1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/blkdev.h> 10 #include <linux/mm.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/task.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mman.h> 15 #include <linux/slab.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/swap.h> 18 #include <linux/vmalloc.h> 19 #include <linux/pagemap.h> 20 #include <linux/namei.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/blk-cgroup.h> 23 #include <linux/random.h> 24 #include <linux/writeback.h> 25 #include <linux/proc_fs.h> 26 #include <linux/seq_file.h> 27 #include <linux/init.h> 28 #include <linux/ksm.h> 29 #include <linux/rmap.h> 30 #include <linux/security.h> 31 #include <linux/backing-dev.h> 32 #include <linux/mutex.h> 33 #include <linux/capability.h> 34 #include <linux/syscalls.h> 35 #include <linux/memcontrol.h> 36 #include <linux/poll.h> 37 #include <linux/oom.h> 38 #include <linux/swapfile.h> 39 #include <linux/export.h> 40 #include <linux/swap_slots.h> 41 #include <linux/sort.h> 42 #include <linux/completion.h> 43 #include <linux/suspend.h> 44 #include <linux/zswap.h> 45 #include <linux/plist.h> 46 47 #include <asm/tlbflush.h> 48 #include <linux/swapops.h> 49 #include <linux/swap_cgroup.h> 50 #include "internal.h" 51 #include "swap.h" 52 53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 54 unsigned char); 55 static void free_swap_count_continuations(struct swap_info_struct *); 56 static void swap_entry_range_free(struct swap_info_struct *si, swp_entry_t entry, 57 unsigned int nr_pages); 58 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 59 unsigned int nr_entries); 60 static bool folio_swapcache_freeable(struct folio *folio); 61 static struct swap_cluster_info *lock_cluster_or_swap_info( 62 struct swap_info_struct *si, unsigned long offset); 63 static void unlock_cluster_or_swap_info(struct swap_info_struct *si, 64 struct swap_cluster_info *ci); 65 66 static DEFINE_SPINLOCK(swap_lock); 67 static unsigned int nr_swapfiles; 68 atomic_long_t nr_swap_pages; 69 /* 70 * Some modules use swappable objects and may try to swap them out under 71 * memory pressure (via the shrinker). Before doing so, they may wish to 72 * check to see if any swap space is available. 73 */ 74 EXPORT_SYMBOL_GPL(nr_swap_pages); 75 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 76 long total_swap_pages; 77 static int least_priority = -1; 78 unsigned long swapfile_maximum_size; 79 #ifdef CONFIG_MIGRATION 80 bool swap_migration_ad_supported; 81 #endif /* CONFIG_MIGRATION */ 82 83 static const char Bad_file[] = "Bad swap file entry "; 84 static const char Unused_file[] = "Unused swap file entry "; 85 static const char Bad_offset[] = "Bad swap offset entry "; 86 static const char Unused_offset[] = "Unused swap offset entry "; 87 88 /* 89 * all active swap_info_structs 90 * protected with swap_lock, and ordered by priority. 91 */ 92 static PLIST_HEAD(swap_active_head); 93 94 /* 95 * all available (active, not full) swap_info_structs 96 * protected with swap_avail_lock, ordered by priority. 97 * This is used by folio_alloc_swap() instead of swap_active_head 98 * because swap_active_head includes all swap_info_structs, 99 * but folio_alloc_swap() doesn't need to look at full ones. 100 * This uses its own lock instead of swap_lock because when a 101 * swap_info_struct changes between not-full/full, it needs to 102 * add/remove itself to/from this list, but the swap_info_struct->lock 103 * is held and the locking order requires swap_lock to be taken 104 * before any swap_info_struct->lock. 105 */ 106 static struct plist_head *swap_avail_heads; 107 static DEFINE_SPINLOCK(swap_avail_lock); 108 109 static struct swap_info_struct *swap_info[MAX_SWAPFILES]; 110 111 static DEFINE_MUTEX(swapon_mutex); 112 113 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 114 /* Activity counter to indicate that a swapon or swapoff has occurred */ 115 static atomic_t proc_poll_event = ATOMIC_INIT(0); 116 117 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 118 119 static struct swap_info_struct *swap_type_to_swap_info(int type) 120 { 121 if (type >= MAX_SWAPFILES) 122 return NULL; 123 124 return READ_ONCE(swap_info[type]); /* rcu_dereference() */ 125 } 126 127 static inline unsigned char swap_count(unsigned char ent) 128 { 129 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 130 } 131 132 /* Reclaim the swap entry anyway if possible */ 133 #define TTRS_ANYWAY 0x1 134 /* 135 * Reclaim the swap entry if there are no more mappings of the 136 * corresponding page 137 */ 138 #define TTRS_UNMAPPED 0x2 139 /* Reclaim the swap entry if swap is getting full */ 140 #define TTRS_FULL 0x4 141 /* Reclaim directly, bypass the slot cache and don't touch device lock */ 142 #define TTRS_DIRECT 0x8 143 144 static bool swap_is_has_cache(struct swap_info_struct *si, 145 unsigned long offset, int nr_pages) 146 { 147 unsigned char *map = si->swap_map + offset; 148 unsigned char *map_end = map + nr_pages; 149 150 do { 151 VM_BUG_ON(!(*map & SWAP_HAS_CACHE)); 152 if (*map != SWAP_HAS_CACHE) 153 return false; 154 } while (++map < map_end); 155 156 return true; 157 } 158 159 static bool swap_is_last_map(struct swap_info_struct *si, 160 unsigned long offset, int nr_pages, bool *has_cache) 161 { 162 unsigned char *map = si->swap_map + offset; 163 unsigned char *map_end = map + nr_pages; 164 unsigned char count = *map; 165 166 if (swap_count(count) != 1) 167 return false; 168 169 while (++map < map_end) { 170 if (*map != count) 171 return false; 172 } 173 174 *has_cache = !!(count & SWAP_HAS_CACHE); 175 return true; 176 } 177 178 /* 179 * returns number of pages in the folio that backs the swap entry. If positive, 180 * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no 181 * folio was associated with the swap entry. 182 */ 183 static int __try_to_reclaim_swap(struct swap_info_struct *si, 184 unsigned long offset, unsigned long flags) 185 { 186 swp_entry_t entry = swp_entry(si->type, offset); 187 struct address_space *address_space = swap_address_space(entry); 188 struct swap_cluster_info *ci; 189 struct folio *folio; 190 int ret, nr_pages; 191 bool need_reclaim; 192 193 folio = filemap_get_folio(address_space, swap_cache_index(entry)); 194 if (IS_ERR(folio)) 195 return 0; 196 197 nr_pages = folio_nr_pages(folio); 198 ret = -nr_pages; 199 200 /* 201 * When this function is called from scan_swap_map_slots() and it's 202 * called by vmscan.c at reclaiming folios. So we hold a folio lock 203 * here. We have to use trylock for avoiding deadlock. This is a special 204 * case and you should use folio_free_swap() with explicit folio_lock() 205 * in usual operations. 206 */ 207 if (!folio_trylock(folio)) 208 goto out; 209 210 /* offset could point to the middle of a large folio */ 211 entry = folio->swap; 212 offset = swp_offset(entry); 213 214 need_reclaim = ((flags & TTRS_ANYWAY) || 215 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) || 216 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio))); 217 if (!need_reclaim || !folio_swapcache_freeable(folio)) 218 goto out_unlock; 219 220 /* 221 * It's safe to delete the folio from swap cache only if the folio's 222 * swap_map is HAS_CACHE only, which means the slots have no page table 223 * reference or pending writeback, and can't be allocated to others. 224 */ 225 ci = lock_cluster_or_swap_info(si, offset); 226 need_reclaim = swap_is_has_cache(si, offset, nr_pages); 227 unlock_cluster_or_swap_info(si, ci); 228 if (!need_reclaim) 229 goto out_unlock; 230 231 if (!(flags & TTRS_DIRECT)) { 232 /* Free through slot cache */ 233 delete_from_swap_cache(folio); 234 folio_set_dirty(folio); 235 ret = nr_pages; 236 goto out_unlock; 237 } 238 239 xa_lock_irq(&address_space->i_pages); 240 __delete_from_swap_cache(folio, entry, NULL); 241 xa_unlock_irq(&address_space->i_pages); 242 folio_ref_sub(folio, nr_pages); 243 folio_set_dirty(folio); 244 245 spin_lock(&si->lock); 246 /* Only sinple page folio can be backed by zswap */ 247 if (nr_pages == 1) 248 zswap_invalidate(entry); 249 swap_entry_range_free(si, entry, nr_pages); 250 spin_unlock(&si->lock); 251 ret = nr_pages; 252 out_unlock: 253 folio_unlock(folio); 254 out: 255 folio_put(folio); 256 return ret; 257 } 258 259 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 260 { 261 struct rb_node *rb = rb_first(&sis->swap_extent_root); 262 return rb_entry(rb, struct swap_extent, rb_node); 263 } 264 265 static inline struct swap_extent *next_se(struct swap_extent *se) 266 { 267 struct rb_node *rb = rb_next(&se->rb_node); 268 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 269 } 270 271 /* 272 * swapon tell device that all the old swap contents can be discarded, 273 * to allow the swap device to optimize its wear-levelling. 274 */ 275 static int discard_swap(struct swap_info_struct *si) 276 { 277 struct swap_extent *se; 278 sector_t start_block; 279 sector_t nr_blocks; 280 int err = 0; 281 282 /* Do not discard the swap header page! */ 283 se = first_se(si); 284 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 285 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 286 if (nr_blocks) { 287 err = blkdev_issue_discard(si->bdev, start_block, 288 nr_blocks, GFP_KERNEL); 289 if (err) 290 return err; 291 cond_resched(); 292 } 293 294 for (se = next_se(se); se; se = next_se(se)) { 295 start_block = se->start_block << (PAGE_SHIFT - 9); 296 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 297 298 err = blkdev_issue_discard(si->bdev, start_block, 299 nr_blocks, GFP_KERNEL); 300 if (err) 301 break; 302 303 cond_resched(); 304 } 305 return err; /* That will often be -EOPNOTSUPP */ 306 } 307 308 static struct swap_extent * 309 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 310 { 311 struct swap_extent *se; 312 struct rb_node *rb; 313 314 rb = sis->swap_extent_root.rb_node; 315 while (rb) { 316 se = rb_entry(rb, struct swap_extent, rb_node); 317 if (offset < se->start_page) 318 rb = rb->rb_left; 319 else if (offset >= se->start_page + se->nr_pages) 320 rb = rb->rb_right; 321 else 322 return se; 323 } 324 /* It *must* be present */ 325 BUG(); 326 } 327 328 sector_t swap_folio_sector(struct folio *folio) 329 { 330 struct swap_info_struct *sis = swp_swap_info(folio->swap); 331 struct swap_extent *se; 332 sector_t sector; 333 pgoff_t offset; 334 335 offset = swp_offset(folio->swap); 336 se = offset_to_swap_extent(sis, offset); 337 sector = se->start_block + (offset - se->start_page); 338 return sector << (PAGE_SHIFT - 9); 339 } 340 341 /* 342 * swap allocation tell device that a cluster of swap can now be discarded, 343 * to allow the swap device to optimize its wear-levelling. 344 */ 345 static void discard_swap_cluster(struct swap_info_struct *si, 346 pgoff_t start_page, pgoff_t nr_pages) 347 { 348 struct swap_extent *se = offset_to_swap_extent(si, start_page); 349 350 while (nr_pages) { 351 pgoff_t offset = start_page - se->start_page; 352 sector_t start_block = se->start_block + offset; 353 sector_t nr_blocks = se->nr_pages - offset; 354 355 if (nr_blocks > nr_pages) 356 nr_blocks = nr_pages; 357 start_page += nr_blocks; 358 nr_pages -= nr_blocks; 359 360 start_block <<= PAGE_SHIFT - 9; 361 nr_blocks <<= PAGE_SHIFT - 9; 362 if (blkdev_issue_discard(si->bdev, start_block, 363 nr_blocks, GFP_NOIO)) 364 break; 365 366 se = next_se(se); 367 } 368 } 369 370 #ifdef CONFIG_THP_SWAP 371 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 372 373 #define swap_entry_order(order) (order) 374 #else 375 #define SWAPFILE_CLUSTER 256 376 377 /* 378 * Define swap_entry_order() as constant to let compiler to optimize 379 * out some code if !CONFIG_THP_SWAP 380 */ 381 #define swap_entry_order(order) 0 382 #endif 383 #define LATENCY_LIMIT 256 384 385 static inline bool cluster_is_free(struct swap_cluster_info *info) 386 { 387 return info->flags & CLUSTER_FLAG_FREE; 388 } 389 390 static inline unsigned int cluster_index(struct swap_info_struct *si, 391 struct swap_cluster_info *ci) 392 { 393 return ci - si->cluster_info; 394 } 395 396 static inline unsigned int cluster_offset(struct swap_info_struct *si, 397 struct swap_cluster_info *ci) 398 { 399 return cluster_index(si, ci) * SWAPFILE_CLUSTER; 400 } 401 402 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 403 unsigned long offset) 404 { 405 struct swap_cluster_info *ci; 406 407 ci = si->cluster_info; 408 if (ci) { 409 ci += offset / SWAPFILE_CLUSTER; 410 spin_lock(&ci->lock); 411 } 412 return ci; 413 } 414 415 static inline void unlock_cluster(struct swap_cluster_info *ci) 416 { 417 if (ci) 418 spin_unlock(&ci->lock); 419 } 420 421 /* 422 * Determine the locking method in use for this device. Return 423 * swap_cluster_info if SSD-style cluster-based locking is in place. 424 */ 425 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 426 struct swap_info_struct *si, unsigned long offset) 427 { 428 struct swap_cluster_info *ci; 429 430 /* Try to use fine-grained SSD-style locking if available: */ 431 ci = lock_cluster(si, offset); 432 /* Otherwise, fall back to traditional, coarse locking: */ 433 if (!ci) 434 spin_lock(&si->lock); 435 436 return ci; 437 } 438 439 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 440 struct swap_cluster_info *ci) 441 { 442 if (ci) 443 unlock_cluster(ci); 444 else 445 spin_unlock(&si->lock); 446 } 447 448 /* Add a cluster to discard list and schedule it to do discard */ 449 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 450 struct swap_cluster_info *ci) 451 { 452 unsigned int idx = cluster_index(si, ci); 453 /* 454 * If scan_swap_map_slots() can't find a free cluster, it will check 455 * si->swap_map directly. To make sure the discarding cluster isn't 456 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied). 457 * It will be cleared after discard 458 */ 459 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 460 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 461 462 VM_BUG_ON(ci->flags & CLUSTER_FLAG_FREE); 463 list_move_tail(&ci->list, &si->discard_clusters); 464 ci->flags = 0; 465 schedule_work(&si->discard_work); 466 } 467 468 static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci) 469 { 470 lockdep_assert_held(&si->lock); 471 lockdep_assert_held(&ci->lock); 472 473 if (ci->flags) 474 list_move_tail(&ci->list, &si->free_clusters); 475 else 476 list_add_tail(&ci->list, &si->free_clusters); 477 ci->flags = CLUSTER_FLAG_FREE; 478 ci->order = 0; 479 } 480 481 /* 482 * Doing discard actually. After a cluster discard is finished, the cluster 483 * will be added to free cluster list. caller should hold si->lock. 484 */ 485 static void swap_do_scheduled_discard(struct swap_info_struct *si) 486 { 487 struct swap_cluster_info *ci; 488 unsigned int idx; 489 490 while (!list_empty(&si->discard_clusters)) { 491 ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list); 492 list_del(&ci->list); 493 idx = cluster_index(si, ci); 494 spin_unlock(&si->lock); 495 496 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 497 SWAPFILE_CLUSTER); 498 499 spin_lock(&si->lock); 500 spin_lock(&ci->lock); 501 __free_cluster(si, ci); 502 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 503 0, SWAPFILE_CLUSTER); 504 spin_unlock(&ci->lock); 505 } 506 } 507 508 static void swap_discard_work(struct work_struct *work) 509 { 510 struct swap_info_struct *si; 511 512 si = container_of(work, struct swap_info_struct, discard_work); 513 514 spin_lock(&si->lock); 515 swap_do_scheduled_discard(si); 516 spin_unlock(&si->lock); 517 } 518 519 static void swap_users_ref_free(struct percpu_ref *ref) 520 { 521 struct swap_info_struct *si; 522 523 si = container_of(ref, struct swap_info_struct, users); 524 complete(&si->comp); 525 } 526 527 static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci) 528 { 529 VM_BUG_ON(ci->count != 0); 530 lockdep_assert_held(&si->lock); 531 lockdep_assert_held(&ci->lock); 532 533 if (ci->flags & CLUSTER_FLAG_FRAG) 534 si->frag_cluster_nr[ci->order]--; 535 536 /* 537 * If the swap is discardable, prepare discard the cluster 538 * instead of free it immediately. The cluster will be freed 539 * after discard. 540 */ 541 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 542 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 543 swap_cluster_schedule_discard(si, ci); 544 return; 545 } 546 547 __free_cluster(si, ci); 548 } 549 550 /* 551 * The cluster corresponding to page_nr will be used. The cluster will not be 552 * added to free cluster list and its usage counter will be increased by 1. 553 * Only used for initialization. 554 */ 555 static void inc_cluster_info_page(struct swap_info_struct *si, 556 struct swap_cluster_info *cluster_info, unsigned long page_nr) 557 { 558 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 559 struct swap_cluster_info *ci; 560 561 if (!cluster_info) 562 return; 563 564 ci = cluster_info + idx; 565 ci->count++; 566 567 VM_BUG_ON(ci->count > SWAPFILE_CLUSTER); 568 VM_BUG_ON(ci->flags); 569 } 570 571 /* 572 * The cluster ci decreases @nr_pages usage. If the usage counter becomes 0, 573 * which means no page in the cluster is in use, we can optionally discard 574 * the cluster and add it to free cluster list. 575 */ 576 static void dec_cluster_info_page(struct swap_info_struct *si, 577 struct swap_cluster_info *ci, int nr_pages) 578 { 579 if (!si->cluster_info) 580 return; 581 582 VM_BUG_ON(ci->count < nr_pages); 583 VM_BUG_ON(cluster_is_free(ci)); 584 lockdep_assert_held(&si->lock); 585 lockdep_assert_held(&ci->lock); 586 ci->count -= nr_pages; 587 588 if (!ci->count) { 589 free_cluster(si, ci); 590 return; 591 } 592 593 if (!(ci->flags & CLUSTER_FLAG_NONFULL)) { 594 VM_BUG_ON(ci->flags & CLUSTER_FLAG_FREE); 595 if (ci->flags & CLUSTER_FLAG_FRAG) 596 si->frag_cluster_nr[ci->order]--; 597 list_move_tail(&ci->list, &si->nonfull_clusters[ci->order]); 598 ci->flags = CLUSTER_FLAG_NONFULL; 599 } 600 } 601 602 static bool cluster_reclaim_range(struct swap_info_struct *si, 603 struct swap_cluster_info *ci, 604 unsigned long start, unsigned long end) 605 { 606 unsigned char *map = si->swap_map; 607 unsigned long offset; 608 609 spin_unlock(&ci->lock); 610 spin_unlock(&si->lock); 611 612 for (offset = start; offset < end; offset++) { 613 switch (READ_ONCE(map[offset])) { 614 case 0: 615 continue; 616 case SWAP_HAS_CACHE: 617 if (__try_to_reclaim_swap(si, offset, TTRS_ANYWAY | TTRS_DIRECT) > 0) 618 continue; 619 goto out; 620 default: 621 goto out; 622 } 623 } 624 out: 625 spin_lock(&si->lock); 626 spin_lock(&ci->lock); 627 628 /* 629 * Recheck the range no matter reclaim succeeded or not, the slot 630 * could have been be freed while we are not holding the lock. 631 */ 632 for (offset = start; offset < end; offset++) 633 if (READ_ONCE(map[offset])) 634 return false; 635 636 return true; 637 } 638 639 static bool cluster_scan_range(struct swap_info_struct *si, 640 struct swap_cluster_info *ci, 641 unsigned long start, unsigned int nr_pages) 642 { 643 unsigned long offset, end = start + nr_pages; 644 unsigned char *map = si->swap_map; 645 bool need_reclaim = false; 646 647 for (offset = start; offset < end; offset++) { 648 switch (READ_ONCE(map[offset])) { 649 case 0: 650 continue; 651 case SWAP_HAS_CACHE: 652 if (!vm_swap_full()) 653 return false; 654 need_reclaim = true; 655 continue; 656 default: 657 return false; 658 } 659 } 660 661 if (need_reclaim) 662 return cluster_reclaim_range(si, ci, start, end); 663 664 return true; 665 } 666 667 static void cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci, 668 unsigned int start, unsigned char usage, 669 unsigned int order) 670 { 671 unsigned int nr_pages = 1 << order; 672 673 if (cluster_is_free(ci)) { 674 if (nr_pages < SWAPFILE_CLUSTER) { 675 list_move_tail(&ci->list, &si->nonfull_clusters[order]); 676 ci->flags = CLUSTER_FLAG_NONFULL; 677 } 678 ci->order = order; 679 } 680 681 memset(si->swap_map + start, usage, nr_pages); 682 swap_range_alloc(si, start, nr_pages); 683 ci->count += nr_pages; 684 685 if (ci->count == SWAPFILE_CLUSTER) { 686 VM_BUG_ON(!(ci->flags & 687 (CLUSTER_FLAG_FREE | CLUSTER_FLAG_NONFULL | CLUSTER_FLAG_FRAG))); 688 if (ci->flags & CLUSTER_FLAG_FRAG) 689 si->frag_cluster_nr[ci->order]--; 690 list_move_tail(&ci->list, &si->full_clusters); 691 ci->flags = CLUSTER_FLAG_FULL; 692 } 693 } 694 695 static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si, unsigned long offset, 696 unsigned int *foundp, unsigned int order, 697 unsigned char usage) 698 { 699 unsigned long start = offset & ~(SWAPFILE_CLUSTER - 1); 700 unsigned long end = min(start + SWAPFILE_CLUSTER, si->max); 701 unsigned int nr_pages = 1 << order; 702 struct swap_cluster_info *ci; 703 704 if (end < nr_pages) 705 return SWAP_NEXT_INVALID; 706 end -= nr_pages; 707 708 ci = lock_cluster(si, offset); 709 if (ci->count + nr_pages > SWAPFILE_CLUSTER) { 710 offset = SWAP_NEXT_INVALID; 711 goto done; 712 } 713 714 while (offset <= end) { 715 if (cluster_scan_range(si, ci, offset, nr_pages)) { 716 cluster_alloc_range(si, ci, offset, usage, order); 717 *foundp = offset; 718 if (ci->count == SWAPFILE_CLUSTER) { 719 offset = SWAP_NEXT_INVALID; 720 goto done; 721 } 722 offset += nr_pages; 723 break; 724 } 725 offset += nr_pages; 726 } 727 if (offset > end) 728 offset = SWAP_NEXT_INVALID; 729 done: 730 unlock_cluster(ci); 731 return offset; 732 } 733 734 static void swap_reclaim_full_clusters(struct swap_info_struct *si) 735 { 736 long to_scan = 1; 737 unsigned long offset, end; 738 struct swap_cluster_info *ci; 739 unsigned char *map = si->swap_map; 740 int nr_reclaim, total_reclaimed = 0; 741 742 if (atomic_long_read(&nr_swap_pages) <= SWAPFILE_CLUSTER) 743 to_scan = si->inuse_pages / SWAPFILE_CLUSTER; 744 745 while (!list_empty(&si->full_clusters)) { 746 ci = list_first_entry(&si->full_clusters, struct swap_cluster_info, list); 747 list_move_tail(&ci->list, &si->full_clusters); 748 offset = cluster_offset(si, ci); 749 end = min(si->max, offset + SWAPFILE_CLUSTER); 750 to_scan--; 751 752 while (offset < end) { 753 if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) { 754 spin_unlock(&si->lock); 755 nr_reclaim = __try_to_reclaim_swap(si, offset, 756 TTRS_ANYWAY | TTRS_DIRECT); 757 spin_lock(&si->lock); 758 if (nr_reclaim > 0) { 759 offset += nr_reclaim; 760 total_reclaimed += nr_reclaim; 761 continue; 762 } else if (nr_reclaim < 0) { 763 offset += -nr_reclaim; 764 continue; 765 } 766 } 767 offset++; 768 } 769 if (to_scan <= 0 || total_reclaimed) 770 break; 771 } 772 } 773 774 /* 775 * Try to get swap entries with specified order from current cpu's swap entry 776 * pool (a cluster). This might involve allocating a new cluster for current CPU 777 * too. 778 */ 779 static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order, 780 unsigned char usage) 781 { 782 struct percpu_cluster *cluster; 783 struct swap_cluster_info *ci; 784 unsigned int offset, found = 0; 785 786 new_cluster: 787 lockdep_assert_held(&si->lock); 788 cluster = this_cpu_ptr(si->percpu_cluster); 789 offset = cluster->next[order]; 790 if (offset) { 791 offset = alloc_swap_scan_cluster(si, offset, &found, order, usage); 792 if (found) 793 goto done; 794 } 795 796 if (!list_empty(&si->free_clusters)) { 797 ci = list_first_entry(&si->free_clusters, struct swap_cluster_info, list); 798 offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci), &found, order, usage); 799 VM_BUG_ON(!found); 800 goto done; 801 } 802 803 if (order < PMD_ORDER) { 804 unsigned int frags = 0; 805 806 while (!list_empty(&si->nonfull_clusters[order])) { 807 ci = list_first_entry(&si->nonfull_clusters[order], 808 struct swap_cluster_info, list); 809 list_move_tail(&ci->list, &si->frag_clusters[order]); 810 ci->flags = CLUSTER_FLAG_FRAG; 811 si->frag_cluster_nr[order]++; 812 offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci), 813 &found, order, usage); 814 frags++; 815 if (found) 816 break; 817 } 818 819 if (!found) { 820 /* 821 * Nonfull clusters are moved to frag tail if we reached 822 * here, count them too, don't over scan the frag list. 823 */ 824 while (frags < si->frag_cluster_nr[order]) { 825 ci = list_first_entry(&si->frag_clusters[order], 826 struct swap_cluster_info, list); 827 /* 828 * Rotate the frag list to iterate, they were all failing 829 * high order allocation or moved here due to per-CPU usage, 830 * this help keeping usable cluster ahead. 831 */ 832 list_move_tail(&ci->list, &si->frag_clusters[order]); 833 offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci), 834 &found, order, usage); 835 frags++; 836 if (found) 837 break; 838 } 839 } 840 } 841 842 if (found) 843 goto done; 844 845 if (!list_empty(&si->discard_clusters)) { 846 /* 847 * we don't have free cluster but have some clusters in 848 * discarding, do discard now and reclaim them, then 849 * reread cluster_next_cpu since we dropped si->lock 850 */ 851 swap_do_scheduled_discard(si); 852 goto new_cluster; 853 } 854 855 if (order) 856 goto done; 857 858 /* Order 0 stealing from higher order */ 859 for (int o = 1; o < SWAP_NR_ORDERS; o++) { 860 /* 861 * Clusters here have at least one usable slots and can't fail order 0 862 * allocation, but reclaim may drop si->lock and race with another user. 863 */ 864 while (!list_empty(&si->frag_clusters[o])) { 865 ci = list_first_entry(&si->frag_clusters[o], 866 struct swap_cluster_info, list); 867 offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci), 868 &found, 0, usage); 869 if (found) 870 goto done; 871 } 872 873 while (!list_empty(&si->nonfull_clusters[o])) { 874 ci = list_first_entry(&si->nonfull_clusters[o], 875 struct swap_cluster_info, list); 876 offset = alloc_swap_scan_cluster(si, cluster_offset(si, ci), 877 &found, 0, usage); 878 if (found) 879 goto done; 880 } 881 } 882 883 done: 884 /* Try reclaim from full clusters if device is nearfull */ 885 if (vm_swap_full() && (!found || (si->pages - si->inuse_pages) < SWAPFILE_CLUSTER)) { 886 swap_reclaim_full_clusters(si); 887 if (!found && !order && si->pages != si->inuse_pages) 888 goto new_cluster; 889 } 890 891 cluster->next[order] = offset; 892 return found; 893 } 894 895 static void __del_from_avail_list(struct swap_info_struct *si) 896 { 897 int nid; 898 899 assert_spin_locked(&si->lock); 900 for_each_node(nid) 901 plist_del(&si->avail_lists[nid], &swap_avail_heads[nid]); 902 } 903 904 static void del_from_avail_list(struct swap_info_struct *si) 905 { 906 spin_lock(&swap_avail_lock); 907 __del_from_avail_list(si); 908 spin_unlock(&swap_avail_lock); 909 } 910 911 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 912 unsigned int nr_entries) 913 { 914 unsigned int end = offset + nr_entries - 1; 915 916 if (offset == si->lowest_bit) 917 si->lowest_bit += nr_entries; 918 if (end == si->highest_bit) 919 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries); 920 WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries); 921 if (si->inuse_pages == si->pages) { 922 si->lowest_bit = si->max; 923 si->highest_bit = 0; 924 del_from_avail_list(si); 925 } 926 } 927 928 static void add_to_avail_list(struct swap_info_struct *si) 929 { 930 int nid; 931 932 spin_lock(&swap_avail_lock); 933 for_each_node(nid) 934 plist_add(&si->avail_lists[nid], &swap_avail_heads[nid]); 935 spin_unlock(&swap_avail_lock); 936 } 937 938 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 939 unsigned int nr_entries) 940 { 941 unsigned long begin = offset; 942 unsigned long end = offset + nr_entries - 1; 943 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 944 unsigned int i; 945 946 /* 947 * Use atomic clear_bit operations only on zeromap instead of non-atomic 948 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes. 949 */ 950 for (i = 0; i < nr_entries; i++) 951 clear_bit(offset + i, si->zeromap); 952 953 if (offset < si->lowest_bit) 954 si->lowest_bit = offset; 955 if (end > si->highest_bit) { 956 bool was_full = !si->highest_bit; 957 958 WRITE_ONCE(si->highest_bit, end); 959 if (was_full && (si->flags & SWP_WRITEOK)) 960 add_to_avail_list(si); 961 } 962 if (si->flags & SWP_BLKDEV) 963 swap_slot_free_notify = 964 si->bdev->bd_disk->fops->swap_slot_free_notify; 965 else 966 swap_slot_free_notify = NULL; 967 while (offset <= end) { 968 arch_swap_invalidate_page(si->type, offset); 969 if (swap_slot_free_notify) 970 swap_slot_free_notify(si->bdev, offset); 971 offset++; 972 } 973 clear_shadow_from_swap_cache(si->type, begin, end); 974 975 /* 976 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0 977 * only after the above cleanups are done. 978 */ 979 smp_wmb(); 980 atomic_long_add(nr_entries, &nr_swap_pages); 981 WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries); 982 } 983 984 static void set_cluster_next(struct swap_info_struct *si, unsigned long next) 985 { 986 unsigned long prev; 987 988 if (!(si->flags & SWP_SOLIDSTATE)) { 989 si->cluster_next = next; 990 return; 991 } 992 993 prev = this_cpu_read(*si->cluster_next_cpu); 994 /* 995 * Cross the swap address space size aligned trunk, choose 996 * another trunk randomly to avoid lock contention on swap 997 * address space if possible. 998 */ 999 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) != 1000 (next >> SWAP_ADDRESS_SPACE_SHIFT)) { 1001 /* No free swap slots available */ 1002 if (si->highest_bit <= si->lowest_bit) 1003 return; 1004 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit); 1005 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES); 1006 next = max_t(unsigned int, next, si->lowest_bit); 1007 } 1008 this_cpu_write(*si->cluster_next_cpu, next); 1009 } 1010 1011 static bool swap_offset_available_and_locked(struct swap_info_struct *si, 1012 unsigned long offset) 1013 { 1014 if (data_race(!si->swap_map[offset])) { 1015 spin_lock(&si->lock); 1016 return true; 1017 } 1018 1019 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 1020 spin_lock(&si->lock); 1021 return true; 1022 } 1023 1024 return false; 1025 } 1026 1027 static int cluster_alloc_swap(struct swap_info_struct *si, 1028 unsigned char usage, int nr, 1029 swp_entry_t slots[], int order) 1030 { 1031 int n_ret = 0; 1032 1033 VM_BUG_ON(!si->cluster_info); 1034 1035 while (n_ret < nr) { 1036 unsigned long offset = cluster_alloc_swap_entry(si, order, usage); 1037 1038 if (!offset) 1039 break; 1040 slots[n_ret++] = swp_entry(si->type, offset); 1041 } 1042 1043 return n_ret; 1044 } 1045 1046 static int scan_swap_map_slots(struct swap_info_struct *si, 1047 unsigned char usage, int nr, 1048 swp_entry_t slots[], int order) 1049 { 1050 unsigned long offset; 1051 unsigned long scan_base; 1052 unsigned long last_in_cluster = 0; 1053 int latency_ration = LATENCY_LIMIT; 1054 unsigned int nr_pages = 1 << order; 1055 int n_ret = 0; 1056 bool scanned_many = false; 1057 1058 /* 1059 * We try to cluster swap pages by allocating them sequentially 1060 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 1061 * way, however, we resort to first-free allocation, starting 1062 * a new cluster. This prevents us from scattering swap pages 1063 * all over the entire swap partition, so that we reduce 1064 * overall disk seek times between swap pages. -- sct 1065 * But we do now try to find an empty cluster. -Andrea 1066 * And we let swap pages go all over an SSD partition. Hugh 1067 */ 1068 1069 if (order > 0) { 1070 /* 1071 * Should not even be attempting large allocations when huge 1072 * page swap is disabled. Warn and fail the allocation. 1073 */ 1074 if (!IS_ENABLED(CONFIG_THP_SWAP) || 1075 nr_pages > SWAPFILE_CLUSTER) { 1076 VM_WARN_ON_ONCE(1); 1077 return 0; 1078 } 1079 1080 /* 1081 * Swapfile is not block device or not using clusters so unable 1082 * to allocate large entries. 1083 */ 1084 if (!(si->flags & SWP_BLKDEV) || !si->cluster_info) 1085 return 0; 1086 } 1087 1088 if (si->cluster_info) 1089 return cluster_alloc_swap(si, usage, nr, slots, order); 1090 1091 si->flags += SWP_SCANNING; 1092 1093 /* For HDD, sequential access is more important. */ 1094 scan_base = si->cluster_next; 1095 offset = scan_base; 1096 1097 if (unlikely(!si->cluster_nr--)) { 1098 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 1099 si->cluster_nr = SWAPFILE_CLUSTER - 1; 1100 goto checks; 1101 } 1102 1103 spin_unlock(&si->lock); 1104 1105 /* 1106 * If seek is expensive, start searching for new cluster from 1107 * start of partition, to minimize the span of allocated swap. 1108 */ 1109 scan_base = offset = si->lowest_bit; 1110 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 1111 1112 /* Locate the first empty (unaligned) cluster */ 1113 for (; last_in_cluster <= READ_ONCE(si->highest_bit); offset++) { 1114 if (si->swap_map[offset]) 1115 last_in_cluster = offset + SWAPFILE_CLUSTER; 1116 else if (offset == last_in_cluster) { 1117 spin_lock(&si->lock); 1118 offset -= SWAPFILE_CLUSTER - 1; 1119 si->cluster_next = offset; 1120 si->cluster_nr = SWAPFILE_CLUSTER - 1; 1121 goto checks; 1122 } 1123 if (unlikely(--latency_ration < 0)) { 1124 cond_resched(); 1125 latency_ration = LATENCY_LIMIT; 1126 } 1127 } 1128 1129 offset = scan_base; 1130 spin_lock(&si->lock); 1131 si->cluster_nr = SWAPFILE_CLUSTER - 1; 1132 } 1133 1134 checks: 1135 if (!(si->flags & SWP_WRITEOK)) 1136 goto no_page; 1137 if (!si->highest_bit) 1138 goto no_page; 1139 if (offset > si->highest_bit) 1140 scan_base = offset = si->lowest_bit; 1141 1142 /* reuse swap entry of cache-only swap if not busy. */ 1143 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 1144 int swap_was_freed; 1145 spin_unlock(&si->lock); 1146 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY | TTRS_DIRECT); 1147 spin_lock(&si->lock); 1148 /* entry was freed successfully, try to use this again */ 1149 if (swap_was_freed > 0) 1150 goto checks; 1151 goto scan; /* check next one */ 1152 } 1153 1154 if (si->swap_map[offset]) { 1155 if (!n_ret) 1156 goto scan; 1157 else 1158 goto done; 1159 } 1160 memset(si->swap_map + offset, usage, nr_pages); 1161 1162 swap_range_alloc(si, offset, nr_pages); 1163 slots[n_ret++] = swp_entry(si->type, offset); 1164 1165 /* got enough slots or reach max slots? */ 1166 if ((n_ret == nr) || (offset >= si->highest_bit)) 1167 goto done; 1168 1169 /* search for next available slot */ 1170 1171 /* time to take a break? */ 1172 if (unlikely(--latency_ration < 0)) { 1173 if (n_ret) 1174 goto done; 1175 spin_unlock(&si->lock); 1176 cond_resched(); 1177 spin_lock(&si->lock); 1178 latency_ration = LATENCY_LIMIT; 1179 } 1180 1181 if (si->cluster_nr && !si->swap_map[++offset]) { 1182 /* non-ssd case, still more slots in cluster? */ 1183 --si->cluster_nr; 1184 goto checks; 1185 } 1186 1187 /* 1188 * Even if there's no free clusters available (fragmented), 1189 * try to scan a little more quickly with lock held unless we 1190 * have scanned too many slots already. 1191 */ 1192 if (!scanned_many) { 1193 unsigned long scan_limit; 1194 1195 if (offset < scan_base) 1196 scan_limit = scan_base; 1197 else 1198 scan_limit = si->highest_bit; 1199 for (; offset <= scan_limit && --latency_ration > 0; 1200 offset++) { 1201 if (!si->swap_map[offset]) 1202 goto checks; 1203 } 1204 } 1205 1206 done: 1207 if (order == 0) 1208 set_cluster_next(si, offset + 1); 1209 si->flags -= SWP_SCANNING; 1210 return n_ret; 1211 1212 scan: 1213 VM_WARN_ON(order > 0); 1214 spin_unlock(&si->lock); 1215 while (++offset <= READ_ONCE(si->highest_bit)) { 1216 if (unlikely(--latency_ration < 0)) { 1217 cond_resched(); 1218 latency_ration = LATENCY_LIMIT; 1219 scanned_many = true; 1220 } 1221 if (swap_offset_available_and_locked(si, offset)) 1222 goto checks; 1223 } 1224 offset = si->lowest_bit; 1225 while (offset < scan_base) { 1226 if (unlikely(--latency_ration < 0)) { 1227 cond_resched(); 1228 latency_ration = LATENCY_LIMIT; 1229 scanned_many = true; 1230 } 1231 if (swap_offset_available_and_locked(si, offset)) 1232 goto checks; 1233 offset++; 1234 } 1235 spin_lock(&si->lock); 1236 1237 no_page: 1238 si->flags -= SWP_SCANNING; 1239 return n_ret; 1240 } 1241 1242 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_order) 1243 { 1244 int order = swap_entry_order(entry_order); 1245 unsigned long size = 1 << order; 1246 struct swap_info_struct *si, *next; 1247 long avail_pgs; 1248 int n_ret = 0; 1249 int node; 1250 1251 spin_lock(&swap_avail_lock); 1252 1253 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 1254 if (avail_pgs <= 0) { 1255 spin_unlock(&swap_avail_lock); 1256 goto noswap; 1257 } 1258 1259 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs); 1260 1261 atomic_long_sub(n_goal * size, &nr_swap_pages); 1262 1263 start_over: 1264 node = numa_node_id(); 1265 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1266 /* requeue si to after same-priority siblings */ 1267 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1268 spin_unlock(&swap_avail_lock); 1269 spin_lock(&si->lock); 1270 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 1271 spin_lock(&swap_avail_lock); 1272 if (plist_node_empty(&si->avail_lists[node])) { 1273 spin_unlock(&si->lock); 1274 goto nextsi; 1275 } 1276 WARN(!si->highest_bit, 1277 "swap_info %d in list but !highest_bit\n", 1278 si->type); 1279 WARN(!(si->flags & SWP_WRITEOK), 1280 "swap_info %d in list but !SWP_WRITEOK\n", 1281 si->type); 1282 __del_from_avail_list(si); 1283 spin_unlock(&si->lock); 1284 goto nextsi; 1285 } 1286 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 1287 n_goal, swp_entries, order); 1288 spin_unlock(&si->lock); 1289 if (n_ret || size > 1) 1290 goto check_out; 1291 cond_resched(); 1292 1293 spin_lock(&swap_avail_lock); 1294 nextsi: 1295 /* 1296 * if we got here, it's likely that si was almost full before, 1297 * and since scan_swap_map_slots() can drop the si->lock, 1298 * multiple callers probably all tried to get a page from the 1299 * same si and it filled up before we could get one; or, the si 1300 * filled up between us dropping swap_avail_lock and taking 1301 * si->lock. Since we dropped the swap_avail_lock, the 1302 * swap_avail_head list may have been modified; so if next is 1303 * still in the swap_avail_head list then try it, otherwise 1304 * start over if we have not gotten any slots. 1305 */ 1306 if (plist_node_empty(&next->avail_lists[node])) 1307 goto start_over; 1308 } 1309 1310 spin_unlock(&swap_avail_lock); 1311 1312 check_out: 1313 if (n_ret < n_goal) 1314 atomic_long_add((long)(n_goal - n_ret) * size, 1315 &nr_swap_pages); 1316 noswap: 1317 return n_ret; 1318 } 1319 1320 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1321 { 1322 struct swap_info_struct *si; 1323 unsigned long offset; 1324 1325 if (!entry.val) 1326 goto out; 1327 si = swp_swap_info(entry); 1328 if (!si) 1329 goto bad_nofile; 1330 if (data_race(!(si->flags & SWP_USED))) 1331 goto bad_device; 1332 offset = swp_offset(entry); 1333 if (offset >= si->max) 1334 goto bad_offset; 1335 if (data_race(!si->swap_map[swp_offset(entry)])) 1336 goto bad_free; 1337 return si; 1338 1339 bad_free: 1340 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); 1341 goto out; 1342 bad_offset: 1343 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1344 goto out; 1345 bad_device: 1346 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); 1347 goto out; 1348 bad_nofile: 1349 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1350 out: 1351 return NULL; 1352 } 1353 1354 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1355 struct swap_info_struct *q) 1356 { 1357 struct swap_info_struct *p; 1358 1359 p = _swap_info_get(entry); 1360 1361 if (p != q) { 1362 if (q != NULL) 1363 spin_unlock(&q->lock); 1364 if (p != NULL) 1365 spin_lock(&p->lock); 1366 } 1367 return p; 1368 } 1369 1370 static unsigned char __swap_entry_free_locked(struct swap_info_struct *si, 1371 unsigned long offset, 1372 unsigned char usage) 1373 { 1374 unsigned char count; 1375 unsigned char has_cache; 1376 1377 count = si->swap_map[offset]; 1378 1379 has_cache = count & SWAP_HAS_CACHE; 1380 count &= ~SWAP_HAS_CACHE; 1381 1382 if (usage == SWAP_HAS_CACHE) { 1383 VM_BUG_ON(!has_cache); 1384 has_cache = 0; 1385 } else if (count == SWAP_MAP_SHMEM) { 1386 /* 1387 * Or we could insist on shmem.c using a special 1388 * swap_shmem_free() and free_shmem_swap_and_cache()... 1389 */ 1390 count = 0; 1391 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1392 if (count == COUNT_CONTINUED) { 1393 if (swap_count_continued(si, offset, count)) 1394 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1395 else 1396 count = SWAP_MAP_MAX; 1397 } else 1398 count--; 1399 } 1400 1401 usage = count | has_cache; 1402 if (usage) 1403 WRITE_ONCE(si->swap_map[offset], usage); 1404 else 1405 WRITE_ONCE(si->swap_map[offset], SWAP_HAS_CACHE); 1406 1407 return usage; 1408 } 1409 1410 /* 1411 * When we get a swap entry, if there aren't some other ways to 1412 * prevent swapoff, such as the folio in swap cache is locked, RCU 1413 * reader side is locked, etc., the swap entry may become invalid 1414 * because of swapoff. Then, we need to enclose all swap related 1415 * functions with get_swap_device() and put_swap_device(), unless the 1416 * swap functions call get/put_swap_device() by themselves. 1417 * 1418 * RCU reader side lock (including any spinlock) is sufficient to 1419 * prevent swapoff, because synchronize_rcu() is called in swapoff() 1420 * before freeing data structures. 1421 * 1422 * Check whether swap entry is valid in the swap device. If so, 1423 * return pointer to swap_info_struct, and keep the swap entry valid 1424 * via preventing the swap device from being swapoff, until 1425 * put_swap_device() is called. Otherwise return NULL. 1426 * 1427 * Notice that swapoff or swapoff+swapon can still happen before the 1428 * percpu_ref_tryget_live() in get_swap_device() or after the 1429 * percpu_ref_put() in put_swap_device() if there isn't any other way 1430 * to prevent swapoff. The caller must be prepared for that. For 1431 * example, the following situation is possible. 1432 * 1433 * CPU1 CPU2 1434 * do_swap_page() 1435 * ... swapoff+swapon 1436 * __read_swap_cache_async() 1437 * swapcache_prepare() 1438 * __swap_duplicate() 1439 * // check swap_map 1440 * // verify PTE not changed 1441 * 1442 * In __swap_duplicate(), the swap_map need to be checked before 1443 * changing partly because the specified swap entry may be for another 1444 * swap device which has been swapoff. And in do_swap_page(), after 1445 * the page is read from the swap device, the PTE is verified not 1446 * changed with the page table locked to check whether the swap device 1447 * has been swapoff or swapoff+swapon. 1448 */ 1449 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1450 { 1451 struct swap_info_struct *si; 1452 unsigned long offset; 1453 1454 if (!entry.val) 1455 goto out; 1456 si = swp_swap_info(entry); 1457 if (!si) 1458 goto bad_nofile; 1459 if (!percpu_ref_tryget_live(&si->users)) 1460 goto out; 1461 /* 1462 * Guarantee the si->users are checked before accessing other 1463 * fields of swap_info_struct. 1464 * 1465 * Paired with the spin_unlock() after setup_swap_info() in 1466 * enable_swap_info(). 1467 */ 1468 smp_rmb(); 1469 offset = swp_offset(entry); 1470 if (offset >= si->max) 1471 goto put_out; 1472 1473 return si; 1474 bad_nofile: 1475 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1476 out: 1477 return NULL; 1478 put_out: 1479 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1480 percpu_ref_put(&si->users); 1481 return NULL; 1482 } 1483 1484 static unsigned char __swap_entry_free(struct swap_info_struct *si, 1485 swp_entry_t entry) 1486 { 1487 struct swap_cluster_info *ci; 1488 unsigned long offset = swp_offset(entry); 1489 unsigned char usage; 1490 1491 ci = lock_cluster_or_swap_info(si, offset); 1492 usage = __swap_entry_free_locked(si, offset, 1); 1493 unlock_cluster_or_swap_info(si, ci); 1494 if (!usage) 1495 free_swap_slot(entry); 1496 1497 return usage; 1498 } 1499 1500 static bool __swap_entries_free(struct swap_info_struct *si, 1501 swp_entry_t entry, int nr) 1502 { 1503 unsigned long offset = swp_offset(entry); 1504 unsigned int type = swp_type(entry); 1505 struct swap_cluster_info *ci; 1506 bool has_cache = false; 1507 unsigned char count; 1508 int i; 1509 1510 if (nr <= 1 || swap_count(data_race(si->swap_map[offset])) != 1) 1511 goto fallback; 1512 /* cross into another cluster */ 1513 if (nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER) 1514 goto fallback; 1515 1516 ci = lock_cluster_or_swap_info(si, offset); 1517 if (!swap_is_last_map(si, offset, nr, &has_cache)) { 1518 unlock_cluster_or_swap_info(si, ci); 1519 goto fallback; 1520 } 1521 for (i = 0; i < nr; i++) 1522 WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE); 1523 unlock_cluster_or_swap_info(si, ci); 1524 1525 if (!has_cache) { 1526 for (i = 0; i < nr; i++) 1527 zswap_invalidate(swp_entry(si->type, offset + i)); 1528 spin_lock(&si->lock); 1529 swap_entry_range_free(si, entry, nr); 1530 spin_unlock(&si->lock); 1531 } 1532 return has_cache; 1533 1534 fallback: 1535 for (i = 0; i < nr; i++) { 1536 if (data_race(si->swap_map[offset + i])) { 1537 count = __swap_entry_free(si, swp_entry(type, offset + i)); 1538 if (count == SWAP_HAS_CACHE) 1539 has_cache = true; 1540 } else { 1541 WARN_ON_ONCE(1); 1542 } 1543 } 1544 return has_cache; 1545 } 1546 1547 /* 1548 * Drop the last HAS_CACHE flag of swap entries, caller have to 1549 * ensure all entries belong to the same cgroup. 1550 */ 1551 static void swap_entry_range_free(struct swap_info_struct *si, swp_entry_t entry, 1552 unsigned int nr_pages) 1553 { 1554 unsigned long offset = swp_offset(entry); 1555 unsigned char *map = si->swap_map + offset; 1556 unsigned char *map_end = map + nr_pages; 1557 struct swap_cluster_info *ci; 1558 1559 ci = lock_cluster(si, offset); 1560 do { 1561 VM_BUG_ON(*map != SWAP_HAS_CACHE); 1562 *map = 0; 1563 } while (++map < map_end); 1564 dec_cluster_info_page(si, ci, nr_pages); 1565 unlock_cluster(ci); 1566 1567 mem_cgroup_uncharge_swap(entry, nr_pages); 1568 swap_range_free(si, offset, nr_pages); 1569 } 1570 1571 static void cluster_swap_free_nr(struct swap_info_struct *si, 1572 unsigned long offset, int nr_pages, 1573 unsigned char usage) 1574 { 1575 struct swap_cluster_info *ci; 1576 DECLARE_BITMAP(to_free, BITS_PER_LONG) = { 0 }; 1577 int i, nr; 1578 1579 ci = lock_cluster_or_swap_info(si, offset); 1580 while (nr_pages) { 1581 nr = min(BITS_PER_LONG, nr_pages); 1582 for (i = 0; i < nr; i++) { 1583 if (!__swap_entry_free_locked(si, offset + i, usage)) 1584 bitmap_set(to_free, i, 1); 1585 } 1586 if (!bitmap_empty(to_free, BITS_PER_LONG)) { 1587 unlock_cluster_or_swap_info(si, ci); 1588 for_each_set_bit(i, to_free, BITS_PER_LONG) 1589 free_swap_slot(swp_entry(si->type, offset + i)); 1590 if (nr == nr_pages) 1591 return; 1592 bitmap_clear(to_free, 0, BITS_PER_LONG); 1593 ci = lock_cluster_or_swap_info(si, offset); 1594 } 1595 offset += nr; 1596 nr_pages -= nr; 1597 } 1598 unlock_cluster_or_swap_info(si, ci); 1599 } 1600 1601 /* 1602 * Caller has made sure that the swap device corresponding to entry 1603 * is still around or has not been recycled. 1604 */ 1605 void swap_free_nr(swp_entry_t entry, int nr_pages) 1606 { 1607 int nr; 1608 struct swap_info_struct *sis; 1609 unsigned long offset = swp_offset(entry); 1610 1611 sis = _swap_info_get(entry); 1612 if (!sis) 1613 return; 1614 1615 while (nr_pages) { 1616 nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER); 1617 cluster_swap_free_nr(sis, offset, nr, 1); 1618 offset += nr; 1619 nr_pages -= nr; 1620 } 1621 } 1622 1623 /* 1624 * Called after dropping swapcache to decrease refcnt to swap entries. 1625 */ 1626 void put_swap_folio(struct folio *folio, swp_entry_t entry) 1627 { 1628 unsigned long offset = swp_offset(entry); 1629 struct swap_cluster_info *ci; 1630 struct swap_info_struct *si; 1631 int size = 1 << swap_entry_order(folio_order(folio)); 1632 1633 si = _swap_info_get(entry); 1634 if (!si) 1635 return; 1636 1637 ci = lock_cluster_or_swap_info(si, offset); 1638 if (size > 1 && swap_is_has_cache(si, offset, size)) { 1639 unlock_cluster_or_swap_info(si, ci); 1640 spin_lock(&si->lock); 1641 swap_entry_range_free(si, entry, size); 1642 spin_unlock(&si->lock); 1643 return; 1644 } 1645 for (int i = 0; i < size; i++, entry.val++) { 1646 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { 1647 unlock_cluster_or_swap_info(si, ci); 1648 free_swap_slot(entry); 1649 if (i == size - 1) 1650 return; 1651 lock_cluster_or_swap_info(si, offset); 1652 } 1653 } 1654 unlock_cluster_or_swap_info(si, ci); 1655 } 1656 1657 static int swp_entry_cmp(const void *ent1, const void *ent2) 1658 { 1659 const swp_entry_t *e1 = ent1, *e2 = ent2; 1660 1661 return (int)swp_type(*e1) - (int)swp_type(*e2); 1662 } 1663 1664 void swapcache_free_entries(swp_entry_t *entries, int n) 1665 { 1666 struct swap_info_struct *p, *prev; 1667 int i; 1668 1669 if (n <= 0) 1670 return; 1671 1672 prev = NULL; 1673 p = NULL; 1674 1675 /* 1676 * Sort swap entries by swap device, so each lock is only taken once. 1677 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1678 * so low that it isn't necessary to optimize further. 1679 */ 1680 if (nr_swapfiles > 1) 1681 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1682 for (i = 0; i < n; ++i) { 1683 p = swap_info_get_cont(entries[i], prev); 1684 if (p) 1685 swap_entry_range_free(p, entries[i], 1); 1686 prev = p; 1687 } 1688 if (p) 1689 spin_unlock(&p->lock); 1690 } 1691 1692 int __swap_count(swp_entry_t entry) 1693 { 1694 struct swap_info_struct *si = swp_swap_info(entry); 1695 pgoff_t offset = swp_offset(entry); 1696 1697 return swap_count(si->swap_map[offset]); 1698 } 1699 1700 /* 1701 * How many references to @entry are currently swapped out? 1702 * This does not give an exact answer when swap count is continued, 1703 * but does include the high COUNT_CONTINUED flag to allow for that. 1704 */ 1705 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1706 { 1707 pgoff_t offset = swp_offset(entry); 1708 struct swap_cluster_info *ci; 1709 int count; 1710 1711 ci = lock_cluster_or_swap_info(si, offset); 1712 count = swap_count(si->swap_map[offset]); 1713 unlock_cluster_or_swap_info(si, ci); 1714 return count; 1715 } 1716 1717 /* 1718 * How many references to @entry are currently swapped out? 1719 * This considers COUNT_CONTINUED so it returns exact answer. 1720 */ 1721 int swp_swapcount(swp_entry_t entry) 1722 { 1723 int count, tmp_count, n; 1724 struct swap_info_struct *si; 1725 struct swap_cluster_info *ci; 1726 struct page *page; 1727 pgoff_t offset; 1728 unsigned char *map; 1729 1730 si = _swap_info_get(entry); 1731 if (!si) 1732 return 0; 1733 1734 offset = swp_offset(entry); 1735 1736 ci = lock_cluster_or_swap_info(si, offset); 1737 1738 count = swap_count(si->swap_map[offset]); 1739 if (!(count & COUNT_CONTINUED)) 1740 goto out; 1741 1742 count &= ~COUNT_CONTINUED; 1743 n = SWAP_MAP_MAX + 1; 1744 1745 page = vmalloc_to_page(si->swap_map + offset); 1746 offset &= ~PAGE_MASK; 1747 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1748 1749 do { 1750 page = list_next_entry(page, lru); 1751 map = kmap_local_page(page); 1752 tmp_count = map[offset]; 1753 kunmap_local(map); 1754 1755 count += (tmp_count & ~COUNT_CONTINUED) * n; 1756 n *= (SWAP_CONT_MAX + 1); 1757 } while (tmp_count & COUNT_CONTINUED); 1758 out: 1759 unlock_cluster_or_swap_info(si, ci); 1760 return count; 1761 } 1762 1763 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1764 swp_entry_t entry, int order) 1765 { 1766 struct swap_cluster_info *ci; 1767 unsigned char *map = si->swap_map; 1768 unsigned int nr_pages = 1 << order; 1769 unsigned long roffset = swp_offset(entry); 1770 unsigned long offset = round_down(roffset, nr_pages); 1771 int i; 1772 bool ret = false; 1773 1774 ci = lock_cluster_or_swap_info(si, offset); 1775 if (!ci || nr_pages == 1) { 1776 if (swap_count(map[roffset])) 1777 ret = true; 1778 goto unlock_out; 1779 } 1780 for (i = 0; i < nr_pages; i++) { 1781 if (swap_count(map[offset + i])) { 1782 ret = true; 1783 break; 1784 } 1785 } 1786 unlock_out: 1787 unlock_cluster_or_swap_info(si, ci); 1788 return ret; 1789 } 1790 1791 static bool folio_swapped(struct folio *folio) 1792 { 1793 swp_entry_t entry = folio->swap; 1794 struct swap_info_struct *si = _swap_info_get(entry); 1795 1796 if (!si) 1797 return false; 1798 1799 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio))) 1800 return swap_swapcount(si, entry) != 0; 1801 1802 return swap_page_trans_huge_swapped(si, entry, folio_order(folio)); 1803 } 1804 1805 static bool folio_swapcache_freeable(struct folio *folio) 1806 { 1807 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1808 1809 if (!folio_test_swapcache(folio)) 1810 return false; 1811 if (folio_test_writeback(folio)) 1812 return false; 1813 1814 /* 1815 * Once hibernation has begun to create its image of memory, 1816 * there's a danger that one of the calls to folio_free_swap() 1817 * - most probably a call from __try_to_reclaim_swap() while 1818 * hibernation is allocating its own swap pages for the image, 1819 * but conceivably even a call from memory reclaim - will free 1820 * the swap from a folio which has already been recorded in the 1821 * image as a clean swapcache folio, and then reuse its swap for 1822 * another page of the image. On waking from hibernation, the 1823 * original folio might be freed under memory pressure, then 1824 * later read back in from swap, now with the wrong data. 1825 * 1826 * Hibernation suspends storage while it is writing the image 1827 * to disk so check that here. 1828 */ 1829 if (pm_suspended_storage()) 1830 return false; 1831 1832 return true; 1833 } 1834 1835 /** 1836 * folio_free_swap() - Free the swap space used for this folio. 1837 * @folio: The folio to remove. 1838 * 1839 * If swap is getting full, or if there are no more mappings of this folio, 1840 * then call folio_free_swap to free its swap space. 1841 * 1842 * Return: true if we were able to release the swap space. 1843 */ 1844 bool folio_free_swap(struct folio *folio) 1845 { 1846 if (!folio_swapcache_freeable(folio)) 1847 return false; 1848 if (folio_swapped(folio)) 1849 return false; 1850 1851 delete_from_swap_cache(folio); 1852 folio_set_dirty(folio); 1853 return true; 1854 } 1855 1856 /** 1857 * free_swap_and_cache_nr() - Release reference on range of swap entries and 1858 * reclaim their cache if no more references remain. 1859 * @entry: First entry of range. 1860 * @nr: Number of entries in range. 1861 * 1862 * For each swap entry in the contiguous range, release a reference. If any swap 1863 * entries become free, try to reclaim their underlying folios, if present. The 1864 * offset range is defined by [entry.offset, entry.offset + nr). 1865 */ 1866 void free_swap_and_cache_nr(swp_entry_t entry, int nr) 1867 { 1868 const unsigned long start_offset = swp_offset(entry); 1869 const unsigned long end_offset = start_offset + nr; 1870 struct swap_info_struct *si; 1871 bool any_only_cache = false; 1872 unsigned long offset; 1873 1874 if (non_swap_entry(entry)) 1875 return; 1876 1877 si = get_swap_device(entry); 1878 if (!si) 1879 return; 1880 1881 if (WARN_ON(end_offset > si->max)) 1882 goto out; 1883 1884 /* 1885 * First free all entries in the range. 1886 */ 1887 any_only_cache = __swap_entries_free(si, entry, nr); 1888 1889 /* 1890 * Short-circuit the below loop if none of the entries had their 1891 * reference drop to zero. 1892 */ 1893 if (!any_only_cache) 1894 goto out; 1895 1896 /* 1897 * Now go back over the range trying to reclaim the swap cache. This is 1898 * more efficient for large folios because we will only try to reclaim 1899 * the swap once per folio in the common case. If we do 1900 * __swap_entry_free() and __try_to_reclaim_swap() in the same loop, the 1901 * latter will get a reference and lock the folio for every individual 1902 * page but will only succeed once the swap slot for every subpage is 1903 * zero. 1904 */ 1905 for (offset = start_offset; offset < end_offset; offset += nr) { 1906 nr = 1; 1907 if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 1908 /* 1909 * Folios are always naturally aligned in swap so 1910 * advance forward to the next boundary. Zero means no 1911 * folio was found for the swap entry, so advance by 1 1912 * in this case. Negative value means folio was found 1913 * but could not be reclaimed. Here we can still advance 1914 * to the next boundary. 1915 */ 1916 nr = __try_to_reclaim_swap(si, offset, 1917 TTRS_UNMAPPED | TTRS_FULL); 1918 if (nr == 0) 1919 nr = 1; 1920 else if (nr < 0) 1921 nr = -nr; 1922 nr = ALIGN(offset + 1, nr) - offset; 1923 } 1924 } 1925 1926 out: 1927 put_swap_device(si); 1928 } 1929 1930 #ifdef CONFIG_HIBERNATION 1931 1932 swp_entry_t get_swap_page_of_type(int type) 1933 { 1934 struct swap_info_struct *si = swap_type_to_swap_info(type); 1935 swp_entry_t entry = {0}; 1936 1937 if (!si) 1938 goto fail; 1939 1940 /* This is called for allocating swap entry, not cache */ 1941 spin_lock(&si->lock); 1942 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry, 0)) 1943 atomic_long_dec(&nr_swap_pages); 1944 spin_unlock(&si->lock); 1945 fail: 1946 return entry; 1947 } 1948 1949 /* 1950 * Find the swap type that corresponds to given device (if any). 1951 * 1952 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1953 * from 0, in which the swap header is expected to be located. 1954 * 1955 * This is needed for the suspend to disk (aka swsusp). 1956 */ 1957 int swap_type_of(dev_t device, sector_t offset) 1958 { 1959 int type; 1960 1961 if (!device) 1962 return -1; 1963 1964 spin_lock(&swap_lock); 1965 for (type = 0; type < nr_swapfiles; type++) { 1966 struct swap_info_struct *sis = swap_info[type]; 1967 1968 if (!(sis->flags & SWP_WRITEOK)) 1969 continue; 1970 1971 if (device == sis->bdev->bd_dev) { 1972 struct swap_extent *se = first_se(sis); 1973 1974 if (se->start_block == offset) { 1975 spin_unlock(&swap_lock); 1976 return type; 1977 } 1978 } 1979 } 1980 spin_unlock(&swap_lock); 1981 return -ENODEV; 1982 } 1983 1984 int find_first_swap(dev_t *device) 1985 { 1986 int type; 1987 1988 spin_lock(&swap_lock); 1989 for (type = 0; type < nr_swapfiles; type++) { 1990 struct swap_info_struct *sis = swap_info[type]; 1991 1992 if (!(sis->flags & SWP_WRITEOK)) 1993 continue; 1994 *device = sis->bdev->bd_dev; 1995 spin_unlock(&swap_lock); 1996 return type; 1997 } 1998 spin_unlock(&swap_lock); 1999 return -ENODEV; 2000 } 2001 2002 /* 2003 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 2004 * corresponding to given index in swap_info (swap type). 2005 */ 2006 sector_t swapdev_block(int type, pgoff_t offset) 2007 { 2008 struct swap_info_struct *si = swap_type_to_swap_info(type); 2009 struct swap_extent *se; 2010 2011 if (!si || !(si->flags & SWP_WRITEOK)) 2012 return 0; 2013 se = offset_to_swap_extent(si, offset); 2014 return se->start_block + (offset - se->start_page); 2015 } 2016 2017 /* 2018 * Return either the total number of swap pages of given type, or the number 2019 * of free pages of that type (depending on @free) 2020 * 2021 * This is needed for software suspend 2022 */ 2023 unsigned int count_swap_pages(int type, int free) 2024 { 2025 unsigned int n = 0; 2026 2027 spin_lock(&swap_lock); 2028 if ((unsigned int)type < nr_swapfiles) { 2029 struct swap_info_struct *sis = swap_info[type]; 2030 2031 spin_lock(&sis->lock); 2032 if (sis->flags & SWP_WRITEOK) { 2033 n = sis->pages; 2034 if (free) 2035 n -= sis->inuse_pages; 2036 } 2037 spin_unlock(&sis->lock); 2038 } 2039 spin_unlock(&swap_lock); 2040 return n; 2041 } 2042 #endif /* CONFIG_HIBERNATION */ 2043 2044 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 2045 { 2046 return pte_same(pte_swp_clear_flags(pte), swp_pte); 2047 } 2048 2049 /* 2050 * No need to decide whether this PTE shares the swap entry with others, 2051 * just let do_wp_page work it out if a write is requested later - to 2052 * force COW, vm_page_prot omits write permission from any private vma. 2053 */ 2054 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 2055 unsigned long addr, swp_entry_t entry, struct folio *folio) 2056 { 2057 struct page *page; 2058 struct folio *swapcache; 2059 spinlock_t *ptl; 2060 pte_t *pte, new_pte, old_pte; 2061 bool hwpoisoned = false; 2062 int ret = 1; 2063 2064 swapcache = folio; 2065 folio = ksm_might_need_to_copy(folio, vma, addr); 2066 if (unlikely(!folio)) 2067 return -ENOMEM; 2068 else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 2069 hwpoisoned = true; 2070 folio = swapcache; 2071 } 2072 2073 page = folio_file_page(folio, swp_offset(entry)); 2074 if (PageHWPoison(page)) 2075 hwpoisoned = true; 2076 2077 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 2078 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte), 2079 swp_entry_to_pte(entry)))) { 2080 ret = 0; 2081 goto out; 2082 } 2083 2084 old_pte = ptep_get(pte); 2085 2086 if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) { 2087 swp_entry_t swp_entry; 2088 2089 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 2090 if (hwpoisoned) { 2091 swp_entry = make_hwpoison_entry(page); 2092 } else { 2093 swp_entry = make_poisoned_swp_entry(); 2094 } 2095 new_pte = swp_entry_to_pte(swp_entry); 2096 ret = 0; 2097 goto setpte; 2098 } 2099 2100 /* 2101 * Some architectures may have to restore extra metadata to the page 2102 * when reading from swap. This metadata may be indexed by swap entry 2103 * so this must be called before swap_free(). 2104 */ 2105 arch_swap_restore(folio_swap(entry, folio), folio); 2106 2107 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 2108 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 2109 folio_get(folio); 2110 if (folio == swapcache) { 2111 rmap_t rmap_flags = RMAP_NONE; 2112 2113 /* 2114 * See do_swap_page(): writeback would be problematic. 2115 * However, we do a folio_wait_writeback() just before this 2116 * call and have the folio locked. 2117 */ 2118 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 2119 if (pte_swp_exclusive(old_pte)) 2120 rmap_flags |= RMAP_EXCLUSIVE; 2121 /* 2122 * We currently only expect small !anon folios, which are either 2123 * fully exclusive or fully shared. If we ever get large folios 2124 * here, we have to be careful. 2125 */ 2126 if (!folio_test_anon(folio)) { 2127 VM_WARN_ON_ONCE(folio_test_large(folio)); 2128 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 2129 folio_add_new_anon_rmap(folio, vma, addr, rmap_flags); 2130 } else { 2131 folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags); 2132 } 2133 } else { /* ksm created a completely new copy */ 2134 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 2135 folio_add_lru_vma(folio, vma); 2136 } 2137 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot)); 2138 if (pte_swp_soft_dirty(old_pte)) 2139 new_pte = pte_mksoft_dirty(new_pte); 2140 if (pte_swp_uffd_wp(old_pte)) 2141 new_pte = pte_mkuffd_wp(new_pte); 2142 setpte: 2143 set_pte_at(vma->vm_mm, addr, pte, new_pte); 2144 swap_free(entry); 2145 out: 2146 if (pte) 2147 pte_unmap_unlock(pte, ptl); 2148 if (folio != swapcache) { 2149 folio_unlock(folio); 2150 folio_put(folio); 2151 } 2152 return ret; 2153 } 2154 2155 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 2156 unsigned long addr, unsigned long end, 2157 unsigned int type) 2158 { 2159 pte_t *pte = NULL; 2160 struct swap_info_struct *si; 2161 2162 si = swap_info[type]; 2163 do { 2164 struct folio *folio; 2165 unsigned long offset; 2166 unsigned char swp_count; 2167 swp_entry_t entry; 2168 int ret; 2169 pte_t ptent; 2170 2171 if (!pte++) { 2172 pte = pte_offset_map(pmd, addr); 2173 if (!pte) 2174 break; 2175 } 2176 2177 ptent = ptep_get_lockless(pte); 2178 2179 if (!is_swap_pte(ptent)) 2180 continue; 2181 2182 entry = pte_to_swp_entry(ptent); 2183 if (swp_type(entry) != type) 2184 continue; 2185 2186 offset = swp_offset(entry); 2187 pte_unmap(pte); 2188 pte = NULL; 2189 2190 folio = swap_cache_get_folio(entry, vma, addr); 2191 if (!folio) { 2192 struct vm_fault vmf = { 2193 .vma = vma, 2194 .address = addr, 2195 .real_address = addr, 2196 .pmd = pmd, 2197 }; 2198 2199 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 2200 &vmf); 2201 } 2202 if (!folio) { 2203 swp_count = READ_ONCE(si->swap_map[offset]); 2204 if (swp_count == 0 || swp_count == SWAP_MAP_BAD) 2205 continue; 2206 return -ENOMEM; 2207 } 2208 2209 folio_lock(folio); 2210 folio_wait_writeback(folio); 2211 ret = unuse_pte(vma, pmd, addr, entry, folio); 2212 if (ret < 0) { 2213 folio_unlock(folio); 2214 folio_put(folio); 2215 return ret; 2216 } 2217 2218 folio_free_swap(folio); 2219 folio_unlock(folio); 2220 folio_put(folio); 2221 } while (addr += PAGE_SIZE, addr != end); 2222 2223 if (pte) 2224 pte_unmap(pte); 2225 return 0; 2226 } 2227 2228 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 2229 unsigned long addr, unsigned long end, 2230 unsigned int type) 2231 { 2232 pmd_t *pmd; 2233 unsigned long next; 2234 int ret; 2235 2236 pmd = pmd_offset(pud, addr); 2237 do { 2238 cond_resched(); 2239 next = pmd_addr_end(addr, end); 2240 ret = unuse_pte_range(vma, pmd, addr, next, type); 2241 if (ret) 2242 return ret; 2243 } while (pmd++, addr = next, addr != end); 2244 return 0; 2245 } 2246 2247 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 2248 unsigned long addr, unsigned long end, 2249 unsigned int type) 2250 { 2251 pud_t *pud; 2252 unsigned long next; 2253 int ret; 2254 2255 pud = pud_offset(p4d, addr); 2256 do { 2257 next = pud_addr_end(addr, end); 2258 if (pud_none_or_clear_bad(pud)) 2259 continue; 2260 ret = unuse_pmd_range(vma, pud, addr, next, type); 2261 if (ret) 2262 return ret; 2263 } while (pud++, addr = next, addr != end); 2264 return 0; 2265 } 2266 2267 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 2268 unsigned long addr, unsigned long end, 2269 unsigned int type) 2270 { 2271 p4d_t *p4d; 2272 unsigned long next; 2273 int ret; 2274 2275 p4d = p4d_offset(pgd, addr); 2276 do { 2277 next = p4d_addr_end(addr, end); 2278 if (p4d_none_or_clear_bad(p4d)) 2279 continue; 2280 ret = unuse_pud_range(vma, p4d, addr, next, type); 2281 if (ret) 2282 return ret; 2283 } while (p4d++, addr = next, addr != end); 2284 return 0; 2285 } 2286 2287 static int unuse_vma(struct vm_area_struct *vma, unsigned int type) 2288 { 2289 pgd_t *pgd; 2290 unsigned long addr, end, next; 2291 int ret; 2292 2293 addr = vma->vm_start; 2294 end = vma->vm_end; 2295 2296 pgd = pgd_offset(vma->vm_mm, addr); 2297 do { 2298 next = pgd_addr_end(addr, end); 2299 if (pgd_none_or_clear_bad(pgd)) 2300 continue; 2301 ret = unuse_p4d_range(vma, pgd, addr, next, type); 2302 if (ret) 2303 return ret; 2304 } while (pgd++, addr = next, addr != end); 2305 return 0; 2306 } 2307 2308 static int unuse_mm(struct mm_struct *mm, unsigned int type) 2309 { 2310 struct vm_area_struct *vma; 2311 int ret = 0; 2312 VMA_ITERATOR(vmi, mm, 0); 2313 2314 mmap_read_lock(mm); 2315 for_each_vma(vmi, vma) { 2316 if (vma->anon_vma && !is_vm_hugetlb_page(vma)) { 2317 ret = unuse_vma(vma, type); 2318 if (ret) 2319 break; 2320 } 2321 2322 cond_resched(); 2323 } 2324 mmap_read_unlock(mm); 2325 return ret; 2326 } 2327 2328 /* 2329 * Scan swap_map from current position to next entry still in use. 2330 * Return 0 if there are no inuse entries after prev till end of 2331 * the map. 2332 */ 2333 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 2334 unsigned int prev) 2335 { 2336 unsigned int i; 2337 unsigned char count; 2338 2339 /* 2340 * No need for swap_lock here: we're just looking 2341 * for whether an entry is in use, not modifying it; false 2342 * hits are okay, and sys_swapoff() has already prevented new 2343 * allocations from this area (while holding swap_lock). 2344 */ 2345 for (i = prev + 1; i < si->max; i++) { 2346 count = READ_ONCE(si->swap_map[i]); 2347 if (count && swap_count(count) != SWAP_MAP_BAD) 2348 break; 2349 if ((i % LATENCY_LIMIT) == 0) 2350 cond_resched(); 2351 } 2352 2353 if (i == si->max) 2354 i = 0; 2355 2356 return i; 2357 } 2358 2359 static int try_to_unuse(unsigned int type) 2360 { 2361 struct mm_struct *prev_mm; 2362 struct mm_struct *mm; 2363 struct list_head *p; 2364 int retval = 0; 2365 struct swap_info_struct *si = swap_info[type]; 2366 struct folio *folio; 2367 swp_entry_t entry; 2368 unsigned int i; 2369 2370 if (!READ_ONCE(si->inuse_pages)) 2371 goto success; 2372 2373 retry: 2374 retval = shmem_unuse(type); 2375 if (retval) 2376 return retval; 2377 2378 prev_mm = &init_mm; 2379 mmget(prev_mm); 2380 2381 spin_lock(&mmlist_lock); 2382 p = &init_mm.mmlist; 2383 while (READ_ONCE(si->inuse_pages) && 2384 !signal_pending(current) && 2385 (p = p->next) != &init_mm.mmlist) { 2386 2387 mm = list_entry(p, struct mm_struct, mmlist); 2388 if (!mmget_not_zero(mm)) 2389 continue; 2390 spin_unlock(&mmlist_lock); 2391 mmput(prev_mm); 2392 prev_mm = mm; 2393 retval = unuse_mm(mm, type); 2394 if (retval) { 2395 mmput(prev_mm); 2396 return retval; 2397 } 2398 2399 /* 2400 * Make sure that we aren't completely killing 2401 * interactive performance. 2402 */ 2403 cond_resched(); 2404 spin_lock(&mmlist_lock); 2405 } 2406 spin_unlock(&mmlist_lock); 2407 2408 mmput(prev_mm); 2409 2410 i = 0; 2411 while (READ_ONCE(si->inuse_pages) && 2412 !signal_pending(current) && 2413 (i = find_next_to_unuse(si, i)) != 0) { 2414 2415 entry = swp_entry(type, i); 2416 folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry)); 2417 if (IS_ERR(folio)) 2418 continue; 2419 2420 /* 2421 * It is conceivable that a racing task removed this folio from 2422 * swap cache just before we acquired the page lock. The folio 2423 * might even be back in swap cache on another swap area. But 2424 * that is okay, folio_free_swap() only removes stale folios. 2425 */ 2426 folio_lock(folio); 2427 folio_wait_writeback(folio); 2428 folio_free_swap(folio); 2429 folio_unlock(folio); 2430 folio_put(folio); 2431 } 2432 2433 /* 2434 * Lets check again to see if there are still swap entries in the map. 2435 * If yes, we would need to do retry the unuse logic again. 2436 * Under global memory pressure, swap entries can be reinserted back 2437 * into process space after the mmlist loop above passes over them. 2438 * 2439 * Limit the number of retries? No: when mmget_not_zero() 2440 * above fails, that mm is likely to be freeing swap from 2441 * exit_mmap(), which proceeds at its own independent pace; 2442 * and even shmem_writepage() could have been preempted after 2443 * folio_alloc_swap(), temporarily hiding that swap. It's easy 2444 * and robust (though cpu-intensive) just to keep retrying. 2445 */ 2446 if (READ_ONCE(si->inuse_pages)) { 2447 if (!signal_pending(current)) 2448 goto retry; 2449 return -EINTR; 2450 } 2451 2452 success: 2453 /* 2454 * Make sure that further cleanups after try_to_unuse() returns happen 2455 * after swap_range_free() reduces si->inuse_pages to 0. 2456 */ 2457 smp_mb(); 2458 return 0; 2459 } 2460 2461 /* 2462 * After a successful try_to_unuse, if no swap is now in use, we know 2463 * we can empty the mmlist. swap_lock must be held on entry and exit. 2464 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2465 * added to the mmlist just after page_duplicate - before would be racy. 2466 */ 2467 static void drain_mmlist(void) 2468 { 2469 struct list_head *p, *next; 2470 unsigned int type; 2471 2472 for (type = 0; type < nr_swapfiles; type++) 2473 if (swap_info[type]->inuse_pages) 2474 return; 2475 spin_lock(&mmlist_lock); 2476 list_for_each_safe(p, next, &init_mm.mmlist) 2477 list_del_init(p); 2478 spin_unlock(&mmlist_lock); 2479 } 2480 2481 /* 2482 * Free all of a swapdev's extent information 2483 */ 2484 static void destroy_swap_extents(struct swap_info_struct *sis) 2485 { 2486 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2487 struct rb_node *rb = sis->swap_extent_root.rb_node; 2488 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2489 2490 rb_erase(rb, &sis->swap_extent_root); 2491 kfree(se); 2492 } 2493 2494 if (sis->flags & SWP_ACTIVATED) { 2495 struct file *swap_file = sis->swap_file; 2496 struct address_space *mapping = swap_file->f_mapping; 2497 2498 sis->flags &= ~SWP_ACTIVATED; 2499 if (mapping->a_ops->swap_deactivate) 2500 mapping->a_ops->swap_deactivate(swap_file); 2501 } 2502 } 2503 2504 /* 2505 * Add a block range (and the corresponding page range) into this swapdev's 2506 * extent tree. 2507 * 2508 * This function rather assumes that it is called in ascending page order. 2509 */ 2510 int 2511 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2512 unsigned long nr_pages, sector_t start_block) 2513 { 2514 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2515 struct swap_extent *se; 2516 struct swap_extent *new_se; 2517 2518 /* 2519 * place the new node at the right most since the 2520 * function is called in ascending page order. 2521 */ 2522 while (*link) { 2523 parent = *link; 2524 link = &parent->rb_right; 2525 } 2526 2527 if (parent) { 2528 se = rb_entry(parent, struct swap_extent, rb_node); 2529 BUG_ON(se->start_page + se->nr_pages != start_page); 2530 if (se->start_block + se->nr_pages == start_block) { 2531 /* Merge it */ 2532 se->nr_pages += nr_pages; 2533 return 0; 2534 } 2535 } 2536 2537 /* No merge, insert a new extent. */ 2538 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2539 if (new_se == NULL) 2540 return -ENOMEM; 2541 new_se->start_page = start_page; 2542 new_se->nr_pages = nr_pages; 2543 new_se->start_block = start_block; 2544 2545 rb_link_node(&new_se->rb_node, parent, link); 2546 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2547 return 1; 2548 } 2549 EXPORT_SYMBOL_GPL(add_swap_extent); 2550 2551 /* 2552 * A `swap extent' is a simple thing which maps a contiguous range of pages 2553 * onto a contiguous range of disk blocks. A rbtree of swap extents is 2554 * built at swapon time and is then used at swap_writepage/swap_read_folio 2555 * time for locating where on disk a page belongs. 2556 * 2557 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2558 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2559 * swap files identically. 2560 * 2561 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2562 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2563 * swapfiles are handled *identically* after swapon time. 2564 * 2565 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2566 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray 2567 * blocks are found which do not fall within the PAGE_SIZE alignment 2568 * requirements, they are simply tossed out - we will never use those blocks 2569 * for swapping. 2570 * 2571 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2572 * prevents users from writing to the swap device, which will corrupt memory. 2573 * 2574 * The amount of disk space which a single swap extent represents varies. 2575 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2576 * extents in the rbtree. - akpm. 2577 */ 2578 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2579 { 2580 struct file *swap_file = sis->swap_file; 2581 struct address_space *mapping = swap_file->f_mapping; 2582 struct inode *inode = mapping->host; 2583 int ret; 2584 2585 if (S_ISBLK(inode->i_mode)) { 2586 ret = add_swap_extent(sis, 0, sis->max, 0); 2587 *span = sis->pages; 2588 return ret; 2589 } 2590 2591 if (mapping->a_ops->swap_activate) { 2592 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2593 if (ret < 0) 2594 return ret; 2595 sis->flags |= SWP_ACTIVATED; 2596 if ((sis->flags & SWP_FS_OPS) && 2597 sio_pool_init() != 0) { 2598 destroy_swap_extents(sis); 2599 return -ENOMEM; 2600 } 2601 return ret; 2602 } 2603 2604 return generic_swapfile_activate(sis, swap_file, span); 2605 } 2606 2607 static int swap_node(struct swap_info_struct *si) 2608 { 2609 struct block_device *bdev; 2610 2611 if (si->bdev) 2612 bdev = si->bdev; 2613 else 2614 bdev = si->swap_file->f_inode->i_sb->s_bdev; 2615 2616 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2617 } 2618 2619 static void setup_swap_info(struct swap_info_struct *si, int prio, 2620 unsigned char *swap_map, 2621 struct swap_cluster_info *cluster_info, 2622 unsigned long *zeromap) 2623 { 2624 int i; 2625 2626 if (prio >= 0) 2627 si->prio = prio; 2628 else 2629 si->prio = --least_priority; 2630 /* 2631 * the plist prio is negated because plist ordering is 2632 * low-to-high, while swap ordering is high-to-low 2633 */ 2634 si->list.prio = -si->prio; 2635 for_each_node(i) { 2636 if (si->prio >= 0) 2637 si->avail_lists[i].prio = -si->prio; 2638 else { 2639 if (swap_node(si) == i) 2640 si->avail_lists[i].prio = 1; 2641 else 2642 si->avail_lists[i].prio = -si->prio; 2643 } 2644 } 2645 si->swap_map = swap_map; 2646 si->cluster_info = cluster_info; 2647 si->zeromap = zeromap; 2648 } 2649 2650 static void _enable_swap_info(struct swap_info_struct *si) 2651 { 2652 si->flags |= SWP_WRITEOK; 2653 atomic_long_add(si->pages, &nr_swap_pages); 2654 total_swap_pages += si->pages; 2655 2656 assert_spin_locked(&swap_lock); 2657 /* 2658 * both lists are plists, and thus priority ordered. 2659 * swap_active_head needs to be priority ordered for swapoff(), 2660 * which on removal of any swap_info_struct with an auto-assigned 2661 * (i.e. negative) priority increments the auto-assigned priority 2662 * of any lower-priority swap_info_structs. 2663 * swap_avail_head needs to be priority ordered for folio_alloc_swap(), 2664 * which allocates swap pages from the highest available priority 2665 * swap_info_struct. 2666 */ 2667 plist_add(&si->list, &swap_active_head); 2668 2669 /* add to available list iff swap device is not full */ 2670 if (si->highest_bit) 2671 add_to_avail_list(si); 2672 } 2673 2674 static void enable_swap_info(struct swap_info_struct *si, int prio, 2675 unsigned char *swap_map, 2676 struct swap_cluster_info *cluster_info, 2677 unsigned long *zeromap) 2678 { 2679 spin_lock(&swap_lock); 2680 spin_lock(&si->lock); 2681 setup_swap_info(si, prio, swap_map, cluster_info, zeromap); 2682 spin_unlock(&si->lock); 2683 spin_unlock(&swap_lock); 2684 /* 2685 * Finished initializing swap device, now it's safe to reference it. 2686 */ 2687 percpu_ref_resurrect(&si->users); 2688 spin_lock(&swap_lock); 2689 spin_lock(&si->lock); 2690 _enable_swap_info(si); 2691 spin_unlock(&si->lock); 2692 spin_unlock(&swap_lock); 2693 } 2694 2695 static void reinsert_swap_info(struct swap_info_struct *si) 2696 { 2697 spin_lock(&swap_lock); 2698 spin_lock(&si->lock); 2699 setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap); 2700 _enable_swap_info(si); 2701 spin_unlock(&si->lock); 2702 spin_unlock(&swap_lock); 2703 } 2704 2705 static bool __has_usable_swap(void) 2706 { 2707 return !plist_head_empty(&swap_active_head); 2708 } 2709 2710 bool has_usable_swap(void) 2711 { 2712 bool ret; 2713 2714 spin_lock(&swap_lock); 2715 ret = __has_usable_swap(); 2716 spin_unlock(&swap_lock); 2717 return ret; 2718 } 2719 2720 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2721 { 2722 struct swap_info_struct *p = NULL; 2723 unsigned char *swap_map; 2724 unsigned long *zeromap; 2725 struct swap_cluster_info *cluster_info; 2726 struct file *swap_file, *victim; 2727 struct address_space *mapping; 2728 struct inode *inode; 2729 struct filename *pathname; 2730 int err, found = 0; 2731 2732 if (!capable(CAP_SYS_ADMIN)) 2733 return -EPERM; 2734 2735 BUG_ON(!current->mm); 2736 2737 pathname = getname(specialfile); 2738 if (IS_ERR(pathname)) 2739 return PTR_ERR(pathname); 2740 2741 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2742 err = PTR_ERR(victim); 2743 if (IS_ERR(victim)) 2744 goto out; 2745 2746 mapping = victim->f_mapping; 2747 spin_lock(&swap_lock); 2748 plist_for_each_entry(p, &swap_active_head, list) { 2749 if (p->flags & SWP_WRITEOK) { 2750 if (p->swap_file->f_mapping == mapping) { 2751 found = 1; 2752 break; 2753 } 2754 } 2755 } 2756 if (!found) { 2757 err = -EINVAL; 2758 spin_unlock(&swap_lock); 2759 goto out_dput; 2760 } 2761 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2762 vm_unacct_memory(p->pages); 2763 else { 2764 err = -ENOMEM; 2765 spin_unlock(&swap_lock); 2766 goto out_dput; 2767 } 2768 spin_lock(&p->lock); 2769 del_from_avail_list(p); 2770 if (p->prio < 0) { 2771 struct swap_info_struct *si = p; 2772 int nid; 2773 2774 plist_for_each_entry_continue(si, &swap_active_head, list) { 2775 si->prio++; 2776 si->list.prio--; 2777 for_each_node(nid) { 2778 if (si->avail_lists[nid].prio != 1) 2779 si->avail_lists[nid].prio--; 2780 } 2781 } 2782 least_priority++; 2783 } 2784 plist_del(&p->list, &swap_active_head); 2785 atomic_long_sub(p->pages, &nr_swap_pages); 2786 total_swap_pages -= p->pages; 2787 p->flags &= ~SWP_WRITEOK; 2788 spin_unlock(&p->lock); 2789 spin_unlock(&swap_lock); 2790 2791 disable_swap_slots_cache_lock(); 2792 2793 set_current_oom_origin(); 2794 err = try_to_unuse(p->type); 2795 clear_current_oom_origin(); 2796 2797 if (err) { 2798 /* re-insert swap space back into swap_list */ 2799 reinsert_swap_info(p); 2800 reenable_swap_slots_cache_unlock(); 2801 goto out_dput; 2802 } 2803 2804 reenable_swap_slots_cache_unlock(); 2805 2806 /* 2807 * Wait for swap operations protected by get/put_swap_device() 2808 * to complete. Because of synchronize_rcu() here, all swap 2809 * operations protected by RCU reader side lock (including any 2810 * spinlock) will be waited too. This makes it easy to 2811 * prevent folio_test_swapcache() and the following swap cache 2812 * operations from racing with swapoff. 2813 */ 2814 percpu_ref_kill(&p->users); 2815 synchronize_rcu(); 2816 wait_for_completion(&p->comp); 2817 2818 flush_work(&p->discard_work); 2819 2820 destroy_swap_extents(p); 2821 if (p->flags & SWP_CONTINUED) 2822 free_swap_count_continuations(p); 2823 2824 if (!p->bdev || !bdev_nonrot(p->bdev)) 2825 atomic_dec(&nr_rotate_swap); 2826 2827 mutex_lock(&swapon_mutex); 2828 spin_lock(&swap_lock); 2829 spin_lock(&p->lock); 2830 drain_mmlist(); 2831 2832 /* wait for anyone still in scan_swap_map_slots */ 2833 p->highest_bit = 0; /* cuts scans short */ 2834 while (p->flags >= SWP_SCANNING) { 2835 spin_unlock(&p->lock); 2836 spin_unlock(&swap_lock); 2837 schedule_timeout_uninterruptible(1); 2838 spin_lock(&swap_lock); 2839 spin_lock(&p->lock); 2840 } 2841 2842 swap_file = p->swap_file; 2843 p->swap_file = NULL; 2844 p->max = 0; 2845 swap_map = p->swap_map; 2846 p->swap_map = NULL; 2847 zeromap = p->zeromap; 2848 p->zeromap = NULL; 2849 cluster_info = p->cluster_info; 2850 p->cluster_info = NULL; 2851 spin_unlock(&p->lock); 2852 spin_unlock(&swap_lock); 2853 arch_swap_invalidate_area(p->type); 2854 zswap_swapoff(p->type); 2855 mutex_unlock(&swapon_mutex); 2856 free_percpu(p->percpu_cluster); 2857 p->percpu_cluster = NULL; 2858 free_percpu(p->cluster_next_cpu); 2859 p->cluster_next_cpu = NULL; 2860 vfree(swap_map); 2861 kvfree(zeromap); 2862 kvfree(cluster_info); 2863 /* Destroy swap account information */ 2864 swap_cgroup_swapoff(p->type); 2865 exit_swap_address_space(p->type); 2866 2867 inode = mapping->host; 2868 2869 inode_lock(inode); 2870 inode->i_flags &= ~S_SWAPFILE; 2871 inode_unlock(inode); 2872 filp_close(swap_file, NULL); 2873 2874 /* 2875 * Clear the SWP_USED flag after all resources are freed so that swapon 2876 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2877 * not hold p->lock after we cleared its SWP_WRITEOK. 2878 */ 2879 spin_lock(&swap_lock); 2880 p->flags = 0; 2881 spin_unlock(&swap_lock); 2882 2883 err = 0; 2884 atomic_inc(&proc_poll_event); 2885 wake_up_interruptible(&proc_poll_wait); 2886 2887 out_dput: 2888 filp_close(victim, NULL); 2889 out: 2890 putname(pathname); 2891 return err; 2892 } 2893 2894 #ifdef CONFIG_PROC_FS 2895 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2896 { 2897 struct seq_file *seq = file->private_data; 2898 2899 poll_wait(file, &proc_poll_wait, wait); 2900 2901 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2902 seq->poll_event = atomic_read(&proc_poll_event); 2903 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2904 } 2905 2906 return EPOLLIN | EPOLLRDNORM; 2907 } 2908 2909 /* iterator */ 2910 static void *swap_start(struct seq_file *swap, loff_t *pos) 2911 { 2912 struct swap_info_struct *si; 2913 int type; 2914 loff_t l = *pos; 2915 2916 mutex_lock(&swapon_mutex); 2917 2918 if (!l) 2919 return SEQ_START_TOKEN; 2920 2921 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2922 if (!(si->flags & SWP_USED) || !si->swap_map) 2923 continue; 2924 if (!--l) 2925 return si; 2926 } 2927 2928 return NULL; 2929 } 2930 2931 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2932 { 2933 struct swap_info_struct *si = v; 2934 int type; 2935 2936 if (v == SEQ_START_TOKEN) 2937 type = 0; 2938 else 2939 type = si->type + 1; 2940 2941 ++(*pos); 2942 for (; (si = swap_type_to_swap_info(type)); type++) { 2943 if (!(si->flags & SWP_USED) || !si->swap_map) 2944 continue; 2945 return si; 2946 } 2947 2948 return NULL; 2949 } 2950 2951 static void swap_stop(struct seq_file *swap, void *v) 2952 { 2953 mutex_unlock(&swapon_mutex); 2954 } 2955 2956 static int swap_show(struct seq_file *swap, void *v) 2957 { 2958 struct swap_info_struct *si = v; 2959 struct file *file; 2960 int len; 2961 unsigned long bytes, inuse; 2962 2963 if (si == SEQ_START_TOKEN) { 2964 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 2965 return 0; 2966 } 2967 2968 bytes = K(si->pages); 2969 inuse = K(READ_ONCE(si->inuse_pages)); 2970 2971 file = si->swap_file; 2972 len = seq_file_path(swap, file, " \t\n\\"); 2973 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n", 2974 len < 40 ? 40 - len : 1, " ", 2975 S_ISBLK(file_inode(file)->i_mode) ? 2976 "partition" : "file\t", 2977 bytes, bytes < 10000000 ? "\t" : "", 2978 inuse, inuse < 10000000 ? "\t" : "", 2979 si->prio); 2980 return 0; 2981 } 2982 2983 static const struct seq_operations swaps_op = { 2984 .start = swap_start, 2985 .next = swap_next, 2986 .stop = swap_stop, 2987 .show = swap_show 2988 }; 2989 2990 static int swaps_open(struct inode *inode, struct file *file) 2991 { 2992 struct seq_file *seq; 2993 int ret; 2994 2995 ret = seq_open(file, &swaps_op); 2996 if (ret) 2997 return ret; 2998 2999 seq = file->private_data; 3000 seq->poll_event = atomic_read(&proc_poll_event); 3001 return 0; 3002 } 3003 3004 static const struct proc_ops swaps_proc_ops = { 3005 .proc_flags = PROC_ENTRY_PERMANENT, 3006 .proc_open = swaps_open, 3007 .proc_read = seq_read, 3008 .proc_lseek = seq_lseek, 3009 .proc_release = seq_release, 3010 .proc_poll = swaps_poll, 3011 }; 3012 3013 static int __init procswaps_init(void) 3014 { 3015 proc_create("swaps", 0, NULL, &swaps_proc_ops); 3016 return 0; 3017 } 3018 __initcall(procswaps_init); 3019 #endif /* CONFIG_PROC_FS */ 3020 3021 #ifdef MAX_SWAPFILES_CHECK 3022 static int __init max_swapfiles_check(void) 3023 { 3024 MAX_SWAPFILES_CHECK(); 3025 return 0; 3026 } 3027 late_initcall(max_swapfiles_check); 3028 #endif 3029 3030 static struct swap_info_struct *alloc_swap_info(void) 3031 { 3032 struct swap_info_struct *p; 3033 struct swap_info_struct *defer = NULL; 3034 unsigned int type; 3035 int i; 3036 3037 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 3038 if (!p) 3039 return ERR_PTR(-ENOMEM); 3040 3041 if (percpu_ref_init(&p->users, swap_users_ref_free, 3042 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { 3043 kvfree(p); 3044 return ERR_PTR(-ENOMEM); 3045 } 3046 3047 spin_lock(&swap_lock); 3048 for (type = 0; type < nr_swapfiles; type++) { 3049 if (!(swap_info[type]->flags & SWP_USED)) 3050 break; 3051 } 3052 if (type >= MAX_SWAPFILES) { 3053 spin_unlock(&swap_lock); 3054 percpu_ref_exit(&p->users); 3055 kvfree(p); 3056 return ERR_PTR(-EPERM); 3057 } 3058 if (type >= nr_swapfiles) { 3059 p->type = type; 3060 /* 3061 * Publish the swap_info_struct after initializing it. 3062 * Note that kvzalloc() above zeroes all its fields. 3063 */ 3064 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ 3065 nr_swapfiles++; 3066 } else { 3067 defer = p; 3068 p = swap_info[type]; 3069 /* 3070 * Do not memset this entry: a racing procfs swap_next() 3071 * would be relying on p->type to remain valid. 3072 */ 3073 } 3074 p->swap_extent_root = RB_ROOT; 3075 plist_node_init(&p->list, 0); 3076 for_each_node(i) 3077 plist_node_init(&p->avail_lists[i], 0); 3078 p->flags = SWP_USED; 3079 spin_unlock(&swap_lock); 3080 if (defer) { 3081 percpu_ref_exit(&defer->users); 3082 kvfree(defer); 3083 } 3084 spin_lock_init(&p->lock); 3085 spin_lock_init(&p->cont_lock); 3086 init_completion(&p->comp); 3087 3088 return p; 3089 } 3090 3091 static int claim_swapfile(struct swap_info_struct *si, struct inode *inode) 3092 { 3093 if (S_ISBLK(inode->i_mode)) { 3094 si->bdev = I_BDEV(inode); 3095 /* 3096 * Zoned block devices contain zones that have a sequential 3097 * write only restriction. Hence zoned block devices are not 3098 * suitable for swapping. Disallow them here. 3099 */ 3100 if (bdev_is_zoned(si->bdev)) 3101 return -EINVAL; 3102 si->flags |= SWP_BLKDEV; 3103 } else if (S_ISREG(inode->i_mode)) { 3104 si->bdev = inode->i_sb->s_bdev; 3105 } 3106 3107 return 0; 3108 } 3109 3110 3111 /* 3112 * Find out how many pages are allowed for a single swap device. There 3113 * are two limiting factors: 3114 * 1) the number of bits for the swap offset in the swp_entry_t type, and 3115 * 2) the number of bits in the swap pte, as defined by the different 3116 * architectures. 3117 * 3118 * In order to find the largest possible bit mask, a swap entry with 3119 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 3120 * decoded to a swp_entry_t again, and finally the swap offset is 3121 * extracted. 3122 * 3123 * This will mask all the bits from the initial ~0UL mask that can't 3124 * be encoded in either the swp_entry_t or the architecture definition 3125 * of a swap pte. 3126 */ 3127 unsigned long generic_max_swapfile_size(void) 3128 { 3129 return swp_offset(pte_to_swp_entry( 3130 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 3131 } 3132 3133 /* Can be overridden by an architecture for additional checks. */ 3134 __weak unsigned long arch_max_swapfile_size(void) 3135 { 3136 return generic_max_swapfile_size(); 3137 } 3138 3139 static unsigned long read_swap_header(struct swap_info_struct *si, 3140 union swap_header *swap_header, 3141 struct inode *inode) 3142 { 3143 int i; 3144 unsigned long maxpages; 3145 unsigned long swapfilepages; 3146 unsigned long last_page; 3147 3148 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 3149 pr_err("Unable to find swap-space signature\n"); 3150 return 0; 3151 } 3152 3153 /* swap partition endianness hack... */ 3154 if (swab32(swap_header->info.version) == 1) { 3155 swab32s(&swap_header->info.version); 3156 swab32s(&swap_header->info.last_page); 3157 swab32s(&swap_header->info.nr_badpages); 3158 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 3159 return 0; 3160 for (i = 0; i < swap_header->info.nr_badpages; i++) 3161 swab32s(&swap_header->info.badpages[i]); 3162 } 3163 /* Check the swap header's sub-version */ 3164 if (swap_header->info.version != 1) { 3165 pr_warn("Unable to handle swap header version %d\n", 3166 swap_header->info.version); 3167 return 0; 3168 } 3169 3170 si->lowest_bit = 1; 3171 si->cluster_next = 1; 3172 si->cluster_nr = 0; 3173 3174 maxpages = swapfile_maximum_size; 3175 last_page = swap_header->info.last_page; 3176 if (!last_page) { 3177 pr_warn("Empty swap-file\n"); 3178 return 0; 3179 } 3180 if (last_page > maxpages) { 3181 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 3182 K(maxpages), K(last_page)); 3183 } 3184 if (maxpages > last_page) { 3185 maxpages = last_page + 1; 3186 /* p->max is an unsigned int: don't overflow it */ 3187 if ((unsigned int)maxpages == 0) 3188 maxpages = UINT_MAX; 3189 } 3190 si->highest_bit = maxpages - 1; 3191 3192 if (!maxpages) 3193 return 0; 3194 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 3195 if (swapfilepages && maxpages > swapfilepages) { 3196 pr_warn("Swap area shorter than signature indicates\n"); 3197 return 0; 3198 } 3199 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 3200 return 0; 3201 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 3202 return 0; 3203 3204 return maxpages; 3205 } 3206 3207 #define SWAP_CLUSTER_INFO_COLS \ 3208 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 3209 #define SWAP_CLUSTER_SPACE_COLS \ 3210 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 3211 #define SWAP_CLUSTER_COLS \ 3212 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 3213 3214 static int setup_swap_map_and_extents(struct swap_info_struct *si, 3215 union swap_header *swap_header, 3216 unsigned char *swap_map, 3217 unsigned long maxpages, 3218 sector_t *span) 3219 { 3220 unsigned int nr_good_pages; 3221 unsigned long i; 3222 int nr_extents; 3223 3224 nr_good_pages = maxpages - 1; /* omit header page */ 3225 3226 for (i = 0; i < swap_header->info.nr_badpages; i++) { 3227 unsigned int page_nr = swap_header->info.badpages[i]; 3228 if (page_nr == 0 || page_nr > swap_header->info.last_page) 3229 return -EINVAL; 3230 if (page_nr < maxpages) { 3231 swap_map[page_nr] = SWAP_MAP_BAD; 3232 nr_good_pages--; 3233 } 3234 } 3235 3236 if (nr_good_pages) { 3237 swap_map[0] = SWAP_MAP_BAD; 3238 si->max = maxpages; 3239 si->pages = nr_good_pages; 3240 nr_extents = setup_swap_extents(si, span); 3241 if (nr_extents < 0) 3242 return nr_extents; 3243 nr_good_pages = si->pages; 3244 } 3245 if (!nr_good_pages) { 3246 pr_warn("Empty swap-file\n"); 3247 return -EINVAL; 3248 } 3249 3250 return nr_extents; 3251 } 3252 3253 static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si, 3254 union swap_header *swap_header, 3255 unsigned long maxpages) 3256 { 3257 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3258 unsigned long col = si->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 3259 struct swap_cluster_info *cluster_info; 3260 unsigned long i, j, k, idx; 3261 int cpu, err = -ENOMEM; 3262 3263 cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL); 3264 if (!cluster_info) 3265 goto err; 3266 3267 for (i = 0; i < nr_clusters; i++) 3268 spin_lock_init(&cluster_info[i].lock); 3269 3270 si->cluster_next_cpu = alloc_percpu(unsigned int); 3271 if (!si->cluster_next_cpu) 3272 goto err_free; 3273 3274 /* Random start position to help with wear leveling */ 3275 for_each_possible_cpu(cpu) 3276 per_cpu(*si->cluster_next_cpu, cpu) = 3277 get_random_u32_inclusive(1, si->highest_bit); 3278 3279 si->percpu_cluster = alloc_percpu(struct percpu_cluster); 3280 if (!si->percpu_cluster) 3281 goto err_free; 3282 3283 for_each_possible_cpu(cpu) { 3284 struct percpu_cluster *cluster; 3285 3286 cluster = per_cpu_ptr(si->percpu_cluster, cpu); 3287 for (i = 0; i < SWAP_NR_ORDERS; i++) 3288 cluster->next[i] = SWAP_NEXT_INVALID; 3289 } 3290 3291 /* 3292 * Mark unusable pages as unavailable. The clusters aren't 3293 * marked free yet, so no list operations are involved yet. 3294 * 3295 * See setup_swap_map_and_extents(): header page, bad pages, 3296 * and the EOF part of the last cluster. 3297 */ 3298 inc_cluster_info_page(si, cluster_info, 0); 3299 for (i = 0; i < swap_header->info.nr_badpages; i++) 3300 inc_cluster_info_page(si, cluster_info, 3301 swap_header->info.badpages[i]); 3302 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 3303 inc_cluster_info_page(si, cluster_info, i); 3304 3305 INIT_LIST_HEAD(&si->free_clusters); 3306 INIT_LIST_HEAD(&si->full_clusters); 3307 INIT_LIST_HEAD(&si->discard_clusters); 3308 3309 for (i = 0; i < SWAP_NR_ORDERS; i++) { 3310 INIT_LIST_HEAD(&si->nonfull_clusters[i]); 3311 INIT_LIST_HEAD(&si->frag_clusters[i]); 3312 si->frag_cluster_nr[i] = 0; 3313 } 3314 3315 /* 3316 * Reduce false cache line sharing between cluster_info and 3317 * sharing same address space. 3318 */ 3319 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 3320 j = (k + col) % SWAP_CLUSTER_COLS; 3321 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 3322 struct swap_cluster_info *ci; 3323 idx = i * SWAP_CLUSTER_COLS + j; 3324 ci = cluster_info + idx; 3325 if (idx >= nr_clusters) 3326 continue; 3327 if (ci->count) { 3328 ci->flags = CLUSTER_FLAG_NONFULL; 3329 list_add_tail(&ci->list, &si->nonfull_clusters[0]); 3330 continue; 3331 } 3332 ci->flags = CLUSTER_FLAG_FREE; 3333 list_add_tail(&ci->list, &si->free_clusters); 3334 } 3335 } 3336 3337 return cluster_info; 3338 3339 err_free: 3340 kvfree(cluster_info); 3341 err: 3342 return ERR_PTR(err); 3343 } 3344 3345 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 3346 { 3347 struct swap_info_struct *si; 3348 struct filename *name; 3349 struct file *swap_file = NULL; 3350 struct address_space *mapping; 3351 struct dentry *dentry; 3352 int prio; 3353 int error; 3354 union swap_header *swap_header; 3355 int nr_extents; 3356 sector_t span; 3357 unsigned long maxpages; 3358 unsigned char *swap_map = NULL; 3359 unsigned long *zeromap = NULL; 3360 struct swap_cluster_info *cluster_info = NULL; 3361 struct folio *folio = NULL; 3362 struct inode *inode = NULL; 3363 bool inced_nr_rotate_swap = false; 3364 3365 if (swap_flags & ~SWAP_FLAGS_VALID) 3366 return -EINVAL; 3367 3368 if (!capable(CAP_SYS_ADMIN)) 3369 return -EPERM; 3370 3371 if (!swap_avail_heads) 3372 return -ENOMEM; 3373 3374 si = alloc_swap_info(); 3375 if (IS_ERR(si)) 3376 return PTR_ERR(si); 3377 3378 INIT_WORK(&si->discard_work, swap_discard_work); 3379 3380 name = getname(specialfile); 3381 if (IS_ERR(name)) { 3382 error = PTR_ERR(name); 3383 name = NULL; 3384 goto bad_swap; 3385 } 3386 swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0); 3387 if (IS_ERR(swap_file)) { 3388 error = PTR_ERR(swap_file); 3389 swap_file = NULL; 3390 goto bad_swap; 3391 } 3392 3393 si->swap_file = swap_file; 3394 mapping = swap_file->f_mapping; 3395 dentry = swap_file->f_path.dentry; 3396 inode = mapping->host; 3397 3398 error = claim_swapfile(si, inode); 3399 if (unlikely(error)) 3400 goto bad_swap; 3401 3402 inode_lock(inode); 3403 if (d_unlinked(dentry) || cant_mount(dentry)) { 3404 error = -ENOENT; 3405 goto bad_swap_unlock_inode; 3406 } 3407 if (IS_SWAPFILE(inode)) { 3408 error = -EBUSY; 3409 goto bad_swap_unlock_inode; 3410 } 3411 3412 /* 3413 * Read the swap header. 3414 */ 3415 if (!mapping->a_ops->read_folio) { 3416 error = -EINVAL; 3417 goto bad_swap_unlock_inode; 3418 } 3419 folio = read_mapping_folio(mapping, 0, swap_file); 3420 if (IS_ERR(folio)) { 3421 error = PTR_ERR(folio); 3422 goto bad_swap_unlock_inode; 3423 } 3424 swap_header = kmap_local_folio(folio, 0); 3425 3426 maxpages = read_swap_header(si, swap_header, inode); 3427 if (unlikely(!maxpages)) { 3428 error = -EINVAL; 3429 goto bad_swap_unlock_inode; 3430 } 3431 3432 /* OK, set up the swap map and apply the bad block list */ 3433 swap_map = vzalloc(maxpages); 3434 if (!swap_map) { 3435 error = -ENOMEM; 3436 goto bad_swap_unlock_inode; 3437 } 3438 3439 error = swap_cgroup_swapon(si->type, maxpages); 3440 if (error) 3441 goto bad_swap_unlock_inode; 3442 3443 nr_extents = setup_swap_map_and_extents(si, swap_header, swap_map, 3444 maxpages, &span); 3445 if (unlikely(nr_extents < 0)) { 3446 error = nr_extents; 3447 goto bad_swap_unlock_inode; 3448 } 3449 3450 /* 3451 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might 3452 * be above MAX_PAGE_ORDER incase of a large swap file. 3453 */ 3454 zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long), 3455 GFP_KERNEL | __GFP_ZERO); 3456 if (!zeromap) { 3457 error = -ENOMEM; 3458 goto bad_swap_unlock_inode; 3459 } 3460 3461 if (si->bdev && bdev_stable_writes(si->bdev)) 3462 si->flags |= SWP_STABLE_WRITES; 3463 3464 if (si->bdev && bdev_synchronous(si->bdev)) 3465 si->flags |= SWP_SYNCHRONOUS_IO; 3466 3467 if (si->bdev && bdev_nonrot(si->bdev)) { 3468 si->flags |= SWP_SOLIDSTATE; 3469 3470 cluster_info = setup_clusters(si, swap_header, maxpages); 3471 if (IS_ERR(cluster_info)) { 3472 error = PTR_ERR(cluster_info); 3473 cluster_info = NULL; 3474 goto bad_swap_unlock_inode; 3475 } 3476 } else { 3477 atomic_inc(&nr_rotate_swap); 3478 inced_nr_rotate_swap = true; 3479 } 3480 3481 if ((swap_flags & SWAP_FLAG_DISCARD) && 3482 si->bdev && bdev_max_discard_sectors(si->bdev)) { 3483 /* 3484 * When discard is enabled for swap with no particular 3485 * policy flagged, we set all swap discard flags here in 3486 * order to sustain backward compatibility with older 3487 * swapon(8) releases. 3488 */ 3489 si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3490 SWP_PAGE_DISCARD); 3491 3492 /* 3493 * By flagging sys_swapon, a sysadmin can tell us to 3494 * either do single-time area discards only, or to just 3495 * perform discards for released swap page-clusters. 3496 * Now it's time to adjust the p->flags accordingly. 3497 */ 3498 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3499 si->flags &= ~SWP_PAGE_DISCARD; 3500 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3501 si->flags &= ~SWP_AREA_DISCARD; 3502 3503 /* issue a swapon-time discard if it's still required */ 3504 if (si->flags & SWP_AREA_DISCARD) { 3505 int err = discard_swap(si); 3506 if (unlikely(err)) 3507 pr_err("swapon: discard_swap(%p): %d\n", 3508 si, err); 3509 } 3510 } 3511 3512 error = init_swap_address_space(si->type, maxpages); 3513 if (error) 3514 goto bad_swap_unlock_inode; 3515 3516 error = zswap_swapon(si->type, maxpages); 3517 if (error) 3518 goto free_swap_address_space; 3519 3520 /* 3521 * Flush any pending IO and dirty mappings before we start using this 3522 * swap device. 3523 */ 3524 inode->i_flags |= S_SWAPFILE; 3525 error = inode_drain_writes(inode); 3526 if (error) { 3527 inode->i_flags &= ~S_SWAPFILE; 3528 goto free_swap_zswap; 3529 } 3530 3531 mutex_lock(&swapon_mutex); 3532 prio = -1; 3533 if (swap_flags & SWAP_FLAG_PREFER) 3534 prio = 3535 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3536 enable_swap_info(si, prio, swap_map, cluster_info, zeromap); 3537 3538 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n", 3539 K(si->pages), name->name, si->prio, nr_extents, 3540 K((unsigned long long)span), 3541 (si->flags & SWP_SOLIDSTATE) ? "SS" : "", 3542 (si->flags & SWP_DISCARDABLE) ? "D" : "", 3543 (si->flags & SWP_AREA_DISCARD) ? "s" : "", 3544 (si->flags & SWP_PAGE_DISCARD) ? "c" : ""); 3545 3546 mutex_unlock(&swapon_mutex); 3547 atomic_inc(&proc_poll_event); 3548 wake_up_interruptible(&proc_poll_wait); 3549 3550 error = 0; 3551 goto out; 3552 free_swap_zswap: 3553 zswap_swapoff(si->type); 3554 free_swap_address_space: 3555 exit_swap_address_space(si->type); 3556 bad_swap_unlock_inode: 3557 inode_unlock(inode); 3558 bad_swap: 3559 free_percpu(si->percpu_cluster); 3560 si->percpu_cluster = NULL; 3561 free_percpu(si->cluster_next_cpu); 3562 si->cluster_next_cpu = NULL; 3563 inode = NULL; 3564 destroy_swap_extents(si); 3565 swap_cgroup_swapoff(si->type); 3566 spin_lock(&swap_lock); 3567 si->swap_file = NULL; 3568 si->flags = 0; 3569 spin_unlock(&swap_lock); 3570 vfree(swap_map); 3571 kvfree(zeromap); 3572 kvfree(cluster_info); 3573 if (inced_nr_rotate_swap) 3574 atomic_dec(&nr_rotate_swap); 3575 if (swap_file) 3576 filp_close(swap_file, NULL); 3577 out: 3578 if (!IS_ERR_OR_NULL(folio)) 3579 folio_release_kmap(folio, swap_header); 3580 if (name) 3581 putname(name); 3582 if (inode) 3583 inode_unlock(inode); 3584 if (!error) 3585 enable_swap_slots_cache(); 3586 return error; 3587 } 3588 3589 void si_swapinfo(struct sysinfo *val) 3590 { 3591 unsigned int type; 3592 unsigned long nr_to_be_unused = 0; 3593 3594 spin_lock(&swap_lock); 3595 for (type = 0; type < nr_swapfiles; type++) { 3596 struct swap_info_struct *si = swap_info[type]; 3597 3598 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3599 nr_to_be_unused += READ_ONCE(si->inuse_pages); 3600 } 3601 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3602 val->totalswap = total_swap_pages + nr_to_be_unused; 3603 spin_unlock(&swap_lock); 3604 } 3605 3606 /* 3607 * Verify that nr swap entries are valid and increment their swap map counts. 3608 * 3609 * Returns error code in following case. 3610 * - success -> 0 3611 * - swp_entry is invalid -> EINVAL 3612 * - swp_entry is migration entry -> EINVAL 3613 * - swap-cache reference is requested but there is already one. -> EEXIST 3614 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3615 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3616 */ 3617 static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr) 3618 { 3619 struct swap_info_struct *si; 3620 struct swap_cluster_info *ci; 3621 unsigned long offset; 3622 unsigned char count; 3623 unsigned char has_cache; 3624 int err, i; 3625 3626 si = swp_swap_info(entry); 3627 3628 offset = swp_offset(entry); 3629 VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER); 3630 VM_WARN_ON(usage == 1 && nr > 1); 3631 ci = lock_cluster_or_swap_info(si, offset); 3632 3633 err = 0; 3634 for (i = 0; i < nr; i++) { 3635 count = si->swap_map[offset + i]; 3636 3637 /* 3638 * swapin_readahead() doesn't check if a swap entry is valid, so the 3639 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3640 */ 3641 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3642 err = -ENOENT; 3643 goto unlock_out; 3644 } 3645 3646 has_cache = count & SWAP_HAS_CACHE; 3647 count &= ~SWAP_HAS_CACHE; 3648 3649 if (!count && !has_cache) { 3650 err = -ENOENT; 3651 } else if (usage == SWAP_HAS_CACHE) { 3652 if (has_cache) 3653 err = -EEXIST; 3654 } else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) { 3655 err = -EINVAL; 3656 } 3657 3658 if (err) 3659 goto unlock_out; 3660 } 3661 3662 for (i = 0; i < nr; i++) { 3663 count = si->swap_map[offset + i]; 3664 has_cache = count & SWAP_HAS_CACHE; 3665 count &= ~SWAP_HAS_CACHE; 3666 3667 if (usage == SWAP_HAS_CACHE) 3668 has_cache = SWAP_HAS_CACHE; 3669 else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3670 count += usage; 3671 else if (swap_count_continued(si, offset + i, count)) 3672 count = COUNT_CONTINUED; 3673 else { 3674 /* 3675 * Don't need to rollback changes, because if 3676 * usage == 1, there must be nr == 1. 3677 */ 3678 err = -ENOMEM; 3679 goto unlock_out; 3680 } 3681 3682 WRITE_ONCE(si->swap_map[offset + i], count | has_cache); 3683 } 3684 3685 unlock_out: 3686 unlock_cluster_or_swap_info(si, ci); 3687 return err; 3688 } 3689 3690 /* 3691 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3692 * (in which case its reference count is never incremented). 3693 */ 3694 void swap_shmem_alloc(swp_entry_t entry, int nr) 3695 { 3696 __swap_duplicate(entry, SWAP_MAP_SHMEM, nr); 3697 } 3698 3699 /* 3700 * Increase reference count of swap entry by 1. 3701 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3702 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3703 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3704 * might occur if a page table entry has got corrupted. 3705 */ 3706 int swap_duplicate(swp_entry_t entry) 3707 { 3708 int err = 0; 3709 3710 while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM) 3711 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3712 return err; 3713 } 3714 3715 /* 3716 * @entry: first swap entry from which we allocate nr swap cache. 3717 * 3718 * Called when allocating swap cache for existing swap entries, 3719 * This can return error codes. Returns 0 at success. 3720 * -EEXIST means there is a swap cache. 3721 * Note: return code is different from swap_duplicate(). 3722 */ 3723 int swapcache_prepare(swp_entry_t entry, int nr) 3724 { 3725 return __swap_duplicate(entry, SWAP_HAS_CACHE, nr); 3726 } 3727 3728 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr) 3729 { 3730 unsigned long offset = swp_offset(entry); 3731 3732 cluster_swap_free_nr(si, offset, nr, SWAP_HAS_CACHE); 3733 } 3734 3735 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3736 { 3737 return swap_type_to_swap_info(swp_type(entry)); 3738 } 3739 3740 /* 3741 * out-of-line methods to avoid include hell. 3742 */ 3743 struct address_space *swapcache_mapping(struct folio *folio) 3744 { 3745 return swp_swap_info(folio->swap)->swap_file->f_mapping; 3746 } 3747 EXPORT_SYMBOL_GPL(swapcache_mapping); 3748 3749 pgoff_t __folio_swap_cache_index(struct folio *folio) 3750 { 3751 return swap_cache_index(folio->swap); 3752 } 3753 EXPORT_SYMBOL_GPL(__folio_swap_cache_index); 3754 3755 /* 3756 * add_swap_count_continuation - called when a swap count is duplicated 3757 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3758 * page of the original vmalloc'ed swap_map, to hold the continuation count 3759 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3760 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3761 * 3762 * These continuation pages are seldom referenced: the common paths all work 3763 * on the original swap_map, only referring to a continuation page when the 3764 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3765 * 3766 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3767 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3768 * can be called after dropping locks. 3769 */ 3770 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3771 { 3772 struct swap_info_struct *si; 3773 struct swap_cluster_info *ci; 3774 struct page *head; 3775 struct page *page; 3776 struct page *list_page; 3777 pgoff_t offset; 3778 unsigned char count; 3779 int ret = 0; 3780 3781 /* 3782 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3783 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3784 */ 3785 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3786 3787 si = get_swap_device(entry); 3788 if (!si) { 3789 /* 3790 * An acceptable race has occurred since the failing 3791 * __swap_duplicate(): the swap device may be swapoff 3792 */ 3793 goto outer; 3794 } 3795 spin_lock(&si->lock); 3796 3797 offset = swp_offset(entry); 3798 3799 ci = lock_cluster(si, offset); 3800 3801 count = swap_count(si->swap_map[offset]); 3802 3803 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3804 /* 3805 * The higher the swap count, the more likely it is that tasks 3806 * will race to add swap count continuation: we need to avoid 3807 * over-provisioning. 3808 */ 3809 goto out; 3810 } 3811 3812 if (!page) { 3813 ret = -ENOMEM; 3814 goto out; 3815 } 3816 3817 head = vmalloc_to_page(si->swap_map + offset); 3818 offset &= ~PAGE_MASK; 3819 3820 spin_lock(&si->cont_lock); 3821 /* 3822 * Page allocation does not initialize the page's lru field, 3823 * but it does always reset its private field. 3824 */ 3825 if (!page_private(head)) { 3826 BUG_ON(count & COUNT_CONTINUED); 3827 INIT_LIST_HEAD(&head->lru); 3828 set_page_private(head, SWP_CONTINUED); 3829 si->flags |= SWP_CONTINUED; 3830 } 3831 3832 list_for_each_entry(list_page, &head->lru, lru) { 3833 unsigned char *map; 3834 3835 /* 3836 * If the previous map said no continuation, but we've found 3837 * a continuation page, free our allocation and use this one. 3838 */ 3839 if (!(count & COUNT_CONTINUED)) 3840 goto out_unlock_cont; 3841 3842 map = kmap_local_page(list_page) + offset; 3843 count = *map; 3844 kunmap_local(map); 3845 3846 /* 3847 * If this continuation count now has some space in it, 3848 * free our allocation and use this one. 3849 */ 3850 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3851 goto out_unlock_cont; 3852 } 3853 3854 list_add_tail(&page->lru, &head->lru); 3855 page = NULL; /* now it's attached, don't free it */ 3856 out_unlock_cont: 3857 spin_unlock(&si->cont_lock); 3858 out: 3859 unlock_cluster(ci); 3860 spin_unlock(&si->lock); 3861 put_swap_device(si); 3862 outer: 3863 if (page) 3864 __free_page(page); 3865 return ret; 3866 } 3867 3868 /* 3869 * swap_count_continued - when the original swap_map count is incremented 3870 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3871 * into, carry if so, or else fail until a new continuation page is allocated; 3872 * when the original swap_map count is decremented from 0 with continuation, 3873 * borrow from the continuation and report whether it still holds more. 3874 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3875 * lock. 3876 */ 3877 static bool swap_count_continued(struct swap_info_struct *si, 3878 pgoff_t offset, unsigned char count) 3879 { 3880 struct page *head; 3881 struct page *page; 3882 unsigned char *map; 3883 bool ret; 3884 3885 head = vmalloc_to_page(si->swap_map + offset); 3886 if (page_private(head) != SWP_CONTINUED) { 3887 BUG_ON(count & COUNT_CONTINUED); 3888 return false; /* need to add count continuation */ 3889 } 3890 3891 spin_lock(&si->cont_lock); 3892 offset &= ~PAGE_MASK; 3893 page = list_next_entry(head, lru); 3894 map = kmap_local_page(page) + offset; 3895 3896 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3897 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3898 3899 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3900 /* 3901 * Think of how you add 1 to 999 3902 */ 3903 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3904 kunmap_local(map); 3905 page = list_next_entry(page, lru); 3906 BUG_ON(page == head); 3907 map = kmap_local_page(page) + offset; 3908 } 3909 if (*map == SWAP_CONT_MAX) { 3910 kunmap_local(map); 3911 page = list_next_entry(page, lru); 3912 if (page == head) { 3913 ret = false; /* add count continuation */ 3914 goto out; 3915 } 3916 map = kmap_local_page(page) + offset; 3917 init_map: *map = 0; /* we didn't zero the page */ 3918 } 3919 *map += 1; 3920 kunmap_local(map); 3921 while ((page = list_prev_entry(page, lru)) != head) { 3922 map = kmap_local_page(page) + offset; 3923 *map = COUNT_CONTINUED; 3924 kunmap_local(map); 3925 } 3926 ret = true; /* incremented */ 3927 3928 } else { /* decrementing */ 3929 /* 3930 * Think of how you subtract 1 from 1000 3931 */ 3932 BUG_ON(count != COUNT_CONTINUED); 3933 while (*map == COUNT_CONTINUED) { 3934 kunmap_local(map); 3935 page = list_next_entry(page, lru); 3936 BUG_ON(page == head); 3937 map = kmap_local_page(page) + offset; 3938 } 3939 BUG_ON(*map == 0); 3940 *map -= 1; 3941 if (*map == 0) 3942 count = 0; 3943 kunmap_local(map); 3944 while ((page = list_prev_entry(page, lru)) != head) { 3945 map = kmap_local_page(page) + offset; 3946 *map = SWAP_CONT_MAX | count; 3947 count = COUNT_CONTINUED; 3948 kunmap_local(map); 3949 } 3950 ret = count == COUNT_CONTINUED; 3951 } 3952 out: 3953 spin_unlock(&si->cont_lock); 3954 return ret; 3955 } 3956 3957 /* 3958 * free_swap_count_continuations - swapoff free all the continuation pages 3959 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3960 */ 3961 static void free_swap_count_continuations(struct swap_info_struct *si) 3962 { 3963 pgoff_t offset; 3964 3965 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3966 struct page *head; 3967 head = vmalloc_to_page(si->swap_map + offset); 3968 if (page_private(head)) { 3969 struct page *page, *next; 3970 3971 list_for_each_entry_safe(page, next, &head->lru, lru) { 3972 list_del(&page->lru); 3973 __free_page(page); 3974 } 3975 } 3976 } 3977 } 3978 3979 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3980 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp) 3981 { 3982 struct swap_info_struct *si, *next; 3983 int nid = folio_nid(folio); 3984 3985 if (!(gfp & __GFP_IO)) 3986 return; 3987 3988 if (!__has_usable_swap()) 3989 return; 3990 3991 if (!blk_cgroup_congested()) 3992 return; 3993 3994 /* 3995 * We've already scheduled a throttle, avoid taking the global swap 3996 * lock. 3997 */ 3998 if (current->throttle_disk) 3999 return; 4000 4001 spin_lock(&swap_avail_lock); 4002 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], 4003 avail_lists[nid]) { 4004 if (si->bdev) { 4005 blkcg_schedule_throttle(si->bdev->bd_disk, true); 4006 break; 4007 } 4008 } 4009 spin_unlock(&swap_avail_lock); 4010 } 4011 #endif 4012 4013 static int __init swapfile_init(void) 4014 { 4015 int nid; 4016 4017 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 4018 GFP_KERNEL); 4019 if (!swap_avail_heads) { 4020 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 4021 return -ENOMEM; 4022 } 4023 4024 for_each_node(nid) 4025 plist_head_init(&swap_avail_heads[nid]); 4026 4027 swapfile_maximum_size = arch_max_swapfile_size(); 4028 4029 #ifdef CONFIG_MIGRATION 4030 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS)) 4031 swap_migration_ad_supported = true; 4032 #endif /* CONFIG_MIGRATION */ 4033 4034 return 0; 4035 } 4036 subsys_initcall(swapfile_init); 4037