xref: /linux/mm/swapfile.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 #include <linux/suspend.h>
44 #include <linux/zswap.h>
45 #include <linux/plist.h>
46 
47 #include <asm/tlbflush.h>
48 #include <linux/swapops.h>
49 #include <linux/swap_cgroup.h>
50 #include "internal.h"
51 #include "swap.h"
52 
53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
54 				 unsigned char);
55 static void free_swap_count_continuations(struct swap_info_struct *);
56 static void swap_entry_range_free(struct swap_info_struct *si, swp_entry_t entry,
57 				  unsigned int nr_pages);
58 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
59 			     unsigned int nr_entries);
60 static bool folio_swapcache_freeable(struct folio *folio);
61 static struct swap_cluster_info *lock_cluster_or_swap_info(
62 		struct swap_info_struct *si, unsigned long offset);
63 static void unlock_cluster_or_swap_info(struct swap_info_struct *si,
64 					struct swap_cluster_info *ci);
65 
66 static DEFINE_SPINLOCK(swap_lock);
67 static unsigned int nr_swapfiles;
68 atomic_long_t nr_swap_pages;
69 /*
70  * Some modules use swappable objects and may try to swap them out under
71  * memory pressure (via the shrinker). Before doing so, they may wish to
72  * check to see if any swap space is available.
73  */
74 EXPORT_SYMBOL_GPL(nr_swap_pages);
75 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
76 long total_swap_pages;
77 static int least_priority = -1;
78 unsigned long swapfile_maximum_size;
79 #ifdef CONFIG_MIGRATION
80 bool swap_migration_ad_supported;
81 #endif	/* CONFIG_MIGRATION */
82 
83 static const char Bad_file[] = "Bad swap file entry ";
84 static const char Unused_file[] = "Unused swap file entry ";
85 static const char Bad_offset[] = "Bad swap offset entry ";
86 static const char Unused_offset[] = "Unused swap offset entry ";
87 
88 /*
89  * all active swap_info_structs
90  * protected with swap_lock, and ordered by priority.
91  */
92 static PLIST_HEAD(swap_active_head);
93 
94 /*
95  * all available (active, not full) swap_info_structs
96  * protected with swap_avail_lock, ordered by priority.
97  * This is used by folio_alloc_swap() instead of swap_active_head
98  * because swap_active_head includes all swap_info_structs,
99  * but folio_alloc_swap() doesn't need to look at full ones.
100  * This uses its own lock instead of swap_lock because when a
101  * swap_info_struct changes between not-full/full, it needs to
102  * add/remove itself to/from this list, but the swap_info_struct->lock
103  * is held and the locking order requires swap_lock to be taken
104  * before any swap_info_struct->lock.
105  */
106 static struct plist_head *swap_avail_heads;
107 static DEFINE_SPINLOCK(swap_avail_lock);
108 
109 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
110 
111 static DEFINE_MUTEX(swapon_mutex);
112 
113 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
114 /* Activity counter to indicate that a swapon or swapoff has occurred */
115 static atomic_t proc_poll_event = ATOMIC_INIT(0);
116 
117 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
118 
119 static struct swap_info_struct *swap_type_to_swap_info(int type)
120 {
121 	if (type >= MAX_SWAPFILES)
122 		return NULL;
123 
124 	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
125 }
126 
127 static inline unsigned char swap_count(unsigned char ent)
128 {
129 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
130 }
131 
132 /* Reclaim the swap entry anyway if possible */
133 #define TTRS_ANYWAY		0x1
134 /*
135  * Reclaim the swap entry if there are no more mappings of the
136  * corresponding page
137  */
138 #define TTRS_UNMAPPED		0x2
139 /* Reclaim the swap entry if swap is getting full */
140 #define TTRS_FULL		0x4
141 /* Reclaim directly, bypass the slot cache and don't touch device lock */
142 #define TTRS_DIRECT		0x8
143 
144 static bool swap_is_has_cache(struct swap_info_struct *si,
145 			      unsigned long offset, int nr_pages)
146 {
147 	unsigned char *map = si->swap_map + offset;
148 	unsigned char *map_end = map + nr_pages;
149 
150 	do {
151 		VM_BUG_ON(!(*map & SWAP_HAS_CACHE));
152 		if (*map != SWAP_HAS_CACHE)
153 			return false;
154 	} while (++map < map_end);
155 
156 	return true;
157 }
158 
159 static bool swap_is_last_map(struct swap_info_struct *si,
160 		unsigned long offset, int nr_pages, bool *has_cache)
161 {
162 	unsigned char *map = si->swap_map + offset;
163 	unsigned char *map_end = map + nr_pages;
164 	unsigned char count = *map;
165 
166 	if (swap_count(count) != 1)
167 		return false;
168 
169 	while (++map < map_end) {
170 		if (*map != count)
171 			return false;
172 	}
173 
174 	*has_cache = !!(count & SWAP_HAS_CACHE);
175 	return true;
176 }
177 
178 /*
179  * returns number of pages in the folio that backs the swap entry. If positive,
180  * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
181  * folio was associated with the swap entry.
182  */
183 static int __try_to_reclaim_swap(struct swap_info_struct *si,
184 				 unsigned long offset, unsigned long flags)
185 {
186 	swp_entry_t entry = swp_entry(si->type, offset);
187 	struct address_space *address_space = swap_address_space(entry);
188 	struct swap_cluster_info *ci;
189 	struct folio *folio;
190 	int ret, nr_pages;
191 	bool need_reclaim;
192 
193 	folio = filemap_get_folio(address_space, swap_cache_index(entry));
194 	if (IS_ERR(folio))
195 		return 0;
196 
197 	/* offset could point to the middle of a large folio */
198 	entry = folio->swap;
199 	offset = swp_offset(entry);
200 	nr_pages = folio_nr_pages(folio);
201 	ret = -nr_pages;
202 
203 	/*
204 	 * When this function is called from scan_swap_map_slots() and it's
205 	 * called by vmscan.c at reclaiming folios. So we hold a folio lock
206 	 * here. We have to use trylock for avoiding deadlock. This is a special
207 	 * case and you should use folio_free_swap() with explicit folio_lock()
208 	 * in usual operations.
209 	 */
210 	if (!folio_trylock(folio))
211 		goto out;
212 
213 	need_reclaim = ((flags & TTRS_ANYWAY) ||
214 			((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
215 			((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)));
216 	if (!need_reclaim || !folio_swapcache_freeable(folio))
217 		goto out_unlock;
218 
219 	/*
220 	 * It's safe to delete the folio from swap cache only if the folio's
221 	 * swap_map is HAS_CACHE only, which means the slots have no page table
222 	 * reference or pending writeback, and can't be allocated to others.
223 	 */
224 	ci = lock_cluster_or_swap_info(si, offset);
225 	need_reclaim = swap_is_has_cache(si, offset, nr_pages);
226 	unlock_cluster_or_swap_info(si, ci);
227 	if (!need_reclaim)
228 		goto out_unlock;
229 
230 	if (!(flags & TTRS_DIRECT)) {
231 		/* Free through slot cache */
232 		delete_from_swap_cache(folio);
233 		folio_set_dirty(folio);
234 		ret = nr_pages;
235 		goto out_unlock;
236 	}
237 
238 	xa_lock_irq(&address_space->i_pages);
239 	__delete_from_swap_cache(folio, entry, NULL);
240 	xa_unlock_irq(&address_space->i_pages);
241 	folio_ref_sub(folio, nr_pages);
242 	folio_set_dirty(folio);
243 
244 	spin_lock(&si->lock);
245 	/* Only sinple page folio can be backed by zswap */
246 	if (nr_pages == 1)
247 		zswap_invalidate(entry);
248 	swap_entry_range_free(si, entry, nr_pages);
249 	spin_unlock(&si->lock);
250 	ret = nr_pages;
251 out_unlock:
252 	folio_unlock(folio);
253 out:
254 	folio_put(folio);
255 	return ret;
256 }
257 
258 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
259 {
260 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
261 	return rb_entry(rb, struct swap_extent, rb_node);
262 }
263 
264 static inline struct swap_extent *next_se(struct swap_extent *se)
265 {
266 	struct rb_node *rb = rb_next(&se->rb_node);
267 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
268 }
269 
270 /*
271  * swapon tell device that all the old swap contents can be discarded,
272  * to allow the swap device to optimize its wear-levelling.
273  */
274 static int discard_swap(struct swap_info_struct *si)
275 {
276 	struct swap_extent *se;
277 	sector_t start_block;
278 	sector_t nr_blocks;
279 	int err = 0;
280 
281 	/* Do not discard the swap header page! */
282 	se = first_se(si);
283 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
284 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
285 	if (nr_blocks) {
286 		err = blkdev_issue_discard(si->bdev, start_block,
287 				nr_blocks, GFP_KERNEL);
288 		if (err)
289 			return err;
290 		cond_resched();
291 	}
292 
293 	for (se = next_se(se); se; se = next_se(se)) {
294 		start_block = se->start_block << (PAGE_SHIFT - 9);
295 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
296 
297 		err = blkdev_issue_discard(si->bdev, start_block,
298 				nr_blocks, GFP_KERNEL);
299 		if (err)
300 			break;
301 
302 		cond_resched();
303 	}
304 	return err;		/* That will often be -EOPNOTSUPP */
305 }
306 
307 static struct swap_extent *
308 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
309 {
310 	struct swap_extent *se;
311 	struct rb_node *rb;
312 
313 	rb = sis->swap_extent_root.rb_node;
314 	while (rb) {
315 		se = rb_entry(rb, struct swap_extent, rb_node);
316 		if (offset < se->start_page)
317 			rb = rb->rb_left;
318 		else if (offset >= se->start_page + se->nr_pages)
319 			rb = rb->rb_right;
320 		else
321 			return se;
322 	}
323 	/* It *must* be present */
324 	BUG();
325 }
326 
327 sector_t swap_folio_sector(struct folio *folio)
328 {
329 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
330 	struct swap_extent *se;
331 	sector_t sector;
332 	pgoff_t offset;
333 
334 	offset = swp_offset(folio->swap);
335 	se = offset_to_swap_extent(sis, offset);
336 	sector = se->start_block + (offset - se->start_page);
337 	return sector << (PAGE_SHIFT - 9);
338 }
339 
340 /*
341  * swap allocation tell device that a cluster of swap can now be discarded,
342  * to allow the swap device to optimize its wear-levelling.
343  */
344 static void discard_swap_cluster(struct swap_info_struct *si,
345 				 pgoff_t start_page, pgoff_t nr_pages)
346 {
347 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
348 
349 	while (nr_pages) {
350 		pgoff_t offset = start_page - se->start_page;
351 		sector_t start_block = se->start_block + offset;
352 		sector_t nr_blocks = se->nr_pages - offset;
353 
354 		if (nr_blocks > nr_pages)
355 			nr_blocks = nr_pages;
356 		start_page += nr_blocks;
357 		nr_pages -= nr_blocks;
358 
359 		start_block <<= PAGE_SHIFT - 9;
360 		nr_blocks <<= PAGE_SHIFT - 9;
361 		if (blkdev_issue_discard(si->bdev, start_block,
362 					nr_blocks, GFP_NOIO))
363 			break;
364 
365 		se = next_se(se);
366 	}
367 }
368 
369 #ifdef CONFIG_THP_SWAP
370 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
371 
372 #define swap_entry_order(order)	(order)
373 #else
374 #define SWAPFILE_CLUSTER	256
375 
376 /*
377  * Define swap_entry_order() as constant to let compiler to optimize
378  * out some code if !CONFIG_THP_SWAP
379  */
380 #define swap_entry_order(order)	0
381 #endif
382 #define LATENCY_LIMIT		256
383 
384 static inline bool cluster_is_free(struct swap_cluster_info *info)
385 {
386 	return info->flags & CLUSTER_FLAG_FREE;
387 }
388 
389 static inline unsigned int cluster_index(struct swap_info_struct *si,
390 					 struct swap_cluster_info *ci)
391 {
392 	return ci - si->cluster_info;
393 }
394 
395 static inline unsigned int cluster_offset(struct swap_info_struct *si,
396 					  struct swap_cluster_info *ci)
397 {
398 	return cluster_index(si, ci) * SWAPFILE_CLUSTER;
399 }
400 
401 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
402 						     unsigned long offset)
403 {
404 	struct swap_cluster_info *ci;
405 
406 	ci = si->cluster_info;
407 	if (ci) {
408 		ci += offset / SWAPFILE_CLUSTER;
409 		spin_lock(&ci->lock);
410 	}
411 	return ci;
412 }
413 
414 static inline void unlock_cluster(struct swap_cluster_info *ci)
415 {
416 	if (ci)
417 		spin_unlock(&ci->lock);
418 }
419 
420 /*
421  * Determine the locking method in use for this device.  Return
422  * swap_cluster_info if SSD-style cluster-based locking is in place.
423  */
424 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
425 		struct swap_info_struct *si, unsigned long offset)
426 {
427 	struct swap_cluster_info *ci;
428 
429 	/* Try to use fine-grained SSD-style locking if available: */
430 	ci = lock_cluster(si, offset);
431 	/* Otherwise, fall back to traditional, coarse locking: */
432 	if (!ci)
433 		spin_lock(&si->lock);
434 
435 	return ci;
436 }
437 
438 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
439 					       struct swap_cluster_info *ci)
440 {
441 	if (ci)
442 		unlock_cluster(ci);
443 	else
444 		spin_unlock(&si->lock);
445 }
446 
447 /* Add a cluster to discard list and schedule it to do discard */
448 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
449 		struct swap_cluster_info *ci)
450 {
451 	unsigned int idx = cluster_index(si, ci);
452 	/*
453 	 * If scan_swap_map_slots() can't find a free cluster, it will check
454 	 * si->swap_map directly. To make sure the discarding cluster isn't
455 	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
456 	 * It will be cleared after discard
457 	 */
458 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
459 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
460 
461 	VM_BUG_ON(ci->flags & CLUSTER_FLAG_FREE);
462 	list_move_tail(&ci->list, &si->discard_clusters);
463 	ci->flags = 0;
464 	schedule_work(&si->discard_work);
465 }
466 
467 static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
468 {
469 	lockdep_assert_held(&si->lock);
470 	lockdep_assert_held(&ci->lock);
471 
472 	if (ci->flags)
473 		list_move_tail(&ci->list, &si->free_clusters);
474 	else
475 		list_add_tail(&ci->list, &si->free_clusters);
476 	ci->flags = CLUSTER_FLAG_FREE;
477 	ci->order = 0;
478 }
479 
480 /*
481  * Doing discard actually. After a cluster discard is finished, the cluster
482  * will be added to free cluster list. caller should hold si->lock.
483 */
484 static void swap_do_scheduled_discard(struct swap_info_struct *si)
485 {
486 	struct swap_cluster_info *ci;
487 	unsigned int idx;
488 
489 	while (!list_empty(&si->discard_clusters)) {
490 		ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list);
491 		list_del(&ci->list);
492 		idx = cluster_index(si, ci);
493 		spin_unlock(&si->lock);
494 
495 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
496 				SWAPFILE_CLUSTER);
497 
498 		spin_lock(&si->lock);
499 		spin_lock(&ci->lock);
500 		__free_cluster(si, ci);
501 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
502 				0, SWAPFILE_CLUSTER);
503 		spin_unlock(&ci->lock);
504 	}
505 }
506 
507 static void swap_discard_work(struct work_struct *work)
508 {
509 	struct swap_info_struct *si;
510 
511 	si = container_of(work, struct swap_info_struct, discard_work);
512 
513 	spin_lock(&si->lock);
514 	swap_do_scheduled_discard(si);
515 	spin_unlock(&si->lock);
516 }
517 
518 static void swap_users_ref_free(struct percpu_ref *ref)
519 {
520 	struct swap_info_struct *si;
521 
522 	si = container_of(ref, struct swap_info_struct, users);
523 	complete(&si->comp);
524 }
525 
526 static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
527 {
528 	VM_BUG_ON(ci->count != 0);
529 	lockdep_assert_held(&si->lock);
530 	lockdep_assert_held(&ci->lock);
531 
532 	if (ci->flags & CLUSTER_FLAG_FRAG)
533 		si->frag_cluster_nr[ci->order]--;
534 
535 	/*
536 	 * If the swap is discardable, prepare discard the cluster
537 	 * instead of free it immediately. The cluster will be freed
538 	 * after discard.
539 	 */
540 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
541 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
542 		swap_cluster_schedule_discard(si, ci);
543 		return;
544 	}
545 
546 	__free_cluster(si, ci);
547 }
548 
549 /*
550  * The cluster corresponding to page_nr will be used. The cluster will not be
551  * added to free cluster list and its usage counter will be increased by 1.
552  * Only used for initialization.
553  */
554 static void inc_cluster_info_page(struct swap_info_struct *si,
555 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
556 {
557 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558 	struct swap_cluster_info *ci;
559 
560 	if (!cluster_info)
561 		return;
562 
563 	ci = cluster_info + idx;
564 	ci->count++;
565 
566 	VM_BUG_ON(ci->count > SWAPFILE_CLUSTER);
567 	VM_BUG_ON(ci->flags);
568 }
569 
570 /*
571  * The cluster ci decreases @nr_pages usage. If the usage counter becomes 0,
572  * which means no page in the cluster is in use, we can optionally discard
573  * the cluster and add it to free cluster list.
574  */
575 static void dec_cluster_info_page(struct swap_info_struct *si,
576 				  struct swap_cluster_info *ci, int nr_pages)
577 {
578 	if (!si->cluster_info)
579 		return;
580 
581 	VM_BUG_ON(ci->count < nr_pages);
582 	VM_BUG_ON(cluster_is_free(ci));
583 	lockdep_assert_held(&si->lock);
584 	lockdep_assert_held(&ci->lock);
585 	ci->count -= nr_pages;
586 
587 	if (!ci->count) {
588 		free_cluster(si, ci);
589 		return;
590 	}
591 
592 	if (!(ci->flags & CLUSTER_FLAG_NONFULL)) {
593 		VM_BUG_ON(ci->flags & CLUSTER_FLAG_FREE);
594 		if (ci->flags & CLUSTER_FLAG_FRAG)
595 			si->frag_cluster_nr[ci->order]--;
596 		list_move_tail(&ci->list, &si->nonfull_clusters[ci->order]);
597 		ci->flags = CLUSTER_FLAG_NONFULL;
598 	}
599 }
600 
601 static bool cluster_reclaim_range(struct swap_info_struct *si,
602 				  struct swap_cluster_info *ci,
603 				  unsigned long start, unsigned long end)
604 {
605 	unsigned char *map = si->swap_map;
606 	unsigned long offset;
607 
608 	spin_unlock(&ci->lock);
609 	spin_unlock(&si->lock);
610 
611 	for (offset = start; offset < end; offset++) {
612 		switch (READ_ONCE(map[offset])) {
613 		case 0:
614 			continue;
615 		case SWAP_HAS_CACHE:
616 			if (__try_to_reclaim_swap(si, offset, TTRS_ANYWAY | TTRS_DIRECT) > 0)
617 				continue;
618 			goto out;
619 		default:
620 			goto out;
621 		}
622 	}
623 out:
624 	spin_lock(&si->lock);
625 	spin_lock(&ci->lock);
626 
627 	/*
628 	 * Recheck the range no matter reclaim succeeded or not, the slot
629 	 * could have been be freed while we are not holding the lock.
630 	 */
631 	for (offset = start; offset < end; offset++)
632 		if (READ_ONCE(map[offset]))
633 			return false;
634 
635 	return true;
636 }
637 
638 static bool cluster_scan_range(struct swap_info_struct *si,
639 			       struct swap_cluster_info *ci,
640 			       unsigned long start, unsigned int nr_pages)
641 {
642 	unsigned long offset, end = start + nr_pages;
643 	unsigned char *map = si->swap_map;
644 	bool need_reclaim = false;
645 
646 	for (offset = start; offset < end; offset++) {
647 		switch (READ_ONCE(map[offset])) {
648 		case 0:
649 			continue;
650 		case SWAP_HAS_CACHE:
651 			if (!vm_swap_full())
652 				return false;
653 			need_reclaim = true;
654 			continue;
655 		default:
656 			return false;
657 		}
658 	}
659 
660 	if (need_reclaim)
661 		return cluster_reclaim_range(si, ci, start, end);
662 
663 	return true;
664 }
665 
666 static void cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci,
667 				unsigned int start, unsigned char usage,
668 				unsigned int order)
669 {
670 	unsigned int nr_pages = 1 << order;
671 
672 	if (cluster_is_free(ci)) {
673 		if (nr_pages < SWAPFILE_CLUSTER) {
674 			list_move_tail(&ci->list, &si->nonfull_clusters[order]);
675 			ci->flags = CLUSTER_FLAG_NONFULL;
676 		}
677 		ci->order = order;
678 	}
679 
680 	memset(si->swap_map + start, usage, nr_pages);
681 	swap_range_alloc(si, start, nr_pages);
682 	ci->count += nr_pages;
683 
684 	if (ci->count == SWAPFILE_CLUSTER) {
685 		VM_BUG_ON(!(ci->flags &
686 			  (CLUSTER_FLAG_FREE | CLUSTER_FLAG_NONFULL | CLUSTER_FLAG_FRAG)));
687 		if (ci->flags & CLUSTER_FLAG_FRAG)
688 			si->frag_cluster_nr[ci->order]--;
689 		list_move_tail(&ci->list, &si->full_clusters);
690 		ci->flags = CLUSTER_FLAG_FULL;
691 	}
692 }
693 
694 static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si, unsigned long offset,
695 					    unsigned int *foundp, unsigned int order,
696 					    unsigned char usage)
697 {
698 	unsigned long start = offset & ~(SWAPFILE_CLUSTER - 1);
699 	unsigned long end = min(start + SWAPFILE_CLUSTER, si->max);
700 	unsigned int nr_pages = 1 << order;
701 	struct swap_cluster_info *ci;
702 
703 	if (end < nr_pages)
704 		return SWAP_NEXT_INVALID;
705 	end -= nr_pages;
706 
707 	ci = lock_cluster(si, offset);
708 	if (ci->count + nr_pages > SWAPFILE_CLUSTER) {
709 		offset = SWAP_NEXT_INVALID;
710 		goto done;
711 	}
712 
713 	while (offset <= end) {
714 		if (cluster_scan_range(si, ci, offset, nr_pages)) {
715 			cluster_alloc_range(si, ci, offset, usage, order);
716 			*foundp = offset;
717 			if (ci->count == SWAPFILE_CLUSTER) {
718 				offset = SWAP_NEXT_INVALID;
719 				goto done;
720 			}
721 			offset += nr_pages;
722 			break;
723 		}
724 		offset += nr_pages;
725 	}
726 	if (offset > end)
727 		offset = SWAP_NEXT_INVALID;
728 done:
729 	unlock_cluster(ci);
730 	return offset;
731 }
732 
733 static void swap_reclaim_full_clusters(struct swap_info_struct *si)
734 {
735 	long to_scan = 1;
736 	unsigned long offset, end;
737 	struct swap_cluster_info *ci;
738 	unsigned char *map = si->swap_map;
739 	int nr_reclaim, total_reclaimed = 0;
740 
741 	if (atomic_long_read(&nr_swap_pages) <= SWAPFILE_CLUSTER)
742 		to_scan = si->inuse_pages / SWAPFILE_CLUSTER;
743 
744 	while (!list_empty(&si->full_clusters)) {
745 		ci = list_first_entry(&si->full_clusters, struct swap_cluster_info, list);
746 		list_move_tail(&ci->list, &si->full_clusters);
747 		offset = cluster_offset(si, ci);
748 		end = min(si->max, offset + SWAPFILE_CLUSTER);
749 		to_scan--;
750 
751 		while (offset < end) {
752 			if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) {
753 				spin_unlock(&si->lock);
754 				nr_reclaim = __try_to_reclaim_swap(si, offset,
755 								   TTRS_ANYWAY | TTRS_DIRECT);
756 				spin_lock(&si->lock);
757 				if (nr_reclaim > 0) {
758 					offset += nr_reclaim;
759 					total_reclaimed += nr_reclaim;
760 					continue;
761 				} else if (nr_reclaim < 0) {
762 					offset += -nr_reclaim;
763 					continue;
764 				}
765 			}
766 			offset++;
767 		}
768 		if (to_scan <= 0 || total_reclaimed)
769 			break;
770 	}
771 }
772 
773 /*
774  * Try to get swap entries with specified order from current cpu's swap entry
775  * pool (a cluster). This might involve allocating a new cluster for current CPU
776  * too.
777  */
778 static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order,
779 					      unsigned char usage)
780 {
781 	struct percpu_cluster *cluster;
782 	struct swap_cluster_info *ci;
783 	unsigned int offset, found = 0;
784 
785 new_cluster:
786 	lockdep_assert_held(&si->lock);
787 	cluster = this_cpu_ptr(si->percpu_cluster);
788 	offset = cluster->next[order];
789 	if (offset) {
790 		offset = alloc_swap_scan_cluster(si, offset, &found, order, usage);
791 		if (found)
792 			goto done;
793 	}
794 
795 	if (!list_empty(&si->free_clusters)) {
796 		ci = list_first_entry(&si->free_clusters, struct swap_cluster_info, list);
797 		offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci), &found, order, usage);
798 		VM_BUG_ON(!found);
799 		goto done;
800 	}
801 
802 	if (order < PMD_ORDER) {
803 		unsigned int frags = 0;
804 
805 		while (!list_empty(&si->nonfull_clusters[order])) {
806 			ci = list_first_entry(&si->nonfull_clusters[order],
807 					      struct swap_cluster_info, list);
808 			list_move_tail(&ci->list, &si->frag_clusters[order]);
809 			ci->flags = CLUSTER_FLAG_FRAG;
810 			si->frag_cluster_nr[order]++;
811 			offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
812 							 &found, order, usage);
813 			frags++;
814 			if (found)
815 				break;
816 		}
817 
818 		if (!found) {
819 			/*
820 			 * Nonfull clusters are moved to frag tail if we reached
821 			 * here, count them too, don't over scan the frag list.
822 			 */
823 			while (frags < si->frag_cluster_nr[order]) {
824 				ci = list_first_entry(&si->frag_clusters[order],
825 						      struct swap_cluster_info, list);
826 				/*
827 				 * Rotate the frag list to iterate, they were all failing
828 				 * high order allocation or moved here due to per-CPU usage,
829 				 * this help keeping usable cluster ahead.
830 				 */
831 				list_move_tail(&ci->list, &si->frag_clusters[order]);
832 				offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
833 								 &found, order, usage);
834 				frags++;
835 				if (found)
836 					break;
837 			}
838 		}
839 	}
840 
841 	if (found)
842 		goto done;
843 
844 	if (!list_empty(&si->discard_clusters)) {
845 		/*
846 		 * we don't have free cluster but have some clusters in
847 		 * discarding, do discard now and reclaim them, then
848 		 * reread cluster_next_cpu since we dropped si->lock
849 		 */
850 		swap_do_scheduled_discard(si);
851 		goto new_cluster;
852 	}
853 
854 	if (order)
855 		goto done;
856 
857 	/* Order 0 stealing from higher order */
858 	for (int o = 1; o < SWAP_NR_ORDERS; o++) {
859 		/*
860 		 * Clusters here have at least one usable slots and can't fail order 0
861 		 * allocation, but reclaim may drop si->lock and race with another user.
862 		 */
863 		while (!list_empty(&si->frag_clusters[o])) {
864 			ci = list_first_entry(&si->frag_clusters[o],
865 					      struct swap_cluster_info, list);
866 			offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
867 							 &found, 0, usage);
868 			if (found)
869 				goto done;
870 		}
871 
872 		while (!list_empty(&si->nonfull_clusters[o])) {
873 			ci = list_first_entry(&si->nonfull_clusters[o],
874 					      struct swap_cluster_info, list);
875 			offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci),
876 							 &found, 0, usage);
877 			if (found)
878 				goto done;
879 		}
880 	}
881 
882 done:
883 	/* Try reclaim from full clusters if device is nearfull */
884 	if (vm_swap_full() && (!found || (si->pages - si->inuse_pages) < SWAPFILE_CLUSTER)) {
885 		swap_reclaim_full_clusters(si);
886 		if (!found && !order && si->pages != si->inuse_pages)
887 			goto new_cluster;
888 	}
889 
890 	cluster->next[order] = offset;
891 	return found;
892 }
893 
894 static void __del_from_avail_list(struct swap_info_struct *si)
895 {
896 	int nid;
897 
898 	assert_spin_locked(&si->lock);
899 	for_each_node(nid)
900 		plist_del(&si->avail_lists[nid], &swap_avail_heads[nid]);
901 }
902 
903 static void del_from_avail_list(struct swap_info_struct *si)
904 {
905 	spin_lock(&swap_avail_lock);
906 	__del_from_avail_list(si);
907 	spin_unlock(&swap_avail_lock);
908 }
909 
910 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
911 			     unsigned int nr_entries)
912 {
913 	unsigned int end = offset + nr_entries - 1;
914 
915 	if (offset == si->lowest_bit)
916 		si->lowest_bit += nr_entries;
917 	if (end == si->highest_bit)
918 		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
919 	WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
920 	if (si->inuse_pages == si->pages) {
921 		si->lowest_bit = si->max;
922 		si->highest_bit = 0;
923 		del_from_avail_list(si);
924 	}
925 }
926 
927 static void add_to_avail_list(struct swap_info_struct *si)
928 {
929 	int nid;
930 
931 	spin_lock(&swap_avail_lock);
932 	for_each_node(nid)
933 		plist_add(&si->avail_lists[nid], &swap_avail_heads[nid]);
934 	spin_unlock(&swap_avail_lock);
935 }
936 
937 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
938 			    unsigned int nr_entries)
939 {
940 	unsigned long begin = offset;
941 	unsigned long end = offset + nr_entries - 1;
942 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
943 	unsigned int i;
944 
945 	/*
946 	 * Use atomic clear_bit operations only on zeromap instead of non-atomic
947 	 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes.
948 	 */
949 	for (i = 0; i < nr_entries; i++)
950 		clear_bit(offset + i, si->zeromap);
951 
952 	if (offset < si->lowest_bit)
953 		si->lowest_bit = offset;
954 	if (end > si->highest_bit) {
955 		bool was_full = !si->highest_bit;
956 
957 		WRITE_ONCE(si->highest_bit, end);
958 		if (was_full && (si->flags & SWP_WRITEOK))
959 			add_to_avail_list(si);
960 	}
961 	if (si->flags & SWP_BLKDEV)
962 		swap_slot_free_notify =
963 			si->bdev->bd_disk->fops->swap_slot_free_notify;
964 	else
965 		swap_slot_free_notify = NULL;
966 	while (offset <= end) {
967 		arch_swap_invalidate_page(si->type, offset);
968 		if (swap_slot_free_notify)
969 			swap_slot_free_notify(si->bdev, offset);
970 		offset++;
971 	}
972 	clear_shadow_from_swap_cache(si->type, begin, end);
973 
974 	/*
975 	 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
976 	 * only after the above cleanups are done.
977 	 */
978 	smp_wmb();
979 	atomic_long_add(nr_entries, &nr_swap_pages);
980 	WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
981 }
982 
983 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
984 {
985 	unsigned long prev;
986 
987 	if (!(si->flags & SWP_SOLIDSTATE)) {
988 		si->cluster_next = next;
989 		return;
990 	}
991 
992 	prev = this_cpu_read(*si->cluster_next_cpu);
993 	/*
994 	 * Cross the swap address space size aligned trunk, choose
995 	 * another trunk randomly to avoid lock contention on swap
996 	 * address space if possible.
997 	 */
998 	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
999 	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
1000 		/* No free swap slots available */
1001 		if (si->highest_bit <= si->lowest_bit)
1002 			return;
1003 		next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
1004 		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
1005 		next = max_t(unsigned int, next, si->lowest_bit);
1006 	}
1007 	this_cpu_write(*si->cluster_next_cpu, next);
1008 }
1009 
1010 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
1011 					     unsigned long offset)
1012 {
1013 	if (data_race(!si->swap_map[offset])) {
1014 		spin_lock(&si->lock);
1015 		return true;
1016 	}
1017 
1018 	if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1019 		spin_lock(&si->lock);
1020 		return true;
1021 	}
1022 
1023 	return false;
1024 }
1025 
1026 static int cluster_alloc_swap(struct swap_info_struct *si,
1027 			     unsigned char usage, int nr,
1028 			     swp_entry_t slots[], int order)
1029 {
1030 	int n_ret = 0;
1031 
1032 	VM_BUG_ON(!si->cluster_info);
1033 
1034 	while (n_ret < nr) {
1035 		unsigned long offset = cluster_alloc_swap_entry(si, order, usage);
1036 
1037 		if (!offset)
1038 			break;
1039 		slots[n_ret++] = swp_entry(si->type, offset);
1040 	}
1041 
1042 	return n_ret;
1043 }
1044 
1045 static int scan_swap_map_slots(struct swap_info_struct *si,
1046 			       unsigned char usage, int nr,
1047 			       swp_entry_t slots[], int order)
1048 {
1049 	unsigned long offset;
1050 	unsigned long scan_base;
1051 	unsigned long last_in_cluster = 0;
1052 	int latency_ration = LATENCY_LIMIT;
1053 	unsigned int nr_pages = 1 << order;
1054 	int n_ret = 0;
1055 	bool scanned_many = false;
1056 
1057 	/*
1058 	 * We try to cluster swap pages by allocating them sequentially
1059 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
1060 	 * way, however, we resort to first-free allocation, starting
1061 	 * a new cluster.  This prevents us from scattering swap pages
1062 	 * all over the entire swap partition, so that we reduce
1063 	 * overall disk seek times between swap pages.  -- sct
1064 	 * But we do now try to find an empty cluster.  -Andrea
1065 	 * And we let swap pages go all over an SSD partition.  Hugh
1066 	 */
1067 
1068 	if (order > 0) {
1069 		/*
1070 		 * Should not even be attempting large allocations when huge
1071 		 * page swap is disabled.  Warn and fail the allocation.
1072 		 */
1073 		if (!IS_ENABLED(CONFIG_THP_SWAP) ||
1074 		    nr_pages > SWAPFILE_CLUSTER) {
1075 			VM_WARN_ON_ONCE(1);
1076 			return 0;
1077 		}
1078 
1079 		/*
1080 		 * Swapfile is not block device or not using clusters so unable
1081 		 * to allocate large entries.
1082 		 */
1083 		if (!(si->flags & SWP_BLKDEV) || !si->cluster_info)
1084 			return 0;
1085 	}
1086 
1087 	if (si->cluster_info)
1088 		return cluster_alloc_swap(si, usage, nr, slots, order);
1089 
1090 	si->flags += SWP_SCANNING;
1091 
1092 	/* For HDD, sequential access is more important. */
1093 	scan_base = si->cluster_next;
1094 	offset = scan_base;
1095 
1096 	if (unlikely(!si->cluster_nr--)) {
1097 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
1098 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
1099 			goto checks;
1100 		}
1101 
1102 		spin_unlock(&si->lock);
1103 
1104 		/*
1105 		 * If seek is expensive, start searching for new cluster from
1106 		 * start of partition, to minimize the span of allocated swap.
1107 		 */
1108 		scan_base = offset = si->lowest_bit;
1109 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
1110 
1111 		/* Locate the first empty (unaligned) cluster */
1112 		for (; last_in_cluster <= READ_ONCE(si->highest_bit); offset++) {
1113 			if (si->swap_map[offset])
1114 				last_in_cluster = offset + SWAPFILE_CLUSTER;
1115 			else if (offset == last_in_cluster) {
1116 				spin_lock(&si->lock);
1117 				offset -= SWAPFILE_CLUSTER - 1;
1118 				si->cluster_next = offset;
1119 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
1120 				goto checks;
1121 			}
1122 			if (unlikely(--latency_ration < 0)) {
1123 				cond_resched();
1124 				latency_ration = LATENCY_LIMIT;
1125 			}
1126 		}
1127 
1128 		offset = scan_base;
1129 		spin_lock(&si->lock);
1130 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
1131 	}
1132 
1133 checks:
1134 	if (!(si->flags & SWP_WRITEOK))
1135 		goto no_page;
1136 	if (!si->highest_bit)
1137 		goto no_page;
1138 	if (offset > si->highest_bit)
1139 		scan_base = offset = si->lowest_bit;
1140 
1141 	/* reuse swap entry of cache-only swap if not busy. */
1142 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
1143 		int swap_was_freed;
1144 		spin_unlock(&si->lock);
1145 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY | TTRS_DIRECT);
1146 		spin_lock(&si->lock);
1147 		/* entry was freed successfully, try to use this again */
1148 		if (swap_was_freed > 0)
1149 			goto checks;
1150 		goto scan; /* check next one */
1151 	}
1152 
1153 	if (si->swap_map[offset]) {
1154 		if (!n_ret)
1155 			goto scan;
1156 		else
1157 			goto done;
1158 	}
1159 	memset(si->swap_map + offset, usage, nr_pages);
1160 
1161 	swap_range_alloc(si, offset, nr_pages);
1162 	slots[n_ret++] = swp_entry(si->type, offset);
1163 
1164 	/* got enough slots or reach max slots? */
1165 	if ((n_ret == nr) || (offset >= si->highest_bit))
1166 		goto done;
1167 
1168 	/* search for next available slot */
1169 
1170 	/* time to take a break? */
1171 	if (unlikely(--latency_ration < 0)) {
1172 		if (n_ret)
1173 			goto done;
1174 		spin_unlock(&si->lock);
1175 		cond_resched();
1176 		spin_lock(&si->lock);
1177 		latency_ration = LATENCY_LIMIT;
1178 	}
1179 
1180 	if (si->cluster_nr && !si->swap_map[++offset]) {
1181 		/* non-ssd case, still more slots in cluster? */
1182 		--si->cluster_nr;
1183 		goto checks;
1184 	}
1185 
1186 	/*
1187 	 * Even if there's no free clusters available (fragmented),
1188 	 * try to scan a little more quickly with lock held unless we
1189 	 * have scanned too many slots already.
1190 	 */
1191 	if (!scanned_many) {
1192 		unsigned long scan_limit;
1193 
1194 		if (offset < scan_base)
1195 			scan_limit = scan_base;
1196 		else
1197 			scan_limit = si->highest_bit;
1198 		for (; offset <= scan_limit && --latency_ration > 0;
1199 		     offset++) {
1200 			if (!si->swap_map[offset])
1201 				goto checks;
1202 		}
1203 	}
1204 
1205 done:
1206 	if (order == 0)
1207 		set_cluster_next(si, offset + 1);
1208 	si->flags -= SWP_SCANNING;
1209 	return n_ret;
1210 
1211 scan:
1212 	VM_WARN_ON(order > 0);
1213 	spin_unlock(&si->lock);
1214 	while (++offset <= READ_ONCE(si->highest_bit)) {
1215 		if (unlikely(--latency_ration < 0)) {
1216 			cond_resched();
1217 			latency_ration = LATENCY_LIMIT;
1218 			scanned_many = true;
1219 		}
1220 		if (swap_offset_available_and_locked(si, offset))
1221 			goto checks;
1222 	}
1223 	offset = si->lowest_bit;
1224 	while (offset < scan_base) {
1225 		if (unlikely(--latency_ration < 0)) {
1226 			cond_resched();
1227 			latency_ration = LATENCY_LIMIT;
1228 			scanned_many = true;
1229 		}
1230 		if (swap_offset_available_and_locked(si, offset))
1231 			goto checks;
1232 		offset++;
1233 	}
1234 	spin_lock(&si->lock);
1235 
1236 no_page:
1237 	si->flags -= SWP_SCANNING;
1238 	return n_ret;
1239 }
1240 
1241 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_order)
1242 {
1243 	int order = swap_entry_order(entry_order);
1244 	unsigned long size = 1 << order;
1245 	struct swap_info_struct *si, *next;
1246 	long avail_pgs;
1247 	int n_ret = 0;
1248 	int node;
1249 
1250 	spin_lock(&swap_avail_lock);
1251 
1252 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1253 	if (avail_pgs <= 0) {
1254 		spin_unlock(&swap_avail_lock);
1255 		goto noswap;
1256 	}
1257 
1258 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1259 
1260 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1261 
1262 start_over:
1263 	node = numa_node_id();
1264 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1265 		/* requeue si to after same-priority siblings */
1266 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1267 		spin_unlock(&swap_avail_lock);
1268 		spin_lock(&si->lock);
1269 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1270 			spin_lock(&swap_avail_lock);
1271 			if (plist_node_empty(&si->avail_lists[node])) {
1272 				spin_unlock(&si->lock);
1273 				goto nextsi;
1274 			}
1275 			WARN(!si->highest_bit,
1276 			     "swap_info %d in list but !highest_bit\n",
1277 			     si->type);
1278 			WARN(!(si->flags & SWP_WRITEOK),
1279 			     "swap_info %d in list but !SWP_WRITEOK\n",
1280 			     si->type);
1281 			__del_from_avail_list(si);
1282 			spin_unlock(&si->lock);
1283 			goto nextsi;
1284 		}
1285 		n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1286 					    n_goal, swp_entries, order);
1287 		spin_unlock(&si->lock);
1288 		if (n_ret || size > 1)
1289 			goto check_out;
1290 		cond_resched();
1291 
1292 		spin_lock(&swap_avail_lock);
1293 nextsi:
1294 		/*
1295 		 * if we got here, it's likely that si was almost full before,
1296 		 * and since scan_swap_map_slots() can drop the si->lock,
1297 		 * multiple callers probably all tried to get a page from the
1298 		 * same si and it filled up before we could get one; or, the si
1299 		 * filled up between us dropping swap_avail_lock and taking
1300 		 * si->lock. Since we dropped the swap_avail_lock, the
1301 		 * swap_avail_head list may have been modified; so if next is
1302 		 * still in the swap_avail_head list then try it, otherwise
1303 		 * start over if we have not gotten any slots.
1304 		 */
1305 		if (plist_node_empty(&next->avail_lists[node]))
1306 			goto start_over;
1307 	}
1308 
1309 	spin_unlock(&swap_avail_lock);
1310 
1311 check_out:
1312 	if (n_ret < n_goal)
1313 		atomic_long_add((long)(n_goal - n_ret) * size,
1314 				&nr_swap_pages);
1315 noswap:
1316 	return n_ret;
1317 }
1318 
1319 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1320 {
1321 	struct swap_info_struct *si;
1322 	unsigned long offset;
1323 
1324 	if (!entry.val)
1325 		goto out;
1326 	si = swp_swap_info(entry);
1327 	if (!si)
1328 		goto bad_nofile;
1329 	if (data_race(!(si->flags & SWP_USED)))
1330 		goto bad_device;
1331 	offset = swp_offset(entry);
1332 	if (offset >= si->max)
1333 		goto bad_offset;
1334 	if (data_race(!si->swap_map[swp_offset(entry)]))
1335 		goto bad_free;
1336 	return si;
1337 
1338 bad_free:
1339 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1340 	goto out;
1341 bad_offset:
1342 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1343 	goto out;
1344 bad_device:
1345 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1346 	goto out;
1347 bad_nofile:
1348 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1349 out:
1350 	return NULL;
1351 }
1352 
1353 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1354 					struct swap_info_struct *q)
1355 {
1356 	struct swap_info_struct *p;
1357 
1358 	p = _swap_info_get(entry);
1359 
1360 	if (p != q) {
1361 		if (q != NULL)
1362 			spin_unlock(&q->lock);
1363 		if (p != NULL)
1364 			spin_lock(&p->lock);
1365 	}
1366 	return p;
1367 }
1368 
1369 static unsigned char __swap_entry_free_locked(struct swap_info_struct *si,
1370 					      unsigned long offset,
1371 					      unsigned char usage)
1372 {
1373 	unsigned char count;
1374 	unsigned char has_cache;
1375 
1376 	count = si->swap_map[offset];
1377 
1378 	has_cache = count & SWAP_HAS_CACHE;
1379 	count &= ~SWAP_HAS_CACHE;
1380 
1381 	if (usage == SWAP_HAS_CACHE) {
1382 		VM_BUG_ON(!has_cache);
1383 		has_cache = 0;
1384 	} else if (count == SWAP_MAP_SHMEM) {
1385 		/*
1386 		 * Or we could insist on shmem.c using a special
1387 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1388 		 */
1389 		count = 0;
1390 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1391 		if (count == COUNT_CONTINUED) {
1392 			if (swap_count_continued(si, offset, count))
1393 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1394 			else
1395 				count = SWAP_MAP_MAX;
1396 		} else
1397 			count--;
1398 	}
1399 
1400 	usage = count | has_cache;
1401 	if (usage)
1402 		WRITE_ONCE(si->swap_map[offset], usage);
1403 	else
1404 		WRITE_ONCE(si->swap_map[offset], SWAP_HAS_CACHE);
1405 
1406 	return usage;
1407 }
1408 
1409 /*
1410  * When we get a swap entry, if there aren't some other ways to
1411  * prevent swapoff, such as the folio in swap cache is locked, RCU
1412  * reader side is locked, etc., the swap entry may become invalid
1413  * because of swapoff.  Then, we need to enclose all swap related
1414  * functions with get_swap_device() and put_swap_device(), unless the
1415  * swap functions call get/put_swap_device() by themselves.
1416  *
1417  * RCU reader side lock (including any spinlock) is sufficient to
1418  * prevent swapoff, because synchronize_rcu() is called in swapoff()
1419  * before freeing data structures.
1420  *
1421  * Check whether swap entry is valid in the swap device.  If so,
1422  * return pointer to swap_info_struct, and keep the swap entry valid
1423  * via preventing the swap device from being swapoff, until
1424  * put_swap_device() is called.  Otherwise return NULL.
1425  *
1426  * Notice that swapoff or swapoff+swapon can still happen before the
1427  * percpu_ref_tryget_live() in get_swap_device() or after the
1428  * percpu_ref_put() in put_swap_device() if there isn't any other way
1429  * to prevent swapoff.  The caller must be prepared for that.  For
1430  * example, the following situation is possible.
1431  *
1432  *   CPU1				CPU2
1433  *   do_swap_page()
1434  *     ...				swapoff+swapon
1435  *     __read_swap_cache_async()
1436  *       swapcache_prepare()
1437  *         __swap_duplicate()
1438  *           // check swap_map
1439  *     // verify PTE not changed
1440  *
1441  * In __swap_duplicate(), the swap_map need to be checked before
1442  * changing partly because the specified swap entry may be for another
1443  * swap device which has been swapoff.  And in do_swap_page(), after
1444  * the page is read from the swap device, the PTE is verified not
1445  * changed with the page table locked to check whether the swap device
1446  * has been swapoff or swapoff+swapon.
1447  */
1448 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1449 {
1450 	struct swap_info_struct *si;
1451 	unsigned long offset;
1452 
1453 	if (!entry.val)
1454 		goto out;
1455 	si = swp_swap_info(entry);
1456 	if (!si)
1457 		goto bad_nofile;
1458 	if (!percpu_ref_tryget_live(&si->users))
1459 		goto out;
1460 	/*
1461 	 * Guarantee the si->users are checked before accessing other
1462 	 * fields of swap_info_struct.
1463 	 *
1464 	 * Paired with the spin_unlock() after setup_swap_info() in
1465 	 * enable_swap_info().
1466 	 */
1467 	smp_rmb();
1468 	offset = swp_offset(entry);
1469 	if (offset >= si->max)
1470 		goto put_out;
1471 
1472 	return si;
1473 bad_nofile:
1474 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1475 out:
1476 	return NULL;
1477 put_out:
1478 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1479 	percpu_ref_put(&si->users);
1480 	return NULL;
1481 }
1482 
1483 static unsigned char __swap_entry_free(struct swap_info_struct *si,
1484 				       swp_entry_t entry)
1485 {
1486 	struct swap_cluster_info *ci;
1487 	unsigned long offset = swp_offset(entry);
1488 	unsigned char usage;
1489 
1490 	ci = lock_cluster_or_swap_info(si, offset);
1491 	usage = __swap_entry_free_locked(si, offset, 1);
1492 	unlock_cluster_or_swap_info(si, ci);
1493 	if (!usage)
1494 		free_swap_slot(entry);
1495 
1496 	return usage;
1497 }
1498 
1499 static bool __swap_entries_free(struct swap_info_struct *si,
1500 		swp_entry_t entry, int nr)
1501 {
1502 	unsigned long offset = swp_offset(entry);
1503 	unsigned int type = swp_type(entry);
1504 	struct swap_cluster_info *ci;
1505 	bool has_cache = false;
1506 	unsigned char count;
1507 	int i;
1508 
1509 	if (nr <= 1 || swap_count(data_race(si->swap_map[offset])) != 1)
1510 		goto fallback;
1511 	/* cross into another cluster */
1512 	if (nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER)
1513 		goto fallback;
1514 
1515 	ci = lock_cluster_or_swap_info(si, offset);
1516 	if (!swap_is_last_map(si, offset, nr, &has_cache)) {
1517 		unlock_cluster_or_swap_info(si, ci);
1518 		goto fallback;
1519 	}
1520 	for (i = 0; i < nr; i++)
1521 		WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE);
1522 	unlock_cluster_or_swap_info(si, ci);
1523 
1524 	if (!has_cache) {
1525 		for (i = 0; i < nr; i++)
1526 			zswap_invalidate(swp_entry(si->type, offset + i));
1527 		spin_lock(&si->lock);
1528 		swap_entry_range_free(si, entry, nr);
1529 		spin_unlock(&si->lock);
1530 	}
1531 	return has_cache;
1532 
1533 fallback:
1534 	for (i = 0; i < nr; i++) {
1535 		if (data_race(si->swap_map[offset + i])) {
1536 			count = __swap_entry_free(si, swp_entry(type, offset + i));
1537 			if (count == SWAP_HAS_CACHE)
1538 				has_cache = true;
1539 		} else {
1540 			WARN_ON_ONCE(1);
1541 		}
1542 	}
1543 	return has_cache;
1544 }
1545 
1546 /*
1547  * Drop the last HAS_CACHE flag of swap entries, caller have to
1548  * ensure all entries belong to the same cgroup.
1549  */
1550 static void swap_entry_range_free(struct swap_info_struct *si, swp_entry_t entry,
1551 				  unsigned int nr_pages)
1552 {
1553 	unsigned long offset = swp_offset(entry);
1554 	unsigned char *map = si->swap_map + offset;
1555 	unsigned char *map_end = map + nr_pages;
1556 	struct swap_cluster_info *ci;
1557 
1558 	ci = lock_cluster(si, offset);
1559 	do {
1560 		VM_BUG_ON(*map != SWAP_HAS_CACHE);
1561 		*map = 0;
1562 	} while (++map < map_end);
1563 	dec_cluster_info_page(si, ci, nr_pages);
1564 	unlock_cluster(ci);
1565 
1566 	mem_cgroup_uncharge_swap(entry, nr_pages);
1567 	swap_range_free(si, offset, nr_pages);
1568 }
1569 
1570 static void cluster_swap_free_nr(struct swap_info_struct *si,
1571 		unsigned long offset, int nr_pages,
1572 		unsigned char usage)
1573 {
1574 	struct swap_cluster_info *ci;
1575 	DECLARE_BITMAP(to_free, BITS_PER_LONG) = { 0 };
1576 	int i, nr;
1577 
1578 	ci = lock_cluster_or_swap_info(si, offset);
1579 	while (nr_pages) {
1580 		nr = min(BITS_PER_LONG, nr_pages);
1581 		for (i = 0; i < nr; i++) {
1582 			if (!__swap_entry_free_locked(si, offset + i, usage))
1583 				bitmap_set(to_free, i, 1);
1584 		}
1585 		if (!bitmap_empty(to_free, BITS_PER_LONG)) {
1586 			unlock_cluster_or_swap_info(si, ci);
1587 			for_each_set_bit(i, to_free, BITS_PER_LONG)
1588 				free_swap_slot(swp_entry(si->type, offset + i));
1589 			if (nr == nr_pages)
1590 				return;
1591 			bitmap_clear(to_free, 0, BITS_PER_LONG);
1592 			ci = lock_cluster_or_swap_info(si, offset);
1593 		}
1594 		offset += nr;
1595 		nr_pages -= nr;
1596 	}
1597 	unlock_cluster_or_swap_info(si, ci);
1598 }
1599 
1600 /*
1601  * Caller has made sure that the swap device corresponding to entry
1602  * is still around or has not been recycled.
1603  */
1604 void swap_free_nr(swp_entry_t entry, int nr_pages)
1605 {
1606 	int nr;
1607 	struct swap_info_struct *sis;
1608 	unsigned long offset = swp_offset(entry);
1609 
1610 	sis = _swap_info_get(entry);
1611 	if (!sis)
1612 		return;
1613 
1614 	while (nr_pages) {
1615 		nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
1616 		cluster_swap_free_nr(sis, offset, nr, 1);
1617 		offset += nr;
1618 		nr_pages -= nr;
1619 	}
1620 }
1621 
1622 /*
1623  * Called after dropping swapcache to decrease refcnt to swap entries.
1624  */
1625 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1626 {
1627 	unsigned long offset = swp_offset(entry);
1628 	struct swap_cluster_info *ci;
1629 	struct swap_info_struct *si;
1630 	int size = 1 << swap_entry_order(folio_order(folio));
1631 
1632 	si = _swap_info_get(entry);
1633 	if (!si)
1634 		return;
1635 
1636 	ci = lock_cluster_or_swap_info(si, offset);
1637 	if (size > 1 && swap_is_has_cache(si, offset, size)) {
1638 		unlock_cluster_or_swap_info(si, ci);
1639 		spin_lock(&si->lock);
1640 		swap_entry_range_free(si, entry, size);
1641 		spin_unlock(&si->lock);
1642 		return;
1643 	}
1644 	for (int i = 0; i < size; i++, entry.val++) {
1645 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1646 			unlock_cluster_or_swap_info(si, ci);
1647 			free_swap_slot(entry);
1648 			if (i == size - 1)
1649 				return;
1650 			lock_cluster_or_swap_info(si, offset);
1651 		}
1652 	}
1653 	unlock_cluster_or_swap_info(si, ci);
1654 }
1655 
1656 static int swp_entry_cmp(const void *ent1, const void *ent2)
1657 {
1658 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1659 
1660 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1661 }
1662 
1663 void swapcache_free_entries(swp_entry_t *entries, int n)
1664 {
1665 	struct swap_info_struct *p, *prev;
1666 	int i;
1667 
1668 	if (n <= 0)
1669 		return;
1670 
1671 	prev = NULL;
1672 	p = NULL;
1673 
1674 	/*
1675 	 * Sort swap entries by swap device, so each lock is only taken once.
1676 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1677 	 * so low that it isn't necessary to optimize further.
1678 	 */
1679 	if (nr_swapfiles > 1)
1680 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1681 	for (i = 0; i < n; ++i) {
1682 		p = swap_info_get_cont(entries[i], prev);
1683 		if (p)
1684 			swap_entry_range_free(p, entries[i], 1);
1685 		prev = p;
1686 	}
1687 	if (p)
1688 		spin_unlock(&p->lock);
1689 }
1690 
1691 int __swap_count(swp_entry_t entry)
1692 {
1693 	struct swap_info_struct *si = swp_swap_info(entry);
1694 	pgoff_t offset = swp_offset(entry);
1695 
1696 	return swap_count(si->swap_map[offset]);
1697 }
1698 
1699 /*
1700  * How many references to @entry are currently swapped out?
1701  * This does not give an exact answer when swap count is continued,
1702  * but does include the high COUNT_CONTINUED flag to allow for that.
1703  */
1704 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1705 {
1706 	pgoff_t offset = swp_offset(entry);
1707 	struct swap_cluster_info *ci;
1708 	int count;
1709 
1710 	ci = lock_cluster_or_swap_info(si, offset);
1711 	count = swap_count(si->swap_map[offset]);
1712 	unlock_cluster_or_swap_info(si, ci);
1713 	return count;
1714 }
1715 
1716 /*
1717  * How many references to @entry are currently swapped out?
1718  * This considers COUNT_CONTINUED so it returns exact answer.
1719  */
1720 int swp_swapcount(swp_entry_t entry)
1721 {
1722 	int count, tmp_count, n;
1723 	struct swap_info_struct *si;
1724 	struct swap_cluster_info *ci;
1725 	struct page *page;
1726 	pgoff_t offset;
1727 	unsigned char *map;
1728 
1729 	si = _swap_info_get(entry);
1730 	if (!si)
1731 		return 0;
1732 
1733 	offset = swp_offset(entry);
1734 
1735 	ci = lock_cluster_or_swap_info(si, offset);
1736 
1737 	count = swap_count(si->swap_map[offset]);
1738 	if (!(count & COUNT_CONTINUED))
1739 		goto out;
1740 
1741 	count &= ~COUNT_CONTINUED;
1742 	n = SWAP_MAP_MAX + 1;
1743 
1744 	page = vmalloc_to_page(si->swap_map + offset);
1745 	offset &= ~PAGE_MASK;
1746 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1747 
1748 	do {
1749 		page = list_next_entry(page, lru);
1750 		map = kmap_local_page(page);
1751 		tmp_count = map[offset];
1752 		kunmap_local(map);
1753 
1754 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1755 		n *= (SWAP_CONT_MAX + 1);
1756 	} while (tmp_count & COUNT_CONTINUED);
1757 out:
1758 	unlock_cluster_or_swap_info(si, ci);
1759 	return count;
1760 }
1761 
1762 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1763 					 swp_entry_t entry, int order)
1764 {
1765 	struct swap_cluster_info *ci;
1766 	unsigned char *map = si->swap_map;
1767 	unsigned int nr_pages = 1 << order;
1768 	unsigned long roffset = swp_offset(entry);
1769 	unsigned long offset = round_down(roffset, nr_pages);
1770 	int i;
1771 	bool ret = false;
1772 
1773 	ci = lock_cluster_or_swap_info(si, offset);
1774 	if (!ci || nr_pages == 1) {
1775 		if (swap_count(map[roffset]))
1776 			ret = true;
1777 		goto unlock_out;
1778 	}
1779 	for (i = 0; i < nr_pages; i++) {
1780 		if (swap_count(map[offset + i])) {
1781 			ret = true;
1782 			break;
1783 		}
1784 	}
1785 unlock_out:
1786 	unlock_cluster_or_swap_info(si, ci);
1787 	return ret;
1788 }
1789 
1790 static bool folio_swapped(struct folio *folio)
1791 {
1792 	swp_entry_t entry = folio->swap;
1793 	struct swap_info_struct *si = _swap_info_get(entry);
1794 
1795 	if (!si)
1796 		return false;
1797 
1798 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1799 		return swap_swapcount(si, entry) != 0;
1800 
1801 	return swap_page_trans_huge_swapped(si, entry, folio_order(folio));
1802 }
1803 
1804 static bool folio_swapcache_freeable(struct folio *folio)
1805 {
1806 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1807 
1808 	if (!folio_test_swapcache(folio))
1809 		return false;
1810 	if (folio_test_writeback(folio))
1811 		return false;
1812 
1813 	/*
1814 	 * Once hibernation has begun to create its image of memory,
1815 	 * there's a danger that one of the calls to folio_free_swap()
1816 	 * - most probably a call from __try_to_reclaim_swap() while
1817 	 * hibernation is allocating its own swap pages for the image,
1818 	 * but conceivably even a call from memory reclaim - will free
1819 	 * the swap from a folio which has already been recorded in the
1820 	 * image as a clean swapcache folio, and then reuse its swap for
1821 	 * another page of the image.  On waking from hibernation, the
1822 	 * original folio might be freed under memory pressure, then
1823 	 * later read back in from swap, now with the wrong data.
1824 	 *
1825 	 * Hibernation suspends storage while it is writing the image
1826 	 * to disk so check that here.
1827 	 */
1828 	if (pm_suspended_storage())
1829 		return false;
1830 
1831 	return true;
1832 }
1833 
1834 /**
1835  * folio_free_swap() - Free the swap space used for this folio.
1836  * @folio: The folio to remove.
1837  *
1838  * If swap is getting full, or if there are no more mappings of this folio,
1839  * then call folio_free_swap to free its swap space.
1840  *
1841  * Return: true if we were able to release the swap space.
1842  */
1843 bool folio_free_swap(struct folio *folio)
1844 {
1845 	if (!folio_swapcache_freeable(folio))
1846 		return false;
1847 	if (folio_swapped(folio))
1848 		return false;
1849 
1850 	delete_from_swap_cache(folio);
1851 	folio_set_dirty(folio);
1852 	return true;
1853 }
1854 
1855 /**
1856  * free_swap_and_cache_nr() - Release reference on range of swap entries and
1857  *                            reclaim their cache if no more references remain.
1858  * @entry: First entry of range.
1859  * @nr: Number of entries in range.
1860  *
1861  * For each swap entry in the contiguous range, release a reference. If any swap
1862  * entries become free, try to reclaim their underlying folios, if present. The
1863  * offset range is defined by [entry.offset, entry.offset + nr).
1864  */
1865 void free_swap_and_cache_nr(swp_entry_t entry, int nr)
1866 {
1867 	const unsigned long start_offset = swp_offset(entry);
1868 	const unsigned long end_offset = start_offset + nr;
1869 	struct swap_info_struct *si;
1870 	bool any_only_cache = false;
1871 	unsigned long offset;
1872 
1873 	if (non_swap_entry(entry))
1874 		return;
1875 
1876 	si = get_swap_device(entry);
1877 	if (!si)
1878 		return;
1879 
1880 	if (WARN_ON(end_offset > si->max))
1881 		goto out;
1882 
1883 	/*
1884 	 * First free all entries in the range.
1885 	 */
1886 	any_only_cache = __swap_entries_free(si, entry, nr);
1887 
1888 	/*
1889 	 * Short-circuit the below loop if none of the entries had their
1890 	 * reference drop to zero.
1891 	 */
1892 	if (!any_only_cache)
1893 		goto out;
1894 
1895 	/*
1896 	 * Now go back over the range trying to reclaim the swap cache. This is
1897 	 * more efficient for large folios because we will only try to reclaim
1898 	 * the swap once per folio in the common case. If we do
1899 	 * __swap_entry_free() and __try_to_reclaim_swap() in the same loop, the
1900 	 * latter will get a reference and lock the folio for every individual
1901 	 * page but will only succeed once the swap slot for every subpage is
1902 	 * zero.
1903 	 */
1904 	for (offset = start_offset; offset < end_offset; offset += nr) {
1905 		nr = 1;
1906 		if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1907 			/*
1908 			 * Folios are always naturally aligned in swap so
1909 			 * advance forward to the next boundary. Zero means no
1910 			 * folio was found for the swap entry, so advance by 1
1911 			 * in this case. Negative value means folio was found
1912 			 * but could not be reclaimed. Here we can still advance
1913 			 * to the next boundary.
1914 			 */
1915 			nr = __try_to_reclaim_swap(si, offset,
1916 						   TTRS_UNMAPPED | TTRS_FULL);
1917 			if (nr == 0)
1918 				nr = 1;
1919 			else if (nr < 0)
1920 				nr = -nr;
1921 			nr = ALIGN(offset + 1, nr) - offset;
1922 		}
1923 	}
1924 
1925 out:
1926 	put_swap_device(si);
1927 }
1928 
1929 #ifdef CONFIG_HIBERNATION
1930 
1931 swp_entry_t get_swap_page_of_type(int type)
1932 {
1933 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1934 	swp_entry_t entry = {0};
1935 
1936 	if (!si)
1937 		goto fail;
1938 
1939 	/* This is called for allocating swap entry, not cache */
1940 	spin_lock(&si->lock);
1941 	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry, 0))
1942 		atomic_long_dec(&nr_swap_pages);
1943 	spin_unlock(&si->lock);
1944 fail:
1945 	return entry;
1946 }
1947 
1948 /*
1949  * Find the swap type that corresponds to given device (if any).
1950  *
1951  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1952  * from 0, in which the swap header is expected to be located.
1953  *
1954  * This is needed for the suspend to disk (aka swsusp).
1955  */
1956 int swap_type_of(dev_t device, sector_t offset)
1957 {
1958 	int type;
1959 
1960 	if (!device)
1961 		return -1;
1962 
1963 	spin_lock(&swap_lock);
1964 	for (type = 0; type < nr_swapfiles; type++) {
1965 		struct swap_info_struct *sis = swap_info[type];
1966 
1967 		if (!(sis->flags & SWP_WRITEOK))
1968 			continue;
1969 
1970 		if (device == sis->bdev->bd_dev) {
1971 			struct swap_extent *se = first_se(sis);
1972 
1973 			if (se->start_block == offset) {
1974 				spin_unlock(&swap_lock);
1975 				return type;
1976 			}
1977 		}
1978 	}
1979 	spin_unlock(&swap_lock);
1980 	return -ENODEV;
1981 }
1982 
1983 int find_first_swap(dev_t *device)
1984 {
1985 	int type;
1986 
1987 	spin_lock(&swap_lock);
1988 	for (type = 0; type < nr_swapfiles; type++) {
1989 		struct swap_info_struct *sis = swap_info[type];
1990 
1991 		if (!(sis->flags & SWP_WRITEOK))
1992 			continue;
1993 		*device = sis->bdev->bd_dev;
1994 		spin_unlock(&swap_lock);
1995 		return type;
1996 	}
1997 	spin_unlock(&swap_lock);
1998 	return -ENODEV;
1999 }
2000 
2001 /*
2002  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
2003  * corresponding to given index in swap_info (swap type).
2004  */
2005 sector_t swapdev_block(int type, pgoff_t offset)
2006 {
2007 	struct swap_info_struct *si = swap_type_to_swap_info(type);
2008 	struct swap_extent *se;
2009 
2010 	if (!si || !(si->flags & SWP_WRITEOK))
2011 		return 0;
2012 	se = offset_to_swap_extent(si, offset);
2013 	return se->start_block + (offset - se->start_page);
2014 }
2015 
2016 /*
2017  * Return either the total number of swap pages of given type, or the number
2018  * of free pages of that type (depending on @free)
2019  *
2020  * This is needed for software suspend
2021  */
2022 unsigned int count_swap_pages(int type, int free)
2023 {
2024 	unsigned int n = 0;
2025 
2026 	spin_lock(&swap_lock);
2027 	if ((unsigned int)type < nr_swapfiles) {
2028 		struct swap_info_struct *sis = swap_info[type];
2029 
2030 		spin_lock(&sis->lock);
2031 		if (sis->flags & SWP_WRITEOK) {
2032 			n = sis->pages;
2033 			if (free)
2034 				n -= sis->inuse_pages;
2035 		}
2036 		spin_unlock(&sis->lock);
2037 	}
2038 	spin_unlock(&swap_lock);
2039 	return n;
2040 }
2041 #endif /* CONFIG_HIBERNATION */
2042 
2043 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
2044 {
2045 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
2046 }
2047 
2048 /*
2049  * No need to decide whether this PTE shares the swap entry with others,
2050  * just let do_wp_page work it out if a write is requested later - to
2051  * force COW, vm_page_prot omits write permission from any private vma.
2052  */
2053 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
2054 		unsigned long addr, swp_entry_t entry, struct folio *folio)
2055 {
2056 	struct page *page;
2057 	struct folio *swapcache;
2058 	spinlock_t *ptl;
2059 	pte_t *pte, new_pte, old_pte;
2060 	bool hwpoisoned = false;
2061 	int ret = 1;
2062 
2063 	swapcache = folio;
2064 	folio = ksm_might_need_to_copy(folio, vma, addr);
2065 	if (unlikely(!folio))
2066 		return -ENOMEM;
2067 	else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
2068 		hwpoisoned = true;
2069 		folio = swapcache;
2070 	}
2071 
2072 	page = folio_file_page(folio, swp_offset(entry));
2073 	if (PageHWPoison(page))
2074 		hwpoisoned = true;
2075 
2076 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
2077 	if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
2078 						swp_entry_to_pte(entry)))) {
2079 		ret = 0;
2080 		goto out;
2081 	}
2082 
2083 	old_pte = ptep_get(pte);
2084 
2085 	if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
2086 		swp_entry_t swp_entry;
2087 
2088 		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2089 		if (hwpoisoned) {
2090 			swp_entry = make_hwpoison_entry(page);
2091 		} else {
2092 			swp_entry = make_poisoned_swp_entry();
2093 		}
2094 		new_pte = swp_entry_to_pte(swp_entry);
2095 		ret = 0;
2096 		goto setpte;
2097 	}
2098 
2099 	/*
2100 	 * Some architectures may have to restore extra metadata to the page
2101 	 * when reading from swap. This metadata may be indexed by swap entry
2102 	 * so this must be called before swap_free().
2103 	 */
2104 	arch_swap_restore(folio_swap(entry, folio), folio);
2105 
2106 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2107 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
2108 	folio_get(folio);
2109 	if (folio == swapcache) {
2110 		rmap_t rmap_flags = RMAP_NONE;
2111 
2112 		/*
2113 		 * See do_swap_page(): writeback would be problematic.
2114 		 * However, we do a folio_wait_writeback() just before this
2115 		 * call and have the folio locked.
2116 		 */
2117 		VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
2118 		if (pte_swp_exclusive(old_pte))
2119 			rmap_flags |= RMAP_EXCLUSIVE;
2120 		/*
2121 		 * We currently only expect small !anon folios, which are either
2122 		 * fully exclusive or fully shared. If we ever get large folios
2123 		 * here, we have to be careful.
2124 		 */
2125 		if (!folio_test_anon(folio)) {
2126 			VM_WARN_ON_ONCE(folio_test_large(folio));
2127 			VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
2128 			folio_add_new_anon_rmap(folio, vma, addr, rmap_flags);
2129 		} else {
2130 			folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
2131 		}
2132 	} else { /* ksm created a completely new copy */
2133 		folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
2134 		folio_add_lru_vma(folio, vma);
2135 	}
2136 	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
2137 	if (pte_swp_soft_dirty(old_pte))
2138 		new_pte = pte_mksoft_dirty(new_pte);
2139 	if (pte_swp_uffd_wp(old_pte))
2140 		new_pte = pte_mkuffd_wp(new_pte);
2141 setpte:
2142 	set_pte_at(vma->vm_mm, addr, pte, new_pte);
2143 	swap_free(entry);
2144 out:
2145 	if (pte)
2146 		pte_unmap_unlock(pte, ptl);
2147 	if (folio != swapcache) {
2148 		folio_unlock(folio);
2149 		folio_put(folio);
2150 	}
2151 	return ret;
2152 }
2153 
2154 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
2155 			unsigned long addr, unsigned long end,
2156 			unsigned int type)
2157 {
2158 	pte_t *pte = NULL;
2159 	struct swap_info_struct *si;
2160 
2161 	si = swap_info[type];
2162 	do {
2163 		struct folio *folio;
2164 		unsigned long offset;
2165 		unsigned char swp_count;
2166 		swp_entry_t entry;
2167 		int ret;
2168 		pte_t ptent;
2169 
2170 		if (!pte++) {
2171 			pte = pte_offset_map(pmd, addr);
2172 			if (!pte)
2173 				break;
2174 		}
2175 
2176 		ptent = ptep_get_lockless(pte);
2177 
2178 		if (!is_swap_pte(ptent))
2179 			continue;
2180 
2181 		entry = pte_to_swp_entry(ptent);
2182 		if (swp_type(entry) != type)
2183 			continue;
2184 
2185 		offset = swp_offset(entry);
2186 		pte_unmap(pte);
2187 		pte = NULL;
2188 
2189 		folio = swap_cache_get_folio(entry, vma, addr);
2190 		if (!folio) {
2191 			struct vm_fault vmf = {
2192 				.vma = vma,
2193 				.address = addr,
2194 				.real_address = addr,
2195 				.pmd = pmd,
2196 			};
2197 
2198 			folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2199 						&vmf);
2200 		}
2201 		if (!folio) {
2202 			swp_count = READ_ONCE(si->swap_map[offset]);
2203 			if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
2204 				continue;
2205 			return -ENOMEM;
2206 		}
2207 
2208 		folio_lock(folio);
2209 		folio_wait_writeback(folio);
2210 		ret = unuse_pte(vma, pmd, addr, entry, folio);
2211 		if (ret < 0) {
2212 			folio_unlock(folio);
2213 			folio_put(folio);
2214 			return ret;
2215 		}
2216 
2217 		folio_free_swap(folio);
2218 		folio_unlock(folio);
2219 		folio_put(folio);
2220 	} while (addr += PAGE_SIZE, addr != end);
2221 
2222 	if (pte)
2223 		pte_unmap(pte);
2224 	return 0;
2225 }
2226 
2227 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2228 				unsigned long addr, unsigned long end,
2229 				unsigned int type)
2230 {
2231 	pmd_t *pmd;
2232 	unsigned long next;
2233 	int ret;
2234 
2235 	pmd = pmd_offset(pud, addr);
2236 	do {
2237 		cond_resched();
2238 		next = pmd_addr_end(addr, end);
2239 		ret = unuse_pte_range(vma, pmd, addr, next, type);
2240 		if (ret)
2241 			return ret;
2242 	} while (pmd++, addr = next, addr != end);
2243 	return 0;
2244 }
2245 
2246 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2247 				unsigned long addr, unsigned long end,
2248 				unsigned int type)
2249 {
2250 	pud_t *pud;
2251 	unsigned long next;
2252 	int ret;
2253 
2254 	pud = pud_offset(p4d, addr);
2255 	do {
2256 		next = pud_addr_end(addr, end);
2257 		if (pud_none_or_clear_bad(pud))
2258 			continue;
2259 		ret = unuse_pmd_range(vma, pud, addr, next, type);
2260 		if (ret)
2261 			return ret;
2262 	} while (pud++, addr = next, addr != end);
2263 	return 0;
2264 }
2265 
2266 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2267 				unsigned long addr, unsigned long end,
2268 				unsigned int type)
2269 {
2270 	p4d_t *p4d;
2271 	unsigned long next;
2272 	int ret;
2273 
2274 	p4d = p4d_offset(pgd, addr);
2275 	do {
2276 		next = p4d_addr_end(addr, end);
2277 		if (p4d_none_or_clear_bad(p4d))
2278 			continue;
2279 		ret = unuse_pud_range(vma, p4d, addr, next, type);
2280 		if (ret)
2281 			return ret;
2282 	} while (p4d++, addr = next, addr != end);
2283 	return 0;
2284 }
2285 
2286 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
2287 {
2288 	pgd_t *pgd;
2289 	unsigned long addr, end, next;
2290 	int ret;
2291 
2292 	addr = vma->vm_start;
2293 	end = vma->vm_end;
2294 
2295 	pgd = pgd_offset(vma->vm_mm, addr);
2296 	do {
2297 		next = pgd_addr_end(addr, end);
2298 		if (pgd_none_or_clear_bad(pgd))
2299 			continue;
2300 		ret = unuse_p4d_range(vma, pgd, addr, next, type);
2301 		if (ret)
2302 			return ret;
2303 	} while (pgd++, addr = next, addr != end);
2304 	return 0;
2305 }
2306 
2307 static int unuse_mm(struct mm_struct *mm, unsigned int type)
2308 {
2309 	struct vm_area_struct *vma;
2310 	int ret = 0;
2311 	VMA_ITERATOR(vmi, mm, 0);
2312 
2313 	mmap_read_lock(mm);
2314 	for_each_vma(vmi, vma) {
2315 		if (vma->anon_vma) {
2316 			ret = unuse_vma(vma, type);
2317 			if (ret)
2318 				break;
2319 		}
2320 
2321 		cond_resched();
2322 	}
2323 	mmap_read_unlock(mm);
2324 	return ret;
2325 }
2326 
2327 /*
2328  * Scan swap_map from current position to next entry still in use.
2329  * Return 0 if there are no inuse entries after prev till end of
2330  * the map.
2331  */
2332 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2333 					unsigned int prev)
2334 {
2335 	unsigned int i;
2336 	unsigned char count;
2337 
2338 	/*
2339 	 * No need for swap_lock here: we're just looking
2340 	 * for whether an entry is in use, not modifying it; false
2341 	 * hits are okay, and sys_swapoff() has already prevented new
2342 	 * allocations from this area (while holding swap_lock).
2343 	 */
2344 	for (i = prev + 1; i < si->max; i++) {
2345 		count = READ_ONCE(si->swap_map[i]);
2346 		if (count && swap_count(count) != SWAP_MAP_BAD)
2347 			break;
2348 		if ((i % LATENCY_LIMIT) == 0)
2349 			cond_resched();
2350 	}
2351 
2352 	if (i == si->max)
2353 		i = 0;
2354 
2355 	return i;
2356 }
2357 
2358 static int try_to_unuse(unsigned int type)
2359 {
2360 	struct mm_struct *prev_mm;
2361 	struct mm_struct *mm;
2362 	struct list_head *p;
2363 	int retval = 0;
2364 	struct swap_info_struct *si = swap_info[type];
2365 	struct folio *folio;
2366 	swp_entry_t entry;
2367 	unsigned int i;
2368 
2369 	if (!READ_ONCE(si->inuse_pages))
2370 		goto success;
2371 
2372 retry:
2373 	retval = shmem_unuse(type);
2374 	if (retval)
2375 		return retval;
2376 
2377 	prev_mm = &init_mm;
2378 	mmget(prev_mm);
2379 
2380 	spin_lock(&mmlist_lock);
2381 	p = &init_mm.mmlist;
2382 	while (READ_ONCE(si->inuse_pages) &&
2383 	       !signal_pending(current) &&
2384 	       (p = p->next) != &init_mm.mmlist) {
2385 
2386 		mm = list_entry(p, struct mm_struct, mmlist);
2387 		if (!mmget_not_zero(mm))
2388 			continue;
2389 		spin_unlock(&mmlist_lock);
2390 		mmput(prev_mm);
2391 		prev_mm = mm;
2392 		retval = unuse_mm(mm, type);
2393 		if (retval) {
2394 			mmput(prev_mm);
2395 			return retval;
2396 		}
2397 
2398 		/*
2399 		 * Make sure that we aren't completely killing
2400 		 * interactive performance.
2401 		 */
2402 		cond_resched();
2403 		spin_lock(&mmlist_lock);
2404 	}
2405 	spin_unlock(&mmlist_lock);
2406 
2407 	mmput(prev_mm);
2408 
2409 	i = 0;
2410 	while (READ_ONCE(si->inuse_pages) &&
2411 	       !signal_pending(current) &&
2412 	       (i = find_next_to_unuse(si, i)) != 0) {
2413 
2414 		entry = swp_entry(type, i);
2415 		folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry));
2416 		if (IS_ERR(folio))
2417 			continue;
2418 
2419 		/*
2420 		 * It is conceivable that a racing task removed this folio from
2421 		 * swap cache just before we acquired the page lock. The folio
2422 		 * might even be back in swap cache on another swap area. But
2423 		 * that is okay, folio_free_swap() only removes stale folios.
2424 		 */
2425 		folio_lock(folio);
2426 		folio_wait_writeback(folio);
2427 		folio_free_swap(folio);
2428 		folio_unlock(folio);
2429 		folio_put(folio);
2430 	}
2431 
2432 	/*
2433 	 * Lets check again to see if there are still swap entries in the map.
2434 	 * If yes, we would need to do retry the unuse logic again.
2435 	 * Under global memory pressure, swap entries can be reinserted back
2436 	 * into process space after the mmlist loop above passes over them.
2437 	 *
2438 	 * Limit the number of retries? No: when mmget_not_zero()
2439 	 * above fails, that mm is likely to be freeing swap from
2440 	 * exit_mmap(), which proceeds at its own independent pace;
2441 	 * and even shmem_writepage() could have been preempted after
2442 	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2443 	 * and robust (though cpu-intensive) just to keep retrying.
2444 	 */
2445 	if (READ_ONCE(si->inuse_pages)) {
2446 		if (!signal_pending(current))
2447 			goto retry;
2448 		return -EINTR;
2449 	}
2450 
2451 success:
2452 	/*
2453 	 * Make sure that further cleanups after try_to_unuse() returns happen
2454 	 * after swap_range_free() reduces si->inuse_pages to 0.
2455 	 */
2456 	smp_mb();
2457 	return 0;
2458 }
2459 
2460 /*
2461  * After a successful try_to_unuse, if no swap is now in use, we know
2462  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2463  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2464  * added to the mmlist just after page_duplicate - before would be racy.
2465  */
2466 static void drain_mmlist(void)
2467 {
2468 	struct list_head *p, *next;
2469 	unsigned int type;
2470 
2471 	for (type = 0; type < nr_swapfiles; type++)
2472 		if (swap_info[type]->inuse_pages)
2473 			return;
2474 	spin_lock(&mmlist_lock);
2475 	list_for_each_safe(p, next, &init_mm.mmlist)
2476 		list_del_init(p);
2477 	spin_unlock(&mmlist_lock);
2478 }
2479 
2480 /*
2481  * Free all of a swapdev's extent information
2482  */
2483 static void destroy_swap_extents(struct swap_info_struct *sis)
2484 {
2485 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2486 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2487 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2488 
2489 		rb_erase(rb, &sis->swap_extent_root);
2490 		kfree(se);
2491 	}
2492 
2493 	if (sis->flags & SWP_ACTIVATED) {
2494 		struct file *swap_file = sis->swap_file;
2495 		struct address_space *mapping = swap_file->f_mapping;
2496 
2497 		sis->flags &= ~SWP_ACTIVATED;
2498 		if (mapping->a_ops->swap_deactivate)
2499 			mapping->a_ops->swap_deactivate(swap_file);
2500 	}
2501 }
2502 
2503 /*
2504  * Add a block range (and the corresponding page range) into this swapdev's
2505  * extent tree.
2506  *
2507  * This function rather assumes that it is called in ascending page order.
2508  */
2509 int
2510 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2511 		unsigned long nr_pages, sector_t start_block)
2512 {
2513 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2514 	struct swap_extent *se;
2515 	struct swap_extent *new_se;
2516 
2517 	/*
2518 	 * place the new node at the right most since the
2519 	 * function is called in ascending page order.
2520 	 */
2521 	while (*link) {
2522 		parent = *link;
2523 		link = &parent->rb_right;
2524 	}
2525 
2526 	if (parent) {
2527 		se = rb_entry(parent, struct swap_extent, rb_node);
2528 		BUG_ON(se->start_page + se->nr_pages != start_page);
2529 		if (se->start_block + se->nr_pages == start_block) {
2530 			/* Merge it */
2531 			se->nr_pages += nr_pages;
2532 			return 0;
2533 		}
2534 	}
2535 
2536 	/* No merge, insert a new extent. */
2537 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2538 	if (new_se == NULL)
2539 		return -ENOMEM;
2540 	new_se->start_page = start_page;
2541 	new_se->nr_pages = nr_pages;
2542 	new_se->start_block = start_block;
2543 
2544 	rb_link_node(&new_se->rb_node, parent, link);
2545 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2546 	return 1;
2547 }
2548 EXPORT_SYMBOL_GPL(add_swap_extent);
2549 
2550 /*
2551  * A `swap extent' is a simple thing which maps a contiguous range of pages
2552  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2553  * built at swapon time and is then used at swap_writepage/swap_read_folio
2554  * time for locating where on disk a page belongs.
2555  *
2556  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2557  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2558  * swap files identically.
2559  *
2560  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2561  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2562  * swapfiles are handled *identically* after swapon time.
2563  *
2564  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2565  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2566  * blocks are found which do not fall within the PAGE_SIZE alignment
2567  * requirements, they are simply tossed out - we will never use those blocks
2568  * for swapping.
2569  *
2570  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2571  * prevents users from writing to the swap device, which will corrupt memory.
2572  *
2573  * The amount of disk space which a single swap extent represents varies.
2574  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2575  * extents in the rbtree. - akpm.
2576  */
2577 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2578 {
2579 	struct file *swap_file = sis->swap_file;
2580 	struct address_space *mapping = swap_file->f_mapping;
2581 	struct inode *inode = mapping->host;
2582 	int ret;
2583 
2584 	if (S_ISBLK(inode->i_mode)) {
2585 		ret = add_swap_extent(sis, 0, sis->max, 0);
2586 		*span = sis->pages;
2587 		return ret;
2588 	}
2589 
2590 	if (mapping->a_ops->swap_activate) {
2591 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2592 		if (ret < 0)
2593 			return ret;
2594 		sis->flags |= SWP_ACTIVATED;
2595 		if ((sis->flags & SWP_FS_OPS) &&
2596 		    sio_pool_init() != 0) {
2597 			destroy_swap_extents(sis);
2598 			return -ENOMEM;
2599 		}
2600 		return ret;
2601 	}
2602 
2603 	return generic_swapfile_activate(sis, swap_file, span);
2604 }
2605 
2606 static int swap_node(struct swap_info_struct *si)
2607 {
2608 	struct block_device *bdev;
2609 
2610 	if (si->bdev)
2611 		bdev = si->bdev;
2612 	else
2613 		bdev = si->swap_file->f_inode->i_sb->s_bdev;
2614 
2615 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2616 }
2617 
2618 static void setup_swap_info(struct swap_info_struct *si, int prio,
2619 			    unsigned char *swap_map,
2620 			    struct swap_cluster_info *cluster_info,
2621 			    unsigned long *zeromap)
2622 {
2623 	int i;
2624 
2625 	if (prio >= 0)
2626 		si->prio = prio;
2627 	else
2628 		si->prio = --least_priority;
2629 	/*
2630 	 * the plist prio is negated because plist ordering is
2631 	 * low-to-high, while swap ordering is high-to-low
2632 	 */
2633 	si->list.prio = -si->prio;
2634 	for_each_node(i) {
2635 		if (si->prio >= 0)
2636 			si->avail_lists[i].prio = -si->prio;
2637 		else {
2638 			if (swap_node(si) == i)
2639 				si->avail_lists[i].prio = 1;
2640 			else
2641 				si->avail_lists[i].prio = -si->prio;
2642 		}
2643 	}
2644 	si->swap_map = swap_map;
2645 	si->cluster_info = cluster_info;
2646 	si->zeromap = zeromap;
2647 }
2648 
2649 static void _enable_swap_info(struct swap_info_struct *si)
2650 {
2651 	si->flags |= SWP_WRITEOK;
2652 	atomic_long_add(si->pages, &nr_swap_pages);
2653 	total_swap_pages += si->pages;
2654 
2655 	assert_spin_locked(&swap_lock);
2656 	/*
2657 	 * both lists are plists, and thus priority ordered.
2658 	 * swap_active_head needs to be priority ordered for swapoff(),
2659 	 * which on removal of any swap_info_struct with an auto-assigned
2660 	 * (i.e. negative) priority increments the auto-assigned priority
2661 	 * of any lower-priority swap_info_structs.
2662 	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2663 	 * which allocates swap pages from the highest available priority
2664 	 * swap_info_struct.
2665 	 */
2666 	plist_add(&si->list, &swap_active_head);
2667 
2668 	/* add to available list iff swap device is not full */
2669 	if (si->highest_bit)
2670 		add_to_avail_list(si);
2671 }
2672 
2673 static void enable_swap_info(struct swap_info_struct *si, int prio,
2674 				unsigned char *swap_map,
2675 				struct swap_cluster_info *cluster_info,
2676 				unsigned long *zeromap)
2677 {
2678 	spin_lock(&swap_lock);
2679 	spin_lock(&si->lock);
2680 	setup_swap_info(si, prio, swap_map, cluster_info, zeromap);
2681 	spin_unlock(&si->lock);
2682 	spin_unlock(&swap_lock);
2683 	/*
2684 	 * Finished initializing swap device, now it's safe to reference it.
2685 	 */
2686 	percpu_ref_resurrect(&si->users);
2687 	spin_lock(&swap_lock);
2688 	spin_lock(&si->lock);
2689 	_enable_swap_info(si);
2690 	spin_unlock(&si->lock);
2691 	spin_unlock(&swap_lock);
2692 }
2693 
2694 static void reinsert_swap_info(struct swap_info_struct *si)
2695 {
2696 	spin_lock(&swap_lock);
2697 	spin_lock(&si->lock);
2698 	setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap);
2699 	_enable_swap_info(si);
2700 	spin_unlock(&si->lock);
2701 	spin_unlock(&swap_lock);
2702 }
2703 
2704 static bool __has_usable_swap(void)
2705 {
2706 	return !plist_head_empty(&swap_active_head);
2707 }
2708 
2709 bool has_usable_swap(void)
2710 {
2711 	bool ret;
2712 
2713 	spin_lock(&swap_lock);
2714 	ret = __has_usable_swap();
2715 	spin_unlock(&swap_lock);
2716 	return ret;
2717 }
2718 
2719 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2720 {
2721 	struct swap_info_struct *p = NULL;
2722 	unsigned char *swap_map;
2723 	unsigned long *zeromap;
2724 	struct swap_cluster_info *cluster_info;
2725 	struct file *swap_file, *victim;
2726 	struct address_space *mapping;
2727 	struct inode *inode;
2728 	struct filename *pathname;
2729 	int err, found = 0;
2730 
2731 	if (!capable(CAP_SYS_ADMIN))
2732 		return -EPERM;
2733 
2734 	BUG_ON(!current->mm);
2735 
2736 	pathname = getname(specialfile);
2737 	if (IS_ERR(pathname))
2738 		return PTR_ERR(pathname);
2739 
2740 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2741 	err = PTR_ERR(victim);
2742 	if (IS_ERR(victim))
2743 		goto out;
2744 
2745 	mapping = victim->f_mapping;
2746 	spin_lock(&swap_lock);
2747 	plist_for_each_entry(p, &swap_active_head, list) {
2748 		if (p->flags & SWP_WRITEOK) {
2749 			if (p->swap_file->f_mapping == mapping) {
2750 				found = 1;
2751 				break;
2752 			}
2753 		}
2754 	}
2755 	if (!found) {
2756 		err = -EINVAL;
2757 		spin_unlock(&swap_lock);
2758 		goto out_dput;
2759 	}
2760 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2761 		vm_unacct_memory(p->pages);
2762 	else {
2763 		err = -ENOMEM;
2764 		spin_unlock(&swap_lock);
2765 		goto out_dput;
2766 	}
2767 	spin_lock(&p->lock);
2768 	del_from_avail_list(p);
2769 	if (p->prio < 0) {
2770 		struct swap_info_struct *si = p;
2771 		int nid;
2772 
2773 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2774 			si->prio++;
2775 			si->list.prio--;
2776 			for_each_node(nid) {
2777 				if (si->avail_lists[nid].prio != 1)
2778 					si->avail_lists[nid].prio--;
2779 			}
2780 		}
2781 		least_priority++;
2782 	}
2783 	plist_del(&p->list, &swap_active_head);
2784 	atomic_long_sub(p->pages, &nr_swap_pages);
2785 	total_swap_pages -= p->pages;
2786 	p->flags &= ~SWP_WRITEOK;
2787 	spin_unlock(&p->lock);
2788 	spin_unlock(&swap_lock);
2789 
2790 	disable_swap_slots_cache_lock();
2791 
2792 	set_current_oom_origin();
2793 	err = try_to_unuse(p->type);
2794 	clear_current_oom_origin();
2795 
2796 	if (err) {
2797 		/* re-insert swap space back into swap_list */
2798 		reinsert_swap_info(p);
2799 		reenable_swap_slots_cache_unlock();
2800 		goto out_dput;
2801 	}
2802 
2803 	reenable_swap_slots_cache_unlock();
2804 
2805 	/*
2806 	 * Wait for swap operations protected by get/put_swap_device()
2807 	 * to complete.  Because of synchronize_rcu() here, all swap
2808 	 * operations protected by RCU reader side lock (including any
2809 	 * spinlock) will be waited too.  This makes it easy to
2810 	 * prevent folio_test_swapcache() and the following swap cache
2811 	 * operations from racing with swapoff.
2812 	 */
2813 	percpu_ref_kill(&p->users);
2814 	synchronize_rcu();
2815 	wait_for_completion(&p->comp);
2816 
2817 	flush_work(&p->discard_work);
2818 
2819 	destroy_swap_extents(p);
2820 	if (p->flags & SWP_CONTINUED)
2821 		free_swap_count_continuations(p);
2822 
2823 	if (!p->bdev || !bdev_nonrot(p->bdev))
2824 		atomic_dec(&nr_rotate_swap);
2825 
2826 	mutex_lock(&swapon_mutex);
2827 	spin_lock(&swap_lock);
2828 	spin_lock(&p->lock);
2829 	drain_mmlist();
2830 
2831 	/* wait for anyone still in scan_swap_map_slots */
2832 	p->highest_bit = 0;		/* cuts scans short */
2833 	while (p->flags >= SWP_SCANNING) {
2834 		spin_unlock(&p->lock);
2835 		spin_unlock(&swap_lock);
2836 		schedule_timeout_uninterruptible(1);
2837 		spin_lock(&swap_lock);
2838 		spin_lock(&p->lock);
2839 	}
2840 
2841 	swap_file = p->swap_file;
2842 	p->swap_file = NULL;
2843 	p->max = 0;
2844 	swap_map = p->swap_map;
2845 	p->swap_map = NULL;
2846 	zeromap = p->zeromap;
2847 	p->zeromap = NULL;
2848 	cluster_info = p->cluster_info;
2849 	p->cluster_info = NULL;
2850 	spin_unlock(&p->lock);
2851 	spin_unlock(&swap_lock);
2852 	arch_swap_invalidate_area(p->type);
2853 	zswap_swapoff(p->type);
2854 	mutex_unlock(&swapon_mutex);
2855 	free_percpu(p->percpu_cluster);
2856 	p->percpu_cluster = NULL;
2857 	free_percpu(p->cluster_next_cpu);
2858 	p->cluster_next_cpu = NULL;
2859 	vfree(swap_map);
2860 	kvfree(zeromap);
2861 	kvfree(cluster_info);
2862 	/* Destroy swap account information */
2863 	swap_cgroup_swapoff(p->type);
2864 	exit_swap_address_space(p->type);
2865 
2866 	inode = mapping->host;
2867 
2868 	inode_lock(inode);
2869 	inode->i_flags &= ~S_SWAPFILE;
2870 	inode_unlock(inode);
2871 	filp_close(swap_file, NULL);
2872 
2873 	/*
2874 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2875 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2876 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2877 	 */
2878 	spin_lock(&swap_lock);
2879 	p->flags = 0;
2880 	spin_unlock(&swap_lock);
2881 
2882 	err = 0;
2883 	atomic_inc(&proc_poll_event);
2884 	wake_up_interruptible(&proc_poll_wait);
2885 
2886 out_dput:
2887 	filp_close(victim, NULL);
2888 out:
2889 	putname(pathname);
2890 	return err;
2891 }
2892 
2893 #ifdef CONFIG_PROC_FS
2894 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2895 {
2896 	struct seq_file *seq = file->private_data;
2897 
2898 	poll_wait(file, &proc_poll_wait, wait);
2899 
2900 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2901 		seq->poll_event = atomic_read(&proc_poll_event);
2902 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2903 	}
2904 
2905 	return EPOLLIN | EPOLLRDNORM;
2906 }
2907 
2908 /* iterator */
2909 static void *swap_start(struct seq_file *swap, loff_t *pos)
2910 {
2911 	struct swap_info_struct *si;
2912 	int type;
2913 	loff_t l = *pos;
2914 
2915 	mutex_lock(&swapon_mutex);
2916 
2917 	if (!l)
2918 		return SEQ_START_TOKEN;
2919 
2920 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2921 		if (!(si->flags & SWP_USED) || !si->swap_map)
2922 			continue;
2923 		if (!--l)
2924 			return si;
2925 	}
2926 
2927 	return NULL;
2928 }
2929 
2930 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2931 {
2932 	struct swap_info_struct *si = v;
2933 	int type;
2934 
2935 	if (v == SEQ_START_TOKEN)
2936 		type = 0;
2937 	else
2938 		type = si->type + 1;
2939 
2940 	++(*pos);
2941 	for (; (si = swap_type_to_swap_info(type)); type++) {
2942 		if (!(si->flags & SWP_USED) || !si->swap_map)
2943 			continue;
2944 		return si;
2945 	}
2946 
2947 	return NULL;
2948 }
2949 
2950 static void swap_stop(struct seq_file *swap, void *v)
2951 {
2952 	mutex_unlock(&swapon_mutex);
2953 }
2954 
2955 static int swap_show(struct seq_file *swap, void *v)
2956 {
2957 	struct swap_info_struct *si = v;
2958 	struct file *file;
2959 	int len;
2960 	unsigned long bytes, inuse;
2961 
2962 	if (si == SEQ_START_TOKEN) {
2963 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2964 		return 0;
2965 	}
2966 
2967 	bytes = K(si->pages);
2968 	inuse = K(READ_ONCE(si->inuse_pages));
2969 
2970 	file = si->swap_file;
2971 	len = seq_file_path(swap, file, " \t\n\\");
2972 	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2973 			len < 40 ? 40 - len : 1, " ",
2974 			S_ISBLK(file_inode(file)->i_mode) ?
2975 				"partition" : "file\t",
2976 			bytes, bytes < 10000000 ? "\t" : "",
2977 			inuse, inuse < 10000000 ? "\t" : "",
2978 			si->prio);
2979 	return 0;
2980 }
2981 
2982 static const struct seq_operations swaps_op = {
2983 	.start =	swap_start,
2984 	.next =		swap_next,
2985 	.stop =		swap_stop,
2986 	.show =		swap_show
2987 };
2988 
2989 static int swaps_open(struct inode *inode, struct file *file)
2990 {
2991 	struct seq_file *seq;
2992 	int ret;
2993 
2994 	ret = seq_open(file, &swaps_op);
2995 	if (ret)
2996 		return ret;
2997 
2998 	seq = file->private_data;
2999 	seq->poll_event = atomic_read(&proc_poll_event);
3000 	return 0;
3001 }
3002 
3003 static const struct proc_ops swaps_proc_ops = {
3004 	.proc_flags	= PROC_ENTRY_PERMANENT,
3005 	.proc_open	= swaps_open,
3006 	.proc_read	= seq_read,
3007 	.proc_lseek	= seq_lseek,
3008 	.proc_release	= seq_release,
3009 	.proc_poll	= swaps_poll,
3010 };
3011 
3012 static int __init procswaps_init(void)
3013 {
3014 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
3015 	return 0;
3016 }
3017 __initcall(procswaps_init);
3018 #endif /* CONFIG_PROC_FS */
3019 
3020 #ifdef MAX_SWAPFILES_CHECK
3021 static int __init max_swapfiles_check(void)
3022 {
3023 	MAX_SWAPFILES_CHECK();
3024 	return 0;
3025 }
3026 late_initcall(max_swapfiles_check);
3027 #endif
3028 
3029 static struct swap_info_struct *alloc_swap_info(void)
3030 {
3031 	struct swap_info_struct *p;
3032 	struct swap_info_struct *defer = NULL;
3033 	unsigned int type;
3034 	int i;
3035 
3036 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
3037 	if (!p)
3038 		return ERR_PTR(-ENOMEM);
3039 
3040 	if (percpu_ref_init(&p->users, swap_users_ref_free,
3041 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
3042 		kvfree(p);
3043 		return ERR_PTR(-ENOMEM);
3044 	}
3045 
3046 	spin_lock(&swap_lock);
3047 	for (type = 0; type < nr_swapfiles; type++) {
3048 		if (!(swap_info[type]->flags & SWP_USED))
3049 			break;
3050 	}
3051 	if (type >= MAX_SWAPFILES) {
3052 		spin_unlock(&swap_lock);
3053 		percpu_ref_exit(&p->users);
3054 		kvfree(p);
3055 		return ERR_PTR(-EPERM);
3056 	}
3057 	if (type >= nr_swapfiles) {
3058 		p->type = type;
3059 		/*
3060 		 * Publish the swap_info_struct after initializing it.
3061 		 * Note that kvzalloc() above zeroes all its fields.
3062 		 */
3063 		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
3064 		nr_swapfiles++;
3065 	} else {
3066 		defer = p;
3067 		p = swap_info[type];
3068 		/*
3069 		 * Do not memset this entry: a racing procfs swap_next()
3070 		 * would be relying on p->type to remain valid.
3071 		 */
3072 	}
3073 	p->swap_extent_root = RB_ROOT;
3074 	plist_node_init(&p->list, 0);
3075 	for_each_node(i)
3076 		plist_node_init(&p->avail_lists[i], 0);
3077 	p->flags = SWP_USED;
3078 	spin_unlock(&swap_lock);
3079 	if (defer) {
3080 		percpu_ref_exit(&defer->users);
3081 		kvfree(defer);
3082 	}
3083 	spin_lock_init(&p->lock);
3084 	spin_lock_init(&p->cont_lock);
3085 	init_completion(&p->comp);
3086 
3087 	return p;
3088 }
3089 
3090 static int claim_swapfile(struct swap_info_struct *si, struct inode *inode)
3091 {
3092 	if (S_ISBLK(inode->i_mode)) {
3093 		si->bdev = I_BDEV(inode);
3094 		/*
3095 		 * Zoned block devices contain zones that have a sequential
3096 		 * write only restriction.  Hence zoned block devices are not
3097 		 * suitable for swapping.  Disallow them here.
3098 		 */
3099 		if (bdev_is_zoned(si->bdev))
3100 			return -EINVAL;
3101 		si->flags |= SWP_BLKDEV;
3102 	} else if (S_ISREG(inode->i_mode)) {
3103 		si->bdev = inode->i_sb->s_bdev;
3104 	}
3105 
3106 	return 0;
3107 }
3108 
3109 
3110 /*
3111  * Find out how many pages are allowed for a single swap device. There
3112  * are two limiting factors:
3113  * 1) the number of bits for the swap offset in the swp_entry_t type, and
3114  * 2) the number of bits in the swap pte, as defined by the different
3115  * architectures.
3116  *
3117  * In order to find the largest possible bit mask, a swap entry with
3118  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
3119  * decoded to a swp_entry_t again, and finally the swap offset is
3120  * extracted.
3121  *
3122  * This will mask all the bits from the initial ~0UL mask that can't
3123  * be encoded in either the swp_entry_t or the architecture definition
3124  * of a swap pte.
3125  */
3126 unsigned long generic_max_swapfile_size(void)
3127 {
3128 	return swp_offset(pte_to_swp_entry(
3129 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
3130 }
3131 
3132 /* Can be overridden by an architecture for additional checks. */
3133 __weak unsigned long arch_max_swapfile_size(void)
3134 {
3135 	return generic_max_swapfile_size();
3136 }
3137 
3138 static unsigned long read_swap_header(struct swap_info_struct *si,
3139 					union swap_header *swap_header,
3140 					struct inode *inode)
3141 {
3142 	int i;
3143 	unsigned long maxpages;
3144 	unsigned long swapfilepages;
3145 	unsigned long last_page;
3146 
3147 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
3148 		pr_err("Unable to find swap-space signature\n");
3149 		return 0;
3150 	}
3151 
3152 	/* swap partition endianness hack... */
3153 	if (swab32(swap_header->info.version) == 1) {
3154 		swab32s(&swap_header->info.version);
3155 		swab32s(&swap_header->info.last_page);
3156 		swab32s(&swap_header->info.nr_badpages);
3157 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3158 			return 0;
3159 		for (i = 0; i < swap_header->info.nr_badpages; i++)
3160 			swab32s(&swap_header->info.badpages[i]);
3161 	}
3162 	/* Check the swap header's sub-version */
3163 	if (swap_header->info.version != 1) {
3164 		pr_warn("Unable to handle swap header version %d\n",
3165 			swap_header->info.version);
3166 		return 0;
3167 	}
3168 
3169 	si->lowest_bit  = 1;
3170 	si->cluster_next = 1;
3171 	si->cluster_nr = 0;
3172 
3173 	maxpages = swapfile_maximum_size;
3174 	last_page = swap_header->info.last_page;
3175 	if (!last_page) {
3176 		pr_warn("Empty swap-file\n");
3177 		return 0;
3178 	}
3179 	if (last_page > maxpages) {
3180 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3181 			K(maxpages), K(last_page));
3182 	}
3183 	if (maxpages > last_page) {
3184 		maxpages = last_page + 1;
3185 		/* p->max is an unsigned int: don't overflow it */
3186 		if ((unsigned int)maxpages == 0)
3187 			maxpages = UINT_MAX;
3188 	}
3189 	si->highest_bit = maxpages - 1;
3190 
3191 	if (!maxpages)
3192 		return 0;
3193 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3194 	if (swapfilepages && maxpages > swapfilepages) {
3195 		pr_warn("Swap area shorter than signature indicates\n");
3196 		return 0;
3197 	}
3198 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3199 		return 0;
3200 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3201 		return 0;
3202 
3203 	return maxpages;
3204 }
3205 
3206 #define SWAP_CLUSTER_INFO_COLS						\
3207 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3208 #define SWAP_CLUSTER_SPACE_COLS						\
3209 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3210 #define SWAP_CLUSTER_COLS						\
3211 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3212 
3213 static int setup_swap_map_and_extents(struct swap_info_struct *si,
3214 					union swap_header *swap_header,
3215 					unsigned char *swap_map,
3216 					unsigned long maxpages,
3217 					sector_t *span)
3218 {
3219 	unsigned int nr_good_pages;
3220 	unsigned long i;
3221 	int nr_extents;
3222 
3223 	nr_good_pages = maxpages - 1;	/* omit header page */
3224 
3225 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3226 		unsigned int page_nr = swap_header->info.badpages[i];
3227 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3228 			return -EINVAL;
3229 		if (page_nr < maxpages) {
3230 			swap_map[page_nr] = SWAP_MAP_BAD;
3231 			nr_good_pages--;
3232 		}
3233 	}
3234 
3235 	if (nr_good_pages) {
3236 		swap_map[0] = SWAP_MAP_BAD;
3237 		si->max = maxpages;
3238 		si->pages = nr_good_pages;
3239 		nr_extents = setup_swap_extents(si, span);
3240 		if (nr_extents < 0)
3241 			return nr_extents;
3242 		nr_good_pages = si->pages;
3243 	}
3244 	if (!nr_good_pages) {
3245 		pr_warn("Empty swap-file\n");
3246 		return -EINVAL;
3247 	}
3248 
3249 	return nr_extents;
3250 }
3251 
3252 static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si,
3253 						union swap_header *swap_header,
3254 						unsigned long maxpages)
3255 {
3256 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3257 	unsigned long col = si->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3258 	struct swap_cluster_info *cluster_info;
3259 	unsigned long i, j, k, idx;
3260 	int cpu, err = -ENOMEM;
3261 
3262 	cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL);
3263 	if (!cluster_info)
3264 		goto err;
3265 
3266 	for (i = 0; i < nr_clusters; i++)
3267 		spin_lock_init(&cluster_info[i].lock);
3268 
3269 	si->cluster_next_cpu = alloc_percpu(unsigned int);
3270 	if (!si->cluster_next_cpu)
3271 		goto err_free;
3272 
3273 	/* Random start position to help with wear leveling */
3274 	for_each_possible_cpu(cpu)
3275 		per_cpu(*si->cluster_next_cpu, cpu) =
3276 		get_random_u32_inclusive(1, si->highest_bit);
3277 
3278 	si->percpu_cluster = alloc_percpu(struct percpu_cluster);
3279 	if (!si->percpu_cluster)
3280 		goto err_free;
3281 
3282 	for_each_possible_cpu(cpu) {
3283 		struct percpu_cluster *cluster;
3284 
3285 		cluster = per_cpu_ptr(si->percpu_cluster, cpu);
3286 		for (i = 0; i < SWAP_NR_ORDERS; i++)
3287 			cluster->next[i] = SWAP_NEXT_INVALID;
3288 	}
3289 
3290 	/*
3291 	 * Mark unusable pages as unavailable. The clusters aren't
3292 	 * marked free yet, so no list operations are involved yet.
3293 	 *
3294 	 * See setup_swap_map_and_extents(): header page, bad pages,
3295 	 * and the EOF part of the last cluster.
3296 	 */
3297 	inc_cluster_info_page(si, cluster_info, 0);
3298 	for (i = 0; i < swap_header->info.nr_badpages; i++)
3299 		inc_cluster_info_page(si, cluster_info,
3300 				      swap_header->info.badpages[i]);
3301 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3302 		inc_cluster_info_page(si, cluster_info, i);
3303 
3304 	INIT_LIST_HEAD(&si->free_clusters);
3305 	INIT_LIST_HEAD(&si->full_clusters);
3306 	INIT_LIST_HEAD(&si->discard_clusters);
3307 
3308 	for (i = 0; i < SWAP_NR_ORDERS; i++) {
3309 		INIT_LIST_HEAD(&si->nonfull_clusters[i]);
3310 		INIT_LIST_HEAD(&si->frag_clusters[i]);
3311 		si->frag_cluster_nr[i] = 0;
3312 	}
3313 
3314 	/*
3315 	 * Reduce false cache line sharing between cluster_info and
3316 	 * sharing same address space.
3317 	 */
3318 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3319 		j = (k + col) % SWAP_CLUSTER_COLS;
3320 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3321 			struct swap_cluster_info *ci;
3322 			idx = i * SWAP_CLUSTER_COLS + j;
3323 			ci = cluster_info + idx;
3324 			if (idx >= nr_clusters)
3325 				continue;
3326 			if (ci->count) {
3327 				ci->flags = CLUSTER_FLAG_NONFULL;
3328 				list_add_tail(&ci->list, &si->nonfull_clusters[0]);
3329 				continue;
3330 			}
3331 			ci->flags = CLUSTER_FLAG_FREE;
3332 			list_add_tail(&ci->list, &si->free_clusters);
3333 		}
3334 	}
3335 
3336 	return cluster_info;
3337 
3338 err_free:
3339 	kvfree(cluster_info);
3340 err:
3341 	return ERR_PTR(err);
3342 }
3343 
3344 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3345 {
3346 	struct swap_info_struct *si;
3347 	struct filename *name;
3348 	struct file *swap_file = NULL;
3349 	struct address_space *mapping;
3350 	struct dentry *dentry;
3351 	int prio;
3352 	int error;
3353 	union swap_header *swap_header;
3354 	int nr_extents;
3355 	sector_t span;
3356 	unsigned long maxpages;
3357 	unsigned char *swap_map = NULL;
3358 	unsigned long *zeromap = NULL;
3359 	struct swap_cluster_info *cluster_info = NULL;
3360 	struct folio *folio = NULL;
3361 	struct inode *inode = NULL;
3362 	bool inced_nr_rotate_swap = false;
3363 
3364 	if (swap_flags & ~SWAP_FLAGS_VALID)
3365 		return -EINVAL;
3366 
3367 	if (!capable(CAP_SYS_ADMIN))
3368 		return -EPERM;
3369 
3370 	if (!swap_avail_heads)
3371 		return -ENOMEM;
3372 
3373 	si = alloc_swap_info();
3374 	if (IS_ERR(si))
3375 		return PTR_ERR(si);
3376 
3377 	INIT_WORK(&si->discard_work, swap_discard_work);
3378 
3379 	name = getname(specialfile);
3380 	if (IS_ERR(name)) {
3381 		error = PTR_ERR(name);
3382 		name = NULL;
3383 		goto bad_swap;
3384 	}
3385 	swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
3386 	if (IS_ERR(swap_file)) {
3387 		error = PTR_ERR(swap_file);
3388 		swap_file = NULL;
3389 		goto bad_swap;
3390 	}
3391 
3392 	si->swap_file = swap_file;
3393 	mapping = swap_file->f_mapping;
3394 	dentry = swap_file->f_path.dentry;
3395 	inode = mapping->host;
3396 
3397 	error = claim_swapfile(si, inode);
3398 	if (unlikely(error))
3399 		goto bad_swap;
3400 
3401 	inode_lock(inode);
3402 	if (d_unlinked(dentry) || cant_mount(dentry)) {
3403 		error = -ENOENT;
3404 		goto bad_swap_unlock_inode;
3405 	}
3406 	if (IS_SWAPFILE(inode)) {
3407 		error = -EBUSY;
3408 		goto bad_swap_unlock_inode;
3409 	}
3410 
3411 	/*
3412 	 * Read the swap header.
3413 	 */
3414 	if (!mapping->a_ops->read_folio) {
3415 		error = -EINVAL;
3416 		goto bad_swap_unlock_inode;
3417 	}
3418 	folio = read_mapping_folio(mapping, 0, swap_file);
3419 	if (IS_ERR(folio)) {
3420 		error = PTR_ERR(folio);
3421 		goto bad_swap_unlock_inode;
3422 	}
3423 	swap_header = kmap_local_folio(folio, 0);
3424 
3425 	maxpages = read_swap_header(si, swap_header, inode);
3426 	if (unlikely(!maxpages)) {
3427 		error = -EINVAL;
3428 		goto bad_swap_unlock_inode;
3429 	}
3430 
3431 	/* OK, set up the swap map and apply the bad block list */
3432 	swap_map = vzalloc(maxpages);
3433 	if (!swap_map) {
3434 		error = -ENOMEM;
3435 		goto bad_swap_unlock_inode;
3436 	}
3437 
3438 	error = swap_cgroup_swapon(si->type, maxpages);
3439 	if (error)
3440 		goto bad_swap_unlock_inode;
3441 
3442 	nr_extents = setup_swap_map_and_extents(si, swap_header, swap_map,
3443 						maxpages, &span);
3444 	if (unlikely(nr_extents < 0)) {
3445 		error = nr_extents;
3446 		goto bad_swap_unlock_inode;
3447 	}
3448 
3449 	/*
3450 	 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might
3451 	 * be above MAX_PAGE_ORDER incase of a large swap file.
3452 	 */
3453 	zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long),
3454 				    GFP_KERNEL | __GFP_ZERO);
3455 	if (!zeromap) {
3456 		error = -ENOMEM;
3457 		goto bad_swap_unlock_inode;
3458 	}
3459 
3460 	if (si->bdev && bdev_stable_writes(si->bdev))
3461 		si->flags |= SWP_STABLE_WRITES;
3462 
3463 	if (si->bdev && bdev_synchronous(si->bdev))
3464 		si->flags |= SWP_SYNCHRONOUS_IO;
3465 
3466 	if (si->bdev && bdev_nonrot(si->bdev)) {
3467 		si->flags |= SWP_SOLIDSTATE;
3468 
3469 		cluster_info = setup_clusters(si, swap_header, maxpages);
3470 		if (IS_ERR(cluster_info)) {
3471 			error = PTR_ERR(cluster_info);
3472 			cluster_info = NULL;
3473 			goto bad_swap_unlock_inode;
3474 		}
3475 	} else {
3476 		atomic_inc(&nr_rotate_swap);
3477 		inced_nr_rotate_swap = true;
3478 	}
3479 
3480 	if ((swap_flags & SWAP_FLAG_DISCARD) &&
3481 	    si->bdev && bdev_max_discard_sectors(si->bdev)) {
3482 		/*
3483 		 * When discard is enabled for swap with no particular
3484 		 * policy flagged, we set all swap discard flags here in
3485 		 * order to sustain backward compatibility with older
3486 		 * swapon(8) releases.
3487 		 */
3488 		si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3489 			     SWP_PAGE_DISCARD);
3490 
3491 		/*
3492 		 * By flagging sys_swapon, a sysadmin can tell us to
3493 		 * either do single-time area discards only, or to just
3494 		 * perform discards for released swap page-clusters.
3495 		 * Now it's time to adjust the p->flags accordingly.
3496 		 */
3497 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3498 			si->flags &= ~SWP_PAGE_DISCARD;
3499 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3500 			si->flags &= ~SWP_AREA_DISCARD;
3501 
3502 		/* issue a swapon-time discard if it's still required */
3503 		if (si->flags & SWP_AREA_DISCARD) {
3504 			int err = discard_swap(si);
3505 			if (unlikely(err))
3506 				pr_err("swapon: discard_swap(%p): %d\n",
3507 					si, err);
3508 		}
3509 	}
3510 
3511 	error = init_swap_address_space(si->type, maxpages);
3512 	if (error)
3513 		goto bad_swap_unlock_inode;
3514 
3515 	error = zswap_swapon(si->type, maxpages);
3516 	if (error)
3517 		goto free_swap_address_space;
3518 
3519 	/*
3520 	 * Flush any pending IO and dirty mappings before we start using this
3521 	 * swap device.
3522 	 */
3523 	inode->i_flags |= S_SWAPFILE;
3524 	error = inode_drain_writes(inode);
3525 	if (error) {
3526 		inode->i_flags &= ~S_SWAPFILE;
3527 		goto free_swap_zswap;
3528 	}
3529 
3530 	mutex_lock(&swapon_mutex);
3531 	prio = -1;
3532 	if (swap_flags & SWAP_FLAG_PREFER)
3533 		prio =
3534 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3535 	enable_swap_info(si, prio, swap_map, cluster_info, zeromap);
3536 
3537 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3538 		K(si->pages), name->name, si->prio, nr_extents,
3539 		K((unsigned long long)span),
3540 		(si->flags & SWP_SOLIDSTATE) ? "SS" : "",
3541 		(si->flags & SWP_DISCARDABLE) ? "D" : "",
3542 		(si->flags & SWP_AREA_DISCARD) ? "s" : "",
3543 		(si->flags & SWP_PAGE_DISCARD) ? "c" : "");
3544 
3545 	mutex_unlock(&swapon_mutex);
3546 	atomic_inc(&proc_poll_event);
3547 	wake_up_interruptible(&proc_poll_wait);
3548 
3549 	error = 0;
3550 	goto out;
3551 free_swap_zswap:
3552 	zswap_swapoff(si->type);
3553 free_swap_address_space:
3554 	exit_swap_address_space(si->type);
3555 bad_swap_unlock_inode:
3556 	inode_unlock(inode);
3557 bad_swap:
3558 	free_percpu(si->percpu_cluster);
3559 	si->percpu_cluster = NULL;
3560 	free_percpu(si->cluster_next_cpu);
3561 	si->cluster_next_cpu = NULL;
3562 	inode = NULL;
3563 	destroy_swap_extents(si);
3564 	swap_cgroup_swapoff(si->type);
3565 	spin_lock(&swap_lock);
3566 	si->swap_file = NULL;
3567 	si->flags = 0;
3568 	spin_unlock(&swap_lock);
3569 	vfree(swap_map);
3570 	kvfree(zeromap);
3571 	kvfree(cluster_info);
3572 	if (inced_nr_rotate_swap)
3573 		atomic_dec(&nr_rotate_swap);
3574 	if (swap_file)
3575 		filp_close(swap_file, NULL);
3576 out:
3577 	if (!IS_ERR_OR_NULL(folio))
3578 		folio_release_kmap(folio, swap_header);
3579 	if (name)
3580 		putname(name);
3581 	if (inode)
3582 		inode_unlock(inode);
3583 	if (!error)
3584 		enable_swap_slots_cache();
3585 	return error;
3586 }
3587 
3588 void si_swapinfo(struct sysinfo *val)
3589 {
3590 	unsigned int type;
3591 	unsigned long nr_to_be_unused = 0;
3592 
3593 	spin_lock(&swap_lock);
3594 	for (type = 0; type < nr_swapfiles; type++) {
3595 		struct swap_info_struct *si = swap_info[type];
3596 
3597 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3598 			nr_to_be_unused += READ_ONCE(si->inuse_pages);
3599 	}
3600 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3601 	val->totalswap = total_swap_pages + nr_to_be_unused;
3602 	spin_unlock(&swap_lock);
3603 }
3604 
3605 /*
3606  * Verify that nr swap entries are valid and increment their swap map counts.
3607  *
3608  * Returns error code in following case.
3609  * - success -> 0
3610  * - swp_entry is invalid -> EINVAL
3611  * - swp_entry is migration entry -> EINVAL
3612  * - swap-cache reference is requested but there is already one. -> EEXIST
3613  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3614  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3615  */
3616 static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr)
3617 {
3618 	struct swap_info_struct *si;
3619 	struct swap_cluster_info *ci;
3620 	unsigned long offset;
3621 	unsigned char count;
3622 	unsigned char has_cache;
3623 	int err, i;
3624 
3625 	si = swp_swap_info(entry);
3626 
3627 	offset = swp_offset(entry);
3628 	VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
3629 	VM_WARN_ON(usage == 1 && nr > 1);
3630 	ci = lock_cluster_or_swap_info(si, offset);
3631 
3632 	err = 0;
3633 	for (i = 0; i < nr; i++) {
3634 		count = si->swap_map[offset + i];
3635 
3636 		/*
3637 		 * swapin_readahead() doesn't check if a swap entry is valid, so the
3638 		 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3639 		 */
3640 		if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3641 			err = -ENOENT;
3642 			goto unlock_out;
3643 		}
3644 
3645 		has_cache = count & SWAP_HAS_CACHE;
3646 		count &= ~SWAP_HAS_CACHE;
3647 
3648 		if (!count && !has_cache) {
3649 			err = -ENOENT;
3650 		} else if (usage == SWAP_HAS_CACHE) {
3651 			if (has_cache)
3652 				err = -EEXIST;
3653 		} else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) {
3654 			err = -EINVAL;
3655 		}
3656 
3657 		if (err)
3658 			goto unlock_out;
3659 	}
3660 
3661 	for (i = 0; i < nr; i++) {
3662 		count = si->swap_map[offset + i];
3663 		has_cache = count & SWAP_HAS_CACHE;
3664 		count &= ~SWAP_HAS_CACHE;
3665 
3666 		if (usage == SWAP_HAS_CACHE)
3667 			has_cache = SWAP_HAS_CACHE;
3668 		else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3669 			count += usage;
3670 		else if (swap_count_continued(si, offset + i, count))
3671 			count = COUNT_CONTINUED;
3672 		else {
3673 			/*
3674 			 * Don't need to rollback changes, because if
3675 			 * usage == 1, there must be nr == 1.
3676 			 */
3677 			err = -ENOMEM;
3678 			goto unlock_out;
3679 		}
3680 
3681 		WRITE_ONCE(si->swap_map[offset + i], count | has_cache);
3682 	}
3683 
3684 unlock_out:
3685 	unlock_cluster_or_swap_info(si, ci);
3686 	return err;
3687 }
3688 
3689 /*
3690  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3691  * (in which case its reference count is never incremented).
3692  */
3693 void swap_shmem_alloc(swp_entry_t entry, int nr)
3694 {
3695 	__swap_duplicate(entry, SWAP_MAP_SHMEM, nr);
3696 }
3697 
3698 /*
3699  * Increase reference count of swap entry by 1.
3700  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3701  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3702  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3703  * might occur if a page table entry has got corrupted.
3704  */
3705 int swap_duplicate(swp_entry_t entry)
3706 {
3707 	int err = 0;
3708 
3709 	while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM)
3710 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3711 	return err;
3712 }
3713 
3714 /*
3715  * @entry: first swap entry from which we allocate nr swap cache.
3716  *
3717  * Called when allocating swap cache for existing swap entries,
3718  * This can return error codes. Returns 0 at success.
3719  * -EEXIST means there is a swap cache.
3720  * Note: return code is different from swap_duplicate().
3721  */
3722 int swapcache_prepare(swp_entry_t entry, int nr)
3723 {
3724 	return __swap_duplicate(entry, SWAP_HAS_CACHE, nr);
3725 }
3726 
3727 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr)
3728 {
3729 	unsigned long offset = swp_offset(entry);
3730 
3731 	cluster_swap_free_nr(si, offset, nr, SWAP_HAS_CACHE);
3732 }
3733 
3734 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3735 {
3736 	return swap_type_to_swap_info(swp_type(entry));
3737 }
3738 
3739 /*
3740  * out-of-line methods to avoid include hell.
3741  */
3742 struct address_space *swapcache_mapping(struct folio *folio)
3743 {
3744 	return swp_swap_info(folio->swap)->swap_file->f_mapping;
3745 }
3746 EXPORT_SYMBOL_GPL(swapcache_mapping);
3747 
3748 pgoff_t __folio_swap_cache_index(struct folio *folio)
3749 {
3750 	return swap_cache_index(folio->swap);
3751 }
3752 EXPORT_SYMBOL_GPL(__folio_swap_cache_index);
3753 
3754 /*
3755  * add_swap_count_continuation - called when a swap count is duplicated
3756  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3757  * page of the original vmalloc'ed swap_map, to hold the continuation count
3758  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3759  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3760  *
3761  * These continuation pages are seldom referenced: the common paths all work
3762  * on the original swap_map, only referring to a continuation page when the
3763  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3764  *
3765  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3766  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3767  * can be called after dropping locks.
3768  */
3769 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3770 {
3771 	struct swap_info_struct *si;
3772 	struct swap_cluster_info *ci;
3773 	struct page *head;
3774 	struct page *page;
3775 	struct page *list_page;
3776 	pgoff_t offset;
3777 	unsigned char count;
3778 	int ret = 0;
3779 
3780 	/*
3781 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3782 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3783 	 */
3784 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3785 
3786 	si = get_swap_device(entry);
3787 	if (!si) {
3788 		/*
3789 		 * An acceptable race has occurred since the failing
3790 		 * __swap_duplicate(): the swap device may be swapoff
3791 		 */
3792 		goto outer;
3793 	}
3794 	spin_lock(&si->lock);
3795 
3796 	offset = swp_offset(entry);
3797 
3798 	ci = lock_cluster(si, offset);
3799 
3800 	count = swap_count(si->swap_map[offset]);
3801 
3802 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3803 		/*
3804 		 * The higher the swap count, the more likely it is that tasks
3805 		 * will race to add swap count continuation: we need to avoid
3806 		 * over-provisioning.
3807 		 */
3808 		goto out;
3809 	}
3810 
3811 	if (!page) {
3812 		ret = -ENOMEM;
3813 		goto out;
3814 	}
3815 
3816 	head = vmalloc_to_page(si->swap_map + offset);
3817 	offset &= ~PAGE_MASK;
3818 
3819 	spin_lock(&si->cont_lock);
3820 	/*
3821 	 * Page allocation does not initialize the page's lru field,
3822 	 * but it does always reset its private field.
3823 	 */
3824 	if (!page_private(head)) {
3825 		BUG_ON(count & COUNT_CONTINUED);
3826 		INIT_LIST_HEAD(&head->lru);
3827 		set_page_private(head, SWP_CONTINUED);
3828 		si->flags |= SWP_CONTINUED;
3829 	}
3830 
3831 	list_for_each_entry(list_page, &head->lru, lru) {
3832 		unsigned char *map;
3833 
3834 		/*
3835 		 * If the previous map said no continuation, but we've found
3836 		 * a continuation page, free our allocation and use this one.
3837 		 */
3838 		if (!(count & COUNT_CONTINUED))
3839 			goto out_unlock_cont;
3840 
3841 		map = kmap_local_page(list_page) + offset;
3842 		count = *map;
3843 		kunmap_local(map);
3844 
3845 		/*
3846 		 * If this continuation count now has some space in it,
3847 		 * free our allocation and use this one.
3848 		 */
3849 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3850 			goto out_unlock_cont;
3851 	}
3852 
3853 	list_add_tail(&page->lru, &head->lru);
3854 	page = NULL;			/* now it's attached, don't free it */
3855 out_unlock_cont:
3856 	spin_unlock(&si->cont_lock);
3857 out:
3858 	unlock_cluster(ci);
3859 	spin_unlock(&si->lock);
3860 	put_swap_device(si);
3861 outer:
3862 	if (page)
3863 		__free_page(page);
3864 	return ret;
3865 }
3866 
3867 /*
3868  * swap_count_continued - when the original swap_map count is incremented
3869  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3870  * into, carry if so, or else fail until a new continuation page is allocated;
3871  * when the original swap_map count is decremented from 0 with continuation,
3872  * borrow from the continuation and report whether it still holds more.
3873  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3874  * lock.
3875  */
3876 static bool swap_count_continued(struct swap_info_struct *si,
3877 				 pgoff_t offset, unsigned char count)
3878 {
3879 	struct page *head;
3880 	struct page *page;
3881 	unsigned char *map;
3882 	bool ret;
3883 
3884 	head = vmalloc_to_page(si->swap_map + offset);
3885 	if (page_private(head) != SWP_CONTINUED) {
3886 		BUG_ON(count & COUNT_CONTINUED);
3887 		return false;		/* need to add count continuation */
3888 	}
3889 
3890 	spin_lock(&si->cont_lock);
3891 	offset &= ~PAGE_MASK;
3892 	page = list_next_entry(head, lru);
3893 	map = kmap_local_page(page) + offset;
3894 
3895 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3896 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3897 
3898 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3899 		/*
3900 		 * Think of how you add 1 to 999
3901 		 */
3902 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3903 			kunmap_local(map);
3904 			page = list_next_entry(page, lru);
3905 			BUG_ON(page == head);
3906 			map = kmap_local_page(page) + offset;
3907 		}
3908 		if (*map == SWAP_CONT_MAX) {
3909 			kunmap_local(map);
3910 			page = list_next_entry(page, lru);
3911 			if (page == head) {
3912 				ret = false;	/* add count continuation */
3913 				goto out;
3914 			}
3915 			map = kmap_local_page(page) + offset;
3916 init_map:		*map = 0;		/* we didn't zero the page */
3917 		}
3918 		*map += 1;
3919 		kunmap_local(map);
3920 		while ((page = list_prev_entry(page, lru)) != head) {
3921 			map = kmap_local_page(page) + offset;
3922 			*map = COUNT_CONTINUED;
3923 			kunmap_local(map);
3924 		}
3925 		ret = true;			/* incremented */
3926 
3927 	} else {				/* decrementing */
3928 		/*
3929 		 * Think of how you subtract 1 from 1000
3930 		 */
3931 		BUG_ON(count != COUNT_CONTINUED);
3932 		while (*map == COUNT_CONTINUED) {
3933 			kunmap_local(map);
3934 			page = list_next_entry(page, lru);
3935 			BUG_ON(page == head);
3936 			map = kmap_local_page(page) + offset;
3937 		}
3938 		BUG_ON(*map == 0);
3939 		*map -= 1;
3940 		if (*map == 0)
3941 			count = 0;
3942 		kunmap_local(map);
3943 		while ((page = list_prev_entry(page, lru)) != head) {
3944 			map = kmap_local_page(page) + offset;
3945 			*map = SWAP_CONT_MAX | count;
3946 			count = COUNT_CONTINUED;
3947 			kunmap_local(map);
3948 		}
3949 		ret = count == COUNT_CONTINUED;
3950 	}
3951 out:
3952 	spin_unlock(&si->cont_lock);
3953 	return ret;
3954 }
3955 
3956 /*
3957  * free_swap_count_continuations - swapoff free all the continuation pages
3958  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3959  */
3960 static void free_swap_count_continuations(struct swap_info_struct *si)
3961 {
3962 	pgoff_t offset;
3963 
3964 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3965 		struct page *head;
3966 		head = vmalloc_to_page(si->swap_map + offset);
3967 		if (page_private(head)) {
3968 			struct page *page, *next;
3969 
3970 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3971 				list_del(&page->lru);
3972 				__free_page(page);
3973 			}
3974 		}
3975 	}
3976 }
3977 
3978 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3979 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3980 {
3981 	struct swap_info_struct *si, *next;
3982 	int nid = folio_nid(folio);
3983 
3984 	if (!(gfp & __GFP_IO))
3985 		return;
3986 
3987 	if (!__has_usable_swap())
3988 		return;
3989 
3990 	if (!blk_cgroup_congested())
3991 		return;
3992 
3993 	/*
3994 	 * We've already scheduled a throttle, avoid taking the global swap
3995 	 * lock.
3996 	 */
3997 	if (current->throttle_disk)
3998 		return;
3999 
4000 	spin_lock(&swap_avail_lock);
4001 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
4002 				  avail_lists[nid]) {
4003 		if (si->bdev) {
4004 			blkcg_schedule_throttle(si->bdev->bd_disk, true);
4005 			break;
4006 		}
4007 	}
4008 	spin_unlock(&swap_avail_lock);
4009 }
4010 #endif
4011 
4012 static int __init swapfile_init(void)
4013 {
4014 	int nid;
4015 
4016 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
4017 					 GFP_KERNEL);
4018 	if (!swap_avail_heads) {
4019 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
4020 		return -ENOMEM;
4021 	}
4022 
4023 	for_each_node(nid)
4024 		plist_head_init(&swap_avail_heads[nid]);
4025 
4026 	swapfile_maximum_size = arch_max_swapfile_size();
4027 
4028 #ifdef CONFIG_MIGRATION
4029 	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
4030 		swap_migration_ad_supported = true;
4031 #endif	/* CONFIG_MIGRATION */
4032 
4033 	return 0;
4034 }
4035 subsys_initcall(swapfile_init);
4036