1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/blkdev.h> 10 #include <linux/mm.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/task.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mman.h> 15 #include <linux/slab.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/swap.h> 18 #include <linux/vmalloc.h> 19 #include <linux/pagemap.h> 20 #include <linux/namei.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/blk-cgroup.h> 23 #include <linux/random.h> 24 #include <linux/writeback.h> 25 #include <linux/proc_fs.h> 26 #include <linux/seq_file.h> 27 #include <linux/init.h> 28 #include <linux/ksm.h> 29 #include <linux/rmap.h> 30 #include <linux/security.h> 31 #include <linux/backing-dev.h> 32 #include <linux/mutex.h> 33 #include <linux/capability.h> 34 #include <linux/syscalls.h> 35 #include <linux/memcontrol.h> 36 #include <linux/poll.h> 37 #include <linux/oom.h> 38 #include <linux/swapfile.h> 39 #include <linux/export.h> 40 #include <linux/sort.h> 41 #include <linux/completion.h> 42 #include <linux/suspend.h> 43 #include <linux/zswap.h> 44 #include <linux/plist.h> 45 46 #include <asm/tlbflush.h> 47 #include <linux/swapops.h> 48 #include <linux/swap_cgroup.h> 49 #include "internal.h" 50 #include "swap.h" 51 52 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 53 unsigned char); 54 static void free_swap_count_continuations(struct swap_info_struct *); 55 static void swap_entry_range_free(struct swap_info_struct *si, 56 struct swap_cluster_info *ci, 57 swp_entry_t entry, unsigned int nr_pages); 58 static void swap_range_alloc(struct swap_info_struct *si, 59 unsigned int nr_entries); 60 static bool folio_swapcache_freeable(struct folio *folio); 61 static struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 62 unsigned long offset); 63 static inline void unlock_cluster(struct swap_cluster_info *ci); 64 65 static DEFINE_SPINLOCK(swap_lock); 66 static unsigned int nr_swapfiles; 67 atomic_long_t nr_swap_pages; 68 /* 69 * Some modules use swappable objects and may try to swap them out under 70 * memory pressure (via the shrinker). Before doing so, they may wish to 71 * check to see if any swap space is available. 72 */ 73 EXPORT_SYMBOL_GPL(nr_swap_pages); 74 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 75 long total_swap_pages; 76 static int least_priority = -1; 77 unsigned long swapfile_maximum_size; 78 #ifdef CONFIG_MIGRATION 79 bool swap_migration_ad_supported; 80 #endif /* CONFIG_MIGRATION */ 81 82 static const char Bad_file[] = "Bad swap file entry "; 83 static const char Unused_file[] = "Unused swap file entry "; 84 static const char Bad_offset[] = "Bad swap offset entry "; 85 static const char Unused_offset[] = "Unused swap offset entry "; 86 87 /* 88 * all active swap_info_structs 89 * protected with swap_lock, and ordered by priority. 90 */ 91 static PLIST_HEAD(swap_active_head); 92 93 /* 94 * all available (active, not full) swap_info_structs 95 * protected with swap_avail_lock, ordered by priority. 96 * This is used by folio_alloc_swap() instead of swap_active_head 97 * because swap_active_head includes all swap_info_structs, 98 * but folio_alloc_swap() doesn't need to look at full ones. 99 * This uses its own lock instead of swap_lock because when a 100 * swap_info_struct changes between not-full/full, it needs to 101 * add/remove itself to/from this list, but the swap_info_struct->lock 102 * is held and the locking order requires swap_lock to be taken 103 * before any swap_info_struct->lock. 104 */ 105 static struct plist_head *swap_avail_heads; 106 static DEFINE_SPINLOCK(swap_avail_lock); 107 108 static struct swap_info_struct *swap_info[MAX_SWAPFILES]; 109 110 static DEFINE_MUTEX(swapon_mutex); 111 112 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 113 /* Activity counter to indicate that a swapon or swapoff has occurred */ 114 static atomic_t proc_poll_event = ATOMIC_INIT(0); 115 116 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 117 118 struct percpu_swap_cluster { 119 struct swap_info_struct *si[SWAP_NR_ORDERS]; 120 unsigned long offset[SWAP_NR_ORDERS]; 121 local_lock_t lock; 122 }; 123 124 static DEFINE_PER_CPU(struct percpu_swap_cluster, percpu_swap_cluster) = { 125 .si = { NULL }, 126 .offset = { SWAP_ENTRY_INVALID }, 127 .lock = INIT_LOCAL_LOCK(), 128 }; 129 130 static struct swap_info_struct *swap_type_to_swap_info(int type) 131 { 132 if (type >= MAX_SWAPFILES) 133 return NULL; 134 135 return READ_ONCE(swap_info[type]); /* rcu_dereference() */ 136 } 137 138 static inline unsigned char swap_count(unsigned char ent) 139 { 140 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 141 } 142 143 /* 144 * Use the second highest bit of inuse_pages counter as the indicator 145 * if one swap device is on the available plist, so the atomic can 146 * still be updated arithmetically while having special data embedded. 147 * 148 * inuse_pages counter is the only thing indicating if a device should 149 * be on avail_lists or not (except swapon / swapoff). By embedding the 150 * off-list bit in the atomic counter, updates no longer need any lock 151 * to check the list status. 152 * 153 * This bit will be set if the device is not on the plist and not 154 * usable, will be cleared if the device is on the plist. 155 */ 156 #define SWAP_USAGE_OFFLIST_BIT (1UL << (BITS_PER_TYPE(atomic_t) - 2)) 157 #define SWAP_USAGE_COUNTER_MASK (~SWAP_USAGE_OFFLIST_BIT) 158 static long swap_usage_in_pages(struct swap_info_struct *si) 159 { 160 return atomic_long_read(&si->inuse_pages) & SWAP_USAGE_COUNTER_MASK; 161 } 162 163 /* Reclaim the swap entry anyway if possible */ 164 #define TTRS_ANYWAY 0x1 165 /* 166 * Reclaim the swap entry if there are no more mappings of the 167 * corresponding page 168 */ 169 #define TTRS_UNMAPPED 0x2 170 /* Reclaim the swap entry if swap is getting full */ 171 #define TTRS_FULL 0x4 172 173 static bool swap_only_has_cache(struct swap_info_struct *si, 174 unsigned long offset, int nr_pages) 175 { 176 unsigned char *map = si->swap_map + offset; 177 unsigned char *map_end = map + nr_pages; 178 179 do { 180 VM_BUG_ON(!(*map & SWAP_HAS_CACHE)); 181 if (*map != SWAP_HAS_CACHE) 182 return false; 183 } while (++map < map_end); 184 185 return true; 186 } 187 188 static bool swap_is_last_map(struct swap_info_struct *si, 189 unsigned long offset, int nr_pages, bool *has_cache) 190 { 191 unsigned char *map = si->swap_map + offset; 192 unsigned char *map_end = map + nr_pages; 193 unsigned char count = *map; 194 195 if (swap_count(count) != 1) 196 return false; 197 198 while (++map < map_end) { 199 if (*map != count) 200 return false; 201 } 202 203 *has_cache = !!(count & SWAP_HAS_CACHE); 204 return true; 205 } 206 207 /* 208 * returns number of pages in the folio that backs the swap entry. If positive, 209 * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no 210 * folio was associated with the swap entry. 211 */ 212 static int __try_to_reclaim_swap(struct swap_info_struct *si, 213 unsigned long offset, unsigned long flags) 214 { 215 swp_entry_t entry = swp_entry(si->type, offset); 216 struct address_space *address_space = swap_address_space(entry); 217 struct swap_cluster_info *ci; 218 struct folio *folio; 219 int ret, nr_pages; 220 bool need_reclaim; 221 222 again: 223 folio = filemap_get_folio(address_space, swap_cache_index(entry)); 224 if (IS_ERR(folio)) 225 return 0; 226 227 nr_pages = folio_nr_pages(folio); 228 ret = -nr_pages; 229 230 /* 231 * When this function is called from scan_swap_map_slots() and it's 232 * called by vmscan.c at reclaiming folios. So we hold a folio lock 233 * here. We have to use trylock for avoiding deadlock. This is a special 234 * case and you should use folio_free_swap() with explicit folio_lock() 235 * in usual operations. 236 */ 237 if (!folio_trylock(folio)) 238 goto out; 239 240 /* 241 * Offset could point to the middle of a large folio, or folio 242 * may no longer point to the expected offset before it's locked. 243 */ 244 entry = folio->swap; 245 if (offset < swp_offset(entry) || offset >= swp_offset(entry) + nr_pages) { 246 folio_unlock(folio); 247 folio_put(folio); 248 goto again; 249 } 250 offset = swp_offset(entry); 251 252 need_reclaim = ((flags & TTRS_ANYWAY) || 253 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) || 254 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio))); 255 if (!need_reclaim || !folio_swapcache_freeable(folio)) 256 goto out_unlock; 257 258 /* 259 * It's safe to delete the folio from swap cache only if the folio's 260 * swap_map is HAS_CACHE only, which means the slots have no page table 261 * reference or pending writeback, and can't be allocated to others. 262 */ 263 ci = lock_cluster(si, offset); 264 need_reclaim = swap_only_has_cache(si, offset, nr_pages); 265 unlock_cluster(ci); 266 if (!need_reclaim) 267 goto out_unlock; 268 269 delete_from_swap_cache(folio); 270 folio_set_dirty(folio); 271 ret = nr_pages; 272 out_unlock: 273 folio_unlock(folio); 274 out: 275 folio_put(folio); 276 return ret; 277 } 278 279 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 280 { 281 struct rb_node *rb = rb_first(&sis->swap_extent_root); 282 return rb_entry(rb, struct swap_extent, rb_node); 283 } 284 285 static inline struct swap_extent *next_se(struct swap_extent *se) 286 { 287 struct rb_node *rb = rb_next(&se->rb_node); 288 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 289 } 290 291 /* 292 * swapon tell device that all the old swap contents can be discarded, 293 * to allow the swap device to optimize its wear-levelling. 294 */ 295 static int discard_swap(struct swap_info_struct *si) 296 { 297 struct swap_extent *se; 298 sector_t start_block; 299 sector_t nr_blocks; 300 int err = 0; 301 302 /* Do not discard the swap header page! */ 303 se = first_se(si); 304 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 305 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 306 if (nr_blocks) { 307 err = blkdev_issue_discard(si->bdev, start_block, 308 nr_blocks, GFP_KERNEL); 309 if (err) 310 return err; 311 cond_resched(); 312 } 313 314 for (se = next_se(se); se; se = next_se(se)) { 315 start_block = se->start_block << (PAGE_SHIFT - 9); 316 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 317 318 err = blkdev_issue_discard(si->bdev, start_block, 319 nr_blocks, GFP_KERNEL); 320 if (err) 321 break; 322 323 cond_resched(); 324 } 325 return err; /* That will often be -EOPNOTSUPP */ 326 } 327 328 static struct swap_extent * 329 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 330 { 331 struct swap_extent *se; 332 struct rb_node *rb; 333 334 rb = sis->swap_extent_root.rb_node; 335 while (rb) { 336 se = rb_entry(rb, struct swap_extent, rb_node); 337 if (offset < se->start_page) 338 rb = rb->rb_left; 339 else if (offset >= se->start_page + se->nr_pages) 340 rb = rb->rb_right; 341 else 342 return se; 343 } 344 /* It *must* be present */ 345 BUG(); 346 } 347 348 sector_t swap_folio_sector(struct folio *folio) 349 { 350 struct swap_info_struct *sis = swp_swap_info(folio->swap); 351 struct swap_extent *se; 352 sector_t sector; 353 pgoff_t offset; 354 355 offset = swp_offset(folio->swap); 356 se = offset_to_swap_extent(sis, offset); 357 sector = se->start_block + (offset - se->start_page); 358 return sector << (PAGE_SHIFT - 9); 359 } 360 361 /* 362 * swap allocation tell device that a cluster of swap can now be discarded, 363 * to allow the swap device to optimize its wear-levelling. 364 */ 365 static void discard_swap_cluster(struct swap_info_struct *si, 366 pgoff_t start_page, pgoff_t nr_pages) 367 { 368 struct swap_extent *se = offset_to_swap_extent(si, start_page); 369 370 while (nr_pages) { 371 pgoff_t offset = start_page - se->start_page; 372 sector_t start_block = se->start_block + offset; 373 sector_t nr_blocks = se->nr_pages - offset; 374 375 if (nr_blocks > nr_pages) 376 nr_blocks = nr_pages; 377 start_page += nr_blocks; 378 nr_pages -= nr_blocks; 379 380 start_block <<= PAGE_SHIFT - 9; 381 nr_blocks <<= PAGE_SHIFT - 9; 382 if (blkdev_issue_discard(si->bdev, start_block, 383 nr_blocks, GFP_NOIO)) 384 break; 385 386 se = next_se(se); 387 } 388 } 389 390 #ifdef CONFIG_THP_SWAP 391 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 392 393 #define swap_entry_order(order) (order) 394 #else 395 #define SWAPFILE_CLUSTER 256 396 397 /* 398 * Define swap_entry_order() as constant to let compiler to optimize 399 * out some code if !CONFIG_THP_SWAP 400 */ 401 #define swap_entry_order(order) 0 402 #endif 403 #define LATENCY_LIMIT 256 404 405 static inline bool cluster_is_empty(struct swap_cluster_info *info) 406 { 407 return info->count == 0; 408 } 409 410 static inline bool cluster_is_discard(struct swap_cluster_info *info) 411 { 412 return info->flags == CLUSTER_FLAG_DISCARD; 413 } 414 415 static inline bool cluster_is_usable(struct swap_cluster_info *ci, int order) 416 { 417 if (unlikely(ci->flags > CLUSTER_FLAG_USABLE)) 418 return false; 419 if (!order) 420 return true; 421 return cluster_is_empty(ci) || order == ci->order; 422 } 423 424 static inline unsigned int cluster_index(struct swap_info_struct *si, 425 struct swap_cluster_info *ci) 426 { 427 return ci - si->cluster_info; 428 } 429 430 static inline struct swap_cluster_info *offset_to_cluster(struct swap_info_struct *si, 431 unsigned long offset) 432 { 433 return &si->cluster_info[offset / SWAPFILE_CLUSTER]; 434 } 435 436 static inline unsigned int cluster_offset(struct swap_info_struct *si, 437 struct swap_cluster_info *ci) 438 { 439 return cluster_index(si, ci) * SWAPFILE_CLUSTER; 440 } 441 442 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 443 unsigned long offset) 444 { 445 struct swap_cluster_info *ci; 446 447 ci = offset_to_cluster(si, offset); 448 spin_lock(&ci->lock); 449 450 return ci; 451 } 452 453 static inline void unlock_cluster(struct swap_cluster_info *ci) 454 { 455 spin_unlock(&ci->lock); 456 } 457 458 static void move_cluster(struct swap_info_struct *si, 459 struct swap_cluster_info *ci, struct list_head *list, 460 enum swap_cluster_flags new_flags) 461 { 462 VM_WARN_ON(ci->flags == new_flags); 463 464 BUILD_BUG_ON(1 << sizeof(ci->flags) * BITS_PER_BYTE < CLUSTER_FLAG_MAX); 465 lockdep_assert_held(&ci->lock); 466 467 spin_lock(&si->lock); 468 if (ci->flags == CLUSTER_FLAG_NONE) 469 list_add_tail(&ci->list, list); 470 else 471 list_move_tail(&ci->list, list); 472 spin_unlock(&si->lock); 473 474 if (ci->flags == CLUSTER_FLAG_FRAG) 475 atomic_long_dec(&si->frag_cluster_nr[ci->order]); 476 else if (new_flags == CLUSTER_FLAG_FRAG) 477 atomic_long_inc(&si->frag_cluster_nr[ci->order]); 478 ci->flags = new_flags; 479 } 480 481 /* Add a cluster to discard list and schedule it to do discard */ 482 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 483 struct swap_cluster_info *ci) 484 { 485 VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE); 486 move_cluster(si, ci, &si->discard_clusters, CLUSTER_FLAG_DISCARD); 487 schedule_work(&si->discard_work); 488 } 489 490 static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci) 491 { 492 lockdep_assert_held(&ci->lock); 493 move_cluster(si, ci, &si->free_clusters, CLUSTER_FLAG_FREE); 494 ci->order = 0; 495 } 496 497 /* 498 * Isolate and lock the first cluster that is not contented on a list, 499 * clean its flag before taken off-list. Cluster flag must be in sync 500 * with list status, so cluster updaters can always know the cluster 501 * list status without touching si lock. 502 * 503 * Note it's possible that all clusters on a list are contented so 504 * this returns NULL for an non-empty list. 505 */ 506 static struct swap_cluster_info *isolate_lock_cluster( 507 struct swap_info_struct *si, struct list_head *list) 508 { 509 struct swap_cluster_info *ci, *ret = NULL; 510 511 spin_lock(&si->lock); 512 513 if (unlikely(!(si->flags & SWP_WRITEOK))) 514 goto out; 515 516 list_for_each_entry(ci, list, list) { 517 if (!spin_trylock(&ci->lock)) 518 continue; 519 520 /* We may only isolate and clear flags of following lists */ 521 VM_BUG_ON(!ci->flags); 522 VM_BUG_ON(ci->flags > CLUSTER_FLAG_USABLE && 523 ci->flags != CLUSTER_FLAG_FULL); 524 525 list_del(&ci->list); 526 ci->flags = CLUSTER_FLAG_NONE; 527 ret = ci; 528 break; 529 } 530 out: 531 spin_unlock(&si->lock); 532 533 return ret; 534 } 535 536 /* 537 * Doing discard actually. After a cluster discard is finished, the cluster 538 * will be added to free cluster list. Discard cluster is a bit special as 539 * they don't participate in allocation or reclaim, so clusters marked as 540 * CLUSTER_FLAG_DISCARD must remain off-list or on discard list. 541 */ 542 static bool swap_do_scheduled_discard(struct swap_info_struct *si) 543 { 544 struct swap_cluster_info *ci; 545 bool ret = false; 546 unsigned int idx; 547 548 spin_lock(&si->lock); 549 while (!list_empty(&si->discard_clusters)) { 550 ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list); 551 /* 552 * Delete the cluster from list to prepare for discard, but keep 553 * the CLUSTER_FLAG_DISCARD flag, percpu_swap_cluster could be 554 * pointing to it, or ran into by relocate_cluster. 555 */ 556 list_del(&ci->list); 557 idx = cluster_index(si, ci); 558 spin_unlock(&si->lock); 559 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 560 SWAPFILE_CLUSTER); 561 562 spin_lock(&ci->lock); 563 /* 564 * Discard is done, clear its flags as it's off-list, then 565 * return the cluster to allocation list. 566 */ 567 ci->flags = CLUSTER_FLAG_NONE; 568 __free_cluster(si, ci); 569 spin_unlock(&ci->lock); 570 ret = true; 571 spin_lock(&si->lock); 572 } 573 spin_unlock(&si->lock); 574 return ret; 575 } 576 577 static void swap_discard_work(struct work_struct *work) 578 { 579 struct swap_info_struct *si; 580 581 si = container_of(work, struct swap_info_struct, discard_work); 582 583 swap_do_scheduled_discard(si); 584 } 585 586 static void swap_users_ref_free(struct percpu_ref *ref) 587 { 588 struct swap_info_struct *si; 589 590 si = container_of(ref, struct swap_info_struct, users); 591 complete(&si->comp); 592 } 593 594 /* 595 * Must be called after freeing if ci->count == 0, moves the cluster to free 596 * or discard list. 597 */ 598 static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci) 599 { 600 VM_BUG_ON(ci->count != 0); 601 VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE); 602 lockdep_assert_held(&ci->lock); 603 604 /* 605 * If the swap is discardable, prepare discard the cluster 606 * instead of free it immediately. The cluster will be freed 607 * after discard. 608 */ 609 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 610 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 611 swap_cluster_schedule_discard(si, ci); 612 return; 613 } 614 615 __free_cluster(si, ci); 616 } 617 618 /* 619 * Must be called after freeing if ci->count != 0, moves the cluster to 620 * nonfull list. 621 */ 622 static void partial_free_cluster(struct swap_info_struct *si, 623 struct swap_cluster_info *ci) 624 { 625 VM_BUG_ON(!ci->count || ci->count == SWAPFILE_CLUSTER); 626 lockdep_assert_held(&ci->lock); 627 628 if (ci->flags != CLUSTER_FLAG_NONFULL) 629 move_cluster(si, ci, &si->nonfull_clusters[ci->order], 630 CLUSTER_FLAG_NONFULL); 631 } 632 633 /* 634 * Must be called after allocation, moves the cluster to full or frag list. 635 * Note: allocation doesn't acquire si lock, and may drop the ci lock for 636 * reclaim, so the cluster could be any where when called. 637 */ 638 static void relocate_cluster(struct swap_info_struct *si, 639 struct swap_cluster_info *ci) 640 { 641 lockdep_assert_held(&ci->lock); 642 643 /* Discard cluster must remain off-list or on discard list */ 644 if (cluster_is_discard(ci)) 645 return; 646 647 if (!ci->count) { 648 if (ci->flags != CLUSTER_FLAG_FREE) 649 free_cluster(si, ci); 650 } else if (ci->count != SWAPFILE_CLUSTER) { 651 if (ci->flags != CLUSTER_FLAG_FRAG) 652 move_cluster(si, ci, &si->frag_clusters[ci->order], 653 CLUSTER_FLAG_FRAG); 654 } else { 655 if (ci->flags != CLUSTER_FLAG_FULL) 656 move_cluster(si, ci, &si->full_clusters, 657 CLUSTER_FLAG_FULL); 658 } 659 } 660 661 /* 662 * The cluster corresponding to page_nr will be used. The cluster will not be 663 * added to free cluster list and its usage counter will be increased by 1. 664 * Only used for initialization. 665 */ 666 static void inc_cluster_info_page(struct swap_info_struct *si, 667 struct swap_cluster_info *cluster_info, unsigned long page_nr) 668 { 669 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 670 struct swap_cluster_info *ci; 671 672 ci = cluster_info + idx; 673 ci->count++; 674 675 VM_BUG_ON(ci->count > SWAPFILE_CLUSTER); 676 VM_BUG_ON(ci->flags); 677 } 678 679 static bool cluster_reclaim_range(struct swap_info_struct *si, 680 struct swap_cluster_info *ci, 681 unsigned long start, unsigned long end) 682 { 683 unsigned char *map = si->swap_map; 684 unsigned long offset = start; 685 int nr_reclaim; 686 687 spin_unlock(&ci->lock); 688 do { 689 switch (READ_ONCE(map[offset])) { 690 case 0: 691 offset++; 692 break; 693 case SWAP_HAS_CACHE: 694 nr_reclaim = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 695 if (nr_reclaim > 0) 696 offset += nr_reclaim; 697 else 698 goto out; 699 break; 700 default: 701 goto out; 702 } 703 } while (offset < end); 704 out: 705 spin_lock(&ci->lock); 706 /* 707 * Recheck the range no matter reclaim succeeded or not, the slot 708 * could have been be freed while we are not holding the lock. 709 */ 710 for (offset = start; offset < end; offset++) 711 if (READ_ONCE(map[offset])) 712 return false; 713 714 return true; 715 } 716 717 static bool cluster_scan_range(struct swap_info_struct *si, 718 struct swap_cluster_info *ci, 719 unsigned long start, unsigned int nr_pages, 720 bool *need_reclaim) 721 { 722 unsigned long offset, end = start + nr_pages; 723 unsigned char *map = si->swap_map; 724 725 if (cluster_is_empty(ci)) 726 return true; 727 728 for (offset = start; offset < end; offset++) { 729 switch (READ_ONCE(map[offset])) { 730 case 0: 731 continue; 732 case SWAP_HAS_CACHE: 733 if (!vm_swap_full()) 734 return false; 735 *need_reclaim = true; 736 continue; 737 default: 738 return false; 739 } 740 } 741 742 return true; 743 } 744 745 static bool cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci, 746 unsigned int start, unsigned char usage, 747 unsigned int order) 748 { 749 unsigned int nr_pages = 1 << order; 750 751 lockdep_assert_held(&ci->lock); 752 753 if (!(si->flags & SWP_WRITEOK)) 754 return false; 755 756 /* 757 * The first allocation in a cluster makes the 758 * cluster exclusive to this order 759 */ 760 if (cluster_is_empty(ci)) 761 ci->order = order; 762 763 memset(si->swap_map + start, usage, nr_pages); 764 swap_range_alloc(si, nr_pages); 765 ci->count += nr_pages; 766 767 return true; 768 } 769 770 /* Try use a new cluster for current CPU and allocate from it. */ 771 static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si, 772 struct swap_cluster_info *ci, 773 unsigned long offset, 774 unsigned int order, 775 unsigned char usage) 776 { 777 unsigned int next = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID; 778 unsigned long start = ALIGN_DOWN(offset, SWAPFILE_CLUSTER); 779 unsigned long end = min(start + SWAPFILE_CLUSTER, si->max); 780 unsigned int nr_pages = 1 << order; 781 bool need_reclaim, ret; 782 783 lockdep_assert_held(&ci->lock); 784 785 if (end < nr_pages || ci->count + nr_pages > SWAPFILE_CLUSTER) 786 goto out; 787 788 for (end -= nr_pages; offset <= end; offset += nr_pages) { 789 need_reclaim = false; 790 if (!cluster_scan_range(si, ci, offset, nr_pages, &need_reclaim)) 791 continue; 792 if (need_reclaim) { 793 ret = cluster_reclaim_range(si, ci, offset, offset + nr_pages); 794 /* 795 * Reclaim drops ci->lock and cluster could be used 796 * by another order. Not checking flag as off-list 797 * cluster has no flag set, and change of list 798 * won't cause fragmentation. 799 */ 800 if (!cluster_is_usable(ci, order)) 801 goto out; 802 if (cluster_is_empty(ci)) 803 offset = start; 804 /* Reclaim failed but cluster is usable, try next */ 805 if (!ret) 806 continue; 807 } 808 if (!cluster_alloc_range(si, ci, offset, usage, order)) 809 break; 810 found = offset; 811 offset += nr_pages; 812 if (ci->count < SWAPFILE_CLUSTER && offset <= end) 813 next = offset; 814 break; 815 } 816 out: 817 relocate_cluster(si, ci); 818 unlock_cluster(ci); 819 if (si->flags & SWP_SOLIDSTATE) { 820 this_cpu_write(percpu_swap_cluster.offset[order], next); 821 this_cpu_write(percpu_swap_cluster.si[order], si); 822 } else { 823 si->global_cluster->next[order] = next; 824 } 825 return found; 826 } 827 828 static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force) 829 { 830 long to_scan = 1; 831 unsigned long offset, end; 832 struct swap_cluster_info *ci; 833 unsigned char *map = si->swap_map; 834 int nr_reclaim; 835 836 if (force) 837 to_scan = swap_usage_in_pages(si) / SWAPFILE_CLUSTER; 838 839 while ((ci = isolate_lock_cluster(si, &si->full_clusters))) { 840 offset = cluster_offset(si, ci); 841 end = min(si->max, offset + SWAPFILE_CLUSTER); 842 to_scan--; 843 844 while (offset < end) { 845 if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) { 846 spin_unlock(&ci->lock); 847 nr_reclaim = __try_to_reclaim_swap(si, offset, 848 TTRS_ANYWAY); 849 spin_lock(&ci->lock); 850 if (nr_reclaim) { 851 offset += abs(nr_reclaim); 852 continue; 853 } 854 } 855 offset++; 856 } 857 858 /* in case no swap cache is reclaimed */ 859 if (ci->flags == CLUSTER_FLAG_NONE) 860 relocate_cluster(si, ci); 861 862 unlock_cluster(ci); 863 if (to_scan <= 0) 864 break; 865 } 866 } 867 868 static void swap_reclaim_work(struct work_struct *work) 869 { 870 struct swap_info_struct *si; 871 872 si = container_of(work, struct swap_info_struct, reclaim_work); 873 874 swap_reclaim_full_clusters(si, true); 875 } 876 877 /* 878 * Try to allocate swap entries with specified order and try set a new 879 * cluster for current CPU too. 880 */ 881 static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order, 882 unsigned char usage) 883 { 884 struct swap_cluster_info *ci; 885 unsigned int offset = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID; 886 887 /* 888 * Swapfile is not block device so unable 889 * to allocate large entries. 890 */ 891 if (order && !(si->flags & SWP_BLKDEV)) 892 return 0; 893 894 if (!(si->flags & SWP_SOLIDSTATE)) { 895 /* Serialize HDD SWAP allocation for each device. */ 896 spin_lock(&si->global_cluster_lock); 897 offset = si->global_cluster->next[order]; 898 if (offset == SWAP_ENTRY_INVALID) 899 goto new_cluster; 900 901 ci = lock_cluster(si, offset); 902 /* Cluster could have been used by another order */ 903 if (cluster_is_usable(ci, order)) { 904 if (cluster_is_empty(ci)) 905 offset = cluster_offset(si, ci); 906 found = alloc_swap_scan_cluster(si, ci, offset, 907 order, usage); 908 } else { 909 unlock_cluster(ci); 910 } 911 if (found) 912 goto done; 913 } 914 915 new_cluster: 916 ci = isolate_lock_cluster(si, &si->free_clusters); 917 if (ci) { 918 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci), 919 order, usage); 920 if (found) 921 goto done; 922 } 923 924 /* Try reclaim from full clusters if free clusters list is drained */ 925 if (vm_swap_full()) 926 swap_reclaim_full_clusters(si, false); 927 928 if (order < PMD_ORDER) { 929 unsigned int frags = 0, frags_existing; 930 931 while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[order]))) { 932 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci), 933 order, usage); 934 if (found) 935 goto done; 936 /* Clusters failed to allocate are moved to frag_clusters */ 937 frags++; 938 } 939 940 frags_existing = atomic_long_read(&si->frag_cluster_nr[order]); 941 while (frags < frags_existing && 942 (ci = isolate_lock_cluster(si, &si->frag_clusters[order]))) { 943 atomic_long_dec(&si->frag_cluster_nr[order]); 944 /* 945 * Rotate the frag list to iterate, they were all 946 * failing high order allocation or moved here due to 947 * per-CPU usage, but they could contain newly released 948 * reclaimable (eg. lazy-freed swap cache) slots. 949 */ 950 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci), 951 order, usage); 952 if (found) 953 goto done; 954 frags++; 955 } 956 } 957 958 /* 959 * We don't have free cluster but have some clusters in 960 * discarding, do discard now and reclaim them, then 961 * reread cluster_next_cpu since we dropped si->lock 962 */ 963 if ((si->flags & SWP_PAGE_DISCARD) && swap_do_scheduled_discard(si)) 964 goto new_cluster; 965 966 if (order) 967 goto done; 968 969 /* Order 0 stealing from higher order */ 970 for (int o = 1; o < SWAP_NR_ORDERS; o++) { 971 /* 972 * Clusters here have at least one usable slots and can't fail order 0 973 * allocation, but reclaim may drop si->lock and race with another user. 974 */ 975 while ((ci = isolate_lock_cluster(si, &si->frag_clusters[o]))) { 976 atomic_long_dec(&si->frag_cluster_nr[o]); 977 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci), 978 0, usage); 979 if (found) 980 goto done; 981 } 982 983 while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[o]))) { 984 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci), 985 0, usage); 986 if (found) 987 goto done; 988 } 989 } 990 done: 991 if (!(si->flags & SWP_SOLIDSTATE)) 992 spin_unlock(&si->global_cluster_lock); 993 return found; 994 } 995 996 /* SWAP_USAGE_OFFLIST_BIT can only be set by this helper. */ 997 static void del_from_avail_list(struct swap_info_struct *si, bool swapoff) 998 { 999 int nid; 1000 unsigned long pages; 1001 1002 spin_lock(&swap_avail_lock); 1003 1004 if (swapoff) { 1005 /* 1006 * Forcefully remove it. Clear the SWP_WRITEOK flags for 1007 * swapoff here so it's synchronized by both si->lock and 1008 * swap_avail_lock, to ensure the result can be seen by 1009 * add_to_avail_list. 1010 */ 1011 lockdep_assert_held(&si->lock); 1012 si->flags &= ~SWP_WRITEOK; 1013 atomic_long_or(SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages); 1014 } else { 1015 /* 1016 * If not called by swapoff, take it off-list only if it's 1017 * full and SWAP_USAGE_OFFLIST_BIT is not set (strictly 1018 * si->inuse_pages == pages), any concurrent slot freeing, 1019 * or device already removed from plist by someone else 1020 * will make this return false. 1021 */ 1022 pages = si->pages; 1023 if (!atomic_long_try_cmpxchg(&si->inuse_pages, &pages, 1024 pages | SWAP_USAGE_OFFLIST_BIT)) 1025 goto skip; 1026 } 1027 1028 for_each_node(nid) 1029 plist_del(&si->avail_lists[nid], &swap_avail_heads[nid]); 1030 1031 skip: 1032 spin_unlock(&swap_avail_lock); 1033 } 1034 1035 /* SWAP_USAGE_OFFLIST_BIT can only be cleared by this helper. */ 1036 static void add_to_avail_list(struct swap_info_struct *si, bool swapon) 1037 { 1038 int nid; 1039 long val; 1040 unsigned long pages; 1041 1042 spin_lock(&swap_avail_lock); 1043 1044 /* Corresponding to SWP_WRITEOK clearing in del_from_avail_list */ 1045 if (swapon) { 1046 lockdep_assert_held(&si->lock); 1047 si->flags |= SWP_WRITEOK; 1048 } else { 1049 if (!(READ_ONCE(si->flags) & SWP_WRITEOK)) 1050 goto skip; 1051 } 1052 1053 if (!(atomic_long_read(&si->inuse_pages) & SWAP_USAGE_OFFLIST_BIT)) 1054 goto skip; 1055 1056 val = atomic_long_fetch_and_relaxed(~SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages); 1057 1058 /* 1059 * When device is full and device is on the plist, only one updater will 1060 * see (inuse_pages == si->pages) and will call del_from_avail_list. If 1061 * that updater happen to be here, just skip adding. 1062 */ 1063 pages = si->pages; 1064 if (val == pages) { 1065 /* Just like the cmpxchg in del_from_avail_list */ 1066 if (atomic_long_try_cmpxchg(&si->inuse_pages, &pages, 1067 pages | SWAP_USAGE_OFFLIST_BIT)) 1068 goto skip; 1069 } 1070 1071 for_each_node(nid) 1072 plist_add(&si->avail_lists[nid], &swap_avail_heads[nid]); 1073 1074 skip: 1075 spin_unlock(&swap_avail_lock); 1076 } 1077 1078 /* 1079 * swap_usage_add / swap_usage_sub of each slot are serialized by ci->lock 1080 * within each cluster, so the total contribution to the global counter should 1081 * always be positive and cannot exceed the total number of usable slots. 1082 */ 1083 static bool swap_usage_add(struct swap_info_struct *si, unsigned int nr_entries) 1084 { 1085 long val = atomic_long_add_return_relaxed(nr_entries, &si->inuse_pages); 1086 1087 /* 1088 * If device is full, and SWAP_USAGE_OFFLIST_BIT is not set, 1089 * remove it from the plist. 1090 */ 1091 if (unlikely(val == si->pages)) { 1092 del_from_avail_list(si, false); 1093 return true; 1094 } 1095 1096 return false; 1097 } 1098 1099 static void swap_usage_sub(struct swap_info_struct *si, unsigned int nr_entries) 1100 { 1101 long val = atomic_long_sub_return_relaxed(nr_entries, &si->inuse_pages); 1102 1103 /* 1104 * If device is not full, and SWAP_USAGE_OFFLIST_BIT is set, 1105 * add it to the plist. 1106 */ 1107 if (unlikely(val & SWAP_USAGE_OFFLIST_BIT)) 1108 add_to_avail_list(si, false); 1109 } 1110 1111 static void swap_range_alloc(struct swap_info_struct *si, 1112 unsigned int nr_entries) 1113 { 1114 if (swap_usage_add(si, nr_entries)) { 1115 if (vm_swap_full()) 1116 schedule_work(&si->reclaim_work); 1117 } 1118 } 1119 1120 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 1121 unsigned int nr_entries) 1122 { 1123 unsigned long begin = offset; 1124 unsigned long end = offset + nr_entries - 1; 1125 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 1126 unsigned int i; 1127 1128 /* 1129 * Use atomic clear_bit operations only on zeromap instead of non-atomic 1130 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes. 1131 */ 1132 for (i = 0; i < nr_entries; i++) { 1133 clear_bit(offset + i, si->zeromap); 1134 zswap_invalidate(swp_entry(si->type, offset + i)); 1135 } 1136 1137 if (si->flags & SWP_BLKDEV) 1138 swap_slot_free_notify = 1139 si->bdev->bd_disk->fops->swap_slot_free_notify; 1140 else 1141 swap_slot_free_notify = NULL; 1142 while (offset <= end) { 1143 arch_swap_invalidate_page(si->type, offset); 1144 if (swap_slot_free_notify) 1145 swap_slot_free_notify(si->bdev, offset); 1146 offset++; 1147 } 1148 clear_shadow_from_swap_cache(si->type, begin, end); 1149 1150 /* 1151 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0 1152 * only after the above cleanups are done. 1153 */ 1154 smp_wmb(); 1155 atomic_long_add(nr_entries, &nr_swap_pages); 1156 swap_usage_sub(si, nr_entries); 1157 } 1158 1159 static bool get_swap_device_info(struct swap_info_struct *si) 1160 { 1161 if (!percpu_ref_tryget_live(&si->users)) 1162 return false; 1163 /* 1164 * Guarantee the si->users are checked before accessing other 1165 * fields of swap_info_struct, and si->flags (SWP_WRITEOK) is 1166 * up to dated. 1167 * 1168 * Paired with the spin_unlock() after setup_swap_info() in 1169 * enable_swap_info(), and smp_wmb() in swapoff. 1170 */ 1171 smp_rmb(); 1172 return true; 1173 } 1174 1175 /* 1176 * Fast path try to get swap entries with specified order from current 1177 * CPU's swap entry pool (a cluster). 1178 */ 1179 static bool swap_alloc_fast(swp_entry_t *entry, 1180 int order) 1181 { 1182 struct swap_cluster_info *ci; 1183 struct swap_info_struct *si; 1184 unsigned int offset, found = SWAP_ENTRY_INVALID; 1185 1186 /* 1187 * Once allocated, swap_info_struct will never be completely freed, 1188 * so checking it's liveness by get_swap_device_info is enough. 1189 */ 1190 si = this_cpu_read(percpu_swap_cluster.si[order]); 1191 offset = this_cpu_read(percpu_swap_cluster.offset[order]); 1192 if (!si || !offset || !get_swap_device_info(si)) 1193 return false; 1194 1195 ci = lock_cluster(si, offset); 1196 if (cluster_is_usable(ci, order)) { 1197 if (cluster_is_empty(ci)) 1198 offset = cluster_offset(si, ci); 1199 found = alloc_swap_scan_cluster(si, ci, offset, order, SWAP_HAS_CACHE); 1200 if (found) 1201 *entry = swp_entry(si->type, found); 1202 } else { 1203 unlock_cluster(ci); 1204 } 1205 1206 put_swap_device(si); 1207 return !!found; 1208 } 1209 1210 /* Rotate the device and switch to a new cluster */ 1211 static bool swap_alloc_slow(swp_entry_t *entry, 1212 int order) 1213 { 1214 int node; 1215 unsigned long offset; 1216 struct swap_info_struct *si, *next; 1217 1218 node = numa_node_id(); 1219 spin_lock(&swap_avail_lock); 1220 start_over: 1221 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1222 /* Rotate the device and switch to a new cluster */ 1223 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1224 spin_unlock(&swap_avail_lock); 1225 if (get_swap_device_info(si)) { 1226 offset = cluster_alloc_swap_entry(si, order, SWAP_HAS_CACHE); 1227 put_swap_device(si); 1228 if (offset) { 1229 *entry = swp_entry(si->type, offset); 1230 return true; 1231 } 1232 if (order) 1233 return false; 1234 } 1235 1236 spin_lock(&swap_avail_lock); 1237 /* 1238 * if we got here, it's likely that si was almost full before, 1239 * and since scan_swap_map_slots() can drop the si->lock, 1240 * multiple callers probably all tried to get a page from the 1241 * same si and it filled up before we could get one; or, the si 1242 * filled up between us dropping swap_avail_lock and taking 1243 * si->lock. Since we dropped the swap_avail_lock, the 1244 * swap_avail_head list may have been modified; so if next is 1245 * still in the swap_avail_head list then try it, otherwise 1246 * start over if we have not gotten any slots. 1247 */ 1248 if (plist_node_empty(&next->avail_lists[node])) 1249 goto start_over; 1250 } 1251 spin_unlock(&swap_avail_lock); 1252 return false; 1253 } 1254 1255 /** 1256 * folio_alloc_swap - allocate swap space for a folio 1257 * @folio: folio we want to move to swap 1258 * @gfp: gfp mask for shadow nodes 1259 * 1260 * Allocate swap space for the folio and add the folio to the 1261 * swap cache. 1262 * 1263 * Context: Caller needs to hold the folio lock. 1264 * Return: Whether the folio was added to the swap cache. 1265 */ 1266 int folio_alloc_swap(struct folio *folio, gfp_t gfp) 1267 { 1268 unsigned int order = folio_order(folio); 1269 unsigned int size = 1 << order; 1270 swp_entry_t entry = {}; 1271 1272 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1273 VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio); 1274 1275 if (order) { 1276 /* 1277 * Reject large allocation when THP_SWAP is disabled, 1278 * the caller should split the folio and try again. 1279 */ 1280 if (!IS_ENABLED(CONFIG_THP_SWAP)) 1281 return -EAGAIN; 1282 1283 /* 1284 * Allocation size should never exceed cluster size 1285 * (HPAGE_PMD_SIZE). 1286 */ 1287 if (size > SWAPFILE_CLUSTER) { 1288 VM_WARN_ON_ONCE(1); 1289 return -EINVAL; 1290 } 1291 } 1292 1293 local_lock(&percpu_swap_cluster.lock); 1294 if (!swap_alloc_fast(&entry, order)) 1295 swap_alloc_slow(&entry, order); 1296 local_unlock(&percpu_swap_cluster.lock); 1297 1298 /* Need to call this even if allocation failed, for MEMCG_SWAP_FAIL. */ 1299 if (mem_cgroup_try_charge_swap(folio, entry)) 1300 goto out_free; 1301 1302 if (!entry.val) 1303 return -ENOMEM; 1304 1305 /* 1306 * XArray node allocations from PF_MEMALLOC contexts could 1307 * completely exhaust the page allocator. __GFP_NOMEMALLOC 1308 * stops emergency reserves from being allocated. 1309 * 1310 * TODO: this could cause a theoretical memory reclaim 1311 * deadlock in the swap out path. 1312 */ 1313 if (add_to_swap_cache(folio, entry, gfp | __GFP_NOMEMALLOC, NULL)) 1314 goto out_free; 1315 1316 atomic_long_sub(size, &nr_swap_pages); 1317 return 0; 1318 1319 out_free: 1320 put_swap_folio(folio, entry); 1321 return -ENOMEM; 1322 } 1323 1324 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1325 { 1326 struct swap_info_struct *si; 1327 unsigned long offset; 1328 1329 if (!entry.val) 1330 goto out; 1331 si = swp_swap_info(entry); 1332 if (!si) 1333 goto bad_nofile; 1334 if (data_race(!(si->flags & SWP_USED))) 1335 goto bad_device; 1336 offset = swp_offset(entry); 1337 if (offset >= si->max) 1338 goto bad_offset; 1339 if (data_race(!si->swap_map[swp_offset(entry)])) 1340 goto bad_free; 1341 return si; 1342 1343 bad_free: 1344 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); 1345 goto out; 1346 bad_offset: 1347 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1348 goto out; 1349 bad_device: 1350 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); 1351 goto out; 1352 bad_nofile: 1353 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1354 out: 1355 return NULL; 1356 } 1357 1358 static unsigned char __swap_entry_free_locked(struct swap_info_struct *si, 1359 unsigned long offset, 1360 unsigned char usage) 1361 { 1362 unsigned char count; 1363 unsigned char has_cache; 1364 1365 count = si->swap_map[offset]; 1366 1367 has_cache = count & SWAP_HAS_CACHE; 1368 count &= ~SWAP_HAS_CACHE; 1369 1370 if (usage == SWAP_HAS_CACHE) { 1371 VM_BUG_ON(!has_cache); 1372 has_cache = 0; 1373 } else if (count == SWAP_MAP_SHMEM) { 1374 /* 1375 * Or we could insist on shmem.c using a special 1376 * swap_shmem_free() and free_shmem_swap_and_cache()... 1377 */ 1378 count = 0; 1379 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1380 if (count == COUNT_CONTINUED) { 1381 if (swap_count_continued(si, offset, count)) 1382 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1383 else 1384 count = SWAP_MAP_MAX; 1385 } else 1386 count--; 1387 } 1388 1389 usage = count | has_cache; 1390 if (usage) 1391 WRITE_ONCE(si->swap_map[offset], usage); 1392 else 1393 WRITE_ONCE(si->swap_map[offset], SWAP_HAS_CACHE); 1394 1395 return usage; 1396 } 1397 1398 /* 1399 * When we get a swap entry, if there aren't some other ways to 1400 * prevent swapoff, such as the folio in swap cache is locked, RCU 1401 * reader side is locked, etc., the swap entry may become invalid 1402 * because of swapoff. Then, we need to enclose all swap related 1403 * functions with get_swap_device() and put_swap_device(), unless the 1404 * swap functions call get/put_swap_device() by themselves. 1405 * 1406 * RCU reader side lock (including any spinlock) is sufficient to 1407 * prevent swapoff, because synchronize_rcu() is called in swapoff() 1408 * before freeing data structures. 1409 * 1410 * Check whether swap entry is valid in the swap device. If so, 1411 * return pointer to swap_info_struct, and keep the swap entry valid 1412 * via preventing the swap device from being swapoff, until 1413 * put_swap_device() is called. Otherwise return NULL. 1414 * 1415 * Notice that swapoff or swapoff+swapon can still happen before the 1416 * percpu_ref_tryget_live() in get_swap_device() or after the 1417 * percpu_ref_put() in put_swap_device() if there isn't any other way 1418 * to prevent swapoff. The caller must be prepared for that. For 1419 * example, the following situation is possible. 1420 * 1421 * CPU1 CPU2 1422 * do_swap_page() 1423 * ... swapoff+swapon 1424 * __read_swap_cache_async() 1425 * swapcache_prepare() 1426 * __swap_duplicate() 1427 * // check swap_map 1428 * // verify PTE not changed 1429 * 1430 * In __swap_duplicate(), the swap_map need to be checked before 1431 * changing partly because the specified swap entry may be for another 1432 * swap device which has been swapoff. And in do_swap_page(), after 1433 * the page is read from the swap device, the PTE is verified not 1434 * changed with the page table locked to check whether the swap device 1435 * has been swapoff or swapoff+swapon. 1436 */ 1437 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1438 { 1439 struct swap_info_struct *si; 1440 unsigned long offset; 1441 1442 if (!entry.val) 1443 goto out; 1444 si = swp_swap_info(entry); 1445 if (!si) 1446 goto bad_nofile; 1447 if (!get_swap_device_info(si)) 1448 goto out; 1449 offset = swp_offset(entry); 1450 if (offset >= si->max) 1451 goto put_out; 1452 1453 return si; 1454 bad_nofile: 1455 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1456 out: 1457 return NULL; 1458 put_out: 1459 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1460 percpu_ref_put(&si->users); 1461 return NULL; 1462 } 1463 1464 static unsigned char __swap_entry_free(struct swap_info_struct *si, 1465 swp_entry_t entry) 1466 { 1467 struct swap_cluster_info *ci; 1468 unsigned long offset = swp_offset(entry); 1469 unsigned char usage; 1470 1471 ci = lock_cluster(si, offset); 1472 usage = __swap_entry_free_locked(si, offset, 1); 1473 if (!usage) 1474 swap_entry_range_free(si, ci, swp_entry(si->type, offset), 1); 1475 unlock_cluster(ci); 1476 1477 return usage; 1478 } 1479 1480 static bool __swap_entries_free(struct swap_info_struct *si, 1481 swp_entry_t entry, int nr) 1482 { 1483 unsigned long offset = swp_offset(entry); 1484 unsigned int type = swp_type(entry); 1485 struct swap_cluster_info *ci; 1486 bool has_cache = false; 1487 unsigned char count; 1488 int i; 1489 1490 if (nr <= 1 || swap_count(data_race(si->swap_map[offset])) != 1) 1491 goto fallback; 1492 /* cross into another cluster */ 1493 if (nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER) 1494 goto fallback; 1495 1496 ci = lock_cluster(si, offset); 1497 if (!swap_is_last_map(si, offset, nr, &has_cache)) { 1498 unlock_cluster(ci); 1499 goto fallback; 1500 } 1501 for (i = 0; i < nr; i++) 1502 WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE); 1503 if (!has_cache) 1504 swap_entry_range_free(si, ci, entry, nr); 1505 unlock_cluster(ci); 1506 1507 return has_cache; 1508 1509 fallback: 1510 for (i = 0; i < nr; i++) { 1511 if (data_race(si->swap_map[offset + i])) { 1512 count = __swap_entry_free(si, swp_entry(type, offset + i)); 1513 if (count == SWAP_HAS_CACHE) 1514 has_cache = true; 1515 } else { 1516 WARN_ON_ONCE(1); 1517 } 1518 } 1519 return has_cache; 1520 } 1521 1522 /* 1523 * Drop the last HAS_CACHE flag of swap entries, caller have to 1524 * ensure all entries belong to the same cgroup. 1525 */ 1526 static void swap_entry_range_free(struct swap_info_struct *si, 1527 struct swap_cluster_info *ci, 1528 swp_entry_t entry, unsigned int nr_pages) 1529 { 1530 unsigned long offset = swp_offset(entry); 1531 unsigned char *map = si->swap_map + offset; 1532 unsigned char *map_end = map + nr_pages; 1533 1534 /* It should never free entries across different clusters */ 1535 VM_BUG_ON(ci != offset_to_cluster(si, offset + nr_pages - 1)); 1536 VM_BUG_ON(cluster_is_empty(ci)); 1537 VM_BUG_ON(ci->count < nr_pages); 1538 1539 ci->count -= nr_pages; 1540 do { 1541 VM_BUG_ON(*map != SWAP_HAS_CACHE); 1542 *map = 0; 1543 } while (++map < map_end); 1544 1545 mem_cgroup_uncharge_swap(entry, nr_pages); 1546 swap_range_free(si, offset, nr_pages); 1547 1548 if (!ci->count) 1549 free_cluster(si, ci); 1550 else 1551 partial_free_cluster(si, ci); 1552 } 1553 1554 static void cluster_swap_free_nr(struct swap_info_struct *si, 1555 unsigned long offset, int nr_pages, 1556 unsigned char usage) 1557 { 1558 struct swap_cluster_info *ci; 1559 unsigned long end = offset + nr_pages; 1560 1561 ci = lock_cluster(si, offset); 1562 do { 1563 if (!__swap_entry_free_locked(si, offset, usage)) 1564 swap_entry_range_free(si, ci, swp_entry(si->type, offset), 1); 1565 } while (++offset < end); 1566 unlock_cluster(ci); 1567 } 1568 1569 /* 1570 * Caller has made sure that the swap device corresponding to entry 1571 * is still around or has not been recycled. 1572 */ 1573 void swap_free_nr(swp_entry_t entry, int nr_pages) 1574 { 1575 int nr; 1576 struct swap_info_struct *sis; 1577 unsigned long offset = swp_offset(entry); 1578 1579 sis = _swap_info_get(entry); 1580 if (!sis) 1581 return; 1582 1583 while (nr_pages) { 1584 nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER); 1585 cluster_swap_free_nr(sis, offset, nr, 1); 1586 offset += nr; 1587 nr_pages -= nr; 1588 } 1589 } 1590 1591 /* 1592 * Called after dropping swapcache to decrease refcnt to swap entries. 1593 */ 1594 void put_swap_folio(struct folio *folio, swp_entry_t entry) 1595 { 1596 unsigned long offset = swp_offset(entry); 1597 struct swap_cluster_info *ci; 1598 struct swap_info_struct *si; 1599 int size = 1 << swap_entry_order(folio_order(folio)); 1600 1601 si = _swap_info_get(entry); 1602 if (!si) 1603 return; 1604 1605 ci = lock_cluster(si, offset); 1606 if (swap_only_has_cache(si, offset, size)) 1607 swap_entry_range_free(si, ci, entry, size); 1608 else { 1609 for (int i = 0; i < size; i++, entry.val++) { 1610 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) 1611 swap_entry_range_free(si, ci, entry, 1); 1612 } 1613 } 1614 unlock_cluster(ci); 1615 } 1616 1617 int __swap_count(swp_entry_t entry) 1618 { 1619 struct swap_info_struct *si = swp_swap_info(entry); 1620 pgoff_t offset = swp_offset(entry); 1621 1622 return swap_count(si->swap_map[offset]); 1623 } 1624 1625 /* 1626 * How many references to @entry are currently swapped out? 1627 * This does not give an exact answer when swap count is continued, 1628 * but does include the high COUNT_CONTINUED flag to allow for that. 1629 */ 1630 bool swap_entry_swapped(struct swap_info_struct *si, swp_entry_t entry) 1631 { 1632 pgoff_t offset = swp_offset(entry); 1633 struct swap_cluster_info *ci; 1634 int count; 1635 1636 ci = lock_cluster(si, offset); 1637 count = swap_count(si->swap_map[offset]); 1638 unlock_cluster(ci); 1639 return !!count; 1640 } 1641 1642 /* 1643 * How many references to @entry are currently swapped out? 1644 * This considers COUNT_CONTINUED so it returns exact answer. 1645 */ 1646 int swp_swapcount(swp_entry_t entry) 1647 { 1648 int count, tmp_count, n; 1649 struct swap_info_struct *si; 1650 struct swap_cluster_info *ci; 1651 struct page *page; 1652 pgoff_t offset; 1653 unsigned char *map; 1654 1655 si = _swap_info_get(entry); 1656 if (!si) 1657 return 0; 1658 1659 offset = swp_offset(entry); 1660 1661 ci = lock_cluster(si, offset); 1662 1663 count = swap_count(si->swap_map[offset]); 1664 if (!(count & COUNT_CONTINUED)) 1665 goto out; 1666 1667 count &= ~COUNT_CONTINUED; 1668 n = SWAP_MAP_MAX + 1; 1669 1670 page = vmalloc_to_page(si->swap_map + offset); 1671 offset &= ~PAGE_MASK; 1672 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1673 1674 do { 1675 page = list_next_entry(page, lru); 1676 map = kmap_local_page(page); 1677 tmp_count = map[offset]; 1678 kunmap_local(map); 1679 1680 count += (tmp_count & ~COUNT_CONTINUED) * n; 1681 n *= (SWAP_CONT_MAX + 1); 1682 } while (tmp_count & COUNT_CONTINUED); 1683 out: 1684 unlock_cluster(ci); 1685 return count; 1686 } 1687 1688 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1689 swp_entry_t entry, int order) 1690 { 1691 struct swap_cluster_info *ci; 1692 unsigned char *map = si->swap_map; 1693 unsigned int nr_pages = 1 << order; 1694 unsigned long roffset = swp_offset(entry); 1695 unsigned long offset = round_down(roffset, nr_pages); 1696 int i; 1697 bool ret = false; 1698 1699 ci = lock_cluster(si, offset); 1700 if (nr_pages == 1) { 1701 if (swap_count(map[roffset])) 1702 ret = true; 1703 goto unlock_out; 1704 } 1705 for (i = 0; i < nr_pages; i++) { 1706 if (swap_count(map[offset + i])) { 1707 ret = true; 1708 break; 1709 } 1710 } 1711 unlock_out: 1712 unlock_cluster(ci); 1713 return ret; 1714 } 1715 1716 static bool folio_swapped(struct folio *folio) 1717 { 1718 swp_entry_t entry = folio->swap; 1719 struct swap_info_struct *si = _swap_info_get(entry); 1720 1721 if (!si) 1722 return false; 1723 1724 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio))) 1725 return swap_entry_swapped(si, entry); 1726 1727 return swap_page_trans_huge_swapped(si, entry, folio_order(folio)); 1728 } 1729 1730 static bool folio_swapcache_freeable(struct folio *folio) 1731 { 1732 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1733 1734 if (!folio_test_swapcache(folio)) 1735 return false; 1736 if (folio_test_writeback(folio)) 1737 return false; 1738 1739 /* 1740 * Once hibernation has begun to create its image of memory, 1741 * there's a danger that one of the calls to folio_free_swap() 1742 * - most probably a call from __try_to_reclaim_swap() while 1743 * hibernation is allocating its own swap pages for the image, 1744 * but conceivably even a call from memory reclaim - will free 1745 * the swap from a folio which has already been recorded in the 1746 * image as a clean swapcache folio, and then reuse its swap for 1747 * another page of the image. On waking from hibernation, the 1748 * original folio might be freed under memory pressure, then 1749 * later read back in from swap, now with the wrong data. 1750 * 1751 * Hibernation suspends storage while it is writing the image 1752 * to disk so check that here. 1753 */ 1754 if (pm_suspended_storage()) 1755 return false; 1756 1757 return true; 1758 } 1759 1760 /** 1761 * folio_free_swap() - Free the swap space used for this folio. 1762 * @folio: The folio to remove. 1763 * 1764 * If swap is getting full, or if there are no more mappings of this folio, 1765 * then call folio_free_swap to free its swap space. 1766 * 1767 * Return: true if we were able to release the swap space. 1768 */ 1769 bool folio_free_swap(struct folio *folio) 1770 { 1771 if (!folio_swapcache_freeable(folio)) 1772 return false; 1773 if (folio_swapped(folio)) 1774 return false; 1775 1776 delete_from_swap_cache(folio); 1777 folio_set_dirty(folio); 1778 return true; 1779 } 1780 1781 /** 1782 * free_swap_and_cache_nr() - Release reference on range of swap entries and 1783 * reclaim their cache if no more references remain. 1784 * @entry: First entry of range. 1785 * @nr: Number of entries in range. 1786 * 1787 * For each swap entry in the contiguous range, release a reference. If any swap 1788 * entries become free, try to reclaim their underlying folios, if present. The 1789 * offset range is defined by [entry.offset, entry.offset + nr). 1790 */ 1791 void free_swap_and_cache_nr(swp_entry_t entry, int nr) 1792 { 1793 const unsigned long start_offset = swp_offset(entry); 1794 const unsigned long end_offset = start_offset + nr; 1795 struct swap_info_struct *si; 1796 bool any_only_cache = false; 1797 unsigned long offset; 1798 1799 si = get_swap_device(entry); 1800 if (!si) 1801 return; 1802 1803 if (WARN_ON(end_offset > si->max)) 1804 goto out; 1805 1806 /* 1807 * First free all entries in the range. 1808 */ 1809 any_only_cache = __swap_entries_free(si, entry, nr); 1810 1811 /* 1812 * Short-circuit the below loop if none of the entries had their 1813 * reference drop to zero. 1814 */ 1815 if (!any_only_cache) 1816 goto out; 1817 1818 /* 1819 * Now go back over the range trying to reclaim the swap cache. This is 1820 * more efficient for large folios because we will only try to reclaim 1821 * the swap once per folio in the common case. If we do 1822 * __swap_entry_free() and __try_to_reclaim_swap() in the same loop, the 1823 * latter will get a reference and lock the folio for every individual 1824 * page but will only succeed once the swap slot for every subpage is 1825 * zero. 1826 */ 1827 for (offset = start_offset; offset < end_offset; offset += nr) { 1828 nr = 1; 1829 if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 1830 /* 1831 * Folios are always naturally aligned in swap so 1832 * advance forward to the next boundary. Zero means no 1833 * folio was found for the swap entry, so advance by 1 1834 * in this case. Negative value means folio was found 1835 * but could not be reclaimed. Here we can still advance 1836 * to the next boundary. 1837 */ 1838 nr = __try_to_reclaim_swap(si, offset, 1839 TTRS_UNMAPPED | TTRS_FULL); 1840 if (nr == 0) 1841 nr = 1; 1842 else if (nr < 0) 1843 nr = -nr; 1844 nr = ALIGN(offset + 1, nr) - offset; 1845 } 1846 } 1847 1848 out: 1849 put_swap_device(si); 1850 } 1851 1852 #ifdef CONFIG_HIBERNATION 1853 1854 swp_entry_t get_swap_page_of_type(int type) 1855 { 1856 struct swap_info_struct *si = swap_type_to_swap_info(type); 1857 unsigned long offset; 1858 swp_entry_t entry = {0}; 1859 1860 if (!si) 1861 goto fail; 1862 1863 /* This is called for allocating swap entry, not cache */ 1864 if (get_swap_device_info(si)) { 1865 if (si->flags & SWP_WRITEOK) { 1866 offset = cluster_alloc_swap_entry(si, 0, 1); 1867 if (offset) { 1868 entry = swp_entry(si->type, offset); 1869 atomic_long_dec(&nr_swap_pages); 1870 } 1871 } 1872 put_swap_device(si); 1873 } 1874 fail: 1875 return entry; 1876 } 1877 1878 /* 1879 * Find the swap type that corresponds to given device (if any). 1880 * 1881 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1882 * from 0, in which the swap header is expected to be located. 1883 * 1884 * This is needed for the suspend to disk (aka swsusp). 1885 */ 1886 int swap_type_of(dev_t device, sector_t offset) 1887 { 1888 int type; 1889 1890 if (!device) 1891 return -1; 1892 1893 spin_lock(&swap_lock); 1894 for (type = 0; type < nr_swapfiles; type++) { 1895 struct swap_info_struct *sis = swap_info[type]; 1896 1897 if (!(sis->flags & SWP_WRITEOK)) 1898 continue; 1899 1900 if (device == sis->bdev->bd_dev) { 1901 struct swap_extent *se = first_se(sis); 1902 1903 if (se->start_block == offset) { 1904 spin_unlock(&swap_lock); 1905 return type; 1906 } 1907 } 1908 } 1909 spin_unlock(&swap_lock); 1910 return -ENODEV; 1911 } 1912 1913 int find_first_swap(dev_t *device) 1914 { 1915 int type; 1916 1917 spin_lock(&swap_lock); 1918 for (type = 0; type < nr_swapfiles; type++) { 1919 struct swap_info_struct *sis = swap_info[type]; 1920 1921 if (!(sis->flags & SWP_WRITEOK)) 1922 continue; 1923 *device = sis->bdev->bd_dev; 1924 spin_unlock(&swap_lock); 1925 return type; 1926 } 1927 spin_unlock(&swap_lock); 1928 return -ENODEV; 1929 } 1930 1931 /* 1932 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1933 * corresponding to given index in swap_info (swap type). 1934 */ 1935 sector_t swapdev_block(int type, pgoff_t offset) 1936 { 1937 struct swap_info_struct *si = swap_type_to_swap_info(type); 1938 struct swap_extent *se; 1939 1940 if (!si || !(si->flags & SWP_WRITEOK)) 1941 return 0; 1942 se = offset_to_swap_extent(si, offset); 1943 return se->start_block + (offset - se->start_page); 1944 } 1945 1946 /* 1947 * Return either the total number of swap pages of given type, or the number 1948 * of free pages of that type (depending on @free) 1949 * 1950 * This is needed for software suspend 1951 */ 1952 unsigned int count_swap_pages(int type, int free) 1953 { 1954 unsigned int n = 0; 1955 1956 spin_lock(&swap_lock); 1957 if ((unsigned int)type < nr_swapfiles) { 1958 struct swap_info_struct *sis = swap_info[type]; 1959 1960 spin_lock(&sis->lock); 1961 if (sis->flags & SWP_WRITEOK) { 1962 n = sis->pages; 1963 if (free) 1964 n -= swap_usage_in_pages(sis); 1965 } 1966 spin_unlock(&sis->lock); 1967 } 1968 spin_unlock(&swap_lock); 1969 return n; 1970 } 1971 #endif /* CONFIG_HIBERNATION */ 1972 1973 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1974 { 1975 return pte_same(pte_swp_clear_flags(pte), swp_pte); 1976 } 1977 1978 /* 1979 * No need to decide whether this PTE shares the swap entry with others, 1980 * just let do_wp_page work it out if a write is requested later - to 1981 * force COW, vm_page_prot omits write permission from any private vma. 1982 */ 1983 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1984 unsigned long addr, swp_entry_t entry, struct folio *folio) 1985 { 1986 struct page *page; 1987 struct folio *swapcache; 1988 spinlock_t *ptl; 1989 pte_t *pte, new_pte, old_pte; 1990 bool hwpoisoned = false; 1991 int ret = 1; 1992 1993 swapcache = folio; 1994 folio = ksm_might_need_to_copy(folio, vma, addr); 1995 if (unlikely(!folio)) 1996 return -ENOMEM; 1997 else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 1998 hwpoisoned = true; 1999 folio = swapcache; 2000 } 2001 2002 page = folio_file_page(folio, swp_offset(entry)); 2003 if (PageHWPoison(page)) 2004 hwpoisoned = true; 2005 2006 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 2007 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte), 2008 swp_entry_to_pte(entry)))) { 2009 ret = 0; 2010 goto out; 2011 } 2012 2013 old_pte = ptep_get(pte); 2014 2015 if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) { 2016 swp_entry_t swp_entry; 2017 2018 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 2019 if (hwpoisoned) { 2020 swp_entry = make_hwpoison_entry(page); 2021 } else { 2022 swp_entry = make_poisoned_swp_entry(); 2023 } 2024 new_pte = swp_entry_to_pte(swp_entry); 2025 ret = 0; 2026 goto setpte; 2027 } 2028 2029 /* 2030 * Some architectures may have to restore extra metadata to the page 2031 * when reading from swap. This metadata may be indexed by swap entry 2032 * so this must be called before swap_free(). 2033 */ 2034 arch_swap_restore(folio_swap(entry, folio), folio); 2035 2036 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 2037 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 2038 folio_get(folio); 2039 if (folio == swapcache) { 2040 rmap_t rmap_flags = RMAP_NONE; 2041 2042 /* 2043 * See do_swap_page(): writeback would be problematic. 2044 * However, we do a folio_wait_writeback() just before this 2045 * call and have the folio locked. 2046 */ 2047 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 2048 if (pte_swp_exclusive(old_pte)) 2049 rmap_flags |= RMAP_EXCLUSIVE; 2050 /* 2051 * We currently only expect small !anon folios, which are either 2052 * fully exclusive or fully shared. If we ever get large folios 2053 * here, we have to be careful. 2054 */ 2055 if (!folio_test_anon(folio)) { 2056 VM_WARN_ON_ONCE(folio_test_large(folio)); 2057 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 2058 folio_add_new_anon_rmap(folio, vma, addr, rmap_flags); 2059 } else { 2060 folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags); 2061 } 2062 } else { /* ksm created a completely new copy */ 2063 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 2064 folio_add_lru_vma(folio, vma); 2065 } 2066 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot)); 2067 if (pte_swp_soft_dirty(old_pte)) 2068 new_pte = pte_mksoft_dirty(new_pte); 2069 if (pte_swp_uffd_wp(old_pte)) 2070 new_pte = pte_mkuffd_wp(new_pte); 2071 setpte: 2072 set_pte_at(vma->vm_mm, addr, pte, new_pte); 2073 swap_free(entry); 2074 out: 2075 if (pte) 2076 pte_unmap_unlock(pte, ptl); 2077 if (folio != swapcache) { 2078 folio_unlock(folio); 2079 folio_put(folio); 2080 } 2081 return ret; 2082 } 2083 2084 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 2085 unsigned long addr, unsigned long end, 2086 unsigned int type) 2087 { 2088 pte_t *pte = NULL; 2089 struct swap_info_struct *si; 2090 2091 si = swap_info[type]; 2092 do { 2093 struct folio *folio; 2094 unsigned long offset; 2095 unsigned char swp_count; 2096 swp_entry_t entry; 2097 int ret; 2098 pte_t ptent; 2099 2100 if (!pte++) { 2101 pte = pte_offset_map(pmd, addr); 2102 if (!pte) 2103 break; 2104 } 2105 2106 ptent = ptep_get_lockless(pte); 2107 2108 if (!is_swap_pte(ptent)) 2109 continue; 2110 2111 entry = pte_to_swp_entry(ptent); 2112 if (swp_type(entry) != type) 2113 continue; 2114 2115 offset = swp_offset(entry); 2116 pte_unmap(pte); 2117 pte = NULL; 2118 2119 folio = swap_cache_get_folio(entry, vma, addr); 2120 if (!folio) { 2121 struct vm_fault vmf = { 2122 .vma = vma, 2123 .address = addr, 2124 .real_address = addr, 2125 .pmd = pmd, 2126 }; 2127 2128 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 2129 &vmf); 2130 } 2131 if (!folio) { 2132 swp_count = READ_ONCE(si->swap_map[offset]); 2133 if (swp_count == 0 || swp_count == SWAP_MAP_BAD) 2134 continue; 2135 return -ENOMEM; 2136 } 2137 2138 folio_lock(folio); 2139 folio_wait_writeback(folio); 2140 ret = unuse_pte(vma, pmd, addr, entry, folio); 2141 if (ret < 0) { 2142 folio_unlock(folio); 2143 folio_put(folio); 2144 return ret; 2145 } 2146 2147 folio_free_swap(folio); 2148 folio_unlock(folio); 2149 folio_put(folio); 2150 } while (addr += PAGE_SIZE, addr != end); 2151 2152 if (pte) 2153 pte_unmap(pte); 2154 return 0; 2155 } 2156 2157 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 2158 unsigned long addr, unsigned long end, 2159 unsigned int type) 2160 { 2161 pmd_t *pmd; 2162 unsigned long next; 2163 int ret; 2164 2165 pmd = pmd_offset(pud, addr); 2166 do { 2167 cond_resched(); 2168 next = pmd_addr_end(addr, end); 2169 ret = unuse_pte_range(vma, pmd, addr, next, type); 2170 if (ret) 2171 return ret; 2172 } while (pmd++, addr = next, addr != end); 2173 return 0; 2174 } 2175 2176 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 2177 unsigned long addr, unsigned long end, 2178 unsigned int type) 2179 { 2180 pud_t *pud; 2181 unsigned long next; 2182 int ret; 2183 2184 pud = pud_offset(p4d, addr); 2185 do { 2186 next = pud_addr_end(addr, end); 2187 if (pud_none_or_clear_bad(pud)) 2188 continue; 2189 ret = unuse_pmd_range(vma, pud, addr, next, type); 2190 if (ret) 2191 return ret; 2192 } while (pud++, addr = next, addr != end); 2193 return 0; 2194 } 2195 2196 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 2197 unsigned long addr, unsigned long end, 2198 unsigned int type) 2199 { 2200 p4d_t *p4d; 2201 unsigned long next; 2202 int ret; 2203 2204 p4d = p4d_offset(pgd, addr); 2205 do { 2206 next = p4d_addr_end(addr, end); 2207 if (p4d_none_or_clear_bad(p4d)) 2208 continue; 2209 ret = unuse_pud_range(vma, p4d, addr, next, type); 2210 if (ret) 2211 return ret; 2212 } while (p4d++, addr = next, addr != end); 2213 return 0; 2214 } 2215 2216 static int unuse_vma(struct vm_area_struct *vma, unsigned int type) 2217 { 2218 pgd_t *pgd; 2219 unsigned long addr, end, next; 2220 int ret; 2221 2222 addr = vma->vm_start; 2223 end = vma->vm_end; 2224 2225 pgd = pgd_offset(vma->vm_mm, addr); 2226 do { 2227 next = pgd_addr_end(addr, end); 2228 if (pgd_none_or_clear_bad(pgd)) 2229 continue; 2230 ret = unuse_p4d_range(vma, pgd, addr, next, type); 2231 if (ret) 2232 return ret; 2233 } while (pgd++, addr = next, addr != end); 2234 return 0; 2235 } 2236 2237 static int unuse_mm(struct mm_struct *mm, unsigned int type) 2238 { 2239 struct vm_area_struct *vma; 2240 int ret = 0; 2241 VMA_ITERATOR(vmi, mm, 0); 2242 2243 mmap_read_lock(mm); 2244 for_each_vma(vmi, vma) { 2245 if (vma->anon_vma && !is_vm_hugetlb_page(vma)) { 2246 ret = unuse_vma(vma, type); 2247 if (ret) 2248 break; 2249 } 2250 2251 cond_resched(); 2252 } 2253 mmap_read_unlock(mm); 2254 return ret; 2255 } 2256 2257 /* 2258 * Scan swap_map from current position to next entry still in use. 2259 * Return 0 if there are no inuse entries after prev till end of 2260 * the map. 2261 */ 2262 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 2263 unsigned int prev) 2264 { 2265 unsigned int i; 2266 unsigned char count; 2267 2268 /* 2269 * No need for swap_lock here: we're just looking 2270 * for whether an entry is in use, not modifying it; false 2271 * hits are okay, and sys_swapoff() has already prevented new 2272 * allocations from this area (while holding swap_lock). 2273 */ 2274 for (i = prev + 1; i < si->max; i++) { 2275 count = READ_ONCE(si->swap_map[i]); 2276 if (count && swap_count(count) != SWAP_MAP_BAD) 2277 break; 2278 if ((i % LATENCY_LIMIT) == 0) 2279 cond_resched(); 2280 } 2281 2282 if (i == si->max) 2283 i = 0; 2284 2285 return i; 2286 } 2287 2288 static int try_to_unuse(unsigned int type) 2289 { 2290 struct mm_struct *prev_mm; 2291 struct mm_struct *mm; 2292 struct list_head *p; 2293 int retval = 0; 2294 struct swap_info_struct *si = swap_info[type]; 2295 struct folio *folio; 2296 swp_entry_t entry; 2297 unsigned int i; 2298 2299 if (!swap_usage_in_pages(si)) 2300 goto success; 2301 2302 retry: 2303 retval = shmem_unuse(type); 2304 if (retval) 2305 return retval; 2306 2307 prev_mm = &init_mm; 2308 mmget(prev_mm); 2309 2310 spin_lock(&mmlist_lock); 2311 p = &init_mm.mmlist; 2312 while (swap_usage_in_pages(si) && 2313 !signal_pending(current) && 2314 (p = p->next) != &init_mm.mmlist) { 2315 2316 mm = list_entry(p, struct mm_struct, mmlist); 2317 if (!mmget_not_zero(mm)) 2318 continue; 2319 spin_unlock(&mmlist_lock); 2320 mmput(prev_mm); 2321 prev_mm = mm; 2322 retval = unuse_mm(mm, type); 2323 if (retval) { 2324 mmput(prev_mm); 2325 return retval; 2326 } 2327 2328 /* 2329 * Make sure that we aren't completely killing 2330 * interactive performance. 2331 */ 2332 cond_resched(); 2333 spin_lock(&mmlist_lock); 2334 } 2335 spin_unlock(&mmlist_lock); 2336 2337 mmput(prev_mm); 2338 2339 i = 0; 2340 while (swap_usage_in_pages(si) && 2341 !signal_pending(current) && 2342 (i = find_next_to_unuse(si, i)) != 0) { 2343 2344 entry = swp_entry(type, i); 2345 folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry)); 2346 if (IS_ERR(folio)) 2347 continue; 2348 2349 /* 2350 * It is conceivable that a racing task removed this folio from 2351 * swap cache just before we acquired the page lock. The folio 2352 * might even be back in swap cache on another swap area. But 2353 * that is okay, folio_free_swap() only removes stale folios. 2354 */ 2355 folio_lock(folio); 2356 folio_wait_writeback(folio); 2357 folio_free_swap(folio); 2358 folio_unlock(folio); 2359 folio_put(folio); 2360 } 2361 2362 /* 2363 * Lets check again to see if there are still swap entries in the map. 2364 * If yes, we would need to do retry the unuse logic again. 2365 * Under global memory pressure, swap entries can be reinserted back 2366 * into process space after the mmlist loop above passes over them. 2367 * 2368 * Limit the number of retries? No: when mmget_not_zero() 2369 * above fails, that mm is likely to be freeing swap from 2370 * exit_mmap(), which proceeds at its own independent pace; 2371 * and even shmem_writepage() could have been preempted after 2372 * folio_alloc_swap(), temporarily hiding that swap. It's easy 2373 * and robust (though cpu-intensive) just to keep retrying. 2374 */ 2375 if (swap_usage_in_pages(si)) { 2376 if (!signal_pending(current)) 2377 goto retry; 2378 return -EINTR; 2379 } 2380 2381 success: 2382 /* 2383 * Make sure that further cleanups after try_to_unuse() returns happen 2384 * after swap_range_free() reduces si->inuse_pages to 0. 2385 */ 2386 smp_mb(); 2387 return 0; 2388 } 2389 2390 /* 2391 * After a successful try_to_unuse, if no swap is now in use, we know 2392 * we can empty the mmlist. swap_lock must be held on entry and exit. 2393 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2394 * added to the mmlist just after page_duplicate - before would be racy. 2395 */ 2396 static void drain_mmlist(void) 2397 { 2398 struct list_head *p, *next; 2399 unsigned int type; 2400 2401 for (type = 0; type < nr_swapfiles; type++) 2402 if (swap_usage_in_pages(swap_info[type])) 2403 return; 2404 spin_lock(&mmlist_lock); 2405 list_for_each_safe(p, next, &init_mm.mmlist) 2406 list_del_init(p); 2407 spin_unlock(&mmlist_lock); 2408 } 2409 2410 /* 2411 * Free all of a swapdev's extent information 2412 */ 2413 static void destroy_swap_extents(struct swap_info_struct *sis) 2414 { 2415 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2416 struct rb_node *rb = sis->swap_extent_root.rb_node; 2417 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2418 2419 rb_erase(rb, &sis->swap_extent_root); 2420 kfree(se); 2421 } 2422 2423 if (sis->flags & SWP_ACTIVATED) { 2424 struct file *swap_file = sis->swap_file; 2425 struct address_space *mapping = swap_file->f_mapping; 2426 2427 sis->flags &= ~SWP_ACTIVATED; 2428 if (mapping->a_ops->swap_deactivate) 2429 mapping->a_ops->swap_deactivate(swap_file); 2430 } 2431 } 2432 2433 /* 2434 * Add a block range (and the corresponding page range) into this swapdev's 2435 * extent tree. 2436 * 2437 * This function rather assumes that it is called in ascending page order. 2438 */ 2439 int 2440 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2441 unsigned long nr_pages, sector_t start_block) 2442 { 2443 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2444 struct swap_extent *se; 2445 struct swap_extent *new_se; 2446 2447 /* 2448 * place the new node at the right most since the 2449 * function is called in ascending page order. 2450 */ 2451 while (*link) { 2452 parent = *link; 2453 link = &parent->rb_right; 2454 } 2455 2456 if (parent) { 2457 se = rb_entry(parent, struct swap_extent, rb_node); 2458 BUG_ON(se->start_page + se->nr_pages != start_page); 2459 if (se->start_block + se->nr_pages == start_block) { 2460 /* Merge it */ 2461 se->nr_pages += nr_pages; 2462 return 0; 2463 } 2464 } 2465 2466 /* No merge, insert a new extent. */ 2467 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2468 if (new_se == NULL) 2469 return -ENOMEM; 2470 new_se->start_page = start_page; 2471 new_se->nr_pages = nr_pages; 2472 new_se->start_block = start_block; 2473 2474 rb_link_node(&new_se->rb_node, parent, link); 2475 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2476 return 1; 2477 } 2478 EXPORT_SYMBOL_GPL(add_swap_extent); 2479 2480 /* 2481 * A `swap extent' is a simple thing which maps a contiguous range of pages 2482 * onto a contiguous range of disk blocks. A rbtree of swap extents is 2483 * built at swapon time and is then used at swap_writepage/swap_read_folio 2484 * time for locating where on disk a page belongs. 2485 * 2486 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2487 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2488 * swap files identically. 2489 * 2490 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2491 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2492 * swapfiles are handled *identically* after swapon time. 2493 * 2494 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2495 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray 2496 * blocks are found which do not fall within the PAGE_SIZE alignment 2497 * requirements, they are simply tossed out - we will never use those blocks 2498 * for swapping. 2499 * 2500 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2501 * prevents users from writing to the swap device, which will corrupt memory. 2502 * 2503 * The amount of disk space which a single swap extent represents varies. 2504 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2505 * extents in the rbtree. - akpm. 2506 */ 2507 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2508 { 2509 struct file *swap_file = sis->swap_file; 2510 struct address_space *mapping = swap_file->f_mapping; 2511 struct inode *inode = mapping->host; 2512 int ret; 2513 2514 if (S_ISBLK(inode->i_mode)) { 2515 ret = add_swap_extent(sis, 0, sis->max, 0); 2516 *span = sis->pages; 2517 return ret; 2518 } 2519 2520 if (mapping->a_ops->swap_activate) { 2521 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2522 if (ret < 0) 2523 return ret; 2524 sis->flags |= SWP_ACTIVATED; 2525 if ((sis->flags & SWP_FS_OPS) && 2526 sio_pool_init() != 0) { 2527 destroy_swap_extents(sis); 2528 return -ENOMEM; 2529 } 2530 return ret; 2531 } 2532 2533 return generic_swapfile_activate(sis, swap_file, span); 2534 } 2535 2536 static int swap_node(struct swap_info_struct *si) 2537 { 2538 struct block_device *bdev; 2539 2540 if (si->bdev) 2541 bdev = si->bdev; 2542 else 2543 bdev = si->swap_file->f_inode->i_sb->s_bdev; 2544 2545 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2546 } 2547 2548 static void setup_swap_info(struct swap_info_struct *si, int prio, 2549 unsigned char *swap_map, 2550 struct swap_cluster_info *cluster_info, 2551 unsigned long *zeromap) 2552 { 2553 int i; 2554 2555 if (prio >= 0) 2556 si->prio = prio; 2557 else 2558 si->prio = --least_priority; 2559 /* 2560 * the plist prio is negated because plist ordering is 2561 * low-to-high, while swap ordering is high-to-low 2562 */ 2563 si->list.prio = -si->prio; 2564 for_each_node(i) { 2565 if (si->prio >= 0) 2566 si->avail_lists[i].prio = -si->prio; 2567 else { 2568 if (swap_node(si) == i) 2569 si->avail_lists[i].prio = 1; 2570 else 2571 si->avail_lists[i].prio = -si->prio; 2572 } 2573 } 2574 si->swap_map = swap_map; 2575 si->cluster_info = cluster_info; 2576 si->zeromap = zeromap; 2577 } 2578 2579 static void _enable_swap_info(struct swap_info_struct *si) 2580 { 2581 atomic_long_add(si->pages, &nr_swap_pages); 2582 total_swap_pages += si->pages; 2583 2584 assert_spin_locked(&swap_lock); 2585 /* 2586 * both lists are plists, and thus priority ordered. 2587 * swap_active_head needs to be priority ordered for swapoff(), 2588 * which on removal of any swap_info_struct with an auto-assigned 2589 * (i.e. negative) priority increments the auto-assigned priority 2590 * of any lower-priority swap_info_structs. 2591 * swap_avail_head needs to be priority ordered for folio_alloc_swap(), 2592 * which allocates swap pages from the highest available priority 2593 * swap_info_struct. 2594 */ 2595 plist_add(&si->list, &swap_active_head); 2596 2597 /* Add back to available list */ 2598 add_to_avail_list(si, true); 2599 } 2600 2601 static void enable_swap_info(struct swap_info_struct *si, int prio, 2602 unsigned char *swap_map, 2603 struct swap_cluster_info *cluster_info, 2604 unsigned long *zeromap) 2605 { 2606 spin_lock(&swap_lock); 2607 spin_lock(&si->lock); 2608 setup_swap_info(si, prio, swap_map, cluster_info, zeromap); 2609 spin_unlock(&si->lock); 2610 spin_unlock(&swap_lock); 2611 /* 2612 * Finished initializing swap device, now it's safe to reference it. 2613 */ 2614 percpu_ref_resurrect(&si->users); 2615 spin_lock(&swap_lock); 2616 spin_lock(&si->lock); 2617 _enable_swap_info(si); 2618 spin_unlock(&si->lock); 2619 spin_unlock(&swap_lock); 2620 } 2621 2622 static void reinsert_swap_info(struct swap_info_struct *si) 2623 { 2624 spin_lock(&swap_lock); 2625 spin_lock(&si->lock); 2626 setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap); 2627 _enable_swap_info(si); 2628 spin_unlock(&si->lock); 2629 spin_unlock(&swap_lock); 2630 } 2631 2632 /* 2633 * Called after clearing SWP_WRITEOK, ensures cluster_alloc_range 2634 * see the updated flags, so there will be no more allocations. 2635 */ 2636 static void wait_for_allocation(struct swap_info_struct *si) 2637 { 2638 unsigned long offset; 2639 unsigned long end = ALIGN(si->max, SWAPFILE_CLUSTER); 2640 struct swap_cluster_info *ci; 2641 2642 BUG_ON(si->flags & SWP_WRITEOK); 2643 2644 for (offset = 0; offset < end; offset += SWAPFILE_CLUSTER) { 2645 ci = lock_cluster(si, offset); 2646 unlock_cluster(ci); 2647 } 2648 } 2649 2650 /* 2651 * Called after swap device's reference count is dead, so 2652 * neither scan nor allocation will use it. 2653 */ 2654 static void flush_percpu_swap_cluster(struct swap_info_struct *si) 2655 { 2656 int cpu, i; 2657 struct swap_info_struct **pcp_si; 2658 2659 for_each_possible_cpu(cpu) { 2660 pcp_si = per_cpu_ptr(percpu_swap_cluster.si, cpu); 2661 /* 2662 * Invalidate the percpu swap cluster cache, si->users 2663 * is dead, so no new user will point to it, just flush 2664 * any existing user. 2665 */ 2666 for (i = 0; i < SWAP_NR_ORDERS; i++) 2667 cmpxchg(&pcp_si[i], si, NULL); 2668 } 2669 } 2670 2671 2672 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2673 { 2674 struct swap_info_struct *p = NULL; 2675 unsigned char *swap_map; 2676 unsigned long *zeromap; 2677 struct swap_cluster_info *cluster_info; 2678 struct file *swap_file, *victim; 2679 struct address_space *mapping; 2680 struct inode *inode; 2681 struct filename *pathname; 2682 int err, found = 0; 2683 2684 if (!capable(CAP_SYS_ADMIN)) 2685 return -EPERM; 2686 2687 BUG_ON(!current->mm); 2688 2689 pathname = getname(specialfile); 2690 if (IS_ERR(pathname)) 2691 return PTR_ERR(pathname); 2692 2693 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2694 err = PTR_ERR(victim); 2695 if (IS_ERR(victim)) 2696 goto out; 2697 2698 mapping = victim->f_mapping; 2699 spin_lock(&swap_lock); 2700 plist_for_each_entry(p, &swap_active_head, list) { 2701 if (p->flags & SWP_WRITEOK) { 2702 if (p->swap_file->f_mapping == mapping) { 2703 found = 1; 2704 break; 2705 } 2706 } 2707 } 2708 if (!found) { 2709 err = -EINVAL; 2710 spin_unlock(&swap_lock); 2711 goto out_dput; 2712 } 2713 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2714 vm_unacct_memory(p->pages); 2715 else { 2716 err = -ENOMEM; 2717 spin_unlock(&swap_lock); 2718 goto out_dput; 2719 } 2720 spin_lock(&p->lock); 2721 del_from_avail_list(p, true); 2722 if (p->prio < 0) { 2723 struct swap_info_struct *si = p; 2724 int nid; 2725 2726 plist_for_each_entry_continue(si, &swap_active_head, list) { 2727 si->prio++; 2728 si->list.prio--; 2729 for_each_node(nid) { 2730 if (si->avail_lists[nid].prio != 1) 2731 si->avail_lists[nid].prio--; 2732 } 2733 } 2734 least_priority++; 2735 } 2736 plist_del(&p->list, &swap_active_head); 2737 atomic_long_sub(p->pages, &nr_swap_pages); 2738 total_swap_pages -= p->pages; 2739 spin_unlock(&p->lock); 2740 spin_unlock(&swap_lock); 2741 2742 wait_for_allocation(p); 2743 2744 set_current_oom_origin(); 2745 err = try_to_unuse(p->type); 2746 clear_current_oom_origin(); 2747 2748 if (err) { 2749 /* re-insert swap space back into swap_list */ 2750 reinsert_swap_info(p); 2751 goto out_dput; 2752 } 2753 2754 /* 2755 * Wait for swap operations protected by get/put_swap_device() 2756 * to complete. Because of synchronize_rcu() here, all swap 2757 * operations protected by RCU reader side lock (including any 2758 * spinlock) will be waited too. This makes it easy to 2759 * prevent folio_test_swapcache() and the following swap cache 2760 * operations from racing with swapoff. 2761 */ 2762 percpu_ref_kill(&p->users); 2763 synchronize_rcu(); 2764 wait_for_completion(&p->comp); 2765 2766 flush_work(&p->discard_work); 2767 flush_work(&p->reclaim_work); 2768 flush_percpu_swap_cluster(p); 2769 2770 destroy_swap_extents(p); 2771 if (p->flags & SWP_CONTINUED) 2772 free_swap_count_continuations(p); 2773 2774 if (!p->bdev || !bdev_nonrot(p->bdev)) 2775 atomic_dec(&nr_rotate_swap); 2776 2777 mutex_lock(&swapon_mutex); 2778 spin_lock(&swap_lock); 2779 spin_lock(&p->lock); 2780 drain_mmlist(); 2781 2782 swap_file = p->swap_file; 2783 p->swap_file = NULL; 2784 p->max = 0; 2785 swap_map = p->swap_map; 2786 p->swap_map = NULL; 2787 zeromap = p->zeromap; 2788 p->zeromap = NULL; 2789 cluster_info = p->cluster_info; 2790 p->cluster_info = NULL; 2791 spin_unlock(&p->lock); 2792 spin_unlock(&swap_lock); 2793 arch_swap_invalidate_area(p->type); 2794 zswap_swapoff(p->type); 2795 mutex_unlock(&swapon_mutex); 2796 kfree(p->global_cluster); 2797 p->global_cluster = NULL; 2798 vfree(swap_map); 2799 kvfree(zeromap); 2800 kvfree(cluster_info); 2801 /* Destroy swap account information */ 2802 swap_cgroup_swapoff(p->type); 2803 exit_swap_address_space(p->type); 2804 2805 inode = mapping->host; 2806 2807 inode_lock(inode); 2808 inode->i_flags &= ~S_SWAPFILE; 2809 inode_unlock(inode); 2810 filp_close(swap_file, NULL); 2811 2812 /* 2813 * Clear the SWP_USED flag after all resources are freed so that swapon 2814 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2815 * not hold p->lock after we cleared its SWP_WRITEOK. 2816 */ 2817 spin_lock(&swap_lock); 2818 p->flags = 0; 2819 spin_unlock(&swap_lock); 2820 2821 err = 0; 2822 atomic_inc(&proc_poll_event); 2823 wake_up_interruptible(&proc_poll_wait); 2824 2825 out_dput: 2826 filp_close(victim, NULL); 2827 out: 2828 putname(pathname); 2829 return err; 2830 } 2831 2832 #ifdef CONFIG_PROC_FS 2833 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2834 { 2835 struct seq_file *seq = file->private_data; 2836 2837 poll_wait(file, &proc_poll_wait, wait); 2838 2839 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2840 seq->poll_event = atomic_read(&proc_poll_event); 2841 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2842 } 2843 2844 return EPOLLIN | EPOLLRDNORM; 2845 } 2846 2847 /* iterator */ 2848 static void *swap_start(struct seq_file *swap, loff_t *pos) 2849 { 2850 struct swap_info_struct *si; 2851 int type; 2852 loff_t l = *pos; 2853 2854 mutex_lock(&swapon_mutex); 2855 2856 if (!l) 2857 return SEQ_START_TOKEN; 2858 2859 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2860 if (!(si->flags & SWP_USED) || !si->swap_map) 2861 continue; 2862 if (!--l) 2863 return si; 2864 } 2865 2866 return NULL; 2867 } 2868 2869 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2870 { 2871 struct swap_info_struct *si = v; 2872 int type; 2873 2874 if (v == SEQ_START_TOKEN) 2875 type = 0; 2876 else 2877 type = si->type + 1; 2878 2879 ++(*pos); 2880 for (; (si = swap_type_to_swap_info(type)); type++) { 2881 if (!(si->flags & SWP_USED) || !si->swap_map) 2882 continue; 2883 return si; 2884 } 2885 2886 return NULL; 2887 } 2888 2889 static void swap_stop(struct seq_file *swap, void *v) 2890 { 2891 mutex_unlock(&swapon_mutex); 2892 } 2893 2894 static int swap_show(struct seq_file *swap, void *v) 2895 { 2896 struct swap_info_struct *si = v; 2897 struct file *file; 2898 int len; 2899 unsigned long bytes, inuse; 2900 2901 if (si == SEQ_START_TOKEN) { 2902 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 2903 return 0; 2904 } 2905 2906 bytes = K(si->pages); 2907 inuse = K(swap_usage_in_pages(si)); 2908 2909 file = si->swap_file; 2910 len = seq_file_path(swap, file, " \t\n\\"); 2911 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n", 2912 len < 40 ? 40 - len : 1, " ", 2913 S_ISBLK(file_inode(file)->i_mode) ? 2914 "partition" : "file\t", 2915 bytes, bytes < 10000000 ? "\t" : "", 2916 inuse, inuse < 10000000 ? "\t" : "", 2917 si->prio); 2918 return 0; 2919 } 2920 2921 static const struct seq_operations swaps_op = { 2922 .start = swap_start, 2923 .next = swap_next, 2924 .stop = swap_stop, 2925 .show = swap_show 2926 }; 2927 2928 static int swaps_open(struct inode *inode, struct file *file) 2929 { 2930 struct seq_file *seq; 2931 int ret; 2932 2933 ret = seq_open(file, &swaps_op); 2934 if (ret) 2935 return ret; 2936 2937 seq = file->private_data; 2938 seq->poll_event = atomic_read(&proc_poll_event); 2939 return 0; 2940 } 2941 2942 static const struct proc_ops swaps_proc_ops = { 2943 .proc_flags = PROC_ENTRY_PERMANENT, 2944 .proc_open = swaps_open, 2945 .proc_read = seq_read, 2946 .proc_lseek = seq_lseek, 2947 .proc_release = seq_release, 2948 .proc_poll = swaps_poll, 2949 }; 2950 2951 static int __init procswaps_init(void) 2952 { 2953 proc_create("swaps", 0, NULL, &swaps_proc_ops); 2954 return 0; 2955 } 2956 __initcall(procswaps_init); 2957 #endif /* CONFIG_PROC_FS */ 2958 2959 #ifdef MAX_SWAPFILES_CHECK 2960 static int __init max_swapfiles_check(void) 2961 { 2962 MAX_SWAPFILES_CHECK(); 2963 return 0; 2964 } 2965 late_initcall(max_swapfiles_check); 2966 #endif 2967 2968 static struct swap_info_struct *alloc_swap_info(void) 2969 { 2970 struct swap_info_struct *p; 2971 struct swap_info_struct *defer = NULL; 2972 unsigned int type; 2973 int i; 2974 2975 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2976 if (!p) 2977 return ERR_PTR(-ENOMEM); 2978 2979 if (percpu_ref_init(&p->users, swap_users_ref_free, 2980 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { 2981 kvfree(p); 2982 return ERR_PTR(-ENOMEM); 2983 } 2984 2985 spin_lock(&swap_lock); 2986 for (type = 0; type < nr_swapfiles; type++) { 2987 if (!(swap_info[type]->flags & SWP_USED)) 2988 break; 2989 } 2990 if (type >= MAX_SWAPFILES) { 2991 spin_unlock(&swap_lock); 2992 percpu_ref_exit(&p->users); 2993 kvfree(p); 2994 return ERR_PTR(-EPERM); 2995 } 2996 if (type >= nr_swapfiles) { 2997 p->type = type; 2998 /* 2999 * Publish the swap_info_struct after initializing it. 3000 * Note that kvzalloc() above zeroes all its fields. 3001 */ 3002 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ 3003 nr_swapfiles++; 3004 } else { 3005 defer = p; 3006 p = swap_info[type]; 3007 /* 3008 * Do not memset this entry: a racing procfs swap_next() 3009 * would be relying on p->type to remain valid. 3010 */ 3011 } 3012 p->swap_extent_root = RB_ROOT; 3013 plist_node_init(&p->list, 0); 3014 for_each_node(i) 3015 plist_node_init(&p->avail_lists[i], 0); 3016 p->flags = SWP_USED; 3017 spin_unlock(&swap_lock); 3018 if (defer) { 3019 percpu_ref_exit(&defer->users); 3020 kvfree(defer); 3021 } 3022 spin_lock_init(&p->lock); 3023 spin_lock_init(&p->cont_lock); 3024 atomic_long_set(&p->inuse_pages, SWAP_USAGE_OFFLIST_BIT); 3025 init_completion(&p->comp); 3026 3027 return p; 3028 } 3029 3030 static int claim_swapfile(struct swap_info_struct *si, struct inode *inode) 3031 { 3032 if (S_ISBLK(inode->i_mode)) { 3033 si->bdev = I_BDEV(inode); 3034 /* 3035 * Zoned block devices contain zones that have a sequential 3036 * write only restriction. Hence zoned block devices are not 3037 * suitable for swapping. Disallow them here. 3038 */ 3039 if (bdev_is_zoned(si->bdev)) 3040 return -EINVAL; 3041 si->flags |= SWP_BLKDEV; 3042 } else if (S_ISREG(inode->i_mode)) { 3043 si->bdev = inode->i_sb->s_bdev; 3044 } 3045 3046 return 0; 3047 } 3048 3049 3050 /* 3051 * Find out how many pages are allowed for a single swap device. There 3052 * are two limiting factors: 3053 * 1) the number of bits for the swap offset in the swp_entry_t type, and 3054 * 2) the number of bits in the swap pte, as defined by the different 3055 * architectures. 3056 * 3057 * In order to find the largest possible bit mask, a swap entry with 3058 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 3059 * decoded to a swp_entry_t again, and finally the swap offset is 3060 * extracted. 3061 * 3062 * This will mask all the bits from the initial ~0UL mask that can't 3063 * be encoded in either the swp_entry_t or the architecture definition 3064 * of a swap pte. 3065 */ 3066 unsigned long generic_max_swapfile_size(void) 3067 { 3068 return swp_offset(pte_to_swp_entry( 3069 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 3070 } 3071 3072 /* Can be overridden by an architecture for additional checks. */ 3073 __weak unsigned long arch_max_swapfile_size(void) 3074 { 3075 return generic_max_swapfile_size(); 3076 } 3077 3078 static unsigned long read_swap_header(struct swap_info_struct *si, 3079 union swap_header *swap_header, 3080 struct inode *inode) 3081 { 3082 int i; 3083 unsigned long maxpages; 3084 unsigned long swapfilepages; 3085 unsigned long last_page; 3086 3087 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 3088 pr_err("Unable to find swap-space signature\n"); 3089 return 0; 3090 } 3091 3092 /* swap partition endianness hack... */ 3093 if (swab32(swap_header->info.version) == 1) { 3094 swab32s(&swap_header->info.version); 3095 swab32s(&swap_header->info.last_page); 3096 swab32s(&swap_header->info.nr_badpages); 3097 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 3098 return 0; 3099 for (i = 0; i < swap_header->info.nr_badpages; i++) 3100 swab32s(&swap_header->info.badpages[i]); 3101 } 3102 /* Check the swap header's sub-version */ 3103 if (swap_header->info.version != 1) { 3104 pr_warn("Unable to handle swap header version %d\n", 3105 swap_header->info.version); 3106 return 0; 3107 } 3108 3109 maxpages = swapfile_maximum_size; 3110 last_page = swap_header->info.last_page; 3111 if (!last_page) { 3112 pr_warn("Empty swap-file\n"); 3113 return 0; 3114 } 3115 if (last_page > maxpages) { 3116 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 3117 K(maxpages), K(last_page)); 3118 } 3119 if (maxpages > last_page) { 3120 maxpages = last_page + 1; 3121 /* p->max is an unsigned int: don't overflow it */ 3122 if ((unsigned int)maxpages == 0) 3123 maxpages = UINT_MAX; 3124 } 3125 3126 if (!maxpages) 3127 return 0; 3128 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 3129 if (swapfilepages && maxpages > swapfilepages) { 3130 pr_warn("Swap area shorter than signature indicates\n"); 3131 return 0; 3132 } 3133 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 3134 return 0; 3135 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 3136 return 0; 3137 3138 return maxpages; 3139 } 3140 3141 static int setup_swap_map_and_extents(struct swap_info_struct *si, 3142 union swap_header *swap_header, 3143 unsigned char *swap_map, 3144 unsigned long maxpages, 3145 sector_t *span) 3146 { 3147 unsigned int nr_good_pages; 3148 unsigned long i; 3149 int nr_extents; 3150 3151 nr_good_pages = maxpages - 1; /* omit header page */ 3152 3153 for (i = 0; i < swap_header->info.nr_badpages; i++) { 3154 unsigned int page_nr = swap_header->info.badpages[i]; 3155 if (page_nr == 0 || page_nr > swap_header->info.last_page) 3156 return -EINVAL; 3157 if (page_nr < maxpages) { 3158 swap_map[page_nr] = SWAP_MAP_BAD; 3159 nr_good_pages--; 3160 } 3161 } 3162 3163 if (nr_good_pages) { 3164 swap_map[0] = SWAP_MAP_BAD; 3165 si->max = maxpages; 3166 si->pages = nr_good_pages; 3167 nr_extents = setup_swap_extents(si, span); 3168 if (nr_extents < 0) 3169 return nr_extents; 3170 nr_good_pages = si->pages; 3171 } 3172 if (!nr_good_pages) { 3173 pr_warn("Empty swap-file\n"); 3174 return -EINVAL; 3175 } 3176 3177 return nr_extents; 3178 } 3179 3180 #define SWAP_CLUSTER_INFO_COLS \ 3181 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 3182 #define SWAP_CLUSTER_SPACE_COLS \ 3183 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 3184 #define SWAP_CLUSTER_COLS \ 3185 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 3186 3187 static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si, 3188 union swap_header *swap_header, 3189 unsigned long maxpages) 3190 { 3191 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3192 struct swap_cluster_info *cluster_info; 3193 unsigned long i, j, idx; 3194 int err = -ENOMEM; 3195 3196 cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL); 3197 if (!cluster_info) 3198 goto err; 3199 3200 for (i = 0; i < nr_clusters; i++) 3201 spin_lock_init(&cluster_info[i].lock); 3202 3203 if (!(si->flags & SWP_SOLIDSTATE)) { 3204 si->global_cluster = kmalloc(sizeof(*si->global_cluster), 3205 GFP_KERNEL); 3206 if (!si->global_cluster) 3207 goto err_free; 3208 for (i = 0; i < SWAP_NR_ORDERS; i++) 3209 si->global_cluster->next[i] = SWAP_ENTRY_INVALID; 3210 spin_lock_init(&si->global_cluster_lock); 3211 } 3212 3213 /* 3214 * Mark unusable pages as unavailable. The clusters aren't 3215 * marked free yet, so no list operations are involved yet. 3216 * 3217 * See setup_swap_map_and_extents(): header page, bad pages, 3218 * and the EOF part of the last cluster. 3219 */ 3220 inc_cluster_info_page(si, cluster_info, 0); 3221 for (i = 0; i < swap_header->info.nr_badpages; i++) 3222 inc_cluster_info_page(si, cluster_info, 3223 swap_header->info.badpages[i]); 3224 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 3225 inc_cluster_info_page(si, cluster_info, i); 3226 3227 INIT_LIST_HEAD(&si->free_clusters); 3228 INIT_LIST_HEAD(&si->full_clusters); 3229 INIT_LIST_HEAD(&si->discard_clusters); 3230 3231 for (i = 0; i < SWAP_NR_ORDERS; i++) { 3232 INIT_LIST_HEAD(&si->nonfull_clusters[i]); 3233 INIT_LIST_HEAD(&si->frag_clusters[i]); 3234 atomic_long_set(&si->frag_cluster_nr[i], 0); 3235 } 3236 3237 /* 3238 * Reduce false cache line sharing between cluster_info and 3239 * sharing same address space. 3240 */ 3241 for (j = 0; j < SWAP_CLUSTER_COLS; j++) { 3242 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 3243 struct swap_cluster_info *ci; 3244 idx = i * SWAP_CLUSTER_COLS + j; 3245 ci = cluster_info + idx; 3246 if (idx >= nr_clusters) 3247 continue; 3248 if (ci->count) { 3249 ci->flags = CLUSTER_FLAG_NONFULL; 3250 list_add_tail(&ci->list, &si->nonfull_clusters[0]); 3251 continue; 3252 } 3253 ci->flags = CLUSTER_FLAG_FREE; 3254 list_add_tail(&ci->list, &si->free_clusters); 3255 } 3256 } 3257 3258 return cluster_info; 3259 3260 err_free: 3261 kvfree(cluster_info); 3262 err: 3263 return ERR_PTR(err); 3264 } 3265 3266 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 3267 { 3268 struct swap_info_struct *si; 3269 struct filename *name; 3270 struct file *swap_file = NULL; 3271 struct address_space *mapping; 3272 struct dentry *dentry; 3273 int prio; 3274 int error; 3275 union swap_header *swap_header; 3276 int nr_extents; 3277 sector_t span; 3278 unsigned long maxpages; 3279 unsigned char *swap_map = NULL; 3280 unsigned long *zeromap = NULL; 3281 struct swap_cluster_info *cluster_info = NULL; 3282 struct folio *folio = NULL; 3283 struct inode *inode = NULL; 3284 bool inced_nr_rotate_swap = false; 3285 3286 if (swap_flags & ~SWAP_FLAGS_VALID) 3287 return -EINVAL; 3288 3289 if (!capable(CAP_SYS_ADMIN)) 3290 return -EPERM; 3291 3292 if (!swap_avail_heads) 3293 return -ENOMEM; 3294 3295 si = alloc_swap_info(); 3296 if (IS_ERR(si)) 3297 return PTR_ERR(si); 3298 3299 INIT_WORK(&si->discard_work, swap_discard_work); 3300 INIT_WORK(&si->reclaim_work, swap_reclaim_work); 3301 3302 name = getname(specialfile); 3303 if (IS_ERR(name)) { 3304 error = PTR_ERR(name); 3305 name = NULL; 3306 goto bad_swap; 3307 } 3308 swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0); 3309 if (IS_ERR(swap_file)) { 3310 error = PTR_ERR(swap_file); 3311 swap_file = NULL; 3312 goto bad_swap; 3313 } 3314 3315 si->swap_file = swap_file; 3316 mapping = swap_file->f_mapping; 3317 dentry = swap_file->f_path.dentry; 3318 inode = mapping->host; 3319 3320 error = claim_swapfile(si, inode); 3321 if (unlikely(error)) 3322 goto bad_swap; 3323 3324 inode_lock(inode); 3325 if (d_unlinked(dentry) || cant_mount(dentry)) { 3326 error = -ENOENT; 3327 goto bad_swap_unlock_inode; 3328 } 3329 if (IS_SWAPFILE(inode)) { 3330 error = -EBUSY; 3331 goto bad_swap_unlock_inode; 3332 } 3333 3334 /* 3335 * The swap subsystem needs a major overhaul to support this. 3336 * It doesn't work yet so just disable it for now. 3337 */ 3338 if (mapping_min_folio_order(mapping) > 0) { 3339 error = -EINVAL; 3340 goto bad_swap_unlock_inode; 3341 } 3342 3343 /* 3344 * Read the swap header. 3345 */ 3346 if (!mapping->a_ops->read_folio) { 3347 error = -EINVAL; 3348 goto bad_swap_unlock_inode; 3349 } 3350 folio = read_mapping_folio(mapping, 0, swap_file); 3351 if (IS_ERR(folio)) { 3352 error = PTR_ERR(folio); 3353 goto bad_swap_unlock_inode; 3354 } 3355 swap_header = kmap_local_folio(folio, 0); 3356 3357 maxpages = read_swap_header(si, swap_header, inode); 3358 if (unlikely(!maxpages)) { 3359 error = -EINVAL; 3360 goto bad_swap_unlock_inode; 3361 } 3362 3363 /* OK, set up the swap map and apply the bad block list */ 3364 swap_map = vzalloc(maxpages); 3365 if (!swap_map) { 3366 error = -ENOMEM; 3367 goto bad_swap_unlock_inode; 3368 } 3369 3370 error = swap_cgroup_swapon(si->type, maxpages); 3371 if (error) 3372 goto bad_swap_unlock_inode; 3373 3374 nr_extents = setup_swap_map_and_extents(si, swap_header, swap_map, 3375 maxpages, &span); 3376 if (unlikely(nr_extents < 0)) { 3377 error = nr_extents; 3378 goto bad_swap_unlock_inode; 3379 } 3380 3381 /* 3382 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might 3383 * be above MAX_PAGE_ORDER incase of a large swap file. 3384 */ 3385 zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long), 3386 GFP_KERNEL | __GFP_ZERO); 3387 if (!zeromap) { 3388 error = -ENOMEM; 3389 goto bad_swap_unlock_inode; 3390 } 3391 3392 if (si->bdev && bdev_stable_writes(si->bdev)) 3393 si->flags |= SWP_STABLE_WRITES; 3394 3395 if (si->bdev && bdev_synchronous(si->bdev)) 3396 si->flags |= SWP_SYNCHRONOUS_IO; 3397 3398 if (si->bdev && bdev_nonrot(si->bdev)) { 3399 si->flags |= SWP_SOLIDSTATE; 3400 } else { 3401 atomic_inc(&nr_rotate_swap); 3402 inced_nr_rotate_swap = true; 3403 } 3404 3405 cluster_info = setup_clusters(si, swap_header, maxpages); 3406 if (IS_ERR(cluster_info)) { 3407 error = PTR_ERR(cluster_info); 3408 cluster_info = NULL; 3409 goto bad_swap_unlock_inode; 3410 } 3411 3412 if ((swap_flags & SWAP_FLAG_DISCARD) && 3413 si->bdev && bdev_max_discard_sectors(si->bdev)) { 3414 /* 3415 * When discard is enabled for swap with no particular 3416 * policy flagged, we set all swap discard flags here in 3417 * order to sustain backward compatibility with older 3418 * swapon(8) releases. 3419 */ 3420 si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3421 SWP_PAGE_DISCARD); 3422 3423 /* 3424 * By flagging sys_swapon, a sysadmin can tell us to 3425 * either do single-time area discards only, or to just 3426 * perform discards for released swap page-clusters. 3427 * Now it's time to adjust the p->flags accordingly. 3428 */ 3429 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3430 si->flags &= ~SWP_PAGE_DISCARD; 3431 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3432 si->flags &= ~SWP_AREA_DISCARD; 3433 3434 /* issue a swapon-time discard if it's still required */ 3435 if (si->flags & SWP_AREA_DISCARD) { 3436 int err = discard_swap(si); 3437 if (unlikely(err)) 3438 pr_err("swapon: discard_swap(%p): %d\n", 3439 si, err); 3440 } 3441 } 3442 3443 error = init_swap_address_space(si->type, maxpages); 3444 if (error) 3445 goto bad_swap_unlock_inode; 3446 3447 error = zswap_swapon(si->type, maxpages); 3448 if (error) 3449 goto free_swap_address_space; 3450 3451 /* 3452 * Flush any pending IO and dirty mappings before we start using this 3453 * swap device. 3454 */ 3455 inode->i_flags |= S_SWAPFILE; 3456 error = inode_drain_writes(inode); 3457 if (error) { 3458 inode->i_flags &= ~S_SWAPFILE; 3459 goto free_swap_zswap; 3460 } 3461 3462 mutex_lock(&swapon_mutex); 3463 prio = -1; 3464 if (swap_flags & SWAP_FLAG_PREFER) 3465 prio = swap_flags & SWAP_FLAG_PRIO_MASK; 3466 enable_swap_info(si, prio, swap_map, cluster_info, zeromap); 3467 3468 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n", 3469 K(si->pages), name->name, si->prio, nr_extents, 3470 K((unsigned long long)span), 3471 (si->flags & SWP_SOLIDSTATE) ? "SS" : "", 3472 (si->flags & SWP_DISCARDABLE) ? "D" : "", 3473 (si->flags & SWP_AREA_DISCARD) ? "s" : "", 3474 (si->flags & SWP_PAGE_DISCARD) ? "c" : ""); 3475 3476 mutex_unlock(&swapon_mutex); 3477 atomic_inc(&proc_poll_event); 3478 wake_up_interruptible(&proc_poll_wait); 3479 3480 error = 0; 3481 goto out; 3482 free_swap_zswap: 3483 zswap_swapoff(si->type); 3484 free_swap_address_space: 3485 exit_swap_address_space(si->type); 3486 bad_swap_unlock_inode: 3487 inode_unlock(inode); 3488 bad_swap: 3489 kfree(si->global_cluster); 3490 si->global_cluster = NULL; 3491 inode = NULL; 3492 destroy_swap_extents(si); 3493 swap_cgroup_swapoff(si->type); 3494 spin_lock(&swap_lock); 3495 si->swap_file = NULL; 3496 si->flags = 0; 3497 spin_unlock(&swap_lock); 3498 vfree(swap_map); 3499 kvfree(zeromap); 3500 kvfree(cluster_info); 3501 if (inced_nr_rotate_swap) 3502 atomic_dec(&nr_rotate_swap); 3503 if (swap_file) 3504 filp_close(swap_file, NULL); 3505 out: 3506 if (!IS_ERR_OR_NULL(folio)) 3507 folio_release_kmap(folio, swap_header); 3508 if (name) 3509 putname(name); 3510 if (inode) 3511 inode_unlock(inode); 3512 return error; 3513 } 3514 3515 void si_swapinfo(struct sysinfo *val) 3516 { 3517 unsigned int type; 3518 unsigned long nr_to_be_unused = 0; 3519 3520 spin_lock(&swap_lock); 3521 for (type = 0; type < nr_swapfiles; type++) { 3522 struct swap_info_struct *si = swap_info[type]; 3523 3524 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3525 nr_to_be_unused += swap_usage_in_pages(si); 3526 } 3527 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3528 val->totalswap = total_swap_pages + nr_to_be_unused; 3529 spin_unlock(&swap_lock); 3530 } 3531 3532 /* 3533 * Verify that nr swap entries are valid and increment their swap map counts. 3534 * 3535 * Returns error code in following case. 3536 * - success -> 0 3537 * - swp_entry is invalid -> EINVAL 3538 * - swap-cache reference is requested but there is already one. -> EEXIST 3539 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3540 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3541 */ 3542 static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr) 3543 { 3544 struct swap_info_struct *si; 3545 struct swap_cluster_info *ci; 3546 unsigned long offset; 3547 unsigned char count; 3548 unsigned char has_cache; 3549 int err, i; 3550 3551 si = swp_swap_info(entry); 3552 if (WARN_ON_ONCE(!si)) { 3553 pr_err("%s%08lx\n", Bad_file, entry.val); 3554 return -EINVAL; 3555 } 3556 3557 offset = swp_offset(entry); 3558 VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER); 3559 VM_WARN_ON(usage == 1 && nr > 1); 3560 ci = lock_cluster(si, offset); 3561 3562 err = 0; 3563 for (i = 0; i < nr; i++) { 3564 count = si->swap_map[offset + i]; 3565 3566 /* 3567 * swapin_readahead() doesn't check if a swap entry is valid, so the 3568 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3569 */ 3570 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3571 err = -ENOENT; 3572 goto unlock_out; 3573 } 3574 3575 has_cache = count & SWAP_HAS_CACHE; 3576 count &= ~SWAP_HAS_CACHE; 3577 3578 if (!count && !has_cache) { 3579 err = -ENOENT; 3580 } else if (usage == SWAP_HAS_CACHE) { 3581 if (has_cache) 3582 err = -EEXIST; 3583 } else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) { 3584 err = -EINVAL; 3585 } 3586 3587 if (err) 3588 goto unlock_out; 3589 } 3590 3591 for (i = 0; i < nr; i++) { 3592 count = si->swap_map[offset + i]; 3593 has_cache = count & SWAP_HAS_CACHE; 3594 count &= ~SWAP_HAS_CACHE; 3595 3596 if (usage == SWAP_HAS_CACHE) 3597 has_cache = SWAP_HAS_CACHE; 3598 else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3599 count += usage; 3600 else if (swap_count_continued(si, offset + i, count)) 3601 count = COUNT_CONTINUED; 3602 else { 3603 /* 3604 * Don't need to rollback changes, because if 3605 * usage == 1, there must be nr == 1. 3606 */ 3607 err = -ENOMEM; 3608 goto unlock_out; 3609 } 3610 3611 WRITE_ONCE(si->swap_map[offset + i], count | has_cache); 3612 } 3613 3614 unlock_out: 3615 unlock_cluster(ci); 3616 return err; 3617 } 3618 3619 /* 3620 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3621 * (in which case its reference count is never incremented). 3622 */ 3623 void swap_shmem_alloc(swp_entry_t entry, int nr) 3624 { 3625 __swap_duplicate(entry, SWAP_MAP_SHMEM, nr); 3626 } 3627 3628 /* 3629 * Increase reference count of swap entry by 1. 3630 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3631 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3632 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3633 * might occur if a page table entry has got corrupted. 3634 */ 3635 int swap_duplicate(swp_entry_t entry) 3636 { 3637 int err = 0; 3638 3639 while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM) 3640 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3641 return err; 3642 } 3643 3644 /* 3645 * @entry: first swap entry from which we allocate nr swap cache. 3646 * 3647 * Called when allocating swap cache for existing swap entries, 3648 * This can return error codes. Returns 0 at success. 3649 * -EEXIST means there is a swap cache. 3650 * Note: return code is different from swap_duplicate(). 3651 */ 3652 int swapcache_prepare(swp_entry_t entry, int nr) 3653 { 3654 return __swap_duplicate(entry, SWAP_HAS_CACHE, nr); 3655 } 3656 3657 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr) 3658 { 3659 unsigned long offset = swp_offset(entry); 3660 3661 cluster_swap_free_nr(si, offset, nr, SWAP_HAS_CACHE); 3662 } 3663 3664 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3665 { 3666 return swap_type_to_swap_info(swp_type(entry)); 3667 } 3668 3669 /* 3670 * out-of-line methods to avoid include hell. 3671 */ 3672 struct address_space *swapcache_mapping(struct folio *folio) 3673 { 3674 return swp_swap_info(folio->swap)->swap_file->f_mapping; 3675 } 3676 EXPORT_SYMBOL_GPL(swapcache_mapping); 3677 3678 pgoff_t __folio_swap_cache_index(struct folio *folio) 3679 { 3680 return swap_cache_index(folio->swap); 3681 } 3682 EXPORT_SYMBOL_GPL(__folio_swap_cache_index); 3683 3684 /* 3685 * add_swap_count_continuation - called when a swap count is duplicated 3686 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3687 * page of the original vmalloc'ed swap_map, to hold the continuation count 3688 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3689 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3690 * 3691 * These continuation pages are seldom referenced: the common paths all work 3692 * on the original swap_map, only referring to a continuation page when the 3693 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3694 * 3695 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3696 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3697 * can be called after dropping locks. 3698 */ 3699 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3700 { 3701 struct swap_info_struct *si; 3702 struct swap_cluster_info *ci; 3703 struct page *head; 3704 struct page *page; 3705 struct page *list_page; 3706 pgoff_t offset; 3707 unsigned char count; 3708 int ret = 0; 3709 3710 /* 3711 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3712 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3713 */ 3714 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3715 3716 si = get_swap_device(entry); 3717 if (!si) { 3718 /* 3719 * An acceptable race has occurred since the failing 3720 * __swap_duplicate(): the swap device may be swapoff 3721 */ 3722 goto outer; 3723 } 3724 3725 offset = swp_offset(entry); 3726 3727 ci = lock_cluster(si, offset); 3728 3729 count = swap_count(si->swap_map[offset]); 3730 3731 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3732 /* 3733 * The higher the swap count, the more likely it is that tasks 3734 * will race to add swap count continuation: we need to avoid 3735 * over-provisioning. 3736 */ 3737 goto out; 3738 } 3739 3740 if (!page) { 3741 ret = -ENOMEM; 3742 goto out; 3743 } 3744 3745 head = vmalloc_to_page(si->swap_map + offset); 3746 offset &= ~PAGE_MASK; 3747 3748 spin_lock(&si->cont_lock); 3749 /* 3750 * Page allocation does not initialize the page's lru field, 3751 * but it does always reset its private field. 3752 */ 3753 if (!page_private(head)) { 3754 BUG_ON(count & COUNT_CONTINUED); 3755 INIT_LIST_HEAD(&head->lru); 3756 set_page_private(head, SWP_CONTINUED); 3757 si->flags |= SWP_CONTINUED; 3758 } 3759 3760 list_for_each_entry(list_page, &head->lru, lru) { 3761 unsigned char *map; 3762 3763 /* 3764 * If the previous map said no continuation, but we've found 3765 * a continuation page, free our allocation and use this one. 3766 */ 3767 if (!(count & COUNT_CONTINUED)) 3768 goto out_unlock_cont; 3769 3770 map = kmap_local_page(list_page) + offset; 3771 count = *map; 3772 kunmap_local(map); 3773 3774 /* 3775 * If this continuation count now has some space in it, 3776 * free our allocation and use this one. 3777 */ 3778 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3779 goto out_unlock_cont; 3780 } 3781 3782 list_add_tail(&page->lru, &head->lru); 3783 page = NULL; /* now it's attached, don't free it */ 3784 out_unlock_cont: 3785 spin_unlock(&si->cont_lock); 3786 out: 3787 unlock_cluster(ci); 3788 put_swap_device(si); 3789 outer: 3790 if (page) 3791 __free_page(page); 3792 return ret; 3793 } 3794 3795 /* 3796 * swap_count_continued - when the original swap_map count is incremented 3797 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3798 * into, carry if so, or else fail until a new continuation page is allocated; 3799 * when the original swap_map count is decremented from 0 with continuation, 3800 * borrow from the continuation and report whether it still holds more. 3801 * Called while __swap_duplicate() or caller of __swap_entry_free_locked() 3802 * holds cluster lock. 3803 */ 3804 static bool swap_count_continued(struct swap_info_struct *si, 3805 pgoff_t offset, unsigned char count) 3806 { 3807 struct page *head; 3808 struct page *page; 3809 unsigned char *map; 3810 bool ret; 3811 3812 head = vmalloc_to_page(si->swap_map + offset); 3813 if (page_private(head) != SWP_CONTINUED) { 3814 BUG_ON(count & COUNT_CONTINUED); 3815 return false; /* need to add count continuation */ 3816 } 3817 3818 spin_lock(&si->cont_lock); 3819 offset &= ~PAGE_MASK; 3820 page = list_next_entry(head, lru); 3821 map = kmap_local_page(page) + offset; 3822 3823 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3824 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3825 3826 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3827 /* 3828 * Think of how you add 1 to 999 3829 */ 3830 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3831 kunmap_local(map); 3832 page = list_next_entry(page, lru); 3833 BUG_ON(page == head); 3834 map = kmap_local_page(page) + offset; 3835 } 3836 if (*map == SWAP_CONT_MAX) { 3837 kunmap_local(map); 3838 page = list_next_entry(page, lru); 3839 if (page == head) { 3840 ret = false; /* add count continuation */ 3841 goto out; 3842 } 3843 map = kmap_local_page(page) + offset; 3844 init_map: *map = 0; /* we didn't zero the page */ 3845 } 3846 *map += 1; 3847 kunmap_local(map); 3848 while ((page = list_prev_entry(page, lru)) != head) { 3849 map = kmap_local_page(page) + offset; 3850 *map = COUNT_CONTINUED; 3851 kunmap_local(map); 3852 } 3853 ret = true; /* incremented */ 3854 3855 } else { /* decrementing */ 3856 /* 3857 * Think of how you subtract 1 from 1000 3858 */ 3859 BUG_ON(count != COUNT_CONTINUED); 3860 while (*map == COUNT_CONTINUED) { 3861 kunmap_local(map); 3862 page = list_next_entry(page, lru); 3863 BUG_ON(page == head); 3864 map = kmap_local_page(page) + offset; 3865 } 3866 BUG_ON(*map == 0); 3867 *map -= 1; 3868 if (*map == 0) 3869 count = 0; 3870 kunmap_local(map); 3871 while ((page = list_prev_entry(page, lru)) != head) { 3872 map = kmap_local_page(page) + offset; 3873 *map = SWAP_CONT_MAX | count; 3874 count = COUNT_CONTINUED; 3875 kunmap_local(map); 3876 } 3877 ret = count == COUNT_CONTINUED; 3878 } 3879 out: 3880 spin_unlock(&si->cont_lock); 3881 return ret; 3882 } 3883 3884 /* 3885 * free_swap_count_continuations - swapoff free all the continuation pages 3886 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3887 */ 3888 static void free_swap_count_continuations(struct swap_info_struct *si) 3889 { 3890 pgoff_t offset; 3891 3892 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3893 struct page *head; 3894 head = vmalloc_to_page(si->swap_map + offset); 3895 if (page_private(head)) { 3896 struct page *page, *next; 3897 3898 list_for_each_entry_safe(page, next, &head->lru, lru) { 3899 list_del(&page->lru); 3900 __free_page(page); 3901 } 3902 } 3903 } 3904 } 3905 3906 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3907 static bool __has_usable_swap(void) 3908 { 3909 return !plist_head_empty(&swap_active_head); 3910 } 3911 3912 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp) 3913 { 3914 struct swap_info_struct *si, *next; 3915 int nid = folio_nid(folio); 3916 3917 if (!(gfp & __GFP_IO)) 3918 return; 3919 3920 if (!__has_usable_swap()) 3921 return; 3922 3923 if (!blk_cgroup_congested()) 3924 return; 3925 3926 /* 3927 * We've already scheduled a throttle, avoid taking the global swap 3928 * lock. 3929 */ 3930 if (current->throttle_disk) 3931 return; 3932 3933 spin_lock(&swap_avail_lock); 3934 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], 3935 avail_lists[nid]) { 3936 if (si->bdev) { 3937 blkcg_schedule_throttle(si->bdev->bd_disk, true); 3938 break; 3939 } 3940 } 3941 spin_unlock(&swap_avail_lock); 3942 } 3943 #endif 3944 3945 static int __init swapfile_init(void) 3946 { 3947 int nid; 3948 3949 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3950 GFP_KERNEL); 3951 if (!swap_avail_heads) { 3952 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3953 return -ENOMEM; 3954 } 3955 3956 for_each_node(nid) 3957 plist_head_init(&swap_avail_heads[nid]); 3958 3959 swapfile_maximum_size = arch_max_swapfile_size(); 3960 3961 #ifdef CONFIG_MIGRATION 3962 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS)) 3963 swap_migration_ad_supported = true; 3964 #endif /* CONFIG_MIGRATION */ 3965 3966 return 0; 3967 } 3968 subsys_initcall(swapfile_init); 3969