xref: /linux/mm/swapfile.c (revision 54a8a2220c936a47840c9a3d74910c5a56fae2ed)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/config.h>
9 #include <linux/mm.h>
10 #include <linux/hugetlb.h>
11 #include <linux/mman.h>
12 #include <linux/slab.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/swap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 #include <linux/shm.h>
19 #include <linux/blkdev.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/syscalls.h>
29 
30 #include <asm/pgtable.h>
31 #include <asm/tlbflush.h>
32 #include <linux/swapops.h>
33 
34 DEFINE_SPINLOCK(swap_lock);
35 unsigned int nr_swapfiles;
36 long total_swap_pages;
37 static int swap_overflow;
38 
39 EXPORT_SYMBOL(total_swap_pages);
40 
41 static const char Bad_file[] = "Bad swap file entry ";
42 static const char Unused_file[] = "Unused swap file entry ";
43 static const char Bad_offset[] = "Bad swap offset entry ";
44 static const char Unused_offset[] = "Unused swap offset entry ";
45 
46 struct swap_list_t swap_list = {-1, -1};
47 
48 struct swap_info_struct swap_info[MAX_SWAPFILES];
49 
50 static DECLARE_MUTEX(swapon_sem);
51 
52 /*
53  * We need this because the bdev->unplug_fn can sleep and we cannot
54  * hold swap_lock while calling the unplug_fn. And swap_lock
55  * cannot be turned into a semaphore.
56  */
57 static DECLARE_RWSEM(swap_unplug_sem);
58 
59 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
60 {
61 	swp_entry_t entry;
62 
63 	down_read(&swap_unplug_sem);
64 	entry.val = page->private;
65 	if (PageSwapCache(page)) {
66 		struct block_device *bdev = swap_info[swp_type(entry)].bdev;
67 		struct backing_dev_info *bdi;
68 
69 		/*
70 		 * If the page is removed from swapcache from under us (with a
71 		 * racy try_to_unuse/swapoff) we need an additional reference
72 		 * count to avoid reading garbage from page->private above. If
73 		 * the WARN_ON triggers during a swapoff it maybe the race
74 		 * condition and it's harmless. However if it triggers without
75 		 * swapoff it signals a problem.
76 		 */
77 		WARN_ON(page_count(page) <= 1);
78 
79 		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
80 		blk_run_backing_dev(bdi, page);
81 	}
82 	up_read(&swap_unplug_sem);
83 }
84 
85 #define SWAPFILE_CLUSTER	256
86 #define LATENCY_LIMIT		256
87 
88 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
89 {
90 	unsigned long offset, last_in_cluster;
91 	int latency_ration = LATENCY_LIMIT;
92 
93 	/*
94 	 * We try to cluster swap pages by allocating them sequentially
95 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
96 	 * way, however, we resort to first-free allocation, starting
97 	 * a new cluster.  This prevents us from scattering swap pages
98 	 * all over the entire swap partition, so that we reduce
99 	 * overall disk seek times between swap pages.  -- sct
100 	 * But we do now try to find an empty cluster.  -Andrea
101 	 */
102 
103 	si->flags += SWP_SCANNING;
104 	if (unlikely(!si->cluster_nr)) {
105 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
106 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
107 			goto lowest;
108 		spin_unlock(&swap_lock);
109 
110 		offset = si->lowest_bit;
111 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
112 
113 		/* Locate the first empty (unaligned) cluster */
114 		for (; last_in_cluster <= si->highest_bit; offset++) {
115 			if (si->swap_map[offset])
116 				last_in_cluster = offset + SWAPFILE_CLUSTER;
117 			else if (offset == last_in_cluster) {
118 				spin_lock(&swap_lock);
119 				si->cluster_next = offset-SWAPFILE_CLUSTER-1;
120 				goto cluster;
121 			}
122 			if (unlikely(--latency_ration < 0)) {
123 				cond_resched();
124 				latency_ration = LATENCY_LIMIT;
125 			}
126 		}
127 		spin_lock(&swap_lock);
128 		goto lowest;
129 	}
130 
131 	si->cluster_nr--;
132 cluster:
133 	offset = si->cluster_next;
134 	if (offset > si->highest_bit)
135 lowest:		offset = si->lowest_bit;
136 checks:	if (!(si->flags & SWP_WRITEOK))
137 		goto no_page;
138 	if (!si->highest_bit)
139 		goto no_page;
140 	if (!si->swap_map[offset]) {
141 		if (offset == si->lowest_bit)
142 			si->lowest_bit++;
143 		if (offset == si->highest_bit)
144 			si->highest_bit--;
145 		si->inuse_pages++;
146 		if (si->inuse_pages == si->pages) {
147 			si->lowest_bit = si->max;
148 			si->highest_bit = 0;
149 		}
150 		si->swap_map[offset] = 1;
151 		si->cluster_next = offset + 1;
152 		si->flags -= SWP_SCANNING;
153 		return offset;
154 	}
155 
156 	spin_unlock(&swap_lock);
157 	while (++offset <= si->highest_bit) {
158 		if (!si->swap_map[offset]) {
159 			spin_lock(&swap_lock);
160 			goto checks;
161 		}
162 		if (unlikely(--latency_ration < 0)) {
163 			cond_resched();
164 			latency_ration = LATENCY_LIMIT;
165 		}
166 	}
167 	spin_lock(&swap_lock);
168 	goto lowest;
169 
170 no_page:
171 	si->flags -= SWP_SCANNING;
172 	return 0;
173 }
174 
175 swp_entry_t get_swap_page(void)
176 {
177 	struct swap_info_struct *si;
178 	pgoff_t offset;
179 	int type, next;
180 	int wrapped = 0;
181 
182 	spin_lock(&swap_lock);
183 	if (nr_swap_pages <= 0)
184 		goto noswap;
185 	nr_swap_pages--;
186 
187 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
188 		si = swap_info + type;
189 		next = si->next;
190 		if (next < 0 ||
191 		    (!wrapped && si->prio != swap_info[next].prio)) {
192 			next = swap_list.head;
193 			wrapped++;
194 		}
195 
196 		if (!si->highest_bit)
197 			continue;
198 		if (!(si->flags & SWP_WRITEOK))
199 			continue;
200 
201 		swap_list.next = next;
202 		offset = scan_swap_map(si);
203 		if (offset) {
204 			spin_unlock(&swap_lock);
205 			return swp_entry(type, offset);
206 		}
207 		next = swap_list.next;
208 	}
209 
210 	nr_swap_pages++;
211 noswap:
212 	spin_unlock(&swap_lock);
213 	return (swp_entry_t) {0};
214 }
215 
216 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
217 {
218 	struct swap_info_struct * p;
219 	unsigned long offset, type;
220 
221 	if (!entry.val)
222 		goto out;
223 	type = swp_type(entry);
224 	if (type >= nr_swapfiles)
225 		goto bad_nofile;
226 	p = & swap_info[type];
227 	if (!(p->flags & SWP_USED))
228 		goto bad_device;
229 	offset = swp_offset(entry);
230 	if (offset >= p->max)
231 		goto bad_offset;
232 	if (!p->swap_map[offset])
233 		goto bad_free;
234 	spin_lock(&swap_lock);
235 	return p;
236 
237 bad_free:
238 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
239 	goto out;
240 bad_offset:
241 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
242 	goto out;
243 bad_device:
244 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
245 	goto out;
246 bad_nofile:
247 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
248 out:
249 	return NULL;
250 }
251 
252 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
253 {
254 	int count = p->swap_map[offset];
255 
256 	if (count < SWAP_MAP_MAX) {
257 		count--;
258 		p->swap_map[offset] = count;
259 		if (!count) {
260 			if (offset < p->lowest_bit)
261 				p->lowest_bit = offset;
262 			if (offset > p->highest_bit)
263 				p->highest_bit = offset;
264 			if (p->prio > swap_info[swap_list.next].prio)
265 				swap_list.next = p - swap_info;
266 			nr_swap_pages++;
267 			p->inuse_pages--;
268 		}
269 	}
270 	return count;
271 }
272 
273 /*
274  * Caller has made sure that the swapdevice corresponding to entry
275  * is still around or has not been recycled.
276  */
277 void swap_free(swp_entry_t entry)
278 {
279 	struct swap_info_struct * p;
280 
281 	p = swap_info_get(entry);
282 	if (p) {
283 		swap_entry_free(p, swp_offset(entry));
284 		spin_unlock(&swap_lock);
285 	}
286 }
287 
288 /*
289  * How many references to page are currently swapped out?
290  */
291 static inline int page_swapcount(struct page *page)
292 {
293 	int count = 0;
294 	struct swap_info_struct *p;
295 	swp_entry_t entry;
296 
297 	entry.val = page->private;
298 	p = swap_info_get(entry);
299 	if (p) {
300 		/* Subtract the 1 for the swap cache itself */
301 		count = p->swap_map[swp_offset(entry)] - 1;
302 		spin_unlock(&swap_lock);
303 	}
304 	return count;
305 }
306 
307 /*
308  * We can use this swap cache entry directly
309  * if there are no other references to it.
310  */
311 int can_share_swap_page(struct page *page)
312 {
313 	int count;
314 
315 	BUG_ON(!PageLocked(page));
316 	count = page_mapcount(page);
317 	if (count <= 1 && PageSwapCache(page))
318 		count += page_swapcount(page);
319 	return count == 1;
320 }
321 
322 /*
323  * Work out if there are any other processes sharing this
324  * swap cache page. Free it if you can. Return success.
325  */
326 int remove_exclusive_swap_page(struct page *page)
327 {
328 	int retval;
329 	struct swap_info_struct * p;
330 	swp_entry_t entry;
331 
332 	BUG_ON(PagePrivate(page));
333 	BUG_ON(!PageLocked(page));
334 
335 	if (!PageSwapCache(page))
336 		return 0;
337 	if (PageWriteback(page))
338 		return 0;
339 	if (page_count(page) != 2) /* 2: us + cache */
340 		return 0;
341 
342 	entry.val = page->private;
343 	p = swap_info_get(entry);
344 	if (!p)
345 		return 0;
346 
347 	/* Is the only swap cache user the cache itself? */
348 	retval = 0;
349 	if (p->swap_map[swp_offset(entry)] == 1) {
350 		/* Recheck the page count with the swapcache lock held.. */
351 		write_lock_irq(&swapper_space.tree_lock);
352 		if ((page_count(page) == 2) && !PageWriteback(page)) {
353 			__delete_from_swap_cache(page);
354 			SetPageDirty(page);
355 			retval = 1;
356 		}
357 		write_unlock_irq(&swapper_space.tree_lock);
358 	}
359 	spin_unlock(&swap_lock);
360 
361 	if (retval) {
362 		swap_free(entry);
363 		page_cache_release(page);
364 	}
365 
366 	return retval;
367 }
368 
369 /*
370  * Free the swap entry like above, but also try to
371  * free the page cache entry if it is the last user.
372  */
373 void free_swap_and_cache(swp_entry_t entry)
374 {
375 	struct swap_info_struct * p;
376 	struct page *page = NULL;
377 
378 	p = swap_info_get(entry);
379 	if (p) {
380 		if (swap_entry_free(p, swp_offset(entry)) == 1)
381 			page = find_trylock_page(&swapper_space, entry.val);
382 		spin_unlock(&swap_lock);
383 	}
384 	if (page) {
385 		int one_user;
386 
387 		BUG_ON(PagePrivate(page));
388 		page_cache_get(page);
389 		one_user = (page_count(page) == 2);
390 		/* Only cache user (+us), or swap space full? Free it! */
391 		if (!PageWriteback(page) && (one_user || vm_swap_full())) {
392 			delete_from_swap_cache(page);
393 			SetPageDirty(page);
394 		}
395 		unlock_page(page);
396 		page_cache_release(page);
397 	}
398 }
399 
400 /*
401  * Always set the resulting pte to be nowrite (the same as COW pages
402  * after one process has exited).  We don't know just how many PTEs will
403  * share this swap entry, so be cautious and let do_wp_page work out
404  * what to do if a write is requested later.
405  *
406  * vma->vm_mm->page_table_lock is held.
407  */
408 static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
409 		unsigned long addr, swp_entry_t entry, struct page *page)
410 {
411 	inc_mm_counter(vma->vm_mm, rss);
412 	get_page(page);
413 	set_pte_at(vma->vm_mm, addr, pte,
414 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
415 	page_add_anon_rmap(page, vma, addr);
416 	swap_free(entry);
417 	/*
418 	 * Move the page to the active list so it is not
419 	 * immediately swapped out again after swapon.
420 	 */
421 	activate_page(page);
422 }
423 
424 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
425 				unsigned long addr, unsigned long end,
426 				swp_entry_t entry, struct page *page)
427 {
428 	pte_t *pte;
429 	pte_t swp_pte = swp_entry_to_pte(entry);
430 
431 	pte = pte_offset_map(pmd, addr);
432 	do {
433 		/*
434 		 * swapoff spends a _lot_ of time in this loop!
435 		 * Test inline before going to call unuse_pte.
436 		 */
437 		if (unlikely(pte_same(*pte, swp_pte))) {
438 			unuse_pte(vma, pte, addr, entry, page);
439 			pte_unmap(pte);
440 			return 1;
441 		}
442 	} while (pte++, addr += PAGE_SIZE, addr != end);
443 	pte_unmap(pte - 1);
444 	return 0;
445 }
446 
447 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
448 				unsigned long addr, unsigned long end,
449 				swp_entry_t entry, struct page *page)
450 {
451 	pmd_t *pmd;
452 	unsigned long next;
453 
454 	pmd = pmd_offset(pud, addr);
455 	do {
456 		next = pmd_addr_end(addr, end);
457 		if (pmd_none_or_clear_bad(pmd))
458 			continue;
459 		if (unuse_pte_range(vma, pmd, addr, next, entry, page))
460 			return 1;
461 	} while (pmd++, addr = next, addr != end);
462 	return 0;
463 }
464 
465 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
466 				unsigned long addr, unsigned long end,
467 				swp_entry_t entry, struct page *page)
468 {
469 	pud_t *pud;
470 	unsigned long next;
471 
472 	pud = pud_offset(pgd, addr);
473 	do {
474 		next = pud_addr_end(addr, end);
475 		if (pud_none_or_clear_bad(pud))
476 			continue;
477 		if (unuse_pmd_range(vma, pud, addr, next, entry, page))
478 			return 1;
479 	} while (pud++, addr = next, addr != end);
480 	return 0;
481 }
482 
483 static int unuse_vma(struct vm_area_struct *vma,
484 				swp_entry_t entry, struct page *page)
485 {
486 	pgd_t *pgd;
487 	unsigned long addr, end, next;
488 
489 	if (page->mapping) {
490 		addr = page_address_in_vma(page, vma);
491 		if (addr == -EFAULT)
492 			return 0;
493 		else
494 			end = addr + PAGE_SIZE;
495 	} else {
496 		addr = vma->vm_start;
497 		end = vma->vm_end;
498 	}
499 
500 	pgd = pgd_offset(vma->vm_mm, addr);
501 	do {
502 		next = pgd_addr_end(addr, end);
503 		if (pgd_none_or_clear_bad(pgd))
504 			continue;
505 		if (unuse_pud_range(vma, pgd, addr, next, entry, page))
506 			return 1;
507 	} while (pgd++, addr = next, addr != end);
508 	return 0;
509 }
510 
511 static int unuse_mm(struct mm_struct *mm,
512 				swp_entry_t entry, struct page *page)
513 {
514 	struct vm_area_struct *vma;
515 
516 	if (!down_read_trylock(&mm->mmap_sem)) {
517 		/*
518 		 * Activate page so shrink_cache is unlikely to unmap its
519 		 * ptes while lock is dropped, so swapoff can make progress.
520 		 */
521 		activate_page(page);
522 		unlock_page(page);
523 		down_read(&mm->mmap_sem);
524 		lock_page(page);
525 	}
526 	spin_lock(&mm->page_table_lock);
527 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
528 		if (vma->anon_vma && unuse_vma(vma, entry, page))
529 			break;
530 	}
531 	spin_unlock(&mm->page_table_lock);
532 	up_read(&mm->mmap_sem);
533 	/*
534 	 * Currently unuse_mm cannot fail, but leave error handling
535 	 * at call sites for now, since we change it from time to time.
536 	 */
537 	return 0;
538 }
539 
540 /*
541  * Scan swap_map from current position to next entry still in use.
542  * Recycle to start on reaching the end, returning 0 when empty.
543  */
544 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
545 					unsigned int prev)
546 {
547 	unsigned int max = si->max;
548 	unsigned int i = prev;
549 	int count;
550 
551 	/*
552 	 * No need for swap_lock here: we're just looking
553 	 * for whether an entry is in use, not modifying it; false
554 	 * hits are okay, and sys_swapoff() has already prevented new
555 	 * allocations from this area (while holding swap_lock).
556 	 */
557 	for (;;) {
558 		if (++i >= max) {
559 			if (!prev) {
560 				i = 0;
561 				break;
562 			}
563 			/*
564 			 * No entries in use at top of swap_map,
565 			 * loop back to start and recheck there.
566 			 */
567 			max = prev + 1;
568 			prev = 0;
569 			i = 1;
570 		}
571 		count = si->swap_map[i];
572 		if (count && count != SWAP_MAP_BAD)
573 			break;
574 	}
575 	return i;
576 }
577 
578 /*
579  * We completely avoid races by reading each swap page in advance,
580  * and then search for the process using it.  All the necessary
581  * page table adjustments can then be made atomically.
582  */
583 static int try_to_unuse(unsigned int type)
584 {
585 	struct swap_info_struct * si = &swap_info[type];
586 	struct mm_struct *start_mm;
587 	unsigned short *swap_map;
588 	unsigned short swcount;
589 	struct page *page;
590 	swp_entry_t entry;
591 	unsigned int i = 0;
592 	int retval = 0;
593 	int reset_overflow = 0;
594 	int shmem;
595 
596 	/*
597 	 * When searching mms for an entry, a good strategy is to
598 	 * start at the first mm we freed the previous entry from
599 	 * (though actually we don't notice whether we or coincidence
600 	 * freed the entry).  Initialize this start_mm with a hold.
601 	 *
602 	 * A simpler strategy would be to start at the last mm we
603 	 * freed the previous entry from; but that would take less
604 	 * advantage of mmlist ordering, which clusters forked mms
605 	 * together, child after parent.  If we race with dup_mmap(), we
606 	 * prefer to resolve parent before child, lest we miss entries
607 	 * duplicated after we scanned child: using last mm would invert
608 	 * that.  Though it's only a serious concern when an overflowed
609 	 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
610 	 */
611 	start_mm = &init_mm;
612 	atomic_inc(&init_mm.mm_users);
613 
614 	/*
615 	 * Keep on scanning until all entries have gone.  Usually,
616 	 * one pass through swap_map is enough, but not necessarily:
617 	 * there are races when an instance of an entry might be missed.
618 	 */
619 	while ((i = find_next_to_unuse(si, i)) != 0) {
620 		if (signal_pending(current)) {
621 			retval = -EINTR;
622 			break;
623 		}
624 
625 		/*
626 		 * Get a page for the entry, using the existing swap
627 		 * cache page if there is one.  Otherwise, get a clean
628 		 * page and read the swap into it.
629 		 */
630 		swap_map = &si->swap_map[i];
631 		entry = swp_entry(type, i);
632 		page = read_swap_cache_async(entry, NULL, 0);
633 		if (!page) {
634 			/*
635 			 * Either swap_duplicate() failed because entry
636 			 * has been freed independently, and will not be
637 			 * reused since sys_swapoff() already disabled
638 			 * allocation from here, or alloc_page() failed.
639 			 */
640 			if (!*swap_map)
641 				continue;
642 			retval = -ENOMEM;
643 			break;
644 		}
645 
646 		/*
647 		 * Don't hold on to start_mm if it looks like exiting.
648 		 */
649 		if (atomic_read(&start_mm->mm_users) == 1) {
650 			mmput(start_mm);
651 			start_mm = &init_mm;
652 			atomic_inc(&init_mm.mm_users);
653 		}
654 
655 		/*
656 		 * Wait for and lock page.  When do_swap_page races with
657 		 * try_to_unuse, do_swap_page can handle the fault much
658 		 * faster than try_to_unuse can locate the entry.  This
659 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
660 		 * defer to do_swap_page in such a case - in some tests,
661 		 * do_swap_page and try_to_unuse repeatedly compete.
662 		 */
663 		wait_on_page_locked(page);
664 		wait_on_page_writeback(page);
665 		lock_page(page);
666 		wait_on_page_writeback(page);
667 
668 		/*
669 		 * Remove all references to entry.
670 		 * Whenever we reach init_mm, there's no address space
671 		 * to search, but use it as a reminder to search shmem.
672 		 */
673 		shmem = 0;
674 		swcount = *swap_map;
675 		if (swcount > 1) {
676 			if (start_mm == &init_mm)
677 				shmem = shmem_unuse(entry, page);
678 			else
679 				retval = unuse_mm(start_mm, entry, page);
680 		}
681 		if (*swap_map > 1) {
682 			int set_start_mm = (*swap_map >= swcount);
683 			struct list_head *p = &start_mm->mmlist;
684 			struct mm_struct *new_start_mm = start_mm;
685 			struct mm_struct *prev_mm = start_mm;
686 			struct mm_struct *mm;
687 
688 			atomic_inc(&new_start_mm->mm_users);
689 			atomic_inc(&prev_mm->mm_users);
690 			spin_lock(&mmlist_lock);
691 			while (*swap_map > 1 && !retval &&
692 					(p = p->next) != &start_mm->mmlist) {
693 				mm = list_entry(p, struct mm_struct, mmlist);
694 				if (atomic_inc_return(&mm->mm_users) == 1) {
695 					atomic_dec(&mm->mm_users);
696 					continue;
697 				}
698 				spin_unlock(&mmlist_lock);
699 				mmput(prev_mm);
700 				prev_mm = mm;
701 
702 				cond_resched();
703 
704 				swcount = *swap_map;
705 				if (swcount <= 1)
706 					;
707 				else if (mm == &init_mm) {
708 					set_start_mm = 1;
709 					shmem = shmem_unuse(entry, page);
710 				} else
711 					retval = unuse_mm(mm, entry, page);
712 				if (set_start_mm && *swap_map < swcount) {
713 					mmput(new_start_mm);
714 					atomic_inc(&mm->mm_users);
715 					new_start_mm = mm;
716 					set_start_mm = 0;
717 				}
718 				spin_lock(&mmlist_lock);
719 			}
720 			spin_unlock(&mmlist_lock);
721 			mmput(prev_mm);
722 			mmput(start_mm);
723 			start_mm = new_start_mm;
724 		}
725 		if (retval) {
726 			unlock_page(page);
727 			page_cache_release(page);
728 			break;
729 		}
730 
731 		/*
732 		 * How could swap count reach 0x7fff when the maximum
733 		 * pid is 0x7fff, and there's no way to repeat a swap
734 		 * page within an mm (except in shmem, where it's the
735 		 * shared object which takes the reference count)?
736 		 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
737 		 *
738 		 * If that's wrong, then we should worry more about
739 		 * exit_mmap() and do_munmap() cases described above:
740 		 * we might be resetting SWAP_MAP_MAX too early here.
741 		 * We know "Undead"s can happen, they're okay, so don't
742 		 * report them; but do report if we reset SWAP_MAP_MAX.
743 		 */
744 		if (*swap_map == SWAP_MAP_MAX) {
745 			spin_lock(&swap_lock);
746 			*swap_map = 1;
747 			spin_unlock(&swap_lock);
748 			reset_overflow = 1;
749 		}
750 
751 		/*
752 		 * If a reference remains (rare), we would like to leave
753 		 * the page in the swap cache; but try_to_unmap could
754 		 * then re-duplicate the entry once we drop page lock,
755 		 * so we might loop indefinitely; also, that page could
756 		 * not be swapped out to other storage meanwhile.  So:
757 		 * delete from cache even if there's another reference,
758 		 * after ensuring that the data has been saved to disk -
759 		 * since if the reference remains (rarer), it will be
760 		 * read from disk into another page.  Splitting into two
761 		 * pages would be incorrect if swap supported "shared
762 		 * private" pages, but they are handled by tmpfs files.
763 		 *
764 		 * Note shmem_unuse already deleted a swappage from
765 		 * the swap cache, unless the move to filepage failed:
766 		 * in which case it left swappage in cache, lowered its
767 		 * swap count to pass quickly through the loops above,
768 		 * and now we must reincrement count to try again later.
769 		 */
770 		if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
771 			struct writeback_control wbc = {
772 				.sync_mode = WB_SYNC_NONE,
773 			};
774 
775 			swap_writepage(page, &wbc);
776 			lock_page(page);
777 			wait_on_page_writeback(page);
778 		}
779 		if (PageSwapCache(page)) {
780 			if (shmem)
781 				swap_duplicate(entry);
782 			else
783 				delete_from_swap_cache(page);
784 		}
785 
786 		/*
787 		 * So we could skip searching mms once swap count went
788 		 * to 1, we did not mark any present ptes as dirty: must
789 		 * mark page dirty so shrink_list will preserve it.
790 		 */
791 		SetPageDirty(page);
792 		unlock_page(page);
793 		page_cache_release(page);
794 
795 		/*
796 		 * Make sure that we aren't completely killing
797 		 * interactive performance.
798 		 */
799 		cond_resched();
800 	}
801 
802 	mmput(start_mm);
803 	if (reset_overflow) {
804 		printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
805 		swap_overflow = 0;
806 	}
807 	return retval;
808 }
809 
810 /*
811  * After a successful try_to_unuse, if no swap is now in use, we know
812  * we can empty the mmlist.  swap_lock must be held on entry and exit.
813  * Note that mmlist_lock nests inside swap_lock, and an mm must be
814  * added to the mmlist just after page_duplicate - before would be racy.
815  */
816 static void drain_mmlist(void)
817 {
818 	struct list_head *p, *next;
819 	unsigned int i;
820 
821 	for (i = 0; i < nr_swapfiles; i++)
822 		if (swap_info[i].inuse_pages)
823 			return;
824 	spin_lock(&mmlist_lock);
825 	list_for_each_safe(p, next, &init_mm.mmlist)
826 		list_del_init(p);
827 	spin_unlock(&mmlist_lock);
828 }
829 
830 /*
831  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
832  * corresponds to page offset `offset'.
833  */
834 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
835 {
836 	struct swap_extent *se = sis->curr_swap_extent;
837 	struct swap_extent *start_se = se;
838 
839 	for ( ; ; ) {
840 		struct list_head *lh;
841 
842 		if (se->start_page <= offset &&
843 				offset < (se->start_page + se->nr_pages)) {
844 			return se->start_block + (offset - se->start_page);
845 		}
846 		lh = se->list.next;
847 		if (lh == &sis->extent_list)
848 			lh = lh->next;
849 		se = list_entry(lh, struct swap_extent, list);
850 		sis->curr_swap_extent = se;
851 		BUG_ON(se == start_se);		/* It *must* be present */
852 	}
853 }
854 
855 /*
856  * Free all of a swapdev's extent information
857  */
858 static void destroy_swap_extents(struct swap_info_struct *sis)
859 {
860 	while (!list_empty(&sis->extent_list)) {
861 		struct swap_extent *se;
862 
863 		se = list_entry(sis->extent_list.next,
864 				struct swap_extent, list);
865 		list_del(&se->list);
866 		kfree(se);
867 	}
868 }
869 
870 /*
871  * Add a block range (and the corresponding page range) into this swapdev's
872  * extent list.  The extent list is kept sorted in page order.
873  *
874  * This function rather assumes that it is called in ascending page order.
875  */
876 static int
877 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
878 		unsigned long nr_pages, sector_t start_block)
879 {
880 	struct swap_extent *se;
881 	struct swap_extent *new_se;
882 	struct list_head *lh;
883 
884 	lh = sis->extent_list.prev;	/* The highest page extent */
885 	if (lh != &sis->extent_list) {
886 		se = list_entry(lh, struct swap_extent, list);
887 		BUG_ON(se->start_page + se->nr_pages != start_page);
888 		if (se->start_block + se->nr_pages == start_block) {
889 			/* Merge it */
890 			se->nr_pages += nr_pages;
891 			return 0;
892 		}
893 	}
894 
895 	/*
896 	 * No merge.  Insert a new extent, preserving ordering.
897 	 */
898 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
899 	if (new_se == NULL)
900 		return -ENOMEM;
901 	new_se->start_page = start_page;
902 	new_se->nr_pages = nr_pages;
903 	new_se->start_block = start_block;
904 
905 	list_add_tail(&new_se->list, &sis->extent_list);
906 	return 1;
907 }
908 
909 /*
910  * A `swap extent' is a simple thing which maps a contiguous range of pages
911  * onto a contiguous range of disk blocks.  An ordered list of swap extents
912  * is built at swapon time and is then used at swap_writepage/swap_readpage
913  * time for locating where on disk a page belongs.
914  *
915  * If the swapfile is an S_ISBLK block device, a single extent is installed.
916  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
917  * swap files identically.
918  *
919  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
920  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
921  * swapfiles are handled *identically* after swapon time.
922  *
923  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
924  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
925  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
926  * requirements, they are simply tossed out - we will never use those blocks
927  * for swapping.
928  *
929  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
930  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
931  * which will scribble on the fs.
932  *
933  * The amount of disk space which a single swap extent represents varies.
934  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
935  * extents in the list.  To avoid much list walking, we cache the previous
936  * search location in `curr_swap_extent', and start new searches from there.
937  * This is extremely effective.  The average number of iterations in
938  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
939  */
940 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
941 {
942 	struct inode *inode;
943 	unsigned blocks_per_page;
944 	unsigned long page_no;
945 	unsigned blkbits;
946 	sector_t probe_block;
947 	sector_t last_block;
948 	sector_t lowest_block = -1;
949 	sector_t highest_block = 0;
950 	int nr_extents = 0;
951 	int ret;
952 
953 	inode = sis->swap_file->f_mapping->host;
954 	if (S_ISBLK(inode->i_mode)) {
955 		ret = add_swap_extent(sis, 0, sis->max, 0);
956 		*span = sis->pages;
957 		goto done;
958 	}
959 
960 	blkbits = inode->i_blkbits;
961 	blocks_per_page = PAGE_SIZE >> blkbits;
962 
963 	/*
964 	 * Map all the blocks into the extent list.  This code doesn't try
965 	 * to be very smart.
966 	 */
967 	probe_block = 0;
968 	page_no = 0;
969 	last_block = i_size_read(inode) >> blkbits;
970 	while ((probe_block + blocks_per_page) <= last_block &&
971 			page_no < sis->max) {
972 		unsigned block_in_page;
973 		sector_t first_block;
974 
975 		first_block = bmap(inode, probe_block);
976 		if (first_block == 0)
977 			goto bad_bmap;
978 
979 		/*
980 		 * It must be PAGE_SIZE aligned on-disk
981 		 */
982 		if (first_block & (blocks_per_page - 1)) {
983 			probe_block++;
984 			goto reprobe;
985 		}
986 
987 		for (block_in_page = 1; block_in_page < blocks_per_page;
988 					block_in_page++) {
989 			sector_t block;
990 
991 			block = bmap(inode, probe_block + block_in_page);
992 			if (block == 0)
993 				goto bad_bmap;
994 			if (block != first_block + block_in_page) {
995 				/* Discontiguity */
996 				probe_block++;
997 				goto reprobe;
998 			}
999 		}
1000 
1001 		first_block >>= (PAGE_SHIFT - blkbits);
1002 		if (page_no) {	/* exclude the header page */
1003 			if (first_block < lowest_block)
1004 				lowest_block = first_block;
1005 			if (first_block > highest_block)
1006 				highest_block = first_block;
1007 		}
1008 
1009 		/*
1010 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1011 		 */
1012 		ret = add_swap_extent(sis, page_no, 1, first_block);
1013 		if (ret < 0)
1014 			goto out;
1015 		nr_extents += ret;
1016 		page_no++;
1017 		probe_block += blocks_per_page;
1018 reprobe:
1019 		continue;
1020 	}
1021 	ret = nr_extents;
1022 	*span = 1 + highest_block - lowest_block;
1023 	if (page_no == 0)
1024 		page_no = 1;	/* force Empty message */
1025 	sis->max = page_no;
1026 	sis->pages = page_no - 1;
1027 	sis->highest_bit = page_no - 1;
1028 done:
1029 	sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1030 					struct swap_extent, list);
1031 	goto out;
1032 bad_bmap:
1033 	printk(KERN_ERR "swapon: swapfile has holes\n");
1034 	ret = -EINVAL;
1035 out:
1036 	return ret;
1037 }
1038 
1039 #if 0	/* We don't need this yet */
1040 #include <linux/backing-dev.h>
1041 int page_queue_congested(struct page *page)
1042 {
1043 	struct backing_dev_info *bdi;
1044 
1045 	BUG_ON(!PageLocked(page));	/* It pins the swap_info_struct */
1046 
1047 	if (PageSwapCache(page)) {
1048 		swp_entry_t entry = { .val = page->private };
1049 		struct swap_info_struct *sis;
1050 
1051 		sis = get_swap_info_struct(swp_type(entry));
1052 		bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1053 	} else
1054 		bdi = page->mapping->backing_dev_info;
1055 	return bdi_write_congested(bdi);
1056 }
1057 #endif
1058 
1059 asmlinkage long sys_swapoff(const char __user * specialfile)
1060 {
1061 	struct swap_info_struct * p = NULL;
1062 	unsigned short *swap_map;
1063 	struct file *swap_file, *victim;
1064 	struct address_space *mapping;
1065 	struct inode *inode;
1066 	char * pathname;
1067 	int i, type, prev;
1068 	int err;
1069 
1070 	if (!capable(CAP_SYS_ADMIN))
1071 		return -EPERM;
1072 
1073 	pathname = getname(specialfile);
1074 	err = PTR_ERR(pathname);
1075 	if (IS_ERR(pathname))
1076 		goto out;
1077 
1078 	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1079 	putname(pathname);
1080 	err = PTR_ERR(victim);
1081 	if (IS_ERR(victim))
1082 		goto out;
1083 
1084 	mapping = victim->f_mapping;
1085 	prev = -1;
1086 	spin_lock(&swap_lock);
1087 	for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1088 		p = swap_info + type;
1089 		if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1090 			if (p->swap_file->f_mapping == mapping)
1091 				break;
1092 		}
1093 		prev = type;
1094 	}
1095 	if (type < 0) {
1096 		err = -EINVAL;
1097 		spin_unlock(&swap_lock);
1098 		goto out_dput;
1099 	}
1100 	if (!security_vm_enough_memory(p->pages))
1101 		vm_unacct_memory(p->pages);
1102 	else {
1103 		err = -ENOMEM;
1104 		spin_unlock(&swap_lock);
1105 		goto out_dput;
1106 	}
1107 	if (prev < 0) {
1108 		swap_list.head = p->next;
1109 	} else {
1110 		swap_info[prev].next = p->next;
1111 	}
1112 	if (type == swap_list.next) {
1113 		/* just pick something that's safe... */
1114 		swap_list.next = swap_list.head;
1115 	}
1116 	nr_swap_pages -= p->pages;
1117 	total_swap_pages -= p->pages;
1118 	p->flags &= ~SWP_WRITEOK;
1119 	spin_unlock(&swap_lock);
1120 
1121 	current->flags |= PF_SWAPOFF;
1122 	err = try_to_unuse(type);
1123 	current->flags &= ~PF_SWAPOFF;
1124 
1125 	if (err) {
1126 		/* re-insert swap space back into swap_list */
1127 		spin_lock(&swap_lock);
1128 		for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1129 			if (p->prio >= swap_info[i].prio)
1130 				break;
1131 		p->next = i;
1132 		if (prev < 0)
1133 			swap_list.head = swap_list.next = p - swap_info;
1134 		else
1135 			swap_info[prev].next = p - swap_info;
1136 		nr_swap_pages += p->pages;
1137 		total_swap_pages += p->pages;
1138 		p->flags |= SWP_WRITEOK;
1139 		spin_unlock(&swap_lock);
1140 		goto out_dput;
1141 	}
1142 
1143 	/* wait for any unplug function to finish */
1144 	down_write(&swap_unplug_sem);
1145 	up_write(&swap_unplug_sem);
1146 
1147 	destroy_swap_extents(p);
1148 	down(&swapon_sem);
1149 	spin_lock(&swap_lock);
1150 	drain_mmlist();
1151 
1152 	/* wait for anyone still in scan_swap_map */
1153 	p->highest_bit = 0;		/* cuts scans short */
1154 	while (p->flags >= SWP_SCANNING) {
1155 		spin_unlock(&swap_lock);
1156 		schedule_timeout_uninterruptible(1);
1157 		spin_lock(&swap_lock);
1158 	}
1159 
1160 	swap_file = p->swap_file;
1161 	p->swap_file = NULL;
1162 	p->max = 0;
1163 	swap_map = p->swap_map;
1164 	p->swap_map = NULL;
1165 	p->flags = 0;
1166 	spin_unlock(&swap_lock);
1167 	up(&swapon_sem);
1168 	vfree(swap_map);
1169 	inode = mapping->host;
1170 	if (S_ISBLK(inode->i_mode)) {
1171 		struct block_device *bdev = I_BDEV(inode);
1172 		set_blocksize(bdev, p->old_block_size);
1173 		bd_release(bdev);
1174 	} else {
1175 		down(&inode->i_sem);
1176 		inode->i_flags &= ~S_SWAPFILE;
1177 		up(&inode->i_sem);
1178 	}
1179 	filp_close(swap_file, NULL);
1180 	err = 0;
1181 
1182 out_dput:
1183 	filp_close(victim, NULL);
1184 out:
1185 	return err;
1186 }
1187 
1188 #ifdef CONFIG_PROC_FS
1189 /* iterator */
1190 static void *swap_start(struct seq_file *swap, loff_t *pos)
1191 {
1192 	struct swap_info_struct *ptr = swap_info;
1193 	int i;
1194 	loff_t l = *pos;
1195 
1196 	down(&swapon_sem);
1197 
1198 	for (i = 0; i < nr_swapfiles; i++, ptr++) {
1199 		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1200 			continue;
1201 		if (!l--)
1202 			return ptr;
1203 	}
1204 
1205 	return NULL;
1206 }
1207 
1208 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1209 {
1210 	struct swap_info_struct *ptr = v;
1211 	struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1212 
1213 	for (++ptr; ptr < endptr; ptr++) {
1214 		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1215 			continue;
1216 		++*pos;
1217 		return ptr;
1218 	}
1219 
1220 	return NULL;
1221 }
1222 
1223 static void swap_stop(struct seq_file *swap, void *v)
1224 {
1225 	up(&swapon_sem);
1226 }
1227 
1228 static int swap_show(struct seq_file *swap, void *v)
1229 {
1230 	struct swap_info_struct *ptr = v;
1231 	struct file *file;
1232 	int len;
1233 
1234 	if (v == swap_info)
1235 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1236 
1237 	file = ptr->swap_file;
1238 	len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
1239 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1240 		       len < 40 ? 40 - len : 1, " ",
1241 		       S_ISBLK(file->f_dentry->d_inode->i_mode) ?
1242 				"partition" : "file\t",
1243 		       ptr->pages << (PAGE_SHIFT - 10),
1244 		       ptr->inuse_pages << (PAGE_SHIFT - 10),
1245 		       ptr->prio);
1246 	return 0;
1247 }
1248 
1249 static struct seq_operations swaps_op = {
1250 	.start =	swap_start,
1251 	.next =		swap_next,
1252 	.stop =		swap_stop,
1253 	.show =		swap_show
1254 };
1255 
1256 static int swaps_open(struct inode *inode, struct file *file)
1257 {
1258 	return seq_open(file, &swaps_op);
1259 }
1260 
1261 static struct file_operations proc_swaps_operations = {
1262 	.open		= swaps_open,
1263 	.read		= seq_read,
1264 	.llseek		= seq_lseek,
1265 	.release	= seq_release,
1266 };
1267 
1268 static int __init procswaps_init(void)
1269 {
1270 	struct proc_dir_entry *entry;
1271 
1272 	entry = create_proc_entry("swaps", 0, NULL);
1273 	if (entry)
1274 		entry->proc_fops = &proc_swaps_operations;
1275 	return 0;
1276 }
1277 __initcall(procswaps_init);
1278 #endif /* CONFIG_PROC_FS */
1279 
1280 /*
1281  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1282  *
1283  * The swapon system call
1284  */
1285 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1286 {
1287 	struct swap_info_struct * p;
1288 	char *name = NULL;
1289 	struct block_device *bdev = NULL;
1290 	struct file *swap_file = NULL;
1291 	struct address_space *mapping;
1292 	unsigned int type;
1293 	int i, prev;
1294 	int error;
1295 	static int least_priority;
1296 	union swap_header *swap_header = NULL;
1297 	int swap_header_version;
1298 	unsigned int nr_good_pages = 0;
1299 	int nr_extents = 0;
1300 	sector_t span;
1301 	unsigned long maxpages = 1;
1302 	int swapfilesize;
1303 	unsigned short *swap_map;
1304 	struct page *page = NULL;
1305 	struct inode *inode = NULL;
1306 	int did_down = 0;
1307 
1308 	if (!capable(CAP_SYS_ADMIN))
1309 		return -EPERM;
1310 	spin_lock(&swap_lock);
1311 	p = swap_info;
1312 	for (type = 0 ; type < nr_swapfiles ; type++,p++)
1313 		if (!(p->flags & SWP_USED))
1314 			break;
1315 	error = -EPERM;
1316 	/*
1317 	 * Test if adding another swap device is possible. There are
1318 	 * two limiting factors: 1) the number of bits for the swap
1319 	 * type swp_entry_t definition and 2) the number of bits for
1320 	 * the swap type in the swap ptes as defined by the different
1321 	 * architectures. To honor both limitations a swap entry
1322 	 * with swap offset 0 and swap type ~0UL is created, encoded
1323 	 * to a swap pte, decoded to a swp_entry_t again and finally
1324 	 * the swap type part is extracted. This will mask all bits
1325 	 * from the initial ~0UL that can't be encoded in either the
1326 	 * swp_entry_t or the architecture definition of a swap pte.
1327 	 */
1328 	if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) {
1329 		spin_unlock(&swap_lock);
1330 		goto out;
1331 	}
1332 	if (type >= nr_swapfiles)
1333 		nr_swapfiles = type+1;
1334 	INIT_LIST_HEAD(&p->extent_list);
1335 	p->flags = SWP_USED;
1336 	p->swap_file = NULL;
1337 	p->old_block_size = 0;
1338 	p->swap_map = NULL;
1339 	p->lowest_bit = 0;
1340 	p->highest_bit = 0;
1341 	p->cluster_nr = 0;
1342 	p->inuse_pages = 0;
1343 	p->next = -1;
1344 	if (swap_flags & SWAP_FLAG_PREFER) {
1345 		p->prio =
1346 		  (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1347 	} else {
1348 		p->prio = --least_priority;
1349 	}
1350 	spin_unlock(&swap_lock);
1351 	name = getname(specialfile);
1352 	error = PTR_ERR(name);
1353 	if (IS_ERR(name)) {
1354 		name = NULL;
1355 		goto bad_swap_2;
1356 	}
1357 	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1358 	error = PTR_ERR(swap_file);
1359 	if (IS_ERR(swap_file)) {
1360 		swap_file = NULL;
1361 		goto bad_swap_2;
1362 	}
1363 
1364 	p->swap_file = swap_file;
1365 	mapping = swap_file->f_mapping;
1366 	inode = mapping->host;
1367 
1368 	error = -EBUSY;
1369 	for (i = 0; i < nr_swapfiles; i++) {
1370 		struct swap_info_struct *q = &swap_info[i];
1371 
1372 		if (i == type || !q->swap_file)
1373 			continue;
1374 		if (mapping == q->swap_file->f_mapping)
1375 			goto bad_swap;
1376 	}
1377 
1378 	error = -EINVAL;
1379 	if (S_ISBLK(inode->i_mode)) {
1380 		bdev = I_BDEV(inode);
1381 		error = bd_claim(bdev, sys_swapon);
1382 		if (error < 0) {
1383 			bdev = NULL;
1384 			error = -EINVAL;
1385 			goto bad_swap;
1386 		}
1387 		p->old_block_size = block_size(bdev);
1388 		error = set_blocksize(bdev, PAGE_SIZE);
1389 		if (error < 0)
1390 			goto bad_swap;
1391 		p->bdev = bdev;
1392 	} else if (S_ISREG(inode->i_mode)) {
1393 		p->bdev = inode->i_sb->s_bdev;
1394 		down(&inode->i_sem);
1395 		did_down = 1;
1396 		if (IS_SWAPFILE(inode)) {
1397 			error = -EBUSY;
1398 			goto bad_swap;
1399 		}
1400 	} else {
1401 		goto bad_swap;
1402 	}
1403 
1404 	swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1405 
1406 	/*
1407 	 * Read the swap header.
1408 	 */
1409 	if (!mapping->a_ops->readpage) {
1410 		error = -EINVAL;
1411 		goto bad_swap;
1412 	}
1413 	page = read_cache_page(mapping, 0,
1414 			(filler_t *)mapping->a_ops->readpage, swap_file);
1415 	if (IS_ERR(page)) {
1416 		error = PTR_ERR(page);
1417 		goto bad_swap;
1418 	}
1419 	wait_on_page_locked(page);
1420 	if (!PageUptodate(page))
1421 		goto bad_swap;
1422 	kmap(page);
1423 	swap_header = page_address(page);
1424 
1425 	if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1426 		swap_header_version = 1;
1427 	else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1428 		swap_header_version = 2;
1429 	else {
1430 		printk("Unable to find swap-space signature\n");
1431 		error = -EINVAL;
1432 		goto bad_swap;
1433 	}
1434 
1435 	switch (swap_header_version) {
1436 	case 1:
1437 		printk(KERN_ERR "version 0 swap is no longer supported. "
1438 			"Use mkswap -v1 %s\n", name);
1439 		error = -EINVAL;
1440 		goto bad_swap;
1441 	case 2:
1442 		/* Check the swap header's sub-version and the size of
1443                    the swap file and bad block lists */
1444 		if (swap_header->info.version != 1) {
1445 			printk(KERN_WARNING
1446 			       "Unable to handle swap header version %d\n",
1447 			       swap_header->info.version);
1448 			error = -EINVAL;
1449 			goto bad_swap;
1450 		}
1451 
1452 		p->lowest_bit  = 1;
1453 		p->cluster_next = 1;
1454 
1455 		/*
1456 		 * Find out how many pages are allowed for a single swap
1457 		 * device. There are two limiting factors: 1) the number of
1458 		 * bits for the swap offset in the swp_entry_t type and
1459 		 * 2) the number of bits in the a swap pte as defined by
1460 		 * the different architectures. In order to find the
1461 		 * largest possible bit mask a swap entry with swap type 0
1462 		 * and swap offset ~0UL is created, encoded to a swap pte,
1463 		 * decoded to a swp_entry_t again and finally the swap
1464 		 * offset is extracted. This will mask all the bits from
1465 		 * the initial ~0UL mask that can't be encoded in either
1466 		 * the swp_entry_t or the architecture definition of a
1467 		 * swap pte.
1468 		 */
1469 		maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1470 		if (maxpages > swap_header->info.last_page)
1471 			maxpages = swap_header->info.last_page;
1472 		p->highest_bit = maxpages - 1;
1473 
1474 		error = -EINVAL;
1475 		if (!maxpages)
1476 			goto bad_swap;
1477 		if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1478 			goto bad_swap;
1479 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1480 			goto bad_swap;
1481 
1482 		/* OK, set up the swap map and apply the bad block list */
1483 		if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1484 			error = -ENOMEM;
1485 			goto bad_swap;
1486 		}
1487 
1488 		error = 0;
1489 		memset(p->swap_map, 0, maxpages * sizeof(short));
1490 		for (i=0; i<swap_header->info.nr_badpages; i++) {
1491 			int page = swap_header->info.badpages[i];
1492 			if (page <= 0 || page >= swap_header->info.last_page)
1493 				error = -EINVAL;
1494 			else
1495 				p->swap_map[page] = SWAP_MAP_BAD;
1496 		}
1497 		nr_good_pages = swap_header->info.last_page -
1498 				swap_header->info.nr_badpages -
1499 				1 /* header page */;
1500 		if (error)
1501 			goto bad_swap;
1502 	}
1503 
1504 	if (swapfilesize && maxpages > swapfilesize) {
1505 		printk(KERN_WARNING
1506 		       "Swap area shorter than signature indicates\n");
1507 		error = -EINVAL;
1508 		goto bad_swap;
1509 	}
1510 	if (nr_good_pages) {
1511 		p->swap_map[0] = SWAP_MAP_BAD;
1512 		p->max = maxpages;
1513 		p->pages = nr_good_pages;
1514 		nr_extents = setup_swap_extents(p, &span);
1515 		if (nr_extents < 0) {
1516 			error = nr_extents;
1517 			goto bad_swap;
1518 		}
1519 		nr_good_pages = p->pages;
1520 	}
1521 	if (!nr_good_pages) {
1522 		printk(KERN_WARNING "Empty swap-file\n");
1523 		error = -EINVAL;
1524 		goto bad_swap;
1525 	}
1526 
1527 	down(&swapon_sem);
1528 	spin_lock(&swap_lock);
1529 	p->flags = SWP_ACTIVE;
1530 	nr_swap_pages += nr_good_pages;
1531 	total_swap_pages += nr_good_pages;
1532 
1533 	printk(KERN_INFO "Adding %uk swap on %s.  "
1534 			"Priority:%d extents:%d across:%lluk\n",
1535 		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1536 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1537 
1538 	/* insert swap space into swap_list: */
1539 	prev = -1;
1540 	for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1541 		if (p->prio >= swap_info[i].prio) {
1542 			break;
1543 		}
1544 		prev = i;
1545 	}
1546 	p->next = i;
1547 	if (prev < 0) {
1548 		swap_list.head = swap_list.next = p - swap_info;
1549 	} else {
1550 		swap_info[prev].next = p - swap_info;
1551 	}
1552 	spin_unlock(&swap_lock);
1553 	up(&swapon_sem);
1554 	error = 0;
1555 	goto out;
1556 bad_swap:
1557 	if (bdev) {
1558 		set_blocksize(bdev, p->old_block_size);
1559 		bd_release(bdev);
1560 	}
1561 	destroy_swap_extents(p);
1562 bad_swap_2:
1563 	spin_lock(&swap_lock);
1564 	swap_map = p->swap_map;
1565 	p->swap_file = NULL;
1566 	p->swap_map = NULL;
1567 	p->flags = 0;
1568 	if (!(swap_flags & SWAP_FLAG_PREFER))
1569 		++least_priority;
1570 	spin_unlock(&swap_lock);
1571 	vfree(swap_map);
1572 	if (swap_file)
1573 		filp_close(swap_file, NULL);
1574 out:
1575 	if (page && !IS_ERR(page)) {
1576 		kunmap(page);
1577 		page_cache_release(page);
1578 	}
1579 	if (name)
1580 		putname(name);
1581 	if (did_down) {
1582 		if (!error)
1583 			inode->i_flags |= S_SWAPFILE;
1584 		up(&inode->i_sem);
1585 	}
1586 	return error;
1587 }
1588 
1589 void si_swapinfo(struct sysinfo *val)
1590 {
1591 	unsigned int i;
1592 	unsigned long nr_to_be_unused = 0;
1593 
1594 	spin_lock(&swap_lock);
1595 	for (i = 0; i < nr_swapfiles; i++) {
1596 		if (!(swap_info[i].flags & SWP_USED) ||
1597 		     (swap_info[i].flags & SWP_WRITEOK))
1598 			continue;
1599 		nr_to_be_unused += swap_info[i].inuse_pages;
1600 	}
1601 	val->freeswap = nr_swap_pages + nr_to_be_unused;
1602 	val->totalswap = total_swap_pages + nr_to_be_unused;
1603 	spin_unlock(&swap_lock);
1604 }
1605 
1606 /*
1607  * Verify that a swap entry is valid and increment its swap map count.
1608  *
1609  * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1610  * "permanent", but will be reclaimed by the next swapoff.
1611  */
1612 int swap_duplicate(swp_entry_t entry)
1613 {
1614 	struct swap_info_struct * p;
1615 	unsigned long offset, type;
1616 	int result = 0;
1617 
1618 	type = swp_type(entry);
1619 	if (type >= nr_swapfiles)
1620 		goto bad_file;
1621 	p = type + swap_info;
1622 	offset = swp_offset(entry);
1623 
1624 	spin_lock(&swap_lock);
1625 	if (offset < p->max && p->swap_map[offset]) {
1626 		if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1627 			p->swap_map[offset]++;
1628 			result = 1;
1629 		} else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1630 			if (swap_overflow++ < 5)
1631 				printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1632 			p->swap_map[offset] = SWAP_MAP_MAX;
1633 			result = 1;
1634 		}
1635 	}
1636 	spin_unlock(&swap_lock);
1637 out:
1638 	return result;
1639 
1640 bad_file:
1641 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1642 	goto out;
1643 }
1644 
1645 struct swap_info_struct *
1646 get_swap_info_struct(unsigned type)
1647 {
1648 	return &swap_info[type];
1649 }
1650 
1651 /*
1652  * swap_lock prevents swap_map being freed. Don't grab an extra
1653  * reference on the swaphandle, it doesn't matter if it becomes unused.
1654  */
1655 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1656 {
1657 	int ret = 0, i = 1 << page_cluster;
1658 	unsigned long toff;
1659 	struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1660 
1661 	if (!page_cluster)	/* no readahead */
1662 		return 0;
1663 	toff = (swp_offset(entry) >> page_cluster) << page_cluster;
1664 	if (!toff)		/* first page is swap header */
1665 		toff++, i--;
1666 	*offset = toff;
1667 
1668 	spin_lock(&swap_lock);
1669 	do {
1670 		/* Don't read-ahead past the end of the swap area */
1671 		if (toff >= swapdev->max)
1672 			break;
1673 		/* Don't read in free or bad pages */
1674 		if (!swapdev->swap_map[toff])
1675 			break;
1676 		if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1677 			break;
1678 		toff++;
1679 		ret++;
1680 	} while (--i);
1681 	spin_unlock(&swap_lock);
1682 	return ret;
1683 }
1684