalloc'ed swap_map, to hold the continuation count 2268 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 2269 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 2270 * 2271 * These continuation pages are seldom referenced: the common paths all work 2272 * on the original swap_map, only referring to a continuation page when the 2273 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 2274 * 2275 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 2276 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 2277 * can be called after dropping locks. 2278 */ 2279 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 2280 { 2281 struct swap_info_struct *si; 2282 struct page *head; 2283 struct page *page; 2284 struct page *list_page; 2285 pgoff_t offset; 2286 unsigned char count; 2287 2288 /* 2289 * When debugging, it's easier to use __GFP_ZERO here; but it's better 2290 * for latency not to zero a page while GFP_ATOMIC and holding locks. 2291 */ 2292 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 2293 2294 si = swap_info_get(entry); 2295 if (!si) { 2296 /* 2297 * An acceptable race has occurred since the failing 2298 * __swap_duplicate(): the swap entry has been freed, 2299 * perhaps even the whole swap_map cleared for swapoff. 2300 */ 2301 goto outer; 2302 } 2303 2304 offset = swp_offset(entry); 2305 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 2306 2307 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 2308 /* 2309 * The higher the swap count, the more likely it is that tasks 2310 * will race to add swap count continuation: we need to avoid 2311 * over-provisioning. 2312 */ 2313 goto out; 2314 } 2315 2316 if (!page) { 2317 spin_unlock(&swap_lock); 2318 return -ENOMEM; 2319 } 2320 2321 /* 2322 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 2323 * no architecture is using highmem pages for kernel pagetables: so it 2324 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps. 2325 */ 2326 head = vmalloc_to_page(si->swap_map + offset); 2327 offset &= ~PAGE_MASK; 2328 2329 /* 2330 * Page allocation does not initialize the page's lru field, 2331 * but it does always reset its private field. 2332 */ 2333 if (!page_private(head)) { 2334 BUG_ON(count & COUNT_CONTINUED); 2335 INIT_LIST_HEAD(&head->lru); 2336 set_page_private(head, SWP_CONTINUED); 2337 si->flags |= SWP_CONTINUED; 2338 } 2339 2340 list_for_each_entry(list_page, &head->lru, lru) { 2341 unsigned char *map; 2342 2343 /* 2344 * If the previous map said no continuation, but we've found 2345 * a continuation page, free our allocation and use this one. 2346 */ 2347 if (!(count & COUNT_CONTINUED)) 2348 goto out; 2349 2350 map = kmap_atomic(list_page) + offset; 2351 count = *map; 2352 kunmap_atomic(map); 2353 2354 /* 2355 * If this continuation count now has some space in it, 2356 * free our allocation and use this one. 2357 */ 2358 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 2359 goto out; 2360 } 2361 2362 list_add_tail(&page->lru, &head->lru); 2363 page = NULL; /* now it's attached, don't free it */ 2364 out: 2365 spin_unlock(&swap_lock); 2366 outer: 2367 if (page) 2368 __free_page(page); 2369 return 0; 2370 } 2371 2372 /* 2373 * swap_count_continued - when the original swap_map count is incremented 2374 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 2375 * into, carry if so, or else fail until a new continuation page is allocated; 2376 * when the original swap_map count is decremented from 0 with continuation, 2377 * borrow from the continuation and report whether it still holds more. 2378 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock. 2379 */ 2380 static bool swap_count_continued(struct swap_info_struct *si, 2381 pgoff_t offset, unsigned char count) 2382 { 2383 struct page *head; 2384 struct page *page; 2385 unsigned char *map; 2386 2387 head = vmalloc_to_page(si->swap_map + offset); 2388 if (page_private(head) != SWP_CONTINUED) { 2389 BUG_ON(count & COUNT_CONTINUED); 2390 return false; /* need to add count continuation */ 2391 } 2392 2393 offset &= ~PAGE_MASK; 2394 page = list_entry(head->lru.next, struct page, lru); 2395 map = kmap_atomic(page) + offset; 2396 2397 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 2398 goto init_map; /* jump over SWAP_CONT_MAX checks */ 2399 2400 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 2401 /* 2402 * Think of how you add 1 to 999 2403 */ 2404 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 2405 kunmap_atomic(map); 2406 page = list_entry(page->lru.next, struct page, lru); 2407 BUG_ON(page == head); 2408 map = kmap_atomic(page) + offset; 2409 } 2410 if (*map == SWAP_CONT_MAX) { 2411 kunmap_atomic(map); 2412 page = list_entry(page->lru.next, struct page, lru); 2413 if (page == head) 2414 return false; /* add count continuation */ 2415 map = kmap_atomic(page) + offset; 2416 init_map: *map = 0; /* we didn't zero the page */ 2417 } 2418 *map += 1; 2419 kunmap_atomic(map); 2420 page = list_entry(page->lru.prev, struct page, lru); 2421 while (page != head) { 2422 map = kmap_atomic(page) + offset; 2423 *map = COUNT_CONTINUED; 2424 kunmap_atomic(map); 2425 page = list_entry(page->lru.prev, struct page, lru); 2426 } 2427 return true; /* incremented */ 2428 2429 } else { /* decrementing */ 2430 /* 2431 * Think of how you subtract 1 from 1000 2432 */ 2433 BUG_ON(count != COUNT_CONTINUED); 2434 while (*map == COUNT_CONTINUED) { 2435 kunmap_atomic(map); 2436 page = list_entry(page->lru.next, struct page, lru); 2437 BUG_ON(page == head); 2438 map = kmap_atomic(page) + offset; 2439 } 2440 BUG_ON(*map == 0); 2441 *map -= 1; 2442 if (*map == 0) 2443 count = 0; 2444 kunmap_atomic(map); 2445 page = list_entry(page->lru.prev, struct page, lru); 2446 while (page != head) { 2447 map = kmap_atomic(page) + offset; 2448 *map = SWAP_CONT_MAX | count; 2449 count = COUNT_CONTINUED; 2450 kunmap_atomic(map); 2451 page = list_entry(page->lru.prev, struct page, lru); 2452 } 2453 return count == COUNT_CONTINUED; 2454 } 2455 } 2456 2457 /* 2458 * free_swap_count_continuations - swapoff free all the continuation pages 2459 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 2460 */ 2461 static void free_swap_count_continuations(struct swap_info_struct *si) 2462 { 2463 pgoff_t offset; 2464 2465 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 2466 struct page *head; 2467 head = vmalloc_to_page(si->swap_map + offset); 2468 if (page_private(head)) { 2469 struct list_head *this, *next; 2470 list_for_each_safe(this, next, &head->lru) { 2471 struct page *page; 2472 page = list_entry(this, struct page, lru); 2473 list_del(this); 2474 __free_page(page); 2475 } 2476 } 2477 } 2478 } 2479