1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/blkdev.h> 10 #include <linux/mm.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/task.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mman.h> 15 #include <linux/slab.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/swap.h> 18 #include <linux/vmalloc.h> 19 #include <linux/pagemap.h> 20 #include <linux/namei.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/blk-cgroup.h> 23 #include <linux/random.h> 24 #include <linux/writeback.h> 25 #include <linux/proc_fs.h> 26 #include <linux/seq_file.h> 27 #include <linux/init.h> 28 #include <linux/ksm.h> 29 #include <linux/rmap.h> 30 #include <linux/security.h> 31 #include <linux/backing-dev.h> 32 #include <linux/mutex.h> 33 #include <linux/capability.h> 34 #include <linux/syscalls.h> 35 #include <linux/memcontrol.h> 36 #include <linux/poll.h> 37 #include <linux/oom.h> 38 #include <linux/swapfile.h> 39 #include <linux/export.h> 40 #include <linux/swap_slots.h> 41 #include <linux/sort.h> 42 #include <linux/completion.h> 43 #include <linux/suspend.h> 44 #include <linux/zswap.h> 45 #include <linux/plist.h> 46 47 #include <asm/tlbflush.h> 48 #include <linux/swapops.h> 49 #include <linux/swap_cgroup.h> 50 #include "internal.h" 51 #include "swap.h" 52 53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 54 unsigned char); 55 static void free_swap_count_continuations(struct swap_info_struct *); 56 57 static DEFINE_SPINLOCK(swap_lock); 58 static unsigned int nr_swapfiles; 59 atomic_long_t nr_swap_pages; 60 /* 61 * Some modules use swappable objects and may try to swap them out under 62 * memory pressure (via the shrinker). Before doing so, they may wish to 63 * check to see if any swap space is available. 64 */ 65 EXPORT_SYMBOL_GPL(nr_swap_pages); 66 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 67 long total_swap_pages; 68 static int least_priority = -1; 69 unsigned long swapfile_maximum_size; 70 #ifdef CONFIG_MIGRATION 71 bool swap_migration_ad_supported; 72 #endif /* CONFIG_MIGRATION */ 73 74 static const char Bad_file[] = "Bad swap file entry "; 75 static const char Unused_file[] = "Unused swap file entry "; 76 static const char Bad_offset[] = "Bad swap offset entry "; 77 static const char Unused_offset[] = "Unused swap offset entry "; 78 79 /* 80 * all active swap_info_structs 81 * protected with swap_lock, and ordered by priority. 82 */ 83 static PLIST_HEAD(swap_active_head); 84 85 /* 86 * all available (active, not full) swap_info_structs 87 * protected with swap_avail_lock, ordered by priority. 88 * This is used by folio_alloc_swap() instead of swap_active_head 89 * because swap_active_head includes all swap_info_structs, 90 * but folio_alloc_swap() doesn't need to look at full ones. 91 * This uses its own lock instead of swap_lock because when a 92 * swap_info_struct changes between not-full/full, it needs to 93 * add/remove itself to/from this list, but the swap_info_struct->lock 94 * is held and the locking order requires swap_lock to be taken 95 * before any swap_info_struct->lock. 96 */ 97 static struct plist_head *swap_avail_heads; 98 static DEFINE_SPINLOCK(swap_avail_lock); 99 100 static struct swap_info_struct *swap_info[MAX_SWAPFILES]; 101 102 static DEFINE_MUTEX(swapon_mutex); 103 104 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 105 /* Activity counter to indicate that a swapon or swapoff has occurred */ 106 static atomic_t proc_poll_event = ATOMIC_INIT(0); 107 108 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 109 110 static struct swap_info_struct *swap_type_to_swap_info(int type) 111 { 112 if (type >= MAX_SWAPFILES) 113 return NULL; 114 115 return READ_ONCE(swap_info[type]); /* rcu_dereference() */ 116 } 117 118 static inline unsigned char swap_count(unsigned char ent) 119 { 120 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 121 } 122 123 /* Reclaim the swap entry anyway if possible */ 124 #define TTRS_ANYWAY 0x1 125 /* 126 * Reclaim the swap entry if there are no more mappings of the 127 * corresponding page 128 */ 129 #define TTRS_UNMAPPED 0x2 130 /* Reclaim the swap entry if swap is getting full*/ 131 #define TTRS_FULL 0x4 132 133 /* 134 * returns number of pages in the folio that backs the swap entry. If positive, 135 * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no 136 * folio was associated with the swap entry. 137 */ 138 static int __try_to_reclaim_swap(struct swap_info_struct *si, 139 unsigned long offset, unsigned long flags) 140 { 141 swp_entry_t entry = swp_entry(si->type, offset); 142 struct folio *folio; 143 int ret = 0; 144 145 folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry)); 146 if (IS_ERR(folio)) 147 return 0; 148 /* 149 * When this function is called from scan_swap_map_slots() and it's 150 * called by vmscan.c at reclaiming folios. So we hold a folio lock 151 * here. We have to use trylock for avoiding deadlock. This is a special 152 * case and you should use folio_free_swap() with explicit folio_lock() 153 * in usual operations. 154 */ 155 if (folio_trylock(folio)) { 156 if ((flags & TTRS_ANYWAY) || 157 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) || 158 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio))) 159 ret = folio_free_swap(folio); 160 folio_unlock(folio); 161 } 162 ret = ret ? folio_nr_pages(folio) : -folio_nr_pages(folio); 163 folio_put(folio); 164 return ret; 165 } 166 167 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 168 { 169 struct rb_node *rb = rb_first(&sis->swap_extent_root); 170 return rb_entry(rb, struct swap_extent, rb_node); 171 } 172 173 static inline struct swap_extent *next_se(struct swap_extent *se) 174 { 175 struct rb_node *rb = rb_next(&se->rb_node); 176 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 177 } 178 179 /* 180 * swapon tell device that all the old swap contents can be discarded, 181 * to allow the swap device to optimize its wear-levelling. 182 */ 183 static int discard_swap(struct swap_info_struct *si) 184 { 185 struct swap_extent *se; 186 sector_t start_block; 187 sector_t nr_blocks; 188 int err = 0; 189 190 /* Do not discard the swap header page! */ 191 se = first_se(si); 192 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 193 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 194 if (nr_blocks) { 195 err = blkdev_issue_discard(si->bdev, start_block, 196 nr_blocks, GFP_KERNEL); 197 if (err) 198 return err; 199 cond_resched(); 200 } 201 202 for (se = next_se(se); se; se = next_se(se)) { 203 start_block = se->start_block << (PAGE_SHIFT - 9); 204 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 205 206 err = blkdev_issue_discard(si->bdev, start_block, 207 nr_blocks, GFP_KERNEL); 208 if (err) 209 break; 210 211 cond_resched(); 212 } 213 return err; /* That will often be -EOPNOTSUPP */ 214 } 215 216 static struct swap_extent * 217 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 218 { 219 struct swap_extent *se; 220 struct rb_node *rb; 221 222 rb = sis->swap_extent_root.rb_node; 223 while (rb) { 224 se = rb_entry(rb, struct swap_extent, rb_node); 225 if (offset < se->start_page) 226 rb = rb->rb_left; 227 else if (offset >= se->start_page + se->nr_pages) 228 rb = rb->rb_right; 229 else 230 return se; 231 } 232 /* It *must* be present */ 233 BUG(); 234 } 235 236 sector_t swap_folio_sector(struct folio *folio) 237 { 238 struct swap_info_struct *sis = swp_swap_info(folio->swap); 239 struct swap_extent *se; 240 sector_t sector; 241 pgoff_t offset; 242 243 offset = swp_offset(folio->swap); 244 se = offset_to_swap_extent(sis, offset); 245 sector = se->start_block + (offset - se->start_page); 246 return sector << (PAGE_SHIFT - 9); 247 } 248 249 /* 250 * swap allocation tell device that a cluster of swap can now be discarded, 251 * to allow the swap device to optimize its wear-levelling. 252 */ 253 static void discard_swap_cluster(struct swap_info_struct *si, 254 pgoff_t start_page, pgoff_t nr_pages) 255 { 256 struct swap_extent *se = offset_to_swap_extent(si, start_page); 257 258 while (nr_pages) { 259 pgoff_t offset = start_page - se->start_page; 260 sector_t start_block = se->start_block + offset; 261 sector_t nr_blocks = se->nr_pages - offset; 262 263 if (nr_blocks > nr_pages) 264 nr_blocks = nr_pages; 265 start_page += nr_blocks; 266 nr_pages -= nr_blocks; 267 268 start_block <<= PAGE_SHIFT - 9; 269 nr_blocks <<= PAGE_SHIFT - 9; 270 if (blkdev_issue_discard(si->bdev, start_block, 271 nr_blocks, GFP_NOIO)) 272 break; 273 274 se = next_se(se); 275 } 276 } 277 278 #ifdef CONFIG_THP_SWAP 279 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 280 281 #define swap_entry_order(order) (order) 282 #else 283 #define SWAPFILE_CLUSTER 256 284 285 /* 286 * Define swap_entry_order() as constant to let compiler to optimize 287 * out some code if !CONFIG_THP_SWAP 288 */ 289 #define swap_entry_order(order) 0 290 #endif 291 #define LATENCY_LIMIT 256 292 293 static inline void cluster_set_flag(struct swap_cluster_info *info, 294 unsigned int flag) 295 { 296 info->flags = flag; 297 } 298 299 static inline unsigned int cluster_count(struct swap_cluster_info *info) 300 { 301 return info->data; 302 } 303 304 static inline void cluster_set_count(struct swap_cluster_info *info, 305 unsigned int c) 306 { 307 info->data = c; 308 } 309 310 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 311 unsigned int c, unsigned int f) 312 { 313 info->flags = f; 314 info->data = c; 315 } 316 317 static inline unsigned int cluster_next(struct swap_cluster_info *info) 318 { 319 return info->data; 320 } 321 322 static inline void cluster_set_next(struct swap_cluster_info *info, 323 unsigned int n) 324 { 325 info->data = n; 326 } 327 328 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 329 unsigned int n, unsigned int f) 330 { 331 info->flags = f; 332 info->data = n; 333 } 334 335 static inline bool cluster_is_free(struct swap_cluster_info *info) 336 { 337 return info->flags & CLUSTER_FLAG_FREE; 338 } 339 340 static inline bool cluster_is_null(struct swap_cluster_info *info) 341 { 342 return info->flags & CLUSTER_FLAG_NEXT_NULL; 343 } 344 345 static inline void cluster_set_null(struct swap_cluster_info *info) 346 { 347 info->flags = CLUSTER_FLAG_NEXT_NULL; 348 info->data = 0; 349 } 350 351 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 352 unsigned long offset) 353 { 354 struct swap_cluster_info *ci; 355 356 ci = si->cluster_info; 357 if (ci) { 358 ci += offset / SWAPFILE_CLUSTER; 359 spin_lock(&ci->lock); 360 } 361 return ci; 362 } 363 364 static inline void unlock_cluster(struct swap_cluster_info *ci) 365 { 366 if (ci) 367 spin_unlock(&ci->lock); 368 } 369 370 /* 371 * Determine the locking method in use for this device. Return 372 * swap_cluster_info if SSD-style cluster-based locking is in place. 373 */ 374 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 375 struct swap_info_struct *si, unsigned long offset) 376 { 377 struct swap_cluster_info *ci; 378 379 /* Try to use fine-grained SSD-style locking if available: */ 380 ci = lock_cluster(si, offset); 381 /* Otherwise, fall back to traditional, coarse locking: */ 382 if (!ci) 383 spin_lock(&si->lock); 384 385 return ci; 386 } 387 388 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 389 struct swap_cluster_info *ci) 390 { 391 if (ci) 392 unlock_cluster(ci); 393 else 394 spin_unlock(&si->lock); 395 } 396 397 static inline bool cluster_list_empty(struct swap_cluster_list *list) 398 { 399 return cluster_is_null(&list->head); 400 } 401 402 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 403 { 404 return cluster_next(&list->head); 405 } 406 407 static void cluster_list_init(struct swap_cluster_list *list) 408 { 409 cluster_set_null(&list->head); 410 cluster_set_null(&list->tail); 411 } 412 413 static void cluster_list_add_tail(struct swap_cluster_list *list, 414 struct swap_cluster_info *ci, 415 unsigned int idx) 416 { 417 if (cluster_list_empty(list)) { 418 cluster_set_next_flag(&list->head, idx, 0); 419 cluster_set_next_flag(&list->tail, idx, 0); 420 } else { 421 struct swap_cluster_info *ci_tail; 422 unsigned int tail = cluster_next(&list->tail); 423 424 /* 425 * Nested cluster lock, but both cluster locks are 426 * only acquired when we held swap_info_struct->lock 427 */ 428 ci_tail = ci + tail; 429 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 430 cluster_set_next(ci_tail, idx); 431 spin_unlock(&ci_tail->lock); 432 cluster_set_next_flag(&list->tail, idx, 0); 433 } 434 } 435 436 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 437 struct swap_cluster_info *ci) 438 { 439 unsigned int idx; 440 441 idx = cluster_next(&list->head); 442 if (cluster_next(&list->tail) == idx) { 443 cluster_set_null(&list->head); 444 cluster_set_null(&list->tail); 445 } else 446 cluster_set_next_flag(&list->head, 447 cluster_next(&ci[idx]), 0); 448 449 return idx; 450 } 451 452 /* Add a cluster to discard list and schedule it to do discard */ 453 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 454 unsigned int idx) 455 { 456 /* 457 * If scan_swap_map_slots() can't find a free cluster, it will check 458 * si->swap_map directly. To make sure the discarding cluster isn't 459 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied). 460 * It will be cleared after discard 461 */ 462 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 463 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 464 465 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 466 467 schedule_work(&si->discard_work); 468 } 469 470 static void __free_cluster(struct swap_info_struct *si, unsigned long idx) 471 { 472 struct swap_cluster_info *ci = si->cluster_info; 473 474 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); 475 cluster_list_add_tail(&si->free_clusters, ci, idx); 476 } 477 478 /* 479 * Doing discard actually. After a cluster discard is finished, the cluster 480 * will be added to free cluster list. caller should hold si->lock. 481 */ 482 static void swap_do_scheduled_discard(struct swap_info_struct *si) 483 { 484 struct swap_cluster_info *info, *ci; 485 unsigned int idx; 486 487 info = si->cluster_info; 488 489 while (!cluster_list_empty(&si->discard_clusters)) { 490 idx = cluster_list_del_first(&si->discard_clusters, info); 491 spin_unlock(&si->lock); 492 493 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 494 SWAPFILE_CLUSTER); 495 496 spin_lock(&si->lock); 497 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 498 __free_cluster(si, idx); 499 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 500 0, SWAPFILE_CLUSTER); 501 unlock_cluster(ci); 502 } 503 } 504 505 static void swap_discard_work(struct work_struct *work) 506 { 507 struct swap_info_struct *si; 508 509 si = container_of(work, struct swap_info_struct, discard_work); 510 511 spin_lock(&si->lock); 512 swap_do_scheduled_discard(si); 513 spin_unlock(&si->lock); 514 } 515 516 static void swap_users_ref_free(struct percpu_ref *ref) 517 { 518 struct swap_info_struct *si; 519 520 si = container_of(ref, struct swap_info_struct, users); 521 complete(&si->comp); 522 } 523 524 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) 525 { 526 struct swap_cluster_info *ci = si->cluster_info; 527 528 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); 529 cluster_list_del_first(&si->free_clusters, ci); 530 cluster_set_count_flag(ci + idx, 0, 0); 531 } 532 533 static void free_cluster(struct swap_info_struct *si, unsigned long idx) 534 { 535 struct swap_cluster_info *ci = si->cluster_info + idx; 536 537 VM_BUG_ON(cluster_count(ci) != 0); 538 /* 539 * If the swap is discardable, prepare discard the cluster 540 * instead of free it immediately. The cluster will be freed 541 * after discard. 542 */ 543 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 544 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 545 swap_cluster_schedule_discard(si, idx); 546 return; 547 } 548 549 __free_cluster(si, idx); 550 } 551 552 /* 553 * The cluster corresponding to page_nr will be used. The cluster will be 554 * removed from free cluster list and its usage counter will be increased by 555 * count. 556 */ 557 static void add_cluster_info_page(struct swap_info_struct *p, 558 struct swap_cluster_info *cluster_info, unsigned long page_nr, 559 unsigned long count) 560 { 561 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 562 563 if (!cluster_info) 564 return; 565 if (cluster_is_free(&cluster_info[idx])) 566 alloc_cluster(p, idx); 567 568 VM_BUG_ON(cluster_count(&cluster_info[idx]) + count > SWAPFILE_CLUSTER); 569 cluster_set_count(&cluster_info[idx], 570 cluster_count(&cluster_info[idx]) + count); 571 } 572 573 /* 574 * The cluster corresponding to page_nr will be used. The cluster will be 575 * removed from free cluster list and its usage counter will be increased by 1. 576 */ 577 static void inc_cluster_info_page(struct swap_info_struct *p, 578 struct swap_cluster_info *cluster_info, unsigned long page_nr) 579 { 580 add_cluster_info_page(p, cluster_info, page_nr, 1); 581 } 582 583 /* 584 * The cluster corresponding to page_nr decreases one usage. If the usage 585 * counter becomes 0, which means no page in the cluster is in using, we can 586 * optionally discard the cluster and add it to free cluster list. 587 */ 588 static void dec_cluster_info_page(struct swap_info_struct *p, 589 struct swap_cluster_info *cluster_info, unsigned long page_nr) 590 { 591 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 592 593 if (!cluster_info) 594 return; 595 596 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 597 cluster_set_count(&cluster_info[idx], 598 cluster_count(&cluster_info[idx]) - 1); 599 600 if (cluster_count(&cluster_info[idx]) == 0) 601 free_cluster(p, idx); 602 } 603 604 /* 605 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free 606 * cluster list. Avoiding such abuse to avoid list corruption. 607 */ 608 static bool 609 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 610 unsigned long offset, int order) 611 { 612 struct percpu_cluster *percpu_cluster; 613 bool conflict; 614 615 offset /= SWAPFILE_CLUSTER; 616 conflict = !cluster_list_empty(&si->free_clusters) && 617 offset != cluster_list_first(&si->free_clusters) && 618 cluster_is_free(&si->cluster_info[offset]); 619 620 if (!conflict) 621 return false; 622 623 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 624 percpu_cluster->next[order] = SWAP_NEXT_INVALID; 625 return true; 626 } 627 628 static inline bool swap_range_empty(char *swap_map, unsigned int start, 629 unsigned int nr_pages) 630 { 631 unsigned int i; 632 633 for (i = 0; i < nr_pages; i++) { 634 if (swap_map[start + i]) 635 return false; 636 } 637 638 return true; 639 } 640 641 /* 642 * Try to get swap entries with specified order from current cpu's swap entry 643 * pool (a cluster). This might involve allocating a new cluster for current CPU 644 * too. 645 */ 646 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 647 unsigned long *offset, unsigned long *scan_base, int order) 648 { 649 unsigned int nr_pages = 1 << order; 650 struct percpu_cluster *cluster; 651 struct swap_cluster_info *ci; 652 unsigned int tmp, max; 653 654 new_cluster: 655 cluster = this_cpu_ptr(si->percpu_cluster); 656 tmp = cluster->next[order]; 657 if (tmp == SWAP_NEXT_INVALID) { 658 if (!cluster_list_empty(&si->free_clusters)) { 659 tmp = cluster_next(&si->free_clusters.head) * 660 SWAPFILE_CLUSTER; 661 } else if (!cluster_list_empty(&si->discard_clusters)) { 662 /* 663 * we don't have free cluster but have some clusters in 664 * discarding, do discard now and reclaim them, then 665 * reread cluster_next_cpu since we dropped si->lock 666 */ 667 swap_do_scheduled_discard(si); 668 *scan_base = this_cpu_read(*si->cluster_next_cpu); 669 *offset = *scan_base; 670 goto new_cluster; 671 } else 672 return false; 673 } 674 675 /* 676 * Other CPUs can use our cluster if they can't find a free cluster, 677 * check if there is still free entry in the cluster, maintaining 678 * natural alignment. 679 */ 680 max = min_t(unsigned long, si->max, ALIGN(tmp + 1, SWAPFILE_CLUSTER)); 681 if (tmp < max) { 682 ci = lock_cluster(si, tmp); 683 while (tmp < max) { 684 if (swap_range_empty(si->swap_map, tmp, nr_pages)) 685 break; 686 tmp += nr_pages; 687 } 688 unlock_cluster(ci); 689 } 690 if (tmp >= max) { 691 cluster->next[order] = SWAP_NEXT_INVALID; 692 goto new_cluster; 693 } 694 *offset = tmp; 695 *scan_base = tmp; 696 tmp += nr_pages; 697 cluster->next[order] = tmp < max ? tmp : SWAP_NEXT_INVALID; 698 return true; 699 } 700 701 static void __del_from_avail_list(struct swap_info_struct *p) 702 { 703 int nid; 704 705 assert_spin_locked(&p->lock); 706 for_each_node(nid) 707 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); 708 } 709 710 static void del_from_avail_list(struct swap_info_struct *p) 711 { 712 spin_lock(&swap_avail_lock); 713 __del_from_avail_list(p); 714 spin_unlock(&swap_avail_lock); 715 } 716 717 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 718 unsigned int nr_entries) 719 { 720 unsigned int end = offset + nr_entries - 1; 721 722 if (offset == si->lowest_bit) 723 si->lowest_bit += nr_entries; 724 if (end == si->highest_bit) 725 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries); 726 WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries); 727 if (si->inuse_pages == si->pages) { 728 si->lowest_bit = si->max; 729 si->highest_bit = 0; 730 del_from_avail_list(si); 731 } 732 } 733 734 static void add_to_avail_list(struct swap_info_struct *p) 735 { 736 int nid; 737 738 spin_lock(&swap_avail_lock); 739 for_each_node(nid) 740 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); 741 spin_unlock(&swap_avail_lock); 742 } 743 744 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 745 unsigned int nr_entries) 746 { 747 unsigned long begin = offset; 748 unsigned long end = offset + nr_entries - 1; 749 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 750 751 if (offset < si->lowest_bit) 752 si->lowest_bit = offset; 753 if (end > si->highest_bit) { 754 bool was_full = !si->highest_bit; 755 756 WRITE_ONCE(si->highest_bit, end); 757 if (was_full && (si->flags & SWP_WRITEOK)) 758 add_to_avail_list(si); 759 } 760 if (si->flags & SWP_BLKDEV) 761 swap_slot_free_notify = 762 si->bdev->bd_disk->fops->swap_slot_free_notify; 763 else 764 swap_slot_free_notify = NULL; 765 while (offset <= end) { 766 arch_swap_invalidate_page(si->type, offset); 767 if (swap_slot_free_notify) 768 swap_slot_free_notify(si->bdev, offset); 769 offset++; 770 } 771 clear_shadow_from_swap_cache(si->type, begin, end); 772 773 /* 774 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0 775 * only after the above cleanups are done. 776 */ 777 smp_wmb(); 778 atomic_long_add(nr_entries, &nr_swap_pages); 779 WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries); 780 } 781 782 static void set_cluster_next(struct swap_info_struct *si, unsigned long next) 783 { 784 unsigned long prev; 785 786 if (!(si->flags & SWP_SOLIDSTATE)) { 787 si->cluster_next = next; 788 return; 789 } 790 791 prev = this_cpu_read(*si->cluster_next_cpu); 792 /* 793 * Cross the swap address space size aligned trunk, choose 794 * another trunk randomly to avoid lock contention on swap 795 * address space if possible. 796 */ 797 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) != 798 (next >> SWAP_ADDRESS_SPACE_SHIFT)) { 799 /* No free swap slots available */ 800 if (si->highest_bit <= si->lowest_bit) 801 return; 802 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit); 803 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES); 804 next = max_t(unsigned int, next, si->lowest_bit); 805 } 806 this_cpu_write(*si->cluster_next_cpu, next); 807 } 808 809 static bool swap_offset_available_and_locked(struct swap_info_struct *si, 810 unsigned long offset) 811 { 812 if (data_race(!si->swap_map[offset])) { 813 spin_lock(&si->lock); 814 return true; 815 } 816 817 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 818 spin_lock(&si->lock); 819 return true; 820 } 821 822 return false; 823 } 824 825 static int scan_swap_map_slots(struct swap_info_struct *si, 826 unsigned char usage, int nr, 827 swp_entry_t slots[], int order) 828 { 829 struct swap_cluster_info *ci; 830 unsigned long offset; 831 unsigned long scan_base; 832 unsigned long last_in_cluster = 0; 833 int latency_ration = LATENCY_LIMIT; 834 unsigned int nr_pages = 1 << order; 835 int n_ret = 0; 836 bool scanned_many = false; 837 838 /* 839 * We try to cluster swap pages by allocating them sequentially 840 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 841 * way, however, we resort to first-free allocation, starting 842 * a new cluster. This prevents us from scattering swap pages 843 * all over the entire swap partition, so that we reduce 844 * overall disk seek times between swap pages. -- sct 845 * But we do now try to find an empty cluster. -Andrea 846 * And we let swap pages go all over an SSD partition. Hugh 847 */ 848 849 if (order > 0) { 850 /* 851 * Should not even be attempting large allocations when huge 852 * page swap is disabled. Warn and fail the allocation. 853 */ 854 if (!IS_ENABLED(CONFIG_THP_SWAP) || 855 nr_pages > SWAPFILE_CLUSTER) { 856 VM_WARN_ON_ONCE(1); 857 return 0; 858 } 859 860 /* 861 * Swapfile is not block device or not using clusters so unable 862 * to allocate large entries. 863 */ 864 if (!(si->flags & SWP_BLKDEV) || !si->cluster_info) 865 return 0; 866 } 867 868 si->flags += SWP_SCANNING; 869 /* 870 * Use percpu scan base for SSD to reduce lock contention on 871 * cluster and swap cache. For HDD, sequential access is more 872 * important. 873 */ 874 if (si->flags & SWP_SOLIDSTATE) 875 scan_base = this_cpu_read(*si->cluster_next_cpu); 876 else 877 scan_base = si->cluster_next; 878 offset = scan_base; 879 880 /* SSD algorithm */ 881 if (si->cluster_info) { 882 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base, order)) { 883 if (order > 0) 884 goto no_page; 885 goto scan; 886 } 887 } else if (unlikely(!si->cluster_nr--)) { 888 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 889 si->cluster_nr = SWAPFILE_CLUSTER - 1; 890 goto checks; 891 } 892 893 spin_unlock(&si->lock); 894 895 /* 896 * If seek is expensive, start searching for new cluster from 897 * start of partition, to minimize the span of allocated swap. 898 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 899 * case, just handled by scan_swap_map_try_ssd_cluster() above. 900 */ 901 scan_base = offset = si->lowest_bit; 902 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 903 904 /* Locate the first empty (unaligned) cluster */ 905 for (; last_in_cluster <= READ_ONCE(si->highest_bit); offset++) { 906 if (si->swap_map[offset]) 907 last_in_cluster = offset + SWAPFILE_CLUSTER; 908 else if (offset == last_in_cluster) { 909 spin_lock(&si->lock); 910 offset -= SWAPFILE_CLUSTER - 1; 911 si->cluster_next = offset; 912 si->cluster_nr = SWAPFILE_CLUSTER - 1; 913 goto checks; 914 } 915 if (unlikely(--latency_ration < 0)) { 916 cond_resched(); 917 latency_ration = LATENCY_LIMIT; 918 } 919 } 920 921 offset = scan_base; 922 spin_lock(&si->lock); 923 si->cluster_nr = SWAPFILE_CLUSTER - 1; 924 } 925 926 checks: 927 if (si->cluster_info) { 928 while (scan_swap_map_ssd_cluster_conflict(si, offset, order)) { 929 /* take a break if we already got some slots */ 930 if (n_ret) 931 goto done; 932 if (!scan_swap_map_try_ssd_cluster(si, &offset, 933 &scan_base, order)) { 934 if (order > 0) 935 goto no_page; 936 goto scan; 937 } 938 } 939 } 940 if (!(si->flags & SWP_WRITEOK)) 941 goto no_page; 942 if (!si->highest_bit) 943 goto no_page; 944 if (offset > si->highest_bit) 945 scan_base = offset = si->lowest_bit; 946 947 ci = lock_cluster(si, offset); 948 /* reuse swap entry of cache-only swap if not busy. */ 949 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 950 int swap_was_freed; 951 unlock_cluster(ci); 952 spin_unlock(&si->lock); 953 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 954 spin_lock(&si->lock); 955 /* entry was freed successfully, try to use this again */ 956 if (swap_was_freed > 0) 957 goto checks; 958 goto scan; /* check next one */ 959 } 960 961 if (si->swap_map[offset]) { 962 unlock_cluster(ci); 963 if (!n_ret) 964 goto scan; 965 else 966 goto done; 967 } 968 memset(si->swap_map + offset, usage, nr_pages); 969 add_cluster_info_page(si, si->cluster_info, offset, nr_pages); 970 unlock_cluster(ci); 971 972 swap_range_alloc(si, offset, nr_pages); 973 slots[n_ret++] = swp_entry(si->type, offset); 974 975 /* got enough slots or reach max slots? */ 976 if ((n_ret == nr) || (offset >= si->highest_bit)) 977 goto done; 978 979 /* search for next available slot */ 980 981 /* time to take a break? */ 982 if (unlikely(--latency_ration < 0)) { 983 if (n_ret) 984 goto done; 985 spin_unlock(&si->lock); 986 cond_resched(); 987 spin_lock(&si->lock); 988 latency_ration = LATENCY_LIMIT; 989 } 990 991 /* try to get more slots in cluster */ 992 if (si->cluster_info) { 993 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base, order)) 994 goto checks; 995 if (order > 0) 996 goto done; 997 } else if (si->cluster_nr && !si->swap_map[++offset]) { 998 /* non-ssd case, still more slots in cluster? */ 999 --si->cluster_nr; 1000 goto checks; 1001 } 1002 1003 /* 1004 * Even if there's no free clusters available (fragmented), 1005 * try to scan a little more quickly with lock held unless we 1006 * have scanned too many slots already. 1007 */ 1008 if (!scanned_many) { 1009 unsigned long scan_limit; 1010 1011 if (offset < scan_base) 1012 scan_limit = scan_base; 1013 else 1014 scan_limit = si->highest_bit; 1015 for (; offset <= scan_limit && --latency_ration > 0; 1016 offset++) { 1017 if (!si->swap_map[offset]) 1018 goto checks; 1019 } 1020 } 1021 1022 done: 1023 if (order == 0) 1024 set_cluster_next(si, offset + 1); 1025 si->flags -= SWP_SCANNING; 1026 return n_ret; 1027 1028 scan: 1029 VM_WARN_ON(order > 0); 1030 spin_unlock(&si->lock); 1031 while (++offset <= READ_ONCE(si->highest_bit)) { 1032 if (unlikely(--latency_ration < 0)) { 1033 cond_resched(); 1034 latency_ration = LATENCY_LIMIT; 1035 scanned_many = true; 1036 } 1037 if (swap_offset_available_and_locked(si, offset)) 1038 goto checks; 1039 } 1040 offset = si->lowest_bit; 1041 while (offset < scan_base) { 1042 if (unlikely(--latency_ration < 0)) { 1043 cond_resched(); 1044 latency_ration = LATENCY_LIMIT; 1045 scanned_many = true; 1046 } 1047 if (swap_offset_available_and_locked(si, offset)) 1048 goto checks; 1049 offset++; 1050 } 1051 spin_lock(&si->lock); 1052 1053 no_page: 1054 si->flags -= SWP_SCANNING; 1055 return n_ret; 1056 } 1057 1058 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) 1059 { 1060 unsigned long offset = idx * SWAPFILE_CLUSTER; 1061 struct swap_cluster_info *ci; 1062 1063 ci = lock_cluster(si, offset); 1064 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER); 1065 cluster_set_count_flag(ci, 0, 0); 1066 free_cluster(si, idx); 1067 unlock_cluster(ci); 1068 swap_range_free(si, offset, SWAPFILE_CLUSTER); 1069 } 1070 1071 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_order) 1072 { 1073 int order = swap_entry_order(entry_order); 1074 unsigned long size = 1 << order; 1075 struct swap_info_struct *si, *next; 1076 long avail_pgs; 1077 int n_ret = 0; 1078 int node; 1079 1080 spin_lock(&swap_avail_lock); 1081 1082 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 1083 if (avail_pgs <= 0) { 1084 spin_unlock(&swap_avail_lock); 1085 goto noswap; 1086 } 1087 1088 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs); 1089 1090 atomic_long_sub(n_goal * size, &nr_swap_pages); 1091 1092 start_over: 1093 node = numa_node_id(); 1094 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1095 /* requeue si to after same-priority siblings */ 1096 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1097 spin_unlock(&swap_avail_lock); 1098 spin_lock(&si->lock); 1099 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 1100 spin_lock(&swap_avail_lock); 1101 if (plist_node_empty(&si->avail_lists[node])) { 1102 spin_unlock(&si->lock); 1103 goto nextsi; 1104 } 1105 WARN(!si->highest_bit, 1106 "swap_info %d in list but !highest_bit\n", 1107 si->type); 1108 WARN(!(si->flags & SWP_WRITEOK), 1109 "swap_info %d in list but !SWP_WRITEOK\n", 1110 si->type); 1111 __del_from_avail_list(si); 1112 spin_unlock(&si->lock); 1113 goto nextsi; 1114 } 1115 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 1116 n_goal, swp_entries, order); 1117 spin_unlock(&si->lock); 1118 if (n_ret || size > 1) 1119 goto check_out; 1120 cond_resched(); 1121 1122 spin_lock(&swap_avail_lock); 1123 nextsi: 1124 /* 1125 * if we got here, it's likely that si was almost full before, 1126 * and since scan_swap_map_slots() can drop the si->lock, 1127 * multiple callers probably all tried to get a page from the 1128 * same si and it filled up before we could get one; or, the si 1129 * filled up between us dropping swap_avail_lock and taking 1130 * si->lock. Since we dropped the swap_avail_lock, the 1131 * swap_avail_head list may have been modified; so if next is 1132 * still in the swap_avail_head list then try it, otherwise 1133 * start over if we have not gotten any slots. 1134 */ 1135 if (plist_node_empty(&next->avail_lists[node])) 1136 goto start_over; 1137 } 1138 1139 spin_unlock(&swap_avail_lock); 1140 1141 check_out: 1142 if (n_ret < n_goal) 1143 atomic_long_add((long)(n_goal - n_ret) * size, 1144 &nr_swap_pages); 1145 noswap: 1146 return n_ret; 1147 } 1148 1149 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1150 { 1151 struct swap_info_struct *p; 1152 unsigned long offset; 1153 1154 if (!entry.val) 1155 goto out; 1156 p = swp_swap_info(entry); 1157 if (!p) 1158 goto bad_nofile; 1159 if (data_race(!(p->flags & SWP_USED))) 1160 goto bad_device; 1161 offset = swp_offset(entry); 1162 if (offset >= p->max) 1163 goto bad_offset; 1164 if (data_race(!p->swap_map[swp_offset(entry)])) 1165 goto bad_free; 1166 return p; 1167 1168 bad_free: 1169 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); 1170 goto out; 1171 bad_offset: 1172 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1173 goto out; 1174 bad_device: 1175 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); 1176 goto out; 1177 bad_nofile: 1178 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1179 out: 1180 return NULL; 1181 } 1182 1183 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1184 struct swap_info_struct *q) 1185 { 1186 struct swap_info_struct *p; 1187 1188 p = _swap_info_get(entry); 1189 1190 if (p != q) { 1191 if (q != NULL) 1192 spin_unlock(&q->lock); 1193 if (p != NULL) 1194 spin_lock(&p->lock); 1195 } 1196 return p; 1197 } 1198 1199 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, 1200 unsigned long offset, 1201 unsigned char usage) 1202 { 1203 unsigned char count; 1204 unsigned char has_cache; 1205 1206 count = p->swap_map[offset]; 1207 1208 has_cache = count & SWAP_HAS_CACHE; 1209 count &= ~SWAP_HAS_CACHE; 1210 1211 if (usage == SWAP_HAS_CACHE) { 1212 VM_BUG_ON(!has_cache); 1213 has_cache = 0; 1214 } else if (count == SWAP_MAP_SHMEM) { 1215 /* 1216 * Or we could insist on shmem.c using a special 1217 * swap_shmem_free() and free_shmem_swap_and_cache()... 1218 */ 1219 count = 0; 1220 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1221 if (count == COUNT_CONTINUED) { 1222 if (swap_count_continued(p, offset, count)) 1223 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1224 else 1225 count = SWAP_MAP_MAX; 1226 } else 1227 count--; 1228 } 1229 1230 usage = count | has_cache; 1231 if (usage) 1232 WRITE_ONCE(p->swap_map[offset], usage); 1233 else 1234 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE); 1235 1236 return usage; 1237 } 1238 1239 /* 1240 * When we get a swap entry, if there aren't some other ways to 1241 * prevent swapoff, such as the folio in swap cache is locked, RCU 1242 * reader side is locked, etc., the swap entry may become invalid 1243 * because of swapoff. Then, we need to enclose all swap related 1244 * functions with get_swap_device() and put_swap_device(), unless the 1245 * swap functions call get/put_swap_device() by themselves. 1246 * 1247 * RCU reader side lock (including any spinlock) is sufficient to 1248 * prevent swapoff, because synchronize_rcu() is called in swapoff() 1249 * before freeing data structures. 1250 * 1251 * Check whether swap entry is valid in the swap device. If so, 1252 * return pointer to swap_info_struct, and keep the swap entry valid 1253 * via preventing the swap device from being swapoff, until 1254 * put_swap_device() is called. Otherwise return NULL. 1255 * 1256 * Notice that swapoff or swapoff+swapon can still happen before the 1257 * percpu_ref_tryget_live() in get_swap_device() or after the 1258 * percpu_ref_put() in put_swap_device() if there isn't any other way 1259 * to prevent swapoff. The caller must be prepared for that. For 1260 * example, the following situation is possible. 1261 * 1262 * CPU1 CPU2 1263 * do_swap_page() 1264 * ... swapoff+swapon 1265 * __read_swap_cache_async() 1266 * swapcache_prepare() 1267 * __swap_duplicate() 1268 * // check swap_map 1269 * // verify PTE not changed 1270 * 1271 * In __swap_duplicate(), the swap_map need to be checked before 1272 * changing partly because the specified swap entry may be for another 1273 * swap device which has been swapoff. And in do_swap_page(), after 1274 * the page is read from the swap device, the PTE is verified not 1275 * changed with the page table locked to check whether the swap device 1276 * has been swapoff or swapoff+swapon. 1277 */ 1278 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1279 { 1280 struct swap_info_struct *si; 1281 unsigned long offset; 1282 1283 if (!entry.val) 1284 goto out; 1285 si = swp_swap_info(entry); 1286 if (!si) 1287 goto bad_nofile; 1288 if (!percpu_ref_tryget_live(&si->users)) 1289 goto out; 1290 /* 1291 * Guarantee the si->users are checked before accessing other 1292 * fields of swap_info_struct. 1293 * 1294 * Paired with the spin_unlock() after setup_swap_info() in 1295 * enable_swap_info(). 1296 */ 1297 smp_rmb(); 1298 offset = swp_offset(entry); 1299 if (offset >= si->max) 1300 goto put_out; 1301 1302 return si; 1303 bad_nofile: 1304 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1305 out: 1306 return NULL; 1307 put_out: 1308 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1309 percpu_ref_put(&si->users); 1310 return NULL; 1311 } 1312 1313 static unsigned char __swap_entry_free(struct swap_info_struct *p, 1314 swp_entry_t entry) 1315 { 1316 struct swap_cluster_info *ci; 1317 unsigned long offset = swp_offset(entry); 1318 unsigned char usage; 1319 1320 ci = lock_cluster_or_swap_info(p, offset); 1321 usage = __swap_entry_free_locked(p, offset, 1); 1322 unlock_cluster_or_swap_info(p, ci); 1323 if (!usage) 1324 free_swap_slot(entry); 1325 1326 return usage; 1327 } 1328 1329 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 1330 { 1331 struct swap_cluster_info *ci; 1332 unsigned long offset = swp_offset(entry); 1333 unsigned char count; 1334 1335 ci = lock_cluster(p, offset); 1336 count = p->swap_map[offset]; 1337 VM_BUG_ON(count != SWAP_HAS_CACHE); 1338 p->swap_map[offset] = 0; 1339 dec_cluster_info_page(p, p->cluster_info, offset); 1340 unlock_cluster(ci); 1341 1342 mem_cgroup_uncharge_swap(entry, 1); 1343 swap_range_free(p, offset, 1); 1344 } 1345 1346 static void cluster_swap_free_nr(struct swap_info_struct *sis, 1347 unsigned long offset, int nr_pages) 1348 { 1349 struct swap_cluster_info *ci; 1350 DECLARE_BITMAP(to_free, BITS_PER_LONG) = { 0 }; 1351 int i, nr; 1352 1353 ci = lock_cluster_or_swap_info(sis, offset); 1354 while (nr_pages) { 1355 nr = min(BITS_PER_LONG, nr_pages); 1356 for (i = 0; i < nr; i++) { 1357 if (!__swap_entry_free_locked(sis, offset + i, 1)) 1358 bitmap_set(to_free, i, 1); 1359 } 1360 if (!bitmap_empty(to_free, BITS_PER_LONG)) { 1361 unlock_cluster_or_swap_info(sis, ci); 1362 for_each_set_bit(i, to_free, BITS_PER_LONG) 1363 free_swap_slot(swp_entry(sis->type, offset + i)); 1364 if (nr == nr_pages) 1365 return; 1366 bitmap_clear(to_free, 0, BITS_PER_LONG); 1367 ci = lock_cluster_or_swap_info(sis, offset); 1368 } 1369 offset += nr; 1370 nr_pages -= nr; 1371 } 1372 unlock_cluster_or_swap_info(sis, ci); 1373 } 1374 1375 /* 1376 * Caller has made sure that the swap device corresponding to entry 1377 * is still around or has not been recycled. 1378 */ 1379 void swap_free_nr(swp_entry_t entry, int nr_pages) 1380 { 1381 int nr; 1382 struct swap_info_struct *sis; 1383 unsigned long offset = swp_offset(entry); 1384 1385 sis = _swap_info_get(entry); 1386 if (!sis) 1387 return; 1388 1389 while (nr_pages) { 1390 nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER); 1391 cluster_swap_free_nr(sis, offset, nr); 1392 offset += nr; 1393 nr_pages -= nr; 1394 } 1395 } 1396 1397 /* 1398 * Called after dropping swapcache to decrease refcnt to swap entries. 1399 */ 1400 void put_swap_folio(struct folio *folio, swp_entry_t entry) 1401 { 1402 unsigned long offset = swp_offset(entry); 1403 unsigned long idx = offset / SWAPFILE_CLUSTER; 1404 struct swap_cluster_info *ci; 1405 struct swap_info_struct *si; 1406 unsigned char *map; 1407 unsigned int i, free_entries = 0; 1408 unsigned char val; 1409 int size = 1 << swap_entry_order(folio_order(folio)); 1410 1411 si = _swap_info_get(entry); 1412 if (!si) 1413 return; 1414 1415 ci = lock_cluster_or_swap_info(si, offset); 1416 if (size == SWAPFILE_CLUSTER) { 1417 map = si->swap_map + offset; 1418 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1419 val = map[i]; 1420 VM_BUG_ON(!(val & SWAP_HAS_CACHE)); 1421 if (val == SWAP_HAS_CACHE) 1422 free_entries++; 1423 } 1424 if (free_entries == SWAPFILE_CLUSTER) { 1425 unlock_cluster_or_swap_info(si, ci); 1426 spin_lock(&si->lock); 1427 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); 1428 swap_free_cluster(si, idx); 1429 spin_unlock(&si->lock); 1430 return; 1431 } 1432 } 1433 for (i = 0; i < size; i++, entry.val++) { 1434 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { 1435 unlock_cluster_or_swap_info(si, ci); 1436 free_swap_slot(entry); 1437 if (i == size - 1) 1438 return; 1439 lock_cluster_or_swap_info(si, offset); 1440 } 1441 } 1442 unlock_cluster_or_swap_info(si, ci); 1443 } 1444 1445 static int swp_entry_cmp(const void *ent1, const void *ent2) 1446 { 1447 const swp_entry_t *e1 = ent1, *e2 = ent2; 1448 1449 return (int)swp_type(*e1) - (int)swp_type(*e2); 1450 } 1451 1452 void swapcache_free_entries(swp_entry_t *entries, int n) 1453 { 1454 struct swap_info_struct *p, *prev; 1455 int i; 1456 1457 if (n <= 0) 1458 return; 1459 1460 prev = NULL; 1461 p = NULL; 1462 1463 /* 1464 * Sort swap entries by swap device, so each lock is only taken once. 1465 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1466 * so low that it isn't necessary to optimize further. 1467 */ 1468 if (nr_swapfiles > 1) 1469 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1470 for (i = 0; i < n; ++i) { 1471 p = swap_info_get_cont(entries[i], prev); 1472 if (p) 1473 swap_entry_free(p, entries[i]); 1474 prev = p; 1475 } 1476 if (p) 1477 spin_unlock(&p->lock); 1478 } 1479 1480 int __swap_count(swp_entry_t entry) 1481 { 1482 struct swap_info_struct *si = swp_swap_info(entry); 1483 pgoff_t offset = swp_offset(entry); 1484 1485 return swap_count(si->swap_map[offset]); 1486 } 1487 1488 /* 1489 * How many references to @entry are currently swapped out? 1490 * This does not give an exact answer when swap count is continued, 1491 * but does include the high COUNT_CONTINUED flag to allow for that. 1492 */ 1493 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1494 { 1495 pgoff_t offset = swp_offset(entry); 1496 struct swap_cluster_info *ci; 1497 int count; 1498 1499 ci = lock_cluster_or_swap_info(si, offset); 1500 count = swap_count(si->swap_map[offset]); 1501 unlock_cluster_or_swap_info(si, ci); 1502 return count; 1503 } 1504 1505 /* 1506 * How many references to @entry are currently swapped out? 1507 * This considers COUNT_CONTINUED so it returns exact answer. 1508 */ 1509 int swp_swapcount(swp_entry_t entry) 1510 { 1511 int count, tmp_count, n; 1512 struct swap_info_struct *p; 1513 struct swap_cluster_info *ci; 1514 struct page *page; 1515 pgoff_t offset; 1516 unsigned char *map; 1517 1518 p = _swap_info_get(entry); 1519 if (!p) 1520 return 0; 1521 1522 offset = swp_offset(entry); 1523 1524 ci = lock_cluster_or_swap_info(p, offset); 1525 1526 count = swap_count(p->swap_map[offset]); 1527 if (!(count & COUNT_CONTINUED)) 1528 goto out; 1529 1530 count &= ~COUNT_CONTINUED; 1531 n = SWAP_MAP_MAX + 1; 1532 1533 page = vmalloc_to_page(p->swap_map + offset); 1534 offset &= ~PAGE_MASK; 1535 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1536 1537 do { 1538 page = list_next_entry(page, lru); 1539 map = kmap_local_page(page); 1540 tmp_count = map[offset]; 1541 kunmap_local(map); 1542 1543 count += (tmp_count & ~COUNT_CONTINUED) * n; 1544 n *= (SWAP_CONT_MAX + 1); 1545 } while (tmp_count & COUNT_CONTINUED); 1546 out: 1547 unlock_cluster_or_swap_info(p, ci); 1548 return count; 1549 } 1550 1551 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1552 swp_entry_t entry, int order) 1553 { 1554 struct swap_cluster_info *ci; 1555 unsigned char *map = si->swap_map; 1556 unsigned int nr_pages = 1 << order; 1557 unsigned long roffset = swp_offset(entry); 1558 unsigned long offset = round_down(roffset, nr_pages); 1559 int i; 1560 bool ret = false; 1561 1562 ci = lock_cluster_or_swap_info(si, offset); 1563 if (!ci || nr_pages == 1) { 1564 if (swap_count(map[roffset])) 1565 ret = true; 1566 goto unlock_out; 1567 } 1568 for (i = 0; i < nr_pages; i++) { 1569 if (swap_count(map[offset + i])) { 1570 ret = true; 1571 break; 1572 } 1573 } 1574 unlock_out: 1575 unlock_cluster_or_swap_info(si, ci); 1576 return ret; 1577 } 1578 1579 static bool folio_swapped(struct folio *folio) 1580 { 1581 swp_entry_t entry = folio->swap; 1582 struct swap_info_struct *si = _swap_info_get(entry); 1583 1584 if (!si) 1585 return false; 1586 1587 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio))) 1588 return swap_swapcount(si, entry) != 0; 1589 1590 return swap_page_trans_huge_swapped(si, entry, folio_order(folio)); 1591 } 1592 1593 /** 1594 * folio_free_swap() - Free the swap space used for this folio. 1595 * @folio: The folio to remove. 1596 * 1597 * If swap is getting full, or if there are no more mappings of this folio, 1598 * then call folio_free_swap to free its swap space. 1599 * 1600 * Return: true if we were able to release the swap space. 1601 */ 1602 bool folio_free_swap(struct folio *folio) 1603 { 1604 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1605 1606 if (!folio_test_swapcache(folio)) 1607 return false; 1608 if (folio_test_writeback(folio)) 1609 return false; 1610 if (folio_swapped(folio)) 1611 return false; 1612 1613 /* 1614 * Once hibernation has begun to create its image of memory, 1615 * there's a danger that one of the calls to folio_free_swap() 1616 * - most probably a call from __try_to_reclaim_swap() while 1617 * hibernation is allocating its own swap pages for the image, 1618 * but conceivably even a call from memory reclaim - will free 1619 * the swap from a folio which has already been recorded in the 1620 * image as a clean swapcache folio, and then reuse its swap for 1621 * another page of the image. On waking from hibernation, the 1622 * original folio might be freed under memory pressure, then 1623 * later read back in from swap, now with the wrong data. 1624 * 1625 * Hibernation suspends storage while it is writing the image 1626 * to disk so check that here. 1627 */ 1628 if (pm_suspended_storage()) 1629 return false; 1630 1631 delete_from_swap_cache(folio); 1632 folio_set_dirty(folio); 1633 return true; 1634 } 1635 1636 /** 1637 * free_swap_and_cache_nr() - Release reference on range of swap entries and 1638 * reclaim their cache if no more references remain. 1639 * @entry: First entry of range. 1640 * @nr: Number of entries in range. 1641 * 1642 * For each swap entry in the contiguous range, release a reference. If any swap 1643 * entries become free, try to reclaim their underlying folios, if present. The 1644 * offset range is defined by [entry.offset, entry.offset + nr). 1645 */ 1646 void free_swap_and_cache_nr(swp_entry_t entry, int nr) 1647 { 1648 const unsigned long start_offset = swp_offset(entry); 1649 const unsigned long end_offset = start_offset + nr; 1650 unsigned int type = swp_type(entry); 1651 struct swap_info_struct *si; 1652 bool any_only_cache = false; 1653 unsigned long offset; 1654 unsigned char count; 1655 1656 if (non_swap_entry(entry)) 1657 return; 1658 1659 si = get_swap_device(entry); 1660 if (!si) 1661 return; 1662 1663 if (WARN_ON(end_offset > si->max)) 1664 goto out; 1665 1666 /* 1667 * First free all entries in the range. 1668 */ 1669 for (offset = start_offset; offset < end_offset; offset++) { 1670 if (data_race(si->swap_map[offset])) { 1671 count = __swap_entry_free(si, swp_entry(type, offset)); 1672 if (count == SWAP_HAS_CACHE) 1673 any_only_cache = true; 1674 } else { 1675 WARN_ON_ONCE(1); 1676 } 1677 } 1678 1679 /* 1680 * Short-circuit the below loop if none of the entries had their 1681 * reference drop to zero. 1682 */ 1683 if (!any_only_cache) 1684 goto out; 1685 1686 /* 1687 * Now go back over the range trying to reclaim the swap cache. This is 1688 * more efficient for large folios because we will only try to reclaim 1689 * the swap once per folio in the common case. If we do 1690 * __swap_entry_free() and __try_to_reclaim_swap() in the same loop, the 1691 * latter will get a reference and lock the folio for every individual 1692 * page but will only succeed once the swap slot for every subpage is 1693 * zero. 1694 */ 1695 for (offset = start_offset; offset < end_offset; offset += nr) { 1696 nr = 1; 1697 if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 1698 /* 1699 * Folios are always naturally aligned in swap so 1700 * advance forward to the next boundary. Zero means no 1701 * folio was found for the swap entry, so advance by 1 1702 * in this case. Negative value means folio was found 1703 * but could not be reclaimed. Here we can still advance 1704 * to the next boundary. 1705 */ 1706 nr = __try_to_reclaim_swap(si, offset, 1707 TTRS_UNMAPPED | TTRS_FULL); 1708 if (nr == 0) 1709 nr = 1; 1710 else if (nr < 0) 1711 nr = -nr; 1712 nr = ALIGN(offset + 1, nr) - offset; 1713 } 1714 } 1715 1716 out: 1717 put_swap_device(si); 1718 } 1719 1720 #ifdef CONFIG_HIBERNATION 1721 1722 swp_entry_t get_swap_page_of_type(int type) 1723 { 1724 struct swap_info_struct *si = swap_type_to_swap_info(type); 1725 swp_entry_t entry = {0}; 1726 1727 if (!si) 1728 goto fail; 1729 1730 /* This is called for allocating swap entry, not cache */ 1731 spin_lock(&si->lock); 1732 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry, 0)) 1733 atomic_long_dec(&nr_swap_pages); 1734 spin_unlock(&si->lock); 1735 fail: 1736 return entry; 1737 } 1738 1739 /* 1740 * Find the swap type that corresponds to given device (if any). 1741 * 1742 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1743 * from 0, in which the swap header is expected to be located. 1744 * 1745 * This is needed for the suspend to disk (aka swsusp). 1746 */ 1747 int swap_type_of(dev_t device, sector_t offset) 1748 { 1749 int type; 1750 1751 if (!device) 1752 return -1; 1753 1754 spin_lock(&swap_lock); 1755 for (type = 0; type < nr_swapfiles; type++) { 1756 struct swap_info_struct *sis = swap_info[type]; 1757 1758 if (!(sis->flags & SWP_WRITEOK)) 1759 continue; 1760 1761 if (device == sis->bdev->bd_dev) { 1762 struct swap_extent *se = first_se(sis); 1763 1764 if (se->start_block == offset) { 1765 spin_unlock(&swap_lock); 1766 return type; 1767 } 1768 } 1769 } 1770 spin_unlock(&swap_lock); 1771 return -ENODEV; 1772 } 1773 1774 int find_first_swap(dev_t *device) 1775 { 1776 int type; 1777 1778 spin_lock(&swap_lock); 1779 for (type = 0; type < nr_swapfiles; type++) { 1780 struct swap_info_struct *sis = swap_info[type]; 1781 1782 if (!(sis->flags & SWP_WRITEOK)) 1783 continue; 1784 *device = sis->bdev->bd_dev; 1785 spin_unlock(&swap_lock); 1786 return type; 1787 } 1788 spin_unlock(&swap_lock); 1789 return -ENODEV; 1790 } 1791 1792 /* 1793 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1794 * corresponding to given index in swap_info (swap type). 1795 */ 1796 sector_t swapdev_block(int type, pgoff_t offset) 1797 { 1798 struct swap_info_struct *si = swap_type_to_swap_info(type); 1799 struct swap_extent *se; 1800 1801 if (!si || !(si->flags & SWP_WRITEOK)) 1802 return 0; 1803 se = offset_to_swap_extent(si, offset); 1804 return se->start_block + (offset - se->start_page); 1805 } 1806 1807 /* 1808 * Return either the total number of swap pages of given type, or the number 1809 * of free pages of that type (depending on @free) 1810 * 1811 * This is needed for software suspend 1812 */ 1813 unsigned int count_swap_pages(int type, int free) 1814 { 1815 unsigned int n = 0; 1816 1817 spin_lock(&swap_lock); 1818 if ((unsigned int)type < nr_swapfiles) { 1819 struct swap_info_struct *sis = swap_info[type]; 1820 1821 spin_lock(&sis->lock); 1822 if (sis->flags & SWP_WRITEOK) { 1823 n = sis->pages; 1824 if (free) 1825 n -= sis->inuse_pages; 1826 } 1827 spin_unlock(&sis->lock); 1828 } 1829 spin_unlock(&swap_lock); 1830 return n; 1831 } 1832 #endif /* CONFIG_HIBERNATION */ 1833 1834 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1835 { 1836 return pte_same(pte_swp_clear_flags(pte), swp_pte); 1837 } 1838 1839 /* 1840 * No need to decide whether this PTE shares the swap entry with others, 1841 * just let do_wp_page work it out if a write is requested later - to 1842 * force COW, vm_page_prot omits write permission from any private vma. 1843 */ 1844 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1845 unsigned long addr, swp_entry_t entry, struct folio *folio) 1846 { 1847 struct page *page; 1848 struct folio *swapcache; 1849 spinlock_t *ptl; 1850 pte_t *pte, new_pte, old_pte; 1851 bool hwpoisoned = false; 1852 int ret = 1; 1853 1854 swapcache = folio; 1855 folio = ksm_might_need_to_copy(folio, vma, addr); 1856 if (unlikely(!folio)) 1857 return -ENOMEM; 1858 else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 1859 hwpoisoned = true; 1860 folio = swapcache; 1861 } 1862 1863 page = folio_file_page(folio, swp_offset(entry)); 1864 if (PageHWPoison(page)) 1865 hwpoisoned = true; 1866 1867 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1868 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte), 1869 swp_entry_to_pte(entry)))) { 1870 ret = 0; 1871 goto out; 1872 } 1873 1874 old_pte = ptep_get(pte); 1875 1876 if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) { 1877 swp_entry_t swp_entry; 1878 1879 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1880 if (hwpoisoned) { 1881 swp_entry = make_hwpoison_entry(page); 1882 } else { 1883 swp_entry = make_poisoned_swp_entry(); 1884 } 1885 new_pte = swp_entry_to_pte(swp_entry); 1886 ret = 0; 1887 goto setpte; 1888 } 1889 1890 /* 1891 * Some architectures may have to restore extra metadata to the page 1892 * when reading from swap. This metadata may be indexed by swap entry 1893 * so this must be called before swap_free(). 1894 */ 1895 arch_swap_restore(folio_swap(entry, folio), folio); 1896 1897 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1898 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1899 folio_get(folio); 1900 if (folio == swapcache) { 1901 rmap_t rmap_flags = RMAP_NONE; 1902 1903 /* 1904 * See do_swap_page(): writeback would be problematic. 1905 * However, we do a folio_wait_writeback() just before this 1906 * call and have the folio locked. 1907 */ 1908 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 1909 if (pte_swp_exclusive(old_pte)) 1910 rmap_flags |= RMAP_EXCLUSIVE; 1911 1912 folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags); 1913 } else { /* ksm created a completely new copy */ 1914 folio_add_new_anon_rmap(folio, vma, addr); 1915 folio_add_lru_vma(folio, vma); 1916 } 1917 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot)); 1918 if (pte_swp_soft_dirty(old_pte)) 1919 new_pte = pte_mksoft_dirty(new_pte); 1920 if (pte_swp_uffd_wp(old_pte)) 1921 new_pte = pte_mkuffd_wp(new_pte); 1922 setpte: 1923 set_pte_at(vma->vm_mm, addr, pte, new_pte); 1924 swap_free(entry); 1925 out: 1926 if (pte) 1927 pte_unmap_unlock(pte, ptl); 1928 if (folio != swapcache) { 1929 folio_unlock(folio); 1930 folio_put(folio); 1931 } 1932 return ret; 1933 } 1934 1935 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1936 unsigned long addr, unsigned long end, 1937 unsigned int type) 1938 { 1939 pte_t *pte = NULL; 1940 struct swap_info_struct *si; 1941 1942 si = swap_info[type]; 1943 do { 1944 struct folio *folio; 1945 unsigned long offset; 1946 unsigned char swp_count; 1947 swp_entry_t entry; 1948 int ret; 1949 pte_t ptent; 1950 1951 if (!pte++) { 1952 pte = pte_offset_map(pmd, addr); 1953 if (!pte) 1954 break; 1955 } 1956 1957 ptent = ptep_get_lockless(pte); 1958 1959 if (!is_swap_pte(ptent)) 1960 continue; 1961 1962 entry = pte_to_swp_entry(ptent); 1963 if (swp_type(entry) != type) 1964 continue; 1965 1966 offset = swp_offset(entry); 1967 pte_unmap(pte); 1968 pte = NULL; 1969 1970 folio = swap_cache_get_folio(entry, vma, addr); 1971 if (!folio) { 1972 struct page *page; 1973 struct vm_fault vmf = { 1974 .vma = vma, 1975 .address = addr, 1976 .real_address = addr, 1977 .pmd = pmd, 1978 }; 1979 1980 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 1981 &vmf); 1982 if (page) 1983 folio = page_folio(page); 1984 } 1985 if (!folio) { 1986 swp_count = READ_ONCE(si->swap_map[offset]); 1987 if (swp_count == 0 || swp_count == SWAP_MAP_BAD) 1988 continue; 1989 return -ENOMEM; 1990 } 1991 1992 folio_lock(folio); 1993 folio_wait_writeback(folio); 1994 ret = unuse_pte(vma, pmd, addr, entry, folio); 1995 if (ret < 0) { 1996 folio_unlock(folio); 1997 folio_put(folio); 1998 return ret; 1999 } 2000 2001 folio_free_swap(folio); 2002 folio_unlock(folio); 2003 folio_put(folio); 2004 } while (addr += PAGE_SIZE, addr != end); 2005 2006 if (pte) 2007 pte_unmap(pte); 2008 return 0; 2009 } 2010 2011 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 2012 unsigned long addr, unsigned long end, 2013 unsigned int type) 2014 { 2015 pmd_t *pmd; 2016 unsigned long next; 2017 int ret; 2018 2019 pmd = pmd_offset(pud, addr); 2020 do { 2021 cond_resched(); 2022 next = pmd_addr_end(addr, end); 2023 ret = unuse_pte_range(vma, pmd, addr, next, type); 2024 if (ret) 2025 return ret; 2026 } while (pmd++, addr = next, addr != end); 2027 return 0; 2028 } 2029 2030 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 2031 unsigned long addr, unsigned long end, 2032 unsigned int type) 2033 { 2034 pud_t *pud; 2035 unsigned long next; 2036 int ret; 2037 2038 pud = pud_offset(p4d, addr); 2039 do { 2040 next = pud_addr_end(addr, end); 2041 if (pud_none_or_clear_bad(pud)) 2042 continue; 2043 ret = unuse_pmd_range(vma, pud, addr, next, type); 2044 if (ret) 2045 return ret; 2046 } while (pud++, addr = next, addr != end); 2047 return 0; 2048 } 2049 2050 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 2051 unsigned long addr, unsigned long end, 2052 unsigned int type) 2053 { 2054 p4d_t *p4d; 2055 unsigned long next; 2056 int ret; 2057 2058 p4d = p4d_offset(pgd, addr); 2059 do { 2060 next = p4d_addr_end(addr, end); 2061 if (p4d_none_or_clear_bad(p4d)) 2062 continue; 2063 ret = unuse_pud_range(vma, p4d, addr, next, type); 2064 if (ret) 2065 return ret; 2066 } while (p4d++, addr = next, addr != end); 2067 return 0; 2068 } 2069 2070 static int unuse_vma(struct vm_area_struct *vma, unsigned int type) 2071 { 2072 pgd_t *pgd; 2073 unsigned long addr, end, next; 2074 int ret; 2075 2076 addr = vma->vm_start; 2077 end = vma->vm_end; 2078 2079 pgd = pgd_offset(vma->vm_mm, addr); 2080 do { 2081 next = pgd_addr_end(addr, end); 2082 if (pgd_none_or_clear_bad(pgd)) 2083 continue; 2084 ret = unuse_p4d_range(vma, pgd, addr, next, type); 2085 if (ret) 2086 return ret; 2087 } while (pgd++, addr = next, addr != end); 2088 return 0; 2089 } 2090 2091 static int unuse_mm(struct mm_struct *mm, unsigned int type) 2092 { 2093 struct vm_area_struct *vma; 2094 int ret = 0; 2095 VMA_ITERATOR(vmi, mm, 0); 2096 2097 mmap_read_lock(mm); 2098 for_each_vma(vmi, vma) { 2099 if (vma->anon_vma) { 2100 ret = unuse_vma(vma, type); 2101 if (ret) 2102 break; 2103 } 2104 2105 cond_resched(); 2106 } 2107 mmap_read_unlock(mm); 2108 return ret; 2109 } 2110 2111 /* 2112 * Scan swap_map from current position to next entry still in use. 2113 * Return 0 if there are no inuse entries after prev till end of 2114 * the map. 2115 */ 2116 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 2117 unsigned int prev) 2118 { 2119 unsigned int i; 2120 unsigned char count; 2121 2122 /* 2123 * No need for swap_lock here: we're just looking 2124 * for whether an entry is in use, not modifying it; false 2125 * hits are okay, and sys_swapoff() has already prevented new 2126 * allocations from this area (while holding swap_lock). 2127 */ 2128 for (i = prev + 1; i < si->max; i++) { 2129 count = READ_ONCE(si->swap_map[i]); 2130 if (count && swap_count(count) != SWAP_MAP_BAD) 2131 break; 2132 if ((i % LATENCY_LIMIT) == 0) 2133 cond_resched(); 2134 } 2135 2136 if (i == si->max) 2137 i = 0; 2138 2139 return i; 2140 } 2141 2142 static int try_to_unuse(unsigned int type) 2143 { 2144 struct mm_struct *prev_mm; 2145 struct mm_struct *mm; 2146 struct list_head *p; 2147 int retval = 0; 2148 struct swap_info_struct *si = swap_info[type]; 2149 struct folio *folio; 2150 swp_entry_t entry; 2151 unsigned int i; 2152 2153 if (!READ_ONCE(si->inuse_pages)) 2154 goto success; 2155 2156 retry: 2157 retval = shmem_unuse(type); 2158 if (retval) 2159 return retval; 2160 2161 prev_mm = &init_mm; 2162 mmget(prev_mm); 2163 2164 spin_lock(&mmlist_lock); 2165 p = &init_mm.mmlist; 2166 while (READ_ONCE(si->inuse_pages) && 2167 !signal_pending(current) && 2168 (p = p->next) != &init_mm.mmlist) { 2169 2170 mm = list_entry(p, struct mm_struct, mmlist); 2171 if (!mmget_not_zero(mm)) 2172 continue; 2173 spin_unlock(&mmlist_lock); 2174 mmput(prev_mm); 2175 prev_mm = mm; 2176 retval = unuse_mm(mm, type); 2177 if (retval) { 2178 mmput(prev_mm); 2179 return retval; 2180 } 2181 2182 /* 2183 * Make sure that we aren't completely killing 2184 * interactive performance. 2185 */ 2186 cond_resched(); 2187 spin_lock(&mmlist_lock); 2188 } 2189 spin_unlock(&mmlist_lock); 2190 2191 mmput(prev_mm); 2192 2193 i = 0; 2194 while (READ_ONCE(si->inuse_pages) && 2195 !signal_pending(current) && 2196 (i = find_next_to_unuse(si, i)) != 0) { 2197 2198 entry = swp_entry(type, i); 2199 folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry)); 2200 if (IS_ERR(folio)) 2201 continue; 2202 2203 /* 2204 * It is conceivable that a racing task removed this folio from 2205 * swap cache just before we acquired the page lock. The folio 2206 * might even be back in swap cache on another swap area. But 2207 * that is okay, folio_free_swap() only removes stale folios. 2208 */ 2209 folio_lock(folio); 2210 folio_wait_writeback(folio); 2211 folio_free_swap(folio); 2212 folio_unlock(folio); 2213 folio_put(folio); 2214 } 2215 2216 /* 2217 * Lets check again to see if there are still swap entries in the map. 2218 * If yes, we would need to do retry the unuse logic again. 2219 * Under global memory pressure, swap entries can be reinserted back 2220 * into process space after the mmlist loop above passes over them. 2221 * 2222 * Limit the number of retries? No: when mmget_not_zero() 2223 * above fails, that mm is likely to be freeing swap from 2224 * exit_mmap(), which proceeds at its own independent pace; 2225 * and even shmem_writepage() could have been preempted after 2226 * folio_alloc_swap(), temporarily hiding that swap. It's easy 2227 * and robust (though cpu-intensive) just to keep retrying. 2228 */ 2229 if (READ_ONCE(si->inuse_pages)) { 2230 if (!signal_pending(current)) 2231 goto retry; 2232 return -EINTR; 2233 } 2234 2235 success: 2236 /* 2237 * Make sure that further cleanups after try_to_unuse() returns happen 2238 * after swap_range_free() reduces si->inuse_pages to 0. 2239 */ 2240 smp_mb(); 2241 return 0; 2242 } 2243 2244 /* 2245 * After a successful try_to_unuse, if no swap is now in use, we know 2246 * we can empty the mmlist. swap_lock must be held on entry and exit. 2247 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2248 * added to the mmlist just after page_duplicate - before would be racy. 2249 */ 2250 static void drain_mmlist(void) 2251 { 2252 struct list_head *p, *next; 2253 unsigned int type; 2254 2255 for (type = 0; type < nr_swapfiles; type++) 2256 if (swap_info[type]->inuse_pages) 2257 return; 2258 spin_lock(&mmlist_lock); 2259 list_for_each_safe(p, next, &init_mm.mmlist) 2260 list_del_init(p); 2261 spin_unlock(&mmlist_lock); 2262 } 2263 2264 /* 2265 * Free all of a swapdev's extent information 2266 */ 2267 static void destroy_swap_extents(struct swap_info_struct *sis) 2268 { 2269 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2270 struct rb_node *rb = sis->swap_extent_root.rb_node; 2271 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2272 2273 rb_erase(rb, &sis->swap_extent_root); 2274 kfree(se); 2275 } 2276 2277 if (sis->flags & SWP_ACTIVATED) { 2278 struct file *swap_file = sis->swap_file; 2279 struct address_space *mapping = swap_file->f_mapping; 2280 2281 sis->flags &= ~SWP_ACTIVATED; 2282 if (mapping->a_ops->swap_deactivate) 2283 mapping->a_ops->swap_deactivate(swap_file); 2284 } 2285 } 2286 2287 /* 2288 * Add a block range (and the corresponding page range) into this swapdev's 2289 * extent tree. 2290 * 2291 * This function rather assumes that it is called in ascending page order. 2292 */ 2293 int 2294 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2295 unsigned long nr_pages, sector_t start_block) 2296 { 2297 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2298 struct swap_extent *se; 2299 struct swap_extent *new_se; 2300 2301 /* 2302 * place the new node at the right most since the 2303 * function is called in ascending page order. 2304 */ 2305 while (*link) { 2306 parent = *link; 2307 link = &parent->rb_right; 2308 } 2309 2310 if (parent) { 2311 se = rb_entry(parent, struct swap_extent, rb_node); 2312 BUG_ON(se->start_page + se->nr_pages != start_page); 2313 if (se->start_block + se->nr_pages == start_block) { 2314 /* Merge it */ 2315 se->nr_pages += nr_pages; 2316 return 0; 2317 } 2318 } 2319 2320 /* No merge, insert a new extent. */ 2321 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2322 if (new_se == NULL) 2323 return -ENOMEM; 2324 new_se->start_page = start_page; 2325 new_se->nr_pages = nr_pages; 2326 new_se->start_block = start_block; 2327 2328 rb_link_node(&new_se->rb_node, parent, link); 2329 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2330 return 1; 2331 } 2332 EXPORT_SYMBOL_GPL(add_swap_extent); 2333 2334 /* 2335 * A `swap extent' is a simple thing which maps a contiguous range of pages 2336 * onto a contiguous range of disk blocks. A rbtree of swap extents is 2337 * built at swapon time and is then used at swap_writepage/swap_read_folio 2338 * time for locating where on disk a page belongs. 2339 * 2340 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2341 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2342 * swap files identically. 2343 * 2344 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2345 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2346 * swapfiles are handled *identically* after swapon time. 2347 * 2348 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2349 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray 2350 * blocks are found which do not fall within the PAGE_SIZE alignment 2351 * requirements, they are simply tossed out - we will never use those blocks 2352 * for swapping. 2353 * 2354 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2355 * prevents users from writing to the swap device, which will corrupt memory. 2356 * 2357 * The amount of disk space which a single swap extent represents varies. 2358 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2359 * extents in the rbtree. - akpm. 2360 */ 2361 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2362 { 2363 struct file *swap_file = sis->swap_file; 2364 struct address_space *mapping = swap_file->f_mapping; 2365 struct inode *inode = mapping->host; 2366 int ret; 2367 2368 if (S_ISBLK(inode->i_mode)) { 2369 ret = add_swap_extent(sis, 0, sis->max, 0); 2370 *span = sis->pages; 2371 return ret; 2372 } 2373 2374 if (mapping->a_ops->swap_activate) { 2375 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2376 if (ret < 0) 2377 return ret; 2378 sis->flags |= SWP_ACTIVATED; 2379 if ((sis->flags & SWP_FS_OPS) && 2380 sio_pool_init() != 0) { 2381 destroy_swap_extents(sis); 2382 return -ENOMEM; 2383 } 2384 return ret; 2385 } 2386 2387 return generic_swapfile_activate(sis, swap_file, span); 2388 } 2389 2390 static int swap_node(struct swap_info_struct *p) 2391 { 2392 struct block_device *bdev; 2393 2394 if (p->bdev) 2395 bdev = p->bdev; 2396 else 2397 bdev = p->swap_file->f_inode->i_sb->s_bdev; 2398 2399 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2400 } 2401 2402 static void setup_swap_info(struct swap_info_struct *p, int prio, 2403 unsigned char *swap_map, 2404 struct swap_cluster_info *cluster_info) 2405 { 2406 int i; 2407 2408 if (prio >= 0) 2409 p->prio = prio; 2410 else 2411 p->prio = --least_priority; 2412 /* 2413 * the plist prio is negated because plist ordering is 2414 * low-to-high, while swap ordering is high-to-low 2415 */ 2416 p->list.prio = -p->prio; 2417 for_each_node(i) { 2418 if (p->prio >= 0) 2419 p->avail_lists[i].prio = -p->prio; 2420 else { 2421 if (swap_node(p) == i) 2422 p->avail_lists[i].prio = 1; 2423 else 2424 p->avail_lists[i].prio = -p->prio; 2425 } 2426 } 2427 p->swap_map = swap_map; 2428 p->cluster_info = cluster_info; 2429 } 2430 2431 static void _enable_swap_info(struct swap_info_struct *p) 2432 { 2433 p->flags |= SWP_WRITEOK; 2434 atomic_long_add(p->pages, &nr_swap_pages); 2435 total_swap_pages += p->pages; 2436 2437 assert_spin_locked(&swap_lock); 2438 /* 2439 * both lists are plists, and thus priority ordered. 2440 * swap_active_head needs to be priority ordered for swapoff(), 2441 * which on removal of any swap_info_struct with an auto-assigned 2442 * (i.e. negative) priority increments the auto-assigned priority 2443 * of any lower-priority swap_info_structs. 2444 * swap_avail_head needs to be priority ordered for folio_alloc_swap(), 2445 * which allocates swap pages from the highest available priority 2446 * swap_info_struct. 2447 */ 2448 plist_add(&p->list, &swap_active_head); 2449 2450 /* add to available list iff swap device is not full */ 2451 if (p->highest_bit) 2452 add_to_avail_list(p); 2453 } 2454 2455 static void enable_swap_info(struct swap_info_struct *p, int prio, 2456 unsigned char *swap_map, 2457 struct swap_cluster_info *cluster_info) 2458 { 2459 spin_lock(&swap_lock); 2460 spin_lock(&p->lock); 2461 setup_swap_info(p, prio, swap_map, cluster_info); 2462 spin_unlock(&p->lock); 2463 spin_unlock(&swap_lock); 2464 /* 2465 * Finished initializing swap device, now it's safe to reference it. 2466 */ 2467 percpu_ref_resurrect(&p->users); 2468 spin_lock(&swap_lock); 2469 spin_lock(&p->lock); 2470 _enable_swap_info(p); 2471 spin_unlock(&p->lock); 2472 spin_unlock(&swap_lock); 2473 } 2474 2475 static void reinsert_swap_info(struct swap_info_struct *p) 2476 { 2477 spin_lock(&swap_lock); 2478 spin_lock(&p->lock); 2479 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2480 _enable_swap_info(p); 2481 spin_unlock(&p->lock); 2482 spin_unlock(&swap_lock); 2483 } 2484 2485 static bool __has_usable_swap(void) 2486 { 2487 return !plist_head_empty(&swap_active_head); 2488 } 2489 2490 bool has_usable_swap(void) 2491 { 2492 bool ret; 2493 2494 spin_lock(&swap_lock); 2495 ret = __has_usable_swap(); 2496 spin_unlock(&swap_lock); 2497 return ret; 2498 } 2499 2500 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2501 { 2502 struct swap_info_struct *p = NULL; 2503 unsigned char *swap_map; 2504 struct swap_cluster_info *cluster_info; 2505 struct file *swap_file, *victim; 2506 struct address_space *mapping; 2507 struct inode *inode; 2508 struct filename *pathname; 2509 int err, found = 0; 2510 2511 if (!capable(CAP_SYS_ADMIN)) 2512 return -EPERM; 2513 2514 BUG_ON(!current->mm); 2515 2516 pathname = getname(specialfile); 2517 if (IS_ERR(pathname)) 2518 return PTR_ERR(pathname); 2519 2520 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2521 err = PTR_ERR(victim); 2522 if (IS_ERR(victim)) 2523 goto out; 2524 2525 mapping = victim->f_mapping; 2526 spin_lock(&swap_lock); 2527 plist_for_each_entry(p, &swap_active_head, list) { 2528 if (p->flags & SWP_WRITEOK) { 2529 if (p->swap_file->f_mapping == mapping) { 2530 found = 1; 2531 break; 2532 } 2533 } 2534 } 2535 if (!found) { 2536 err = -EINVAL; 2537 spin_unlock(&swap_lock); 2538 goto out_dput; 2539 } 2540 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2541 vm_unacct_memory(p->pages); 2542 else { 2543 err = -ENOMEM; 2544 spin_unlock(&swap_lock); 2545 goto out_dput; 2546 } 2547 spin_lock(&p->lock); 2548 del_from_avail_list(p); 2549 if (p->prio < 0) { 2550 struct swap_info_struct *si = p; 2551 int nid; 2552 2553 plist_for_each_entry_continue(si, &swap_active_head, list) { 2554 si->prio++; 2555 si->list.prio--; 2556 for_each_node(nid) { 2557 if (si->avail_lists[nid].prio != 1) 2558 si->avail_lists[nid].prio--; 2559 } 2560 } 2561 least_priority++; 2562 } 2563 plist_del(&p->list, &swap_active_head); 2564 atomic_long_sub(p->pages, &nr_swap_pages); 2565 total_swap_pages -= p->pages; 2566 p->flags &= ~SWP_WRITEOK; 2567 spin_unlock(&p->lock); 2568 spin_unlock(&swap_lock); 2569 2570 disable_swap_slots_cache_lock(); 2571 2572 set_current_oom_origin(); 2573 err = try_to_unuse(p->type); 2574 clear_current_oom_origin(); 2575 2576 if (err) { 2577 /* re-insert swap space back into swap_list */ 2578 reinsert_swap_info(p); 2579 reenable_swap_slots_cache_unlock(); 2580 goto out_dput; 2581 } 2582 2583 reenable_swap_slots_cache_unlock(); 2584 2585 /* 2586 * Wait for swap operations protected by get/put_swap_device() 2587 * to complete. Because of synchronize_rcu() here, all swap 2588 * operations protected by RCU reader side lock (including any 2589 * spinlock) will be waited too. This makes it easy to 2590 * prevent folio_test_swapcache() and the following swap cache 2591 * operations from racing with swapoff. 2592 */ 2593 percpu_ref_kill(&p->users); 2594 synchronize_rcu(); 2595 wait_for_completion(&p->comp); 2596 2597 flush_work(&p->discard_work); 2598 2599 destroy_swap_extents(p); 2600 if (p->flags & SWP_CONTINUED) 2601 free_swap_count_continuations(p); 2602 2603 if (!p->bdev || !bdev_nonrot(p->bdev)) 2604 atomic_dec(&nr_rotate_swap); 2605 2606 mutex_lock(&swapon_mutex); 2607 spin_lock(&swap_lock); 2608 spin_lock(&p->lock); 2609 drain_mmlist(); 2610 2611 /* wait for anyone still in scan_swap_map_slots */ 2612 p->highest_bit = 0; /* cuts scans short */ 2613 while (p->flags >= SWP_SCANNING) { 2614 spin_unlock(&p->lock); 2615 spin_unlock(&swap_lock); 2616 schedule_timeout_uninterruptible(1); 2617 spin_lock(&swap_lock); 2618 spin_lock(&p->lock); 2619 } 2620 2621 swap_file = p->swap_file; 2622 p->swap_file = NULL; 2623 p->max = 0; 2624 swap_map = p->swap_map; 2625 p->swap_map = NULL; 2626 cluster_info = p->cluster_info; 2627 p->cluster_info = NULL; 2628 spin_unlock(&p->lock); 2629 spin_unlock(&swap_lock); 2630 arch_swap_invalidate_area(p->type); 2631 zswap_swapoff(p->type); 2632 mutex_unlock(&swapon_mutex); 2633 free_percpu(p->percpu_cluster); 2634 p->percpu_cluster = NULL; 2635 free_percpu(p->cluster_next_cpu); 2636 p->cluster_next_cpu = NULL; 2637 vfree(swap_map); 2638 kvfree(cluster_info); 2639 /* Destroy swap account information */ 2640 swap_cgroup_swapoff(p->type); 2641 exit_swap_address_space(p->type); 2642 2643 inode = mapping->host; 2644 2645 inode_lock(inode); 2646 inode->i_flags &= ~S_SWAPFILE; 2647 inode_unlock(inode); 2648 filp_close(swap_file, NULL); 2649 2650 /* 2651 * Clear the SWP_USED flag after all resources are freed so that swapon 2652 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2653 * not hold p->lock after we cleared its SWP_WRITEOK. 2654 */ 2655 spin_lock(&swap_lock); 2656 p->flags = 0; 2657 spin_unlock(&swap_lock); 2658 2659 err = 0; 2660 atomic_inc(&proc_poll_event); 2661 wake_up_interruptible(&proc_poll_wait); 2662 2663 out_dput: 2664 filp_close(victim, NULL); 2665 out: 2666 putname(pathname); 2667 return err; 2668 } 2669 2670 #ifdef CONFIG_PROC_FS 2671 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2672 { 2673 struct seq_file *seq = file->private_data; 2674 2675 poll_wait(file, &proc_poll_wait, wait); 2676 2677 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2678 seq->poll_event = atomic_read(&proc_poll_event); 2679 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2680 } 2681 2682 return EPOLLIN | EPOLLRDNORM; 2683 } 2684 2685 /* iterator */ 2686 static void *swap_start(struct seq_file *swap, loff_t *pos) 2687 { 2688 struct swap_info_struct *si; 2689 int type; 2690 loff_t l = *pos; 2691 2692 mutex_lock(&swapon_mutex); 2693 2694 if (!l) 2695 return SEQ_START_TOKEN; 2696 2697 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2698 if (!(si->flags & SWP_USED) || !si->swap_map) 2699 continue; 2700 if (!--l) 2701 return si; 2702 } 2703 2704 return NULL; 2705 } 2706 2707 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2708 { 2709 struct swap_info_struct *si = v; 2710 int type; 2711 2712 if (v == SEQ_START_TOKEN) 2713 type = 0; 2714 else 2715 type = si->type + 1; 2716 2717 ++(*pos); 2718 for (; (si = swap_type_to_swap_info(type)); type++) { 2719 if (!(si->flags & SWP_USED) || !si->swap_map) 2720 continue; 2721 return si; 2722 } 2723 2724 return NULL; 2725 } 2726 2727 static void swap_stop(struct seq_file *swap, void *v) 2728 { 2729 mutex_unlock(&swapon_mutex); 2730 } 2731 2732 static int swap_show(struct seq_file *swap, void *v) 2733 { 2734 struct swap_info_struct *si = v; 2735 struct file *file; 2736 int len; 2737 unsigned long bytes, inuse; 2738 2739 if (si == SEQ_START_TOKEN) { 2740 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 2741 return 0; 2742 } 2743 2744 bytes = K(si->pages); 2745 inuse = K(READ_ONCE(si->inuse_pages)); 2746 2747 file = si->swap_file; 2748 len = seq_file_path(swap, file, " \t\n\\"); 2749 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n", 2750 len < 40 ? 40 - len : 1, " ", 2751 S_ISBLK(file_inode(file)->i_mode) ? 2752 "partition" : "file\t", 2753 bytes, bytes < 10000000 ? "\t" : "", 2754 inuse, inuse < 10000000 ? "\t" : "", 2755 si->prio); 2756 return 0; 2757 } 2758 2759 static const struct seq_operations swaps_op = { 2760 .start = swap_start, 2761 .next = swap_next, 2762 .stop = swap_stop, 2763 .show = swap_show 2764 }; 2765 2766 static int swaps_open(struct inode *inode, struct file *file) 2767 { 2768 struct seq_file *seq; 2769 int ret; 2770 2771 ret = seq_open(file, &swaps_op); 2772 if (ret) 2773 return ret; 2774 2775 seq = file->private_data; 2776 seq->poll_event = atomic_read(&proc_poll_event); 2777 return 0; 2778 } 2779 2780 static const struct proc_ops swaps_proc_ops = { 2781 .proc_flags = PROC_ENTRY_PERMANENT, 2782 .proc_open = swaps_open, 2783 .proc_read = seq_read, 2784 .proc_lseek = seq_lseek, 2785 .proc_release = seq_release, 2786 .proc_poll = swaps_poll, 2787 }; 2788 2789 static int __init procswaps_init(void) 2790 { 2791 proc_create("swaps", 0, NULL, &swaps_proc_ops); 2792 return 0; 2793 } 2794 __initcall(procswaps_init); 2795 #endif /* CONFIG_PROC_FS */ 2796 2797 #ifdef MAX_SWAPFILES_CHECK 2798 static int __init max_swapfiles_check(void) 2799 { 2800 MAX_SWAPFILES_CHECK(); 2801 return 0; 2802 } 2803 late_initcall(max_swapfiles_check); 2804 #endif 2805 2806 static struct swap_info_struct *alloc_swap_info(void) 2807 { 2808 struct swap_info_struct *p; 2809 struct swap_info_struct *defer = NULL; 2810 unsigned int type; 2811 int i; 2812 2813 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2814 if (!p) 2815 return ERR_PTR(-ENOMEM); 2816 2817 if (percpu_ref_init(&p->users, swap_users_ref_free, 2818 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { 2819 kvfree(p); 2820 return ERR_PTR(-ENOMEM); 2821 } 2822 2823 spin_lock(&swap_lock); 2824 for (type = 0; type < nr_swapfiles; type++) { 2825 if (!(swap_info[type]->flags & SWP_USED)) 2826 break; 2827 } 2828 if (type >= MAX_SWAPFILES) { 2829 spin_unlock(&swap_lock); 2830 percpu_ref_exit(&p->users); 2831 kvfree(p); 2832 return ERR_PTR(-EPERM); 2833 } 2834 if (type >= nr_swapfiles) { 2835 p->type = type; 2836 /* 2837 * Publish the swap_info_struct after initializing it. 2838 * Note that kvzalloc() above zeroes all its fields. 2839 */ 2840 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ 2841 nr_swapfiles++; 2842 } else { 2843 defer = p; 2844 p = swap_info[type]; 2845 /* 2846 * Do not memset this entry: a racing procfs swap_next() 2847 * would be relying on p->type to remain valid. 2848 */ 2849 } 2850 p->swap_extent_root = RB_ROOT; 2851 plist_node_init(&p->list, 0); 2852 for_each_node(i) 2853 plist_node_init(&p->avail_lists[i], 0); 2854 p->flags = SWP_USED; 2855 spin_unlock(&swap_lock); 2856 if (defer) { 2857 percpu_ref_exit(&defer->users); 2858 kvfree(defer); 2859 } 2860 spin_lock_init(&p->lock); 2861 spin_lock_init(&p->cont_lock); 2862 init_completion(&p->comp); 2863 2864 return p; 2865 } 2866 2867 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2868 { 2869 if (S_ISBLK(inode->i_mode)) { 2870 p->bdev = I_BDEV(inode); 2871 /* 2872 * Zoned block devices contain zones that have a sequential 2873 * write only restriction. Hence zoned block devices are not 2874 * suitable for swapping. Disallow them here. 2875 */ 2876 if (bdev_is_zoned(p->bdev)) 2877 return -EINVAL; 2878 p->flags |= SWP_BLKDEV; 2879 } else if (S_ISREG(inode->i_mode)) { 2880 p->bdev = inode->i_sb->s_bdev; 2881 } 2882 2883 return 0; 2884 } 2885 2886 2887 /* 2888 * Find out how many pages are allowed for a single swap device. There 2889 * are two limiting factors: 2890 * 1) the number of bits for the swap offset in the swp_entry_t type, and 2891 * 2) the number of bits in the swap pte, as defined by the different 2892 * architectures. 2893 * 2894 * In order to find the largest possible bit mask, a swap entry with 2895 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 2896 * decoded to a swp_entry_t again, and finally the swap offset is 2897 * extracted. 2898 * 2899 * This will mask all the bits from the initial ~0UL mask that can't 2900 * be encoded in either the swp_entry_t or the architecture definition 2901 * of a swap pte. 2902 */ 2903 unsigned long generic_max_swapfile_size(void) 2904 { 2905 return swp_offset(pte_to_swp_entry( 2906 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2907 } 2908 2909 /* Can be overridden by an architecture for additional checks. */ 2910 __weak unsigned long arch_max_swapfile_size(void) 2911 { 2912 return generic_max_swapfile_size(); 2913 } 2914 2915 static unsigned long read_swap_header(struct swap_info_struct *p, 2916 union swap_header *swap_header, 2917 struct inode *inode) 2918 { 2919 int i; 2920 unsigned long maxpages; 2921 unsigned long swapfilepages; 2922 unsigned long last_page; 2923 2924 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2925 pr_err("Unable to find swap-space signature\n"); 2926 return 0; 2927 } 2928 2929 /* swap partition endianness hack... */ 2930 if (swab32(swap_header->info.version) == 1) { 2931 swab32s(&swap_header->info.version); 2932 swab32s(&swap_header->info.last_page); 2933 swab32s(&swap_header->info.nr_badpages); 2934 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2935 return 0; 2936 for (i = 0; i < swap_header->info.nr_badpages; i++) 2937 swab32s(&swap_header->info.badpages[i]); 2938 } 2939 /* Check the swap header's sub-version */ 2940 if (swap_header->info.version != 1) { 2941 pr_warn("Unable to handle swap header version %d\n", 2942 swap_header->info.version); 2943 return 0; 2944 } 2945 2946 p->lowest_bit = 1; 2947 p->cluster_next = 1; 2948 p->cluster_nr = 0; 2949 2950 maxpages = swapfile_maximum_size; 2951 last_page = swap_header->info.last_page; 2952 if (!last_page) { 2953 pr_warn("Empty swap-file\n"); 2954 return 0; 2955 } 2956 if (last_page > maxpages) { 2957 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2958 K(maxpages), K(last_page)); 2959 } 2960 if (maxpages > last_page) { 2961 maxpages = last_page + 1; 2962 /* p->max is an unsigned int: don't overflow it */ 2963 if ((unsigned int)maxpages == 0) 2964 maxpages = UINT_MAX; 2965 } 2966 p->highest_bit = maxpages - 1; 2967 2968 if (!maxpages) 2969 return 0; 2970 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2971 if (swapfilepages && maxpages > swapfilepages) { 2972 pr_warn("Swap area shorter than signature indicates\n"); 2973 return 0; 2974 } 2975 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2976 return 0; 2977 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2978 return 0; 2979 2980 return maxpages; 2981 } 2982 2983 #define SWAP_CLUSTER_INFO_COLS \ 2984 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 2985 #define SWAP_CLUSTER_SPACE_COLS \ 2986 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 2987 #define SWAP_CLUSTER_COLS \ 2988 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 2989 2990 static int setup_swap_map_and_extents(struct swap_info_struct *p, 2991 union swap_header *swap_header, 2992 unsigned char *swap_map, 2993 struct swap_cluster_info *cluster_info, 2994 unsigned long maxpages, 2995 sector_t *span) 2996 { 2997 unsigned int j, k; 2998 unsigned int nr_good_pages; 2999 int nr_extents; 3000 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3001 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 3002 unsigned long i, idx; 3003 3004 nr_good_pages = maxpages - 1; /* omit header page */ 3005 3006 cluster_list_init(&p->free_clusters); 3007 cluster_list_init(&p->discard_clusters); 3008 3009 for (i = 0; i < swap_header->info.nr_badpages; i++) { 3010 unsigned int page_nr = swap_header->info.badpages[i]; 3011 if (page_nr == 0 || page_nr > swap_header->info.last_page) 3012 return -EINVAL; 3013 if (page_nr < maxpages) { 3014 swap_map[page_nr] = SWAP_MAP_BAD; 3015 nr_good_pages--; 3016 /* 3017 * Haven't marked the cluster free yet, no list 3018 * operation involved 3019 */ 3020 inc_cluster_info_page(p, cluster_info, page_nr); 3021 } 3022 } 3023 3024 /* Haven't marked the cluster free yet, no list operation involved */ 3025 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 3026 inc_cluster_info_page(p, cluster_info, i); 3027 3028 if (nr_good_pages) { 3029 swap_map[0] = SWAP_MAP_BAD; 3030 /* 3031 * Not mark the cluster free yet, no list 3032 * operation involved 3033 */ 3034 inc_cluster_info_page(p, cluster_info, 0); 3035 p->max = maxpages; 3036 p->pages = nr_good_pages; 3037 nr_extents = setup_swap_extents(p, span); 3038 if (nr_extents < 0) 3039 return nr_extents; 3040 nr_good_pages = p->pages; 3041 } 3042 if (!nr_good_pages) { 3043 pr_warn("Empty swap-file\n"); 3044 return -EINVAL; 3045 } 3046 3047 if (!cluster_info) 3048 return nr_extents; 3049 3050 3051 /* 3052 * Reduce false cache line sharing between cluster_info and 3053 * sharing same address space. 3054 */ 3055 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 3056 j = (k + col) % SWAP_CLUSTER_COLS; 3057 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 3058 idx = i * SWAP_CLUSTER_COLS + j; 3059 if (idx >= nr_clusters) 3060 continue; 3061 if (cluster_count(&cluster_info[idx])) 3062 continue; 3063 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 3064 cluster_list_add_tail(&p->free_clusters, cluster_info, 3065 idx); 3066 } 3067 } 3068 return nr_extents; 3069 } 3070 3071 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 3072 { 3073 struct swap_info_struct *p; 3074 struct filename *name; 3075 struct file *swap_file = NULL; 3076 struct address_space *mapping; 3077 struct dentry *dentry; 3078 int prio; 3079 int error; 3080 union swap_header *swap_header; 3081 int nr_extents; 3082 sector_t span; 3083 unsigned long maxpages; 3084 unsigned char *swap_map = NULL; 3085 struct swap_cluster_info *cluster_info = NULL; 3086 struct page *page = NULL; 3087 struct inode *inode = NULL; 3088 bool inced_nr_rotate_swap = false; 3089 3090 if (swap_flags & ~SWAP_FLAGS_VALID) 3091 return -EINVAL; 3092 3093 if (!capable(CAP_SYS_ADMIN)) 3094 return -EPERM; 3095 3096 if (!swap_avail_heads) 3097 return -ENOMEM; 3098 3099 p = alloc_swap_info(); 3100 if (IS_ERR(p)) 3101 return PTR_ERR(p); 3102 3103 INIT_WORK(&p->discard_work, swap_discard_work); 3104 3105 name = getname(specialfile); 3106 if (IS_ERR(name)) { 3107 error = PTR_ERR(name); 3108 name = NULL; 3109 goto bad_swap; 3110 } 3111 swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0); 3112 if (IS_ERR(swap_file)) { 3113 error = PTR_ERR(swap_file); 3114 swap_file = NULL; 3115 goto bad_swap; 3116 } 3117 3118 p->swap_file = swap_file; 3119 mapping = swap_file->f_mapping; 3120 dentry = swap_file->f_path.dentry; 3121 inode = mapping->host; 3122 3123 error = claim_swapfile(p, inode); 3124 if (unlikely(error)) 3125 goto bad_swap; 3126 3127 inode_lock(inode); 3128 if (d_unlinked(dentry) || cant_mount(dentry)) { 3129 error = -ENOENT; 3130 goto bad_swap_unlock_inode; 3131 } 3132 if (IS_SWAPFILE(inode)) { 3133 error = -EBUSY; 3134 goto bad_swap_unlock_inode; 3135 } 3136 3137 /* 3138 * Read the swap header. 3139 */ 3140 if (!mapping->a_ops->read_folio) { 3141 error = -EINVAL; 3142 goto bad_swap_unlock_inode; 3143 } 3144 page = read_mapping_page(mapping, 0, swap_file); 3145 if (IS_ERR(page)) { 3146 error = PTR_ERR(page); 3147 goto bad_swap_unlock_inode; 3148 } 3149 swap_header = kmap(page); 3150 3151 maxpages = read_swap_header(p, swap_header, inode); 3152 if (unlikely(!maxpages)) { 3153 error = -EINVAL; 3154 goto bad_swap_unlock_inode; 3155 } 3156 3157 /* OK, set up the swap map and apply the bad block list */ 3158 swap_map = vzalloc(maxpages); 3159 if (!swap_map) { 3160 error = -ENOMEM; 3161 goto bad_swap_unlock_inode; 3162 } 3163 3164 if (p->bdev && bdev_stable_writes(p->bdev)) 3165 p->flags |= SWP_STABLE_WRITES; 3166 3167 if (p->bdev && bdev_synchronous(p->bdev)) 3168 p->flags |= SWP_SYNCHRONOUS_IO; 3169 3170 if (p->bdev && bdev_nonrot(p->bdev)) { 3171 int cpu, i; 3172 unsigned long ci, nr_cluster; 3173 3174 p->flags |= SWP_SOLIDSTATE; 3175 p->cluster_next_cpu = alloc_percpu(unsigned int); 3176 if (!p->cluster_next_cpu) { 3177 error = -ENOMEM; 3178 goto bad_swap_unlock_inode; 3179 } 3180 /* 3181 * select a random position to start with to help wear leveling 3182 * SSD 3183 */ 3184 for_each_possible_cpu(cpu) { 3185 per_cpu(*p->cluster_next_cpu, cpu) = 3186 get_random_u32_inclusive(1, p->highest_bit); 3187 } 3188 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3189 3190 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), 3191 GFP_KERNEL); 3192 if (!cluster_info) { 3193 error = -ENOMEM; 3194 goto bad_swap_unlock_inode; 3195 } 3196 3197 for (ci = 0; ci < nr_cluster; ci++) 3198 spin_lock_init(&((cluster_info + ci)->lock)); 3199 3200 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 3201 if (!p->percpu_cluster) { 3202 error = -ENOMEM; 3203 goto bad_swap_unlock_inode; 3204 } 3205 for_each_possible_cpu(cpu) { 3206 struct percpu_cluster *cluster; 3207 3208 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 3209 for (i = 0; i < SWAP_NR_ORDERS; i++) 3210 cluster->next[i] = SWAP_NEXT_INVALID; 3211 } 3212 } else { 3213 atomic_inc(&nr_rotate_swap); 3214 inced_nr_rotate_swap = true; 3215 } 3216 3217 error = swap_cgroup_swapon(p->type, maxpages); 3218 if (error) 3219 goto bad_swap_unlock_inode; 3220 3221 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 3222 cluster_info, maxpages, &span); 3223 if (unlikely(nr_extents < 0)) { 3224 error = nr_extents; 3225 goto bad_swap_unlock_inode; 3226 } 3227 3228 if ((swap_flags & SWAP_FLAG_DISCARD) && 3229 p->bdev && bdev_max_discard_sectors(p->bdev)) { 3230 /* 3231 * When discard is enabled for swap with no particular 3232 * policy flagged, we set all swap discard flags here in 3233 * order to sustain backward compatibility with older 3234 * swapon(8) releases. 3235 */ 3236 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3237 SWP_PAGE_DISCARD); 3238 3239 /* 3240 * By flagging sys_swapon, a sysadmin can tell us to 3241 * either do single-time area discards only, or to just 3242 * perform discards for released swap page-clusters. 3243 * Now it's time to adjust the p->flags accordingly. 3244 */ 3245 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3246 p->flags &= ~SWP_PAGE_DISCARD; 3247 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3248 p->flags &= ~SWP_AREA_DISCARD; 3249 3250 /* issue a swapon-time discard if it's still required */ 3251 if (p->flags & SWP_AREA_DISCARD) { 3252 int err = discard_swap(p); 3253 if (unlikely(err)) 3254 pr_err("swapon: discard_swap(%p): %d\n", 3255 p, err); 3256 } 3257 } 3258 3259 error = init_swap_address_space(p->type, maxpages); 3260 if (error) 3261 goto bad_swap_unlock_inode; 3262 3263 error = zswap_swapon(p->type, maxpages); 3264 if (error) 3265 goto free_swap_address_space; 3266 3267 /* 3268 * Flush any pending IO and dirty mappings before we start using this 3269 * swap device. 3270 */ 3271 inode->i_flags |= S_SWAPFILE; 3272 error = inode_drain_writes(inode); 3273 if (error) { 3274 inode->i_flags &= ~S_SWAPFILE; 3275 goto free_swap_zswap; 3276 } 3277 3278 mutex_lock(&swapon_mutex); 3279 prio = -1; 3280 if (swap_flags & SWAP_FLAG_PREFER) 3281 prio = 3282 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3283 enable_swap_info(p, prio, swap_map, cluster_info); 3284 3285 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n", 3286 K(p->pages), name->name, p->prio, nr_extents, 3287 K((unsigned long long)span), 3288 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 3289 (p->flags & SWP_DISCARDABLE) ? "D" : "", 3290 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 3291 (p->flags & SWP_PAGE_DISCARD) ? "c" : ""); 3292 3293 mutex_unlock(&swapon_mutex); 3294 atomic_inc(&proc_poll_event); 3295 wake_up_interruptible(&proc_poll_wait); 3296 3297 error = 0; 3298 goto out; 3299 free_swap_zswap: 3300 zswap_swapoff(p->type); 3301 free_swap_address_space: 3302 exit_swap_address_space(p->type); 3303 bad_swap_unlock_inode: 3304 inode_unlock(inode); 3305 bad_swap: 3306 free_percpu(p->percpu_cluster); 3307 p->percpu_cluster = NULL; 3308 free_percpu(p->cluster_next_cpu); 3309 p->cluster_next_cpu = NULL; 3310 inode = NULL; 3311 destroy_swap_extents(p); 3312 swap_cgroup_swapoff(p->type); 3313 spin_lock(&swap_lock); 3314 p->swap_file = NULL; 3315 p->flags = 0; 3316 spin_unlock(&swap_lock); 3317 vfree(swap_map); 3318 kvfree(cluster_info); 3319 if (inced_nr_rotate_swap) 3320 atomic_dec(&nr_rotate_swap); 3321 if (swap_file) 3322 filp_close(swap_file, NULL); 3323 out: 3324 if (page && !IS_ERR(page)) { 3325 kunmap(page); 3326 put_page(page); 3327 } 3328 if (name) 3329 putname(name); 3330 if (inode) 3331 inode_unlock(inode); 3332 if (!error) 3333 enable_swap_slots_cache(); 3334 return error; 3335 } 3336 3337 void si_swapinfo(struct sysinfo *val) 3338 { 3339 unsigned int type; 3340 unsigned long nr_to_be_unused = 0; 3341 3342 spin_lock(&swap_lock); 3343 for (type = 0; type < nr_swapfiles; type++) { 3344 struct swap_info_struct *si = swap_info[type]; 3345 3346 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3347 nr_to_be_unused += READ_ONCE(si->inuse_pages); 3348 } 3349 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3350 val->totalswap = total_swap_pages + nr_to_be_unused; 3351 spin_unlock(&swap_lock); 3352 } 3353 3354 /* 3355 * Verify that a swap entry is valid and increment its swap map count. 3356 * 3357 * Returns error code in following case. 3358 * - success -> 0 3359 * - swp_entry is invalid -> EINVAL 3360 * - swp_entry is migration entry -> EINVAL 3361 * - swap-cache reference is requested but there is already one. -> EEXIST 3362 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3363 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3364 */ 3365 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 3366 { 3367 struct swap_info_struct *p; 3368 struct swap_cluster_info *ci; 3369 unsigned long offset; 3370 unsigned char count; 3371 unsigned char has_cache; 3372 int err; 3373 3374 p = swp_swap_info(entry); 3375 3376 offset = swp_offset(entry); 3377 ci = lock_cluster_or_swap_info(p, offset); 3378 3379 count = p->swap_map[offset]; 3380 3381 /* 3382 * swapin_readahead() doesn't check if a swap entry is valid, so the 3383 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3384 */ 3385 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3386 err = -ENOENT; 3387 goto unlock_out; 3388 } 3389 3390 has_cache = count & SWAP_HAS_CACHE; 3391 count &= ~SWAP_HAS_CACHE; 3392 err = 0; 3393 3394 if (usage == SWAP_HAS_CACHE) { 3395 3396 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 3397 if (!has_cache && count) 3398 has_cache = SWAP_HAS_CACHE; 3399 else if (has_cache) /* someone else added cache */ 3400 err = -EEXIST; 3401 else /* no users remaining */ 3402 err = -ENOENT; 3403 3404 } else if (count || has_cache) { 3405 3406 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3407 count += usage; 3408 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3409 err = -EINVAL; 3410 else if (swap_count_continued(p, offset, count)) 3411 count = COUNT_CONTINUED; 3412 else 3413 err = -ENOMEM; 3414 } else 3415 err = -ENOENT; /* unused swap entry */ 3416 3417 if (!err) 3418 WRITE_ONCE(p->swap_map[offset], count | has_cache); 3419 3420 unlock_out: 3421 unlock_cluster_or_swap_info(p, ci); 3422 return err; 3423 } 3424 3425 /* 3426 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3427 * (in which case its reference count is never incremented). 3428 */ 3429 void swap_shmem_alloc(swp_entry_t entry) 3430 { 3431 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3432 } 3433 3434 /* 3435 * Increase reference count of swap entry by 1. 3436 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3437 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3438 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3439 * might occur if a page table entry has got corrupted. 3440 */ 3441 int swap_duplicate(swp_entry_t entry) 3442 { 3443 int err = 0; 3444 3445 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3446 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3447 return err; 3448 } 3449 3450 /* 3451 * @entry: swap entry for which we allocate swap cache. 3452 * 3453 * Called when allocating swap cache for existing swap entry, 3454 * This can return error codes. Returns 0 at success. 3455 * -EEXIST means there is a swap cache. 3456 * Note: return code is different from swap_duplicate(). 3457 */ 3458 int swapcache_prepare(swp_entry_t entry) 3459 { 3460 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3461 } 3462 3463 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry) 3464 { 3465 struct swap_cluster_info *ci; 3466 unsigned long offset = swp_offset(entry); 3467 unsigned char usage; 3468 3469 ci = lock_cluster_or_swap_info(si, offset); 3470 usage = __swap_entry_free_locked(si, offset, SWAP_HAS_CACHE); 3471 unlock_cluster_or_swap_info(si, ci); 3472 if (!usage) 3473 free_swap_slot(entry); 3474 } 3475 3476 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3477 { 3478 return swap_type_to_swap_info(swp_type(entry)); 3479 } 3480 3481 /* 3482 * out-of-line methods to avoid include hell. 3483 */ 3484 struct address_space *swapcache_mapping(struct folio *folio) 3485 { 3486 return swp_swap_info(folio->swap)->swap_file->f_mapping; 3487 } 3488 EXPORT_SYMBOL_GPL(swapcache_mapping); 3489 3490 pgoff_t __folio_swap_cache_index(struct folio *folio) 3491 { 3492 return swap_cache_index(folio->swap); 3493 } 3494 EXPORT_SYMBOL_GPL(__folio_swap_cache_index); 3495 3496 /* 3497 * add_swap_count_continuation - called when a swap count is duplicated 3498 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3499 * page of the original vmalloc'ed swap_map, to hold the continuation count 3500 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3501 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3502 * 3503 * These continuation pages are seldom referenced: the common paths all work 3504 * on the original swap_map, only referring to a continuation page when the 3505 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3506 * 3507 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3508 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3509 * can be called after dropping locks. 3510 */ 3511 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3512 { 3513 struct swap_info_struct *si; 3514 struct swap_cluster_info *ci; 3515 struct page *head; 3516 struct page *page; 3517 struct page *list_page; 3518 pgoff_t offset; 3519 unsigned char count; 3520 int ret = 0; 3521 3522 /* 3523 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3524 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3525 */ 3526 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3527 3528 si = get_swap_device(entry); 3529 if (!si) { 3530 /* 3531 * An acceptable race has occurred since the failing 3532 * __swap_duplicate(): the swap device may be swapoff 3533 */ 3534 goto outer; 3535 } 3536 spin_lock(&si->lock); 3537 3538 offset = swp_offset(entry); 3539 3540 ci = lock_cluster(si, offset); 3541 3542 count = swap_count(si->swap_map[offset]); 3543 3544 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3545 /* 3546 * The higher the swap count, the more likely it is that tasks 3547 * will race to add swap count continuation: we need to avoid 3548 * over-provisioning. 3549 */ 3550 goto out; 3551 } 3552 3553 if (!page) { 3554 ret = -ENOMEM; 3555 goto out; 3556 } 3557 3558 head = vmalloc_to_page(si->swap_map + offset); 3559 offset &= ~PAGE_MASK; 3560 3561 spin_lock(&si->cont_lock); 3562 /* 3563 * Page allocation does not initialize the page's lru field, 3564 * but it does always reset its private field. 3565 */ 3566 if (!page_private(head)) { 3567 BUG_ON(count & COUNT_CONTINUED); 3568 INIT_LIST_HEAD(&head->lru); 3569 set_page_private(head, SWP_CONTINUED); 3570 si->flags |= SWP_CONTINUED; 3571 } 3572 3573 list_for_each_entry(list_page, &head->lru, lru) { 3574 unsigned char *map; 3575 3576 /* 3577 * If the previous map said no continuation, but we've found 3578 * a continuation page, free our allocation and use this one. 3579 */ 3580 if (!(count & COUNT_CONTINUED)) 3581 goto out_unlock_cont; 3582 3583 map = kmap_local_page(list_page) + offset; 3584 count = *map; 3585 kunmap_local(map); 3586 3587 /* 3588 * If this continuation count now has some space in it, 3589 * free our allocation and use this one. 3590 */ 3591 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3592 goto out_unlock_cont; 3593 } 3594 3595 list_add_tail(&page->lru, &head->lru); 3596 page = NULL; /* now it's attached, don't free it */ 3597 out_unlock_cont: 3598 spin_unlock(&si->cont_lock); 3599 out: 3600 unlock_cluster(ci); 3601 spin_unlock(&si->lock); 3602 put_swap_device(si); 3603 outer: 3604 if (page) 3605 __free_page(page); 3606 return ret; 3607 } 3608 3609 /* 3610 * swap_count_continued - when the original swap_map count is incremented 3611 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3612 * into, carry if so, or else fail until a new continuation page is allocated; 3613 * when the original swap_map count is decremented from 0 with continuation, 3614 * borrow from the continuation and report whether it still holds more. 3615 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3616 * lock. 3617 */ 3618 static bool swap_count_continued(struct swap_info_struct *si, 3619 pgoff_t offset, unsigned char count) 3620 { 3621 struct page *head; 3622 struct page *page; 3623 unsigned char *map; 3624 bool ret; 3625 3626 head = vmalloc_to_page(si->swap_map + offset); 3627 if (page_private(head) != SWP_CONTINUED) { 3628 BUG_ON(count & COUNT_CONTINUED); 3629 return false; /* need to add count continuation */ 3630 } 3631 3632 spin_lock(&si->cont_lock); 3633 offset &= ~PAGE_MASK; 3634 page = list_next_entry(head, lru); 3635 map = kmap_local_page(page) + offset; 3636 3637 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3638 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3639 3640 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3641 /* 3642 * Think of how you add 1 to 999 3643 */ 3644 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3645 kunmap_local(map); 3646 page = list_next_entry(page, lru); 3647 BUG_ON(page == head); 3648 map = kmap_local_page(page) + offset; 3649 } 3650 if (*map == SWAP_CONT_MAX) { 3651 kunmap_local(map); 3652 page = list_next_entry(page, lru); 3653 if (page == head) { 3654 ret = false; /* add count continuation */ 3655 goto out; 3656 } 3657 map = kmap_local_page(page) + offset; 3658 init_map: *map = 0; /* we didn't zero the page */ 3659 } 3660 *map += 1; 3661 kunmap_local(map); 3662 while ((page = list_prev_entry(page, lru)) != head) { 3663 map = kmap_local_page(page) + offset; 3664 *map = COUNT_CONTINUED; 3665 kunmap_local(map); 3666 } 3667 ret = true; /* incremented */ 3668 3669 } else { /* decrementing */ 3670 /* 3671 * Think of how you subtract 1 from 1000 3672 */ 3673 BUG_ON(count != COUNT_CONTINUED); 3674 while (*map == COUNT_CONTINUED) { 3675 kunmap_local(map); 3676 page = list_next_entry(page, lru); 3677 BUG_ON(page == head); 3678 map = kmap_local_page(page) + offset; 3679 } 3680 BUG_ON(*map == 0); 3681 *map -= 1; 3682 if (*map == 0) 3683 count = 0; 3684 kunmap_local(map); 3685 while ((page = list_prev_entry(page, lru)) != head) { 3686 map = kmap_local_page(page) + offset; 3687 *map = SWAP_CONT_MAX | count; 3688 count = COUNT_CONTINUED; 3689 kunmap_local(map); 3690 } 3691 ret = count == COUNT_CONTINUED; 3692 } 3693 out: 3694 spin_unlock(&si->cont_lock); 3695 return ret; 3696 } 3697 3698 /* 3699 * free_swap_count_continuations - swapoff free all the continuation pages 3700 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3701 */ 3702 static void free_swap_count_continuations(struct swap_info_struct *si) 3703 { 3704 pgoff_t offset; 3705 3706 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3707 struct page *head; 3708 head = vmalloc_to_page(si->swap_map + offset); 3709 if (page_private(head)) { 3710 struct page *page, *next; 3711 3712 list_for_each_entry_safe(page, next, &head->lru, lru) { 3713 list_del(&page->lru); 3714 __free_page(page); 3715 } 3716 } 3717 } 3718 } 3719 3720 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3721 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp) 3722 { 3723 struct swap_info_struct *si, *next; 3724 int nid = folio_nid(folio); 3725 3726 if (!(gfp & __GFP_IO)) 3727 return; 3728 3729 if (!__has_usable_swap()) 3730 return; 3731 3732 if (!blk_cgroup_congested()) 3733 return; 3734 3735 /* 3736 * We've already scheduled a throttle, avoid taking the global swap 3737 * lock. 3738 */ 3739 if (current->throttle_disk) 3740 return; 3741 3742 spin_lock(&swap_avail_lock); 3743 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], 3744 avail_lists[nid]) { 3745 if (si->bdev) { 3746 blkcg_schedule_throttle(si->bdev->bd_disk, true); 3747 break; 3748 } 3749 } 3750 spin_unlock(&swap_avail_lock); 3751 } 3752 #endif 3753 3754 static int __init swapfile_init(void) 3755 { 3756 int nid; 3757 3758 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3759 GFP_KERNEL); 3760 if (!swap_avail_heads) { 3761 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3762 return -ENOMEM; 3763 } 3764 3765 for_each_node(nid) 3766 plist_head_init(&swap_avail_heads[nid]); 3767 3768 swapfile_maximum_size = arch_max_swapfile_size(); 3769 3770 #ifdef CONFIG_MIGRATION 3771 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS)) 3772 swap_migration_ad_supported = true; 3773 #endif /* CONFIG_MIGRATION */ 3774 3775 return 0; 3776 } 3777 subsys_initcall(swapfile_init); 3778