xref: /linux/mm/swapfile.c (revision 544029862cbb1d7903e19f2e58f48d4884e1201b)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
41 
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46 
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 				 unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51 
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64 
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69 
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75 
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90 
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92 
93 static DEFINE_MUTEX(swapon_mutex);
94 
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98 
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100 
101 static inline unsigned char swap_count(unsigned char ent)
102 {
103 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
104 }
105 
106 /* Reclaim the swap entry anyway if possible */
107 #define TTRS_ANYWAY		0x1
108 /*
109  * Reclaim the swap entry if there are no more mappings of the
110  * corresponding page
111  */
112 #define TTRS_UNMAPPED		0x2
113 /* Reclaim the swap entry if swap is getting full*/
114 #define TTRS_FULL		0x4
115 
116 /* returns 1 if swap entry is freed */
117 static int __try_to_reclaim_swap(struct swap_info_struct *si,
118 				 unsigned long offset, unsigned long flags)
119 {
120 	swp_entry_t entry = swp_entry(si->type, offset);
121 	struct page *page;
122 	int ret = 0;
123 
124 	page = find_get_page(swap_address_space(entry), offset);
125 	if (!page)
126 		return 0;
127 	/*
128 	 * When this function is called from scan_swap_map_slots() and it's
129 	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
130 	 * here. We have to use trylock for avoiding deadlock. This is a special
131 	 * case and you should use try_to_free_swap() with explicit lock_page()
132 	 * in usual operations.
133 	 */
134 	if (trylock_page(page)) {
135 		if ((flags & TTRS_ANYWAY) ||
136 		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
137 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
138 			ret = try_to_free_swap(page);
139 		unlock_page(page);
140 	}
141 	put_page(page);
142 	return ret;
143 }
144 
145 /*
146  * swapon tell device that all the old swap contents can be discarded,
147  * to allow the swap device to optimize its wear-levelling.
148  */
149 static int discard_swap(struct swap_info_struct *si)
150 {
151 	struct swap_extent *se;
152 	sector_t start_block;
153 	sector_t nr_blocks;
154 	int err = 0;
155 
156 	/* Do not discard the swap header page! */
157 	se = &si->first_swap_extent;
158 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
159 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
160 	if (nr_blocks) {
161 		err = blkdev_issue_discard(si->bdev, start_block,
162 				nr_blocks, GFP_KERNEL, 0);
163 		if (err)
164 			return err;
165 		cond_resched();
166 	}
167 
168 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
169 		start_block = se->start_block << (PAGE_SHIFT - 9);
170 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
171 
172 		err = blkdev_issue_discard(si->bdev, start_block,
173 				nr_blocks, GFP_KERNEL, 0);
174 		if (err)
175 			break;
176 
177 		cond_resched();
178 	}
179 	return err;		/* That will often be -EOPNOTSUPP */
180 }
181 
182 /*
183  * swap allocation tell device that a cluster of swap can now be discarded,
184  * to allow the swap device to optimize its wear-levelling.
185  */
186 static void discard_swap_cluster(struct swap_info_struct *si,
187 				 pgoff_t start_page, pgoff_t nr_pages)
188 {
189 	struct swap_extent *se = si->curr_swap_extent;
190 	int found_extent = 0;
191 
192 	while (nr_pages) {
193 		if (se->start_page <= start_page &&
194 		    start_page < se->start_page + se->nr_pages) {
195 			pgoff_t offset = start_page - se->start_page;
196 			sector_t start_block = se->start_block + offset;
197 			sector_t nr_blocks = se->nr_pages - offset;
198 
199 			if (nr_blocks > nr_pages)
200 				nr_blocks = nr_pages;
201 			start_page += nr_blocks;
202 			nr_pages -= nr_blocks;
203 
204 			if (!found_extent++)
205 				si->curr_swap_extent = se;
206 
207 			start_block <<= PAGE_SHIFT - 9;
208 			nr_blocks <<= PAGE_SHIFT - 9;
209 			if (blkdev_issue_discard(si->bdev, start_block,
210 				    nr_blocks, GFP_NOIO, 0))
211 				break;
212 		}
213 
214 		se = list_next_entry(se, list);
215 	}
216 }
217 
218 #ifdef CONFIG_THP_SWAP
219 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
220 
221 #define swap_entry_size(size)	(size)
222 #else
223 #define SWAPFILE_CLUSTER	256
224 
225 /*
226  * Define swap_entry_size() as constant to let compiler to optimize
227  * out some code if !CONFIG_THP_SWAP
228  */
229 #define swap_entry_size(size)	1
230 #endif
231 #define LATENCY_LIMIT		256
232 
233 static inline void cluster_set_flag(struct swap_cluster_info *info,
234 	unsigned int flag)
235 {
236 	info->flags = flag;
237 }
238 
239 static inline unsigned int cluster_count(struct swap_cluster_info *info)
240 {
241 	return info->data;
242 }
243 
244 static inline void cluster_set_count(struct swap_cluster_info *info,
245 				     unsigned int c)
246 {
247 	info->data = c;
248 }
249 
250 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
251 					 unsigned int c, unsigned int f)
252 {
253 	info->flags = f;
254 	info->data = c;
255 }
256 
257 static inline unsigned int cluster_next(struct swap_cluster_info *info)
258 {
259 	return info->data;
260 }
261 
262 static inline void cluster_set_next(struct swap_cluster_info *info,
263 				    unsigned int n)
264 {
265 	info->data = n;
266 }
267 
268 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
269 					 unsigned int n, unsigned int f)
270 {
271 	info->flags = f;
272 	info->data = n;
273 }
274 
275 static inline bool cluster_is_free(struct swap_cluster_info *info)
276 {
277 	return info->flags & CLUSTER_FLAG_FREE;
278 }
279 
280 static inline bool cluster_is_null(struct swap_cluster_info *info)
281 {
282 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
283 }
284 
285 static inline void cluster_set_null(struct swap_cluster_info *info)
286 {
287 	info->flags = CLUSTER_FLAG_NEXT_NULL;
288 	info->data = 0;
289 }
290 
291 static inline bool cluster_is_huge(struct swap_cluster_info *info)
292 {
293 	if (IS_ENABLED(CONFIG_THP_SWAP))
294 		return info->flags & CLUSTER_FLAG_HUGE;
295 	return false;
296 }
297 
298 static inline void cluster_clear_huge(struct swap_cluster_info *info)
299 {
300 	info->flags &= ~CLUSTER_FLAG_HUGE;
301 }
302 
303 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
304 						     unsigned long offset)
305 {
306 	struct swap_cluster_info *ci;
307 
308 	ci = si->cluster_info;
309 	if (ci) {
310 		ci += offset / SWAPFILE_CLUSTER;
311 		spin_lock(&ci->lock);
312 	}
313 	return ci;
314 }
315 
316 static inline void unlock_cluster(struct swap_cluster_info *ci)
317 {
318 	if (ci)
319 		spin_unlock(&ci->lock);
320 }
321 
322 /*
323  * Determine the locking method in use for this device.  Return
324  * swap_cluster_info if SSD-style cluster-based locking is in place.
325  */
326 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
327 		struct swap_info_struct *si, unsigned long offset)
328 {
329 	struct swap_cluster_info *ci;
330 
331 	/* Try to use fine-grained SSD-style locking if available: */
332 	ci = lock_cluster(si, offset);
333 	/* Otherwise, fall back to traditional, coarse locking: */
334 	if (!ci)
335 		spin_lock(&si->lock);
336 
337 	return ci;
338 }
339 
340 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
341 					       struct swap_cluster_info *ci)
342 {
343 	if (ci)
344 		unlock_cluster(ci);
345 	else
346 		spin_unlock(&si->lock);
347 }
348 
349 static inline bool cluster_list_empty(struct swap_cluster_list *list)
350 {
351 	return cluster_is_null(&list->head);
352 }
353 
354 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
355 {
356 	return cluster_next(&list->head);
357 }
358 
359 static void cluster_list_init(struct swap_cluster_list *list)
360 {
361 	cluster_set_null(&list->head);
362 	cluster_set_null(&list->tail);
363 }
364 
365 static void cluster_list_add_tail(struct swap_cluster_list *list,
366 				  struct swap_cluster_info *ci,
367 				  unsigned int idx)
368 {
369 	if (cluster_list_empty(list)) {
370 		cluster_set_next_flag(&list->head, idx, 0);
371 		cluster_set_next_flag(&list->tail, idx, 0);
372 	} else {
373 		struct swap_cluster_info *ci_tail;
374 		unsigned int tail = cluster_next(&list->tail);
375 
376 		/*
377 		 * Nested cluster lock, but both cluster locks are
378 		 * only acquired when we held swap_info_struct->lock
379 		 */
380 		ci_tail = ci + tail;
381 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
382 		cluster_set_next(ci_tail, idx);
383 		spin_unlock(&ci_tail->lock);
384 		cluster_set_next_flag(&list->tail, idx, 0);
385 	}
386 }
387 
388 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
389 					   struct swap_cluster_info *ci)
390 {
391 	unsigned int idx;
392 
393 	idx = cluster_next(&list->head);
394 	if (cluster_next(&list->tail) == idx) {
395 		cluster_set_null(&list->head);
396 		cluster_set_null(&list->tail);
397 	} else
398 		cluster_set_next_flag(&list->head,
399 				      cluster_next(&ci[idx]), 0);
400 
401 	return idx;
402 }
403 
404 /* Add a cluster to discard list and schedule it to do discard */
405 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
406 		unsigned int idx)
407 {
408 	/*
409 	 * If scan_swap_map() can't find a free cluster, it will check
410 	 * si->swap_map directly. To make sure the discarding cluster isn't
411 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
412 	 * will be cleared after discard
413 	 */
414 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
415 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
416 
417 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
418 
419 	schedule_work(&si->discard_work);
420 }
421 
422 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
423 {
424 	struct swap_cluster_info *ci = si->cluster_info;
425 
426 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
427 	cluster_list_add_tail(&si->free_clusters, ci, idx);
428 }
429 
430 /*
431  * Doing discard actually. After a cluster discard is finished, the cluster
432  * will be added to free cluster list. caller should hold si->lock.
433 */
434 static void swap_do_scheduled_discard(struct swap_info_struct *si)
435 {
436 	struct swap_cluster_info *info, *ci;
437 	unsigned int idx;
438 
439 	info = si->cluster_info;
440 
441 	while (!cluster_list_empty(&si->discard_clusters)) {
442 		idx = cluster_list_del_first(&si->discard_clusters, info);
443 		spin_unlock(&si->lock);
444 
445 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
446 				SWAPFILE_CLUSTER);
447 
448 		spin_lock(&si->lock);
449 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
450 		__free_cluster(si, idx);
451 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
452 				0, SWAPFILE_CLUSTER);
453 		unlock_cluster(ci);
454 	}
455 }
456 
457 static void swap_discard_work(struct work_struct *work)
458 {
459 	struct swap_info_struct *si;
460 
461 	si = container_of(work, struct swap_info_struct, discard_work);
462 
463 	spin_lock(&si->lock);
464 	swap_do_scheduled_discard(si);
465 	spin_unlock(&si->lock);
466 }
467 
468 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
469 {
470 	struct swap_cluster_info *ci = si->cluster_info;
471 
472 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
473 	cluster_list_del_first(&si->free_clusters, ci);
474 	cluster_set_count_flag(ci + idx, 0, 0);
475 }
476 
477 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
478 {
479 	struct swap_cluster_info *ci = si->cluster_info + idx;
480 
481 	VM_BUG_ON(cluster_count(ci) != 0);
482 	/*
483 	 * If the swap is discardable, prepare discard the cluster
484 	 * instead of free it immediately. The cluster will be freed
485 	 * after discard.
486 	 */
487 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
488 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
489 		swap_cluster_schedule_discard(si, idx);
490 		return;
491 	}
492 
493 	__free_cluster(si, idx);
494 }
495 
496 /*
497  * The cluster corresponding to page_nr will be used. The cluster will be
498  * removed from free cluster list and its usage counter will be increased.
499  */
500 static void inc_cluster_info_page(struct swap_info_struct *p,
501 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
502 {
503 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
504 
505 	if (!cluster_info)
506 		return;
507 	if (cluster_is_free(&cluster_info[idx]))
508 		alloc_cluster(p, idx);
509 
510 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
511 	cluster_set_count(&cluster_info[idx],
512 		cluster_count(&cluster_info[idx]) + 1);
513 }
514 
515 /*
516  * The cluster corresponding to page_nr decreases one usage. If the usage
517  * counter becomes 0, which means no page in the cluster is in using, we can
518  * optionally discard the cluster and add it to free cluster list.
519  */
520 static void dec_cluster_info_page(struct swap_info_struct *p,
521 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
522 {
523 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
524 
525 	if (!cluster_info)
526 		return;
527 
528 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
529 	cluster_set_count(&cluster_info[idx],
530 		cluster_count(&cluster_info[idx]) - 1);
531 
532 	if (cluster_count(&cluster_info[idx]) == 0)
533 		free_cluster(p, idx);
534 }
535 
536 /*
537  * It's possible scan_swap_map() uses a free cluster in the middle of free
538  * cluster list. Avoiding such abuse to avoid list corruption.
539  */
540 static bool
541 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
542 	unsigned long offset)
543 {
544 	struct percpu_cluster *percpu_cluster;
545 	bool conflict;
546 
547 	offset /= SWAPFILE_CLUSTER;
548 	conflict = !cluster_list_empty(&si->free_clusters) &&
549 		offset != cluster_list_first(&si->free_clusters) &&
550 		cluster_is_free(&si->cluster_info[offset]);
551 
552 	if (!conflict)
553 		return false;
554 
555 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
556 	cluster_set_null(&percpu_cluster->index);
557 	return true;
558 }
559 
560 /*
561  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
562  * might involve allocating a new cluster for current CPU too.
563  */
564 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
565 	unsigned long *offset, unsigned long *scan_base)
566 {
567 	struct percpu_cluster *cluster;
568 	struct swap_cluster_info *ci;
569 	bool found_free;
570 	unsigned long tmp, max;
571 
572 new_cluster:
573 	cluster = this_cpu_ptr(si->percpu_cluster);
574 	if (cluster_is_null(&cluster->index)) {
575 		if (!cluster_list_empty(&si->free_clusters)) {
576 			cluster->index = si->free_clusters.head;
577 			cluster->next = cluster_next(&cluster->index) *
578 					SWAPFILE_CLUSTER;
579 		} else if (!cluster_list_empty(&si->discard_clusters)) {
580 			/*
581 			 * we don't have free cluster but have some clusters in
582 			 * discarding, do discard now and reclaim them
583 			 */
584 			swap_do_scheduled_discard(si);
585 			*scan_base = *offset = si->cluster_next;
586 			goto new_cluster;
587 		} else
588 			return false;
589 	}
590 
591 	found_free = false;
592 
593 	/*
594 	 * Other CPUs can use our cluster if they can't find a free cluster,
595 	 * check if there is still free entry in the cluster
596 	 */
597 	tmp = cluster->next;
598 	max = min_t(unsigned long, si->max,
599 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
600 	if (tmp >= max) {
601 		cluster_set_null(&cluster->index);
602 		goto new_cluster;
603 	}
604 	ci = lock_cluster(si, tmp);
605 	while (tmp < max) {
606 		if (!si->swap_map[tmp]) {
607 			found_free = true;
608 			break;
609 		}
610 		tmp++;
611 	}
612 	unlock_cluster(ci);
613 	if (!found_free) {
614 		cluster_set_null(&cluster->index);
615 		goto new_cluster;
616 	}
617 	cluster->next = tmp + 1;
618 	*offset = tmp;
619 	*scan_base = tmp;
620 	return found_free;
621 }
622 
623 static void __del_from_avail_list(struct swap_info_struct *p)
624 {
625 	int nid;
626 
627 	for_each_node(nid)
628 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
629 }
630 
631 static void del_from_avail_list(struct swap_info_struct *p)
632 {
633 	spin_lock(&swap_avail_lock);
634 	__del_from_avail_list(p);
635 	spin_unlock(&swap_avail_lock);
636 }
637 
638 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
639 			     unsigned int nr_entries)
640 {
641 	unsigned int end = offset + nr_entries - 1;
642 
643 	if (offset == si->lowest_bit)
644 		si->lowest_bit += nr_entries;
645 	if (end == si->highest_bit)
646 		si->highest_bit -= nr_entries;
647 	si->inuse_pages += nr_entries;
648 	if (si->inuse_pages == si->pages) {
649 		si->lowest_bit = si->max;
650 		si->highest_bit = 0;
651 		del_from_avail_list(si);
652 	}
653 }
654 
655 static void add_to_avail_list(struct swap_info_struct *p)
656 {
657 	int nid;
658 
659 	spin_lock(&swap_avail_lock);
660 	for_each_node(nid) {
661 		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
662 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
663 	}
664 	spin_unlock(&swap_avail_lock);
665 }
666 
667 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
668 			    unsigned int nr_entries)
669 {
670 	unsigned long end = offset + nr_entries - 1;
671 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
672 
673 	if (offset < si->lowest_bit)
674 		si->lowest_bit = offset;
675 	if (end > si->highest_bit) {
676 		bool was_full = !si->highest_bit;
677 
678 		si->highest_bit = end;
679 		if (was_full && (si->flags & SWP_WRITEOK))
680 			add_to_avail_list(si);
681 	}
682 	atomic_long_add(nr_entries, &nr_swap_pages);
683 	si->inuse_pages -= nr_entries;
684 	if (si->flags & SWP_BLKDEV)
685 		swap_slot_free_notify =
686 			si->bdev->bd_disk->fops->swap_slot_free_notify;
687 	else
688 		swap_slot_free_notify = NULL;
689 	while (offset <= end) {
690 		frontswap_invalidate_page(si->type, offset);
691 		if (swap_slot_free_notify)
692 			swap_slot_free_notify(si->bdev, offset);
693 		offset++;
694 	}
695 }
696 
697 static int scan_swap_map_slots(struct swap_info_struct *si,
698 			       unsigned char usage, int nr,
699 			       swp_entry_t slots[])
700 {
701 	struct swap_cluster_info *ci;
702 	unsigned long offset;
703 	unsigned long scan_base;
704 	unsigned long last_in_cluster = 0;
705 	int latency_ration = LATENCY_LIMIT;
706 	int n_ret = 0;
707 
708 	if (nr > SWAP_BATCH)
709 		nr = SWAP_BATCH;
710 
711 	/*
712 	 * We try to cluster swap pages by allocating them sequentially
713 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
714 	 * way, however, we resort to first-free allocation, starting
715 	 * a new cluster.  This prevents us from scattering swap pages
716 	 * all over the entire swap partition, so that we reduce
717 	 * overall disk seek times between swap pages.  -- sct
718 	 * But we do now try to find an empty cluster.  -Andrea
719 	 * And we let swap pages go all over an SSD partition.  Hugh
720 	 */
721 
722 	si->flags += SWP_SCANNING;
723 	scan_base = offset = si->cluster_next;
724 
725 	/* SSD algorithm */
726 	if (si->cluster_info) {
727 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
728 			goto checks;
729 		else
730 			goto scan;
731 	}
732 
733 	if (unlikely(!si->cluster_nr--)) {
734 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
735 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
736 			goto checks;
737 		}
738 
739 		spin_unlock(&si->lock);
740 
741 		/*
742 		 * If seek is expensive, start searching for new cluster from
743 		 * start of partition, to minimize the span of allocated swap.
744 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
745 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
746 		 */
747 		scan_base = offset = si->lowest_bit;
748 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
749 
750 		/* Locate the first empty (unaligned) cluster */
751 		for (; last_in_cluster <= si->highest_bit; offset++) {
752 			if (si->swap_map[offset])
753 				last_in_cluster = offset + SWAPFILE_CLUSTER;
754 			else if (offset == last_in_cluster) {
755 				spin_lock(&si->lock);
756 				offset -= SWAPFILE_CLUSTER - 1;
757 				si->cluster_next = offset;
758 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
759 				goto checks;
760 			}
761 			if (unlikely(--latency_ration < 0)) {
762 				cond_resched();
763 				latency_ration = LATENCY_LIMIT;
764 			}
765 		}
766 
767 		offset = scan_base;
768 		spin_lock(&si->lock);
769 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
770 	}
771 
772 checks:
773 	if (si->cluster_info) {
774 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
775 		/* take a break if we already got some slots */
776 			if (n_ret)
777 				goto done;
778 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
779 							&scan_base))
780 				goto scan;
781 		}
782 	}
783 	if (!(si->flags & SWP_WRITEOK))
784 		goto no_page;
785 	if (!si->highest_bit)
786 		goto no_page;
787 	if (offset > si->highest_bit)
788 		scan_base = offset = si->lowest_bit;
789 
790 	ci = lock_cluster(si, offset);
791 	/* reuse swap entry of cache-only swap if not busy. */
792 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
793 		int swap_was_freed;
794 		unlock_cluster(ci);
795 		spin_unlock(&si->lock);
796 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
797 		spin_lock(&si->lock);
798 		/* entry was freed successfully, try to use this again */
799 		if (swap_was_freed)
800 			goto checks;
801 		goto scan; /* check next one */
802 	}
803 
804 	if (si->swap_map[offset]) {
805 		unlock_cluster(ci);
806 		if (!n_ret)
807 			goto scan;
808 		else
809 			goto done;
810 	}
811 	si->swap_map[offset] = usage;
812 	inc_cluster_info_page(si, si->cluster_info, offset);
813 	unlock_cluster(ci);
814 
815 	swap_range_alloc(si, offset, 1);
816 	si->cluster_next = offset + 1;
817 	slots[n_ret++] = swp_entry(si->type, offset);
818 
819 	/* got enough slots or reach max slots? */
820 	if ((n_ret == nr) || (offset >= si->highest_bit))
821 		goto done;
822 
823 	/* search for next available slot */
824 
825 	/* time to take a break? */
826 	if (unlikely(--latency_ration < 0)) {
827 		if (n_ret)
828 			goto done;
829 		spin_unlock(&si->lock);
830 		cond_resched();
831 		spin_lock(&si->lock);
832 		latency_ration = LATENCY_LIMIT;
833 	}
834 
835 	/* try to get more slots in cluster */
836 	if (si->cluster_info) {
837 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
838 			goto checks;
839 		else
840 			goto done;
841 	}
842 	/* non-ssd case */
843 	++offset;
844 
845 	/* non-ssd case, still more slots in cluster? */
846 	if (si->cluster_nr && !si->swap_map[offset]) {
847 		--si->cluster_nr;
848 		goto checks;
849 	}
850 
851 done:
852 	si->flags -= SWP_SCANNING;
853 	return n_ret;
854 
855 scan:
856 	spin_unlock(&si->lock);
857 	while (++offset <= si->highest_bit) {
858 		if (!si->swap_map[offset]) {
859 			spin_lock(&si->lock);
860 			goto checks;
861 		}
862 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
863 			spin_lock(&si->lock);
864 			goto checks;
865 		}
866 		if (unlikely(--latency_ration < 0)) {
867 			cond_resched();
868 			latency_ration = LATENCY_LIMIT;
869 		}
870 	}
871 	offset = si->lowest_bit;
872 	while (offset < scan_base) {
873 		if (!si->swap_map[offset]) {
874 			spin_lock(&si->lock);
875 			goto checks;
876 		}
877 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
878 			spin_lock(&si->lock);
879 			goto checks;
880 		}
881 		if (unlikely(--latency_ration < 0)) {
882 			cond_resched();
883 			latency_ration = LATENCY_LIMIT;
884 		}
885 		offset++;
886 	}
887 	spin_lock(&si->lock);
888 
889 no_page:
890 	si->flags -= SWP_SCANNING;
891 	return n_ret;
892 }
893 
894 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
895 {
896 	unsigned long idx;
897 	struct swap_cluster_info *ci;
898 	unsigned long offset, i;
899 	unsigned char *map;
900 
901 	/*
902 	 * Should not even be attempting cluster allocations when huge
903 	 * page swap is disabled.  Warn and fail the allocation.
904 	 */
905 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
906 		VM_WARN_ON_ONCE(1);
907 		return 0;
908 	}
909 
910 	if (cluster_list_empty(&si->free_clusters))
911 		return 0;
912 
913 	idx = cluster_list_first(&si->free_clusters);
914 	offset = idx * SWAPFILE_CLUSTER;
915 	ci = lock_cluster(si, offset);
916 	alloc_cluster(si, idx);
917 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
918 
919 	map = si->swap_map + offset;
920 	for (i = 0; i < SWAPFILE_CLUSTER; i++)
921 		map[i] = SWAP_HAS_CACHE;
922 	unlock_cluster(ci);
923 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
924 	*slot = swp_entry(si->type, offset);
925 
926 	return 1;
927 }
928 
929 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
930 {
931 	unsigned long offset = idx * SWAPFILE_CLUSTER;
932 	struct swap_cluster_info *ci;
933 
934 	ci = lock_cluster(si, offset);
935 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
936 	cluster_set_count_flag(ci, 0, 0);
937 	free_cluster(si, idx);
938 	unlock_cluster(ci);
939 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
940 }
941 
942 static unsigned long scan_swap_map(struct swap_info_struct *si,
943 				   unsigned char usage)
944 {
945 	swp_entry_t entry;
946 	int n_ret;
947 
948 	n_ret = scan_swap_map_slots(si, usage, 1, &entry);
949 
950 	if (n_ret)
951 		return swp_offset(entry);
952 	else
953 		return 0;
954 
955 }
956 
957 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
958 {
959 	unsigned long size = swap_entry_size(entry_size);
960 	struct swap_info_struct *si, *next;
961 	long avail_pgs;
962 	int n_ret = 0;
963 	int node;
964 
965 	/* Only single cluster request supported */
966 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
967 
968 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
969 	if (avail_pgs <= 0)
970 		goto noswap;
971 
972 	if (n_goal > SWAP_BATCH)
973 		n_goal = SWAP_BATCH;
974 
975 	if (n_goal > avail_pgs)
976 		n_goal = avail_pgs;
977 
978 	atomic_long_sub(n_goal * size, &nr_swap_pages);
979 
980 	spin_lock(&swap_avail_lock);
981 
982 start_over:
983 	node = numa_node_id();
984 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
985 		/* requeue si to after same-priority siblings */
986 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
987 		spin_unlock(&swap_avail_lock);
988 		spin_lock(&si->lock);
989 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
990 			spin_lock(&swap_avail_lock);
991 			if (plist_node_empty(&si->avail_lists[node])) {
992 				spin_unlock(&si->lock);
993 				goto nextsi;
994 			}
995 			WARN(!si->highest_bit,
996 			     "swap_info %d in list but !highest_bit\n",
997 			     si->type);
998 			WARN(!(si->flags & SWP_WRITEOK),
999 			     "swap_info %d in list but !SWP_WRITEOK\n",
1000 			     si->type);
1001 			__del_from_avail_list(si);
1002 			spin_unlock(&si->lock);
1003 			goto nextsi;
1004 		}
1005 		if (size == SWAPFILE_CLUSTER) {
1006 			if (!(si->flags & SWP_FS))
1007 				n_ret = swap_alloc_cluster(si, swp_entries);
1008 		} else
1009 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1010 						    n_goal, swp_entries);
1011 		spin_unlock(&si->lock);
1012 		if (n_ret || size == SWAPFILE_CLUSTER)
1013 			goto check_out;
1014 		pr_debug("scan_swap_map of si %d failed to find offset\n",
1015 			si->type);
1016 
1017 		spin_lock(&swap_avail_lock);
1018 nextsi:
1019 		/*
1020 		 * if we got here, it's likely that si was almost full before,
1021 		 * and since scan_swap_map() can drop the si->lock, multiple
1022 		 * callers probably all tried to get a page from the same si
1023 		 * and it filled up before we could get one; or, the si filled
1024 		 * up between us dropping swap_avail_lock and taking si->lock.
1025 		 * Since we dropped the swap_avail_lock, the swap_avail_head
1026 		 * list may have been modified; so if next is still in the
1027 		 * swap_avail_head list then try it, otherwise start over
1028 		 * if we have not gotten any slots.
1029 		 */
1030 		if (plist_node_empty(&next->avail_lists[node]))
1031 			goto start_over;
1032 	}
1033 
1034 	spin_unlock(&swap_avail_lock);
1035 
1036 check_out:
1037 	if (n_ret < n_goal)
1038 		atomic_long_add((long)(n_goal - n_ret) * size,
1039 				&nr_swap_pages);
1040 noswap:
1041 	return n_ret;
1042 }
1043 
1044 /* The only caller of this function is now suspend routine */
1045 swp_entry_t get_swap_page_of_type(int type)
1046 {
1047 	struct swap_info_struct *si;
1048 	pgoff_t offset;
1049 
1050 	si = swap_info[type];
1051 	spin_lock(&si->lock);
1052 	if (si && (si->flags & SWP_WRITEOK)) {
1053 		atomic_long_dec(&nr_swap_pages);
1054 		/* This is called for allocating swap entry, not cache */
1055 		offset = scan_swap_map(si, 1);
1056 		if (offset) {
1057 			spin_unlock(&si->lock);
1058 			return swp_entry(type, offset);
1059 		}
1060 		atomic_long_inc(&nr_swap_pages);
1061 	}
1062 	spin_unlock(&si->lock);
1063 	return (swp_entry_t) {0};
1064 }
1065 
1066 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1067 {
1068 	struct swap_info_struct *p;
1069 	unsigned long offset, type;
1070 
1071 	if (!entry.val)
1072 		goto out;
1073 	type = swp_type(entry);
1074 	if (type >= nr_swapfiles)
1075 		goto bad_nofile;
1076 	p = swap_info[type];
1077 	if (!(p->flags & SWP_USED))
1078 		goto bad_device;
1079 	offset = swp_offset(entry);
1080 	if (offset >= p->max)
1081 		goto bad_offset;
1082 	return p;
1083 
1084 bad_offset:
1085 	pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1086 	goto out;
1087 bad_device:
1088 	pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1089 	goto out;
1090 bad_nofile:
1091 	pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1092 out:
1093 	return NULL;
1094 }
1095 
1096 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1097 {
1098 	struct swap_info_struct *p;
1099 
1100 	p = __swap_info_get(entry);
1101 	if (!p)
1102 		goto out;
1103 	if (!p->swap_map[swp_offset(entry)])
1104 		goto bad_free;
1105 	return p;
1106 
1107 bad_free:
1108 	pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1109 	goto out;
1110 out:
1111 	return NULL;
1112 }
1113 
1114 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1115 {
1116 	struct swap_info_struct *p;
1117 
1118 	p = _swap_info_get(entry);
1119 	if (p)
1120 		spin_lock(&p->lock);
1121 	return p;
1122 }
1123 
1124 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1125 					struct swap_info_struct *q)
1126 {
1127 	struct swap_info_struct *p;
1128 
1129 	p = _swap_info_get(entry);
1130 
1131 	if (p != q) {
1132 		if (q != NULL)
1133 			spin_unlock(&q->lock);
1134 		if (p != NULL)
1135 			spin_lock(&p->lock);
1136 	}
1137 	return p;
1138 }
1139 
1140 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1141 					      unsigned long offset,
1142 					      unsigned char usage)
1143 {
1144 	unsigned char count;
1145 	unsigned char has_cache;
1146 
1147 	count = p->swap_map[offset];
1148 
1149 	has_cache = count & SWAP_HAS_CACHE;
1150 	count &= ~SWAP_HAS_CACHE;
1151 
1152 	if (usage == SWAP_HAS_CACHE) {
1153 		VM_BUG_ON(!has_cache);
1154 		has_cache = 0;
1155 	} else if (count == SWAP_MAP_SHMEM) {
1156 		/*
1157 		 * Or we could insist on shmem.c using a special
1158 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1159 		 */
1160 		count = 0;
1161 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1162 		if (count == COUNT_CONTINUED) {
1163 			if (swap_count_continued(p, offset, count))
1164 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1165 			else
1166 				count = SWAP_MAP_MAX;
1167 		} else
1168 			count--;
1169 	}
1170 
1171 	usage = count | has_cache;
1172 	p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1173 
1174 	return usage;
1175 }
1176 
1177 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1178 				       swp_entry_t entry, unsigned char usage)
1179 {
1180 	struct swap_cluster_info *ci;
1181 	unsigned long offset = swp_offset(entry);
1182 
1183 	ci = lock_cluster_or_swap_info(p, offset);
1184 	usage = __swap_entry_free_locked(p, offset, usage);
1185 	unlock_cluster_or_swap_info(p, ci);
1186 	if (!usage)
1187 		free_swap_slot(entry);
1188 
1189 	return usage;
1190 }
1191 
1192 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1193 {
1194 	struct swap_cluster_info *ci;
1195 	unsigned long offset = swp_offset(entry);
1196 	unsigned char count;
1197 
1198 	ci = lock_cluster(p, offset);
1199 	count = p->swap_map[offset];
1200 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1201 	p->swap_map[offset] = 0;
1202 	dec_cluster_info_page(p, p->cluster_info, offset);
1203 	unlock_cluster(ci);
1204 
1205 	mem_cgroup_uncharge_swap(entry, 1);
1206 	swap_range_free(p, offset, 1);
1207 }
1208 
1209 /*
1210  * Caller has made sure that the swap device corresponding to entry
1211  * is still around or has not been recycled.
1212  */
1213 void swap_free(swp_entry_t entry)
1214 {
1215 	struct swap_info_struct *p;
1216 
1217 	p = _swap_info_get(entry);
1218 	if (p)
1219 		__swap_entry_free(p, entry, 1);
1220 }
1221 
1222 /*
1223  * Called after dropping swapcache to decrease refcnt to swap entries.
1224  */
1225 void put_swap_page(struct page *page, swp_entry_t entry)
1226 {
1227 	unsigned long offset = swp_offset(entry);
1228 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1229 	struct swap_cluster_info *ci;
1230 	struct swap_info_struct *si;
1231 	unsigned char *map;
1232 	unsigned int i, free_entries = 0;
1233 	unsigned char val;
1234 	int size = swap_entry_size(hpage_nr_pages(page));
1235 
1236 	si = _swap_info_get(entry);
1237 	if (!si)
1238 		return;
1239 
1240 	ci = lock_cluster_or_swap_info(si, offset);
1241 	if (size == SWAPFILE_CLUSTER) {
1242 		VM_BUG_ON(!cluster_is_huge(ci));
1243 		map = si->swap_map + offset;
1244 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1245 			val = map[i];
1246 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1247 			if (val == SWAP_HAS_CACHE)
1248 				free_entries++;
1249 		}
1250 		cluster_clear_huge(ci);
1251 		if (free_entries == SWAPFILE_CLUSTER) {
1252 			unlock_cluster_or_swap_info(si, ci);
1253 			spin_lock(&si->lock);
1254 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1255 			swap_free_cluster(si, idx);
1256 			spin_unlock(&si->lock);
1257 			return;
1258 		}
1259 	}
1260 	for (i = 0; i < size; i++, entry.val++) {
1261 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1262 			unlock_cluster_or_swap_info(si, ci);
1263 			free_swap_slot(entry);
1264 			if (i == size - 1)
1265 				return;
1266 			lock_cluster_or_swap_info(si, offset);
1267 		}
1268 	}
1269 	unlock_cluster_or_swap_info(si, ci);
1270 }
1271 
1272 #ifdef CONFIG_THP_SWAP
1273 int split_swap_cluster(swp_entry_t entry)
1274 {
1275 	struct swap_info_struct *si;
1276 	struct swap_cluster_info *ci;
1277 	unsigned long offset = swp_offset(entry);
1278 
1279 	si = _swap_info_get(entry);
1280 	if (!si)
1281 		return -EBUSY;
1282 	ci = lock_cluster(si, offset);
1283 	cluster_clear_huge(ci);
1284 	unlock_cluster(ci);
1285 	return 0;
1286 }
1287 #endif
1288 
1289 static int swp_entry_cmp(const void *ent1, const void *ent2)
1290 {
1291 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1292 
1293 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1294 }
1295 
1296 void swapcache_free_entries(swp_entry_t *entries, int n)
1297 {
1298 	struct swap_info_struct *p, *prev;
1299 	int i;
1300 
1301 	if (n <= 0)
1302 		return;
1303 
1304 	prev = NULL;
1305 	p = NULL;
1306 
1307 	/*
1308 	 * Sort swap entries by swap device, so each lock is only taken once.
1309 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1310 	 * so low that it isn't necessary to optimize further.
1311 	 */
1312 	if (nr_swapfiles > 1)
1313 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1314 	for (i = 0; i < n; ++i) {
1315 		p = swap_info_get_cont(entries[i], prev);
1316 		if (p)
1317 			swap_entry_free(p, entries[i]);
1318 		prev = p;
1319 	}
1320 	if (p)
1321 		spin_unlock(&p->lock);
1322 }
1323 
1324 /*
1325  * How many references to page are currently swapped out?
1326  * This does not give an exact answer when swap count is continued,
1327  * but does include the high COUNT_CONTINUED flag to allow for that.
1328  */
1329 int page_swapcount(struct page *page)
1330 {
1331 	int count = 0;
1332 	struct swap_info_struct *p;
1333 	struct swap_cluster_info *ci;
1334 	swp_entry_t entry;
1335 	unsigned long offset;
1336 
1337 	entry.val = page_private(page);
1338 	p = _swap_info_get(entry);
1339 	if (p) {
1340 		offset = swp_offset(entry);
1341 		ci = lock_cluster_or_swap_info(p, offset);
1342 		count = swap_count(p->swap_map[offset]);
1343 		unlock_cluster_or_swap_info(p, ci);
1344 	}
1345 	return count;
1346 }
1347 
1348 int __swap_count(struct swap_info_struct *si, swp_entry_t entry)
1349 {
1350 	pgoff_t offset = swp_offset(entry);
1351 
1352 	return swap_count(si->swap_map[offset]);
1353 }
1354 
1355 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1356 {
1357 	int count = 0;
1358 	pgoff_t offset = swp_offset(entry);
1359 	struct swap_cluster_info *ci;
1360 
1361 	ci = lock_cluster_or_swap_info(si, offset);
1362 	count = swap_count(si->swap_map[offset]);
1363 	unlock_cluster_or_swap_info(si, ci);
1364 	return count;
1365 }
1366 
1367 /*
1368  * How many references to @entry are currently swapped out?
1369  * This does not give an exact answer when swap count is continued,
1370  * but does include the high COUNT_CONTINUED flag to allow for that.
1371  */
1372 int __swp_swapcount(swp_entry_t entry)
1373 {
1374 	int count = 0;
1375 	struct swap_info_struct *si;
1376 
1377 	si = __swap_info_get(entry);
1378 	if (si)
1379 		count = swap_swapcount(si, entry);
1380 	return count;
1381 }
1382 
1383 /*
1384  * How many references to @entry are currently swapped out?
1385  * This considers COUNT_CONTINUED so it returns exact answer.
1386  */
1387 int swp_swapcount(swp_entry_t entry)
1388 {
1389 	int count, tmp_count, n;
1390 	struct swap_info_struct *p;
1391 	struct swap_cluster_info *ci;
1392 	struct page *page;
1393 	pgoff_t offset;
1394 	unsigned char *map;
1395 
1396 	p = _swap_info_get(entry);
1397 	if (!p)
1398 		return 0;
1399 
1400 	offset = swp_offset(entry);
1401 
1402 	ci = lock_cluster_or_swap_info(p, offset);
1403 
1404 	count = swap_count(p->swap_map[offset]);
1405 	if (!(count & COUNT_CONTINUED))
1406 		goto out;
1407 
1408 	count &= ~COUNT_CONTINUED;
1409 	n = SWAP_MAP_MAX + 1;
1410 
1411 	page = vmalloc_to_page(p->swap_map + offset);
1412 	offset &= ~PAGE_MASK;
1413 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1414 
1415 	do {
1416 		page = list_next_entry(page, lru);
1417 		map = kmap_atomic(page);
1418 		tmp_count = map[offset];
1419 		kunmap_atomic(map);
1420 
1421 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1422 		n *= (SWAP_CONT_MAX + 1);
1423 	} while (tmp_count & COUNT_CONTINUED);
1424 out:
1425 	unlock_cluster_or_swap_info(p, ci);
1426 	return count;
1427 }
1428 
1429 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1430 					 swp_entry_t entry)
1431 {
1432 	struct swap_cluster_info *ci;
1433 	unsigned char *map = si->swap_map;
1434 	unsigned long roffset = swp_offset(entry);
1435 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1436 	int i;
1437 	bool ret = false;
1438 
1439 	ci = lock_cluster_or_swap_info(si, offset);
1440 	if (!ci || !cluster_is_huge(ci)) {
1441 		if (swap_count(map[roffset]))
1442 			ret = true;
1443 		goto unlock_out;
1444 	}
1445 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1446 		if (swap_count(map[offset + i])) {
1447 			ret = true;
1448 			break;
1449 		}
1450 	}
1451 unlock_out:
1452 	unlock_cluster_or_swap_info(si, ci);
1453 	return ret;
1454 }
1455 
1456 static bool page_swapped(struct page *page)
1457 {
1458 	swp_entry_t entry;
1459 	struct swap_info_struct *si;
1460 
1461 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1462 		return page_swapcount(page) != 0;
1463 
1464 	page = compound_head(page);
1465 	entry.val = page_private(page);
1466 	si = _swap_info_get(entry);
1467 	if (si)
1468 		return swap_page_trans_huge_swapped(si, entry);
1469 	return false;
1470 }
1471 
1472 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1473 					 int *total_swapcount)
1474 {
1475 	int i, map_swapcount, _total_mapcount, _total_swapcount;
1476 	unsigned long offset = 0;
1477 	struct swap_info_struct *si;
1478 	struct swap_cluster_info *ci = NULL;
1479 	unsigned char *map = NULL;
1480 	int mapcount, swapcount = 0;
1481 
1482 	/* hugetlbfs shouldn't call it */
1483 	VM_BUG_ON_PAGE(PageHuge(page), page);
1484 
1485 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1486 		mapcount = page_trans_huge_mapcount(page, total_mapcount);
1487 		if (PageSwapCache(page))
1488 			swapcount = page_swapcount(page);
1489 		if (total_swapcount)
1490 			*total_swapcount = swapcount;
1491 		return mapcount + swapcount;
1492 	}
1493 
1494 	page = compound_head(page);
1495 
1496 	_total_mapcount = _total_swapcount = map_swapcount = 0;
1497 	if (PageSwapCache(page)) {
1498 		swp_entry_t entry;
1499 
1500 		entry.val = page_private(page);
1501 		si = _swap_info_get(entry);
1502 		if (si) {
1503 			map = si->swap_map;
1504 			offset = swp_offset(entry);
1505 		}
1506 	}
1507 	if (map)
1508 		ci = lock_cluster(si, offset);
1509 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1510 		mapcount = atomic_read(&page[i]._mapcount) + 1;
1511 		_total_mapcount += mapcount;
1512 		if (map) {
1513 			swapcount = swap_count(map[offset + i]);
1514 			_total_swapcount += swapcount;
1515 		}
1516 		map_swapcount = max(map_swapcount, mapcount + swapcount);
1517 	}
1518 	unlock_cluster(ci);
1519 	if (PageDoubleMap(page)) {
1520 		map_swapcount -= 1;
1521 		_total_mapcount -= HPAGE_PMD_NR;
1522 	}
1523 	mapcount = compound_mapcount(page);
1524 	map_swapcount += mapcount;
1525 	_total_mapcount += mapcount;
1526 	if (total_mapcount)
1527 		*total_mapcount = _total_mapcount;
1528 	if (total_swapcount)
1529 		*total_swapcount = _total_swapcount;
1530 
1531 	return map_swapcount;
1532 }
1533 
1534 /*
1535  * We can write to an anon page without COW if there are no other references
1536  * to it.  And as a side-effect, free up its swap: because the old content
1537  * on disk will never be read, and seeking back there to write new content
1538  * later would only waste time away from clustering.
1539  *
1540  * NOTE: total_map_swapcount should not be relied upon by the caller if
1541  * reuse_swap_page() returns false, but it may be always overwritten
1542  * (see the other implementation for CONFIG_SWAP=n).
1543  */
1544 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1545 {
1546 	int count, total_mapcount, total_swapcount;
1547 
1548 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1549 	if (unlikely(PageKsm(page)))
1550 		return false;
1551 	count = page_trans_huge_map_swapcount(page, &total_mapcount,
1552 					      &total_swapcount);
1553 	if (total_map_swapcount)
1554 		*total_map_swapcount = total_mapcount + total_swapcount;
1555 	if (count == 1 && PageSwapCache(page) &&
1556 	    (likely(!PageTransCompound(page)) ||
1557 	     /* The remaining swap count will be freed soon */
1558 	     total_swapcount == page_swapcount(page))) {
1559 		if (!PageWriteback(page)) {
1560 			page = compound_head(page);
1561 			delete_from_swap_cache(page);
1562 			SetPageDirty(page);
1563 		} else {
1564 			swp_entry_t entry;
1565 			struct swap_info_struct *p;
1566 
1567 			entry.val = page_private(page);
1568 			p = swap_info_get(entry);
1569 			if (p->flags & SWP_STABLE_WRITES) {
1570 				spin_unlock(&p->lock);
1571 				return false;
1572 			}
1573 			spin_unlock(&p->lock);
1574 		}
1575 	}
1576 
1577 	return count <= 1;
1578 }
1579 
1580 /*
1581  * If swap is getting full, or if there are no more mappings of this page,
1582  * then try_to_free_swap is called to free its swap space.
1583  */
1584 int try_to_free_swap(struct page *page)
1585 {
1586 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1587 
1588 	if (!PageSwapCache(page))
1589 		return 0;
1590 	if (PageWriteback(page))
1591 		return 0;
1592 	if (page_swapped(page))
1593 		return 0;
1594 
1595 	/*
1596 	 * Once hibernation has begun to create its image of memory,
1597 	 * there's a danger that one of the calls to try_to_free_swap()
1598 	 * - most probably a call from __try_to_reclaim_swap() while
1599 	 * hibernation is allocating its own swap pages for the image,
1600 	 * but conceivably even a call from memory reclaim - will free
1601 	 * the swap from a page which has already been recorded in the
1602 	 * image as a clean swapcache page, and then reuse its swap for
1603 	 * another page of the image.  On waking from hibernation, the
1604 	 * original page might be freed under memory pressure, then
1605 	 * later read back in from swap, now with the wrong data.
1606 	 *
1607 	 * Hibernation suspends storage while it is writing the image
1608 	 * to disk so check that here.
1609 	 */
1610 	if (pm_suspended_storage())
1611 		return 0;
1612 
1613 	page = compound_head(page);
1614 	delete_from_swap_cache(page);
1615 	SetPageDirty(page);
1616 	return 1;
1617 }
1618 
1619 /*
1620  * Free the swap entry like above, but also try to
1621  * free the page cache entry if it is the last user.
1622  */
1623 int free_swap_and_cache(swp_entry_t entry)
1624 {
1625 	struct swap_info_struct *p;
1626 	unsigned char count;
1627 
1628 	if (non_swap_entry(entry))
1629 		return 1;
1630 
1631 	p = _swap_info_get(entry);
1632 	if (p) {
1633 		count = __swap_entry_free(p, entry, 1);
1634 		if (count == SWAP_HAS_CACHE &&
1635 		    !swap_page_trans_huge_swapped(p, entry))
1636 			__try_to_reclaim_swap(p, swp_offset(entry),
1637 					      TTRS_UNMAPPED | TTRS_FULL);
1638 	}
1639 	return p != NULL;
1640 }
1641 
1642 #ifdef CONFIG_HIBERNATION
1643 /*
1644  * Find the swap type that corresponds to given device (if any).
1645  *
1646  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1647  * from 0, in which the swap header is expected to be located.
1648  *
1649  * This is needed for the suspend to disk (aka swsusp).
1650  */
1651 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1652 {
1653 	struct block_device *bdev = NULL;
1654 	int type;
1655 
1656 	if (device)
1657 		bdev = bdget(device);
1658 
1659 	spin_lock(&swap_lock);
1660 	for (type = 0; type < nr_swapfiles; type++) {
1661 		struct swap_info_struct *sis = swap_info[type];
1662 
1663 		if (!(sis->flags & SWP_WRITEOK))
1664 			continue;
1665 
1666 		if (!bdev) {
1667 			if (bdev_p)
1668 				*bdev_p = bdgrab(sis->bdev);
1669 
1670 			spin_unlock(&swap_lock);
1671 			return type;
1672 		}
1673 		if (bdev == sis->bdev) {
1674 			struct swap_extent *se = &sis->first_swap_extent;
1675 
1676 			if (se->start_block == offset) {
1677 				if (bdev_p)
1678 					*bdev_p = bdgrab(sis->bdev);
1679 
1680 				spin_unlock(&swap_lock);
1681 				bdput(bdev);
1682 				return type;
1683 			}
1684 		}
1685 	}
1686 	spin_unlock(&swap_lock);
1687 	if (bdev)
1688 		bdput(bdev);
1689 
1690 	return -ENODEV;
1691 }
1692 
1693 /*
1694  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1695  * corresponding to given index in swap_info (swap type).
1696  */
1697 sector_t swapdev_block(int type, pgoff_t offset)
1698 {
1699 	struct block_device *bdev;
1700 
1701 	if ((unsigned int)type >= nr_swapfiles)
1702 		return 0;
1703 	if (!(swap_info[type]->flags & SWP_WRITEOK))
1704 		return 0;
1705 	return map_swap_entry(swp_entry(type, offset), &bdev);
1706 }
1707 
1708 /*
1709  * Return either the total number of swap pages of given type, or the number
1710  * of free pages of that type (depending on @free)
1711  *
1712  * This is needed for software suspend
1713  */
1714 unsigned int count_swap_pages(int type, int free)
1715 {
1716 	unsigned int n = 0;
1717 
1718 	spin_lock(&swap_lock);
1719 	if ((unsigned int)type < nr_swapfiles) {
1720 		struct swap_info_struct *sis = swap_info[type];
1721 
1722 		spin_lock(&sis->lock);
1723 		if (sis->flags & SWP_WRITEOK) {
1724 			n = sis->pages;
1725 			if (free)
1726 				n -= sis->inuse_pages;
1727 		}
1728 		spin_unlock(&sis->lock);
1729 	}
1730 	spin_unlock(&swap_lock);
1731 	return n;
1732 }
1733 #endif /* CONFIG_HIBERNATION */
1734 
1735 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1736 {
1737 	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1738 }
1739 
1740 /*
1741  * No need to decide whether this PTE shares the swap entry with others,
1742  * just let do_wp_page work it out if a write is requested later - to
1743  * force COW, vm_page_prot omits write permission from any private vma.
1744  */
1745 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1746 		unsigned long addr, swp_entry_t entry, struct page *page)
1747 {
1748 	struct page *swapcache;
1749 	struct mem_cgroup *memcg;
1750 	spinlock_t *ptl;
1751 	pte_t *pte;
1752 	int ret = 1;
1753 
1754 	swapcache = page;
1755 	page = ksm_might_need_to_copy(page, vma, addr);
1756 	if (unlikely(!page))
1757 		return -ENOMEM;
1758 
1759 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1760 				&memcg, false)) {
1761 		ret = -ENOMEM;
1762 		goto out_nolock;
1763 	}
1764 
1765 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1766 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1767 		mem_cgroup_cancel_charge(page, memcg, false);
1768 		ret = 0;
1769 		goto out;
1770 	}
1771 
1772 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1773 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1774 	get_page(page);
1775 	set_pte_at(vma->vm_mm, addr, pte,
1776 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1777 	if (page == swapcache) {
1778 		page_add_anon_rmap(page, vma, addr, false);
1779 		mem_cgroup_commit_charge(page, memcg, true, false);
1780 	} else { /* ksm created a completely new copy */
1781 		page_add_new_anon_rmap(page, vma, addr, false);
1782 		mem_cgroup_commit_charge(page, memcg, false, false);
1783 		lru_cache_add_active_or_unevictable(page, vma);
1784 	}
1785 	swap_free(entry);
1786 	/*
1787 	 * Move the page to the active list so it is not
1788 	 * immediately swapped out again after swapon.
1789 	 */
1790 	activate_page(page);
1791 out:
1792 	pte_unmap_unlock(pte, ptl);
1793 out_nolock:
1794 	if (page != swapcache) {
1795 		unlock_page(page);
1796 		put_page(page);
1797 	}
1798 	return ret;
1799 }
1800 
1801 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1802 			unsigned long addr, unsigned long end,
1803 			unsigned int type, bool frontswap,
1804 			unsigned long *fs_pages_to_unuse)
1805 {
1806 	struct page *page;
1807 	swp_entry_t entry;
1808 	pte_t *pte;
1809 	struct swap_info_struct *si;
1810 	unsigned long offset;
1811 	int ret = 0;
1812 	volatile unsigned char *swap_map;
1813 
1814 	si = swap_info[type];
1815 	pte = pte_offset_map(pmd, addr);
1816 	do {
1817 		struct vm_fault vmf;
1818 
1819 		if (!is_swap_pte(*pte))
1820 			continue;
1821 
1822 		entry = pte_to_swp_entry(*pte);
1823 		if (swp_type(entry) != type)
1824 			continue;
1825 
1826 		offset = swp_offset(entry);
1827 		if (frontswap && !frontswap_test(si, offset))
1828 			continue;
1829 
1830 		pte_unmap(pte);
1831 		swap_map = &si->swap_map[offset];
1832 		vmf.vma = vma;
1833 		vmf.address = addr;
1834 		vmf.pmd = pmd;
1835 		page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, &vmf);
1836 		if (!page) {
1837 			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1838 				goto try_next;
1839 			return -ENOMEM;
1840 		}
1841 
1842 		lock_page(page);
1843 		wait_on_page_writeback(page);
1844 		ret = unuse_pte(vma, pmd, addr, entry, page);
1845 		if (ret < 0) {
1846 			unlock_page(page);
1847 			put_page(page);
1848 			goto out;
1849 		}
1850 
1851 		try_to_free_swap(page);
1852 		unlock_page(page);
1853 		put_page(page);
1854 
1855 		if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1856 			ret = FRONTSWAP_PAGES_UNUSED;
1857 			goto out;
1858 		}
1859 try_next:
1860 		pte = pte_offset_map(pmd, addr);
1861 	} while (pte++, addr += PAGE_SIZE, addr != end);
1862 	pte_unmap(pte - 1);
1863 
1864 	ret = 0;
1865 out:
1866 	return ret;
1867 }
1868 
1869 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1870 				unsigned long addr, unsigned long end,
1871 				unsigned int type, bool frontswap,
1872 				unsigned long *fs_pages_to_unuse)
1873 {
1874 	pmd_t *pmd;
1875 	unsigned long next;
1876 	int ret;
1877 
1878 	pmd = pmd_offset(pud, addr);
1879 	do {
1880 		cond_resched();
1881 		next = pmd_addr_end(addr, end);
1882 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1883 			continue;
1884 		ret = unuse_pte_range(vma, pmd, addr, next, type,
1885 				      frontswap, fs_pages_to_unuse);
1886 		if (ret)
1887 			return ret;
1888 	} while (pmd++, addr = next, addr != end);
1889 	return 0;
1890 }
1891 
1892 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1893 				unsigned long addr, unsigned long end,
1894 				unsigned int type, bool frontswap,
1895 				unsigned long *fs_pages_to_unuse)
1896 {
1897 	pud_t *pud;
1898 	unsigned long next;
1899 	int ret;
1900 
1901 	pud = pud_offset(p4d, addr);
1902 	do {
1903 		next = pud_addr_end(addr, end);
1904 		if (pud_none_or_clear_bad(pud))
1905 			continue;
1906 		ret = unuse_pmd_range(vma, pud, addr, next, type,
1907 				      frontswap, fs_pages_to_unuse);
1908 		if (ret)
1909 			return ret;
1910 	} while (pud++, addr = next, addr != end);
1911 	return 0;
1912 }
1913 
1914 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1915 				unsigned long addr, unsigned long end,
1916 				unsigned int type, bool frontswap,
1917 				unsigned long *fs_pages_to_unuse)
1918 {
1919 	p4d_t *p4d;
1920 	unsigned long next;
1921 	int ret;
1922 
1923 	p4d = p4d_offset(pgd, addr);
1924 	do {
1925 		next = p4d_addr_end(addr, end);
1926 		if (p4d_none_or_clear_bad(p4d))
1927 			continue;
1928 		ret = unuse_pud_range(vma, p4d, addr, next, type,
1929 				      frontswap, fs_pages_to_unuse);
1930 		if (ret)
1931 			return ret;
1932 	} while (p4d++, addr = next, addr != end);
1933 	return 0;
1934 }
1935 
1936 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
1937 		     bool frontswap, unsigned long *fs_pages_to_unuse)
1938 {
1939 	pgd_t *pgd;
1940 	unsigned long addr, end, next;
1941 	int ret;
1942 
1943 	addr = vma->vm_start;
1944 	end = vma->vm_end;
1945 
1946 	pgd = pgd_offset(vma->vm_mm, addr);
1947 	do {
1948 		next = pgd_addr_end(addr, end);
1949 		if (pgd_none_or_clear_bad(pgd))
1950 			continue;
1951 		ret = unuse_p4d_range(vma, pgd, addr, next, type,
1952 				      frontswap, fs_pages_to_unuse);
1953 		if (ret)
1954 			return ret;
1955 	} while (pgd++, addr = next, addr != end);
1956 	return 0;
1957 }
1958 
1959 static int unuse_mm(struct mm_struct *mm, unsigned int type,
1960 		    bool frontswap, unsigned long *fs_pages_to_unuse)
1961 {
1962 	struct vm_area_struct *vma;
1963 	int ret = 0;
1964 
1965 	down_read(&mm->mmap_sem);
1966 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1967 		if (vma->anon_vma) {
1968 			ret = unuse_vma(vma, type, frontswap,
1969 					fs_pages_to_unuse);
1970 			if (ret)
1971 				break;
1972 		}
1973 		cond_resched();
1974 	}
1975 	up_read(&mm->mmap_sem);
1976 	return ret;
1977 }
1978 
1979 /*
1980  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1981  * from current position to next entry still in use. Return 0
1982  * if there are no inuse entries after prev till end of the map.
1983  */
1984 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1985 					unsigned int prev, bool frontswap)
1986 {
1987 	unsigned int i;
1988 	unsigned char count;
1989 
1990 	/*
1991 	 * No need for swap_lock here: we're just looking
1992 	 * for whether an entry is in use, not modifying it; false
1993 	 * hits are okay, and sys_swapoff() has already prevented new
1994 	 * allocations from this area (while holding swap_lock).
1995 	 */
1996 	for (i = prev + 1; i < si->max; i++) {
1997 		count = READ_ONCE(si->swap_map[i]);
1998 		if (count && swap_count(count) != SWAP_MAP_BAD)
1999 			if (!frontswap || frontswap_test(si, i))
2000 				break;
2001 		if ((i % LATENCY_LIMIT) == 0)
2002 			cond_resched();
2003 	}
2004 
2005 	if (i == si->max)
2006 		i = 0;
2007 
2008 	return i;
2009 }
2010 
2011 /*
2012  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2013  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2014  */
2015 #define SWAP_UNUSE_MAX_TRIES 3
2016 int try_to_unuse(unsigned int type, bool frontswap,
2017 		 unsigned long pages_to_unuse)
2018 {
2019 	struct mm_struct *prev_mm;
2020 	struct mm_struct *mm;
2021 	struct list_head *p;
2022 	int retval = 0;
2023 	struct swap_info_struct *si = swap_info[type];
2024 	struct page *page;
2025 	swp_entry_t entry;
2026 	unsigned int i;
2027 	int retries = 0;
2028 
2029 	if (!si->inuse_pages)
2030 		return 0;
2031 
2032 	if (!frontswap)
2033 		pages_to_unuse = 0;
2034 
2035 retry:
2036 	retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2037 	if (retval)
2038 		goto out;
2039 
2040 	prev_mm = &init_mm;
2041 	mmget(prev_mm);
2042 
2043 	spin_lock(&mmlist_lock);
2044 	p = &init_mm.mmlist;
2045 	while ((p = p->next) != &init_mm.mmlist) {
2046 		if (signal_pending(current)) {
2047 			retval = -EINTR;
2048 			break;
2049 		}
2050 
2051 		mm = list_entry(p, struct mm_struct, mmlist);
2052 		if (!mmget_not_zero(mm))
2053 			continue;
2054 		spin_unlock(&mmlist_lock);
2055 		mmput(prev_mm);
2056 		prev_mm = mm;
2057 		retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2058 
2059 		if (retval) {
2060 			mmput(prev_mm);
2061 			goto out;
2062 		}
2063 
2064 		/*
2065 		 * Make sure that we aren't completely killing
2066 		 * interactive performance.
2067 		 */
2068 		cond_resched();
2069 		spin_lock(&mmlist_lock);
2070 	}
2071 	spin_unlock(&mmlist_lock);
2072 
2073 	mmput(prev_mm);
2074 
2075 	i = 0;
2076 	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
2077 
2078 		entry = swp_entry(type, i);
2079 		page = find_get_page(swap_address_space(entry), i);
2080 		if (!page)
2081 			continue;
2082 
2083 		/*
2084 		 * It is conceivable that a racing task removed this page from
2085 		 * swap cache just before we acquired the page lock. The page
2086 		 * might even be back in swap cache on another swap area. But
2087 		 * that is okay, try_to_free_swap() only removes stale pages.
2088 		 */
2089 		lock_page(page);
2090 		wait_on_page_writeback(page);
2091 		try_to_free_swap(page);
2092 		unlock_page(page);
2093 		put_page(page);
2094 
2095 		/*
2096 		 * For frontswap, we just need to unuse pages_to_unuse, if
2097 		 * it was specified. Need not check frontswap again here as
2098 		 * we already zeroed out pages_to_unuse if not frontswap.
2099 		 */
2100 		if (pages_to_unuse && --pages_to_unuse == 0)
2101 			goto out;
2102 	}
2103 
2104 	/*
2105 	 * Lets check again to see if there are still swap entries in the map.
2106 	 * If yes, we would need to do retry the unuse logic again.
2107 	 * Under global memory pressure, swap entries can be reinserted back
2108 	 * into process space after the mmlist loop above passes over them.
2109 	 * Its not worth continuosuly retrying to unuse the swap in this case.
2110 	 * So we try SWAP_UNUSE_MAX_TRIES times.
2111 	 */
2112 	if (++retries >= SWAP_UNUSE_MAX_TRIES)
2113 		retval = -EBUSY;
2114 	else if (si->inuse_pages)
2115 		goto retry;
2116 
2117 out:
2118 	return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2119 }
2120 
2121 /*
2122  * After a successful try_to_unuse, if no swap is now in use, we know
2123  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2124  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2125  * added to the mmlist just after page_duplicate - before would be racy.
2126  */
2127 static void drain_mmlist(void)
2128 {
2129 	struct list_head *p, *next;
2130 	unsigned int type;
2131 
2132 	for (type = 0; type < nr_swapfiles; type++)
2133 		if (swap_info[type]->inuse_pages)
2134 			return;
2135 	spin_lock(&mmlist_lock);
2136 	list_for_each_safe(p, next, &init_mm.mmlist)
2137 		list_del_init(p);
2138 	spin_unlock(&mmlist_lock);
2139 }
2140 
2141 /*
2142  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2143  * corresponds to page offset for the specified swap entry.
2144  * Note that the type of this function is sector_t, but it returns page offset
2145  * into the bdev, not sector offset.
2146  */
2147 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2148 {
2149 	struct swap_info_struct *sis;
2150 	struct swap_extent *start_se;
2151 	struct swap_extent *se;
2152 	pgoff_t offset;
2153 
2154 	sis = swap_info[swp_type(entry)];
2155 	*bdev = sis->bdev;
2156 
2157 	offset = swp_offset(entry);
2158 	start_se = sis->curr_swap_extent;
2159 	se = start_se;
2160 
2161 	for ( ; ; ) {
2162 		if (se->start_page <= offset &&
2163 				offset < (se->start_page + se->nr_pages)) {
2164 			return se->start_block + (offset - se->start_page);
2165 		}
2166 		se = list_next_entry(se, list);
2167 		sis->curr_swap_extent = se;
2168 		BUG_ON(se == start_se);		/* It *must* be present */
2169 	}
2170 }
2171 
2172 /*
2173  * Returns the page offset into bdev for the specified page's swap entry.
2174  */
2175 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2176 {
2177 	swp_entry_t entry;
2178 	entry.val = page_private(page);
2179 	return map_swap_entry(entry, bdev);
2180 }
2181 
2182 /*
2183  * Free all of a swapdev's extent information
2184  */
2185 static void destroy_swap_extents(struct swap_info_struct *sis)
2186 {
2187 	while (!list_empty(&sis->first_swap_extent.list)) {
2188 		struct swap_extent *se;
2189 
2190 		se = list_first_entry(&sis->first_swap_extent.list,
2191 				struct swap_extent, list);
2192 		list_del(&se->list);
2193 		kfree(se);
2194 	}
2195 
2196 	if (sis->flags & SWP_ACTIVATED) {
2197 		struct file *swap_file = sis->swap_file;
2198 		struct address_space *mapping = swap_file->f_mapping;
2199 
2200 		sis->flags &= ~SWP_ACTIVATED;
2201 		if (mapping->a_ops->swap_deactivate)
2202 			mapping->a_ops->swap_deactivate(swap_file);
2203 	}
2204 }
2205 
2206 /*
2207  * Add a block range (and the corresponding page range) into this swapdev's
2208  * extent list.  The extent list is kept sorted in page order.
2209  *
2210  * This function rather assumes that it is called in ascending page order.
2211  */
2212 int
2213 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2214 		unsigned long nr_pages, sector_t start_block)
2215 {
2216 	struct swap_extent *se;
2217 	struct swap_extent *new_se;
2218 	struct list_head *lh;
2219 
2220 	if (start_page == 0) {
2221 		se = &sis->first_swap_extent;
2222 		sis->curr_swap_extent = se;
2223 		se->start_page = 0;
2224 		se->nr_pages = nr_pages;
2225 		se->start_block = start_block;
2226 		return 1;
2227 	} else {
2228 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
2229 		se = list_entry(lh, struct swap_extent, list);
2230 		BUG_ON(se->start_page + se->nr_pages != start_page);
2231 		if (se->start_block + se->nr_pages == start_block) {
2232 			/* Merge it */
2233 			se->nr_pages += nr_pages;
2234 			return 0;
2235 		}
2236 	}
2237 
2238 	/*
2239 	 * No merge.  Insert a new extent, preserving ordering.
2240 	 */
2241 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2242 	if (new_se == NULL)
2243 		return -ENOMEM;
2244 	new_se->start_page = start_page;
2245 	new_se->nr_pages = nr_pages;
2246 	new_se->start_block = start_block;
2247 
2248 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2249 	return 1;
2250 }
2251 EXPORT_SYMBOL_GPL(add_swap_extent);
2252 
2253 /*
2254  * A `swap extent' is a simple thing which maps a contiguous range of pages
2255  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2256  * is built at swapon time and is then used at swap_writepage/swap_readpage
2257  * time for locating where on disk a page belongs.
2258  *
2259  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2260  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2261  * swap files identically.
2262  *
2263  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2264  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2265  * swapfiles are handled *identically* after swapon time.
2266  *
2267  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2268  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2269  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2270  * requirements, they are simply tossed out - we will never use those blocks
2271  * for swapping.
2272  *
2273  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2274  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2275  * which will scribble on the fs.
2276  *
2277  * The amount of disk space which a single swap extent represents varies.
2278  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2279  * extents in the list.  To avoid much list walking, we cache the previous
2280  * search location in `curr_swap_extent', and start new searches from there.
2281  * This is extremely effective.  The average number of iterations in
2282  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2283  */
2284 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2285 {
2286 	struct file *swap_file = sis->swap_file;
2287 	struct address_space *mapping = swap_file->f_mapping;
2288 	struct inode *inode = mapping->host;
2289 	int ret;
2290 
2291 	if (S_ISBLK(inode->i_mode)) {
2292 		ret = add_swap_extent(sis, 0, sis->max, 0);
2293 		*span = sis->pages;
2294 		return ret;
2295 	}
2296 
2297 	if (mapping->a_ops->swap_activate) {
2298 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2299 		if (ret >= 0)
2300 			sis->flags |= SWP_ACTIVATED;
2301 		if (!ret) {
2302 			sis->flags |= SWP_FS;
2303 			ret = add_swap_extent(sis, 0, sis->max, 0);
2304 			*span = sis->pages;
2305 		}
2306 		return ret;
2307 	}
2308 
2309 	return generic_swapfile_activate(sis, swap_file, span);
2310 }
2311 
2312 static int swap_node(struct swap_info_struct *p)
2313 {
2314 	struct block_device *bdev;
2315 
2316 	if (p->bdev)
2317 		bdev = p->bdev;
2318 	else
2319 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2320 
2321 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2322 }
2323 
2324 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2325 				unsigned char *swap_map,
2326 				struct swap_cluster_info *cluster_info)
2327 {
2328 	int i;
2329 
2330 	if (prio >= 0)
2331 		p->prio = prio;
2332 	else
2333 		p->prio = --least_priority;
2334 	/*
2335 	 * the plist prio is negated because plist ordering is
2336 	 * low-to-high, while swap ordering is high-to-low
2337 	 */
2338 	p->list.prio = -p->prio;
2339 	for_each_node(i) {
2340 		if (p->prio >= 0)
2341 			p->avail_lists[i].prio = -p->prio;
2342 		else {
2343 			if (swap_node(p) == i)
2344 				p->avail_lists[i].prio = 1;
2345 			else
2346 				p->avail_lists[i].prio = -p->prio;
2347 		}
2348 	}
2349 	p->swap_map = swap_map;
2350 	p->cluster_info = cluster_info;
2351 	p->flags |= SWP_WRITEOK;
2352 	atomic_long_add(p->pages, &nr_swap_pages);
2353 	total_swap_pages += p->pages;
2354 
2355 	assert_spin_locked(&swap_lock);
2356 	/*
2357 	 * both lists are plists, and thus priority ordered.
2358 	 * swap_active_head needs to be priority ordered for swapoff(),
2359 	 * which on removal of any swap_info_struct with an auto-assigned
2360 	 * (i.e. negative) priority increments the auto-assigned priority
2361 	 * of any lower-priority swap_info_structs.
2362 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2363 	 * which allocates swap pages from the highest available priority
2364 	 * swap_info_struct.
2365 	 */
2366 	plist_add(&p->list, &swap_active_head);
2367 	add_to_avail_list(p);
2368 }
2369 
2370 static void enable_swap_info(struct swap_info_struct *p, int prio,
2371 				unsigned char *swap_map,
2372 				struct swap_cluster_info *cluster_info,
2373 				unsigned long *frontswap_map)
2374 {
2375 	frontswap_init(p->type, frontswap_map);
2376 	spin_lock(&swap_lock);
2377 	spin_lock(&p->lock);
2378 	 _enable_swap_info(p, prio, swap_map, cluster_info);
2379 	spin_unlock(&p->lock);
2380 	spin_unlock(&swap_lock);
2381 }
2382 
2383 static void reinsert_swap_info(struct swap_info_struct *p)
2384 {
2385 	spin_lock(&swap_lock);
2386 	spin_lock(&p->lock);
2387 	_enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2388 	spin_unlock(&p->lock);
2389 	spin_unlock(&swap_lock);
2390 }
2391 
2392 bool has_usable_swap(void)
2393 {
2394 	bool ret = true;
2395 
2396 	spin_lock(&swap_lock);
2397 	if (plist_head_empty(&swap_active_head))
2398 		ret = false;
2399 	spin_unlock(&swap_lock);
2400 	return ret;
2401 }
2402 
2403 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2404 {
2405 	struct swap_info_struct *p = NULL;
2406 	unsigned char *swap_map;
2407 	struct swap_cluster_info *cluster_info;
2408 	unsigned long *frontswap_map;
2409 	struct file *swap_file, *victim;
2410 	struct address_space *mapping;
2411 	struct inode *inode;
2412 	struct filename *pathname;
2413 	int err, found = 0;
2414 	unsigned int old_block_size;
2415 
2416 	if (!capable(CAP_SYS_ADMIN))
2417 		return -EPERM;
2418 
2419 	BUG_ON(!current->mm);
2420 
2421 	pathname = getname(specialfile);
2422 	if (IS_ERR(pathname))
2423 		return PTR_ERR(pathname);
2424 
2425 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2426 	err = PTR_ERR(victim);
2427 	if (IS_ERR(victim))
2428 		goto out;
2429 
2430 	mapping = victim->f_mapping;
2431 	spin_lock(&swap_lock);
2432 	plist_for_each_entry(p, &swap_active_head, list) {
2433 		if (p->flags & SWP_WRITEOK) {
2434 			if (p->swap_file->f_mapping == mapping) {
2435 				found = 1;
2436 				break;
2437 			}
2438 		}
2439 	}
2440 	if (!found) {
2441 		err = -EINVAL;
2442 		spin_unlock(&swap_lock);
2443 		goto out_dput;
2444 	}
2445 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2446 		vm_unacct_memory(p->pages);
2447 	else {
2448 		err = -ENOMEM;
2449 		spin_unlock(&swap_lock);
2450 		goto out_dput;
2451 	}
2452 	del_from_avail_list(p);
2453 	spin_lock(&p->lock);
2454 	if (p->prio < 0) {
2455 		struct swap_info_struct *si = p;
2456 		int nid;
2457 
2458 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2459 			si->prio++;
2460 			si->list.prio--;
2461 			for_each_node(nid) {
2462 				if (si->avail_lists[nid].prio != 1)
2463 					si->avail_lists[nid].prio--;
2464 			}
2465 		}
2466 		least_priority++;
2467 	}
2468 	plist_del(&p->list, &swap_active_head);
2469 	atomic_long_sub(p->pages, &nr_swap_pages);
2470 	total_swap_pages -= p->pages;
2471 	p->flags &= ~SWP_WRITEOK;
2472 	spin_unlock(&p->lock);
2473 	spin_unlock(&swap_lock);
2474 
2475 	disable_swap_slots_cache_lock();
2476 
2477 	set_current_oom_origin();
2478 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2479 	clear_current_oom_origin();
2480 
2481 	if (err) {
2482 		/* re-insert swap space back into swap_list */
2483 		reinsert_swap_info(p);
2484 		reenable_swap_slots_cache_unlock();
2485 		goto out_dput;
2486 	}
2487 
2488 	reenable_swap_slots_cache_unlock();
2489 
2490 	flush_work(&p->discard_work);
2491 
2492 	destroy_swap_extents(p);
2493 	if (p->flags & SWP_CONTINUED)
2494 		free_swap_count_continuations(p);
2495 
2496 	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2497 		atomic_dec(&nr_rotate_swap);
2498 
2499 	mutex_lock(&swapon_mutex);
2500 	spin_lock(&swap_lock);
2501 	spin_lock(&p->lock);
2502 	drain_mmlist();
2503 
2504 	/* wait for anyone still in scan_swap_map */
2505 	p->highest_bit = 0;		/* cuts scans short */
2506 	while (p->flags >= SWP_SCANNING) {
2507 		spin_unlock(&p->lock);
2508 		spin_unlock(&swap_lock);
2509 		schedule_timeout_uninterruptible(1);
2510 		spin_lock(&swap_lock);
2511 		spin_lock(&p->lock);
2512 	}
2513 
2514 	swap_file = p->swap_file;
2515 	old_block_size = p->old_block_size;
2516 	p->swap_file = NULL;
2517 	p->max = 0;
2518 	swap_map = p->swap_map;
2519 	p->swap_map = NULL;
2520 	cluster_info = p->cluster_info;
2521 	p->cluster_info = NULL;
2522 	frontswap_map = frontswap_map_get(p);
2523 	spin_unlock(&p->lock);
2524 	spin_unlock(&swap_lock);
2525 	frontswap_invalidate_area(p->type);
2526 	frontswap_map_set(p, NULL);
2527 	mutex_unlock(&swapon_mutex);
2528 	free_percpu(p->percpu_cluster);
2529 	p->percpu_cluster = NULL;
2530 	vfree(swap_map);
2531 	kvfree(cluster_info);
2532 	kvfree(frontswap_map);
2533 	/* Destroy swap account information */
2534 	swap_cgroup_swapoff(p->type);
2535 	exit_swap_address_space(p->type);
2536 
2537 	inode = mapping->host;
2538 	if (S_ISBLK(inode->i_mode)) {
2539 		struct block_device *bdev = I_BDEV(inode);
2540 		set_blocksize(bdev, old_block_size);
2541 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2542 	} else {
2543 		inode_lock(inode);
2544 		inode->i_flags &= ~S_SWAPFILE;
2545 		inode_unlock(inode);
2546 	}
2547 	filp_close(swap_file, NULL);
2548 
2549 	/*
2550 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2551 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2552 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2553 	 */
2554 	spin_lock(&swap_lock);
2555 	p->flags = 0;
2556 	spin_unlock(&swap_lock);
2557 
2558 	err = 0;
2559 	atomic_inc(&proc_poll_event);
2560 	wake_up_interruptible(&proc_poll_wait);
2561 
2562 out_dput:
2563 	filp_close(victim, NULL);
2564 out:
2565 	putname(pathname);
2566 	return err;
2567 }
2568 
2569 #ifdef CONFIG_PROC_FS
2570 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2571 {
2572 	struct seq_file *seq = file->private_data;
2573 
2574 	poll_wait(file, &proc_poll_wait, wait);
2575 
2576 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2577 		seq->poll_event = atomic_read(&proc_poll_event);
2578 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2579 	}
2580 
2581 	return EPOLLIN | EPOLLRDNORM;
2582 }
2583 
2584 /* iterator */
2585 static void *swap_start(struct seq_file *swap, loff_t *pos)
2586 {
2587 	struct swap_info_struct *si;
2588 	int type;
2589 	loff_t l = *pos;
2590 
2591 	mutex_lock(&swapon_mutex);
2592 
2593 	if (!l)
2594 		return SEQ_START_TOKEN;
2595 
2596 	for (type = 0; type < nr_swapfiles; type++) {
2597 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2598 		si = swap_info[type];
2599 		if (!(si->flags & SWP_USED) || !si->swap_map)
2600 			continue;
2601 		if (!--l)
2602 			return si;
2603 	}
2604 
2605 	return NULL;
2606 }
2607 
2608 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2609 {
2610 	struct swap_info_struct *si = v;
2611 	int type;
2612 
2613 	if (v == SEQ_START_TOKEN)
2614 		type = 0;
2615 	else
2616 		type = si->type + 1;
2617 
2618 	for (; type < nr_swapfiles; type++) {
2619 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2620 		si = swap_info[type];
2621 		if (!(si->flags & SWP_USED) || !si->swap_map)
2622 			continue;
2623 		++*pos;
2624 		return si;
2625 	}
2626 
2627 	return NULL;
2628 }
2629 
2630 static void swap_stop(struct seq_file *swap, void *v)
2631 {
2632 	mutex_unlock(&swapon_mutex);
2633 }
2634 
2635 static int swap_show(struct seq_file *swap, void *v)
2636 {
2637 	struct swap_info_struct *si = v;
2638 	struct file *file;
2639 	int len;
2640 
2641 	if (si == SEQ_START_TOKEN) {
2642 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2643 		return 0;
2644 	}
2645 
2646 	file = si->swap_file;
2647 	len = seq_file_path(swap, file, " \t\n\\");
2648 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2649 			len < 40 ? 40 - len : 1, " ",
2650 			S_ISBLK(file_inode(file)->i_mode) ?
2651 				"partition" : "file\t",
2652 			si->pages << (PAGE_SHIFT - 10),
2653 			si->inuse_pages << (PAGE_SHIFT - 10),
2654 			si->prio);
2655 	return 0;
2656 }
2657 
2658 static const struct seq_operations swaps_op = {
2659 	.start =	swap_start,
2660 	.next =		swap_next,
2661 	.stop =		swap_stop,
2662 	.show =		swap_show
2663 };
2664 
2665 static int swaps_open(struct inode *inode, struct file *file)
2666 {
2667 	struct seq_file *seq;
2668 	int ret;
2669 
2670 	ret = seq_open(file, &swaps_op);
2671 	if (ret)
2672 		return ret;
2673 
2674 	seq = file->private_data;
2675 	seq->poll_event = atomic_read(&proc_poll_event);
2676 	return 0;
2677 }
2678 
2679 static const struct file_operations proc_swaps_operations = {
2680 	.open		= swaps_open,
2681 	.read		= seq_read,
2682 	.llseek		= seq_lseek,
2683 	.release	= seq_release,
2684 	.poll		= swaps_poll,
2685 };
2686 
2687 static int __init procswaps_init(void)
2688 {
2689 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
2690 	return 0;
2691 }
2692 __initcall(procswaps_init);
2693 #endif /* CONFIG_PROC_FS */
2694 
2695 #ifdef MAX_SWAPFILES_CHECK
2696 static int __init max_swapfiles_check(void)
2697 {
2698 	MAX_SWAPFILES_CHECK();
2699 	return 0;
2700 }
2701 late_initcall(max_swapfiles_check);
2702 #endif
2703 
2704 static struct swap_info_struct *alloc_swap_info(void)
2705 {
2706 	struct swap_info_struct *p;
2707 	unsigned int type;
2708 	int i;
2709 	int size = sizeof(*p) + nr_node_ids * sizeof(struct plist_node);
2710 
2711 	p = kvzalloc(size, GFP_KERNEL);
2712 	if (!p)
2713 		return ERR_PTR(-ENOMEM);
2714 
2715 	spin_lock(&swap_lock);
2716 	for (type = 0; type < nr_swapfiles; type++) {
2717 		if (!(swap_info[type]->flags & SWP_USED))
2718 			break;
2719 	}
2720 	if (type >= MAX_SWAPFILES) {
2721 		spin_unlock(&swap_lock);
2722 		kvfree(p);
2723 		return ERR_PTR(-EPERM);
2724 	}
2725 	if (type >= nr_swapfiles) {
2726 		p->type = type;
2727 		swap_info[type] = p;
2728 		/*
2729 		 * Write swap_info[type] before nr_swapfiles, in case a
2730 		 * racing procfs swap_start() or swap_next() is reading them.
2731 		 * (We never shrink nr_swapfiles, we never free this entry.)
2732 		 */
2733 		smp_wmb();
2734 		nr_swapfiles++;
2735 	} else {
2736 		kvfree(p);
2737 		p = swap_info[type];
2738 		/*
2739 		 * Do not memset this entry: a racing procfs swap_next()
2740 		 * would be relying on p->type to remain valid.
2741 		 */
2742 	}
2743 	INIT_LIST_HEAD(&p->first_swap_extent.list);
2744 	plist_node_init(&p->list, 0);
2745 	for_each_node(i)
2746 		plist_node_init(&p->avail_lists[i], 0);
2747 	p->flags = SWP_USED;
2748 	spin_unlock(&swap_lock);
2749 	spin_lock_init(&p->lock);
2750 	spin_lock_init(&p->cont_lock);
2751 
2752 	return p;
2753 }
2754 
2755 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2756 {
2757 	int error;
2758 
2759 	if (S_ISBLK(inode->i_mode)) {
2760 		p->bdev = bdgrab(I_BDEV(inode));
2761 		error = blkdev_get(p->bdev,
2762 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2763 		if (error < 0) {
2764 			p->bdev = NULL;
2765 			return error;
2766 		}
2767 		p->old_block_size = block_size(p->bdev);
2768 		error = set_blocksize(p->bdev, PAGE_SIZE);
2769 		if (error < 0)
2770 			return error;
2771 		p->flags |= SWP_BLKDEV;
2772 	} else if (S_ISREG(inode->i_mode)) {
2773 		p->bdev = inode->i_sb->s_bdev;
2774 		inode_lock(inode);
2775 		if (IS_SWAPFILE(inode))
2776 			return -EBUSY;
2777 	} else
2778 		return -EINVAL;
2779 
2780 	return 0;
2781 }
2782 
2783 
2784 /*
2785  * Find out how many pages are allowed for a single swap device. There
2786  * are two limiting factors:
2787  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2788  * 2) the number of bits in the swap pte, as defined by the different
2789  * architectures.
2790  *
2791  * In order to find the largest possible bit mask, a swap entry with
2792  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2793  * decoded to a swp_entry_t again, and finally the swap offset is
2794  * extracted.
2795  *
2796  * This will mask all the bits from the initial ~0UL mask that can't
2797  * be encoded in either the swp_entry_t or the architecture definition
2798  * of a swap pte.
2799  */
2800 unsigned long generic_max_swapfile_size(void)
2801 {
2802 	return swp_offset(pte_to_swp_entry(
2803 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2804 }
2805 
2806 /* Can be overridden by an architecture for additional checks. */
2807 __weak unsigned long max_swapfile_size(void)
2808 {
2809 	return generic_max_swapfile_size();
2810 }
2811 
2812 static unsigned long read_swap_header(struct swap_info_struct *p,
2813 					union swap_header *swap_header,
2814 					struct inode *inode)
2815 {
2816 	int i;
2817 	unsigned long maxpages;
2818 	unsigned long swapfilepages;
2819 	unsigned long last_page;
2820 
2821 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2822 		pr_err("Unable to find swap-space signature\n");
2823 		return 0;
2824 	}
2825 
2826 	/* swap partition endianess hack... */
2827 	if (swab32(swap_header->info.version) == 1) {
2828 		swab32s(&swap_header->info.version);
2829 		swab32s(&swap_header->info.last_page);
2830 		swab32s(&swap_header->info.nr_badpages);
2831 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2832 			return 0;
2833 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2834 			swab32s(&swap_header->info.badpages[i]);
2835 	}
2836 	/* Check the swap header's sub-version */
2837 	if (swap_header->info.version != 1) {
2838 		pr_warn("Unable to handle swap header version %d\n",
2839 			swap_header->info.version);
2840 		return 0;
2841 	}
2842 
2843 	p->lowest_bit  = 1;
2844 	p->cluster_next = 1;
2845 	p->cluster_nr = 0;
2846 
2847 	maxpages = max_swapfile_size();
2848 	last_page = swap_header->info.last_page;
2849 	if (!last_page) {
2850 		pr_warn("Empty swap-file\n");
2851 		return 0;
2852 	}
2853 	if (last_page > maxpages) {
2854 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2855 			maxpages << (PAGE_SHIFT - 10),
2856 			last_page << (PAGE_SHIFT - 10));
2857 	}
2858 	if (maxpages > last_page) {
2859 		maxpages = last_page + 1;
2860 		/* p->max is an unsigned int: don't overflow it */
2861 		if ((unsigned int)maxpages == 0)
2862 			maxpages = UINT_MAX;
2863 	}
2864 	p->highest_bit = maxpages - 1;
2865 
2866 	if (!maxpages)
2867 		return 0;
2868 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2869 	if (swapfilepages && maxpages > swapfilepages) {
2870 		pr_warn("Swap area shorter than signature indicates\n");
2871 		return 0;
2872 	}
2873 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2874 		return 0;
2875 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2876 		return 0;
2877 
2878 	return maxpages;
2879 }
2880 
2881 #define SWAP_CLUSTER_INFO_COLS						\
2882 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2883 #define SWAP_CLUSTER_SPACE_COLS						\
2884 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2885 #define SWAP_CLUSTER_COLS						\
2886 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2887 
2888 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2889 					union swap_header *swap_header,
2890 					unsigned char *swap_map,
2891 					struct swap_cluster_info *cluster_info,
2892 					unsigned long maxpages,
2893 					sector_t *span)
2894 {
2895 	unsigned int j, k;
2896 	unsigned int nr_good_pages;
2897 	int nr_extents;
2898 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2899 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2900 	unsigned long i, idx;
2901 
2902 	nr_good_pages = maxpages - 1;	/* omit header page */
2903 
2904 	cluster_list_init(&p->free_clusters);
2905 	cluster_list_init(&p->discard_clusters);
2906 
2907 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2908 		unsigned int page_nr = swap_header->info.badpages[i];
2909 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2910 			return -EINVAL;
2911 		if (page_nr < maxpages) {
2912 			swap_map[page_nr] = SWAP_MAP_BAD;
2913 			nr_good_pages--;
2914 			/*
2915 			 * Haven't marked the cluster free yet, no list
2916 			 * operation involved
2917 			 */
2918 			inc_cluster_info_page(p, cluster_info, page_nr);
2919 		}
2920 	}
2921 
2922 	/* Haven't marked the cluster free yet, no list operation involved */
2923 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2924 		inc_cluster_info_page(p, cluster_info, i);
2925 
2926 	if (nr_good_pages) {
2927 		swap_map[0] = SWAP_MAP_BAD;
2928 		/*
2929 		 * Not mark the cluster free yet, no list
2930 		 * operation involved
2931 		 */
2932 		inc_cluster_info_page(p, cluster_info, 0);
2933 		p->max = maxpages;
2934 		p->pages = nr_good_pages;
2935 		nr_extents = setup_swap_extents(p, span);
2936 		if (nr_extents < 0)
2937 			return nr_extents;
2938 		nr_good_pages = p->pages;
2939 	}
2940 	if (!nr_good_pages) {
2941 		pr_warn("Empty swap-file\n");
2942 		return -EINVAL;
2943 	}
2944 
2945 	if (!cluster_info)
2946 		return nr_extents;
2947 
2948 
2949 	/*
2950 	 * Reduce false cache line sharing between cluster_info and
2951 	 * sharing same address space.
2952 	 */
2953 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2954 		j = (k + col) % SWAP_CLUSTER_COLS;
2955 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2956 			idx = i * SWAP_CLUSTER_COLS + j;
2957 			if (idx >= nr_clusters)
2958 				continue;
2959 			if (cluster_count(&cluster_info[idx]))
2960 				continue;
2961 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2962 			cluster_list_add_tail(&p->free_clusters, cluster_info,
2963 					      idx);
2964 		}
2965 	}
2966 	return nr_extents;
2967 }
2968 
2969 /*
2970  * Helper to sys_swapon determining if a given swap
2971  * backing device queue supports DISCARD operations.
2972  */
2973 static bool swap_discardable(struct swap_info_struct *si)
2974 {
2975 	struct request_queue *q = bdev_get_queue(si->bdev);
2976 
2977 	if (!q || !blk_queue_discard(q))
2978 		return false;
2979 
2980 	return true;
2981 }
2982 
2983 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2984 {
2985 	struct swap_info_struct *p;
2986 	struct filename *name;
2987 	struct file *swap_file = NULL;
2988 	struct address_space *mapping;
2989 	int prio;
2990 	int error;
2991 	union swap_header *swap_header;
2992 	int nr_extents;
2993 	sector_t span;
2994 	unsigned long maxpages;
2995 	unsigned char *swap_map = NULL;
2996 	struct swap_cluster_info *cluster_info = NULL;
2997 	unsigned long *frontswap_map = NULL;
2998 	struct page *page = NULL;
2999 	struct inode *inode = NULL;
3000 	bool inced_nr_rotate_swap = false;
3001 
3002 	if (swap_flags & ~SWAP_FLAGS_VALID)
3003 		return -EINVAL;
3004 
3005 	if (!capable(CAP_SYS_ADMIN))
3006 		return -EPERM;
3007 
3008 	if (!swap_avail_heads)
3009 		return -ENOMEM;
3010 
3011 	p = alloc_swap_info();
3012 	if (IS_ERR(p))
3013 		return PTR_ERR(p);
3014 
3015 	INIT_WORK(&p->discard_work, swap_discard_work);
3016 
3017 	name = getname(specialfile);
3018 	if (IS_ERR(name)) {
3019 		error = PTR_ERR(name);
3020 		name = NULL;
3021 		goto bad_swap;
3022 	}
3023 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3024 	if (IS_ERR(swap_file)) {
3025 		error = PTR_ERR(swap_file);
3026 		swap_file = NULL;
3027 		goto bad_swap;
3028 	}
3029 
3030 	p->swap_file = swap_file;
3031 	mapping = swap_file->f_mapping;
3032 	inode = mapping->host;
3033 
3034 	/* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3035 	error = claim_swapfile(p, inode);
3036 	if (unlikely(error))
3037 		goto bad_swap;
3038 
3039 	/*
3040 	 * Read the swap header.
3041 	 */
3042 	if (!mapping->a_ops->readpage) {
3043 		error = -EINVAL;
3044 		goto bad_swap;
3045 	}
3046 	page = read_mapping_page(mapping, 0, swap_file);
3047 	if (IS_ERR(page)) {
3048 		error = PTR_ERR(page);
3049 		goto bad_swap;
3050 	}
3051 	swap_header = kmap(page);
3052 
3053 	maxpages = read_swap_header(p, swap_header, inode);
3054 	if (unlikely(!maxpages)) {
3055 		error = -EINVAL;
3056 		goto bad_swap;
3057 	}
3058 
3059 	/* OK, set up the swap map and apply the bad block list */
3060 	swap_map = vzalloc(maxpages);
3061 	if (!swap_map) {
3062 		error = -ENOMEM;
3063 		goto bad_swap;
3064 	}
3065 
3066 	if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3067 		p->flags |= SWP_STABLE_WRITES;
3068 
3069 	if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3070 		p->flags |= SWP_SYNCHRONOUS_IO;
3071 
3072 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3073 		int cpu;
3074 		unsigned long ci, nr_cluster;
3075 
3076 		p->flags |= SWP_SOLIDSTATE;
3077 		/*
3078 		 * select a random position to start with to help wear leveling
3079 		 * SSD
3080 		 */
3081 		p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3082 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3083 
3084 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3085 					GFP_KERNEL);
3086 		if (!cluster_info) {
3087 			error = -ENOMEM;
3088 			goto bad_swap;
3089 		}
3090 
3091 		for (ci = 0; ci < nr_cluster; ci++)
3092 			spin_lock_init(&((cluster_info + ci)->lock));
3093 
3094 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3095 		if (!p->percpu_cluster) {
3096 			error = -ENOMEM;
3097 			goto bad_swap;
3098 		}
3099 		for_each_possible_cpu(cpu) {
3100 			struct percpu_cluster *cluster;
3101 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3102 			cluster_set_null(&cluster->index);
3103 		}
3104 	} else {
3105 		atomic_inc(&nr_rotate_swap);
3106 		inced_nr_rotate_swap = true;
3107 	}
3108 
3109 	error = swap_cgroup_swapon(p->type, maxpages);
3110 	if (error)
3111 		goto bad_swap;
3112 
3113 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3114 		cluster_info, maxpages, &span);
3115 	if (unlikely(nr_extents < 0)) {
3116 		error = nr_extents;
3117 		goto bad_swap;
3118 	}
3119 	/* frontswap enabled? set up bit-per-page map for frontswap */
3120 	if (IS_ENABLED(CONFIG_FRONTSWAP))
3121 		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3122 					 sizeof(long),
3123 					 GFP_KERNEL);
3124 
3125 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3126 		/*
3127 		 * When discard is enabled for swap with no particular
3128 		 * policy flagged, we set all swap discard flags here in
3129 		 * order to sustain backward compatibility with older
3130 		 * swapon(8) releases.
3131 		 */
3132 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3133 			     SWP_PAGE_DISCARD);
3134 
3135 		/*
3136 		 * By flagging sys_swapon, a sysadmin can tell us to
3137 		 * either do single-time area discards only, or to just
3138 		 * perform discards for released swap page-clusters.
3139 		 * Now it's time to adjust the p->flags accordingly.
3140 		 */
3141 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3142 			p->flags &= ~SWP_PAGE_DISCARD;
3143 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3144 			p->flags &= ~SWP_AREA_DISCARD;
3145 
3146 		/* issue a swapon-time discard if it's still required */
3147 		if (p->flags & SWP_AREA_DISCARD) {
3148 			int err = discard_swap(p);
3149 			if (unlikely(err))
3150 				pr_err("swapon: discard_swap(%p): %d\n",
3151 					p, err);
3152 		}
3153 	}
3154 
3155 	error = init_swap_address_space(p->type, maxpages);
3156 	if (error)
3157 		goto bad_swap;
3158 
3159 	mutex_lock(&swapon_mutex);
3160 	prio = -1;
3161 	if (swap_flags & SWAP_FLAG_PREFER)
3162 		prio =
3163 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3164 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3165 
3166 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3167 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3168 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3169 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3170 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3171 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3172 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3173 		(frontswap_map) ? "FS" : "");
3174 
3175 	mutex_unlock(&swapon_mutex);
3176 	atomic_inc(&proc_poll_event);
3177 	wake_up_interruptible(&proc_poll_wait);
3178 
3179 	if (S_ISREG(inode->i_mode))
3180 		inode->i_flags |= S_SWAPFILE;
3181 	error = 0;
3182 	goto out;
3183 bad_swap:
3184 	free_percpu(p->percpu_cluster);
3185 	p->percpu_cluster = NULL;
3186 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3187 		set_blocksize(p->bdev, p->old_block_size);
3188 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3189 	}
3190 	destroy_swap_extents(p);
3191 	swap_cgroup_swapoff(p->type);
3192 	spin_lock(&swap_lock);
3193 	p->swap_file = NULL;
3194 	p->flags = 0;
3195 	spin_unlock(&swap_lock);
3196 	vfree(swap_map);
3197 	kvfree(cluster_info);
3198 	kvfree(frontswap_map);
3199 	if (inced_nr_rotate_swap)
3200 		atomic_dec(&nr_rotate_swap);
3201 	if (swap_file) {
3202 		if (inode && S_ISREG(inode->i_mode)) {
3203 			inode_unlock(inode);
3204 			inode = NULL;
3205 		}
3206 		filp_close(swap_file, NULL);
3207 	}
3208 out:
3209 	if (page && !IS_ERR(page)) {
3210 		kunmap(page);
3211 		put_page(page);
3212 	}
3213 	if (name)
3214 		putname(name);
3215 	if (inode && S_ISREG(inode->i_mode))
3216 		inode_unlock(inode);
3217 	if (!error)
3218 		enable_swap_slots_cache();
3219 	return error;
3220 }
3221 
3222 void si_swapinfo(struct sysinfo *val)
3223 {
3224 	unsigned int type;
3225 	unsigned long nr_to_be_unused = 0;
3226 
3227 	spin_lock(&swap_lock);
3228 	for (type = 0; type < nr_swapfiles; type++) {
3229 		struct swap_info_struct *si = swap_info[type];
3230 
3231 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3232 			nr_to_be_unused += si->inuse_pages;
3233 	}
3234 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3235 	val->totalswap = total_swap_pages + nr_to_be_unused;
3236 	spin_unlock(&swap_lock);
3237 }
3238 
3239 /*
3240  * Verify that a swap entry is valid and increment its swap map count.
3241  *
3242  * Returns error code in following case.
3243  * - success -> 0
3244  * - swp_entry is invalid -> EINVAL
3245  * - swp_entry is migration entry -> EINVAL
3246  * - swap-cache reference is requested but there is already one. -> EEXIST
3247  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3248  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3249  */
3250 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3251 {
3252 	struct swap_info_struct *p;
3253 	struct swap_cluster_info *ci;
3254 	unsigned long offset, type;
3255 	unsigned char count;
3256 	unsigned char has_cache;
3257 	int err = -EINVAL;
3258 
3259 	if (non_swap_entry(entry))
3260 		goto out;
3261 
3262 	type = swp_type(entry);
3263 	if (type >= nr_swapfiles)
3264 		goto bad_file;
3265 	p = swap_info[type];
3266 	offset = swp_offset(entry);
3267 	if (unlikely(offset >= p->max))
3268 		goto out;
3269 
3270 	ci = lock_cluster_or_swap_info(p, offset);
3271 
3272 	count = p->swap_map[offset];
3273 
3274 	/*
3275 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3276 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3277 	 */
3278 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3279 		err = -ENOENT;
3280 		goto unlock_out;
3281 	}
3282 
3283 	has_cache = count & SWAP_HAS_CACHE;
3284 	count &= ~SWAP_HAS_CACHE;
3285 	err = 0;
3286 
3287 	if (usage == SWAP_HAS_CACHE) {
3288 
3289 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3290 		if (!has_cache && count)
3291 			has_cache = SWAP_HAS_CACHE;
3292 		else if (has_cache)		/* someone else added cache */
3293 			err = -EEXIST;
3294 		else				/* no users remaining */
3295 			err = -ENOENT;
3296 
3297 	} else if (count || has_cache) {
3298 
3299 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3300 			count += usage;
3301 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3302 			err = -EINVAL;
3303 		else if (swap_count_continued(p, offset, count))
3304 			count = COUNT_CONTINUED;
3305 		else
3306 			err = -ENOMEM;
3307 	} else
3308 		err = -ENOENT;			/* unused swap entry */
3309 
3310 	p->swap_map[offset] = count | has_cache;
3311 
3312 unlock_out:
3313 	unlock_cluster_or_swap_info(p, ci);
3314 out:
3315 	return err;
3316 
3317 bad_file:
3318 	pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3319 	goto out;
3320 }
3321 
3322 /*
3323  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3324  * (in which case its reference count is never incremented).
3325  */
3326 void swap_shmem_alloc(swp_entry_t entry)
3327 {
3328 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3329 }
3330 
3331 /*
3332  * Increase reference count of swap entry by 1.
3333  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3334  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3335  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3336  * might occur if a page table entry has got corrupted.
3337  */
3338 int swap_duplicate(swp_entry_t entry)
3339 {
3340 	int err = 0;
3341 
3342 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3343 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3344 	return err;
3345 }
3346 
3347 /*
3348  * @entry: swap entry for which we allocate swap cache.
3349  *
3350  * Called when allocating swap cache for existing swap entry,
3351  * This can return error codes. Returns 0 at success.
3352  * -EBUSY means there is a swap cache.
3353  * Note: return code is different from swap_duplicate().
3354  */
3355 int swapcache_prepare(swp_entry_t entry)
3356 {
3357 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3358 }
3359 
3360 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3361 {
3362 	return swap_info[swp_type(entry)];
3363 }
3364 
3365 struct swap_info_struct *page_swap_info(struct page *page)
3366 {
3367 	swp_entry_t entry = { .val = page_private(page) };
3368 	return swp_swap_info(entry);
3369 }
3370 
3371 /*
3372  * out-of-line __page_file_ methods to avoid include hell.
3373  */
3374 struct address_space *__page_file_mapping(struct page *page)
3375 {
3376 	return page_swap_info(page)->swap_file->f_mapping;
3377 }
3378 EXPORT_SYMBOL_GPL(__page_file_mapping);
3379 
3380 pgoff_t __page_file_index(struct page *page)
3381 {
3382 	swp_entry_t swap = { .val = page_private(page) };
3383 	return swp_offset(swap);
3384 }
3385 EXPORT_SYMBOL_GPL(__page_file_index);
3386 
3387 /*
3388  * add_swap_count_continuation - called when a swap count is duplicated
3389  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3390  * page of the original vmalloc'ed swap_map, to hold the continuation count
3391  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3392  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3393  *
3394  * These continuation pages are seldom referenced: the common paths all work
3395  * on the original swap_map, only referring to a continuation page when the
3396  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3397  *
3398  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3399  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3400  * can be called after dropping locks.
3401  */
3402 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3403 {
3404 	struct swap_info_struct *si;
3405 	struct swap_cluster_info *ci;
3406 	struct page *head;
3407 	struct page *page;
3408 	struct page *list_page;
3409 	pgoff_t offset;
3410 	unsigned char count;
3411 
3412 	/*
3413 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3414 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3415 	 */
3416 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3417 
3418 	si = swap_info_get(entry);
3419 	if (!si) {
3420 		/*
3421 		 * An acceptable race has occurred since the failing
3422 		 * __swap_duplicate(): the swap entry has been freed,
3423 		 * perhaps even the whole swap_map cleared for swapoff.
3424 		 */
3425 		goto outer;
3426 	}
3427 
3428 	offset = swp_offset(entry);
3429 
3430 	ci = lock_cluster(si, offset);
3431 
3432 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3433 
3434 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3435 		/*
3436 		 * The higher the swap count, the more likely it is that tasks
3437 		 * will race to add swap count continuation: we need to avoid
3438 		 * over-provisioning.
3439 		 */
3440 		goto out;
3441 	}
3442 
3443 	if (!page) {
3444 		unlock_cluster(ci);
3445 		spin_unlock(&si->lock);
3446 		return -ENOMEM;
3447 	}
3448 
3449 	/*
3450 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3451 	 * no architecture is using highmem pages for kernel page tables: so it
3452 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3453 	 */
3454 	head = vmalloc_to_page(si->swap_map + offset);
3455 	offset &= ~PAGE_MASK;
3456 
3457 	spin_lock(&si->cont_lock);
3458 	/*
3459 	 * Page allocation does not initialize the page's lru field,
3460 	 * but it does always reset its private field.
3461 	 */
3462 	if (!page_private(head)) {
3463 		BUG_ON(count & COUNT_CONTINUED);
3464 		INIT_LIST_HEAD(&head->lru);
3465 		set_page_private(head, SWP_CONTINUED);
3466 		si->flags |= SWP_CONTINUED;
3467 	}
3468 
3469 	list_for_each_entry(list_page, &head->lru, lru) {
3470 		unsigned char *map;
3471 
3472 		/*
3473 		 * If the previous map said no continuation, but we've found
3474 		 * a continuation page, free our allocation and use this one.
3475 		 */
3476 		if (!(count & COUNT_CONTINUED))
3477 			goto out_unlock_cont;
3478 
3479 		map = kmap_atomic(list_page) + offset;
3480 		count = *map;
3481 		kunmap_atomic(map);
3482 
3483 		/*
3484 		 * If this continuation count now has some space in it,
3485 		 * free our allocation and use this one.
3486 		 */
3487 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3488 			goto out_unlock_cont;
3489 	}
3490 
3491 	list_add_tail(&page->lru, &head->lru);
3492 	page = NULL;			/* now it's attached, don't free it */
3493 out_unlock_cont:
3494 	spin_unlock(&si->cont_lock);
3495 out:
3496 	unlock_cluster(ci);
3497 	spin_unlock(&si->lock);
3498 outer:
3499 	if (page)
3500 		__free_page(page);
3501 	return 0;
3502 }
3503 
3504 /*
3505  * swap_count_continued - when the original swap_map count is incremented
3506  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3507  * into, carry if so, or else fail until a new continuation page is allocated;
3508  * when the original swap_map count is decremented from 0 with continuation,
3509  * borrow from the continuation and report whether it still holds more.
3510  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3511  * lock.
3512  */
3513 static bool swap_count_continued(struct swap_info_struct *si,
3514 				 pgoff_t offset, unsigned char count)
3515 {
3516 	struct page *head;
3517 	struct page *page;
3518 	unsigned char *map;
3519 	bool ret;
3520 
3521 	head = vmalloc_to_page(si->swap_map + offset);
3522 	if (page_private(head) != SWP_CONTINUED) {
3523 		BUG_ON(count & COUNT_CONTINUED);
3524 		return false;		/* need to add count continuation */
3525 	}
3526 
3527 	spin_lock(&si->cont_lock);
3528 	offset &= ~PAGE_MASK;
3529 	page = list_entry(head->lru.next, struct page, lru);
3530 	map = kmap_atomic(page) + offset;
3531 
3532 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3533 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3534 
3535 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3536 		/*
3537 		 * Think of how you add 1 to 999
3538 		 */
3539 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3540 			kunmap_atomic(map);
3541 			page = list_entry(page->lru.next, struct page, lru);
3542 			BUG_ON(page == head);
3543 			map = kmap_atomic(page) + offset;
3544 		}
3545 		if (*map == SWAP_CONT_MAX) {
3546 			kunmap_atomic(map);
3547 			page = list_entry(page->lru.next, struct page, lru);
3548 			if (page == head) {
3549 				ret = false;	/* add count continuation */
3550 				goto out;
3551 			}
3552 			map = kmap_atomic(page) + offset;
3553 init_map:		*map = 0;		/* we didn't zero the page */
3554 		}
3555 		*map += 1;
3556 		kunmap_atomic(map);
3557 		page = list_entry(page->lru.prev, struct page, lru);
3558 		while (page != head) {
3559 			map = kmap_atomic(page) + offset;
3560 			*map = COUNT_CONTINUED;
3561 			kunmap_atomic(map);
3562 			page = list_entry(page->lru.prev, struct page, lru);
3563 		}
3564 		ret = true;			/* incremented */
3565 
3566 	} else {				/* decrementing */
3567 		/*
3568 		 * Think of how you subtract 1 from 1000
3569 		 */
3570 		BUG_ON(count != COUNT_CONTINUED);
3571 		while (*map == COUNT_CONTINUED) {
3572 			kunmap_atomic(map);
3573 			page = list_entry(page->lru.next, struct page, lru);
3574 			BUG_ON(page == head);
3575 			map = kmap_atomic(page) + offset;
3576 		}
3577 		BUG_ON(*map == 0);
3578 		*map -= 1;
3579 		if (*map == 0)
3580 			count = 0;
3581 		kunmap_atomic(map);
3582 		page = list_entry(page->lru.prev, struct page, lru);
3583 		while (page != head) {
3584 			map = kmap_atomic(page) + offset;
3585 			*map = SWAP_CONT_MAX | count;
3586 			count = COUNT_CONTINUED;
3587 			kunmap_atomic(map);
3588 			page = list_entry(page->lru.prev, struct page, lru);
3589 		}
3590 		ret = count == COUNT_CONTINUED;
3591 	}
3592 out:
3593 	spin_unlock(&si->cont_lock);
3594 	return ret;
3595 }
3596 
3597 /*
3598  * free_swap_count_continuations - swapoff free all the continuation pages
3599  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3600  */
3601 static void free_swap_count_continuations(struct swap_info_struct *si)
3602 {
3603 	pgoff_t offset;
3604 
3605 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3606 		struct page *head;
3607 		head = vmalloc_to_page(si->swap_map + offset);
3608 		if (page_private(head)) {
3609 			struct page *page, *next;
3610 
3611 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3612 				list_del(&page->lru);
3613 				__free_page(page);
3614 			}
3615 		}
3616 	}
3617 }
3618 
3619 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3620 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3621 				  gfp_t gfp_mask)
3622 {
3623 	struct swap_info_struct *si, *next;
3624 	if (!(gfp_mask & __GFP_IO) || !memcg)
3625 		return;
3626 
3627 	if (!blk_cgroup_congested())
3628 		return;
3629 
3630 	/*
3631 	 * We've already scheduled a throttle, avoid taking the global swap
3632 	 * lock.
3633 	 */
3634 	if (current->throttle_queue)
3635 		return;
3636 
3637 	spin_lock(&swap_avail_lock);
3638 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3639 				  avail_lists[node]) {
3640 		if (si->bdev) {
3641 			blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3642 						true);
3643 			break;
3644 		}
3645 	}
3646 	spin_unlock(&swap_avail_lock);
3647 }
3648 #endif
3649 
3650 static int __init swapfile_init(void)
3651 {
3652 	int nid;
3653 
3654 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3655 					 GFP_KERNEL);
3656 	if (!swap_avail_heads) {
3657 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3658 		return -ENOMEM;
3659 	}
3660 
3661 	for_each_node(nid)
3662 		plist_head_init(&swap_avail_heads[nid]);
3663 
3664 	return 0;
3665 }
3666 subsys_initcall(swapfile_init);
3667