1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/config.h> 9 #include <linux/mm.h> 10 #include <linux/hugetlb.h> 11 #include <linux/mman.h> 12 #include <linux/slab.h> 13 #include <linux/kernel_stat.h> 14 #include <linux/swap.h> 15 #include <linux/vmalloc.h> 16 #include <linux/pagemap.h> 17 #include <linux/namei.h> 18 #include <linux/shm.h> 19 #include <linux/blkdev.h> 20 #include <linux/writeback.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/init.h> 24 #include <linux/module.h> 25 #include <linux/rmap.h> 26 #include <linux/security.h> 27 #include <linux/backing-dev.h> 28 #include <linux/syscalls.h> 29 30 #include <asm/pgtable.h> 31 #include <asm/tlbflush.h> 32 #include <linux/swapops.h> 33 34 DEFINE_SPINLOCK(swap_lock); 35 unsigned int nr_swapfiles; 36 long total_swap_pages; 37 static int swap_overflow; 38 39 EXPORT_SYMBOL(total_swap_pages); 40 41 static const char Bad_file[] = "Bad swap file entry "; 42 static const char Unused_file[] = "Unused swap file entry "; 43 static const char Bad_offset[] = "Bad swap offset entry "; 44 static const char Unused_offset[] = "Unused swap offset entry "; 45 46 struct swap_list_t swap_list = {-1, -1}; 47 48 struct swap_info_struct swap_info[MAX_SWAPFILES]; 49 50 static DECLARE_MUTEX(swapon_sem); 51 52 /* 53 * We need this because the bdev->unplug_fn can sleep and we cannot 54 * hold swap_lock while calling the unplug_fn. And swap_lock 55 * cannot be turned into a semaphore. 56 */ 57 static DECLARE_RWSEM(swap_unplug_sem); 58 59 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page) 60 { 61 swp_entry_t entry; 62 63 down_read(&swap_unplug_sem); 64 entry.val = page->private; 65 if (PageSwapCache(page)) { 66 struct block_device *bdev = swap_info[swp_type(entry)].bdev; 67 struct backing_dev_info *bdi; 68 69 /* 70 * If the page is removed from swapcache from under us (with a 71 * racy try_to_unuse/swapoff) we need an additional reference 72 * count to avoid reading garbage from page->private above. If 73 * the WARN_ON triggers during a swapoff it maybe the race 74 * condition and it's harmless. However if it triggers without 75 * swapoff it signals a problem. 76 */ 77 WARN_ON(page_count(page) <= 1); 78 79 bdi = bdev->bd_inode->i_mapping->backing_dev_info; 80 blk_run_backing_dev(bdi, page); 81 } 82 up_read(&swap_unplug_sem); 83 } 84 85 #define SWAPFILE_CLUSTER 256 86 #define LATENCY_LIMIT 256 87 88 static inline unsigned long scan_swap_map(struct swap_info_struct *si) 89 { 90 unsigned long offset, last_in_cluster; 91 int latency_ration = LATENCY_LIMIT; 92 93 /* 94 * We try to cluster swap pages by allocating them sequentially 95 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 96 * way, however, we resort to first-free allocation, starting 97 * a new cluster. This prevents us from scattering swap pages 98 * all over the entire swap partition, so that we reduce 99 * overall disk seek times between swap pages. -- sct 100 * But we do now try to find an empty cluster. -Andrea 101 */ 102 103 si->flags += SWP_SCANNING; 104 if (unlikely(!si->cluster_nr)) { 105 si->cluster_nr = SWAPFILE_CLUSTER - 1; 106 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) 107 goto lowest; 108 spin_unlock(&swap_lock); 109 110 offset = si->lowest_bit; 111 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 112 113 /* Locate the first empty (unaligned) cluster */ 114 for (; last_in_cluster <= si->highest_bit; offset++) { 115 if (si->swap_map[offset]) 116 last_in_cluster = offset + SWAPFILE_CLUSTER; 117 else if (offset == last_in_cluster) { 118 spin_lock(&swap_lock); 119 si->cluster_next = offset-SWAPFILE_CLUSTER-1; 120 goto cluster; 121 } 122 if (unlikely(--latency_ration < 0)) { 123 cond_resched(); 124 latency_ration = LATENCY_LIMIT; 125 } 126 } 127 spin_lock(&swap_lock); 128 goto lowest; 129 } 130 131 si->cluster_nr--; 132 cluster: 133 offset = si->cluster_next; 134 if (offset > si->highest_bit) 135 lowest: offset = si->lowest_bit; 136 checks: if (!(si->flags & SWP_WRITEOK)) 137 goto no_page; 138 if (!si->highest_bit) 139 goto no_page; 140 if (!si->swap_map[offset]) { 141 if (offset == si->lowest_bit) 142 si->lowest_bit++; 143 if (offset == si->highest_bit) 144 si->highest_bit--; 145 si->inuse_pages++; 146 if (si->inuse_pages == si->pages) { 147 si->lowest_bit = si->max; 148 si->highest_bit = 0; 149 } 150 si->swap_map[offset] = 1; 151 si->cluster_next = offset + 1; 152 si->flags -= SWP_SCANNING; 153 return offset; 154 } 155 156 spin_unlock(&swap_lock); 157 while (++offset <= si->highest_bit) { 158 if (!si->swap_map[offset]) { 159 spin_lock(&swap_lock); 160 goto checks; 161 } 162 if (unlikely(--latency_ration < 0)) { 163 cond_resched(); 164 latency_ration = LATENCY_LIMIT; 165 } 166 } 167 spin_lock(&swap_lock); 168 goto lowest; 169 170 no_page: 171 si->flags -= SWP_SCANNING; 172 return 0; 173 } 174 175 swp_entry_t get_swap_page(void) 176 { 177 struct swap_info_struct *si; 178 pgoff_t offset; 179 int type, next; 180 int wrapped = 0; 181 182 spin_lock(&swap_lock); 183 if (nr_swap_pages <= 0) 184 goto noswap; 185 nr_swap_pages--; 186 187 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { 188 si = swap_info + type; 189 next = si->next; 190 if (next < 0 || 191 (!wrapped && si->prio != swap_info[next].prio)) { 192 next = swap_list.head; 193 wrapped++; 194 } 195 196 if (!si->highest_bit) 197 continue; 198 if (!(si->flags & SWP_WRITEOK)) 199 continue; 200 201 swap_list.next = next; 202 offset = scan_swap_map(si); 203 if (offset) { 204 spin_unlock(&swap_lock); 205 return swp_entry(type, offset); 206 } 207 next = swap_list.next; 208 } 209 210 nr_swap_pages++; 211 noswap: 212 spin_unlock(&swap_lock); 213 return (swp_entry_t) {0}; 214 } 215 216 static struct swap_info_struct * swap_info_get(swp_entry_t entry) 217 { 218 struct swap_info_struct * p; 219 unsigned long offset, type; 220 221 if (!entry.val) 222 goto out; 223 type = swp_type(entry); 224 if (type >= nr_swapfiles) 225 goto bad_nofile; 226 p = & swap_info[type]; 227 if (!(p->flags & SWP_USED)) 228 goto bad_device; 229 offset = swp_offset(entry); 230 if (offset >= p->max) 231 goto bad_offset; 232 if (!p->swap_map[offset]) 233 goto bad_free; 234 spin_lock(&swap_lock); 235 return p; 236 237 bad_free: 238 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); 239 goto out; 240 bad_offset: 241 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); 242 goto out; 243 bad_device: 244 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); 245 goto out; 246 bad_nofile: 247 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); 248 out: 249 return NULL; 250 } 251 252 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset) 253 { 254 int count = p->swap_map[offset]; 255 256 if (count < SWAP_MAP_MAX) { 257 count--; 258 p->swap_map[offset] = count; 259 if (!count) { 260 if (offset < p->lowest_bit) 261 p->lowest_bit = offset; 262 if (offset > p->highest_bit) 263 p->highest_bit = offset; 264 if (p->prio > swap_info[swap_list.next].prio) 265 swap_list.next = p - swap_info; 266 nr_swap_pages++; 267 p->inuse_pages--; 268 } 269 } 270 return count; 271 } 272 273 /* 274 * Caller has made sure that the swapdevice corresponding to entry 275 * is still around or has not been recycled. 276 */ 277 void swap_free(swp_entry_t entry) 278 { 279 struct swap_info_struct * p; 280 281 p = swap_info_get(entry); 282 if (p) { 283 swap_entry_free(p, swp_offset(entry)); 284 spin_unlock(&swap_lock); 285 } 286 } 287 288 /* 289 * How many references to page are currently swapped out? 290 */ 291 static inline int page_swapcount(struct page *page) 292 { 293 int count = 0; 294 struct swap_info_struct *p; 295 swp_entry_t entry; 296 297 entry.val = page->private; 298 p = swap_info_get(entry); 299 if (p) { 300 /* Subtract the 1 for the swap cache itself */ 301 count = p->swap_map[swp_offset(entry)] - 1; 302 spin_unlock(&swap_lock); 303 } 304 return count; 305 } 306 307 /* 308 * We can use this swap cache entry directly 309 * if there are no other references to it. 310 */ 311 int can_share_swap_page(struct page *page) 312 { 313 int count; 314 315 BUG_ON(!PageLocked(page)); 316 count = page_mapcount(page); 317 if (count <= 1 && PageSwapCache(page)) 318 count += page_swapcount(page); 319 return count == 1; 320 } 321 322 /* 323 * Work out if there are any other processes sharing this 324 * swap cache page. Free it if you can. Return success. 325 */ 326 int remove_exclusive_swap_page(struct page *page) 327 { 328 int retval; 329 struct swap_info_struct * p; 330 swp_entry_t entry; 331 332 BUG_ON(PagePrivate(page)); 333 BUG_ON(!PageLocked(page)); 334 335 if (!PageSwapCache(page)) 336 return 0; 337 if (PageWriteback(page)) 338 return 0; 339 if (page_count(page) != 2) /* 2: us + cache */ 340 return 0; 341 342 entry.val = page->private; 343 p = swap_info_get(entry); 344 if (!p) 345 return 0; 346 347 /* Is the only swap cache user the cache itself? */ 348 retval = 0; 349 if (p->swap_map[swp_offset(entry)] == 1) { 350 /* Recheck the page count with the swapcache lock held.. */ 351 write_lock_irq(&swapper_space.tree_lock); 352 if ((page_count(page) == 2) && !PageWriteback(page)) { 353 __delete_from_swap_cache(page); 354 SetPageDirty(page); 355 retval = 1; 356 } 357 write_unlock_irq(&swapper_space.tree_lock); 358 } 359 spin_unlock(&swap_lock); 360 361 if (retval) { 362 swap_free(entry); 363 page_cache_release(page); 364 } 365 366 return retval; 367 } 368 369 /* 370 * Free the swap entry like above, but also try to 371 * free the page cache entry if it is the last user. 372 */ 373 void free_swap_and_cache(swp_entry_t entry) 374 { 375 struct swap_info_struct * p; 376 struct page *page = NULL; 377 378 p = swap_info_get(entry); 379 if (p) { 380 if (swap_entry_free(p, swp_offset(entry)) == 1) 381 page = find_trylock_page(&swapper_space, entry.val); 382 spin_unlock(&swap_lock); 383 } 384 if (page) { 385 int one_user; 386 387 BUG_ON(PagePrivate(page)); 388 page_cache_get(page); 389 one_user = (page_count(page) == 2); 390 /* Only cache user (+us), or swap space full? Free it! */ 391 if (!PageWriteback(page) && (one_user || vm_swap_full())) { 392 delete_from_swap_cache(page); 393 SetPageDirty(page); 394 } 395 unlock_page(page); 396 page_cache_release(page); 397 } 398 } 399 400 /* 401 * Always set the resulting pte to be nowrite (the same as COW pages 402 * after one process has exited). We don't know just how many PTEs will 403 * share this swap entry, so be cautious and let do_wp_page work out 404 * what to do if a write is requested later. 405 * 406 * vma->vm_mm->page_table_lock is held. 407 */ 408 static void unuse_pte(struct vm_area_struct *vma, pte_t *pte, 409 unsigned long addr, swp_entry_t entry, struct page *page) 410 { 411 inc_mm_counter(vma->vm_mm, rss); 412 get_page(page); 413 set_pte_at(vma->vm_mm, addr, pte, 414 pte_mkold(mk_pte(page, vma->vm_page_prot))); 415 page_add_anon_rmap(page, vma, addr); 416 swap_free(entry); 417 /* 418 * Move the page to the active list so it is not 419 * immediately swapped out again after swapon. 420 */ 421 activate_page(page); 422 } 423 424 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 425 unsigned long addr, unsigned long end, 426 swp_entry_t entry, struct page *page) 427 { 428 pte_t *pte; 429 pte_t swp_pte = swp_entry_to_pte(entry); 430 431 pte = pte_offset_map(pmd, addr); 432 do { 433 /* 434 * swapoff spends a _lot_ of time in this loop! 435 * Test inline before going to call unuse_pte. 436 */ 437 if (unlikely(pte_same(*pte, swp_pte))) { 438 unuse_pte(vma, pte, addr, entry, page); 439 pte_unmap(pte); 440 return 1; 441 } 442 } while (pte++, addr += PAGE_SIZE, addr != end); 443 pte_unmap(pte - 1); 444 return 0; 445 } 446 447 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 448 unsigned long addr, unsigned long end, 449 swp_entry_t entry, struct page *page) 450 { 451 pmd_t *pmd; 452 unsigned long next; 453 454 pmd = pmd_offset(pud, addr); 455 do { 456 next = pmd_addr_end(addr, end); 457 if (pmd_none_or_clear_bad(pmd)) 458 continue; 459 if (unuse_pte_range(vma, pmd, addr, next, entry, page)) 460 return 1; 461 } while (pmd++, addr = next, addr != end); 462 return 0; 463 } 464 465 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 466 unsigned long addr, unsigned long end, 467 swp_entry_t entry, struct page *page) 468 { 469 pud_t *pud; 470 unsigned long next; 471 472 pud = pud_offset(pgd, addr); 473 do { 474 next = pud_addr_end(addr, end); 475 if (pud_none_or_clear_bad(pud)) 476 continue; 477 if (unuse_pmd_range(vma, pud, addr, next, entry, page)) 478 return 1; 479 } while (pud++, addr = next, addr != end); 480 return 0; 481 } 482 483 static int unuse_vma(struct vm_area_struct *vma, 484 swp_entry_t entry, struct page *page) 485 { 486 pgd_t *pgd; 487 unsigned long addr, end, next; 488 489 if (page->mapping) { 490 addr = page_address_in_vma(page, vma); 491 if (addr == -EFAULT) 492 return 0; 493 else 494 end = addr + PAGE_SIZE; 495 } else { 496 addr = vma->vm_start; 497 end = vma->vm_end; 498 } 499 500 pgd = pgd_offset(vma->vm_mm, addr); 501 do { 502 next = pgd_addr_end(addr, end); 503 if (pgd_none_or_clear_bad(pgd)) 504 continue; 505 if (unuse_pud_range(vma, pgd, addr, next, entry, page)) 506 return 1; 507 } while (pgd++, addr = next, addr != end); 508 return 0; 509 } 510 511 static int unuse_mm(struct mm_struct *mm, 512 swp_entry_t entry, struct page *page) 513 { 514 struct vm_area_struct *vma; 515 516 if (!down_read_trylock(&mm->mmap_sem)) { 517 /* 518 * Activate page so shrink_cache is unlikely to unmap its 519 * ptes while lock is dropped, so swapoff can make progress. 520 */ 521 activate_page(page); 522 unlock_page(page); 523 down_read(&mm->mmap_sem); 524 lock_page(page); 525 } 526 spin_lock(&mm->page_table_lock); 527 for (vma = mm->mmap; vma; vma = vma->vm_next) { 528 if (vma->anon_vma && unuse_vma(vma, entry, page)) 529 break; 530 } 531 spin_unlock(&mm->page_table_lock); 532 up_read(&mm->mmap_sem); 533 /* 534 * Currently unuse_mm cannot fail, but leave error handling 535 * at call sites for now, since we change it from time to time. 536 */ 537 return 0; 538 } 539 540 /* 541 * Scan swap_map from current position to next entry still in use. 542 * Recycle to start on reaching the end, returning 0 when empty. 543 */ 544 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 545 unsigned int prev) 546 { 547 unsigned int max = si->max; 548 unsigned int i = prev; 549 int count; 550 551 /* 552 * No need for swap_lock here: we're just looking 553 * for whether an entry is in use, not modifying it; false 554 * hits are okay, and sys_swapoff() has already prevented new 555 * allocations from this area (while holding swap_lock). 556 */ 557 for (;;) { 558 if (++i >= max) { 559 if (!prev) { 560 i = 0; 561 break; 562 } 563 /* 564 * No entries in use at top of swap_map, 565 * loop back to start and recheck there. 566 */ 567 max = prev + 1; 568 prev = 0; 569 i = 1; 570 } 571 count = si->swap_map[i]; 572 if (count && count != SWAP_MAP_BAD) 573 break; 574 } 575 return i; 576 } 577 578 /* 579 * We completely avoid races by reading each swap page in advance, 580 * and then search for the process using it. All the necessary 581 * page table adjustments can then be made atomically. 582 */ 583 static int try_to_unuse(unsigned int type) 584 { 585 struct swap_info_struct * si = &swap_info[type]; 586 struct mm_struct *start_mm; 587 unsigned short *swap_map; 588 unsigned short swcount; 589 struct page *page; 590 swp_entry_t entry; 591 unsigned int i = 0; 592 int retval = 0; 593 int reset_overflow = 0; 594 int shmem; 595 596 /* 597 * When searching mms for an entry, a good strategy is to 598 * start at the first mm we freed the previous entry from 599 * (though actually we don't notice whether we or coincidence 600 * freed the entry). Initialize this start_mm with a hold. 601 * 602 * A simpler strategy would be to start at the last mm we 603 * freed the previous entry from; but that would take less 604 * advantage of mmlist ordering, which clusters forked mms 605 * together, child after parent. If we race with dup_mmap(), we 606 * prefer to resolve parent before child, lest we miss entries 607 * duplicated after we scanned child: using last mm would invert 608 * that. Though it's only a serious concern when an overflowed 609 * swap count is reset from SWAP_MAP_MAX, preventing a rescan. 610 */ 611 start_mm = &init_mm; 612 atomic_inc(&init_mm.mm_users); 613 614 /* 615 * Keep on scanning until all entries have gone. Usually, 616 * one pass through swap_map is enough, but not necessarily: 617 * there are races when an instance of an entry might be missed. 618 */ 619 while ((i = find_next_to_unuse(si, i)) != 0) { 620 if (signal_pending(current)) { 621 retval = -EINTR; 622 break; 623 } 624 625 /* 626 * Get a page for the entry, using the existing swap 627 * cache page if there is one. Otherwise, get a clean 628 * page and read the swap into it. 629 */ 630 swap_map = &si->swap_map[i]; 631 entry = swp_entry(type, i); 632 page = read_swap_cache_async(entry, NULL, 0); 633 if (!page) { 634 /* 635 * Either swap_duplicate() failed because entry 636 * has been freed independently, and will not be 637 * reused since sys_swapoff() already disabled 638 * allocation from here, or alloc_page() failed. 639 */ 640 if (!*swap_map) 641 continue; 642 retval = -ENOMEM; 643 break; 644 } 645 646 /* 647 * Don't hold on to start_mm if it looks like exiting. 648 */ 649 if (atomic_read(&start_mm->mm_users) == 1) { 650 mmput(start_mm); 651 start_mm = &init_mm; 652 atomic_inc(&init_mm.mm_users); 653 } 654 655 /* 656 * Wait for and lock page. When do_swap_page races with 657 * try_to_unuse, do_swap_page can handle the fault much 658 * faster than try_to_unuse can locate the entry. This 659 * apparently redundant "wait_on_page_locked" lets try_to_unuse 660 * defer to do_swap_page in such a case - in some tests, 661 * do_swap_page and try_to_unuse repeatedly compete. 662 */ 663 wait_on_page_locked(page); 664 wait_on_page_writeback(page); 665 lock_page(page); 666 wait_on_page_writeback(page); 667 668 /* 669 * Remove all references to entry. 670 * Whenever we reach init_mm, there's no address space 671 * to search, but use it as a reminder to search shmem. 672 */ 673 shmem = 0; 674 swcount = *swap_map; 675 if (swcount > 1) { 676 if (start_mm == &init_mm) 677 shmem = shmem_unuse(entry, page); 678 else 679 retval = unuse_mm(start_mm, entry, page); 680 } 681 if (*swap_map > 1) { 682 int set_start_mm = (*swap_map >= swcount); 683 struct list_head *p = &start_mm->mmlist; 684 struct mm_struct *new_start_mm = start_mm; 685 struct mm_struct *prev_mm = start_mm; 686 struct mm_struct *mm; 687 688 atomic_inc(&new_start_mm->mm_users); 689 atomic_inc(&prev_mm->mm_users); 690 spin_lock(&mmlist_lock); 691 while (*swap_map > 1 && !retval && 692 (p = p->next) != &start_mm->mmlist) { 693 mm = list_entry(p, struct mm_struct, mmlist); 694 if (atomic_inc_return(&mm->mm_users) == 1) { 695 atomic_dec(&mm->mm_users); 696 continue; 697 } 698 spin_unlock(&mmlist_lock); 699 mmput(prev_mm); 700 prev_mm = mm; 701 702 cond_resched(); 703 704 swcount = *swap_map; 705 if (swcount <= 1) 706 ; 707 else if (mm == &init_mm) { 708 set_start_mm = 1; 709 shmem = shmem_unuse(entry, page); 710 } else 711 retval = unuse_mm(mm, entry, page); 712 if (set_start_mm && *swap_map < swcount) { 713 mmput(new_start_mm); 714 atomic_inc(&mm->mm_users); 715 new_start_mm = mm; 716 set_start_mm = 0; 717 } 718 spin_lock(&mmlist_lock); 719 } 720 spin_unlock(&mmlist_lock); 721 mmput(prev_mm); 722 mmput(start_mm); 723 start_mm = new_start_mm; 724 } 725 if (retval) { 726 unlock_page(page); 727 page_cache_release(page); 728 break; 729 } 730 731 /* 732 * How could swap count reach 0x7fff when the maximum 733 * pid is 0x7fff, and there's no way to repeat a swap 734 * page within an mm (except in shmem, where it's the 735 * shared object which takes the reference count)? 736 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4. 737 * 738 * If that's wrong, then we should worry more about 739 * exit_mmap() and do_munmap() cases described above: 740 * we might be resetting SWAP_MAP_MAX too early here. 741 * We know "Undead"s can happen, they're okay, so don't 742 * report them; but do report if we reset SWAP_MAP_MAX. 743 */ 744 if (*swap_map == SWAP_MAP_MAX) { 745 spin_lock(&swap_lock); 746 *swap_map = 1; 747 spin_unlock(&swap_lock); 748 reset_overflow = 1; 749 } 750 751 /* 752 * If a reference remains (rare), we would like to leave 753 * the page in the swap cache; but try_to_unmap could 754 * then re-duplicate the entry once we drop page lock, 755 * so we might loop indefinitely; also, that page could 756 * not be swapped out to other storage meanwhile. So: 757 * delete from cache even if there's another reference, 758 * after ensuring that the data has been saved to disk - 759 * since if the reference remains (rarer), it will be 760 * read from disk into another page. Splitting into two 761 * pages would be incorrect if swap supported "shared 762 * private" pages, but they are handled by tmpfs files. 763 * 764 * Note shmem_unuse already deleted a swappage from 765 * the swap cache, unless the move to filepage failed: 766 * in which case it left swappage in cache, lowered its 767 * swap count to pass quickly through the loops above, 768 * and now we must reincrement count to try again later. 769 */ 770 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) { 771 struct writeback_control wbc = { 772 .sync_mode = WB_SYNC_NONE, 773 }; 774 775 swap_writepage(page, &wbc); 776 lock_page(page); 777 wait_on_page_writeback(page); 778 } 779 if (PageSwapCache(page)) { 780 if (shmem) 781 swap_duplicate(entry); 782 else 783 delete_from_swap_cache(page); 784 } 785 786 /* 787 * So we could skip searching mms once swap count went 788 * to 1, we did not mark any present ptes as dirty: must 789 * mark page dirty so shrink_list will preserve it. 790 */ 791 SetPageDirty(page); 792 unlock_page(page); 793 page_cache_release(page); 794 795 /* 796 * Make sure that we aren't completely killing 797 * interactive performance. 798 */ 799 cond_resched(); 800 } 801 802 mmput(start_mm); 803 if (reset_overflow) { 804 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n"); 805 swap_overflow = 0; 806 } 807 return retval; 808 } 809 810 /* 811 * After a successful try_to_unuse, if no swap is now in use, we know 812 * we can empty the mmlist. swap_lock must be held on entry and exit. 813 * Note that mmlist_lock nests inside swap_lock, and an mm must be 814 * added to the mmlist just after page_duplicate - before would be racy. 815 */ 816 static void drain_mmlist(void) 817 { 818 struct list_head *p, *next; 819 unsigned int i; 820 821 for (i = 0; i < nr_swapfiles; i++) 822 if (swap_info[i].inuse_pages) 823 return; 824 spin_lock(&mmlist_lock); 825 list_for_each_safe(p, next, &init_mm.mmlist) 826 list_del_init(p); 827 spin_unlock(&mmlist_lock); 828 } 829 830 /* 831 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 832 * corresponds to page offset `offset'. 833 */ 834 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset) 835 { 836 struct swap_extent *se = sis->curr_swap_extent; 837 struct swap_extent *start_se = se; 838 839 for ( ; ; ) { 840 struct list_head *lh; 841 842 if (se->start_page <= offset && 843 offset < (se->start_page + se->nr_pages)) { 844 return se->start_block + (offset - se->start_page); 845 } 846 lh = se->list.next; 847 if (lh == &sis->extent_list) 848 lh = lh->next; 849 se = list_entry(lh, struct swap_extent, list); 850 sis->curr_swap_extent = se; 851 BUG_ON(se == start_se); /* It *must* be present */ 852 } 853 } 854 855 /* 856 * Free all of a swapdev's extent information 857 */ 858 static void destroy_swap_extents(struct swap_info_struct *sis) 859 { 860 while (!list_empty(&sis->extent_list)) { 861 struct swap_extent *se; 862 863 se = list_entry(sis->extent_list.next, 864 struct swap_extent, list); 865 list_del(&se->list); 866 kfree(se); 867 } 868 } 869 870 /* 871 * Add a block range (and the corresponding page range) into this swapdev's 872 * extent list. The extent list is kept sorted in page order. 873 * 874 * This function rather assumes that it is called in ascending page order. 875 */ 876 static int 877 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 878 unsigned long nr_pages, sector_t start_block) 879 { 880 struct swap_extent *se; 881 struct swap_extent *new_se; 882 struct list_head *lh; 883 884 lh = sis->extent_list.prev; /* The highest page extent */ 885 if (lh != &sis->extent_list) { 886 se = list_entry(lh, struct swap_extent, list); 887 BUG_ON(se->start_page + se->nr_pages != start_page); 888 if (se->start_block + se->nr_pages == start_block) { 889 /* Merge it */ 890 se->nr_pages += nr_pages; 891 return 0; 892 } 893 } 894 895 /* 896 * No merge. Insert a new extent, preserving ordering. 897 */ 898 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 899 if (new_se == NULL) 900 return -ENOMEM; 901 new_se->start_page = start_page; 902 new_se->nr_pages = nr_pages; 903 new_se->start_block = start_block; 904 905 list_add_tail(&new_se->list, &sis->extent_list); 906 return 1; 907 } 908 909 /* 910 * A `swap extent' is a simple thing which maps a contiguous range of pages 911 * onto a contiguous range of disk blocks. An ordered list of swap extents 912 * is built at swapon time and is then used at swap_writepage/swap_readpage 913 * time for locating where on disk a page belongs. 914 * 915 * If the swapfile is an S_ISBLK block device, a single extent is installed. 916 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 917 * swap files identically. 918 * 919 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 920 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 921 * swapfiles are handled *identically* after swapon time. 922 * 923 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 924 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 925 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 926 * requirements, they are simply tossed out - we will never use those blocks 927 * for swapping. 928 * 929 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 930 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 931 * which will scribble on the fs. 932 * 933 * The amount of disk space which a single swap extent represents varies. 934 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 935 * extents in the list. To avoid much list walking, we cache the previous 936 * search location in `curr_swap_extent', and start new searches from there. 937 * This is extremely effective. The average number of iterations in 938 * map_swap_page() has been measured at about 0.3 per page. - akpm. 939 */ 940 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 941 { 942 struct inode *inode; 943 unsigned blocks_per_page; 944 unsigned long page_no; 945 unsigned blkbits; 946 sector_t probe_block; 947 sector_t last_block; 948 sector_t lowest_block = -1; 949 sector_t highest_block = 0; 950 int nr_extents = 0; 951 int ret; 952 953 inode = sis->swap_file->f_mapping->host; 954 if (S_ISBLK(inode->i_mode)) { 955 ret = add_swap_extent(sis, 0, sis->max, 0); 956 *span = sis->pages; 957 goto done; 958 } 959 960 blkbits = inode->i_blkbits; 961 blocks_per_page = PAGE_SIZE >> blkbits; 962 963 /* 964 * Map all the blocks into the extent list. This code doesn't try 965 * to be very smart. 966 */ 967 probe_block = 0; 968 page_no = 0; 969 last_block = i_size_read(inode) >> blkbits; 970 while ((probe_block + blocks_per_page) <= last_block && 971 page_no < sis->max) { 972 unsigned block_in_page; 973 sector_t first_block; 974 975 first_block = bmap(inode, probe_block); 976 if (first_block == 0) 977 goto bad_bmap; 978 979 /* 980 * It must be PAGE_SIZE aligned on-disk 981 */ 982 if (first_block & (blocks_per_page - 1)) { 983 probe_block++; 984 goto reprobe; 985 } 986 987 for (block_in_page = 1; block_in_page < blocks_per_page; 988 block_in_page++) { 989 sector_t block; 990 991 block = bmap(inode, probe_block + block_in_page); 992 if (block == 0) 993 goto bad_bmap; 994 if (block != first_block + block_in_page) { 995 /* Discontiguity */ 996 probe_block++; 997 goto reprobe; 998 } 999 } 1000 1001 first_block >>= (PAGE_SHIFT - blkbits); 1002 if (page_no) { /* exclude the header page */ 1003 if (first_block < lowest_block) 1004 lowest_block = first_block; 1005 if (first_block > highest_block) 1006 highest_block = first_block; 1007 } 1008 1009 /* 1010 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 1011 */ 1012 ret = add_swap_extent(sis, page_no, 1, first_block); 1013 if (ret < 0) 1014 goto out; 1015 nr_extents += ret; 1016 page_no++; 1017 probe_block += blocks_per_page; 1018 reprobe: 1019 continue; 1020 } 1021 ret = nr_extents; 1022 *span = 1 + highest_block - lowest_block; 1023 if (page_no == 0) 1024 page_no = 1; /* force Empty message */ 1025 sis->max = page_no; 1026 sis->pages = page_no - 1; 1027 sis->highest_bit = page_no - 1; 1028 done: 1029 sis->curr_swap_extent = list_entry(sis->extent_list.prev, 1030 struct swap_extent, list); 1031 goto out; 1032 bad_bmap: 1033 printk(KERN_ERR "swapon: swapfile has holes\n"); 1034 ret = -EINVAL; 1035 out: 1036 return ret; 1037 } 1038 1039 #if 0 /* We don't need this yet */ 1040 #include <linux/backing-dev.h> 1041 int page_queue_congested(struct page *page) 1042 { 1043 struct backing_dev_info *bdi; 1044 1045 BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */ 1046 1047 if (PageSwapCache(page)) { 1048 swp_entry_t entry = { .val = page->private }; 1049 struct swap_info_struct *sis; 1050 1051 sis = get_swap_info_struct(swp_type(entry)); 1052 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info; 1053 } else 1054 bdi = page->mapping->backing_dev_info; 1055 return bdi_write_congested(bdi); 1056 } 1057 #endif 1058 1059 asmlinkage long sys_swapoff(const char __user * specialfile) 1060 { 1061 struct swap_info_struct * p = NULL; 1062 unsigned short *swap_map; 1063 struct file *swap_file, *victim; 1064 struct address_space *mapping; 1065 struct inode *inode; 1066 char * pathname; 1067 int i, type, prev; 1068 int err; 1069 1070 if (!capable(CAP_SYS_ADMIN)) 1071 return -EPERM; 1072 1073 pathname = getname(specialfile); 1074 err = PTR_ERR(pathname); 1075 if (IS_ERR(pathname)) 1076 goto out; 1077 1078 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0); 1079 putname(pathname); 1080 err = PTR_ERR(victim); 1081 if (IS_ERR(victim)) 1082 goto out; 1083 1084 mapping = victim->f_mapping; 1085 prev = -1; 1086 spin_lock(&swap_lock); 1087 for (type = swap_list.head; type >= 0; type = swap_info[type].next) { 1088 p = swap_info + type; 1089 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) { 1090 if (p->swap_file->f_mapping == mapping) 1091 break; 1092 } 1093 prev = type; 1094 } 1095 if (type < 0) { 1096 err = -EINVAL; 1097 spin_unlock(&swap_lock); 1098 goto out_dput; 1099 } 1100 if (!security_vm_enough_memory(p->pages)) 1101 vm_unacct_memory(p->pages); 1102 else { 1103 err = -ENOMEM; 1104 spin_unlock(&swap_lock); 1105 goto out_dput; 1106 } 1107 if (prev < 0) { 1108 swap_list.head = p->next; 1109 } else { 1110 swap_info[prev].next = p->next; 1111 } 1112 if (type == swap_list.next) { 1113 /* just pick something that's safe... */ 1114 swap_list.next = swap_list.head; 1115 } 1116 nr_swap_pages -= p->pages; 1117 total_swap_pages -= p->pages; 1118 p->flags &= ~SWP_WRITEOK; 1119 spin_unlock(&swap_lock); 1120 1121 current->flags |= PF_SWAPOFF; 1122 err = try_to_unuse(type); 1123 current->flags &= ~PF_SWAPOFF; 1124 1125 if (err) { 1126 /* re-insert swap space back into swap_list */ 1127 spin_lock(&swap_lock); 1128 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next) 1129 if (p->prio >= swap_info[i].prio) 1130 break; 1131 p->next = i; 1132 if (prev < 0) 1133 swap_list.head = swap_list.next = p - swap_info; 1134 else 1135 swap_info[prev].next = p - swap_info; 1136 nr_swap_pages += p->pages; 1137 total_swap_pages += p->pages; 1138 p->flags |= SWP_WRITEOK; 1139 spin_unlock(&swap_lock); 1140 goto out_dput; 1141 } 1142 1143 /* wait for any unplug function to finish */ 1144 down_write(&swap_unplug_sem); 1145 up_write(&swap_unplug_sem); 1146 1147 destroy_swap_extents(p); 1148 down(&swapon_sem); 1149 spin_lock(&swap_lock); 1150 drain_mmlist(); 1151 1152 /* wait for anyone still in scan_swap_map */ 1153 p->highest_bit = 0; /* cuts scans short */ 1154 while (p->flags >= SWP_SCANNING) { 1155 spin_unlock(&swap_lock); 1156 schedule_timeout_uninterruptible(1); 1157 spin_lock(&swap_lock); 1158 } 1159 1160 swap_file = p->swap_file; 1161 p->swap_file = NULL; 1162 p->max = 0; 1163 swap_map = p->swap_map; 1164 p->swap_map = NULL; 1165 p->flags = 0; 1166 spin_unlock(&swap_lock); 1167 up(&swapon_sem); 1168 vfree(swap_map); 1169 inode = mapping->host; 1170 if (S_ISBLK(inode->i_mode)) { 1171 struct block_device *bdev = I_BDEV(inode); 1172 set_blocksize(bdev, p->old_block_size); 1173 bd_release(bdev); 1174 } else { 1175 down(&inode->i_sem); 1176 inode->i_flags &= ~S_SWAPFILE; 1177 up(&inode->i_sem); 1178 } 1179 filp_close(swap_file, NULL); 1180 err = 0; 1181 1182 out_dput: 1183 filp_close(victim, NULL); 1184 out: 1185 return err; 1186 } 1187 1188 #ifdef CONFIG_PROC_FS 1189 /* iterator */ 1190 static void *swap_start(struct seq_file *swap, loff_t *pos) 1191 { 1192 struct swap_info_struct *ptr = swap_info; 1193 int i; 1194 loff_t l = *pos; 1195 1196 down(&swapon_sem); 1197 1198 for (i = 0; i < nr_swapfiles; i++, ptr++) { 1199 if (!(ptr->flags & SWP_USED) || !ptr->swap_map) 1200 continue; 1201 if (!l--) 1202 return ptr; 1203 } 1204 1205 return NULL; 1206 } 1207 1208 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 1209 { 1210 struct swap_info_struct *ptr = v; 1211 struct swap_info_struct *endptr = swap_info + nr_swapfiles; 1212 1213 for (++ptr; ptr < endptr; ptr++) { 1214 if (!(ptr->flags & SWP_USED) || !ptr->swap_map) 1215 continue; 1216 ++*pos; 1217 return ptr; 1218 } 1219 1220 return NULL; 1221 } 1222 1223 static void swap_stop(struct seq_file *swap, void *v) 1224 { 1225 up(&swapon_sem); 1226 } 1227 1228 static int swap_show(struct seq_file *swap, void *v) 1229 { 1230 struct swap_info_struct *ptr = v; 1231 struct file *file; 1232 int len; 1233 1234 if (v == swap_info) 1235 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 1236 1237 file = ptr->swap_file; 1238 len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\"); 1239 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 1240 len < 40 ? 40 - len : 1, " ", 1241 S_ISBLK(file->f_dentry->d_inode->i_mode) ? 1242 "partition" : "file\t", 1243 ptr->pages << (PAGE_SHIFT - 10), 1244 ptr->inuse_pages << (PAGE_SHIFT - 10), 1245 ptr->prio); 1246 return 0; 1247 } 1248 1249 static struct seq_operations swaps_op = { 1250 .start = swap_start, 1251 .next = swap_next, 1252 .stop = swap_stop, 1253 .show = swap_show 1254 }; 1255 1256 static int swaps_open(struct inode *inode, struct file *file) 1257 { 1258 return seq_open(file, &swaps_op); 1259 } 1260 1261 static struct file_operations proc_swaps_operations = { 1262 .open = swaps_open, 1263 .read = seq_read, 1264 .llseek = seq_lseek, 1265 .release = seq_release, 1266 }; 1267 1268 static int __init procswaps_init(void) 1269 { 1270 struct proc_dir_entry *entry; 1271 1272 entry = create_proc_entry("swaps", 0, NULL); 1273 if (entry) 1274 entry->proc_fops = &proc_swaps_operations; 1275 return 0; 1276 } 1277 __initcall(procswaps_init); 1278 #endif /* CONFIG_PROC_FS */ 1279 1280 /* 1281 * Written 01/25/92 by Simmule Turner, heavily changed by Linus. 1282 * 1283 * The swapon system call 1284 */ 1285 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) 1286 { 1287 struct swap_info_struct * p; 1288 char *name = NULL; 1289 struct block_device *bdev = NULL; 1290 struct file *swap_file = NULL; 1291 struct address_space *mapping; 1292 unsigned int type; 1293 int i, prev; 1294 int error; 1295 static int least_priority; 1296 union swap_header *swap_header = NULL; 1297 int swap_header_version; 1298 unsigned int nr_good_pages = 0; 1299 int nr_extents = 0; 1300 sector_t span; 1301 unsigned long maxpages = 1; 1302 int swapfilesize; 1303 unsigned short *swap_map; 1304 struct page *page = NULL; 1305 struct inode *inode = NULL; 1306 int did_down = 0; 1307 1308 if (!capable(CAP_SYS_ADMIN)) 1309 return -EPERM; 1310 spin_lock(&swap_lock); 1311 p = swap_info; 1312 for (type = 0 ; type < nr_swapfiles ; type++,p++) 1313 if (!(p->flags & SWP_USED)) 1314 break; 1315 error = -EPERM; 1316 /* 1317 * Test if adding another swap device is possible. There are 1318 * two limiting factors: 1) the number of bits for the swap 1319 * type swp_entry_t definition and 2) the number of bits for 1320 * the swap type in the swap ptes as defined by the different 1321 * architectures. To honor both limitations a swap entry 1322 * with swap offset 0 and swap type ~0UL is created, encoded 1323 * to a swap pte, decoded to a swp_entry_t again and finally 1324 * the swap type part is extracted. This will mask all bits 1325 * from the initial ~0UL that can't be encoded in either the 1326 * swp_entry_t or the architecture definition of a swap pte. 1327 */ 1328 if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) { 1329 spin_unlock(&swap_lock); 1330 goto out; 1331 } 1332 if (type >= nr_swapfiles) 1333 nr_swapfiles = type+1; 1334 INIT_LIST_HEAD(&p->extent_list); 1335 p->flags = SWP_USED; 1336 p->swap_file = NULL; 1337 p->old_block_size = 0; 1338 p->swap_map = NULL; 1339 p->lowest_bit = 0; 1340 p->highest_bit = 0; 1341 p->cluster_nr = 0; 1342 p->inuse_pages = 0; 1343 p->next = -1; 1344 if (swap_flags & SWAP_FLAG_PREFER) { 1345 p->prio = 1346 (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT; 1347 } else { 1348 p->prio = --least_priority; 1349 } 1350 spin_unlock(&swap_lock); 1351 name = getname(specialfile); 1352 error = PTR_ERR(name); 1353 if (IS_ERR(name)) { 1354 name = NULL; 1355 goto bad_swap_2; 1356 } 1357 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0); 1358 error = PTR_ERR(swap_file); 1359 if (IS_ERR(swap_file)) { 1360 swap_file = NULL; 1361 goto bad_swap_2; 1362 } 1363 1364 p->swap_file = swap_file; 1365 mapping = swap_file->f_mapping; 1366 inode = mapping->host; 1367 1368 error = -EBUSY; 1369 for (i = 0; i < nr_swapfiles; i++) { 1370 struct swap_info_struct *q = &swap_info[i]; 1371 1372 if (i == type || !q->swap_file) 1373 continue; 1374 if (mapping == q->swap_file->f_mapping) 1375 goto bad_swap; 1376 } 1377 1378 error = -EINVAL; 1379 if (S_ISBLK(inode->i_mode)) { 1380 bdev = I_BDEV(inode); 1381 error = bd_claim(bdev, sys_swapon); 1382 if (error < 0) { 1383 bdev = NULL; 1384 error = -EINVAL; 1385 goto bad_swap; 1386 } 1387 p->old_block_size = block_size(bdev); 1388 error = set_blocksize(bdev, PAGE_SIZE); 1389 if (error < 0) 1390 goto bad_swap; 1391 p->bdev = bdev; 1392 } else if (S_ISREG(inode->i_mode)) { 1393 p->bdev = inode->i_sb->s_bdev; 1394 down(&inode->i_sem); 1395 did_down = 1; 1396 if (IS_SWAPFILE(inode)) { 1397 error = -EBUSY; 1398 goto bad_swap; 1399 } 1400 } else { 1401 goto bad_swap; 1402 } 1403 1404 swapfilesize = i_size_read(inode) >> PAGE_SHIFT; 1405 1406 /* 1407 * Read the swap header. 1408 */ 1409 if (!mapping->a_ops->readpage) { 1410 error = -EINVAL; 1411 goto bad_swap; 1412 } 1413 page = read_cache_page(mapping, 0, 1414 (filler_t *)mapping->a_ops->readpage, swap_file); 1415 if (IS_ERR(page)) { 1416 error = PTR_ERR(page); 1417 goto bad_swap; 1418 } 1419 wait_on_page_locked(page); 1420 if (!PageUptodate(page)) 1421 goto bad_swap; 1422 kmap(page); 1423 swap_header = page_address(page); 1424 1425 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10)) 1426 swap_header_version = 1; 1427 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10)) 1428 swap_header_version = 2; 1429 else { 1430 printk("Unable to find swap-space signature\n"); 1431 error = -EINVAL; 1432 goto bad_swap; 1433 } 1434 1435 switch (swap_header_version) { 1436 case 1: 1437 printk(KERN_ERR "version 0 swap is no longer supported. " 1438 "Use mkswap -v1 %s\n", name); 1439 error = -EINVAL; 1440 goto bad_swap; 1441 case 2: 1442 /* Check the swap header's sub-version and the size of 1443 the swap file and bad block lists */ 1444 if (swap_header->info.version != 1) { 1445 printk(KERN_WARNING 1446 "Unable to handle swap header version %d\n", 1447 swap_header->info.version); 1448 error = -EINVAL; 1449 goto bad_swap; 1450 } 1451 1452 p->lowest_bit = 1; 1453 p->cluster_next = 1; 1454 1455 /* 1456 * Find out how many pages are allowed for a single swap 1457 * device. There are two limiting factors: 1) the number of 1458 * bits for the swap offset in the swp_entry_t type and 1459 * 2) the number of bits in the a swap pte as defined by 1460 * the different architectures. In order to find the 1461 * largest possible bit mask a swap entry with swap type 0 1462 * and swap offset ~0UL is created, encoded to a swap pte, 1463 * decoded to a swp_entry_t again and finally the swap 1464 * offset is extracted. This will mask all the bits from 1465 * the initial ~0UL mask that can't be encoded in either 1466 * the swp_entry_t or the architecture definition of a 1467 * swap pte. 1468 */ 1469 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1; 1470 if (maxpages > swap_header->info.last_page) 1471 maxpages = swap_header->info.last_page; 1472 p->highest_bit = maxpages - 1; 1473 1474 error = -EINVAL; 1475 if (!maxpages) 1476 goto bad_swap; 1477 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 1478 goto bad_swap; 1479 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 1480 goto bad_swap; 1481 1482 /* OK, set up the swap map and apply the bad block list */ 1483 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) { 1484 error = -ENOMEM; 1485 goto bad_swap; 1486 } 1487 1488 error = 0; 1489 memset(p->swap_map, 0, maxpages * sizeof(short)); 1490 for (i=0; i<swap_header->info.nr_badpages; i++) { 1491 int page = swap_header->info.badpages[i]; 1492 if (page <= 0 || page >= swap_header->info.last_page) 1493 error = -EINVAL; 1494 else 1495 p->swap_map[page] = SWAP_MAP_BAD; 1496 } 1497 nr_good_pages = swap_header->info.last_page - 1498 swap_header->info.nr_badpages - 1499 1 /* header page */; 1500 if (error) 1501 goto bad_swap; 1502 } 1503 1504 if (swapfilesize && maxpages > swapfilesize) { 1505 printk(KERN_WARNING 1506 "Swap area shorter than signature indicates\n"); 1507 error = -EINVAL; 1508 goto bad_swap; 1509 } 1510 if (nr_good_pages) { 1511 p->swap_map[0] = SWAP_MAP_BAD; 1512 p->max = maxpages; 1513 p->pages = nr_good_pages; 1514 nr_extents = setup_swap_extents(p, &span); 1515 if (nr_extents < 0) { 1516 error = nr_extents; 1517 goto bad_swap; 1518 } 1519 nr_good_pages = p->pages; 1520 } 1521 if (!nr_good_pages) { 1522 printk(KERN_WARNING "Empty swap-file\n"); 1523 error = -EINVAL; 1524 goto bad_swap; 1525 } 1526 1527 down(&swapon_sem); 1528 spin_lock(&swap_lock); 1529 p->flags = SWP_ACTIVE; 1530 nr_swap_pages += nr_good_pages; 1531 total_swap_pages += nr_good_pages; 1532 1533 printk(KERN_INFO "Adding %uk swap on %s. " 1534 "Priority:%d extents:%d across:%lluk\n", 1535 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio, 1536 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10)); 1537 1538 /* insert swap space into swap_list: */ 1539 prev = -1; 1540 for (i = swap_list.head; i >= 0; i = swap_info[i].next) { 1541 if (p->prio >= swap_info[i].prio) { 1542 break; 1543 } 1544 prev = i; 1545 } 1546 p->next = i; 1547 if (prev < 0) { 1548 swap_list.head = swap_list.next = p - swap_info; 1549 } else { 1550 swap_info[prev].next = p - swap_info; 1551 } 1552 spin_unlock(&swap_lock); 1553 up(&swapon_sem); 1554 error = 0; 1555 goto out; 1556 bad_swap: 1557 if (bdev) { 1558 set_blocksize(bdev, p->old_block_size); 1559 bd_release(bdev); 1560 } 1561 destroy_swap_extents(p); 1562 bad_swap_2: 1563 spin_lock(&swap_lock); 1564 swap_map = p->swap_map; 1565 p->swap_file = NULL; 1566 p->swap_map = NULL; 1567 p->flags = 0; 1568 if (!(swap_flags & SWAP_FLAG_PREFER)) 1569 ++least_priority; 1570 spin_unlock(&swap_lock); 1571 vfree(swap_map); 1572 if (swap_file) 1573 filp_close(swap_file, NULL); 1574 out: 1575 if (page && !IS_ERR(page)) { 1576 kunmap(page); 1577 page_cache_release(page); 1578 } 1579 if (name) 1580 putname(name); 1581 if (did_down) { 1582 if (!error) 1583 inode->i_flags |= S_SWAPFILE; 1584 up(&inode->i_sem); 1585 } 1586 return error; 1587 } 1588 1589 void si_swapinfo(struct sysinfo *val) 1590 { 1591 unsigned int i; 1592 unsigned long nr_to_be_unused = 0; 1593 1594 spin_lock(&swap_lock); 1595 for (i = 0; i < nr_swapfiles; i++) { 1596 if (!(swap_info[i].flags & SWP_USED) || 1597 (swap_info[i].flags & SWP_WRITEOK)) 1598 continue; 1599 nr_to_be_unused += swap_info[i].inuse_pages; 1600 } 1601 val->freeswap = nr_swap_pages + nr_to_be_unused; 1602 val->totalswap = total_swap_pages + nr_to_be_unused; 1603 spin_unlock(&swap_lock); 1604 } 1605 1606 /* 1607 * Verify that a swap entry is valid and increment its swap map count. 1608 * 1609 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as 1610 * "permanent", but will be reclaimed by the next swapoff. 1611 */ 1612 int swap_duplicate(swp_entry_t entry) 1613 { 1614 struct swap_info_struct * p; 1615 unsigned long offset, type; 1616 int result = 0; 1617 1618 type = swp_type(entry); 1619 if (type >= nr_swapfiles) 1620 goto bad_file; 1621 p = type + swap_info; 1622 offset = swp_offset(entry); 1623 1624 spin_lock(&swap_lock); 1625 if (offset < p->max && p->swap_map[offset]) { 1626 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) { 1627 p->swap_map[offset]++; 1628 result = 1; 1629 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) { 1630 if (swap_overflow++ < 5) 1631 printk(KERN_WARNING "swap_dup: swap entry overflow\n"); 1632 p->swap_map[offset] = SWAP_MAP_MAX; 1633 result = 1; 1634 } 1635 } 1636 spin_unlock(&swap_lock); 1637 out: 1638 return result; 1639 1640 bad_file: 1641 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); 1642 goto out; 1643 } 1644 1645 struct swap_info_struct * 1646 get_swap_info_struct(unsigned type) 1647 { 1648 return &swap_info[type]; 1649 } 1650 1651 /* 1652 * swap_lock prevents swap_map being freed. Don't grab an extra 1653 * reference on the swaphandle, it doesn't matter if it becomes unused. 1654 */ 1655 int valid_swaphandles(swp_entry_t entry, unsigned long *offset) 1656 { 1657 int ret = 0, i = 1 << page_cluster; 1658 unsigned long toff; 1659 struct swap_info_struct *swapdev = swp_type(entry) + swap_info; 1660 1661 if (!page_cluster) /* no readahead */ 1662 return 0; 1663 toff = (swp_offset(entry) >> page_cluster) << page_cluster; 1664 if (!toff) /* first page is swap header */ 1665 toff++, i--; 1666 *offset = toff; 1667 1668 spin_lock(&swap_lock); 1669 do { 1670 /* Don't read-ahead past the end of the swap area */ 1671 if (toff >= swapdev->max) 1672 break; 1673 /* Don't read in free or bad pages */ 1674 if (!swapdev->swap_map[toff]) 1675 break; 1676 if (swapdev->swap_map[toff] == SWAP_MAP_BAD) 1677 break; 1678 toff++; 1679 ret++; 1680 } while (--i); 1681 spin_unlock(&swap_lock); 1682 return ret; 1683 } 1684