xref: /linux/mm/swapfile.c (revision 5c04a5b065e97dd331dba67da9896897fced3bee)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 #include <linux/suspend.h>
44 #include <linux/zswap.h>
45 #include <linux/plist.h>
46 
47 #include <asm/tlbflush.h>
48 #include <linux/swapops.h>
49 #include <linux/swap_cgroup.h>
50 #include "internal.h"
51 #include "swap.h"
52 
53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
54 				 unsigned char);
55 static void free_swap_count_continuations(struct swap_info_struct *);
56 
57 static DEFINE_SPINLOCK(swap_lock);
58 static unsigned int nr_swapfiles;
59 atomic_long_t nr_swap_pages;
60 /*
61  * Some modules use swappable objects and may try to swap them out under
62  * memory pressure (via the shrinker). Before doing so, they may wish to
63  * check to see if any swap space is available.
64  */
65 EXPORT_SYMBOL_GPL(nr_swap_pages);
66 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
67 long total_swap_pages;
68 static int least_priority = -1;
69 unsigned long swapfile_maximum_size;
70 #ifdef CONFIG_MIGRATION
71 bool swap_migration_ad_supported;
72 #endif	/* CONFIG_MIGRATION */
73 
74 static const char Bad_file[] = "Bad swap file entry ";
75 static const char Unused_file[] = "Unused swap file entry ";
76 static const char Bad_offset[] = "Bad swap offset entry ";
77 static const char Unused_offset[] = "Unused swap offset entry ";
78 
79 /*
80  * all active swap_info_structs
81  * protected with swap_lock, and ordered by priority.
82  */
83 static PLIST_HEAD(swap_active_head);
84 
85 /*
86  * all available (active, not full) swap_info_structs
87  * protected with swap_avail_lock, ordered by priority.
88  * This is used by folio_alloc_swap() instead of swap_active_head
89  * because swap_active_head includes all swap_info_structs,
90  * but folio_alloc_swap() doesn't need to look at full ones.
91  * This uses its own lock instead of swap_lock because when a
92  * swap_info_struct changes between not-full/full, it needs to
93  * add/remove itself to/from this list, but the swap_info_struct->lock
94  * is held and the locking order requires swap_lock to be taken
95  * before any swap_info_struct->lock.
96  */
97 static struct plist_head *swap_avail_heads;
98 static DEFINE_SPINLOCK(swap_avail_lock);
99 
100 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
101 
102 static DEFINE_MUTEX(swapon_mutex);
103 
104 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
105 /* Activity counter to indicate that a swapon or swapoff has occurred */
106 static atomic_t proc_poll_event = ATOMIC_INIT(0);
107 
108 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
109 
110 static struct swap_info_struct *swap_type_to_swap_info(int type)
111 {
112 	if (type >= MAX_SWAPFILES)
113 		return NULL;
114 
115 	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
116 }
117 
118 static inline unsigned char swap_count(unsigned char ent)
119 {
120 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
121 }
122 
123 /* Reclaim the swap entry anyway if possible */
124 #define TTRS_ANYWAY		0x1
125 /*
126  * Reclaim the swap entry if there are no more mappings of the
127  * corresponding page
128  */
129 #define TTRS_UNMAPPED		0x2
130 /* Reclaim the swap entry if swap is getting full*/
131 #define TTRS_FULL		0x4
132 
133 /* returns 1 if swap entry is freed */
134 static int __try_to_reclaim_swap(struct swap_info_struct *si,
135 				 unsigned long offset, unsigned long flags)
136 {
137 	swp_entry_t entry = swp_entry(si->type, offset);
138 	struct folio *folio;
139 	int ret = 0;
140 
141 	folio = filemap_get_folio(swap_address_space(entry), offset);
142 	if (IS_ERR(folio))
143 		return 0;
144 	/*
145 	 * When this function is called from scan_swap_map_slots() and it's
146 	 * called by vmscan.c at reclaiming folios. So we hold a folio lock
147 	 * here. We have to use trylock for avoiding deadlock. This is a special
148 	 * case and you should use folio_free_swap() with explicit folio_lock()
149 	 * in usual operations.
150 	 */
151 	if (folio_trylock(folio)) {
152 		if ((flags & TTRS_ANYWAY) ||
153 		    ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
154 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
155 			ret = folio_free_swap(folio);
156 		folio_unlock(folio);
157 	}
158 	folio_put(folio);
159 	return ret;
160 }
161 
162 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
163 {
164 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
165 	return rb_entry(rb, struct swap_extent, rb_node);
166 }
167 
168 static inline struct swap_extent *next_se(struct swap_extent *se)
169 {
170 	struct rb_node *rb = rb_next(&se->rb_node);
171 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
172 }
173 
174 /*
175  * swapon tell device that all the old swap contents can be discarded,
176  * to allow the swap device to optimize its wear-levelling.
177  */
178 static int discard_swap(struct swap_info_struct *si)
179 {
180 	struct swap_extent *se;
181 	sector_t start_block;
182 	sector_t nr_blocks;
183 	int err = 0;
184 
185 	/* Do not discard the swap header page! */
186 	se = first_se(si);
187 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
188 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
189 	if (nr_blocks) {
190 		err = blkdev_issue_discard(si->bdev, start_block,
191 				nr_blocks, GFP_KERNEL);
192 		if (err)
193 			return err;
194 		cond_resched();
195 	}
196 
197 	for (se = next_se(se); se; se = next_se(se)) {
198 		start_block = se->start_block << (PAGE_SHIFT - 9);
199 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
200 
201 		err = blkdev_issue_discard(si->bdev, start_block,
202 				nr_blocks, GFP_KERNEL);
203 		if (err)
204 			break;
205 
206 		cond_resched();
207 	}
208 	return err;		/* That will often be -EOPNOTSUPP */
209 }
210 
211 static struct swap_extent *
212 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
213 {
214 	struct swap_extent *se;
215 	struct rb_node *rb;
216 
217 	rb = sis->swap_extent_root.rb_node;
218 	while (rb) {
219 		se = rb_entry(rb, struct swap_extent, rb_node);
220 		if (offset < se->start_page)
221 			rb = rb->rb_left;
222 		else if (offset >= se->start_page + se->nr_pages)
223 			rb = rb->rb_right;
224 		else
225 			return se;
226 	}
227 	/* It *must* be present */
228 	BUG();
229 }
230 
231 sector_t swap_folio_sector(struct folio *folio)
232 {
233 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
234 	struct swap_extent *se;
235 	sector_t sector;
236 	pgoff_t offset;
237 
238 	offset = swp_offset(folio->swap);
239 	se = offset_to_swap_extent(sis, offset);
240 	sector = se->start_block + (offset - se->start_page);
241 	return sector << (PAGE_SHIFT - 9);
242 }
243 
244 /*
245  * swap allocation tell device that a cluster of swap can now be discarded,
246  * to allow the swap device to optimize its wear-levelling.
247  */
248 static void discard_swap_cluster(struct swap_info_struct *si,
249 				 pgoff_t start_page, pgoff_t nr_pages)
250 {
251 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
252 
253 	while (nr_pages) {
254 		pgoff_t offset = start_page - se->start_page;
255 		sector_t start_block = se->start_block + offset;
256 		sector_t nr_blocks = se->nr_pages - offset;
257 
258 		if (nr_blocks > nr_pages)
259 			nr_blocks = nr_pages;
260 		start_page += nr_blocks;
261 		nr_pages -= nr_blocks;
262 
263 		start_block <<= PAGE_SHIFT - 9;
264 		nr_blocks <<= PAGE_SHIFT - 9;
265 		if (blkdev_issue_discard(si->bdev, start_block,
266 					nr_blocks, GFP_NOIO))
267 			break;
268 
269 		se = next_se(se);
270 	}
271 }
272 
273 #ifdef CONFIG_THP_SWAP
274 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
275 
276 #define swap_entry_size(size)	(size)
277 #else
278 #define SWAPFILE_CLUSTER	256
279 
280 /*
281  * Define swap_entry_size() as constant to let compiler to optimize
282  * out some code if !CONFIG_THP_SWAP
283  */
284 #define swap_entry_size(size)	1
285 #endif
286 #define LATENCY_LIMIT		256
287 
288 static inline void cluster_set_flag(struct swap_cluster_info *info,
289 	unsigned int flag)
290 {
291 	info->flags = flag;
292 }
293 
294 static inline unsigned int cluster_count(struct swap_cluster_info *info)
295 {
296 	return info->data;
297 }
298 
299 static inline void cluster_set_count(struct swap_cluster_info *info,
300 				     unsigned int c)
301 {
302 	info->data = c;
303 }
304 
305 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
306 					 unsigned int c, unsigned int f)
307 {
308 	info->flags = f;
309 	info->data = c;
310 }
311 
312 static inline unsigned int cluster_next(struct swap_cluster_info *info)
313 {
314 	return info->data;
315 }
316 
317 static inline void cluster_set_next(struct swap_cluster_info *info,
318 				    unsigned int n)
319 {
320 	info->data = n;
321 }
322 
323 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
324 					 unsigned int n, unsigned int f)
325 {
326 	info->flags = f;
327 	info->data = n;
328 }
329 
330 static inline bool cluster_is_free(struct swap_cluster_info *info)
331 {
332 	return info->flags & CLUSTER_FLAG_FREE;
333 }
334 
335 static inline bool cluster_is_null(struct swap_cluster_info *info)
336 {
337 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
338 }
339 
340 static inline void cluster_set_null(struct swap_cluster_info *info)
341 {
342 	info->flags = CLUSTER_FLAG_NEXT_NULL;
343 	info->data = 0;
344 }
345 
346 static inline bool cluster_is_huge(struct swap_cluster_info *info)
347 {
348 	if (IS_ENABLED(CONFIG_THP_SWAP))
349 		return info->flags & CLUSTER_FLAG_HUGE;
350 	return false;
351 }
352 
353 static inline void cluster_clear_huge(struct swap_cluster_info *info)
354 {
355 	info->flags &= ~CLUSTER_FLAG_HUGE;
356 }
357 
358 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
359 						     unsigned long offset)
360 {
361 	struct swap_cluster_info *ci;
362 
363 	ci = si->cluster_info;
364 	if (ci) {
365 		ci += offset / SWAPFILE_CLUSTER;
366 		spin_lock(&ci->lock);
367 	}
368 	return ci;
369 }
370 
371 static inline void unlock_cluster(struct swap_cluster_info *ci)
372 {
373 	if (ci)
374 		spin_unlock(&ci->lock);
375 }
376 
377 /*
378  * Determine the locking method in use for this device.  Return
379  * swap_cluster_info if SSD-style cluster-based locking is in place.
380  */
381 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
382 		struct swap_info_struct *si, unsigned long offset)
383 {
384 	struct swap_cluster_info *ci;
385 
386 	/* Try to use fine-grained SSD-style locking if available: */
387 	ci = lock_cluster(si, offset);
388 	/* Otherwise, fall back to traditional, coarse locking: */
389 	if (!ci)
390 		spin_lock(&si->lock);
391 
392 	return ci;
393 }
394 
395 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
396 					       struct swap_cluster_info *ci)
397 {
398 	if (ci)
399 		unlock_cluster(ci);
400 	else
401 		spin_unlock(&si->lock);
402 }
403 
404 static inline bool cluster_list_empty(struct swap_cluster_list *list)
405 {
406 	return cluster_is_null(&list->head);
407 }
408 
409 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
410 {
411 	return cluster_next(&list->head);
412 }
413 
414 static void cluster_list_init(struct swap_cluster_list *list)
415 {
416 	cluster_set_null(&list->head);
417 	cluster_set_null(&list->tail);
418 }
419 
420 static void cluster_list_add_tail(struct swap_cluster_list *list,
421 				  struct swap_cluster_info *ci,
422 				  unsigned int idx)
423 {
424 	if (cluster_list_empty(list)) {
425 		cluster_set_next_flag(&list->head, idx, 0);
426 		cluster_set_next_flag(&list->tail, idx, 0);
427 	} else {
428 		struct swap_cluster_info *ci_tail;
429 		unsigned int tail = cluster_next(&list->tail);
430 
431 		/*
432 		 * Nested cluster lock, but both cluster locks are
433 		 * only acquired when we held swap_info_struct->lock
434 		 */
435 		ci_tail = ci + tail;
436 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
437 		cluster_set_next(ci_tail, idx);
438 		spin_unlock(&ci_tail->lock);
439 		cluster_set_next_flag(&list->tail, idx, 0);
440 	}
441 }
442 
443 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
444 					   struct swap_cluster_info *ci)
445 {
446 	unsigned int idx;
447 
448 	idx = cluster_next(&list->head);
449 	if (cluster_next(&list->tail) == idx) {
450 		cluster_set_null(&list->head);
451 		cluster_set_null(&list->tail);
452 	} else
453 		cluster_set_next_flag(&list->head,
454 				      cluster_next(&ci[idx]), 0);
455 
456 	return idx;
457 }
458 
459 /* Add a cluster to discard list and schedule it to do discard */
460 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
461 		unsigned int idx)
462 {
463 	/*
464 	 * If scan_swap_map_slots() can't find a free cluster, it will check
465 	 * si->swap_map directly. To make sure the discarding cluster isn't
466 	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
467 	 * It will be cleared after discard
468 	 */
469 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
470 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
471 
472 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
473 
474 	schedule_work(&si->discard_work);
475 }
476 
477 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
478 {
479 	struct swap_cluster_info *ci = si->cluster_info;
480 
481 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
482 	cluster_list_add_tail(&si->free_clusters, ci, idx);
483 }
484 
485 /*
486  * Doing discard actually. After a cluster discard is finished, the cluster
487  * will be added to free cluster list. caller should hold si->lock.
488 */
489 static void swap_do_scheduled_discard(struct swap_info_struct *si)
490 {
491 	struct swap_cluster_info *info, *ci;
492 	unsigned int idx;
493 
494 	info = si->cluster_info;
495 
496 	while (!cluster_list_empty(&si->discard_clusters)) {
497 		idx = cluster_list_del_first(&si->discard_clusters, info);
498 		spin_unlock(&si->lock);
499 
500 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
501 				SWAPFILE_CLUSTER);
502 
503 		spin_lock(&si->lock);
504 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
505 		__free_cluster(si, idx);
506 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
507 				0, SWAPFILE_CLUSTER);
508 		unlock_cluster(ci);
509 	}
510 }
511 
512 static void swap_discard_work(struct work_struct *work)
513 {
514 	struct swap_info_struct *si;
515 
516 	si = container_of(work, struct swap_info_struct, discard_work);
517 
518 	spin_lock(&si->lock);
519 	swap_do_scheduled_discard(si);
520 	spin_unlock(&si->lock);
521 }
522 
523 static void swap_users_ref_free(struct percpu_ref *ref)
524 {
525 	struct swap_info_struct *si;
526 
527 	si = container_of(ref, struct swap_info_struct, users);
528 	complete(&si->comp);
529 }
530 
531 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
532 {
533 	struct swap_cluster_info *ci = si->cluster_info;
534 
535 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
536 	cluster_list_del_first(&si->free_clusters, ci);
537 	cluster_set_count_flag(ci + idx, 0, 0);
538 }
539 
540 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
541 {
542 	struct swap_cluster_info *ci = si->cluster_info + idx;
543 
544 	VM_BUG_ON(cluster_count(ci) != 0);
545 	/*
546 	 * If the swap is discardable, prepare discard the cluster
547 	 * instead of free it immediately. The cluster will be freed
548 	 * after discard.
549 	 */
550 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
551 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
552 		swap_cluster_schedule_discard(si, idx);
553 		return;
554 	}
555 
556 	__free_cluster(si, idx);
557 }
558 
559 /*
560  * The cluster corresponding to page_nr will be used. The cluster will be
561  * removed from free cluster list and its usage counter will be increased.
562  */
563 static void inc_cluster_info_page(struct swap_info_struct *p,
564 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
565 {
566 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
567 
568 	if (!cluster_info)
569 		return;
570 	if (cluster_is_free(&cluster_info[idx]))
571 		alloc_cluster(p, idx);
572 
573 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
574 	cluster_set_count(&cluster_info[idx],
575 		cluster_count(&cluster_info[idx]) + 1);
576 }
577 
578 /*
579  * The cluster corresponding to page_nr decreases one usage. If the usage
580  * counter becomes 0, which means no page in the cluster is in using, we can
581  * optionally discard the cluster and add it to free cluster list.
582  */
583 static void dec_cluster_info_page(struct swap_info_struct *p,
584 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
585 {
586 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
587 
588 	if (!cluster_info)
589 		return;
590 
591 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
592 	cluster_set_count(&cluster_info[idx],
593 		cluster_count(&cluster_info[idx]) - 1);
594 
595 	if (cluster_count(&cluster_info[idx]) == 0)
596 		free_cluster(p, idx);
597 }
598 
599 /*
600  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
601  * cluster list. Avoiding such abuse to avoid list corruption.
602  */
603 static bool
604 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
605 	unsigned long offset)
606 {
607 	struct percpu_cluster *percpu_cluster;
608 	bool conflict;
609 
610 	offset /= SWAPFILE_CLUSTER;
611 	conflict = !cluster_list_empty(&si->free_clusters) &&
612 		offset != cluster_list_first(&si->free_clusters) &&
613 		cluster_is_free(&si->cluster_info[offset]);
614 
615 	if (!conflict)
616 		return false;
617 
618 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
619 	cluster_set_null(&percpu_cluster->index);
620 	return true;
621 }
622 
623 /*
624  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
625  * might involve allocating a new cluster for current CPU too.
626  */
627 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
628 	unsigned long *offset, unsigned long *scan_base)
629 {
630 	struct percpu_cluster *cluster;
631 	struct swap_cluster_info *ci;
632 	unsigned long tmp, max;
633 
634 new_cluster:
635 	cluster = this_cpu_ptr(si->percpu_cluster);
636 	if (cluster_is_null(&cluster->index)) {
637 		if (!cluster_list_empty(&si->free_clusters)) {
638 			cluster->index = si->free_clusters.head;
639 			cluster->next = cluster_next(&cluster->index) *
640 					SWAPFILE_CLUSTER;
641 		} else if (!cluster_list_empty(&si->discard_clusters)) {
642 			/*
643 			 * we don't have free cluster but have some clusters in
644 			 * discarding, do discard now and reclaim them, then
645 			 * reread cluster_next_cpu since we dropped si->lock
646 			 */
647 			swap_do_scheduled_discard(si);
648 			*scan_base = this_cpu_read(*si->cluster_next_cpu);
649 			*offset = *scan_base;
650 			goto new_cluster;
651 		} else
652 			return false;
653 	}
654 
655 	/*
656 	 * Other CPUs can use our cluster if they can't find a free cluster,
657 	 * check if there is still free entry in the cluster
658 	 */
659 	tmp = cluster->next;
660 	max = min_t(unsigned long, si->max,
661 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
662 	if (tmp < max) {
663 		ci = lock_cluster(si, tmp);
664 		while (tmp < max) {
665 			if (!si->swap_map[tmp])
666 				break;
667 			tmp++;
668 		}
669 		unlock_cluster(ci);
670 	}
671 	if (tmp >= max) {
672 		cluster_set_null(&cluster->index);
673 		goto new_cluster;
674 	}
675 	cluster->next = tmp + 1;
676 	*offset = tmp;
677 	*scan_base = tmp;
678 	return true;
679 }
680 
681 static void __del_from_avail_list(struct swap_info_struct *p)
682 {
683 	int nid;
684 
685 	assert_spin_locked(&p->lock);
686 	for_each_node(nid)
687 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
688 }
689 
690 static void del_from_avail_list(struct swap_info_struct *p)
691 {
692 	spin_lock(&swap_avail_lock);
693 	__del_from_avail_list(p);
694 	spin_unlock(&swap_avail_lock);
695 }
696 
697 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
698 			     unsigned int nr_entries)
699 {
700 	unsigned int end = offset + nr_entries - 1;
701 
702 	if (offset == si->lowest_bit)
703 		si->lowest_bit += nr_entries;
704 	if (end == si->highest_bit)
705 		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
706 	WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
707 	if (si->inuse_pages == si->pages) {
708 		si->lowest_bit = si->max;
709 		si->highest_bit = 0;
710 		del_from_avail_list(si);
711 	}
712 }
713 
714 static void add_to_avail_list(struct swap_info_struct *p)
715 {
716 	int nid;
717 
718 	spin_lock(&swap_avail_lock);
719 	for_each_node(nid)
720 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
721 	spin_unlock(&swap_avail_lock);
722 }
723 
724 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
725 			    unsigned int nr_entries)
726 {
727 	unsigned long begin = offset;
728 	unsigned long end = offset + nr_entries - 1;
729 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
730 
731 	if (offset < si->lowest_bit)
732 		si->lowest_bit = offset;
733 	if (end > si->highest_bit) {
734 		bool was_full = !si->highest_bit;
735 
736 		WRITE_ONCE(si->highest_bit, end);
737 		if (was_full && (si->flags & SWP_WRITEOK))
738 			add_to_avail_list(si);
739 	}
740 	if (si->flags & SWP_BLKDEV)
741 		swap_slot_free_notify =
742 			si->bdev->bd_disk->fops->swap_slot_free_notify;
743 	else
744 		swap_slot_free_notify = NULL;
745 	while (offset <= end) {
746 		arch_swap_invalidate_page(si->type, offset);
747 		if (swap_slot_free_notify)
748 			swap_slot_free_notify(si->bdev, offset);
749 		offset++;
750 	}
751 	clear_shadow_from_swap_cache(si->type, begin, end);
752 
753 	/*
754 	 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
755 	 * only after the above cleanups are done.
756 	 */
757 	smp_wmb();
758 	atomic_long_add(nr_entries, &nr_swap_pages);
759 	WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
760 }
761 
762 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
763 {
764 	unsigned long prev;
765 
766 	if (!(si->flags & SWP_SOLIDSTATE)) {
767 		si->cluster_next = next;
768 		return;
769 	}
770 
771 	prev = this_cpu_read(*si->cluster_next_cpu);
772 	/*
773 	 * Cross the swap address space size aligned trunk, choose
774 	 * another trunk randomly to avoid lock contention on swap
775 	 * address space if possible.
776 	 */
777 	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
778 	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
779 		/* No free swap slots available */
780 		if (si->highest_bit <= si->lowest_bit)
781 			return;
782 		next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
783 		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
784 		next = max_t(unsigned int, next, si->lowest_bit);
785 	}
786 	this_cpu_write(*si->cluster_next_cpu, next);
787 }
788 
789 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
790 					     unsigned long offset)
791 {
792 	if (data_race(!si->swap_map[offset])) {
793 		spin_lock(&si->lock);
794 		return true;
795 	}
796 
797 	if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
798 		spin_lock(&si->lock);
799 		return true;
800 	}
801 
802 	return false;
803 }
804 
805 static int scan_swap_map_slots(struct swap_info_struct *si,
806 			       unsigned char usage, int nr,
807 			       swp_entry_t slots[])
808 {
809 	struct swap_cluster_info *ci;
810 	unsigned long offset;
811 	unsigned long scan_base;
812 	unsigned long last_in_cluster = 0;
813 	int latency_ration = LATENCY_LIMIT;
814 	int n_ret = 0;
815 	bool scanned_many = false;
816 
817 	/*
818 	 * We try to cluster swap pages by allocating them sequentially
819 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
820 	 * way, however, we resort to first-free allocation, starting
821 	 * a new cluster.  This prevents us from scattering swap pages
822 	 * all over the entire swap partition, so that we reduce
823 	 * overall disk seek times between swap pages.  -- sct
824 	 * But we do now try to find an empty cluster.  -Andrea
825 	 * And we let swap pages go all over an SSD partition.  Hugh
826 	 */
827 
828 	si->flags += SWP_SCANNING;
829 	/*
830 	 * Use percpu scan base for SSD to reduce lock contention on
831 	 * cluster and swap cache.  For HDD, sequential access is more
832 	 * important.
833 	 */
834 	if (si->flags & SWP_SOLIDSTATE)
835 		scan_base = this_cpu_read(*si->cluster_next_cpu);
836 	else
837 		scan_base = si->cluster_next;
838 	offset = scan_base;
839 
840 	/* SSD algorithm */
841 	if (si->cluster_info) {
842 		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
843 			goto scan;
844 	} else if (unlikely(!si->cluster_nr--)) {
845 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
846 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
847 			goto checks;
848 		}
849 
850 		spin_unlock(&si->lock);
851 
852 		/*
853 		 * If seek is expensive, start searching for new cluster from
854 		 * start of partition, to minimize the span of allocated swap.
855 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
856 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
857 		 */
858 		scan_base = offset = si->lowest_bit;
859 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
860 
861 		/* Locate the first empty (unaligned) cluster */
862 		for (; last_in_cluster <= si->highest_bit; offset++) {
863 			if (si->swap_map[offset])
864 				last_in_cluster = offset + SWAPFILE_CLUSTER;
865 			else if (offset == last_in_cluster) {
866 				spin_lock(&si->lock);
867 				offset -= SWAPFILE_CLUSTER - 1;
868 				si->cluster_next = offset;
869 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
870 				goto checks;
871 			}
872 			if (unlikely(--latency_ration < 0)) {
873 				cond_resched();
874 				latency_ration = LATENCY_LIMIT;
875 			}
876 		}
877 
878 		offset = scan_base;
879 		spin_lock(&si->lock);
880 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
881 	}
882 
883 checks:
884 	if (si->cluster_info) {
885 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
886 		/* take a break if we already got some slots */
887 			if (n_ret)
888 				goto done;
889 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
890 							&scan_base))
891 				goto scan;
892 		}
893 	}
894 	if (!(si->flags & SWP_WRITEOK))
895 		goto no_page;
896 	if (!si->highest_bit)
897 		goto no_page;
898 	if (offset > si->highest_bit)
899 		scan_base = offset = si->lowest_bit;
900 
901 	ci = lock_cluster(si, offset);
902 	/* reuse swap entry of cache-only swap if not busy. */
903 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
904 		int swap_was_freed;
905 		unlock_cluster(ci);
906 		spin_unlock(&si->lock);
907 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
908 		spin_lock(&si->lock);
909 		/* entry was freed successfully, try to use this again */
910 		if (swap_was_freed)
911 			goto checks;
912 		goto scan; /* check next one */
913 	}
914 
915 	if (si->swap_map[offset]) {
916 		unlock_cluster(ci);
917 		if (!n_ret)
918 			goto scan;
919 		else
920 			goto done;
921 	}
922 	WRITE_ONCE(si->swap_map[offset], usage);
923 	inc_cluster_info_page(si, si->cluster_info, offset);
924 	unlock_cluster(ci);
925 
926 	swap_range_alloc(si, offset, 1);
927 	slots[n_ret++] = swp_entry(si->type, offset);
928 
929 	/* got enough slots or reach max slots? */
930 	if ((n_ret == nr) || (offset >= si->highest_bit))
931 		goto done;
932 
933 	/* search for next available slot */
934 
935 	/* time to take a break? */
936 	if (unlikely(--latency_ration < 0)) {
937 		if (n_ret)
938 			goto done;
939 		spin_unlock(&si->lock);
940 		cond_resched();
941 		spin_lock(&si->lock);
942 		latency_ration = LATENCY_LIMIT;
943 	}
944 
945 	/* try to get more slots in cluster */
946 	if (si->cluster_info) {
947 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
948 			goto checks;
949 	} else if (si->cluster_nr && !si->swap_map[++offset]) {
950 		/* non-ssd case, still more slots in cluster? */
951 		--si->cluster_nr;
952 		goto checks;
953 	}
954 
955 	/*
956 	 * Even if there's no free clusters available (fragmented),
957 	 * try to scan a little more quickly with lock held unless we
958 	 * have scanned too many slots already.
959 	 */
960 	if (!scanned_many) {
961 		unsigned long scan_limit;
962 
963 		if (offset < scan_base)
964 			scan_limit = scan_base;
965 		else
966 			scan_limit = si->highest_bit;
967 		for (; offset <= scan_limit && --latency_ration > 0;
968 		     offset++) {
969 			if (!si->swap_map[offset])
970 				goto checks;
971 		}
972 	}
973 
974 done:
975 	set_cluster_next(si, offset + 1);
976 	si->flags -= SWP_SCANNING;
977 	return n_ret;
978 
979 scan:
980 	spin_unlock(&si->lock);
981 	while (++offset <= READ_ONCE(si->highest_bit)) {
982 		if (unlikely(--latency_ration < 0)) {
983 			cond_resched();
984 			latency_ration = LATENCY_LIMIT;
985 			scanned_many = true;
986 		}
987 		if (swap_offset_available_and_locked(si, offset))
988 			goto checks;
989 	}
990 	offset = si->lowest_bit;
991 	while (offset < scan_base) {
992 		if (unlikely(--latency_ration < 0)) {
993 			cond_resched();
994 			latency_ration = LATENCY_LIMIT;
995 			scanned_many = true;
996 		}
997 		if (swap_offset_available_and_locked(si, offset))
998 			goto checks;
999 		offset++;
1000 	}
1001 	spin_lock(&si->lock);
1002 
1003 no_page:
1004 	si->flags -= SWP_SCANNING;
1005 	return n_ret;
1006 }
1007 
1008 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1009 {
1010 	unsigned long idx;
1011 	struct swap_cluster_info *ci;
1012 	unsigned long offset;
1013 
1014 	/*
1015 	 * Should not even be attempting cluster allocations when huge
1016 	 * page swap is disabled.  Warn and fail the allocation.
1017 	 */
1018 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1019 		VM_WARN_ON_ONCE(1);
1020 		return 0;
1021 	}
1022 
1023 	if (cluster_list_empty(&si->free_clusters))
1024 		return 0;
1025 
1026 	idx = cluster_list_first(&si->free_clusters);
1027 	offset = idx * SWAPFILE_CLUSTER;
1028 	ci = lock_cluster(si, offset);
1029 	alloc_cluster(si, idx);
1030 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1031 
1032 	memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1033 	unlock_cluster(ci);
1034 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1035 	*slot = swp_entry(si->type, offset);
1036 
1037 	return 1;
1038 }
1039 
1040 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1041 {
1042 	unsigned long offset = idx * SWAPFILE_CLUSTER;
1043 	struct swap_cluster_info *ci;
1044 
1045 	ci = lock_cluster(si, offset);
1046 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1047 	cluster_set_count_flag(ci, 0, 0);
1048 	free_cluster(si, idx);
1049 	unlock_cluster(ci);
1050 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1051 }
1052 
1053 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1054 {
1055 	unsigned long size = swap_entry_size(entry_size);
1056 	struct swap_info_struct *si, *next;
1057 	long avail_pgs;
1058 	int n_ret = 0;
1059 	int node;
1060 
1061 	/* Only single cluster request supported */
1062 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1063 
1064 	spin_lock(&swap_avail_lock);
1065 
1066 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1067 	if (avail_pgs <= 0) {
1068 		spin_unlock(&swap_avail_lock);
1069 		goto noswap;
1070 	}
1071 
1072 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1073 
1074 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1075 
1076 start_over:
1077 	node = numa_node_id();
1078 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1079 		/* requeue si to after same-priority siblings */
1080 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1081 		spin_unlock(&swap_avail_lock);
1082 		spin_lock(&si->lock);
1083 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1084 			spin_lock(&swap_avail_lock);
1085 			if (plist_node_empty(&si->avail_lists[node])) {
1086 				spin_unlock(&si->lock);
1087 				goto nextsi;
1088 			}
1089 			WARN(!si->highest_bit,
1090 			     "swap_info %d in list but !highest_bit\n",
1091 			     si->type);
1092 			WARN(!(si->flags & SWP_WRITEOK),
1093 			     "swap_info %d in list but !SWP_WRITEOK\n",
1094 			     si->type);
1095 			__del_from_avail_list(si);
1096 			spin_unlock(&si->lock);
1097 			goto nextsi;
1098 		}
1099 		if (size == SWAPFILE_CLUSTER) {
1100 			if (si->flags & SWP_BLKDEV)
1101 				n_ret = swap_alloc_cluster(si, swp_entries);
1102 		} else
1103 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1104 						    n_goal, swp_entries);
1105 		spin_unlock(&si->lock);
1106 		if (n_ret || size == SWAPFILE_CLUSTER)
1107 			goto check_out;
1108 		cond_resched();
1109 
1110 		spin_lock(&swap_avail_lock);
1111 nextsi:
1112 		/*
1113 		 * if we got here, it's likely that si was almost full before,
1114 		 * and since scan_swap_map_slots() can drop the si->lock,
1115 		 * multiple callers probably all tried to get a page from the
1116 		 * same si and it filled up before we could get one; or, the si
1117 		 * filled up between us dropping swap_avail_lock and taking
1118 		 * si->lock. Since we dropped the swap_avail_lock, the
1119 		 * swap_avail_head list may have been modified; so if next is
1120 		 * still in the swap_avail_head list then try it, otherwise
1121 		 * start over if we have not gotten any slots.
1122 		 */
1123 		if (plist_node_empty(&next->avail_lists[node]))
1124 			goto start_over;
1125 	}
1126 
1127 	spin_unlock(&swap_avail_lock);
1128 
1129 check_out:
1130 	if (n_ret < n_goal)
1131 		atomic_long_add((long)(n_goal - n_ret) * size,
1132 				&nr_swap_pages);
1133 noswap:
1134 	return n_ret;
1135 }
1136 
1137 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1138 {
1139 	struct swap_info_struct *p;
1140 	unsigned long offset;
1141 
1142 	if (!entry.val)
1143 		goto out;
1144 	p = swp_swap_info(entry);
1145 	if (!p)
1146 		goto bad_nofile;
1147 	if (data_race(!(p->flags & SWP_USED)))
1148 		goto bad_device;
1149 	offset = swp_offset(entry);
1150 	if (offset >= p->max)
1151 		goto bad_offset;
1152 	if (data_race(!p->swap_map[swp_offset(entry)]))
1153 		goto bad_free;
1154 	return p;
1155 
1156 bad_free:
1157 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1158 	goto out;
1159 bad_offset:
1160 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1161 	goto out;
1162 bad_device:
1163 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1164 	goto out;
1165 bad_nofile:
1166 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1167 out:
1168 	return NULL;
1169 }
1170 
1171 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1172 					struct swap_info_struct *q)
1173 {
1174 	struct swap_info_struct *p;
1175 
1176 	p = _swap_info_get(entry);
1177 
1178 	if (p != q) {
1179 		if (q != NULL)
1180 			spin_unlock(&q->lock);
1181 		if (p != NULL)
1182 			spin_lock(&p->lock);
1183 	}
1184 	return p;
1185 }
1186 
1187 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1188 					      unsigned long offset,
1189 					      unsigned char usage)
1190 {
1191 	unsigned char count;
1192 	unsigned char has_cache;
1193 
1194 	count = p->swap_map[offset];
1195 
1196 	has_cache = count & SWAP_HAS_CACHE;
1197 	count &= ~SWAP_HAS_CACHE;
1198 
1199 	if (usage == SWAP_HAS_CACHE) {
1200 		VM_BUG_ON(!has_cache);
1201 		has_cache = 0;
1202 	} else if (count == SWAP_MAP_SHMEM) {
1203 		/*
1204 		 * Or we could insist on shmem.c using a special
1205 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1206 		 */
1207 		count = 0;
1208 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1209 		if (count == COUNT_CONTINUED) {
1210 			if (swap_count_continued(p, offset, count))
1211 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1212 			else
1213 				count = SWAP_MAP_MAX;
1214 		} else
1215 			count--;
1216 	}
1217 
1218 	usage = count | has_cache;
1219 	if (usage)
1220 		WRITE_ONCE(p->swap_map[offset], usage);
1221 	else
1222 		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1223 
1224 	return usage;
1225 }
1226 
1227 /*
1228  * When we get a swap entry, if there aren't some other ways to
1229  * prevent swapoff, such as the folio in swap cache is locked, page
1230  * table lock is held, etc., the swap entry may become invalid because
1231  * of swapoff.  Then, we need to enclose all swap related functions
1232  * with get_swap_device() and put_swap_device(), unless the swap
1233  * functions call get/put_swap_device() by themselves.
1234  *
1235  * Note that when only holding the PTL, swapoff might succeed immediately
1236  * after freeing a swap entry. Therefore, immediately after
1237  * __swap_entry_free(), the swap info might become stale and should not
1238  * be touched without a prior get_swap_device().
1239  *
1240  * Check whether swap entry is valid in the swap device.  If so,
1241  * return pointer to swap_info_struct, and keep the swap entry valid
1242  * via preventing the swap device from being swapoff, until
1243  * put_swap_device() is called.  Otherwise return NULL.
1244  *
1245  * Notice that swapoff or swapoff+swapon can still happen before the
1246  * percpu_ref_tryget_live() in get_swap_device() or after the
1247  * percpu_ref_put() in put_swap_device() if there isn't any other way
1248  * to prevent swapoff.  The caller must be prepared for that.  For
1249  * example, the following situation is possible.
1250  *
1251  *   CPU1				CPU2
1252  *   do_swap_page()
1253  *     ...				swapoff+swapon
1254  *     __read_swap_cache_async()
1255  *       swapcache_prepare()
1256  *         __swap_duplicate()
1257  *           // check swap_map
1258  *     // verify PTE not changed
1259  *
1260  * In __swap_duplicate(), the swap_map need to be checked before
1261  * changing partly because the specified swap entry may be for another
1262  * swap device which has been swapoff.  And in do_swap_page(), after
1263  * the page is read from the swap device, the PTE is verified not
1264  * changed with the page table locked to check whether the swap device
1265  * has been swapoff or swapoff+swapon.
1266  */
1267 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1268 {
1269 	struct swap_info_struct *si;
1270 	unsigned long offset;
1271 
1272 	if (!entry.val)
1273 		goto out;
1274 	si = swp_swap_info(entry);
1275 	if (!si)
1276 		goto bad_nofile;
1277 	if (!percpu_ref_tryget_live(&si->users))
1278 		goto out;
1279 	/*
1280 	 * Guarantee the si->users are checked before accessing other
1281 	 * fields of swap_info_struct.
1282 	 *
1283 	 * Paired with the spin_unlock() after setup_swap_info() in
1284 	 * enable_swap_info().
1285 	 */
1286 	smp_rmb();
1287 	offset = swp_offset(entry);
1288 	if (offset >= si->max)
1289 		goto put_out;
1290 
1291 	return si;
1292 bad_nofile:
1293 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1294 out:
1295 	return NULL;
1296 put_out:
1297 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1298 	percpu_ref_put(&si->users);
1299 	return NULL;
1300 }
1301 
1302 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1303 				       swp_entry_t entry)
1304 {
1305 	struct swap_cluster_info *ci;
1306 	unsigned long offset = swp_offset(entry);
1307 	unsigned char usage;
1308 
1309 	ci = lock_cluster_or_swap_info(p, offset);
1310 	usage = __swap_entry_free_locked(p, offset, 1);
1311 	unlock_cluster_or_swap_info(p, ci);
1312 	if (!usage)
1313 		free_swap_slot(entry);
1314 
1315 	return usage;
1316 }
1317 
1318 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1319 {
1320 	struct swap_cluster_info *ci;
1321 	unsigned long offset = swp_offset(entry);
1322 	unsigned char count;
1323 
1324 	ci = lock_cluster(p, offset);
1325 	count = p->swap_map[offset];
1326 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1327 	p->swap_map[offset] = 0;
1328 	dec_cluster_info_page(p, p->cluster_info, offset);
1329 	unlock_cluster(ci);
1330 
1331 	mem_cgroup_uncharge_swap(entry, 1);
1332 	swap_range_free(p, offset, 1);
1333 }
1334 
1335 /*
1336  * Caller has made sure that the swap device corresponding to entry
1337  * is still around or has not been recycled.
1338  */
1339 void swap_free(swp_entry_t entry)
1340 {
1341 	struct swap_info_struct *p;
1342 
1343 	p = _swap_info_get(entry);
1344 	if (p)
1345 		__swap_entry_free(p, entry);
1346 }
1347 
1348 /*
1349  * Called after dropping swapcache to decrease refcnt to swap entries.
1350  */
1351 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1352 {
1353 	unsigned long offset = swp_offset(entry);
1354 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1355 	struct swap_cluster_info *ci;
1356 	struct swap_info_struct *si;
1357 	unsigned char *map;
1358 	unsigned int i, free_entries = 0;
1359 	unsigned char val;
1360 	int size = swap_entry_size(folio_nr_pages(folio));
1361 
1362 	si = _swap_info_get(entry);
1363 	if (!si)
1364 		return;
1365 
1366 	ci = lock_cluster_or_swap_info(si, offset);
1367 	if (size == SWAPFILE_CLUSTER) {
1368 		VM_BUG_ON(!cluster_is_huge(ci));
1369 		map = si->swap_map + offset;
1370 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1371 			val = map[i];
1372 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1373 			if (val == SWAP_HAS_CACHE)
1374 				free_entries++;
1375 		}
1376 		cluster_clear_huge(ci);
1377 		if (free_entries == SWAPFILE_CLUSTER) {
1378 			unlock_cluster_or_swap_info(si, ci);
1379 			spin_lock(&si->lock);
1380 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1381 			swap_free_cluster(si, idx);
1382 			spin_unlock(&si->lock);
1383 			return;
1384 		}
1385 	}
1386 	for (i = 0; i < size; i++, entry.val++) {
1387 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1388 			unlock_cluster_or_swap_info(si, ci);
1389 			free_swap_slot(entry);
1390 			if (i == size - 1)
1391 				return;
1392 			lock_cluster_or_swap_info(si, offset);
1393 		}
1394 	}
1395 	unlock_cluster_or_swap_info(si, ci);
1396 }
1397 
1398 #ifdef CONFIG_THP_SWAP
1399 int split_swap_cluster(swp_entry_t entry)
1400 {
1401 	struct swap_info_struct *si;
1402 	struct swap_cluster_info *ci;
1403 	unsigned long offset = swp_offset(entry);
1404 
1405 	si = _swap_info_get(entry);
1406 	if (!si)
1407 		return -EBUSY;
1408 	ci = lock_cluster(si, offset);
1409 	cluster_clear_huge(ci);
1410 	unlock_cluster(ci);
1411 	return 0;
1412 }
1413 #endif
1414 
1415 static int swp_entry_cmp(const void *ent1, const void *ent2)
1416 {
1417 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1418 
1419 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1420 }
1421 
1422 void swapcache_free_entries(swp_entry_t *entries, int n)
1423 {
1424 	struct swap_info_struct *p, *prev;
1425 	int i;
1426 
1427 	if (n <= 0)
1428 		return;
1429 
1430 	prev = NULL;
1431 	p = NULL;
1432 
1433 	/*
1434 	 * Sort swap entries by swap device, so each lock is only taken once.
1435 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1436 	 * so low that it isn't necessary to optimize further.
1437 	 */
1438 	if (nr_swapfiles > 1)
1439 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1440 	for (i = 0; i < n; ++i) {
1441 		p = swap_info_get_cont(entries[i], prev);
1442 		if (p)
1443 			swap_entry_free(p, entries[i]);
1444 		prev = p;
1445 	}
1446 	if (p)
1447 		spin_unlock(&p->lock);
1448 }
1449 
1450 int __swap_count(swp_entry_t entry)
1451 {
1452 	struct swap_info_struct *si = swp_swap_info(entry);
1453 	pgoff_t offset = swp_offset(entry);
1454 
1455 	return swap_count(si->swap_map[offset]);
1456 }
1457 
1458 /*
1459  * How many references to @entry are currently swapped out?
1460  * This does not give an exact answer when swap count is continued,
1461  * but does include the high COUNT_CONTINUED flag to allow for that.
1462  */
1463 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1464 {
1465 	pgoff_t offset = swp_offset(entry);
1466 	struct swap_cluster_info *ci;
1467 	int count;
1468 
1469 	ci = lock_cluster_or_swap_info(si, offset);
1470 	count = swap_count(si->swap_map[offset]);
1471 	unlock_cluster_or_swap_info(si, ci);
1472 	return count;
1473 }
1474 
1475 /*
1476  * How many references to @entry are currently swapped out?
1477  * This considers COUNT_CONTINUED so it returns exact answer.
1478  */
1479 int swp_swapcount(swp_entry_t entry)
1480 {
1481 	int count, tmp_count, n;
1482 	struct swap_info_struct *p;
1483 	struct swap_cluster_info *ci;
1484 	struct page *page;
1485 	pgoff_t offset;
1486 	unsigned char *map;
1487 
1488 	p = _swap_info_get(entry);
1489 	if (!p)
1490 		return 0;
1491 
1492 	offset = swp_offset(entry);
1493 
1494 	ci = lock_cluster_or_swap_info(p, offset);
1495 
1496 	count = swap_count(p->swap_map[offset]);
1497 	if (!(count & COUNT_CONTINUED))
1498 		goto out;
1499 
1500 	count &= ~COUNT_CONTINUED;
1501 	n = SWAP_MAP_MAX + 1;
1502 
1503 	page = vmalloc_to_page(p->swap_map + offset);
1504 	offset &= ~PAGE_MASK;
1505 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1506 
1507 	do {
1508 		page = list_next_entry(page, lru);
1509 		map = kmap_local_page(page);
1510 		tmp_count = map[offset];
1511 		kunmap_local(map);
1512 
1513 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1514 		n *= (SWAP_CONT_MAX + 1);
1515 	} while (tmp_count & COUNT_CONTINUED);
1516 out:
1517 	unlock_cluster_or_swap_info(p, ci);
1518 	return count;
1519 }
1520 
1521 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1522 					 swp_entry_t entry)
1523 {
1524 	struct swap_cluster_info *ci;
1525 	unsigned char *map = si->swap_map;
1526 	unsigned long roffset = swp_offset(entry);
1527 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1528 	int i;
1529 	bool ret = false;
1530 
1531 	ci = lock_cluster_or_swap_info(si, offset);
1532 	if (!ci || !cluster_is_huge(ci)) {
1533 		if (swap_count(map[roffset]))
1534 			ret = true;
1535 		goto unlock_out;
1536 	}
1537 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1538 		if (swap_count(map[offset + i])) {
1539 			ret = true;
1540 			break;
1541 		}
1542 	}
1543 unlock_out:
1544 	unlock_cluster_or_swap_info(si, ci);
1545 	return ret;
1546 }
1547 
1548 static bool folio_swapped(struct folio *folio)
1549 {
1550 	swp_entry_t entry = folio->swap;
1551 	struct swap_info_struct *si = _swap_info_get(entry);
1552 
1553 	if (!si)
1554 		return false;
1555 
1556 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1557 		return swap_swapcount(si, entry) != 0;
1558 
1559 	return swap_page_trans_huge_swapped(si, entry);
1560 }
1561 
1562 /**
1563  * folio_free_swap() - Free the swap space used for this folio.
1564  * @folio: The folio to remove.
1565  *
1566  * If swap is getting full, or if there are no more mappings of this folio,
1567  * then call folio_free_swap to free its swap space.
1568  *
1569  * Return: true if we were able to release the swap space.
1570  */
1571 bool folio_free_swap(struct folio *folio)
1572 {
1573 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1574 
1575 	if (!folio_test_swapcache(folio))
1576 		return false;
1577 	if (folio_test_writeback(folio))
1578 		return false;
1579 	if (folio_swapped(folio))
1580 		return false;
1581 
1582 	/*
1583 	 * Once hibernation has begun to create its image of memory,
1584 	 * there's a danger that one of the calls to folio_free_swap()
1585 	 * - most probably a call from __try_to_reclaim_swap() while
1586 	 * hibernation is allocating its own swap pages for the image,
1587 	 * but conceivably even a call from memory reclaim - will free
1588 	 * the swap from a folio which has already been recorded in the
1589 	 * image as a clean swapcache folio, and then reuse its swap for
1590 	 * another page of the image.  On waking from hibernation, the
1591 	 * original folio might be freed under memory pressure, then
1592 	 * later read back in from swap, now with the wrong data.
1593 	 *
1594 	 * Hibernation suspends storage while it is writing the image
1595 	 * to disk so check that here.
1596 	 */
1597 	if (pm_suspended_storage())
1598 		return false;
1599 
1600 	delete_from_swap_cache(folio);
1601 	folio_set_dirty(folio);
1602 	return true;
1603 }
1604 
1605 /*
1606  * Free the swap entry like above, but also try to
1607  * free the page cache entry if it is the last user.
1608  */
1609 int free_swap_and_cache(swp_entry_t entry)
1610 {
1611 	struct swap_info_struct *p;
1612 	unsigned char count;
1613 
1614 	if (non_swap_entry(entry))
1615 		return 1;
1616 
1617 	p = get_swap_device(entry);
1618 	if (p) {
1619 		if (WARN_ON(data_race(!p->swap_map[swp_offset(entry)]))) {
1620 			put_swap_device(p);
1621 			return 0;
1622 		}
1623 
1624 		count = __swap_entry_free(p, entry);
1625 		if (count == SWAP_HAS_CACHE &&
1626 		    !swap_page_trans_huge_swapped(p, entry))
1627 			__try_to_reclaim_swap(p, swp_offset(entry),
1628 					      TTRS_UNMAPPED | TTRS_FULL);
1629 		put_swap_device(p);
1630 	}
1631 	return p != NULL;
1632 }
1633 
1634 #ifdef CONFIG_HIBERNATION
1635 
1636 swp_entry_t get_swap_page_of_type(int type)
1637 {
1638 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1639 	swp_entry_t entry = {0};
1640 
1641 	if (!si)
1642 		goto fail;
1643 
1644 	/* This is called for allocating swap entry, not cache */
1645 	spin_lock(&si->lock);
1646 	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1647 		atomic_long_dec(&nr_swap_pages);
1648 	spin_unlock(&si->lock);
1649 fail:
1650 	return entry;
1651 }
1652 
1653 /*
1654  * Find the swap type that corresponds to given device (if any).
1655  *
1656  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1657  * from 0, in which the swap header is expected to be located.
1658  *
1659  * This is needed for the suspend to disk (aka swsusp).
1660  */
1661 int swap_type_of(dev_t device, sector_t offset)
1662 {
1663 	int type;
1664 
1665 	if (!device)
1666 		return -1;
1667 
1668 	spin_lock(&swap_lock);
1669 	for (type = 0; type < nr_swapfiles; type++) {
1670 		struct swap_info_struct *sis = swap_info[type];
1671 
1672 		if (!(sis->flags & SWP_WRITEOK))
1673 			continue;
1674 
1675 		if (device == sis->bdev->bd_dev) {
1676 			struct swap_extent *se = first_se(sis);
1677 
1678 			if (se->start_block == offset) {
1679 				spin_unlock(&swap_lock);
1680 				return type;
1681 			}
1682 		}
1683 	}
1684 	spin_unlock(&swap_lock);
1685 	return -ENODEV;
1686 }
1687 
1688 int find_first_swap(dev_t *device)
1689 {
1690 	int type;
1691 
1692 	spin_lock(&swap_lock);
1693 	for (type = 0; type < nr_swapfiles; type++) {
1694 		struct swap_info_struct *sis = swap_info[type];
1695 
1696 		if (!(sis->flags & SWP_WRITEOK))
1697 			continue;
1698 		*device = sis->bdev->bd_dev;
1699 		spin_unlock(&swap_lock);
1700 		return type;
1701 	}
1702 	spin_unlock(&swap_lock);
1703 	return -ENODEV;
1704 }
1705 
1706 /*
1707  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1708  * corresponding to given index in swap_info (swap type).
1709  */
1710 sector_t swapdev_block(int type, pgoff_t offset)
1711 {
1712 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1713 	struct swap_extent *se;
1714 
1715 	if (!si || !(si->flags & SWP_WRITEOK))
1716 		return 0;
1717 	se = offset_to_swap_extent(si, offset);
1718 	return se->start_block + (offset - se->start_page);
1719 }
1720 
1721 /*
1722  * Return either the total number of swap pages of given type, or the number
1723  * of free pages of that type (depending on @free)
1724  *
1725  * This is needed for software suspend
1726  */
1727 unsigned int count_swap_pages(int type, int free)
1728 {
1729 	unsigned int n = 0;
1730 
1731 	spin_lock(&swap_lock);
1732 	if ((unsigned int)type < nr_swapfiles) {
1733 		struct swap_info_struct *sis = swap_info[type];
1734 
1735 		spin_lock(&sis->lock);
1736 		if (sis->flags & SWP_WRITEOK) {
1737 			n = sis->pages;
1738 			if (free)
1739 				n -= sis->inuse_pages;
1740 		}
1741 		spin_unlock(&sis->lock);
1742 	}
1743 	spin_unlock(&swap_lock);
1744 	return n;
1745 }
1746 #endif /* CONFIG_HIBERNATION */
1747 
1748 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1749 {
1750 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1751 }
1752 
1753 /*
1754  * No need to decide whether this PTE shares the swap entry with others,
1755  * just let do_wp_page work it out if a write is requested later - to
1756  * force COW, vm_page_prot omits write permission from any private vma.
1757  */
1758 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1759 		unsigned long addr, swp_entry_t entry, struct folio *folio)
1760 {
1761 	struct page *page;
1762 	struct folio *swapcache;
1763 	spinlock_t *ptl;
1764 	pte_t *pte, new_pte, old_pte;
1765 	bool hwpoisoned = false;
1766 	int ret = 1;
1767 
1768 	swapcache = folio;
1769 	folio = ksm_might_need_to_copy(folio, vma, addr);
1770 	if (unlikely(!folio))
1771 		return -ENOMEM;
1772 	else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
1773 		hwpoisoned = true;
1774 		folio = swapcache;
1775 	}
1776 
1777 	page = folio_file_page(folio, swp_offset(entry));
1778 	if (PageHWPoison(page))
1779 		hwpoisoned = true;
1780 
1781 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1782 	if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
1783 						swp_entry_to_pte(entry)))) {
1784 		ret = 0;
1785 		goto out;
1786 	}
1787 
1788 	old_pte = ptep_get(pte);
1789 
1790 	if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
1791 		swp_entry_t swp_entry;
1792 
1793 		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1794 		if (hwpoisoned) {
1795 			swp_entry = make_hwpoison_entry(page);
1796 		} else {
1797 			swp_entry = make_poisoned_swp_entry();
1798 		}
1799 		new_pte = swp_entry_to_pte(swp_entry);
1800 		ret = 0;
1801 		goto setpte;
1802 	}
1803 
1804 	/*
1805 	 * Some architectures may have to restore extra metadata to the page
1806 	 * when reading from swap. This metadata may be indexed by swap entry
1807 	 * so this must be called before swap_free().
1808 	 */
1809 	arch_swap_restore(entry, folio);
1810 
1811 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1812 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1813 	folio_get(folio);
1814 	if (folio == swapcache) {
1815 		rmap_t rmap_flags = RMAP_NONE;
1816 
1817 		/*
1818 		 * See do_swap_page(): writeback would be problematic.
1819 		 * However, we do a folio_wait_writeback() just before this
1820 		 * call and have the folio locked.
1821 		 */
1822 		VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
1823 		if (pte_swp_exclusive(old_pte))
1824 			rmap_flags |= RMAP_EXCLUSIVE;
1825 
1826 		folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
1827 	} else { /* ksm created a completely new copy */
1828 		folio_add_new_anon_rmap(folio, vma, addr);
1829 		folio_add_lru_vma(folio, vma);
1830 	}
1831 	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1832 	if (pte_swp_soft_dirty(old_pte))
1833 		new_pte = pte_mksoft_dirty(new_pte);
1834 	if (pte_swp_uffd_wp(old_pte))
1835 		new_pte = pte_mkuffd_wp(new_pte);
1836 setpte:
1837 	set_pte_at(vma->vm_mm, addr, pte, new_pte);
1838 	swap_free(entry);
1839 out:
1840 	if (pte)
1841 		pte_unmap_unlock(pte, ptl);
1842 	if (folio != swapcache) {
1843 		folio_unlock(folio);
1844 		folio_put(folio);
1845 	}
1846 	return ret;
1847 }
1848 
1849 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1850 			unsigned long addr, unsigned long end,
1851 			unsigned int type)
1852 {
1853 	pte_t *pte = NULL;
1854 	struct swap_info_struct *si;
1855 
1856 	si = swap_info[type];
1857 	do {
1858 		struct folio *folio;
1859 		unsigned long offset;
1860 		unsigned char swp_count;
1861 		swp_entry_t entry;
1862 		int ret;
1863 		pte_t ptent;
1864 
1865 		if (!pte++) {
1866 			pte = pte_offset_map(pmd, addr);
1867 			if (!pte)
1868 				break;
1869 		}
1870 
1871 		ptent = ptep_get_lockless(pte);
1872 
1873 		if (!is_swap_pte(ptent))
1874 			continue;
1875 
1876 		entry = pte_to_swp_entry(ptent);
1877 		if (swp_type(entry) != type)
1878 			continue;
1879 
1880 		offset = swp_offset(entry);
1881 		pte_unmap(pte);
1882 		pte = NULL;
1883 
1884 		folio = swap_cache_get_folio(entry, vma, addr);
1885 		if (!folio) {
1886 			struct page *page;
1887 			struct vm_fault vmf = {
1888 				.vma = vma,
1889 				.address = addr,
1890 				.real_address = addr,
1891 				.pmd = pmd,
1892 			};
1893 
1894 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1895 						&vmf);
1896 			if (page)
1897 				folio = page_folio(page);
1898 		}
1899 		if (!folio) {
1900 			swp_count = READ_ONCE(si->swap_map[offset]);
1901 			if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1902 				continue;
1903 			return -ENOMEM;
1904 		}
1905 
1906 		folio_lock(folio);
1907 		folio_wait_writeback(folio);
1908 		ret = unuse_pte(vma, pmd, addr, entry, folio);
1909 		if (ret < 0) {
1910 			folio_unlock(folio);
1911 			folio_put(folio);
1912 			return ret;
1913 		}
1914 
1915 		folio_free_swap(folio);
1916 		folio_unlock(folio);
1917 		folio_put(folio);
1918 	} while (addr += PAGE_SIZE, addr != end);
1919 
1920 	if (pte)
1921 		pte_unmap(pte);
1922 	return 0;
1923 }
1924 
1925 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1926 				unsigned long addr, unsigned long end,
1927 				unsigned int type)
1928 {
1929 	pmd_t *pmd;
1930 	unsigned long next;
1931 	int ret;
1932 
1933 	pmd = pmd_offset(pud, addr);
1934 	do {
1935 		cond_resched();
1936 		next = pmd_addr_end(addr, end);
1937 		ret = unuse_pte_range(vma, pmd, addr, next, type);
1938 		if (ret)
1939 			return ret;
1940 	} while (pmd++, addr = next, addr != end);
1941 	return 0;
1942 }
1943 
1944 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1945 				unsigned long addr, unsigned long end,
1946 				unsigned int type)
1947 {
1948 	pud_t *pud;
1949 	unsigned long next;
1950 	int ret;
1951 
1952 	pud = pud_offset(p4d, addr);
1953 	do {
1954 		next = pud_addr_end(addr, end);
1955 		if (pud_none_or_clear_bad(pud))
1956 			continue;
1957 		ret = unuse_pmd_range(vma, pud, addr, next, type);
1958 		if (ret)
1959 			return ret;
1960 	} while (pud++, addr = next, addr != end);
1961 	return 0;
1962 }
1963 
1964 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1965 				unsigned long addr, unsigned long end,
1966 				unsigned int type)
1967 {
1968 	p4d_t *p4d;
1969 	unsigned long next;
1970 	int ret;
1971 
1972 	p4d = p4d_offset(pgd, addr);
1973 	do {
1974 		next = p4d_addr_end(addr, end);
1975 		if (p4d_none_or_clear_bad(p4d))
1976 			continue;
1977 		ret = unuse_pud_range(vma, p4d, addr, next, type);
1978 		if (ret)
1979 			return ret;
1980 	} while (p4d++, addr = next, addr != end);
1981 	return 0;
1982 }
1983 
1984 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1985 {
1986 	pgd_t *pgd;
1987 	unsigned long addr, end, next;
1988 	int ret;
1989 
1990 	addr = vma->vm_start;
1991 	end = vma->vm_end;
1992 
1993 	pgd = pgd_offset(vma->vm_mm, addr);
1994 	do {
1995 		next = pgd_addr_end(addr, end);
1996 		if (pgd_none_or_clear_bad(pgd))
1997 			continue;
1998 		ret = unuse_p4d_range(vma, pgd, addr, next, type);
1999 		if (ret)
2000 			return ret;
2001 	} while (pgd++, addr = next, addr != end);
2002 	return 0;
2003 }
2004 
2005 static int unuse_mm(struct mm_struct *mm, unsigned int type)
2006 {
2007 	struct vm_area_struct *vma;
2008 	int ret = 0;
2009 	VMA_ITERATOR(vmi, mm, 0);
2010 
2011 	mmap_read_lock(mm);
2012 	for_each_vma(vmi, vma) {
2013 		if (vma->anon_vma) {
2014 			ret = unuse_vma(vma, type);
2015 			if (ret)
2016 				break;
2017 		}
2018 
2019 		cond_resched();
2020 	}
2021 	mmap_read_unlock(mm);
2022 	return ret;
2023 }
2024 
2025 /*
2026  * Scan swap_map from current position to next entry still in use.
2027  * Return 0 if there are no inuse entries after prev till end of
2028  * the map.
2029  */
2030 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2031 					unsigned int prev)
2032 {
2033 	unsigned int i;
2034 	unsigned char count;
2035 
2036 	/*
2037 	 * No need for swap_lock here: we're just looking
2038 	 * for whether an entry is in use, not modifying it; false
2039 	 * hits are okay, and sys_swapoff() has already prevented new
2040 	 * allocations from this area (while holding swap_lock).
2041 	 */
2042 	for (i = prev + 1; i < si->max; i++) {
2043 		count = READ_ONCE(si->swap_map[i]);
2044 		if (count && swap_count(count) != SWAP_MAP_BAD)
2045 			break;
2046 		if ((i % LATENCY_LIMIT) == 0)
2047 			cond_resched();
2048 	}
2049 
2050 	if (i == si->max)
2051 		i = 0;
2052 
2053 	return i;
2054 }
2055 
2056 static int try_to_unuse(unsigned int type)
2057 {
2058 	struct mm_struct *prev_mm;
2059 	struct mm_struct *mm;
2060 	struct list_head *p;
2061 	int retval = 0;
2062 	struct swap_info_struct *si = swap_info[type];
2063 	struct folio *folio;
2064 	swp_entry_t entry;
2065 	unsigned int i;
2066 
2067 	if (!READ_ONCE(si->inuse_pages))
2068 		goto success;
2069 
2070 retry:
2071 	retval = shmem_unuse(type);
2072 	if (retval)
2073 		return retval;
2074 
2075 	prev_mm = &init_mm;
2076 	mmget(prev_mm);
2077 
2078 	spin_lock(&mmlist_lock);
2079 	p = &init_mm.mmlist;
2080 	while (READ_ONCE(si->inuse_pages) &&
2081 	       !signal_pending(current) &&
2082 	       (p = p->next) != &init_mm.mmlist) {
2083 
2084 		mm = list_entry(p, struct mm_struct, mmlist);
2085 		if (!mmget_not_zero(mm))
2086 			continue;
2087 		spin_unlock(&mmlist_lock);
2088 		mmput(prev_mm);
2089 		prev_mm = mm;
2090 		retval = unuse_mm(mm, type);
2091 		if (retval) {
2092 			mmput(prev_mm);
2093 			return retval;
2094 		}
2095 
2096 		/*
2097 		 * Make sure that we aren't completely killing
2098 		 * interactive performance.
2099 		 */
2100 		cond_resched();
2101 		spin_lock(&mmlist_lock);
2102 	}
2103 	spin_unlock(&mmlist_lock);
2104 
2105 	mmput(prev_mm);
2106 
2107 	i = 0;
2108 	while (READ_ONCE(si->inuse_pages) &&
2109 	       !signal_pending(current) &&
2110 	       (i = find_next_to_unuse(si, i)) != 0) {
2111 
2112 		entry = swp_entry(type, i);
2113 		folio = filemap_get_folio(swap_address_space(entry), i);
2114 		if (IS_ERR(folio))
2115 			continue;
2116 
2117 		/*
2118 		 * It is conceivable that a racing task removed this folio from
2119 		 * swap cache just before we acquired the page lock. The folio
2120 		 * might even be back in swap cache on another swap area. But
2121 		 * that is okay, folio_free_swap() only removes stale folios.
2122 		 */
2123 		folio_lock(folio);
2124 		folio_wait_writeback(folio);
2125 		folio_free_swap(folio);
2126 		folio_unlock(folio);
2127 		folio_put(folio);
2128 	}
2129 
2130 	/*
2131 	 * Lets check again to see if there are still swap entries in the map.
2132 	 * If yes, we would need to do retry the unuse logic again.
2133 	 * Under global memory pressure, swap entries can be reinserted back
2134 	 * into process space after the mmlist loop above passes over them.
2135 	 *
2136 	 * Limit the number of retries? No: when mmget_not_zero()
2137 	 * above fails, that mm is likely to be freeing swap from
2138 	 * exit_mmap(), which proceeds at its own independent pace;
2139 	 * and even shmem_writepage() could have been preempted after
2140 	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2141 	 * and robust (though cpu-intensive) just to keep retrying.
2142 	 */
2143 	if (READ_ONCE(si->inuse_pages)) {
2144 		if (!signal_pending(current))
2145 			goto retry;
2146 		return -EINTR;
2147 	}
2148 
2149 success:
2150 	/*
2151 	 * Make sure that further cleanups after try_to_unuse() returns happen
2152 	 * after swap_range_free() reduces si->inuse_pages to 0.
2153 	 */
2154 	smp_mb();
2155 	return 0;
2156 }
2157 
2158 /*
2159  * After a successful try_to_unuse, if no swap is now in use, we know
2160  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2161  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2162  * added to the mmlist just after page_duplicate - before would be racy.
2163  */
2164 static void drain_mmlist(void)
2165 {
2166 	struct list_head *p, *next;
2167 	unsigned int type;
2168 
2169 	for (type = 0; type < nr_swapfiles; type++)
2170 		if (swap_info[type]->inuse_pages)
2171 			return;
2172 	spin_lock(&mmlist_lock);
2173 	list_for_each_safe(p, next, &init_mm.mmlist)
2174 		list_del_init(p);
2175 	spin_unlock(&mmlist_lock);
2176 }
2177 
2178 /*
2179  * Free all of a swapdev's extent information
2180  */
2181 static void destroy_swap_extents(struct swap_info_struct *sis)
2182 {
2183 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2184 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2185 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2186 
2187 		rb_erase(rb, &sis->swap_extent_root);
2188 		kfree(se);
2189 	}
2190 
2191 	if (sis->flags & SWP_ACTIVATED) {
2192 		struct file *swap_file = sis->swap_file;
2193 		struct address_space *mapping = swap_file->f_mapping;
2194 
2195 		sis->flags &= ~SWP_ACTIVATED;
2196 		if (mapping->a_ops->swap_deactivate)
2197 			mapping->a_ops->swap_deactivate(swap_file);
2198 	}
2199 }
2200 
2201 /*
2202  * Add a block range (and the corresponding page range) into this swapdev's
2203  * extent tree.
2204  *
2205  * This function rather assumes that it is called in ascending page order.
2206  */
2207 int
2208 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2209 		unsigned long nr_pages, sector_t start_block)
2210 {
2211 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2212 	struct swap_extent *se;
2213 	struct swap_extent *new_se;
2214 
2215 	/*
2216 	 * place the new node at the right most since the
2217 	 * function is called in ascending page order.
2218 	 */
2219 	while (*link) {
2220 		parent = *link;
2221 		link = &parent->rb_right;
2222 	}
2223 
2224 	if (parent) {
2225 		se = rb_entry(parent, struct swap_extent, rb_node);
2226 		BUG_ON(se->start_page + se->nr_pages != start_page);
2227 		if (se->start_block + se->nr_pages == start_block) {
2228 			/* Merge it */
2229 			se->nr_pages += nr_pages;
2230 			return 0;
2231 		}
2232 	}
2233 
2234 	/* No merge, insert a new extent. */
2235 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2236 	if (new_se == NULL)
2237 		return -ENOMEM;
2238 	new_se->start_page = start_page;
2239 	new_se->nr_pages = nr_pages;
2240 	new_se->start_block = start_block;
2241 
2242 	rb_link_node(&new_se->rb_node, parent, link);
2243 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2244 	return 1;
2245 }
2246 EXPORT_SYMBOL_GPL(add_swap_extent);
2247 
2248 /*
2249  * A `swap extent' is a simple thing which maps a contiguous range of pages
2250  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2251  * built at swapon time and is then used at swap_writepage/swap_read_folio
2252  * time for locating where on disk a page belongs.
2253  *
2254  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2255  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2256  * swap files identically.
2257  *
2258  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2259  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2260  * swapfiles are handled *identically* after swapon time.
2261  *
2262  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2263  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2264  * blocks are found which do not fall within the PAGE_SIZE alignment
2265  * requirements, they are simply tossed out - we will never use those blocks
2266  * for swapping.
2267  *
2268  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2269  * prevents users from writing to the swap device, which will corrupt memory.
2270  *
2271  * The amount of disk space which a single swap extent represents varies.
2272  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2273  * extents in the rbtree. - akpm.
2274  */
2275 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2276 {
2277 	struct file *swap_file = sis->swap_file;
2278 	struct address_space *mapping = swap_file->f_mapping;
2279 	struct inode *inode = mapping->host;
2280 	int ret;
2281 
2282 	if (S_ISBLK(inode->i_mode)) {
2283 		ret = add_swap_extent(sis, 0, sis->max, 0);
2284 		*span = sis->pages;
2285 		return ret;
2286 	}
2287 
2288 	if (mapping->a_ops->swap_activate) {
2289 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2290 		if (ret < 0)
2291 			return ret;
2292 		sis->flags |= SWP_ACTIVATED;
2293 		if ((sis->flags & SWP_FS_OPS) &&
2294 		    sio_pool_init() != 0) {
2295 			destroy_swap_extents(sis);
2296 			return -ENOMEM;
2297 		}
2298 		return ret;
2299 	}
2300 
2301 	return generic_swapfile_activate(sis, swap_file, span);
2302 }
2303 
2304 static int swap_node(struct swap_info_struct *p)
2305 {
2306 	struct block_device *bdev;
2307 
2308 	if (p->bdev)
2309 		bdev = p->bdev;
2310 	else
2311 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2312 
2313 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2314 }
2315 
2316 static void setup_swap_info(struct swap_info_struct *p, int prio,
2317 			    unsigned char *swap_map,
2318 			    struct swap_cluster_info *cluster_info)
2319 {
2320 	int i;
2321 
2322 	if (prio >= 0)
2323 		p->prio = prio;
2324 	else
2325 		p->prio = --least_priority;
2326 	/*
2327 	 * the plist prio is negated because plist ordering is
2328 	 * low-to-high, while swap ordering is high-to-low
2329 	 */
2330 	p->list.prio = -p->prio;
2331 	for_each_node(i) {
2332 		if (p->prio >= 0)
2333 			p->avail_lists[i].prio = -p->prio;
2334 		else {
2335 			if (swap_node(p) == i)
2336 				p->avail_lists[i].prio = 1;
2337 			else
2338 				p->avail_lists[i].prio = -p->prio;
2339 		}
2340 	}
2341 	p->swap_map = swap_map;
2342 	p->cluster_info = cluster_info;
2343 }
2344 
2345 static void _enable_swap_info(struct swap_info_struct *p)
2346 {
2347 	p->flags |= SWP_WRITEOK;
2348 	atomic_long_add(p->pages, &nr_swap_pages);
2349 	total_swap_pages += p->pages;
2350 
2351 	assert_spin_locked(&swap_lock);
2352 	/*
2353 	 * both lists are plists, and thus priority ordered.
2354 	 * swap_active_head needs to be priority ordered for swapoff(),
2355 	 * which on removal of any swap_info_struct with an auto-assigned
2356 	 * (i.e. negative) priority increments the auto-assigned priority
2357 	 * of any lower-priority swap_info_structs.
2358 	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2359 	 * which allocates swap pages from the highest available priority
2360 	 * swap_info_struct.
2361 	 */
2362 	plist_add(&p->list, &swap_active_head);
2363 
2364 	/* add to available list iff swap device is not full */
2365 	if (p->highest_bit)
2366 		add_to_avail_list(p);
2367 }
2368 
2369 static void enable_swap_info(struct swap_info_struct *p, int prio,
2370 				unsigned char *swap_map,
2371 				struct swap_cluster_info *cluster_info)
2372 {
2373 	spin_lock(&swap_lock);
2374 	spin_lock(&p->lock);
2375 	setup_swap_info(p, prio, swap_map, cluster_info);
2376 	spin_unlock(&p->lock);
2377 	spin_unlock(&swap_lock);
2378 	/*
2379 	 * Finished initializing swap device, now it's safe to reference it.
2380 	 */
2381 	percpu_ref_resurrect(&p->users);
2382 	spin_lock(&swap_lock);
2383 	spin_lock(&p->lock);
2384 	_enable_swap_info(p);
2385 	spin_unlock(&p->lock);
2386 	spin_unlock(&swap_lock);
2387 }
2388 
2389 static void reinsert_swap_info(struct swap_info_struct *p)
2390 {
2391 	spin_lock(&swap_lock);
2392 	spin_lock(&p->lock);
2393 	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2394 	_enable_swap_info(p);
2395 	spin_unlock(&p->lock);
2396 	spin_unlock(&swap_lock);
2397 }
2398 
2399 bool has_usable_swap(void)
2400 {
2401 	bool ret = true;
2402 
2403 	spin_lock(&swap_lock);
2404 	if (plist_head_empty(&swap_active_head))
2405 		ret = false;
2406 	spin_unlock(&swap_lock);
2407 	return ret;
2408 }
2409 
2410 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2411 {
2412 	struct swap_info_struct *p = NULL;
2413 	unsigned char *swap_map;
2414 	struct swap_cluster_info *cluster_info;
2415 	struct file *swap_file, *victim;
2416 	struct address_space *mapping;
2417 	struct inode *inode;
2418 	struct filename *pathname;
2419 	int err, found = 0;
2420 	unsigned int old_block_size;
2421 
2422 	if (!capable(CAP_SYS_ADMIN))
2423 		return -EPERM;
2424 
2425 	BUG_ON(!current->mm);
2426 
2427 	pathname = getname(specialfile);
2428 	if (IS_ERR(pathname))
2429 		return PTR_ERR(pathname);
2430 
2431 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2432 	err = PTR_ERR(victim);
2433 	if (IS_ERR(victim))
2434 		goto out;
2435 
2436 	mapping = victim->f_mapping;
2437 	spin_lock(&swap_lock);
2438 	plist_for_each_entry(p, &swap_active_head, list) {
2439 		if (p->flags & SWP_WRITEOK) {
2440 			if (p->swap_file->f_mapping == mapping) {
2441 				found = 1;
2442 				break;
2443 			}
2444 		}
2445 	}
2446 	if (!found) {
2447 		err = -EINVAL;
2448 		spin_unlock(&swap_lock);
2449 		goto out_dput;
2450 	}
2451 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2452 		vm_unacct_memory(p->pages);
2453 	else {
2454 		err = -ENOMEM;
2455 		spin_unlock(&swap_lock);
2456 		goto out_dput;
2457 	}
2458 	spin_lock(&p->lock);
2459 	del_from_avail_list(p);
2460 	if (p->prio < 0) {
2461 		struct swap_info_struct *si = p;
2462 		int nid;
2463 
2464 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2465 			si->prio++;
2466 			si->list.prio--;
2467 			for_each_node(nid) {
2468 				if (si->avail_lists[nid].prio != 1)
2469 					si->avail_lists[nid].prio--;
2470 			}
2471 		}
2472 		least_priority++;
2473 	}
2474 	plist_del(&p->list, &swap_active_head);
2475 	atomic_long_sub(p->pages, &nr_swap_pages);
2476 	total_swap_pages -= p->pages;
2477 	p->flags &= ~SWP_WRITEOK;
2478 	spin_unlock(&p->lock);
2479 	spin_unlock(&swap_lock);
2480 
2481 	disable_swap_slots_cache_lock();
2482 
2483 	set_current_oom_origin();
2484 	err = try_to_unuse(p->type);
2485 	clear_current_oom_origin();
2486 
2487 	if (err) {
2488 		/* re-insert swap space back into swap_list */
2489 		reinsert_swap_info(p);
2490 		reenable_swap_slots_cache_unlock();
2491 		goto out_dput;
2492 	}
2493 
2494 	reenable_swap_slots_cache_unlock();
2495 
2496 	/*
2497 	 * Wait for swap operations protected by get/put_swap_device()
2498 	 * to complete.
2499 	 *
2500 	 * We need synchronize_rcu() here to protect the accessing to
2501 	 * the swap cache data structure.
2502 	 */
2503 	percpu_ref_kill(&p->users);
2504 	synchronize_rcu();
2505 	wait_for_completion(&p->comp);
2506 
2507 	flush_work(&p->discard_work);
2508 
2509 	destroy_swap_extents(p);
2510 	if (p->flags & SWP_CONTINUED)
2511 		free_swap_count_continuations(p);
2512 
2513 	if (!p->bdev || !bdev_nonrot(p->bdev))
2514 		atomic_dec(&nr_rotate_swap);
2515 
2516 	mutex_lock(&swapon_mutex);
2517 	spin_lock(&swap_lock);
2518 	spin_lock(&p->lock);
2519 	drain_mmlist();
2520 
2521 	/* wait for anyone still in scan_swap_map_slots */
2522 	p->highest_bit = 0;		/* cuts scans short */
2523 	while (p->flags >= SWP_SCANNING) {
2524 		spin_unlock(&p->lock);
2525 		spin_unlock(&swap_lock);
2526 		schedule_timeout_uninterruptible(1);
2527 		spin_lock(&swap_lock);
2528 		spin_lock(&p->lock);
2529 	}
2530 
2531 	swap_file = p->swap_file;
2532 	old_block_size = p->old_block_size;
2533 	p->swap_file = NULL;
2534 	p->max = 0;
2535 	swap_map = p->swap_map;
2536 	p->swap_map = NULL;
2537 	cluster_info = p->cluster_info;
2538 	p->cluster_info = NULL;
2539 	spin_unlock(&p->lock);
2540 	spin_unlock(&swap_lock);
2541 	arch_swap_invalidate_area(p->type);
2542 	zswap_swapoff(p->type);
2543 	mutex_unlock(&swapon_mutex);
2544 	free_percpu(p->percpu_cluster);
2545 	p->percpu_cluster = NULL;
2546 	free_percpu(p->cluster_next_cpu);
2547 	p->cluster_next_cpu = NULL;
2548 	vfree(swap_map);
2549 	kvfree(cluster_info);
2550 	/* Destroy swap account information */
2551 	swap_cgroup_swapoff(p->type);
2552 	exit_swap_address_space(p->type);
2553 
2554 	inode = mapping->host;
2555 	if (p->bdev_file) {
2556 		set_blocksize(p->bdev, old_block_size);
2557 		fput(p->bdev_file);
2558 		p->bdev_file = NULL;
2559 	}
2560 
2561 	inode_lock(inode);
2562 	inode->i_flags &= ~S_SWAPFILE;
2563 	inode_unlock(inode);
2564 	filp_close(swap_file, NULL);
2565 
2566 	/*
2567 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2568 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2569 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2570 	 */
2571 	spin_lock(&swap_lock);
2572 	p->flags = 0;
2573 	spin_unlock(&swap_lock);
2574 
2575 	err = 0;
2576 	atomic_inc(&proc_poll_event);
2577 	wake_up_interruptible(&proc_poll_wait);
2578 
2579 out_dput:
2580 	filp_close(victim, NULL);
2581 out:
2582 	putname(pathname);
2583 	return err;
2584 }
2585 
2586 #ifdef CONFIG_PROC_FS
2587 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2588 {
2589 	struct seq_file *seq = file->private_data;
2590 
2591 	poll_wait(file, &proc_poll_wait, wait);
2592 
2593 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2594 		seq->poll_event = atomic_read(&proc_poll_event);
2595 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2596 	}
2597 
2598 	return EPOLLIN | EPOLLRDNORM;
2599 }
2600 
2601 /* iterator */
2602 static void *swap_start(struct seq_file *swap, loff_t *pos)
2603 {
2604 	struct swap_info_struct *si;
2605 	int type;
2606 	loff_t l = *pos;
2607 
2608 	mutex_lock(&swapon_mutex);
2609 
2610 	if (!l)
2611 		return SEQ_START_TOKEN;
2612 
2613 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2614 		if (!(si->flags & SWP_USED) || !si->swap_map)
2615 			continue;
2616 		if (!--l)
2617 			return si;
2618 	}
2619 
2620 	return NULL;
2621 }
2622 
2623 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2624 {
2625 	struct swap_info_struct *si = v;
2626 	int type;
2627 
2628 	if (v == SEQ_START_TOKEN)
2629 		type = 0;
2630 	else
2631 		type = si->type + 1;
2632 
2633 	++(*pos);
2634 	for (; (si = swap_type_to_swap_info(type)); type++) {
2635 		if (!(si->flags & SWP_USED) || !si->swap_map)
2636 			continue;
2637 		return si;
2638 	}
2639 
2640 	return NULL;
2641 }
2642 
2643 static void swap_stop(struct seq_file *swap, void *v)
2644 {
2645 	mutex_unlock(&swapon_mutex);
2646 }
2647 
2648 static int swap_show(struct seq_file *swap, void *v)
2649 {
2650 	struct swap_info_struct *si = v;
2651 	struct file *file;
2652 	int len;
2653 	unsigned long bytes, inuse;
2654 
2655 	if (si == SEQ_START_TOKEN) {
2656 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2657 		return 0;
2658 	}
2659 
2660 	bytes = K(si->pages);
2661 	inuse = K(READ_ONCE(si->inuse_pages));
2662 
2663 	file = si->swap_file;
2664 	len = seq_file_path(swap, file, " \t\n\\");
2665 	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2666 			len < 40 ? 40 - len : 1, " ",
2667 			S_ISBLK(file_inode(file)->i_mode) ?
2668 				"partition" : "file\t",
2669 			bytes, bytes < 10000000 ? "\t" : "",
2670 			inuse, inuse < 10000000 ? "\t" : "",
2671 			si->prio);
2672 	return 0;
2673 }
2674 
2675 static const struct seq_operations swaps_op = {
2676 	.start =	swap_start,
2677 	.next =		swap_next,
2678 	.stop =		swap_stop,
2679 	.show =		swap_show
2680 };
2681 
2682 static int swaps_open(struct inode *inode, struct file *file)
2683 {
2684 	struct seq_file *seq;
2685 	int ret;
2686 
2687 	ret = seq_open(file, &swaps_op);
2688 	if (ret)
2689 		return ret;
2690 
2691 	seq = file->private_data;
2692 	seq->poll_event = atomic_read(&proc_poll_event);
2693 	return 0;
2694 }
2695 
2696 static const struct proc_ops swaps_proc_ops = {
2697 	.proc_flags	= PROC_ENTRY_PERMANENT,
2698 	.proc_open	= swaps_open,
2699 	.proc_read	= seq_read,
2700 	.proc_lseek	= seq_lseek,
2701 	.proc_release	= seq_release,
2702 	.proc_poll	= swaps_poll,
2703 };
2704 
2705 static int __init procswaps_init(void)
2706 {
2707 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2708 	return 0;
2709 }
2710 __initcall(procswaps_init);
2711 #endif /* CONFIG_PROC_FS */
2712 
2713 #ifdef MAX_SWAPFILES_CHECK
2714 static int __init max_swapfiles_check(void)
2715 {
2716 	MAX_SWAPFILES_CHECK();
2717 	return 0;
2718 }
2719 late_initcall(max_swapfiles_check);
2720 #endif
2721 
2722 static struct swap_info_struct *alloc_swap_info(void)
2723 {
2724 	struct swap_info_struct *p;
2725 	struct swap_info_struct *defer = NULL;
2726 	unsigned int type;
2727 	int i;
2728 
2729 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2730 	if (!p)
2731 		return ERR_PTR(-ENOMEM);
2732 
2733 	if (percpu_ref_init(&p->users, swap_users_ref_free,
2734 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2735 		kvfree(p);
2736 		return ERR_PTR(-ENOMEM);
2737 	}
2738 
2739 	spin_lock(&swap_lock);
2740 	for (type = 0; type < nr_swapfiles; type++) {
2741 		if (!(swap_info[type]->flags & SWP_USED))
2742 			break;
2743 	}
2744 	if (type >= MAX_SWAPFILES) {
2745 		spin_unlock(&swap_lock);
2746 		percpu_ref_exit(&p->users);
2747 		kvfree(p);
2748 		return ERR_PTR(-EPERM);
2749 	}
2750 	if (type >= nr_swapfiles) {
2751 		p->type = type;
2752 		/*
2753 		 * Publish the swap_info_struct after initializing it.
2754 		 * Note that kvzalloc() above zeroes all its fields.
2755 		 */
2756 		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2757 		nr_swapfiles++;
2758 	} else {
2759 		defer = p;
2760 		p = swap_info[type];
2761 		/*
2762 		 * Do not memset this entry: a racing procfs swap_next()
2763 		 * would be relying on p->type to remain valid.
2764 		 */
2765 	}
2766 	p->swap_extent_root = RB_ROOT;
2767 	plist_node_init(&p->list, 0);
2768 	for_each_node(i)
2769 		plist_node_init(&p->avail_lists[i], 0);
2770 	p->flags = SWP_USED;
2771 	spin_unlock(&swap_lock);
2772 	if (defer) {
2773 		percpu_ref_exit(&defer->users);
2774 		kvfree(defer);
2775 	}
2776 	spin_lock_init(&p->lock);
2777 	spin_lock_init(&p->cont_lock);
2778 	init_completion(&p->comp);
2779 
2780 	return p;
2781 }
2782 
2783 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2784 {
2785 	int error;
2786 
2787 	if (S_ISBLK(inode->i_mode)) {
2788 		p->bdev_file = bdev_file_open_by_dev(inode->i_rdev,
2789 				BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL);
2790 		if (IS_ERR(p->bdev_file)) {
2791 			error = PTR_ERR(p->bdev_file);
2792 			p->bdev_file = NULL;
2793 			return error;
2794 		}
2795 		p->bdev = file_bdev(p->bdev_file);
2796 		p->old_block_size = block_size(p->bdev);
2797 		error = set_blocksize(p->bdev, PAGE_SIZE);
2798 		if (error < 0)
2799 			return error;
2800 		/*
2801 		 * Zoned block devices contain zones that have a sequential
2802 		 * write only restriction.  Hence zoned block devices are not
2803 		 * suitable for swapping.  Disallow them here.
2804 		 */
2805 		if (bdev_is_zoned(p->bdev))
2806 			return -EINVAL;
2807 		p->flags |= SWP_BLKDEV;
2808 	} else if (S_ISREG(inode->i_mode)) {
2809 		p->bdev = inode->i_sb->s_bdev;
2810 	}
2811 
2812 	return 0;
2813 }
2814 
2815 
2816 /*
2817  * Find out how many pages are allowed for a single swap device. There
2818  * are two limiting factors:
2819  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2820  * 2) the number of bits in the swap pte, as defined by the different
2821  * architectures.
2822  *
2823  * In order to find the largest possible bit mask, a swap entry with
2824  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2825  * decoded to a swp_entry_t again, and finally the swap offset is
2826  * extracted.
2827  *
2828  * This will mask all the bits from the initial ~0UL mask that can't
2829  * be encoded in either the swp_entry_t or the architecture definition
2830  * of a swap pte.
2831  */
2832 unsigned long generic_max_swapfile_size(void)
2833 {
2834 	return swp_offset(pte_to_swp_entry(
2835 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2836 }
2837 
2838 /* Can be overridden by an architecture for additional checks. */
2839 __weak unsigned long arch_max_swapfile_size(void)
2840 {
2841 	return generic_max_swapfile_size();
2842 }
2843 
2844 static unsigned long read_swap_header(struct swap_info_struct *p,
2845 					union swap_header *swap_header,
2846 					struct inode *inode)
2847 {
2848 	int i;
2849 	unsigned long maxpages;
2850 	unsigned long swapfilepages;
2851 	unsigned long last_page;
2852 
2853 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2854 		pr_err("Unable to find swap-space signature\n");
2855 		return 0;
2856 	}
2857 
2858 	/* swap partition endianness hack... */
2859 	if (swab32(swap_header->info.version) == 1) {
2860 		swab32s(&swap_header->info.version);
2861 		swab32s(&swap_header->info.last_page);
2862 		swab32s(&swap_header->info.nr_badpages);
2863 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2864 			return 0;
2865 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2866 			swab32s(&swap_header->info.badpages[i]);
2867 	}
2868 	/* Check the swap header's sub-version */
2869 	if (swap_header->info.version != 1) {
2870 		pr_warn("Unable to handle swap header version %d\n",
2871 			swap_header->info.version);
2872 		return 0;
2873 	}
2874 
2875 	p->lowest_bit  = 1;
2876 	p->cluster_next = 1;
2877 	p->cluster_nr = 0;
2878 
2879 	maxpages = swapfile_maximum_size;
2880 	last_page = swap_header->info.last_page;
2881 	if (!last_page) {
2882 		pr_warn("Empty swap-file\n");
2883 		return 0;
2884 	}
2885 	if (last_page > maxpages) {
2886 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2887 			K(maxpages), K(last_page));
2888 	}
2889 	if (maxpages > last_page) {
2890 		maxpages = last_page + 1;
2891 		/* p->max is an unsigned int: don't overflow it */
2892 		if ((unsigned int)maxpages == 0)
2893 			maxpages = UINT_MAX;
2894 	}
2895 	p->highest_bit = maxpages - 1;
2896 
2897 	if (!maxpages)
2898 		return 0;
2899 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2900 	if (swapfilepages && maxpages > swapfilepages) {
2901 		pr_warn("Swap area shorter than signature indicates\n");
2902 		return 0;
2903 	}
2904 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2905 		return 0;
2906 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2907 		return 0;
2908 
2909 	return maxpages;
2910 }
2911 
2912 #define SWAP_CLUSTER_INFO_COLS						\
2913 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2914 #define SWAP_CLUSTER_SPACE_COLS						\
2915 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2916 #define SWAP_CLUSTER_COLS						\
2917 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2918 
2919 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2920 					union swap_header *swap_header,
2921 					unsigned char *swap_map,
2922 					struct swap_cluster_info *cluster_info,
2923 					unsigned long maxpages,
2924 					sector_t *span)
2925 {
2926 	unsigned int j, k;
2927 	unsigned int nr_good_pages;
2928 	int nr_extents;
2929 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2930 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2931 	unsigned long i, idx;
2932 
2933 	nr_good_pages = maxpages - 1;	/* omit header page */
2934 
2935 	cluster_list_init(&p->free_clusters);
2936 	cluster_list_init(&p->discard_clusters);
2937 
2938 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2939 		unsigned int page_nr = swap_header->info.badpages[i];
2940 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2941 			return -EINVAL;
2942 		if (page_nr < maxpages) {
2943 			swap_map[page_nr] = SWAP_MAP_BAD;
2944 			nr_good_pages--;
2945 			/*
2946 			 * Haven't marked the cluster free yet, no list
2947 			 * operation involved
2948 			 */
2949 			inc_cluster_info_page(p, cluster_info, page_nr);
2950 		}
2951 	}
2952 
2953 	/* Haven't marked the cluster free yet, no list operation involved */
2954 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2955 		inc_cluster_info_page(p, cluster_info, i);
2956 
2957 	if (nr_good_pages) {
2958 		swap_map[0] = SWAP_MAP_BAD;
2959 		/*
2960 		 * Not mark the cluster free yet, no list
2961 		 * operation involved
2962 		 */
2963 		inc_cluster_info_page(p, cluster_info, 0);
2964 		p->max = maxpages;
2965 		p->pages = nr_good_pages;
2966 		nr_extents = setup_swap_extents(p, span);
2967 		if (nr_extents < 0)
2968 			return nr_extents;
2969 		nr_good_pages = p->pages;
2970 	}
2971 	if (!nr_good_pages) {
2972 		pr_warn("Empty swap-file\n");
2973 		return -EINVAL;
2974 	}
2975 
2976 	if (!cluster_info)
2977 		return nr_extents;
2978 
2979 
2980 	/*
2981 	 * Reduce false cache line sharing between cluster_info and
2982 	 * sharing same address space.
2983 	 */
2984 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2985 		j = (k + col) % SWAP_CLUSTER_COLS;
2986 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2987 			idx = i * SWAP_CLUSTER_COLS + j;
2988 			if (idx >= nr_clusters)
2989 				continue;
2990 			if (cluster_count(&cluster_info[idx]))
2991 				continue;
2992 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2993 			cluster_list_add_tail(&p->free_clusters, cluster_info,
2994 					      idx);
2995 		}
2996 	}
2997 	return nr_extents;
2998 }
2999 
3000 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3001 {
3002 	struct swap_info_struct *p;
3003 	struct filename *name;
3004 	struct file *swap_file = NULL;
3005 	struct address_space *mapping;
3006 	struct dentry *dentry;
3007 	int prio;
3008 	int error;
3009 	union swap_header *swap_header;
3010 	int nr_extents;
3011 	sector_t span;
3012 	unsigned long maxpages;
3013 	unsigned char *swap_map = NULL;
3014 	struct swap_cluster_info *cluster_info = NULL;
3015 	struct page *page = NULL;
3016 	struct inode *inode = NULL;
3017 	bool inced_nr_rotate_swap = false;
3018 
3019 	if (swap_flags & ~SWAP_FLAGS_VALID)
3020 		return -EINVAL;
3021 
3022 	if (!capable(CAP_SYS_ADMIN))
3023 		return -EPERM;
3024 
3025 	if (!swap_avail_heads)
3026 		return -ENOMEM;
3027 
3028 	p = alloc_swap_info();
3029 	if (IS_ERR(p))
3030 		return PTR_ERR(p);
3031 
3032 	INIT_WORK(&p->discard_work, swap_discard_work);
3033 
3034 	name = getname(specialfile);
3035 	if (IS_ERR(name)) {
3036 		error = PTR_ERR(name);
3037 		name = NULL;
3038 		goto bad_swap;
3039 	}
3040 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3041 	if (IS_ERR(swap_file)) {
3042 		error = PTR_ERR(swap_file);
3043 		swap_file = NULL;
3044 		goto bad_swap;
3045 	}
3046 
3047 	p->swap_file = swap_file;
3048 	mapping = swap_file->f_mapping;
3049 	dentry = swap_file->f_path.dentry;
3050 	inode = mapping->host;
3051 
3052 	error = claim_swapfile(p, inode);
3053 	if (unlikely(error))
3054 		goto bad_swap;
3055 
3056 	inode_lock(inode);
3057 	if (d_unlinked(dentry) || cant_mount(dentry)) {
3058 		error = -ENOENT;
3059 		goto bad_swap_unlock_inode;
3060 	}
3061 	if (IS_SWAPFILE(inode)) {
3062 		error = -EBUSY;
3063 		goto bad_swap_unlock_inode;
3064 	}
3065 
3066 	/*
3067 	 * Read the swap header.
3068 	 */
3069 	if (!mapping->a_ops->read_folio) {
3070 		error = -EINVAL;
3071 		goto bad_swap_unlock_inode;
3072 	}
3073 	page = read_mapping_page(mapping, 0, swap_file);
3074 	if (IS_ERR(page)) {
3075 		error = PTR_ERR(page);
3076 		goto bad_swap_unlock_inode;
3077 	}
3078 	swap_header = kmap(page);
3079 
3080 	maxpages = read_swap_header(p, swap_header, inode);
3081 	if (unlikely(!maxpages)) {
3082 		error = -EINVAL;
3083 		goto bad_swap_unlock_inode;
3084 	}
3085 
3086 	/* OK, set up the swap map and apply the bad block list */
3087 	swap_map = vzalloc(maxpages);
3088 	if (!swap_map) {
3089 		error = -ENOMEM;
3090 		goto bad_swap_unlock_inode;
3091 	}
3092 
3093 	if (p->bdev && bdev_stable_writes(p->bdev))
3094 		p->flags |= SWP_STABLE_WRITES;
3095 
3096 	if (p->bdev && bdev_synchronous(p->bdev))
3097 		p->flags |= SWP_SYNCHRONOUS_IO;
3098 
3099 	if (p->bdev && bdev_nonrot(p->bdev)) {
3100 		int cpu;
3101 		unsigned long ci, nr_cluster;
3102 
3103 		p->flags |= SWP_SOLIDSTATE;
3104 		p->cluster_next_cpu = alloc_percpu(unsigned int);
3105 		if (!p->cluster_next_cpu) {
3106 			error = -ENOMEM;
3107 			goto bad_swap_unlock_inode;
3108 		}
3109 		/*
3110 		 * select a random position to start with to help wear leveling
3111 		 * SSD
3112 		 */
3113 		for_each_possible_cpu(cpu) {
3114 			per_cpu(*p->cluster_next_cpu, cpu) =
3115 				get_random_u32_inclusive(1, p->highest_bit);
3116 		}
3117 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3118 
3119 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3120 					GFP_KERNEL);
3121 		if (!cluster_info) {
3122 			error = -ENOMEM;
3123 			goto bad_swap_unlock_inode;
3124 		}
3125 
3126 		for (ci = 0; ci < nr_cluster; ci++)
3127 			spin_lock_init(&((cluster_info + ci)->lock));
3128 
3129 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3130 		if (!p->percpu_cluster) {
3131 			error = -ENOMEM;
3132 			goto bad_swap_unlock_inode;
3133 		}
3134 		for_each_possible_cpu(cpu) {
3135 			struct percpu_cluster *cluster;
3136 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3137 			cluster_set_null(&cluster->index);
3138 		}
3139 	} else {
3140 		atomic_inc(&nr_rotate_swap);
3141 		inced_nr_rotate_swap = true;
3142 	}
3143 
3144 	error = swap_cgroup_swapon(p->type, maxpages);
3145 	if (error)
3146 		goto bad_swap_unlock_inode;
3147 
3148 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3149 		cluster_info, maxpages, &span);
3150 	if (unlikely(nr_extents < 0)) {
3151 		error = nr_extents;
3152 		goto bad_swap_unlock_inode;
3153 	}
3154 
3155 	if ((swap_flags & SWAP_FLAG_DISCARD) &&
3156 	    p->bdev && bdev_max_discard_sectors(p->bdev)) {
3157 		/*
3158 		 * When discard is enabled for swap with no particular
3159 		 * policy flagged, we set all swap discard flags here in
3160 		 * order to sustain backward compatibility with older
3161 		 * swapon(8) releases.
3162 		 */
3163 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3164 			     SWP_PAGE_DISCARD);
3165 
3166 		/*
3167 		 * By flagging sys_swapon, a sysadmin can tell us to
3168 		 * either do single-time area discards only, or to just
3169 		 * perform discards for released swap page-clusters.
3170 		 * Now it's time to adjust the p->flags accordingly.
3171 		 */
3172 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3173 			p->flags &= ~SWP_PAGE_DISCARD;
3174 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3175 			p->flags &= ~SWP_AREA_DISCARD;
3176 
3177 		/* issue a swapon-time discard if it's still required */
3178 		if (p->flags & SWP_AREA_DISCARD) {
3179 			int err = discard_swap(p);
3180 			if (unlikely(err))
3181 				pr_err("swapon: discard_swap(%p): %d\n",
3182 					p, err);
3183 		}
3184 	}
3185 
3186 	error = init_swap_address_space(p->type, maxpages);
3187 	if (error)
3188 		goto bad_swap_unlock_inode;
3189 
3190 	error = zswap_swapon(p->type, maxpages);
3191 	if (error)
3192 		goto free_swap_address_space;
3193 
3194 	/*
3195 	 * Flush any pending IO and dirty mappings before we start using this
3196 	 * swap device.
3197 	 */
3198 	inode->i_flags |= S_SWAPFILE;
3199 	error = inode_drain_writes(inode);
3200 	if (error) {
3201 		inode->i_flags &= ~S_SWAPFILE;
3202 		goto free_swap_zswap;
3203 	}
3204 
3205 	mutex_lock(&swapon_mutex);
3206 	prio = -1;
3207 	if (swap_flags & SWAP_FLAG_PREFER)
3208 		prio =
3209 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3210 	enable_swap_info(p, prio, swap_map, cluster_info);
3211 
3212 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3213 		K(p->pages), name->name, p->prio, nr_extents,
3214 		K((unsigned long long)span),
3215 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3216 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3217 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3218 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "");
3219 
3220 	mutex_unlock(&swapon_mutex);
3221 	atomic_inc(&proc_poll_event);
3222 	wake_up_interruptible(&proc_poll_wait);
3223 
3224 	error = 0;
3225 	goto out;
3226 free_swap_zswap:
3227 	zswap_swapoff(p->type);
3228 free_swap_address_space:
3229 	exit_swap_address_space(p->type);
3230 bad_swap_unlock_inode:
3231 	inode_unlock(inode);
3232 bad_swap:
3233 	free_percpu(p->percpu_cluster);
3234 	p->percpu_cluster = NULL;
3235 	free_percpu(p->cluster_next_cpu);
3236 	p->cluster_next_cpu = NULL;
3237 	if (p->bdev_file) {
3238 		set_blocksize(p->bdev, p->old_block_size);
3239 		fput(p->bdev_file);
3240 		p->bdev_file = NULL;
3241 	}
3242 	inode = NULL;
3243 	destroy_swap_extents(p);
3244 	swap_cgroup_swapoff(p->type);
3245 	spin_lock(&swap_lock);
3246 	p->swap_file = NULL;
3247 	p->flags = 0;
3248 	spin_unlock(&swap_lock);
3249 	vfree(swap_map);
3250 	kvfree(cluster_info);
3251 	if (inced_nr_rotate_swap)
3252 		atomic_dec(&nr_rotate_swap);
3253 	if (swap_file)
3254 		filp_close(swap_file, NULL);
3255 out:
3256 	if (page && !IS_ERR(page)) {
3257 		kunmap(page);
3258 		put_page(page);
3259 	}
3260 	if (name)
3261 		putname(name);
3262 	if (inode)
3263 		inode_unlock(inode);
3264 	if (!error)
3265 		enable_swap_slots_cache();
3266 	return error;
3267 }
3268 
3269 void si_swapinfo(struct sysinfo *val)
3270 {
3271 	unsigned int type;
3272 	unsigned long nr_to_be_unused = 0;
3273 
3274 	spin_lock(&swap_lock);
3275 	for (type = 0; type < nr_swapfiles; type++) {
3276 		struct swap_info_struct *si = swap_info[type];
3277 
3278 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3279 			nr_to_be_unused += READ_ONCE(si->inuse_pages);
3280 	}
3281 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3282 	val->totalswap = total_swap_pages + nr_to_be_unused;
3283 	spin_unlock(&swap_lock);
3284 }
3285 
3286 /*
3287  * Verify that a swap entry is valid and increment its swap map count.
3288  *
3289  * Returns error code in following case.
3290  * - success -> 0
3291  * - swp_entry is invalid -> EINVAL
3292  * - swp_entry is migration entry -> EINVAL
3293  * - swap-cache reference is requested but there is already one. -> EEXIST
3294  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3295  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3296  */
3297 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3298 {
3299 	struct swap_info_struct *p;
3300 	struct swap_cluster_info *ci;
3301 	unsigned long offset;
3302 	unsigned char count;
3303 	unsigned char has_cache;
3304 	int err;
3305 
3306 	p = swp_swap_info(entry);
3307 
3308 	offset = swp_offset(entry);
3309 	ci = lock_cluster_or_swap_info(p, offset);
3310 
3311 	count = p->swap_map[offset];
3312 
3313 	/*
3314 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3315 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3316 	 */
3317 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3318 		err = -ENOENT;
3319 		goto unlock_out;
3320 	}
3321 
3322 	has_cache = count & SWAP_HAS_CACHE;
3323 	count &= ~SWAP_HAS_CACHE;
3324 	err = 0;
3325 
3326 	if (usage == SWAP_HAS_CACHE) {
3327 
3328 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3329 		if (!has_cache && count)
3330 			has_cache = SWAP_HAS_CACHE;
3331 		else if (has_cache)		/* someone else added cache */
3332 			err = -EEXIST;
3333 		else				/* no users remaining */
3334 			err = -ENOENT;
3335 
3336 	} else if (count || has_cache) {
3337 
3338 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3339 			count += usage;
3340 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3341 			err = -EINVAL;
3342 		else if (swap_count_continued(p, offset, count))
3343 			count = COUNT_CONTINUED;
3344 		else
3345 			err = -ENOMEM;
3346 	} else
3347 		err = -ENOENT;			/* unused swap entry */
3348 
3349 	if (!err)
3350 		WRITE_ONCE(p->swap_map[offset], count | has_cache);
3351 
3352 unlock_out:
3353 	unlock_cluster_or_swap_info(p, ci);
3354 	return err;
3355 }
3356 
3357 /*
3358  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3359  * (in which case its reference count is never incremented).
3360  */
3361 void swap_shmem_alloc(swp_entry_t entry)
3362 {
3363 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3364 }
3365 
3366 /*
3367  * Increase reference count of swap entry by 1.
3368  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3369  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3370  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3371  * might occur if a page table entry has got corrupted.
3372  */
3373 int swap_duplicate(swp_entry_t entry)
3374 {
3375 	int err = 0;
3376 
3377 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3378 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3379 	return err;
3380 }
3381 
3382 /*
3383  * @entry: swap entry for which we allocate swap cache.
3384  *
3385  * Called when allocating swap cache for existing swap entry,
3386  * This can return error codes. Returns 0 at success.
3387  * -EEXIST means there is a swap cache.
3388  * Note: return code is different from swap_duplicate().
3389  */
3390 int swapcache_prepare(swp_entry_t entry)
3391 {
3392 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3393 }
3394 
3395 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry)
3396 {
3397 	struct swap_cluster_info *ci;
3398 	unsigned long offset = swp_offset(entry);
3399 	unsigned char usage;
3400 
3401 	ci = lock_cluster_or_swap_info(si, offset);
3402 	usage = __swap_entry_free_locked(si, offset, SWAP_HAS_CACHE);
3403 	unlock_cluster_or_swap_info(si, ci);
3404 	if (!usage)
3405 		free_swap_slot(entry);
3406 }
3407 
3408 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3409 {
3410 	return swap_type_to_swap_info(swp_type(entry));
3411 }
3412 
3413 /*
3414  * out-of-line methods to avoid include hell.
3415  */
3416 struct address_space *swapcache_mapping(struct folio *folio)
3417 {
3418 	return swp_swap_info(folio->swap)->swap_file->f_mapping;
3419 }
3420 EXPORT_SYMBOL_GPL(swapcache_mapping);
3421 
3422 pgoff_t __page_file_index(struct page *page)
3423 {
3424 	swp_entry_t swap = page_swap_entry(page);
3425 	return swp_offset(swap);
3426 }
3427 EXPORT_SYMBOL_GPL(__page_file_index);
3428 
3429 /*
3430  * add_swap_count_continuation - called when a swap count is duplicated
3431  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3432  * page of the original vmalloc'ed swap_map, to hold the continuation count
3433  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3434  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3435  *
3436  * These continuation pages are seldom referenced: the common paths all work
3437  * on the original swap_map, only referring to a continuation page when the
3438  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3439  *
3440  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3441  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3442  * can be called after dropping locks.
3443  */
3444 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3445 {
3446 	struct swap_info_struct *si;
3447 	struct swap_cluster_info *ci;
3448 	struct page *head;
3449 	struct page *page;
3450 	struct page *list_page;
3451 	pgoff_t offset;
3452 	unsigned char count;
3453 	int ret = 0;
3454 
3455 	/*
3456 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3457 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3458 	 */
3459 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3460 
3461 	si = get_swap_device(entry);
3462 	if (!si) {
3463 		/*
3464 		 * An acceptable race has occurred since the failing
3465 		 * __swap_duplicate(): the swap device may be swapoff
3466 		 */
3467 		goto outer;
3468 	}
3469 	spin_lock(&si->lock);
3470 
3471 	offset = swp_offset(entry);
3472 
3473 	ci = lock_cluster(si, offset);
3474 
3475 	count = swap_count(si->swap_map[offset]);
3476 
3477 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3478 		/*
3479 		 * The higher the swap count, the more likely it is that tasks
3480 		 * will race to add swap count continuation: we need to avoid
3481 		 * over-provisioning.
3482 		 */
3483 		goto out;
3484 	}
3485 
3486 	if (!page) {
3487 		ret = -ENOMEM;
3488 		goto out;
3489 	}
3490 
3491 	head = vmalloc_to_page(si->swap_map + offset);
3492 	offset &= ~PAGE_MASK;
3493 
3494 	spin_lock(&si->cont_lock);
3495 	/*
3496 	 * Page allocation does not initialize the page's lru field,
3497 	 * but it does always reset its private field.
3498 	 */
3499 	if (!page_private(head)) {
3500 		BUG_ON(count & COUNT_CONTINUED);
3501 		INIT_LIST_HEAD(&head->lru);
3502 		set_page_private(head, SWP_CONTINUED);
3503 		si->flags |= SWP_CONTINUED;
3504 	}
3505 
3506 	list_for_each_entry(list_page, &head->lru, lru) {
3507 		unsigned char *map;
3508 
3509 		/*
3510 		 * If the previous map said no continuation, but we've found
3511 		 * a continuation page, free our allocation and use this one.
3512 		 */
3513 		if (!(count & COUNT_CONTINUED))
3514 			goto out_unlock_cont;
3515 
3516 		map = kmap_local_page(list_page) + offset;
3517 		count = *map;
3518 		kunmap_local(map);
3519 
3520 		/*
3521 		 * If this continuation count now has some space in it,
3522 		 * free our allocation and use this one.
3523 		 */
3524 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3525 			goto out_unlock_cont;
3526 	}
3527 
3528 	list_add_tail(&page->lru, &head->lru);
3529 	page = NULL;			/* now it's attached, don't free it */
3530 out_unlock_cont:
3531 	spin_unlock(&si->cont_lock);
3532 out:
3533 	unlock_cluster(ci);
3534 	spin_unlock(&si->lock);
3535 	put_swap_device(si);
3536 outer:
3537 	if (page)
3538 		__free_page(page);
3539 	return ret;
3540 }
3541 
3542 /*
3543  * swap_count_continued - when the original swap_map count is incremented
3544  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3545  * into, carry if so, or else fail until a new continuation page is allocated;
3546  * when the original swap_map count is decremented from 0 with continuation,
3547  * borrow from the continuation and report whether it still holds more.
3548  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3549  * lock.
3550  */
3551 static bool swap_count_continued(struct swap_info_struct *si,
3552 				 pgoff_t offset, unsigned char count)
3553 {
3554 	struct page *head;
3555 	struct page *page;
3556 	unsigned char *map;
3557 	bool ret;
3558 
3559 	head = vmalloc_to_page(si->swap_map + offset);
3560 	if (page_private(head) != SWP_CONTINUED) {
3561 		BUG_ON(count & COUNT_CONTINUED);
3562 		return false;		/* need to add count continuation */
3563 	}
3564 
3565 	spin_lock(&si->cont_lock);
3566 	offset &= ~PAGE_MASK;
3567 	page = list_next_entry(head, lru);
3568 	map = kmap_local_page(page) + offset;
3569 
3570 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3571 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3572 
3573 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3574 		/*
3575 		 * Think of how you add 1 to 999
3576 		 */
3577 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3578 			kunmap_local(map);
3579 			page = list_next_entry(page, lru);
3580 			BUG_ON(page == head);
3581 			map = kmap_local_page(page) + offset;
3582 		}
3583 		if (*map == SWAP_CONT_MAX) {
3584 			kunmap_local(map);
3585 			page = list_next_entry(page, lru);
3586 			if (page == head) {
3587 				ret = false;	/* add count continuation */
3588 				goto out;
3589 			}
3590 			map = kmap_local_page(page) + offset;
3591 init_map:		*map = 0;		/* we didn't zero the page */
3592 		}
3593 		*map += 1;
3594 		kunmap_local(map);
3595 		while ((page = list_prev_entry(page, lru)) != head) {
3596 			map = kmap_local_page(page) + offset;
3597 			*map = COUNT_CONTINUED;
3598 			kunmap_local(map);
3599 		}
3600 		ret = true;			/* incremented */
3601 
3602 	} else {				/* decrementing */
3603 		/*
3604 		 * Think of how you subtract 1 from 1000
3605 		 */
3606 		BUG_ON(count != COUNT_CONTINUED);
3607 		while (*map == COUNT_CONTINUED) {
3608 			kunmap_local(map);
3609 			page = list_next_entry(page, lru);
3610 			BUG_ON(page == head);
3611 			map = kmap_local_page(page) + offset;
3612 		}
3613 		BUG_ON(*map == 0);
3614 		*map -= 1;
3615 		if (*map == 0)
3616 			count = 0;
3617 		kunmap_local(map);
3618 		while ((page = list_prev_entry(page, lru)) != head) {
3619 			map = kmap_local_page(page) + offset;
3620 			*map = SWAP_CONT_MAX | count;
3621 			count = COUNT_CONTINUED;
3622 			kunmap_local(map);
3623 		}
3624 		ret = count == COUNT_CONTINUED;
3625 	}
3626 out:
3627 	spin_unlock(&si->cont_lock);
3628 	return ret;
3629 }
3630 
3631 /*
3632  * free_swap_count_continuations - swapoff free all the continuation pages
3633  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3634  */
3635 static void free_swap_count_continuations(struct swap_info_struct *si)
3636 {
3637 	pgoff_t offset;
3638 
3639 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3640 		struct page *head;
3641 		head = vmalloc_to_page(si->swap_map + offset);
3642 		if (page_private(head)) {
3643 			struct page *page, *next;
3644 
3645 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3646 				list_del(&page->lru);
3647 				__free_page(page);
3648 			}
3649 		}
3650 	}
3651 }
3652 
3653 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3654 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3655 {
3656 	struct swap_info_struct *si, *next;
3657 	int nid = folio_nid(folio);
3658 
3659 	if (!(gfp & __GFP_IO))
3660 		return;
3661 
3662 	if (!blk_cgroup_congested())
3663 		return;
3664 
3665 	/*
3666 	 * We've already scheduled a throttle, avoid taking the global swap
3667 	 * lock.
3668 	 */
3669 	if (current->throttle_disk)
3670 		return;
3671 
3672 	spin_lock(&swap_avail_lock);
3673 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3674 				  avail_lists[nid]) {
3675 		if (si->bdev) {
3676 			blkcg_schedule_throttle(si->bdev->bd_disk, true);
3677 			break;
3678 		}
3679 	}
3680 	spin_unlock(&swap_avail_lock);
3681 }
3682 #endif
3683 
3684 static int __init swapfile_init(void)
3685 {
3686 	int nid;
3687 
3688 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3689 					 GFP_KERNEL);
3690 	if (!swap_avail_heads) {
3691 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3692 		return -ENOMEM;
3693 	}
3694 
3695 	for_each_node(nid)
3696 		plist_head_init(&swap_avail_heads[nid]);
3697 
3698 	swapfile_maximum_size = arch_max_swapfile_size();
3699 
3700 #ifdef CONFIG_MIGRATION
3701 	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3702 		swap_migration_ad_supported = true;
3703 #endif	/* CONFIG_MIGRATION */
3704 
3705 	return 0;
3706 }
3707 subsys_initcall(swapfile_init);
3708