1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/hugetlb.h> 10 #include <linux/mman.h> 11 #include <linux/slab.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/shm.h> 18 #include <linux/blkdev.h> 19 #include <linux/writeback.h> 20 #include <linux/proc_fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/init.h> 23 #include <linux/module.h> 24 #include <linux/rmap.h> 25 #include <linux/security.h> 26 #include <linux/backing-dev.h> 27 #include <linux/mutex.h> 28 #include <linux/capability.h> 29 #include <linux/syscalls.h> 30 31 #include <asm/pgtable.h> 32 #include <asm/tlbflush.h> 33 #include <linux/swapops.h> 34 35 DEFINE_SPINLOCK(swap_lock); 36 unsigned int nr_swapfiles; 37 long total_swap_pages; 38 static int swap_overflow; 39 40 static const char Bad_file[] = "Bad swap file entry "; 41 static const char Unused_file[] = "Unused swap file entry "; 42 static const char Bad_offset[] = "Bad swap offset entry "; 43 static const char Unused_offset[] = "Unused swap offset entry "; 44 45 struct swap_list_t swap_list = {-1, -1}; 46 47 static struct swap_info_struct swap_info[MAX_SWAPFILES]; 48 49 static DEFINE_MUTEX(swapon_mutex); 50 51 /* 52 * We need this because the bdev->unplug_fn can sleep and we cannot 53 * hold swap_lock while calling the unplug_fn. And swap_lock 54 * cannot be turned into a mutex. 55 */ 56 static DECLARE_RWSEM(swap_unplug_sem); 57 58 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page) 59 { 60 swp_entry_t entry; 61 62 down_read(&swap_unplug_sem); 63 entry.val = page_private(page); 64 if (PageSwapCache(page)) { 65 struct block_device *bdev = swap_info[swp_type(entry)].bdev; 66 struct backing_dev_info *bdi; 67 68 /* 69 * If the page is removed from swapcache from under us (with a 70 * racy try_to_unuse/swapoff) we need an additional reference 71 * count to avoid reading garbage from page_private(page) above. 72 * If the WARN_ON triggers during a swapoff it maybe the race 73 * condition and it's harmless. However if it triggers without 74 * swapoff it signals a problem. 75 */ 76 WARN_ON(page_count(page) <= 1); 77 78 bdi = bdev->bd_inode->i_mapping->backing_dev_info; 79 blk_run_backing_dev(bdi, page); 80 } 81 up_read(&swap_unplug_sem); 82 } 83 84 #define SWAPFILE_CLUSTER 256 85 #define LATENCY_LIMIT 256 86 87 static inline unsigned long scan_swap_map(struct swap_info_struct *si) 88 { 89 unsigned long offset, last_in_cluster; 90 int latency_ration = LATENCY_LIMIT; 91 92 /* 93 * We try to cluster swap pages by allocating them sequentially 94 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 95 * way, however, we resort to first-free allocation, starting 96 * a new cluster. This prevents us from scattering swap pages 97 * all over the entire swap partition, so that we reduce 98 * overall disk seek times between swap pages. -- sct 99 * But we do now try to find an empty cluster. -Andrea 100 */ 101 102 si->flags += SWP_SCANNING; 103 if (unlikely(!si->cluster_nr)) { 104 si->cluster_nr = SWAPFILE_CLUSTER - 1; 105 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) 106 goto lowest; 107 spin_unlock(&swap_lock); 108 109 offset = si->lowest_bit; 110 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 111 112 /* Locate the first empty (unaligned) cluster */ 113 for (; last_in_cluster <= si->highest_bit; offset++) { 114 if (si->swap_map[offset]) 115 last_in_cluster = offset + SWAPFILE_CLUSTER; 116 else if (offset == last_in_cluster) { 117 spin_lock(&swap_lock); 118 si->cluster_next = offset-SWAPFILE_CLUSTER+1; 119 goto cluster; 120 } 121 if (unlikely(--latency_ration < 0)) { 122 cond_resched(); 123 latency_ration = LATENCY_LIMIT; 124 } 125 } 126 spin_lock(&swap_lock); 127 goto lowest; 128 } 129 130 si->cluster_nr--; 131 cluster: 132 offset = si->cluster_next; 133 if (offset > si->highest_bit) 134 lowest: offset = si->lowest_bit; 135 checks: if (!(si->flags & SWP_WRITEOK)) 136 goto no_page; 137 if (!si->highest_bit) 138 goto no_page; 139 if (!si->swap_map[offset]) { 140 if (offset == si->lowest_bit) 141 si->lowest_bit++; 142 if (offset == si->highest_bit) 143 si->highest_bit--; 144 si->inuse_pages++; 145 if (si->inuse_pages == si->pages) { 146 si->lowest_bit = si->max; 147 si->highest_bit = 0; 148 } 149 si->swap_map[offset] = 1; 150 si->cluster_next = offset + 1; 151 si->flags -= SWP_SCANNING; 152 return offset; 153 } 154 155 spin_unlock(&swap_lock); 156 while (++offset <= si->highest_bit) { 157 if (!si->swap_map[offset]) { 158 spin_lock(&swap_lock); 159 goto checks; 160 } 161 if (unlikely(--latency_ration < 0)) { 162 cond_resched(); 163 latency_ration = LATENCY_LIMIT; 164 } 165 } 166 spin_lock(&swap_lock); 167 goto lowest; 168 169 no_page: 170 si->flags -= SWP_SCANNING; 171 return 0; 172 } 173 174 swp_entry_t get_swap_page(void) 175 { 176 struct swap_info_struct *si; 177 pgoff_t offset; 178 int type, next; 179 int wrapped = 0; 180 181 spin_lock(&swap_lock); 182 if (nr_swap_pages <= 0) 183 goto noswap; 184 nr_swap_pages--; 185 186 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { 187 si = swap_info + type; 188 next = si->next; 189 if (next < 0 || 190 (!wrapped && si->prio != swap_info[next].prio)) { 191 next = swap_list.head; 192 wrapped++; 193 } 194 195 if (!si->highest_bit) 196 continue; 197 if (!(si->flags & SWP_WRITEOK)) 198 continue; 199 200 swap_list.next = next; 201 offset = scan_swap_map(si); 202 if (offset) { 203 spin_unlock(&swap_lock); 204 return swp_entry(type, offset); 205 } 206 next = swap_list.next; 207 } 208 209 nr_swap_pages++; 210 noswap: 211 spin_unlock(&swap_lock); 212 return (swp_entry_t) {0}; 213 } 214 215 swp_entry_t get_swap_page_of_type(int type) 216 { 217 struct swap_info_struct *si; 218 pgoff_t offset; 219 220 spin_lock(&swap_lock); 221 si = swap_info + type; 222 if (si->flags & SWP_WRITEOK) { 223 nr_swap_pages--; 224 offset = scan_swap_map(si); 225 if (offset) { 226 spin_unlock(&swap_lock); 227 return swp_entry(type, offset); 228 } 229 nr_swap_pages++; 230 } 231 spin_unlock(&swap_lock); 232 return (swp_entry_t) {0}; 233 } 234 235 static struct swap_info_struct * swap_info_get(swp_entry_t entry) 236 { 237 struct swap_info_struct * p; 238 unsigned long offset, type; 239 240 if (!entry.val) 241 goto out; 242 type = swp_type(entry); 243 if (type >= nr_swapfiles) 244 goto bad_nofile; 245 p = & swap_info[type]; 246 if (!(p->flags & SWP_USED)) 247 goto bad_device; 248 offset = swp_offset(entry); 249 if (offset >= p->max) 250 goto bad_offset; 251 if (!p->swap_map[offset]) 252 goto bad_free; 253 spin_lock(&swap_lock); 254 return p; 255 256 bad_free: 257 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); 258 goto out; 259 bad_offset: 260 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); 261 goto out; 262 bad_device: 263 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); 264 goto out; 265 bad_nofile: 266 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); 267 out: 268 return NULL; 269 } 270 271 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset) 272 { 273 int count = p->swap_map[offset]; 274 275 if (count < SWAP_MAP_MAX) { 276 count--; 277 p->swap_map[offset] = count; 278 if (!count) { 279 if (offset < p->lowest_bit) 280 p->lowest_bit = offset; 281 if (offset > p->highest_bit) 282 p->highest_bit = offset; 283 if (p->prio > swap_info[swap_list.next].prio) 284 swap_list.next = p - swap_info; 285 nr_swap_pages++; 286 p->inuse_pages--; 287 } 288 } 289 return count; 290 } 291 292 /* 293 * Caller has made sure that the swapdevice corresponding to entry 294 * is still around or has not been recycled. 295 */ 296 void swap_free(swp_entry_t entry) 297 { 298 struct swap_info_struct * p; 299 300 p = swap_info_get(entry); 301 if (p) { 302 swap_entry_free(p, swp_offset(entry)); 303 spin_unlock(&swap_lock); 304 } 305 } 306 307 /* 308 * How many references to page are currently swapped out? 309 */ 310 static inline int page_swapcount(struct page *page) 311 { 312 int count = 0; 313 struct swap_info_struct *p; 314 swp_entry_t entry; 315 316 entry.val = page_private(page); 317 p = swap_info_get(entry); 318 if (p) { 319 /* Subtract the 1 for the swap cache itself */ 320 count = p->swap_map[swp_offset(entry)] - 1; 321 spin_unlock(&swap_lock); 322 } 323 return count; 324 } 325 326 /* 327 * We can use this swap cache entry directly 328 * if there are no other references to it. 329 */ 330 int can_share_swap_page(struct page *page) 331 { 332 int count; 333 334 BUG_ON(!PageLocked(page)); 335 count = page_mapcount(page); 336 if (count <= 1 && PageSwapCache(page)) 337 count += page_swapcount(page); 338 return count == 1; 339 } 340 341 /* 342 * Work out if there are any other processes sharing this 343 * swap cache page. Free it if you can. Return success. 344 */ 345 int remove_exclusive_swap_page(struct page *page) 346 { 347 int retval; 348 struct swap_info_struct * p; 349 swp_entry_t entry; 350 351 BUG_ON(PagePrivate(page)); 352 BUG_ON(!PageLocked(page)); 353 354 if (!PageSwapCache(page)) 355 return 0; 356 if (PageWriteback(page)) 357 return 0; 358 if (page_count(page) != 2) /* 2: us + cache */ 359 return 0; 360 361 entry.val = page_private(page); 362 p = swap_info_get(entry); 363 if (!p) 364 return 0; 365 366 /* Is the only swap cache user the cache itself? */ 367 retval = 0; 368 if (p->swap_map[swp_offset(entry)] == 1) { 369 /* Recheck the page count with the swapcache lock held.. */ 370 write_lock_irq(&swapper_space.tree_lock); 371 if ((page_count(page) == 2) && !PageWriteback(page)) { 372 __delete_from_swap_cache(page); 373 SetPageDirty(page); 374 retval = 1; 375 } 376 write_unlock_irq(&swapper_space.tree_lock); 377 } 378 spin_unlock(&swap_lock); 379 380 if (retval) { 381 swap_free(entry); 382 page_cache_release(page); 383 } 384 385 return retval; 386 } 387 388 /* 389 * Free the swap entry like above, but also try to 390 * free the page cache entry if it is the last user. 391 */ 392 void free_swap_and_cache(swp_entry_t entry) 393 { 394 struct swap_info_struct * p; 395 struct page *page = NULL; 396 397 if (is_migration_entry(entry)) 398 return; 399 400 p = swap_info_get(entry); 401 if (p) { 402 if (swap_entry_free(p, swp_offset(entry)) == 1) { 403 page = find_get_page(&swapper_space, entry.val); 404 if (page && unlikely(TestSetPageLocked(page))) { 405 page_cache_release(page); 406 page = NULL; 407 } 408 } 409 spin_unlock(&swap_lock); 410 } 411 if (page) { 412 int one_user; 413 414 BUG_ON(PagePrivate(page)); 415 one_user = (page_count(page) == 2); 416 /* Only cache user (+us), or swap space full? Free it! */ 417 /* Also recheck PageSwapCache after page is locked (above) */ 418 if (PageSwapCache(page) && !PageWriteback(page) && 419 (one_user || vm_swap_full())) { 420 delete_from_swap_cache(page); 421 SetPageDirty(page); 422 } 423 unlock_page(page); 424 page_cache_release(page); 425 } 426 } 427 428 #ifdef CONFIG_SOFTWARE_SUSPEND 429 /* 430 * Find the swap type that corresponds to given device (if any) 431 * 432 * This is needed for software suspend and is done in such a way that inode 433 * aliasing is allowed. 434 */ 435 int swap_type_of(dev_t device) 436 { 437 int i; 438 439 spin_lock(&swap_lock); 440 for (i = 0; i < nr_swapfiles; i++) { 441 struct inode *inode; 442 443 if (!(swap_info[i].flags & SWP_WRITEOK)) 444 continue; 445 if (!device) { 446 spin_unlock(&swap_lock); 447 return i; 448 } 449 inode = swap_info->swap_file->f_dentry->d_inode; 450 if (S_ISBLK(inode->i_mode) && 451 device == MKDEV(imajor(inode), iminor(inode))) { 452 spin_unlock(&swap_lock); 453 return i; 454 } 455 } 456 spin_unlock(&swap_lock); 457 return -ENODEV; 458 } 459 460 /* 461 * Return either the total number of swap pages of given type, or the number 462 * of free pages of that type (depending on @free) 463 * 464 * This is needed for software suspend 465 */ 466 unsigned int count_swap_pages(int type, int free) 467 { 468 unsigned int n = 0; 469 470 if (type < nr_swapfiles) { 471 spin_lock(&swap_lock); 472 if (swap_info[type].flags & SWP_WRITEOK) { 473 n = swap_info[type].pages; 474 if (free) 475 n -= swap_info[type].inuse_pages; 476 } 477 spin_unlock(&swap_lock); 478 } 479 return n; 480 } 481 #endif 482 483 /* 484 * No need to decide whether this PTE shares the swap entry with others, 485 * just let do_wp_page work it out if a write is requested later - to 486 * force COW, vm_page_prot omits write permission from any private vma. 487 */ 488 static void unuse_pte(struct vm_area_struct *vma, pte_t *pte, 489 unsigned long addr, swp_entry_t entry, struct page *page) 490 { 491 inc_mm_counter(vma->vm_mm, anon_rss); 492 get_page(page); 493 set_pte_at(vma->vm_mm, addr, pte, 494 pte_mkold(mk_pte(page, vma->vm_page_prot))); 495 page_add_anon_rmap(page, vma, addr); 496 swap_free(entry); 497 /* 498 * Move the page to the active list so it is not 499 * immediately swapped out again after swapon. 500 */ 501 activate_page(page); 502 } 503 504 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 505 unsigned long addr, unsigned long end, 506 swp_entry_t entry, struct page *page) 507 { 508 pte_t swp_pte = swp_entry_to_pte(entry); 509 pte_t *pte; 510 spinlock_t *ptl; 511 int found = 0; 512 513 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 514 do { 515 /* 516 * swapoff spends a _lot_ of time in this loop! 517 * Test inline before going to call unuse_pte. 518 */ 519 if (unlikely(pte_same(*pte, swp_pte))) { 520 unuse_pte(vma, pte++, addr, entry, page); 521 found = 1; 522 break; 523 } 524 } while (pte++, addr += PAGE_SIZE, addr != end); 525 pte_unmap_unlock(pte - 1, ptl); 526 return found; 527 } 528 529 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 530 unsigned long addr, unsigned long end, 531 swp_entry_t entry, struct page *page) 532 { 533 pmd_t *pmd; 534 unsigned long next; 535 536 pmd = pmd_offset(pud, addr); 537 do { 538 next = pmd_addr_end(addr, end); 539 if (pmd_none_or_clear_bad(pmd)) 540 continue; 541 if (unuse_pte_range(vma, pmd, addr, next, entry, page)) 542 return 1; 543 } while (pmd++, addr = next, addr != end); 544 return 0; 545 } 546 547 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 548 unsigned long addr, unsigned long end, 549 swp_entry_t entry, struct page *page) 550 { 551 pud_t *pud; 552 unsigned long next; 553 554 pud = pud_offset(pgd, addr); 555 do { 556 next = pud_addr_end(addr, end); 557 if (pud_none_or_clear_bad(pud)) 558 continue; 559 if (unuse_pmd_range(vma, pud, addr, next, entry, page)) 560 return 1; 561 } while (pud++, addr = next, addr != end); 562 return 0; 563 } 564 565 static int unuse_vma(struct vm_area_struct *vma, 566 swp_entry_t entry, struct page *page) 567 { 568 pgd_t *pgd; 569 unsigned long addr, end, next; 570 571 if (page->mapping) { 572 addr = page_address_in_vma(page, vma); 573 if (addr == -EFAULT) 574 return 0; 575 else 576 end = addr + PAGE_SIZE; 577 } else { 578 addr = vma->vm_start; 579 end = vma->vm_end; 580 } 581 582 pgd = pgd_offset(vma->vm_mm, addr); 583 do { 584 next = pgd_addr_end(addr, end); 585 if (pgd_none_or_clear_bad(pgd)) 586 continue; 587 if (unuse_pud_range(vma, pgd, addr, next, entry, page)) 588 return 1; 589 } while (pgd++, addr = next, addr != end); 590 return 0; 591 } 592 593 static int unuse_mm(struct mm_struct *mm, 594 swp_entry_t entry, struct page *page) 595 { 596 struct vm_area_struct *vma; 597 598 if (!down_read_trylock(&mm->mmap_sem)) { 599 /* 600 * Activate page so shrink_cache is unlikely to unmap its 601 * ptes while lock is dropped, so swapoff can make progress. 602 */ 603 activate_page(page); 604 unlock_page(page); 605 down_read(&mm->mmap_sem); 606 lock_page(page); 607 } 608 for (vma = mm->mmap; vma; vma = vma->vm_next) { 609 if (vma->anon_vma && unuse_vma(vma, entry, page)) 610 break; 611 } 612 up_read(&mm->mmap_sem); 613 /* 614 * Currently unuse_mm cannot fail, but leave error handling 615 * at call sites for now, since we change it from time to time. 616 */ 617 return 0; 618 } 619 620 /* 621 * Scan swap_map from current position to next entry still in use. 622 * Recycle to start on reaching the end, returning 0 when empty. 623 */ 624 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 625 unsigned int prev) 626 { 627 unsigned int max = si->max; 628 unsigned int i = prev; 629 int count; 630 631 /* 632 * No need for swap_lock here: we're just looking 633 * for whether an entry is in use, not modifying it; false 634 * hits are okay, and sys_swapoff() has already prevented new 635 * allocations from this area (while holding swap_lock). 636 */ 637 for (;;) { 638 if (++i >= max) { 639 if (!prev) { 640 i = 0; 641 break; 642 } 643 /* 644 * No entries in use at top of swap_map, 645 * loop back to start and recheck there. 646 */ 647 max = prev + 1; 648 prev = 0; 649 i = 1; 650 } 651 count = si->swap_map[i]; 652 if (count && count != SWAP_MAP_BAD) 653 break; 654 } 655 return i; 656 } 657 658 /* 659 * We completely avoid races by reading each swap page in advance, 660 * and then search for the process using it. All the necessary 661 * page table adjustments can then be made atomically. 662 */ 663 static int try_to_unuse(unsigned int type) 664 { 665 struct swap_info_struct * si = &swap_info[type]; 666 struct mm_struct *start_mm; 667 unsigned short *swap_map; 668 unsigned short swcount; 669 struct page *page; 670 swp_entry_t entry; 671 unsigned int i = 0; 672 int retval = 0; 673 int reset_overflow = 0; 674 int shmem; 675 676 /* 677 * When searching mms for an entry, a good strategy is to 678 * start at the first mm we freed the previous entry from 679 * (though actually we don't notice whether we or coincidence 680 * freed the entry). Initialize this start_mm with a hold. 681 * 682 * A simpler strategy would be to start at the last mm we 683 * freed the previous entry from; but that would take less 684 * advantage of mmlist ordering, which clusters forked mms 685 * together, child after parent. If we race with dup_mmap(), we 686 * prefer to resolve parent before child, lest we miss entries 687 * duplicated after we scanned child: using last mm would invert 688 * that. Though it's only a serious concern when an overflowed 689 * swap count is reset from SWAP_MAP_MAX, preventing a rescan. 690 */ 691 start_mm = &init_mm; 692 atomic_inc(&init_mm.mm_users); 693 694 /* 695 * Keep on scanning until all entries have gone. Usually, 696 * one pass through swap_map is enough, but not necessarily: 697 * there are races when an instance of an entry might be missed. 698 */ 699 while ((i = find_next_to_unuse(si, i)) != 0) { 700 if (signal_pending(current)) { 701 retval = -EINTR; 702 break; 703 } 704 705 /* 706 * Get a page for the entry, using the existing swap 707 * cache page if there is one. Otherwise, get a clean 708 * page and read the swap into it. 709 */ 710 swap_map = &si->swap_map[i]; 711 entry = swp_entry(type, i); 712 page = read_swap_cache_async(entry, NULL, 0); 713 if (!page) { 714 /* 715 * Either swap_duplicate() failed because entry 716 * has been freed independently, and will not be 717 * reused since sys_swapoff() already disabled 718 * allocation from here, or alloc_page() failed. 719 */ 720 if (!*swap_map) 721 continue; 722 retval = -ENOMEM; 723 break; 724 } 725 726 /* 727 * Don't hold on to start_mm if it looks like exiting. 728 */ 729 if (atomic_read(&start_mm->mm_users) == 1) { 730 mmput(start_mm); 731 start_mm = &init_mm; 732 atomic_inc(&init_mm.mm_users); 733 } 734 735 /* 736 * Wait for and lock page. When do_swap_page races with 737 * try_to_unuse, do_swap_page can handle the fault much 738 * faster than try_to_unuse can locate the entry. This 739 * apparently redundant "wait_on_page_locked" lets try_to_unuse 740 * defer to do_swap_page in such a case - in some tests, 741 * do_swap_page and try_to_unuse repeatedly compete. 742 */ 743 wait_on_page_locked(page); 744 wait_on_page_writeback(page); 745 lock_page(page); 746 wait_on_page_writeback(page); 747 748 /* 749 * Remove all references to entry. 750 * Whenever we reach init_mm, there's no address space 751 * to search, but use it as a reminder to search shmem. 752 */ 753 shmem = 0; 754 swcount = *swap_map; 755 if (swcount > 1) { 756 if (start_mm == &init_mm) 757 shmem = shmem_unuse(entry, page); 758 else 759 retval = unuse_mm(start_mm, entry, page); 760 } 761 if (*swap_map > 1) { 762 int set_start_mm = (*swap_map >= swcount); 763 struct list_head *p = &start_mm->mmlist; 764 struct mm_struct *new_start_mm = start_mm; 765 struct mm_struct *prev_mm = start_mm; 766 struct mm_struct *mm; 767 768 atomic_inc(&new_start_mm->mm_users); 769 atomic_inc(&prev_mm->mm_users); 770 spin_lock(&mmlist_lock); 771 while (*swap_map > 1 && !retval && 772 (p = p->next) != &start_mm->mmlist) { 773 mm = list_entry(p, struct mm_struct, mmlist); 774 if (!atomic_inc_not_zero(&mm->mm_users)) 775 continue; 776 spin_unlock(&mmlist_lock); 777 mmput(prev_mm); 778 prev_mm = mm; 779 780 cond_resched(); 781 782 swcount = *swap_map; 783 if (swcount <= 1) 784 ; 785 else if (mm == &init_mm) { 786 set_start_mm = 1; 787 shmem = shmem_unuse(entry, page); 788 } else 789 retval = unuse_mm(mm, entry, page); 790 if (set_start_mm && *swap_map < swcount) { 791 mmput(new_start_mm); 792 atomic_inc(&mm->mm_users); 793 new_start_mm = mm; 794 set_start_mm = 0; 795 } 796 spin_lock(&mmlist_lock); 797 } 798 spin_unlock(&mmlist_lock); 799 mmput(prev_mm); 800 mmput(start_mm); 801 start_mm = new_start_mm; 802 } 803 if (retval) { 804 unlock_page(page); 805 page_cache_release(page); 806 break; 807 } 808 809 /* 810 * How could swap count reach 0x7fff when the maximum 811 * pid is 0x7fff, and there's no way to repeat a swap 812 * page within an mm (except in shmem, where it's the 813 * shared object which takes the reference count)? 814 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4. 815 * 816 * If that's wrong, then we should worry more about 817 * exit_mmap() and do_munmap() cases described above: 818 * we might be resetting SWAP_MAP_MAX too early here. 819 * We know "Undead"s can happen, they're okay, so don't 820 * report them; but do report if we reset SWAP_MAP_MAX. 821 */ 822 if (*swap_map == SWAP_MAP_MAX) { 823 spin_lock(&swap_lock); 824 *swap_map = 1; 825 spin_unlock(&swap_lock); 826 reset_overflow = 1; 827 } 828 829 /* 830 * If a reference remains (rare), we would like to leave 831 * the page in the swap cache; but try_to_unmap could 832 * then re-duplicate the entry once we drop page lock, 833 * so we might loop indefinitely; also, that page could 834 * not be swapped out to other storage meanwhile. So: 835 * delete from cache even if there's another reference, 836 * after ensuring that the data has been saved to disk - 837 * since if the reference remains (rarer), it will be 838 * read from disk into another page. Splitting into two 839 * pages would be incorrect if swap supported "shared 840 * private" pages, but they are handled by tmpfs files. 841 * 842 * Note shmem_unuse already deleted a swappage from 843 * the swap cache, unless the move to filepage failed: 844 * in which case it left swappage in cache, lowered its 845 * swap count to pass quickly through the loops above, 846 * and now we must reincrement count to try again later. 847 */ 848 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) { 849 struct writeback_control wbc = { 850 .sync_mode = WB_SYNC_NONE, 851 }; 852 853 swap_writepage(page, &wbc); 854 lock_page(page); 855 wait_on_page_writeback(page); 856 } 857 if (PageSwapCache(page)) { 858 if (shmem) 859 swap_duplicate(entry); 860 else 861 delete_from_swap_cache(page); 862 } 863 864 /* 865 * So we could skip searching mms once swap count went 866 * to 1, we did not mark any present ptes as dirty: must 867 * mark page dirty so shrink_list will preserve it. 868 */ 869 SetPageDirty(page); 870 unlock_page(page); 871 page_cache_release(page); 872 873 /* 874 * Make sure that we aren't completely killing 875 * interactive performance. 876 */ 877 cond_resched(); 878 } 879 880 mmput(start_mm); 881 if (reset_overflow) { 882 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n"); 883 swap_overflow = 0; 884 } 885 return retval; 886 } 887 888 /* 889 * After a successful try_to_unuse, if no swap is now in use, we know 890 * we can empty the mmlist. swap_lock must be held on entry and exit. 891 * Note that mmlist_lock nests inside swap_lock, and an mm must be 892 * added to the mmlist just after page_duplicate - before would be racy. 893 */ 894 static void drain_mmlist(void) 895 { 896 struct list_head *p, *next; 897 unsigned int i; 898 899 for (i = 0; i < nr_swapfiles; i++) 900 if (swap_info[i].inuse_pages) 901 return; 902 spin_lock(&mmlist_lock); 903 list_for_each_safe(p, next, &init_mm.mmlist) 904 list_del_init(p); 905 spin_unlock(&mmlist_lock); 906 } 907 908 /* 909 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 910 * corresponds to page offset `offset'. 911 */ 912 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset) 913 { 914 struct swap_extent *se = sis->curr_swap_extent; 915 struct swap_extent *start_se = se; 916 917 for ( ; ; ) { 918 struct list_head *lh; 919 920 if (se->start_page <= offset && 921 offset < (se->start_page + se->nr_pages)) { 922 return se->start_block + (offset - se->start_page); 923 } 924 lh = se->list.next; 925 if (lh == &sis->extent_list) 926 lh = lh->next; 927 se = list_entry(lh, struct swap_extent, list); 928 sis->curr_swap_extent = se; 929 BUG_ON(se == start_se); /* It *must* be present */ 930 } 931 } 932 933 /* 934 * Free all of a swapdev's extent information 935 */ 936 static void destroy_swap_extents(struct swap_info_struct *sis) 937 { 938 while (!list_empty(&sis->extent_list)) { 939 struct swap_extent *se; 940 941 se = list_entry(sis->extent_list.next, 942 struct swap_extent, list); 943 list_del(&se->list); 944 kfree(se); 945 } 946 } 947 948 /* 949 * Add a block range (and the corresponding page range) into this swapdev's 950 * extent list. The extent list is kept sorted in page order. 951 * 952 * This function rather assumes that it is called in ascending page order. 953 */ 954 static int 955 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 956 unsigned long nr_pages, sector_t start_block) 957 { 958 struct swap_extent *se; 959 struct swap_extent *new_se; 960 struct list_head *lh; 961 962 lh = sis->extent_list.prev; /* The highest page extent */ 963 if (lh != &sis->extent_list) { 964 se = list_entry(lh, struct swap_extent, list); 965 BUG_ON(se->start_page + se->nr_pages != start_page); 966 if (se->start_block + se->nr_pages == start_block) { 967 /* Merge it */ 968 se->nr_pages += nr_pages; 969 return 0; 970 } 971 } 972 973 /* 974 * No merge. Insert a new extent, preserving ordering. 975 */ 976 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 977 if (new_se == NULL) 978 return -ENOMEM; 979 new_se->start_page = start_page; 980 new_se->nr_pages = nr_pages; 981 new_se->start_block = start_block; 982 983 list_add_tail(&new_se->list, &sis->extent_list); 984 return 1; 985 } 986 987 /* 988 * A `swap extent' is a simple thing which maps a contiguous range of pages 989 * onto a contiguous range of disk blocks. An ordered list of swap extents 990 * is built at swapon time and is then used at swap_writepage/swap_readpage 991 * time for locating where on disk a page belongs. 992 * 993 * If the swapfile is an S_ISBLK block device, a single extent is installed. 994 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 995 * swap files identically. 996 * 997 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 998 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 999 * swapfiles are handled *identically* after swapon time. 1000 * 1001 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 1002 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 1003 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 1004 * requirements, they are simply tossed out - we will never use those blocks 1005 * for swapping. 1006 * 1007 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 1008 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 1009 * which will scribble on the fs. 1010 * 1011 * The amount of disk space which a single swap extent represents varies. 1012 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 1013 * extents in the list. To avoid much list walking, we cache the previous 1014 * search location in `curr_swap_extent', and start new searches from there. 1015 * This is extremely effective. The average number of iterations in 1016 * map_swap_page() has been measured at about 0.3 per page. - akpm. 1017 */ 1018 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 1019 { 1020 struct inode *inode; 1021 unsigned blocks_per_page; 1022 unsigned long page_no; 1023 unsigned blkbits; 1024 sector_t probe_block; 1025 sector_t last_block; 1026 sector_t lowest_block = -1; 1027 sector_t highest_block = 0; 1028 int nr_extents = 0; 1029 int ret; 1030 1031 inode = sis->swap_file->f_mapping->host; 1032 if (S_ISBLK(inode->i_mode)) { 1033 ret = add_swap_extent(sis, 0, sis->max, 0); 1034 *span = sis->pages; 1035 goto done; 1036 } 1037 1038 blkbits = inode->i_blkbits; 1039 blocks_per_page = PAGE_SIZE >> blkbits; 1040 1041 /* 1042 * Map all the blocks into the extent list. This code doesn't try 1043 * to be very smart. 1044 */ 1045 probe_block = 0; 1046 page_no = 0; 1047 last_block = i_size_read(inode) >> blkbits; 1048 while ((probe_block + blocks_per_page) <= last_block && 1049 page_no < sis->max) { 1050 unsigned block_in_page; 1051 sector_t first_block; 1052 1053 first_block = bmap(inode, probe_block); 1054 if (first_block == 0) 1055 goto bad_bmap; 1056 1057 /* 1058 * It must be PAGE_SIZE aligned on-disk 1059 */ 1060 if (first_block & (blocks_per_page - 1)) { 1061 probe_block++; 1062 goto reprobe; 1063 } 1064 1065 for (block_in_page = 1; block_in_page < blocks_per_page; 1066 block_in_page++) { 1067 sector_t block; 1068 1069 block = bmap(inode, probe_block + block_in_page); 1070 if (block == 0) 1071 goto bad_bmap; 1072 if (block != first_block + block_in_page) { 1073 /* Discontiguity */ 1074 probe_block++; 1075 goto reprobe; 1076 } 1077 } 1078 1079 first_block >>= (PAGE_SHIFT - blkbits); 1080 if (page_no) { /* exclude the header page */ 1081 if (first_block < lowest_block) 1082 lowest_block = first_block; 1083 if (first_block > highest_block) 1084 highest_block = first_block; 1085 } 1086 1087 /* 1088 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 1089 */ 1090 ret = add_swap_extent(sis, page_no, 1, first_block); 1091 if (ret < 0) 1092 goto out; 1093 nr_extents += ret; 1094 page_no++; 1095 probe_block += blocks_per_page; 1096 reprobe: 1097 continue; 1098 } 1099 ret = nr_extents; 1100 *span = 1 + highest_block - lowest_block; 1101 if (page_no == 0) 1102 page_no = 1; /* force Empty message */ 1103 sis->max = page_no; 1104 sis->pages = page_no - 1; 1105 sis->highest_bit = page_no - 1; 1106 done: 1107 sis->curr_swap_extent = list_entry(sis->extent_list.prev, 1108 struct swap_extent, list); 1109 goto out; 1110 bad_bmap: 1111 printk(KERN_ERR "swapon: swapfile has holes\n"); 1112 ret = -EINVAL; 1113 out: 1114 return ret; 1115 } 1116 1117 #if 0 /* We don't need this yet */ 1118 #include <linux/backing-dev.h> 1119 int page_queue_congested(struct page *page) 1120 { 1121 struct backing_dev_info *bdi; 1122 1123 BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */ 1124 1125 if (PageSwapCache(page)) { 1126 swp_entry_t entry = { .val = page_private(page) }; 1127 struct swap_info_struct *sis; 1128 1129 sis = get_swap_info_struct(swp_type(entry)); 1130 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info; 1131 } else 1132 bdi = page->mapping->backing_dev_info; 1133 return bdi_write_congested(bdi); 1134 } 1135 #endif 1136 1137 asmlinkage long sys_swapoff(const char __user * specialfile) 1138 { 1139 struct swap_info_struct * p = NULL; 1140 unsigned short *swap_map; 1141 struct file *swap_file, *victim; 1142 struct address_space *mapping; 1143 struct inode *inode; 1144 char * pathname; 1145 int i, type, prev; 1146 int err; 1147 1148 if (!capable(CAP_SYS_ADMIN)) 1149 return -EPERM; 1150 1151 pathname = getname(specialfile); 1152 err = PTR_ERR(pathname); 1153 if (IS_ERR(pathname)) 1154 goto out; 1155 1156 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0); 1157 putname(pathname); 1158 err = PTR_ERR(victim); 1159 if (IS_ERR(victim)) 1160 goto out; 1161 1162 mapping = victim->f_mapping; 1163 prev = -1; 1164 spin_lock(&swap_lock); 1165 for (type = swap_list.head; type >= 0; type = swap_info[type].next) { 1166 p = swap_info + type; 1167 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) { 1168 if (p->swap_file->f_mapping == mapping) 1169 break; 1170 } 1171 prev = type; 1172 } 1173 if (type < 0) { 1174 err = -EINVAL; 1175 spin_unlock(&swap_lock); 1176 goto out_dput; 1177 } 1178 if (!security_vm_enough_memory(p->pages)) 1179 vm_unacct_memory(p->pages); 1180 else { 1181 err = -ENOMEM; 1182 spin_unlock(&swap_lock); 1183 goto out_dput; 1184 } 1185 if (prev < 0) { 1186 swap_list.head = p->next; 1187 } else { 1188 swap_info[prev].next = p->next; 1189 } 1190 if (type == swap_list.next) { 1191 /* just pick something that's safe... */ 1192 swap_list.next = swap_list.head; 1193 } 1194 nr_swap_pages -= p->pages; 1195 total_swap_pages -= p->pages; 1196 p->flags &= ~SWP_WRITEOK; 1197 spin_unlock(&swap_lock); 1198 1199 current->flags |= PF_SWAPOFF; 1200 err = try_to_unuse(type); 1201 current->flags &= ~PF_SWAPOFF; 1202 1203 if (err) { 1204 /* re-insert swap space back into swap_list */ 1205 spin_lock(&swap_lock); 1206 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next) 1207 if (p->prio >= swap_info[i].prio) 1208 break; 1209 p->next = i; 1210 if (prev < 0) 1211 swap_list.head = swap_list.next = p - swap_info; 1212 else 1213 swap_info[prev].next = p - swap_info; 1214 nr_swap_pages += p->pages; 1215 total_swap_pages += p->pages; 1216 p->flags |= SWP_WRITEOK; 1217 spin_unlock(&swap_lock); 1218 goto out_dput; 1219 } 1220 1221 /* wait for any unplug function to finish */ 1222 down_write(&swap_unplug_sem); 1223 up_write(&swap_unplug_sem); 1224 1225 destroy_swap_extents(p); 1226 mutex_lock(&swapon_mutex); 1227 spin_lock(&swap_lock); 1228 drain_mmlist(); 1229 1230 /* wait for anyone still in scan_swap_map */ 1231 p->highest_bit = 0; /* cuts scans short */ 1232 while (p->flags >= SWP_SCANNING) { 1233 spin_unlock(&swap_lock); 1234 schedule_timeout_uninterruptible(1); 1235 spin_lock(&swap_lock); 1236 } 1237 1238 swap_file = p->swap_file; 1239 p->swap_file = NULL; 1240 p->max = 0; 1241 swap_map = p->swap_map; 1242 p->swap_map = NULL; 1243 p->flags = 0; 1244 spin_unlock(&swap_lock); 1245 mutex_unlock(&swapon_mutex); 1246 vfree(swap_map); 1247 inode = mapping->host; 1248 if (S_ISBLK(inode->i_mode)) { 1249 struct block_device *bdev = I_BDEV(inode); 1250 set_blocksize(bdev, p->old_block_size); 1251 bd_release(bdev); 1252 } else { 1253 mutex_lock(&inode->i_mutex); 1254 inode->i_flags &= ~S_SWAPFILE; 1255 mutex_unlock(&inode->i_mutex); 1256 } 1257 filp_close(swap_file, NULL); 1258 err = 0; 1259 1260 out_dput: 1261 filp_close(victim, NULL); 1262 out: 1263 return err; 1264 } 1265 1266 #ifdef CONFIG_PROC_FS 1267 /* iterator */ 1268 static void *swap_start(struct seq_file *swap, loff_t *pos) 1269 { 1270 struct swap_info_struct *ptr = swap_info; 1271 int i; 1272 loff_t l = *pos; 1273 1274 mutex_lock(&swapon_mutex); 1275 1276 for (i = 0; i < nr_swapfiles; i++, ptr++) { 1277 if (!(ptr->flags & SWP_USED) || !ptr->swap_map) 1278 continue; 1279 if (!l--) 1280 return ptr; 1281 } 1282 1283 return NULL; 1284 } 1285 1286 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 1287 { 1288 struct swap_info_struct *ptr = v; 1289 struct swap_info_struct *endptr = swap_info + nr_swapfiles; 1290 1291 for (++ptr; ptr < endptr; ptr++) { 1292 if (!(ptr->flags & SWP_USED) || !ptr->swap_map) 1293 continue; 1294 ++*pos; 1295 return ptr; 1296 } 1297 1298 return NULL; 1299 } 1300 1301 static void swap_stop(struct seq_file *swap, void *v) 1302 { 1303 mutex_unlock(&swapon_mutex); 1304 } 1305 1306 static int swap_show(struct seq_file *swap, void *v) 1307 { 1308 struct swap_info_struct *ptr = v; 1309 struct file *file; 1310 int len; 1311 1312 if (v == swap_info) 1313 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 1314 1315 file = ptr->swap_file; 1316 len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\"); 1317 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 1318 len < 40 ? 40 - len : 1, " ", 1319 S_ISBLK(file->f_dentry->d_inode->i_mode) ? 1320 "partition" : "file\t", 1321 ptr->pages << (PAGE_SHIFT - 10), 1322 ptr->inuse_pages << (PAGE_SHIFT - 10), 1323 ptr->prio); 1324 return 0; 1325 } 1326 1327 static struct seq_operations swaps_op = { 1328 .start = swap_start, 1329 .next = swap_next, 1330 .stop = swap_stop, 1331 .show = swap_show 1332 }; 1333 1334 static int swaps_open(struct inode *inode, struct file *file) 1335 { 1336 return seq_open(file, &swaps_op); 1337 } 1338 1339 static struct file_operations proc_swaps_operations = { 1340 .open = swaps_open, 1341 .read = seq_read, 1342 .llseek = seq_lseek, 1343 .release = seq_release, 1344 }; 1345 1346 static int __init procswaps_init(void) 1347 { 1348 struct proc_dir_entry *entry; 1349 1350 entry = create_proc_entry("swaps", 0, NULL); 1351 if (entry) 1352 entry->proc_fops = &proc_swaps_operations; 1353 return 0; 1354 } 1355 __initcall(procswaps_init); 1356 #endif /* CONFIG_PROC_FS */ 1357 1358 /* 1359 * Written 01/25/92 by Simmule Turner, heavily changed by Linus. 1360 * 1361 * The swapon system call 1362 */ 1363 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) 1364 { 1365 struct swap_info_struct * p; 1366 char *name = NULL; 1367 struct block_device *bdev = NULL; 1368 struct file *swap_file = NULL; 1369 struct address_space *mapping; 1370 unsigned int type; 1371 int i, prev; 1372 int error; 1373 static int least_priority; 1374 union swap_header *swap_header = NULL; 1375 int swap_header_version; 1376 unsigned int nr_good_pages = 0; 1377 int nr_extents = 0; 1378 sector_t span; 1379 unsigned long maxpages = 1; 1380 int swapfilesize; 1381 unsigned short *swap_map; 1382 struct page *page = NULL; 1383 struct inode *inode = NULL; 1384 int did_down = 0; 1385 1386 if (!capable(CAP_SYS_ADMIN)) 1387 return -EPERM; 1388 spin_lock(&swap_lock); 1389 p = swap_info; 1390 for (type = 0 ; type < nr_swapfiles ; type++,p++) 1391 if (!(p->flags & SWP_USED)) 1392 break; 1393 error = -EPERM; 1394 if (type >= MAX_SWAPFILES) { 1395 spin_unlock(&swap_lock); 1396 goto out; 1397 } 1398 if (type >= nr_swapfiles) 1399 nr_swapfiles = type+1; 1400 INIT_LIST_HEAD(&p->extent_list); 1401 p->flags = SWP_USED; 1402 p->swap_file = NULL; 1403 p->old_block_size = 0; 1404 p->swap_map = NULL; 1405 p->lowest_bit = 0; 1406 p->highest_bit = 0; 1407 p->cluster_nr = 0; 1408 p->inuse_pages = 0; 1409 p->next = -1; 1410 if (swap_flags & SWAP_FLAG_PREFER) { 1411 p->prio = 1412 (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT; 1413 } else { 1414 p->prio = --least_priority; 1415 } 1416 spin_unlock(&swap_lock); 1417 name = getname(specialfile); 1418 error = PTR_ERR(name); 1419 if (IS_ERR(name)) { 1420 name = NULL; 1421 goto bad_swap_2; 1422 } 1423 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0); 1424 error = PTR_ERR(swap_file); 1425 if (IS_ERR(swap_file)) { 1426 swap_file = NULL; 1427 goto bad_swap_2; 1428 } 1429 1430 p->swap_file = swap_file; 1431 mapping = swap_file->f_mapping; 1432 inode = mapping->host; 1433 1434 error = -EBUSY; 1435 for (i = 0; i < nr_swapfiles; i++) { 1436 struct swap_info_struct *q = &swap_info[i]; 1437 1438 if (i == type || !q->swap_file) 1439 continue; 1440 if (mapping == q->swap_file->f_mapping) 1441 goto bad_swap; 1442 } 1443 1444 error = -EINVAL; 1445 if (S_ISBLK(inode->i_mode)) { 1446 bdev = I_BDEV(inode); 1447 error = bd_claim(bdev, sys_swapon); 1448 if (error < 0) { 1449 bdev = NULL; 1450 error = -EINVAL; 1451 goto bad_swap; 1452 } 1453 p->old_block_size = block_size(bdev); 1454 error = set_blocksize(bdev, PAGE_SIZE); 1455 if (error < 0) 1456 goto bad_swap; 1457 p->bdev = bdev; 1458 } else if (S_ISREG(inode->i_mode)) { 1459 p->bdev = inode->i_sb->s_bdev; 1460 mutex_lock(&inode->i_mutex); 1461 did_down = 1; 1462 if (IS_SWAPFILE(inode)) { 1463 error = -EBUSY; 1464 goto bad_swap; 1465 } 1466 } else { 1467 goto bad_swap; 1468 } 1469 1470 swapfilesize = i_size_read(inode) >> PAGE_SHIFT; 1471 1472 /* 1473 * Read the swap header. 1474 */ 1475 if (!mapping->a_ops->readpage) { 1476 error = -EINVAL; 1477 goto bad_swap; 1478 } 1479 page = read_mapping_page(mapping, 0, swap_file); 1480 if (IS_ERR(page)) { 1481 error = PTR_ERR(page); 1482 goto bad_swap; 1483 } 1484 wait_on_page_locked(page); 1485 if (!PageUptodate(page)) 1486 goto bad_swap; 1487 kmap(page); 1488 swap_header = page_address(page); 1489 1490 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10)) 1491 swap_header_version = 1; 1492 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10)) 1493 swap_header_version = 2; 1494 else { 1495 printk(KERN_ERR "Unable to find swap-space signature\n"); 1496 error = -EINVAL; 1497 goto bad_swap; 1498 } 1499 1500 switch (swap_header_version) { 1501 case 1: 1502 printk(KERN_ERR "version 0 swap is no longer supported. " 1503 "Use mkswap -v1 %s\n", name); 1504 error = -EINVAL; 1505 goto bad_swap; 1506 case 2: 1507 /* Check the swap header's sub-version and the size of 1508 the swap file and bad block lists */ 1509 if (swap_header->info.version != 1) { 1510 printk(KERN_WARNING 1511 "Unable to handle swap header version %d\n", 1512 swap_header->info.version); 1513 error = -EINVAL; 1514 goto bad_swap; 1515 } 1516 1517 p->lowest_bit = 1; 1518 p->cluster_next = 1; 1519 1520 /* 1521 * Find out how many pages are allowed for a single swap 1522 * device. There are two limiting factors: 1) the number of 1523 * bits for the swap offset in the swp_entry_t type and 1524 * 2) the number of bits in the a swap pte as defined by 1525 * the different architectures. In order to find the 1526 * largest possible bit mask a swap entry with swap type 0 1527 * and swap offset ~0UL is created, encoded to a swap pte, 1528 * decoded to a swp_entry_t again and finally the swap 1529 * offset is extracted. This will mask all the bits from 1530 * the initial ~0UL mask that can't be encoded in either 1531 * the swp_entry_t or the architecture definition of a 1532 * swap pte. 1533 */ 1534 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1; 1535 if (maxpages > swap_header->info.last_page) 1536 maxpages = swap_header->info.last_page; 1537 p->highest_bit = maxpages - 1; 1538 1539 error = -EINVAL; 1540 if (!maxpages) 1541 goto bad_swap; 1542 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 1543 goto bad_swap; 1544 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 1545 goto bad_swap; 1546 1547 /* OK, set up the swap map and apply the bad block list */ 1548 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) { 1549 error = -ENOMEM; 1550 goto bad_swap; 1551 } 1552 1553 error = 0; 1554 memset(p->swap_map, 0, maxpages * sizeof(short)); 1555 for (i = 0; i < swap_header->info.nr_badpages; i++) { 1556 int page_nr = swap_header->info.badpages[i]; 1557 if (page_nr <= 0 || page_nr >= swap_header->info.last_page) 1558 error = -EINVAL; 1559 else 1560 p->swap_map[page_nr] = SWAP_MAP_BAD; 1561 } 1562 nr_good_pages = swap_header->info.last_page - 1563 swap_header->info.nr_badpages - 1564 1 /* header page */; 1565 if (error) 1566 goto bad_swap; 1567 } 1568 1569 if (swapfilesize && maxpages > swapfilesize) { 1570 printk(KERN_WARNING 1571 "Swap area shorter than signature indicates\n"); 1572 error = -EINVAL; 1573 goto bad_swap; 1574 } 1575 if (nr_good_pages) { 1576 p->swap_map[0] = SWAP_MAP_BAD; 1577 p->max = maxpages; 1578 p->pages = nr_good_pages; 1579 nr_extents = setup_swap_extents(p, &span); 1580 if (nr_extents < 0) { 1581 error = nr_extents; 1582 goto bad_swap; 1583 } 1584 nr_good_pages = p->pages; 1585 } 1586 if (!nr_good_pages) { 1587 printk(KERN_WARNING "Empty swap-file\n"); 1588 error = -EINVAL; 1589 goto bad_swap; 1590 } 1591 1592 mutex_lock(&swapon_mutex); 1593 spin_lock(&swap_lock); 1594 p->flags = SWP_ACTIVE; 1595 nr_swap_pages += nr_good_pages; 1596 total_swap_pages += nr_good_pages; 1597 1598 printk(KERN_INFO "Adding %uk swap on %s. " 1599 "Priority:%d extents:%d across:%lluk\n", 1600 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio, 1601 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10)); 1602 1603 /* insert swap space into swap_list: */ 1604 prev = -1; 1605 for (i = swap_list.head; i >= 0; i = swap_info[i].next) { 1606 if (p->prio >= swap_info[i].prio) { 1607 break; 1608 } 1609 prev = i; 1610 } 1611 p->next = i; 1612 if (prev < 0) { 1613 swap_list.head = swap_list.next = p - swap_info; 1614 } else { 1615 swap_info[prev].next = p - swap_info; 1616 } 1617 spin_unlock(&swap_lock); 1618 mutex_unlock(&swapon_mutex); 1619 error = 0; 1620 goto out; 1621 bad_swap: 1622 if (bdev) { 1623 set_blocksize(bdev, p->old_block_size); 1624 bd_release(bdev); 1625 } 1626 destroy_swap_extents(p); 1627 bad_swap_2: 1628 spin_lock(&swap_lock); 1629 swap_map = p->swap_map; 1630 p->swap_file = NULL; 1631 p->swap_map = NULL; 1632 p->flags = 0; 1633 if (!(swap_flags & SWAP_FLAG_PREFER)) 1634 ++least_priority; 1635 spin_unlock(&swap_lock); 1636 vfree(swap_map); 1637 if (swap_file) 1638 filp_close(swap_file, NULL); 1639 out: 1640 if (page && !IS_ERR(page)) { 1641 kunmap(page); 1642 page_cache_release(page); 1643 } 1644 if (name) 1645 putname(name); 1646 if (did_down) { 1647 if (!error) 1648 inode->i_flags |= S_SWAPFILE; 1649 mutex_unlock(&inode->i_mutex); 1650 } 1651 return error; 1652 } 1653 1654 void si_swapinfo(struct sysinfo *val) 1655 { 1656 unsigned int i; 1657 unsigned long nr_to_be_unused = 0; 1658 1659 spin_lock(&swap_lock); 1660 for (i = 0; i < nr_swapfiles; i++) { 1661 if (!(swap_info[i].flags & SWP_USED) || 1662 (swap_info[i].flags & SWP_WRITEOK)) 1663 continue; 1664 nr_to_be_unused += swap_info[i].inuse_pages; 1665 } 1666 val->freeswap = nr_swap_pages + nr_to_be_unused; 1667 val->totalswap = total_swap_pages + nr_to_be_unused; 1668 spin_unlock(&swap_lock); 1669 } 1670 1671 /* 1672 * Verify that a swap entry is valid and increment its swap map count. 1673 * 1674 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as 1675 * "permanent", but will be reclaimed by the next swapoff. 1676 */ 1677 int swap_duplicate(swp_entry_t entry) 1678 { 1679 struct swap_info_struct * p; 1680 unsigned long offset, type; 1681 int result = 0; 1682 1683 if (is_migration_entry(entry)) 1684 return 1; 1685 1686 type = swp_type(entry); 1687 if (type >= nr_swapfiles) 1688 goto bad_file; 1689 p = type + swap_info; 1690 offset = swp_offset(entry); 1691 1692 spin_lock(&swap_lock); 1693 if (offset < p->max && p->swap_map[offset]) { 1694 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) { 1695 p->swap_map[offset]++; 1696 result = 1; 1697 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) { 1698 if (swap_overflow++ < 5) 1699 printk(KERN_WARNING "swap_dup: swap entry overflow\n"); 1700 p->swap_map[offset] = SWAP_MAP_MAX; 1701 result = 1; 1702 } 1703 } 1704 spin_unlock(&swap_lock); 1705 out: 1706 return result; 1707 1708 bad_file: 1709 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); 1710 goto out; 1711 } 1712 1713 struct swap_info_struct * 1714 get_swap_info_struct(unsigned type) 1715 { 1716 return &swap_info[type]; 1717 } 1718 1719 /* 1720 * swap_lock prevents swap_map being freed. Don't grab an extra 1721 * reference on the swaphandle, it doesn't matter if it becomes unused. 1722 */ 1723 int valid_swaphandles(swp_entry_t entry, unsigned long *offset) 1724 { 1725 int ret = 0, i = 1 << page_cluster; 1726 unsigned long toff; 1727 struct swap_info_struct *swapdev = swp_type(entry) + swap_info; 1728 1729 if (!page_cluster) /* no readahead */ 1730 return 0; 1731 toff = (swp_offset(entry) >> page_cluster) << page_cluster; 1732 if (!toff) /* first page is swap header */ 1733 toff++, i--; 1734 *offset = toff; 1735 1736 spin_lock(&swap_lock); 1737 do { 1738 /* Don't read-ahead past the end of the swap area */ 1739 if (toff >= swapdev->max) 1740 break; 1741 /* Don't read in free or bad pages */ 1742 if (!swapdev->swap_map[toff]) 1743 break; 1744 if (swapdev->swap_map[toff] == SWAP_MAP_BAD) 1745 break; 1746 toff++; 1747 ret++; 1748 } while (--i); 1749 spin_unlock(&swap_lock); 1750 return ret; 1751 } 1752