xref: /linux/mm/swapfile.c (revision 71ca97da9d027009d318d319cbacf54a72f666c1)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 
35 #include <asm/pgtable.h>
36 #include <asm/tlbflush.h>
37 #include <linux/swapops.h>
38 #include <linux/page_cgroup.h>
39 
40 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
41 				 unsigned char);
42 static void free_swap_count_continuations(struct swap_info_struct *);
43 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
44 
45 static DEFINE_SPINLOCK(swap_lock);
46 static unsigned int nr_swapfiles;
47 long nr_swap_pages;
48 long total_swap_pages;
49 static int least_priority;
50 
51 static const char Bad_file[] = "Bad swap file entry ";
52 static const char Unused_file[] = "Unused swap file entry ";
53 static const char Bad_offset[] = "Bad swap offset entry ";
54 static const char Unused_offset[] = "Unused swap offset entry ";
55 
56 static struct swap_list_t swap_list = {-1, -1};
57 
58 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
59 
60 static DEFINE_MUTEX(swapon_mutex);
61 
62 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
63 /* Activity counter to indicate that a swapon or swapoff has occurred */
64 static atomic_t proc_poll_event = ATOMIC_INIT(0);
65 
66 static inline unsigned char swap_count(unsigned char ent)
67 {
68 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
69 }
70 
71 /* returns 1 if swap entry is freed */
72 static int
73 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
74 {
75 	swp_entry_t entry = swp_entry(si->type, offset);
76 	struct page *page;
77 	int ret = 0;
78 
79 	page = find_get_page(&swapper_space, entry.val);
80 	if (!page)
81 		return 0;
82 	/*
83 	 * This function is called from scan_swap_map() and it's called
84 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
85 	 * We have to use trylock for avoiding deadlock. This is a special
86 	 * case and you should use try_to_free_swap() with explicit lock_page()
87 	 * in usual operations.
88 	 */
89 	if (trylock_page(page)) {
90 		ret = try_to_free_swap(page);
91 		unlock_page(page);
92 	}
93 	page_cache_release(page);
94 	return ret;
95 }
96 
97 /*
98  * swapon tell device that all the old swap contents can be discarded,
99  * to allow the swap device to optimize its wear-levelling.
100  */
101 static int discard_swap(struct swap_info_struct *si)
102 {
103 	struct swap_extent *se;
104 	sector_t start_block;
105 	sector_t nr_blocks;
106 	int err = 0;
107 
108 	/* Do not discard the swap header page! */
109 	se = &si->first_swap_extent;
110 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
111 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
112 	if (nr_blocks) {
113 		err = blkdev_issue_discard(si->bdev, start_block,
114 				nr_blocks, GFP_KERNEL, 0);
115 		if (err)
116 			return err;
117 		cond_resched();
118 	}
119 
120 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
121 		start_block = se->start_block << (PAGE_SHIFT - 9);
122 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
123 
124 		err = blkdev_issue_discard(si->bdev, start_block,
125 				nr_blocks, GFP_KERNEL, 0);
126 		if (err)
127 			break;
128 
129 		cond_resched();
130 	}
131 	return err;		/* That will often be -EOPNOTSUPP */
132 }
133 
134 /*
135  * swap allocation tell device that a cluster of swap can now be discarded,
136  * to allow the swap device to optimize its wear-levelling.
137  */
138 static void discard_swap_cluster(struct swap_info_struct *si,
139 				 pgoff_t start_page, pgoff_t nr_pages)
140 {
141 	struct swap_extent *se = si->curr_swap_extent;
142 	int found_extent = 0;
143 
144 	while (nr_pages) {
145 		struct list_head *lh;
146 
147 		if (se->start_page <= start_page &&
148 		    start_page < se->start_page + se->nr_pages) {
149 			pgoff_t offset = start_page - se->start_page;
150 			sector_t start_block = se->start_block + offset;
151 			sector_t nr_blocks = se->nr_pages - offset;
152 
153 			if (nr_blocks > nr_pages)
154 				nr_blocks = nr_pages;
155 			start_page += nr_blocks;
156 			nr_pages -= nr_blocks;
157 
158 			if (!found_extent++)
159 				si->curr_swap_extent = se;
160 
161 			start_block <<= PAGE_SHIFT - 9;
162 			nr_blocks <<= PAGE_SHIFT - 9;
163 			if (blkdev_issue_discard(si->bdev, start_block,
164 				    nr_blocks, GFP_NOIO, 0))
165 				break;
166 		}
167 
168 		lh = se->list.next;
169 		se = list_entry(lh, struct swap_extent, list);
170 	}
171 }
172 
173 static int wait_for_discard(void *word)
174 {
175 	schedule();
176 	return 0;
177 }
178 
179 #define SWAPFILE_CLUSTER	256
180 #define LATENCY_LIMIT		256
181 
182 static unsigned long scan_swap_map(struct swap_info_struct *si,
183 				   unsigned char usage)
184 {
185 	unsigned long offset;
186 	unsigned long scan_base;
187 	unsigned long last_in_cluster = 0;
188 	int latency_ration = LATENCY_LIMIT;
189 	int found_free_cluster = 0;
190 
191 	/*
192 	 * We try to cluster swap pages by allocating them sequentially
193 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
194 	 * way, however, we resort to first-free allocation, starting
195 	 * a new cluster.  This prevents us from scattering swap pages
196 	 * all over the entire swap partition, so that we reduce
197 	 * overall disk seek times between swap pages.  -- sct
198 	 * But we do now try to find an empty cluster.  -Andrea
199 	 * And we let swap pages go all over an SSD partition.  Hugh
200 	 */
201 
202 	si->flags += SWP_SCANNING;
203 	scan_base = offset = si->cluster_next;
204 
205 	if (unlikely(!si->cluster_nr--)) {
206 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
207 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
208 			goto checks;
209 		}
210 		if (si->flags & SWP_DISCARDABLE) {
211 			/*
212 			 * Start range check on racing allocations, in case
213 			 * they overlap the cluster we eventually decide on
214 			 * (we scan without swap_lock to allow preemption).
215 			 * It's hardly conceivable that cluster_nr could be
216 			 * wrapped during our scan, but don't depend on it.
217 			 */
218 			if (si->lowest_alloc)
219 				goto checks;
220 			si->lowest_alloc = si->max;
221 			si->highest_alloc = 0;
222 		}
223 		spin_unlock(&swap_lock);
224 
225 		/*
226 		 * If seek is expensive, start searching for new cluster from
227 		 * start of partition, to minimize the span of allocated swap.
228 		 * But if seek is cheap, search from our current position, so
229 		 * that swap is allocated from all over the partition: if the
230 		 * Flash Translation Layer only remaps within limited zones,
231 		 * we don't want to wear out the first zone too quickly.
232 		 */
233 		if (!(si->flags & SWP_SOLIDSTATE))
234 			scan_base = offset = si->lowest_bit;
235 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
236 
237 		/* Locate the first empty (unaligned) cluster */
238 		for (; last_in_cluster <= si->highest_bit; offset++) {
239 			if (si->swap_map[offset])
240 				last_in_cluster = offset + SWAPFILE_CLUSTER;
241 			else if (offset == last_in_cluster) {
242 				spin_lock(&swap_lock);
243 				offset -= SWAPFILE_CLUSTER - 1;
244 				si->cluster_next = offset;
245 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
246 				found_free_cluster = 1;
247 				goto checks;
248 			}
249 			if (unlikely(--latency_ration < 0)) {
250 				cond_resched();
251 				latency_ration = LATENCY_LIMIT;
252 			}
253 		}
254 
255 		offset = si->lowest_bit;
256 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
257 
258 		/* Locate the first empty (unaligned) cluster */
259 		for (; last_in_cluster < scan_base; offset++) {
260 			if (si->swap_map[offset])
261 				last_in_cluster = offset + SWAPFILE_CLUSTER;
262 			else if (offset == last_in_cluster) {
263 				spin_lock(&swap_lock);
264 				offset -= SWAPFILE_CLUSTER - 1;
265 				si->cluster_next = offset;
266 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
267 				found_free_cluster = 1;
268 				goto checks;
269 			}
270 			if (unlikely(--latency_ration < 0)) {
271 				cond_resched();
272 				latency_ration = LATENCY_LIMIT;
273 			}
274 		}
275 
276 		offset = scan_base;
277 		spin_lock(&swap_lock);
278 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
279 		si->lowest_alloc = 0;
280 	}
281 
282 checks:
283 	if (!(si->flags & SWP_WRITEOK))
284 		goto no_page;
285 	if (!si->highest_bit)
286 		goto no_page;
287 	if (offset > si->highest_bit)
288 		scan_base = offset = si->lowest_bit;
289 
290 	/* reuse swap entry of cache-only swap if not busy. */
291 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
292 		int swap_was_freed;
293 		spin_unlock(&swap_lock);
294 		swap_was_freed = __try_to_reclaim_swap(si, offset);
295 		spin_lock(&swap_lock);
296 		/* entry was freed successfully, try to use this again */
297 		if (swap_was_freed)
298 			goto checks;
299 		goto scan; /* check next one */
300 	}
301 
302 	if (si->swap_map[offset])
303 		goto scan;
304 
305 	if (offset == si->lowest_bit)
306 		si->lowest_bit++;
307 	if (offset == si->highest_bit)
308 		si->highest_bit--;
309 	si->inuse_pages++;
310 	if (si->inuse_pages == si->pages) {
311 		si->lowest_bit = si->max;
312 		si->highest_bit = 0;
313 	}
314 	si->swap_map[offset] = usage;
315 	si->cluster_next = offset + 1;
316 	si->flags -= SWP_SCANNING;
317 
318 	if (si->lowest_alloc) {
319 		/*
320 		 * Only set when SWP_DISCARDABLE, and there's a scan
321 		 * for a free cluster in progress or just completed.
322 		 */
323 		if (found_free_cluster) {
324 			/*
325 			 * To optimize wear-levelling, discard the
326 			 * old data of the cluster, taking care not to
327 			 * discard any of its pages that have already
328 			 * been allocated by racing tasks (offset has
329 			 * already stepped over any at the beginning).
330 			 */
331 			if (offset < si->highest_alloc &&
332 			    si->lowest_alloc <= last_in_cluster)
333 				last_in_cluster = si->lowest_alloc - 1;
334 			si->flags |= SWP_DISCARDING;
335 			spin_unlock(&swap_lock);
336 
337 			if (offset < last_in_cluster)
338 				discard_swap_cluster(si, offset,
339 					last_in_cluster - offset + 1);
340 
341 			spin_lock(&swap_lock);
342 			si->lowest_alloc = 0;
343 			si->flags &= ~SWP_DISCARDING;
344 
345 			smp_mb();	/* wake_up_bit advises this */
346 			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
347 
348 		} else if (si->flags & SWP_DISCARDING) {
349 			/*
350 			 * Delay using pages allocated by racing tasks
351 			 * until the whole discard has been issued. We
352 			 * could defer that delay until swap_writepage,
353 			 * but it's easier to keep this self-contained.
354 			 */
355 			spin_unlock(&swap_lock);
356 			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
357 				wait_for_discard, TASK_UNINTERRUPTIBLE);
358 			spin_lock(&swap_lock);
359 		} else {
360 			/*
361 			 * Note pages allocated by racing tasks while
362 			 * scan for a free cluster is in progress, so
363 			 * that its final discard can exclude them.
364 			 */
365 			if (offset < si->lowest_alloc)
366 				si->lowest_alloc = offset;
367 			if (offset > si->highest_alloc)
368 				si->highest_alloc = offset;
369 		}
370 	}
371 	return offset;
372 
373 scan:
374 	spin_unlock(&swap_lock);
375 	while (++offset <= si->highest_bit) {
376 		if (!si->swap_map[offset]) {
377 			spin_lock(&swap_lock);
378 			goto checks;
379 		}
380 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
381 			spin_lock(&swap_lock);
382 			goto checks;
383 		}
384 		if (unlikely(--latency_ration < 0)) {
385 			cond_resched();
386 			latency_ration = LATENCY_LIMIT;
387 		}
388 	}
389 	offset = si->lowest_bit;
390 	while (++offset < scan_base) {
391 		if (!si->swap_map[offset]) {
392 			spin_lock(&swap_lock);
393 			goto checks;
394 		}
395 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
396 			spin_lock(&swap_lock);
397 			goto checks;
398 		}
399 		if (unlikely(--latency_ration < 0)) {
400 			cond_resched();
401 			latency_ration = LATENCY_LIMIT;
402 		}
403 	}
404 	spin_lock(&swap_lock);
405 
406 no_page:
407 	si->flags -= SWP_SCANNING;
408 	return 0;
409 }
410 
411 swp_entry_t get_swap_page(void)
412 {
413 	struct swap_info_struct *si;
414 	pgoff_t offset;
415 	int type, next;
416 	int wrapped = 0;
417 
418 	spin_lock(&swap_lock);
419 	if (nr_swap_pages <= 0)
420 		goto noswap;
421 	nr_swap_pages--;
422 
423 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
424 		si = swap_info[type];
425 		next = si->next;
426 		if (next < 0 ||
427 		    (!wrapped && si->prio != swap_info[next]->prio)) {
428 			next = swap_list.head;
429 			wrapped++;
430 		}
431 
432 		if (!si->highest_bit)
433 			continue;
434 		if (!(si->flags & SWP_WRITEOK))
435 			continue;
436 
437 		swap_list.next = next;
438 		/* This is called for allocating swap entry for cache */
439 		offset = scan_swap_map(si, SWAP_HAS_CACHE);
440 		if (offset) {
441 			spin_unlock(&swap_lock);
442 			return swp_entry(type, offset);
443 		}
444 		next = swap_list.next;
445 	}
446 
447 	nr_swap_pages++;
448 noswap:
449 	spin_unlock(&swap_lock);
450 	return (swp_entry_t) {0};
451 }
452 
453 /* The only caller of this function is now susupend routine */
454 swp_entry_t get_swap_page_of_type(int type)
455 {
456 	struct swap_info_struct *si;
457 	pgoff_t offset;
458 
459 	spin_lock(&swap_lock);
460 	si = swap_info[type];
461 	if (si && (si->flags & SWP_WRITEOK)) {
462 		nr_swap_pages--;
463 		/* This is called for allocating swap entry, not cache */
464 		offset = scan_swap_map(si, 1);
465 		if (offset) {
466 			spin_unlock(&swap_lock);
467 			return swp_entry(type, offset);
468 		}
469 		nr_swap_pages++;
470 	}
471 	spin_unlock(&swap_lock);
472 	return (swp_entry_t) {0};
473 }
474 
475 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
476 {
477 	struct swap_info_struct *p;
478 	unsigned long offset, type;
479 
480 	if (!entry.val)
481 		goto out;
482 	type = swp_type(entry);
483 	if (type >= nr_swapfiles)
484 		goto bad_nofile;
485 	p = swap_info[type];
486 	if (!(p->flags & SWP_USED))
487 		goto bad_device;
488 	offset = swp_offset(entry);
489 	if (offset >= p->max)
490 		goto bad_offset;
491 	if (!p->swap_map[offset])
492 		goto bad_free;
493 	spin_lock(&swap_lock);
494 	return p;
495 
496 bad_free:
497 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
498 	goto out;
499 bad_offset:
500 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
501 	goto out;
502 bad_device:
503 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
504 	goto out;
505 bad_nofile:
506 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
507 out:
508 	return NULL;
509 }
510 
511 static unsigned char swap_entry_free(struct swap_info_struct *p,
512 				     swp_entry_t entry, unsigned char usage)
513 {
514 	unsigned long offset = swp_offset(entry);
515 	unsigned char count;
516 	unsigned char has_cache;
517 
518 	count = p->swap_map[offset];
519 	has_cache = count & SWAP_HAS_CACHE;
520 	count &= ~SWAP_HAS_CACHE;
521 
522 	if (usage == SWAP_HAS_CACHE) {
523 		VM_BUG_ON(!has_cache);
524 		has_cache = 0;
525 	} else if (count == SWAP_MAP_SHMEM) {
526 		/*
527 		 * Or we could insist on shmem.c using a special
528 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
529 		 */
530 		count = 0;
531 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
532 		if (count == COUNT_CONTINUED) {
533 			if (swap_count_continued(p, offset, count))
534 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
535 			else
536 				count = SWAP_MAP_MAX;
537 		} else
538 			count--;
539 	}
540 
541 	if (!count)
542 		mem_cgroup_uncharge_swap(entry);
543 
544 	usage = count | has_cache;
545 	p->swap_map[offset] = usage;
546 
547 	/* free if no reference */
548 	if (!usage) {
549 		struct gendisk *disk = p->bdev->bd_disk;
550 		if (offset < p->lowest_bit)
551 			p->lowest_bit = offset;
552 		if (offset > p->highest_bit)
553 			p->highest_bit = offset;
554 		if (swap_list.next >= 0 &&
555 		    p->prio > swap_info[swap_list.next]->prio)
556 			swap_list.next = p->type;
557 		nr_swap_pages++;
558 		p->inuse_pages--;
559 		if ((p->flags & SWP_BLKDEV) &&
560 				disk->fops->swap_slot_free_notify)
561 			disk->fops->swap_slot_free_notify(p->bdev, offset);
562 	}
563 
564 	return usage;
565 }
566 
567 /*
568  * Caller has made sure that the swapdevice corresponding to entry
569  * is still around or has not been recycled.
570  */
571 void swap_free(swp_entry_t entry)
572 {
573 	struct swap_info_struct *p;
574 
575 	p = swap_info_get(entry);
576 	if (p) {
577 		swap_entry_free(p, entry, 1);
578 		spin_unlock(&swap_lock);
579 	}
580 }
581 
582 /*
583  * Called after dropping swapcache to decrease refcnt to swap entries.
584  */
585 void swapcache_free(swp_entry_t entry, struct page *page)
586 {
587 	struct swap_info_struct *p;
588 	unsigned char count;
589 
590 	p = swap_info_get(entry);
591 	if (p) {
592 		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
593 		if (page)
594 			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
595 		spin_unlock(&swap_lock);
596 	}
597 }
598 
599 /*
600  * How many references to page are currently swapped out?
601  * This does not give an exact answer when swap count is continued,
602  * but does include the high COUNT_CONTINUED flag to allow for that.
603  */
604 int page_swapcount(struct page *page)
605 {
606 	int count = 0;
607 	struct swap_info_struct *p;
608 	swp_entry_t entry;
609 
610 	entry.val = page_private(page);
611 	p = swap_info_get(entry);
612 	if (p) {
613 		count = swap_count(p->swap_map[swp_offset(entry)]);
614 		spin_unlock(&swap_lock);
615 	}
616 	return count;
617 }
618 
619 /*
620  * We can write to an anon page without COW if there are no other references
621  * to it.  And as a side-effect, free up its swap: because the old content
622  * on disk will never be read, and seeking back there to write new content
623  * later would only waste time away from clustering.
624  */
625 int reuse_swap_page(struct page *page)
626 {
627 	int count;
628 
629 	VM_BUG_ON(!PageLocked(page));
630 	if (unlikely(PageKsm(page)))
631 		return 0;
632 	count = page_mapcount(page);
633 	if (count <= 1 && PageSwapCache(page)) {
634 		count += page_swapcount(page);
635 		if (count == 1 && !PageWriteback(page)) {
636 			delete_from_swap_cache(page);
637 			SetPageDirty(page);
638 		}
639 	}
640 	return count <= 1;
641 }
642 
643 /*
644  * If swap is getting full, or if there are no more mappings of this page,
645  * then try_to_free_swap is called to free its swap space.
646  */
647 int try_to_free_swap(struct page *page)
648 {
649 	VM_BUG_ON(!PageLocked(page));
650 
651 	if (!PageSwapCache(page))
652 		return 0;
653 	if (PageWriteback(page))
654 		return 0;
655 	if (page_swapcount(page))
656 		return 0;
657 
658 	/*
659 	 * Once hibernation has begun to create its image of memory,
660 	 * there's a danger that one of the calls to try_to_free_swap()
661 	 * - most probably a call from __try_to_reclaim_swap() while
662 	 * hibernation is allocating its own swap pages for the image,
663 	 * but conceivably even a call from memory reclaim - will free
664 	 * the swap from a page which has already been recorded in the
665 	 * image as a clean swapcache page, and then reuse its swap for
666 	 * another page of the image.  On waking from hibernation, the
667 	 * original page might be freed under memory pressure, then
668 	 * later read back in from swap, now with the wrong data.
669 	 *
670 	 * Hibration suspends storage while it is writing the image
671 	 * to disk so check that here.
672 	 */
673 	if (pm_suspended_storage())
674 		return 0;
675 
676 	delete_from_swap_cache(page);
677 	SetPageDirty(page);
678 	return 1;
679 }
680 
681 /*
682  * Free the swap entry like above, but also try to
683  * free the page cache entry if it is the last user.
684  */
685 int free_swap_and_cache(swp_entry_t entry)
686 {
687 	struct swap_info_struct *p;
688 	struct page *page = NULL;
689 
690 	if (non_swap_entry(entry))
691 		return 1;
692 
693 	p = swap_info_get(entry);
694 	if (p) {
695 		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
696 			page = find_get_page(&swapper_space, entry.val);
697 			if (page && !trylock_page(page)) {
698 				page_cache_release(page);
699 				page = NULL;
700 			}
701 		}
702 		spin_unlock(&swap_lock);
703 	}
704 	if (page) {
705 		/*
706 		 * Not mapped elsewhere, or swap space full? Free it!
707 		 * Also recheck PageSwapCache now page is locked (above).
708 		 */
709 		if (PageSwapCache(page) && !PageWriteback(page) &&
710 				(!page_mapped(page) || vm_swap_full())) {
711 			delete_from_swap_cache(page);
712 			SetPageDirty(page);
713 		}
714 		unlock_page(page);
715 		page_cache_release(page);
716 	}
717 	return p != NULL;
718 }
719 
720 #ifdef CONFIG_HIBERNATION
721 /*
722  * Find the swap type that corresponds to given device (if any).
723  *
724  * @offset - number of the PAGE_SIZE-sized block of the device, starting
725  * from 0, in which the swap header is expected to be located.
726  *
727  * This is needed for the suspend to disk (aka swsusp).
728  */
729 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
730 {
731 	struct block_device *bdev = NULL;
732 	int type;
733 
734 	if (device)
735 		bdev = bdget(device);
736 
737 	spin_lock(&swap_lock);
738 	for (type = 0; type < nr_swapfiles; type++) {
739 		struct swap_info_struct *sis = swap_info[type];
740 
741 		if (!(sis->flags & SWP_WRITEOK))
742 			continue;
743 
744 		if (!bdev) {
745 			if (bdev_p)
746 				*bdev_p = bdgrab(sis->bdev);
747 
748 			spin_unlock(&swap_lock);
749 			return type;
750 		}
751 		if (bdev == sis->bdev) {
752 			struct swap_extent *se = &sis->first_swap_extent;
753 
754 			if (se->start_block == offset) {
755 				if (bdev_p)
756 					*bdev_p = bdgrab(sis->bdev);
757 
758 				spin_unlock(&swap_lock);
759 				bdput(bdev);
760 				return type;
761 			}
762 		}
763 	}
764 	spin_unlock(&swap_lock);
765 	if (bdev)
766 		bdput(bdev);
767 
768 	return -ENODEV;
769 }
770 
771 /*
772  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
773  * corresponding to given index in swap_info (swap type).
774  */
775 sector_t swapdev_block(int type, pgoff_t offset)
776 {
777 	struct block_device *bdev;
778 
779 	if ((unsigned int)type >= nr_swapfiles)
780 		return 0;
781 	if (!(swap_info[type]->flags & SWP_WRITEOK))
782 		return 0;
783 	return map_swap_entry(swp_entry(type, offset), &bdev);
784 }
785 
786 /*
787  * Return either the total number of swap pages of given type, or the number
788  * of free pages of that type (depending on @free)
789  *
790  * This is needed for software suspend
791  */
792 unsigned int count_swap_pages(int type, int free)
793 {
794 	unsigned int n = 0;
795 
796 	spin_lock(&swap_lock);
797 	if ((unsigned int)type < nr_swapfiles) {
798 		struct swap_info_struct *sis = swap_info[type];
799 
800 		if (sis->flags & SWP_WRITEOK) {
801 			n = sis->pages;
802 			if (free)
803 				n -= sis->inuse_pages;
804 		}
805 	}
806 	spin_unlock(&swap_lock);
807 	return n;
808 }
809 #endif /* CONFIG_HIBERNATION */
810 
811 /*
812  * No need to decide whether this PTE shares the swap entry with others,
813  * just let do_wp_page work it out if a write is requested later - to
814  * force COW, vm_page_prot omits write permission from any private vma.
815  */
816 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
817 		unsigned long addr, swp_entry_t entry, struct page *page)
818 {
819 	struct mem_cgroup *memcg;
820 	spinlock_t *ptl;
821 	pte_t *pte;
822 	int ret = 1;
823 
824 	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
825 					 GFP_KERNEL, &memcg)) {
826 		ret = -ENOMEM;
827 		goto out_nolock;
828 	}
829 
830 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
831 	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
832 		if (ret > 0)
833 			mem_cgroup_cancel_charge_swapin(memcg);
834 		ret = 0;
835 		goto out;
836 	}
837 
838 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
839 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
840 	get_page(page);
841 	set_pte_at(vma->vm_mm, addr, pte,
842 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
843 	page_add_anon_rmap(page, vma, addr);
844 	mem_cgroup_commit_charge_swapin(page, memcg);
845 	swap_free(entry);
846 	/*
847 	 * Move the page to the active list so it is not
848 	 * immediately swapped out again after swapon.
849 	 */
850 	activate_page(page);
851 out:
852 	pte_unmap_unlock(pte, ptl);
853 out_nolock:
854 	return ret;
855 }
856 
857 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
858 				unsigned long addr, unsigned long end,
859 				swp_entry_t entry, struct page *page)
860 {
861 	pte_t swp_pte = swp_entry_to_pte(entry);
862 	pte_t *pte;
863 	int ret = 0;
864 
865 	/*
866 	 * We don't actually need pte lock while scanning for swp_pte: since
867 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
868 	 * page table while we're scanning; though it could get zapped, and on
869 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
870 	 * of unmatched parts which look like swp_pte, so unuse_pte must
871 	 * recheck under pte lock.  Scanning without pte lock lets it be
872 	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
873 	 */
874 	pte = pte_offset_map(pmd, addr);
875 	do {
876 		/*
877 		 * swapoff spends a _lot_ of time in this loop!
878 		 * Test inline before going to call unuse_pte.
879 		 */
880 		if (unlikely(pte_same(*pte, swp_pte))) {
881 			pte_unmap(pte);
882 			ret = unuse_pte(vma, pmd, addr, entry, page);
883 			if (ret)
884 				goto out;
885 			pte = pte_offset_map(pmd, addr);
886 		}
887 	} while (pte++, addr += PAGE_SIZE, addr != end);
888 	pte_unmap(pte - 1);
889 out:
890 	return ret;
891 }
892 
893 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
894 				unsigned long addr, unsigned long end,
895 				swp_entry_t entry, struct page *page)
896 {
897 	pmd_t *pmd;
898 	unsigned long next;
899 	int ret;
900 
901 	pmd = pmd_offset(pud, addr);
902 	do {
903 		next = pmd_addr_end(addr, end);
904 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
905 			continue;
906 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
907 		if (ret)
908 			return ret;
909 	} while (pmd++, addr = next, addr != end);
910 	return 0;
911 }
912 
913 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
914 				unsigned long addr, unsigned long end,
915 				swp_entry_t entry, struct page *page)
916 {
917 	pud_t *pud;
918 	unsigned long next;
919 	int ret;
920 
921 	pud = pud_offset(pgd, addr);
922 	do {
923 		next = pud_addr_end(addr, end);
924 		if (pud_none_or_clear_bad(pud))
925 			continue;
926 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
927 		if (ret)
928 			return ret;
929 	} while (pud++, addr = next, addr != end);
930 	return 0;
931 }
932 
933 static int unuse_vma(struct vm_area_struct *vma,
934 				swp_entry_t entry, struct page *page)
935 {
936 	pgd_t *pgd;
937 	unsigned long addr, end, next;
938 	int ret;
939 
940 	if (page_anon_vma(page)) {
941 		addr = page_address_in_vma(page, vma);
942 		if (addr == -EFAULT)
943 			return 0;
944 		else
945 			end = addr + PAGE_SIZE;
946 	} else {
947 		addr = vma->vm_start;
948 		end = vma->vm_end;
949 	}
950 
951 	pgd = pgd_offset(vma->vm_mm, addr);
952 	do {
953 		next = pgd_addr_end(addr, end);
954 		if (pgd_none_or_clear_bad(pgd))
955 			continue;
956 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
957 		if (ret)
958 			return ret;
959 	} while (pgd++, addr = next, addr != end);
960 	return 0;
961 }
962 
963 static int unuse_mm(struct mm_struct *mm,
964 				swp_entry_t entry, struct page *page)
965 {
966 	struct vm_area_struct *vma;
967 	int ret = 0;
968 
969 	if (!down_read_trylock(&mm->mmap_sem)) {
970 		/*
971 		 * Activate page so shrink_inactive_list is unlikely to unmap
972 		 * its ptes while lock is dropped, so swapoff can make progress.
973 		 */
974 		activate_page(page);
975 		unlock_page(page);
976 		down_read(&mm->mmap_sem);
977 		lock_page(page);
978 	}
979 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
980 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
981 			break;
982 	}
983 	up_read(&mm->mmap_sem);
984 	return (ret < 0)? ret: 0;
985 }
986 
987 /*
988  * Scan swap_map from current position to next entry still in use.
989  * Recycle to start on reaching the end, returning 0 when empty.
990  */
991 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
992 					unsigned int prev)
993 {
994 	unsigned int max = si->max;
995 	unsigned int i = prev;
996 	unsigned char count;
997 
998 	/*
999 	 * No need for swap_lock here: we're just looking
1000 	 * for whether an entry is in use, not modifying it; false
1001 	 * hits are okay, and sys_swapoff() has already prevented new
1002 	 * allocations from this area (while holding swap_lock).
1003 	 */
1004 	for (;;) {
1005 		if (++i >= max) {
1006 			if (!prev) {
1007 				i = 0;
1008 				break;
1009 			}
1010 			/*
1011 			 * No entries in use at top of swap_map,
1012 			 * loop back to start and recheck there.
1013 			 */
1014 			max = prev + 1;
1015 			prev = 0;
1016 			i = 1;
1017 		}
1018 		count = si->swap_map[i];
1019 		if (count && swap_count(count) != SWAP_MAP_BAD)
1020 			break;
1021 	}
1022 	return i;
1023 }
1024 
1025 /*
1026  * We completely avoid races by reading each swap page in advance,
1027  * and then search for the process using it.  All the necessary
1028  * page table adjustments can then be made atomically.
1029  */
1030 static int try_to_unuse(unsigned int type)
1031 {
1032 	struct swap_info_struct *si = swap_info[type];
1033 	struct mm_struct *start_mm;
1034 	unsigned char *swap_map;
1035 	unsigned char swcount;
1036 	struct page *page;
1037 	swp_entry_t entry;
1038 	unsigned int i = 0;
1039 	int retval = 0;
1040 
1041 	/*
1042 	 * When searching mms for an entry, a good strategy is to
1043 	 * start at the first mm we freed the previous entry from
1044 	 * (though actually we don't notice whether we or coincidence
1045 	 * freed the entry).  Initialize this start_mm with a hold.
1046 	 *
1047 	 * A simpler strategy would be to start at the last mm we
1048 	 * freed the previous entry from; but that would take less
1049 	 * advantage of mmlist ordering, which clusters forked mms
1050 	 * together, child after parent.  If we race with dup_mmap(), we
1051 	 * prefer to resolve parent before child, lest we miss entries
1052 	 * duplicated after we scanned child: using last mm would invert
1053 	 * that.
1054 	 */
1055 	start_mm = &init_mm;
1056 	atomic_inc(&init_mm.mm_users);
1057 
1058 	/*
1059 	 * Keep on scanning until all entries have gone.  Usually,
1060 	 * one pass through swap_map is enough, but not necessarily:
1061 	 * there are races when an instance of an entry might be missed.
1062 	 */
1063 	while ((i = find_next_to_unuse(si, i)) != 0) {
1064 		if (signal_pending(current)) {
1065 			retval = -EINTR;
1066 			break;
1067 		}
1068 
1069 		/*
1070 		 * Get a page for the entry, using the existing swap
1071 		 * cache page if there is one.  Otherwise, get a clean
1072 		 * page and read the swap into it.
1073 		 */
1074 		swap_map = &si->swap_map[i];
1075 		entry = swp_entry(type, i);
1076 		page = read_swap_cache_async(entry,
1077 					GFP_HIGHUSER_MOVABLE, NULL, 0);
1078 		if (!page) {
1079 			/*
1080 			 * Either swap_duplicate() failed because entry
1081 			 * has been freed independently, and will not be
1082 			 * reused since sys_swapoff() already disabled
1083 			 * allocation from here, or alloc_page() failed.
1084 			 */
1085 			if (!*swap_map)
1086 				continue;
1087 			retval = -ENOMEM;
1088 			break;
1089 		}
1090 
1091 		/*
1092 		 * Don't hold on to start_mm if it looks like exiting.
1093 		 */
1094 		if (atomic_read(&start_mm->mm_users) == 1) {
1095 			mmput(start_mm);
1096 			start_mm = &init_mm;
1097 			atomic_inc(&init_mm.mm_users);
1098 		}
1099 
1100 		/*
1101 		 * Wait for and lock page.  When do_swap_page races with
1102 		 * try_to_unuse, do_swap_page can handle the fault much
1103 		 * faster than try_to_unuse can locate the entry.  This
1104 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1105 		 * defer to do_swap_page in such a case - in some tests,
1106 		 * do_swap_page and try_to_unuse repeatedly compete.
1107 		 */
1108 		wait_on_page_locked(page);
1109 		wait_on_page_writeback(page);
1110 		lock_page(page);
1111 		wait_on_page_writeback(page);
1112 
1113 		/*
1114 		 * Remove all references to entry.
1115 		 */
1116 		swcount = *swap_map;
1117 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1118 			retval = shmem_unuse(entry, page);
1119 			/* page has already been unlocked and released */
1120 			if (retval < 0)
1121 				break;
1122 			continue;
1123 		}
1124 		if (swap_count(swcount) && start_mm != &init_mm)
1125 			retval = unuse_mm(start_mm, entry, page);
1126 
1127 		if (swap_count(*swap_map)) {
1128 			int set_start_mm = (*swap_map >= swcount);
1129 			struct list_head *p = &start_mm->mmlist;
1130 			struct mm_struct *new_start_mm = start_mm;
1131 			struct mm_struct *prev_mm = start_mm;
1132 			struct mm_struct *mm;
1133 
1134 			atomic_inc(&new_start_mm->mm_users);
1135 			atomic_inc(&prev_mm->mm_users);
1136 			spin_lock(&mmlist_lock);
1137 			while (swap_count(*swap_map) && !retval &&
1138 					(p = p->next) != &start_mm->mmlist) {
1139 				mm = list_entry(p, struct mm_struct, mmlist);
1140 				if (!atomic_inc_not_zero(&mm->mm_users))
1141 					continue;
1142 				spin_unlock(&mmlist_lock);
1143 				mmput(prev_mm);
1144 				prev_mm = mm;
1145 
1146 				cond_resched();
1147 
1148 				swcount = *swap_map;
1149 				if (!swap_count(swcount)) /* any usage ? */
1150 					;
1151 				else if (mm == &init_mm)
1152 					set_start_mm = 1;
1153 				else
1154 					retval = unuse_mm(mm, entry, page);
1155 
1156 				if (set_start_mm && *swap_map < swcount) {
1157 					mmput(new_start_mm);
1158 					atomic_inc(&mm->mm_users);
1159 					new_start_mm = mm;
1160 					set_start_mm = 0;
1161 				}
1162 				spin_lock(&mmlist_lock);
1163 			}
1164 			spin_unlock(&mmlist_lock);
1165 			mmput(prev_mm);
1166 			mmput(start_mm);
1167 			start_mm = new_start_mm;
1168 		}
1169 		if (retval) {
1170 			unlock_page(page);
1171 			page_cache_release(page);
1172 			break;
1173 		}
1174 
1175 		/*
1176 		 * If a reference remains (rare), we would like to leave
1177 		 * the page in the swap cache; but try_to_unmap could
1178 		 * then re-duplicate the entry once we drop page lock,
1179 		 * so we might loop indefinitely; also, that page could
1180 		 * not be swapped out to other storage meanwhile.  So:
1181 		 * delete from cache even if there's another reference,
1182 		 * after ensuring that the data has been saved to disk -
1183 		 * since if the reference remains (rarer), it will be
1184 		 * read from disk into another page.  Splitting into two
1185 		 * pages would be incorrect if swap supported "shared
1186 		 * private" pages, but they are handled by tmpfs files.
1187 		 *
1188 		 * Given how unuse_vma() targets one particular offset
1189 		 * in an anon_vma, once the anon_vma has been determined,
1190 		 * this splitting happens to be just what is needed to
1191 		 * handle where KSM pages have been swapped out: re-reading
1192 		 * is unnecessarily slow, but we can fix that later on.
1193 		 */
1194 		if (swap_count(*swap_map) &&
1195 		     PageDirty(page) && PageSwapCache(page)) {
1196 			struct writeback_control wbc = {
1197 				.sync_mode = WB_SYNC_NONE,
1198 			};
1199 
1200 			swap_writepage(page, &wbc);
1201 			lock_page(page);
1202 			wait_on_page_writeback(page);
1203 		}
1204 
1205 		/*
1206 		 * It is conceivable that a racing task removed this page from
1207 		 * swap cache just before we acquired the page lock at the top,
1208 		 * or while we dropped it in unuse_mm().  The page might even
1209 		 * be back in swap cache on another swap area: that we must not
1210 		 * delete, since it may not have been written out to swap yet.
1211 		 */
1212 		if (PageSwapCache(page) &&
1213 		    likely(page_private(page) == entry.val))
1214 			delete_from_swap_cache(page);
1215 
1216 		/*
1217 		 * So we could skip searching mms once swap count went
1218 		 * to 1, we did not mark any present ptes as dirty: must
1219 		 * mark page dirty so shrink_page_list will preserve it.
1220 		 */
1221 		SetPageDirty(page);
1222 		unlock_page(page);
1223 		page_cache_release(page);
1224 
1225 		/*
1226 		 * Make sure that we aren't completely killing
1227 		 * interactive performance.
1228 		 */
1229 		cond_resched();
1230 	}
1231 
1232 	mmput(start_mm);
1233 	return retval;
1234 }
1235 
1236 /*
1237  * After a successful try_to_unuse, if no swap is now in use, we know
1238  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1239  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1240  * added to the mmlist just after page_duplicate - before would be racy.
1241  */
1242 static void drain_mmlist(void)
1243 {
1244 	struct list_head *p, *next;
1245 	unsigned int type;
1246 
1247 	for (type = 0; type < nr_swapfiles; type++)
1248 		if (swap_info[type]->inuse_pages)
1249 			return;
1250 	spin_lock(&mmlist_lock);
1251 	list_for_each_safe(p, next, &init_mm.mmlist)
1252 		list_del_init(p);
1253 	spin_unlock(&mmlist_lock);
1254 }
1255 
1256 /*
1257  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1258  * corresponds to page offset for the specified swap entry.
1259  * Note that the type of this function is sector_t, but it returns page offset
1260  * into the bdev, not sector offset.
1261  */
1262 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1263 {
1264 	struct swap_info_struct *sis;
1265 	struct swap_extent *start_se;
1266 	struct swap_extent *se;
1267 	pgoff_t offset;
1268 
1269 	sis = swap_info[swp_type(entry)];
1270 	*bdev = sis->bdev;
1271 
1272 	offset = swp_offset(entry);
1273 	start_se = sis->curr_swap_extent;
1274 	se = start_se;
1275 
1276 	for ( ; ; ) {
1277 		struct list_head *lh;
1278 
1279 		if (se->start_page <= offset &&
1280 				offset < (se->start_page + se->nr_pages)) {
1281 			return se->start_block + (offset - se->start_page);
1282 		}
1283 		lh = se->list.next;
1284 		se = list_entry(lh, struct swap_extent, list);
1285 		sis->curr_swap_extent = se;
1286 		BUG_ON(se == start_se);		/* It *must* be present */
1287 	}
1288 }
1289 
1290 /*
1291  * Returns the page offset into bdev for the specified page's swap entry.
1292  */
1293 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1294 {
1295 	swp_entry_t entry;
1296 	entry.val = page_private(page);
1297 	return map_swap_entry(entry, bdev);
1298 }
1299 
1300 /*
1301  * Free all of a swapdev's extent information
1302  */
1303 static void destroy_swap_extents(struct swap_info_struct *sis)
1304 {
1305 	while (!list_empty(&sis->first_swap_extent.list)) {
1306 		struct swap_extent *se;
1307 
1308 		se = list_entry(sis->first_swap_extent.list.next,
1309 				struct swap_extent, list);
1310 		list_del(&se->list);
1311 		kfree(se);
1312 	}
1313 }
1314 
1315 /*
1316  * Add a block range (and the corresponding page range) into this swapdev's
1317  * extent list.  The extent list is kept sorted in page order.
1318  *
1319  * This function rather assumes that it is called in ascending page order.
1320  */
1321 static int
1322 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1323 		unsigned long nr_pages, sector_t start_block)
1324 {
1325 	struct swap_extent *se;
1326 	struct swap_extent *new_se;
1327 	struct list_head *lh;
1328 
1329 	if (start_page == 0) {
1330 		se = &sis->first_swap_extent;
1331 		sis->curr_swap_extent = se;
1332 		se->start_page = 0;
1333 		se->nr_pages = nr_pages;
1334 		se->start_block = start_block;
1335 		return 1;
1336 	} else {
1337 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1338 		se = list_entry(lh, struct swap_extent, list);
1339 		BUG_ON(se->start_page + se->nr_pages != start_page);
1340 		if (se->start_block + se->nr_pages == start_block) {
1341 			/* Merge it */
1342 			se->nr_pages += nr_pages;
1343 			return 0;
1344 		}
1345 	}
1346 
1347 	/*
1348 	 * No merge.  Insert a new extent, preserving ordering.
1349 	 */
1350 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1351 	if (new_se == NULL)
1352 		return -ENOMEM;
1353 	new_se->start_page = start_page;
1354 	new_se->nr_pages = nr_pages;
1355 	new_se->start_block = start_block;
1356 
1357 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1358 	return 1;
1359 }
1360 
1361 /*
1362  * A `swap extent' is a simple thing which maps a contiguous range of pages
1363  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1364  * is built at swapon time and is then used at swap_writepage/swap_readpage
1365  * time for locating where on disk a page belongs.
1366  *
1367  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1368  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1369  * swap files identically.
1370  *
1371  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1372  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1373  * swapfiles are handled *identically* after swapon time.
1374  *
1375  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1376  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1377  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1378  * requirements, they are simply tossed out - we will never use those blocks
1379  * for swapping.
1380  *
1381  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1382  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1383  * which will scribble on the fs.
1384  *
1385  * The amount of disk space which a single swap extent represents varies.
1386  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1387  * extents in the list.  To avoid much list walking, we cache the previous
1388  * search location in `curr_swap_extent', and start new searches from there.
1389  * This is extremely effective.  The average number of iterations in
1390  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1391  */
1392 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1393 {
1394 	struct inode *inode;
1395 	unsigned blocks_per_page;
1396 	unsigned long page_no;
1397 	unsigned blkbits;
1398 	sector_t probe_block;
1399 	sector_t last_block;
1400 	sector_t lowest_block = -1;
1401 	sector_t highest_block = 0;
1402 	int nr_extents = 0;
1403 	int ret;
1404 
1405 	inode = sis->swap_file->f_mapping->host;
1406 	if (S_ISBLK(inode->i_mode)) {
1407 		ret = add_swap_extent(sis, 0, sis->max, 0);
1408 		*span = sis->pages;
1409 		goto out;
1410 	}
1411 
1412 	blkbits = inode->i_blkbits;
1413 	blocks_per_page = PAGE_SIZE >> blkbits;
1414 
1415 	/*
1416 	 * Map all the blocks into the extent list.  This code doesn't try
1417 	 * to be very smart.
1418 	 */
1419 	probe_block = 0;
1420 	page_no = 0;
1421 	last_block = i_size_read(inode) >> blkbits;
1422 	while ((probe_block + blocks_per_page) <= last_block &&
1423 			page_no < sis->max) {
1424 		unsigned block_in_page;
1425 		sector_t first_block;
1426 
1427 		first_block = bmap(inode, probe_block);
1428 		if (first_block == 0)
1429 			goto bad_bmap;
1430 
1431 		/*
1432 		 * It must be PAGE_SIZE aligned on-disk
1433 		 */
1434 		if (first_block & (blocks_per_page - 1)) {
1435 			probe_block++;
1436 			goto reprobe;
1437 		}
1438 
1439 		for (block_in_page = 1; block_in_page < blocks_per_page;
1440 					block_in_page++) {
1441 			sector_t block;
1442 
1443 			block = bmap(inode, probe_block + block_in_page);
1444 			if (block == 0)
1445 				goto bad_bmap;
1446 			if (block != first_block + block_in_page) {
1447 				/* Discontiguity */
1448 				probe_block++;
1449 				goto reprobe;
1450 			}
1451 		}
1452 
1453 		first_block >>= (PAGE_SHIFT - blkbits);
1454 		if (page_no) {	/* exclude the header page */
1455 			if (first_block < lowest_block)
1456 				lowest_block = first_block;
1457 			if (first_block > highest_block)
1458 				highest_block = first_block;
1459 		}
1460 
1461 		/*
1462 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1463 		 */
1464 		ret = add_swap_extent(sis, page_no, 1, first_block);
1465 		if (ret < 0)
1466 			goto out;
1467 		nr_extents += ret;
1468 		page_no++;
1469 		probe_block += blocks_per_page;
1470 reprobe:
1471 		continue;
1472 	}
1473 	ret = nr_extents;
1474 	*span = 1 + highest_block - lowest_block;
1475 	if (page_no == 0)
1476 		page_no = 1;	/* force Empty message */
1477 	sis->max = page_no;
1478 	sis->pages = page_no - 1;
1479 	sis->highest_bit = page_no - 1;
1480 out:
1481 	return ret;
1482 bad_bmap:
1483 	printk(KERN_ERR "swapon: swapfile has holes\n");
1484 	ret = -EINVAL;
1485 	goto out;
1486 }
1487 
1488 static void enable_swap_info(struct swap_info_struct *p, int prio,
1489 				unsigned char *swap_map)
1490 {
1491 	int i, prev;
1492 
1493 	spin_lock(&swap_lock);
1494 	if (prio >= 0)
1495 		p->prio = prio;
1496 	else
1497 		p->prio = --least_priority;
1498 	p->swap_map = swap_map;
1499 	p->flags |= SWP_WRITEOK;
1500 	nr_swap_pages += p->pages;
1501 	total_swap_pages += p->pages;
1502 
1503 	/* insert swap space into swap_list: */
1504 	prev = -1;
1505 	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1506 		if (p->prio >= swap_info[i]->prio)
1507 			break;
1508 		prev = i;
1509 	}
1510 	p->next = i;
1511 	if (prev < 0)
1512 		swap_list.head = swap_list.next = p->type;
1513 	else
1514 		swap_info[prev]->next = p->type;
1515 	spin_unlock(&swap_lock);
1516 }
1517 
1518 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1519 {
1520 	struct swap_info_struct *p = NULL;
1521 	unsigned char *swap_map;
1522 	struct file *swap_file, *victim;
1523 	struct address_space *mapping;
1524 	struct inode *inode;
1525 	char *pathname;
1526 	int oom_score_adj;
1527 	int i, type, prev;
1528 	int err;
1529 
1530 	if (!capable(CAP_SYS_ADMIN))
1531 		return -EPERM;
1532 
1533 	BUG_ON(!current->mm);
1534 
1535 	pathname = getname(specialfile);
1536 	err = PTR_ERR(pathname);
1537 	if (IS_ERR(pathname))
1538 		goto out;
1539 
1540 	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1541 	putname(pathname);
1542 	err = PTR_ERR(victim);
1543 	if (IS_ERR(victim))
1544 		goto out;
1545 
1546 	mapping = victim->f_mapping;
1547 	prev = -1;
1548 	spin_lock(&swap_lock);
1549 	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1550 		p = swap_info[type];
1551 		if (p->flags & SWP_WRITEOK) {
1552 			if (p->swap_file->f_mapping == mapping)
1553 				break;
1554 		}
1555 		prev = type;
1556 	}
1557 	if (type < 0) {
1558 		err = -EINVAL;
1559 		spin_unlock(&swap_lock);
1560 		goto out_dput;
1561 	}
1562 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
1563 		vm_unacct_memory(p->pages);
1564 	else {
1565 		err = -ENOMEM;
1566 		spin_unlock(&swap_lock);
1567 		goto out_dput;
1568 	}
1569 	if (prev < 0)
1570 		swap_list.head = p->next;
1571 	else
1572 		swap_info[prev]->next = p->next;
1573 	if (type == swap_list.next) {
1574 		/* just pick something that's safe... */
1575 		swap_list.next = swap_list.head;
1576 	}
1577 	if (p->prio < 0) {
1578 		for (i = p->next; i >= 0; i = swap_info[i]->next)
1579 			swap_info[i]->prio = p->prio--;
1580 		least_priority++;
1581 	}
1582 	nr_swap_pages -= p->pages;
1583 	total_swap_pages -= p->pages;
1584 	p->flags &= ~SWP_WRITEOK;
1585 	spin_unlock(&swap_lock);
1586 
1587 	oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX);
1588 	err = try_to_unuse(type);
1589 	compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX, oom_score_adj);
1590 
1591 	if (err) {
1592 		/*
1593 		 * reading p->prio and p->swap_map outside the lock is
1594 		 * safe here because only sys_swapon and sys_swapoff
1595 		 * change them, and there can be no other sys_swapon or
1596 		 * sys_swapoff for this swap_info_struct at this point.
1597 		 */
1598 		/* re-insert swap space back into swap_list */
1599 		enable_swap_info(p, p->prio, p->swap_map);
1600 		goto out_dput;
1601 	}
1602 
1603 	destroy_swap_extents(p);
1604 	if (p->flags & SWP_CONTINUED)
1605 		free_swap_count_continuations(p);
1606 
1607 	mutex_lock(&swapon_mutex);
1608 	spin_lock(&swap_lock);
1609 	drain_mmlist();
1610 
1611 	/* wait for anyone still in scan_swap_map */
1612 	p->highest_bit = 0;		/* cuts scans short */
1613 	while (p->flags >= SWP_SCANNING) {
1614 		spin_unlock(&swap_lock);
1615 		schedule_timeout_uninterruptible(1);
1616 		spin_lock(&swap_lock);
1617 	}
1618 
1619 	swap_file = p->swap_file;
1620 	p->swap_file = NULL;
1621 	p->max = 0;
1622 	swap_map = p->swap_map;
1623 	p->swap_map = NULL;
1624 	p->flags = 0;
1625 	spin_unlock(&swap_lock);
1626 	mutex_unlock(&swapon_mutex);
1627 	vfree(swap_map);
1628 	/* Destroy swap account informatin */
1629 	swap_cgroup_swapoff(type);
1630 
1631 	inode = mapping->host;
1632 	if (S_ISBLK(inode->i_mode)) {
1633 		struct block_device *bdev = I_BDEV(inode);
1634 		set_blocksize(bdev, p->old_block_size);
1635 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1636 	} else {
1637 		mutex_lock(&inode->i_mutex);
1638 		inode->i_flags &= ~S_SWAPFILE;
1639 		mutex_unlock(&inode->i_mutex);
1640 	}
1641 	filp_close(swap_file, NULL);
1642 	err = 0;
1643 	atomic_inc(&proc_poll_event);
1644 	wake_up_interruptible(&proc_poll_wait);
1645 
1646 out_dput:
1647 	filp_close(victim, NULL);
1648 out:
1649 	return err;
1650 }
1651 
1652 #ifdef CONFIG_PROC_FS
1653 static unsigned swaps_poll(struct file *file, poll_table *wait)
1654 {
1655 	struct seq_file *seq = file->private_data;
1656 
1657 	poll_wait(file, &proc_poll_wait, wait);
1658 
1659 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
1660 		seq->poll_event = atomic_read(&proc_poll_event);
1661 		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1662 	}
1663 
1664 	return POLLIN | POLLRDNORM;
1665 }
1666 
1667 /* iterator */
1668 static void *swap_start(struct seq_file *swap, loff_t *pos)
1669 {
1670 	struct swap_info_struct *si;
1671 	int type;
1672 	loff_t l = *pos;
1673 
1674 	mutex_lock(&swapon_mutex);
1675 
1676 	if (!l)
1677 		return SEQ_START_TOKEN;
1678 
1679 	for (type = 0; type < nr_swapfiles; type++) {
1680 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1681 		si = swap_info[type];
1682 		if (!(si->flags & SWP_USED) || !si->swap_map)
1683 			continue;
1684 		if (!--l)
1685 			return si;
1686 	}
1687 
1688 	return NULL;
1689 }
1690 
1691 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1692 {
1693 	struct swap_info_struct *si = v;
1694 	int type;
1695 
1696 	if (v == SEQ_START_TOKEN)
1697 		type = 0;
1698 	else
1699 		type = si->type + 1;
1700 
1701 	for (; type < nr_swapfiles; type++) {
1702 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1703 		si = swap_info[type];
1704 		if (!(si->flags & SWP_USED) || !si->swap_map)
1705 			continue;
1706 		++*pos;
1707 		return si;
1708 	}
1709 
1710 	return NULL;
1711 }
1712 
1713 static void swap_stop(struct seq_file *swap, void *v)
1714 {
1715 	mutex_unlock(&swapon_mutex);
1716 }
1717 
1718 static int swap_show(struct seq_file *swap, void *v)
1719 {
1720 	struct swap_info_struct *si = v;
1721 	struct file *file;
1722 	int len;
1723 
1724 	if (si == SEQ_START_TOKEN) {
1725 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1726 		return 0;
1727 	}
1728 
1729 	file = si->swap_file;
1730 	len = seq_path(swap, &file->f_path, " \t\n\\");
1731 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1732 			len < 40 ? 40 - len : 1, " ",
1733 			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1734 				"partition" : "file\t",
1735 			si->pages << (PAGE_SHIFT - 10),
1736 			si->inuse_pages << (PAGE_SHIFT - 10),
1737 			si->prio);
1738 	return 0;
1739 }
1740 
1741 static const struct seq_operations swaps_op = {
1742 	.start =	swap_start,
1743 	.next =		swap_next,
1744 	.stop =		swap_stop,
1745 	.show =		swap_show
1746 };
1747 
1748 static int swaps_open(struct inode *inode, struct file *file)
1749 {
1750 	struct seq_file *seq;
1751 	int ret;
1752 
1753 	ret = seq_open(file, &swaps_op);
1754 	if (ret)
1755 		return ret;
1756 
1757 	seq = file->private_data;
1758 	seq->poll_event = atomic_read(&proc_poll_event);
1759 	return 0;
1760 }
1761 
1762 static const struct file_operations proc_swaps_operations = {
1763 	.open		= swaps_open,
1764 	.read		= seq_read,
1765 	.llseek		= seq_lseek,
1766 	.release	= seq_release,
1767 	.poll		= swaps_poll,
1768 };
1769 
1770 static int __init procswaps_init(void)
1771 {
1772 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1773 	return 0;
1774 }
1775 __initcall(procswaps_init);
1776 #endif /* CONFIG_PROC_FS */
1777 
1778 #ifdef MAX_SWAPFILES_CHECK
1779 static int __init max_swapfiles_check(void)
1780 {
1781 	MAX_SWAPFILES_CHECK();
1782 	return 0;
1783 }
1784 late_initcall(max_swapfiles_check);
1785 #endif
1786 
1787 static struct swap_info_struct *alloc_swap_info(void)
1788 {
1789 	struct swap_info_struct *p;
1790 	unsigned int type;
1791 
1792 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1793 	if (!p)
1794 		return ERR_PTR(-ENOMEM);
1795 
1796 	spin_lock(&swap_lock);
1797 	for (type = 0; type < nr_swapfiles; type++) {
1798 		if (!(swap_info[type]->flags & SWP_USED))
1799 			break;
1800 	}
1801 	if (type >= MAX_SWAPFILES) {
1802 		spin_unlock(&swap_lock);
1803 		kfree(p);
1804 		return ERR_PTR(-EPERM);
1805 	}
1806 	if (type >= nr_swapfiles) {
1807 		p->type = type;
1808 		swap_info[type] = p;
1809 		/*
1810 		 * Write swap_info[type] before nr_swapfiles, in case a
1811 		 * racing procfs swap_start() or swap_next() is reading them.
1812 		 * (We never shrink nr_swapfiles, we never free this entry.)
1813 		 */
1814 		smp_wmb();
1815 		nr_swapfiles++;
1816 	} else {
1817 		kfree(p);
1818 		p = swap_info[type];
1819 		/*
1820 		 * Do not memset this entry: a racing procfs swap_next()
1821 		 * would be relying on p->type to remain valid.
1822 		 */
1823 	}
1824 	INIT_LIST_HEAD(&p->first_swap_extent.list);
1825 	p->flags = SWP_USED;
1826 	p->next = -1;
1827 	spin_unlock(&swap_lock);
1828 
1829 	return p;
1830 }
1831 
1832 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
1833 {
1834 	int error;
1835 
1836 	if (S_ISBLK(inode->i_mode)) {
1837 		p->bdev = bdgrab(I_BDEV(inode));
1838 		error = blkdev_get(p->bdev,
1839 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1840 				   sys_swapon);
1841 		if (error < 0) {
1842 			p->bdev = NULL;
1843 			return -EINVAL;
1844 		}
1845 		p->old_block_size = block_size(p->bdev);
1846 		error = set_blocksize(p->bdev, PAGE_SIZE);
1847 		if (error < 0)
1848 			return error;
1849 		p->flags |= SWP_BLKDEV;
1850 	} else if (S_ISREG(inode->i_mode)) {
1851 		p->bdev = inode->i_sb->s_bdev;
1852 		mutex_lock(&inode->i_mutex);
1853 		if (IS_SWAPFILE(inode))
1854 			return -EBUSY;
1855 	} else
1856 		return -EINVAL;
1857 
1858 	return 0;
1859 }
1860 
1861 static unsigned long read_swap_header(struct swap_info_struct *p,
1862 					union swap_header *swap_header,
1863 					struct inode *inode)
1864 {
1865 	int i;
1866 	unsigned long maxpages;
1867 	unsigned long swapfilepages;
1868 
1869 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1870 		printk(KERN_ERR "Unable to find swap-space signature\n");
1871 		return 0;
1872 	}
1873 
1874 	/* swap partition endianess hack... */
1875 	if (swab32(swap_header->info.version) == 1) {
1876 		swab32s(&swap_header->info.version);
1877 		swab32s(&swap_header->info.last_page);
1878 		swab32s(&swap_header->info.nr_badpages);
1879 		for (i = 0; i < swap_header->info.nr_badpages; i++)
1880 			swab32s(&swap_header->info.badpages[i]);
1881 	}
1882 	/* Check the swap header's sub-version */
1883 	if (swap_header->info.version != 1) {
1884 		printk(KERN_WARNING
1885 		       "Unable to handle swap header version %d\n",
1886 		       swap_header->info.version);
1887 		return 0;
1888 	}
1889 
1890 	p->lowest_bit  = 1;
1891 	p->cluster_next = 1;
1892 	p->cluster_nr = 0;
1893 
1894 	/*
1895 	 * Find out how many pages are allowed for a single swap
1896 	 * device. There are three limiting factors: 1) the number
1897 	 * of bits for the swap offset in the swp_entry_t type, and
1898 	 * 2) the number of bits in the swap pte as defined by the
1899 	 * the different architectures, and 3) the number of free bits
1900 	 * in an exceptional radix_tree entry. In order to find the
1901 	 * largest possible bit mask, a swap entry with swap type 0
1902 	 * and swap offset ~0UL is created, encoded to a swap pte,
1903 	 * decoded to a swp_entry_t again, and finally the swap
1904 	 * offset is extracted. This will mask all the bits from
1905 	 * the initial ~0UL mask that can't be encoded in either
1906 	 * the swp_entry_t or the architecture definition of a
1907 	 * swap pte.  Then the same is done for a radix_tree entry.
1908 	 */
1909 	maxpages = swp_offset(pte_to_swp_entry(
1910 			swp_entry_to_pte(swp_entry(0, ~0UL))));
1911 	maxpages = swp_offset(radix_to_swp_entry(
1912 			swp_to_radix_entry(swp_entry(0, maxpages)))) + 1;
1913 
1914 	if (maxpages > swap_header->info.last_page) {
1915 		maxpages = swap_header->info.last_page + 1;
1916 		/* p->max is an unsigned int: don't overflow it */
1917 		if ((unsigned int)maxpages == 0)
1918 			maxpages = UINT_MAX;
1919 	}
1920 	p->highest_bit = maxpages - 1;
1921 
1922 	if (!maxpages)
1923 		return 0;
1924 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1925 	if (swapfilepages && maxpages > swapfilepages) {
1926 		printk(KERN_WARNING
1927 		       "Swap area shorter than signature indicates\n");
1928 		return 0;
1929 	}
1930 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1931 		return 0;
1932 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1933 		return 0;
1934 
1935 	return maxpages;
1936 }
1937 
1938 static int setup_swap_map_and_extents(struct swap_info_struct *p,
1939 					union swap_header *swap_header,
1940 					unsigned char *swap_map,
1941 					unsigned long maxpages,
1942 					sector_t *span)
1943 {
1944 	int i;
1945 	unsigned int nr_good_pages;
1946 	int nr_extents;
1947 
1948 	nr_good_pages = maxpages - 1;	/* omit header page */
1949 
1950 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
1951 		unsigned int page_nr = swap_header->info.badpages[i];
1952 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
1953 			return -EINVAL;
1954 		if (page_nr < maxpages) {
1955 			swap_map[page_nr] = SWAP_MAP_BAD;
1956 			nr_good_pages--;
1957 		}
1958 	}
1959 
1960 	if (nr_good_pages) {
1961 		swap_map[0] = SWAP_MAP_BAD;
1962 		p->max = maxpages;
1963 		p->pages = nr_good_pages;
1964 		nr_extents = setup_swap_extents(p, span);
1965 		if (nr_extents < 0)
1966 			return nr_extents;
1967 		nr_good_pages = p->pages;
1968 	}
1969 	if (!nr_good_pages) {
1970 		printk(KERN_WARNING "Empty swap-file\n");
1971 		return -EINVAL;
1972 	}
1973 
1974 	return nr_extents;
1975 }
1976 
1977 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1978 {
1979 	struct swap_info_struct *p;
1980 	char *name;
1981 	struct file *swap_file = NULL;
1982 	struct address_space *mapping;
1983 	int i;
1984 	int prio;
1985 	int error;
1986 	union swap_header *swap_header;
1987 	int nr_extents;
1988 	sector_t span;
1989 	unsigned long maxpages;
1990 	unsigned char *swap_map = NULL;
1991 	struct page *page = NULL;
1992 	struct inode *inode = NULL;
1993 
1994 	if (swap_flags & ~SWAP_FLAGS_VALID)
1995 		return -EINVAL;
1996 
1997 	if (!capable(CAP_SYS_ADMIN))
1998 		return -EPERM;
1999 
2000 	p = alloc_swap_info();
2001 	if (IS_ERR(p))
2002 		return PTR_ERR(p);
2003 
2004 	name = getname(specialfile);
2005 	if (IS_ERR(name)) {
2006 		error = PTR_ERR(name);
2007 		name = NULL;
2008 		goto bad_swap;
2009 	}
2010 	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
2011 	if (IS_ERR(swap_file)) {
2012 		error = PTR_ERR(swap_file);
2013 		swap_file = NULL;
2014 		goto bad_swap;
2015 	}
2016 
2017 	p->swap_file = swap_file;
2018 	mapping = swap_file->f_mapping;
2019 
2020 	for (i = 0; i < nr_swapfiles; i++) {
2021 		struct swap_info_struct *q = swap_info[i];
2022 
2023 		if (q == p || !q->swap_file)
2024 			continue;
2025 		if (mapping == q->swap_file->f_mapping) {
2026 			error = -EBUSY;
2027 			goto bad_swap;
2028 		}
2029 	}
2030 
2031 	inode = mapping->host;
2032 	/* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2033 	error = claim_swapfile(p, inode);
2034 	if (unlikely(error))
2035 		goto bad_swap;
2036 
2037 	/*
2038 	 * Read the swap header.
2039 	 */
2040 	if (!mapping->a_ops->readpage) {
2041 		error = -EINVAL;
2042 		goto bad_swap;
2043 	}
2044 	page = read_mapping_page(mapping, 0, swap_file);
2045 	if (IS_ERR(page)) {
2046 		error = PTR_ERR(page);
2047 		goto bad_swap;
2048 	}
2049 	swap_header = kmap(page);
2050 
2051 	maxpages = read_swap_header(p, swap_header, inode);
2052 	if (unlikely(!maxpages)) {
2053 		error = -EINVAL;
2054 		goto bad_swap;
2055 	}
2056 
2057 	/* OK, set up the swap map and apply the bad block list */
2058 	swap_map = vzalloc(maxpages);
2059 	if (!swap_map) {
2060 		error = -ENOMEM;
2061 		goto bad_swap;
2062 	}
2063 
2064 	error = swap_cgroup_swapon(p->type, maxpages);
2065 	if (error)
2066 		goto bad_swap;
2067 
2068 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2069 		maxpages, &span);
2070 	if (unlikely(nr_extents < 0)) {
2071 		error = nr_extents;
2072 		goto bad_swap;
2073 	}
2074 
2075 	if (p->bdev) {
2076 		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2077 			p->flags |= SWP_SOLIDSTATE;
2078 			p->cluster_next = 1 + (random32() % p->highest_bit);
2079 		}
2080 		if ((swap_flags & SWAP_FLAG_DISCARD) && discard_swap(p) == 0)
2081 			p->flags |= SWP_DISCARDABLE;
2082 	}
2083 
2084 	mutex_lock(&swapon_mutex);
2085 	prio = -1;
2086 	if (swap_flags & SWAP_FLAG_PREFER)
2087 		prio =
2088 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2089 	enable_swap_info(p, prio, swap_map);
2090 
2091 	printk(KERN_INFO "Adding %uk swap on %s.  "
2092 			"Priority:%d extents:%d across:%lluk %s%s\n",
2093 		p->pages<<(PAGE_SHIFT-10), name, p->prio,
2094 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2095 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2096 		(p->flags & SWP_DISCARDABLE) ? "D" : "");
2097 
2098 	mutex_unlock(&swapon_mutex);
2099 	atomic_inc(&proc_poll_event);
2100 	wake_up_interruptible(&proc_poll_wait);
2101 
2102 	if (S_ISREG(inode->i_mode))
2103 		inode->i_flags |= S_SWAPFILE;
2104 	error = 0;
2105 	goto out;
2106 bad_swap:
2107 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2108 		set_blocksize(p->bdev, p->old_block_size);
2109 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2110 	}
2111 	destroy_swap_extents(p);
2112 	swap_cgroup_swapoff(p->type);
2113 	spin_lock(&swap_lock);
2114 	p->swap_file = NULL;
2115 	p->flags = 0;
2116 	spin_unlock(&swap_lock);
2117 	vfree(swap_map);
2118 	if (swap_file) {
2119 		if (inode && S_ISREG(inode->i_mode)) {
2120 			mutex_unlock(&inode->i_mutex);
2121 			inode = NULL;
2122 		}
2123 		filp_close(swap_file, NULL);
2124 	}
2125 out:
2126 	if (page && !IS_ERR(page)) {
2127 		kunmap(page);
2128 		page_cache_release(page);
2129 	}
2130 	if (name)
2131 		putname(name);
2132 	if (inode && S_ISREG(inode->i_mode))
2133 		mutex_unlock(&inode->i_mutex);
2134 	return error;
2135 }
2136 
2137 void si_swapinfo(struct sysinfo *val)
2138 {
2139 	unsigned int type;
2140 	unsigned long nr_to_be_unused = 0;
2141 
2142 	spin_lock(&swap_lock);
2143 	for (type = 0; type < nr_swapfiles; type++) {
2144 		struct swap_info_struct *si = swap_info[type];
2145 
2146 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2147 			nr_to_be_unused += si->inuse_pages;
2148 	}
2149 	val->freeswap = nr_swap_pages + nr_to_be_unused;
2150 	val->totalswap = total_swap_pages + nr_to_be_unused;
2151 	spin_unlock(&swap_lock);
2152 }
2153 
2154 /*
2155  * Verify that a swap entry is valid and increment its swap map count.
2156  *
2157  * Returns error code in following case.
2158  * - success -> 0
2159  * - swp_entry is invalid -> EINVAL
2160  * - swp_entry is migration entry -> EINVAL
2161  * - swap-cache reference is requested but there is already one. -> EEXIST
2162  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2163  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2164  */
2165 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2166 {
2167 	struct swap_info_struct *p;
2168 	unsigned long offset, type;
2169 	unsigned char count;
2170 	unsigned char has_cache;
2171 	int err = -EINVAL;
2172 
2173 	if (non_swap_entry(entry))
2174 		goto out;
2175 
2176 	type = swp_type(entry);
2177 	if (type >= nr_swapfiles)
2178 		goto bad_file;
2179 	p = swap_info[type];
2180 	offset = swp_offset(entry);
2181 
2182 	spin_lock(&swap_lock);
2183 	if (unlikely(offset >= p->max))
2184 		goto unlock_out;
2185 
2186 	count = p->swap_map[offset];
2187 	has_cache = count & SWAP_HAS_CACHE;
2188 	count &= ~SWAP_HAS_CACHE;
2189 	err = 0;
2190 
2191 	if (usage == SWAP_HAS_CACHE) {
2192 
2193 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2194 		if (!has_cache && count)
2195 			has_cache = SWAP_HAS_CACHE;
2196 		else if (has_cache)		/* someone else added cache */
2197 			err = -EEXIST;
2198 		else				/* no users remaining */
2199 			err = -ENOENT;
2200 
2201 	} else if (count || has_cache) {
2202 
2203 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2204 			count += usage;
2205 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2206 			err = -EINVAL;
2207 		else if (swap_count_continued(p, offset, count))
2208 			count = COUNT_CONTINUED;
2209 		else
2210 			err = -ENOMEM;
2211 	} else
2212 		err = -ENOENT;			/* unused swap entry */
2213 
2214 	p->swap_map[offset] = count | has_cache;
2215 
2216 unlock_out:
2217 	spin_unlock(&swap_lock);
2218 out:
2219 	return err;
2220 
2221 bad_file:
2222 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2223 	goto out;
2224 }
2225 
2226 /*
2227  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2228  * (in which case its reference count is never incremented).
2229  */
2230 void swap_shmem_alloc(swp_entry_t entry)
2231 {
2232 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2233 }
2234 
2235 /*
2236  * Increase reference count of swap entry by 1.
2237  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2238  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2239  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2240  * might occur if a page table entry has got corrupted.
2241  */
2242 int swap_duplicate(swp_entry_t entry)
2243 {
2244 	int err = 0;
2245 
2246 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2247 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2248 	return err;
2249 }
2250 
2251 /*
2252  * @entry: swap entry for which we allocate swap cache.
2253  *
2254  * Called when allocating swap cache for existing swap entry,
2255  * This can return error codes. Returns 0 at success.
2256  * -EBUSY means there is a swap cache.
2257  * Note: return code is different from swap_duplicate().
2258  */
2259 int swapcache_prepare(swp_entry_t entry)
2260 {
2261 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2262 }
2263 
2264 /*
2265  * add_swap_count_continuation - called when a swap count is duplicated
2266  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2267  * page of the original vmalloc'ed swap_map, to hold the continuation count
2268  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2269  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2270  *
2271  * These continuation pages are seldom referenced: the common paths all work
2272  * on the original swap_map, only referring to a continuation page when the
2273  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2274  *
2275  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2276  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2277  * can be called after dropping locks.
2278  */
2279 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2280 {
2281 	struct swap_info_struct *si;
2282 	struct page *head;
2283 	struct page *page;
2284 	struct page *list_page;
2285 	pgoff_t offset;
2286 	unsigned char count;
2287 
2288 	/*
2289 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2290 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2291 	 */
2292 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2293 
2294 	si = swap_info_get(entry);
2295 	if (!si) {
2296 		/*
2297 		 * An acceptable race has occurred since the failing
2298 		 * __swap_duplicate(): the swap entry has been freed,
2299 		 * perhaps even the whole swap_map cleared for swapoff.
2300 		 */
2301 		goto outer;
2302 	}
2303 
2304 	offset = swp_offset(entry);
2305 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2306 
2307 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2308 		/*
2309 		 * The higher the swap count, the more likely it is that tasks
2310 		 * will race to add swap count continuation: we need to avoid
2311 		 * over-provisioning.
2312 		 */
2313 		goto out;
2314 	}
2315 
2316 	if (!page) {
2317 		spin_unlock(&swap_lock);
2318 		return -ENOMEM;
2319 	}
2320 
2321 	/*
2322 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2323 	 * no architecture is using highmem pages for kernel pagetables: so it
2324 	 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2325 	 */
2326 	head = vmalloc_to_page(si->swap_map + offset);
2327 	offset &= ~PAGE_MASK;
2328 
2329 	/*
2330 	 * Page allocation does not initialize the page's lru field,
2331 	 * but it does always reset its private field.
2332 	 */
2333 	if (!page_private(head)) {
2334 		BUG_ON(count & COUNT_CONTINUED);
2335 		INIT_LIST_HEAD(&head->lru);
2336 		set_page_private(head, SWP_CONTINUED);
2337 		si->flags |= SWP_CONTINUED;
2338 	}
2339 
2340 	list_for_each_entry(list_page, &head->lru, lru) {
2341 		unsigned char *map;
2342 
2343 		/*
2344 		 * If the previous map said no continuation, but we've found
2345 		 * a continuation page, free our allocation and use this one.
2346 		 */
2347 		if (!(count & COUNT_CONTINUED))
2348 			goto out;
2349 
2350 		map = kmap_atomic(list_page) + offset;
2351 		count = *map;
2352 		kunmap_atomic(map);
2353 
2354 		/*
2355 		 * If this continuation count now has some space in it,
2356 		 * free our allocation and use this one.
2357 		 */
2358 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2359 			goto out;
2360 	}
2361 
2362 	list_add_tail(&page->lru, &head->lru);
2363 	page = NULL;			/* now it's attached, don't free it */
2364 out:
2365 	spin_unlock(&swap_lock);
2366 outer:
2367 	if (page)
2368 		__free_page(page);
2369 	return 0;
2370 }
2371 
2372 /*
2373  * swap_count_continued - when the original swap_map count is incremented
2374  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2375  * into, carry if so, or else fail until a new continuation page is allocated;
2376  * when the original swap_map count is decremented from 0 with continuation,
2377  * borrow from the continuation and report whether it still holds more.
2378  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2379  */
2380 static bool swap_count_continued(struct swap_info_struct *si,
2381 				 pgoff_t offset, unsigned char count)
2382 {
2383 	struct page *head;
2384 	struct page *page;
2385 	unsigned char *map;
2386 
2387 	head = vmalloc_to_page(si->swap_map + offset);
2388 	if (page_private(head) != SWP_CONTINUED) {
2389 		BUG_ON(count & COUNT_CONTINUED);
2390 		return false;		/* need to add count continuation */
2391 	}
2392 
2393 	offset &= ~PAGE_MASK;
2394 	page = list_entry(head->lru.next, struct page, lru);
2395 	map = kmap_atomic(page) + offset;
2396 
2397 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2398 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2399 
2400 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2401 		/*
2402 		 * Think of how you add 1 to 999
2403 		 */
2404 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2405 			kunmap_atomic(map);
2406 			page = list_entry(page->lru.next, struct page, lru);
2407 			BUG_ON(page == head);
2408 			map = kmap_atomic(page) + offset;
2409 		}
2410 		if (*map == SWAP_CONT_MAX) {
2411 			kunmap_atomic(map);
2412 			page = list_entry(page->lru.next, struct page, lru);
2413 			if (page == head)
2414 				return false;	/* add count continuation */
2415 			map = kmap_atomic(page) + offset;
2416 init_map:		*map = 0;		/* we didn't zero the page */
2417 		}
2418 		*map += 1;
2419 		kunmap_atomic(map);
2420 		page = list_entry(page->lru.prev, struct page, lru);
2421 		while (page != head) {
2422 			map = kmap_atomic(page) + offset;
2423 			*map = COUNT_CONTINUED;
2424 			kunmap_atomic(map);
2425 			page = list_entry(page->lru.prev, struct page, lru);
2426 		}
2427 		return true;			/* incremented */
2428 
2429 	} else {				/* decrementing */
2430 		/*
2431 		 * Think of how you subtract 1 from 1000
2432 		 */
2433 		BUG_ON(count != COUNT_CONTINUED);
2434 		while (*map == COUNT_CONTINUED) {
2435 			kunmap_atomic(map);
2436 			page = list_entry(page->lru.next, struct page, lru);
2437 			BUG_ON(page == head);
2438 			map = kmap_atomic(page) + offset;
2439 		}
2440 		BUG_ON(*map == 0);
2441 		*map -= 1;
2442 		if (*map == 0)
2443 			count = 0;
2444 		kunmap_atomic(map);
2445 		page = list_entry(page->lru.prev, struct page, lru);
2446 		while (page != head) {
2447 			map = kmap_atomic(page) + offset;
2448 			*map = SWAP_CONT_MAX | count;
2449 			count = COUNT_CONTINUED;
2450 			kunmap_atomic(map);
2451 			page = list_entry(page->lru.prev, struct page, lru);
2452 		}
2453 		return count == COUNT_CONTINUED;
2454 	}
2455 }
2456 
2457 /*
2458  * free_swap_count_continuations - swapoff free all the continuation pages
2459  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2460  */
2461 static void free_swap_count_continuations(struct swap_info_struct *si)
2462 {
2463 	pgoff_t offset;
2464 
2465 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2466 		struct page *head;
2467 		head = vmalloc_to_page(si->swap_map + offset);
2468 		if (page_private(head)) {
2469 			struct list_head *this, *next;
2470 			list_for_each_safe(this, next, &head->lru) {
2471 				struct page *page;
2472 				page = list_entry(this, struct page, lru);
2473 				list_del(this);
2474 				__free_page(page);
2475 			}
2476 		}
2477 	}
2478 }
2479