xref: /linux/mm/swapfile.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/writeback.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/rmap.h>
25 #include <linux/security.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mutex.h>
28 #include <linux/capability.h>
29 #include <linux/syscalls.h>
30 
31 #include <asm/pgtable.h>
32 #include <asm/tlbflush.h>
33 #include <linux/swapops.h>
34 
35 DEFINE_SPINLOCK(swap_lock);
36 unsigned int nr_swapfiles;
37 long total_swap_pages;
38 static int swap_overflow;
39 
40 static const char Bad_file[] = "Bad swap file entry ";
41 static const char Unused_file[] = "Unused swap file entry ";
42 static const char Bad_offset[] = "Bad swap offset entry ";
43 static const char Unused_offset[] = "Unused swap offset entry ";
44 
45 struct swap_list_t swap_list = {-1, -1};
46 
47 static struct swap_info_struct swap_info[MAX_SWAPFILES];
48 
49 static DEFINE_MUTEX(swapon_mutex);
50 
51 /*
52  * We need this because the bdev->unplug_fn can sleep and we cannot
53  * hold swap_lock while calling the unplug_fn. And swap_lock
54  * cannot be turned into a mutex.
55  */
56 static DECLARE_RWSEM(swap_unplug_sem);
57 
58 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
59 {
60 	swp_entry_t entry;
61 
62 	down_read(&swap_unplug_sem);
63 	entry.val = page_private(page);
64 	if (PageSwapCache(page)) {
65 		struct block_device *bdev = swap_info[swp_type(entry)].bdev;
66 		struct backing_dev_info *bdi;
67 
68 		/*
69 		 * If the page is removed from swapcache from under us (with a
70 		 * racy try_to_unuse/swapoff) we need an additional reference
71 		 * count to avoid reading garbage from page_private(page) above.
72 		 * If the WARN_ON triggers during a swapoff it maybe the race
73 		 * condition and it's harmless. However if it triggers without
74 		 * swapoff it signals a problem.
75 		 */
76 		WARN_ON(page_count(page) <= 1);
77 
78 		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
79 		blk_run_backing_dev(bdi, page);
80 	}
81 	up_read(&swap_unplug_sem);
82 }
83 
84 #define SWAPFILE_CLUSTER	256
85 #define LATENCY_LIMIT		256
86 
87 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
88 {
89 	unsigned long offset, last_in_cluster;
90 	int latency_ration = LATENCY_LIMIT;
91 
92 	/*
93 	 * We try to cluster swap pages by allocating them sequentially
94 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
95 	 * way, however, we resort to first-free allocation, starting
96 	 * a new cluster.  This prevents us from scattering swap pages
97 	 * all over the entire swap partition, so that we reduce
98 	 * overall disk seek times between swap pages.  -- sct
99 	 * But we do now try to find an empty cluster.  -Andrea
100 	 */
101 
102 	si->flags += SWP_SCANNING;
103 	if (unlikely(!si->cluster_nr)) {
104 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
105 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
106 			goto lowest;
107 		spin_unlock(&swap_lock);
108 
109 		offset = si->lowest_bit;
110 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
111 
112 		/* Locate the first empty (unaligned) cluster */
113 		for (; last_in_cluster <= si->highest_bit; offset++) {
114 			if (si->swap_map[offset])
115 				last_in_cluster = offset + SWAPFILE_CLUSTER;
116 			else if (offset == last_in_cluster) {
117 				spin_lock(&swap_lock);
118 				si->cluster_next = offset-SWAPFILE_CLUSTER+1;
119 				goto cluster;
120 			}
121 			if (unlikely(--latency_ration < 0)) {
122 				cond_resched();
123 				latency_ration = LATENCY_LIMIT;
124 			}
125 		}
126 		spin_lock(&swap_lock);
127 		goto lowest;
128 	}
129 
130 	si->cluster_nr--;
131 cluster:
132 	offset = si->cluster_next;
133 	if (offset > si->highest_bit)
134 lowest:		offset = si->lowest_bit;
135 checks:	if (!(si->flags & SWP_WRITEOK))
136 		goto no_page;
137 	if (!si->highest_bit)
138 		goto no_page;
139 	if (!si->swap_map[offset]) {
140 		if (offset == si->lowest_bit)
141 			si->lowest_bit++;
142 		if (offset == si->highest_bit)
143 			si->highest_bit--;
144 		si->inuse_pages++;
145 		if (si->inuse_pages == si->pages) {
146 			si->lowest_bit = si->max;
147 			si->highest_bit = 0;
148 		}
149 		si->swap_map[offset] = 1;
150 		si->cluster_next = offset + 1;
151 		si->flags -= SWP_SCANNING;
152 		return offset;
153 	}
154 
155 	spin_unlock(&swap_lock);
156 	while (++offset <= si->highest_bit) {
157 		if (!si->swap_map[offset]) {
158 			spin_lock(&swap_lock);
159 			goto checks;
160 		}
161 		if (unlikely(--latency_ration < 0)) {
162 			cond_resched();
163 			latency_ration = LATENCY_LIMIT;
164 		}
165 	}
166 	spin_lock(&swap_lock);
167 	goto lowest;
168 
169 no_page:
170 	si->flags -= SWP_SCANNING;
171 	return 0;
172 }
173 
174 swp_entry_t get_swap_page(void)
175 {
176 	struct swap_info_struct *si;
177 	pgoff_t offset;
178 	int type, next;
179 	int wrapped = 0;
180 
181 	spin_lock(&swap_lock);
182 	if (nr_swap_pages <= 0)
183 		goto noswap;
184 	nr_swap_pages--;
185 
186 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
187 		si = swap_info + type;
188 		next = si->next;
189 		if (next < 0 ||
190 		    (!wrapped && si->prio != swap_info[next].prio)) {
191 			next = swap_list.head;
192 			wrapped++;
193 		}
194 
195 		if (!si->highest_bit)
196 			continue;
197 		if (!(si->flags & SWP_WRITEOK))
198 			continue;
199 
200 		swap_list.next = next;
201 		offset = scan_swap_map(si);
202 		if (offset) {
203 			spin_unlock(&swap_lock);
204 			return swp_entry(type, offset);
205 		}
206 		next = swap_list.next;
207 	}
208 
209 	nr_swap_pages++;
210 noswap:
211 	spin_unlock(&swap_lock);
212 	return (swp_entry_t) {0};
213 }
214 
215 swp_entry_t get_swap_page_of_type(int type)
216 {
217 	struct swap_info_struct *si;
218 	pgoff_t offset;
219 
220 	spin_lock(&swap_lock);
221 	si = swap_info + type;
222 	if (si->flags & SWP_WRITEOK) {
223 		nr_swap_pages--;
224 		offset = scan_swap_map(si);
225 		if (offset) {
226 			spin_unlock(&swap_lock);
227 			return swp_entry(type, offset);
228 		}
229 		nr_swap_pages++;
230 	}
231 	spin_unlock(&swap_lock);
232 	return (swp_entry_t) {0};
233 }
234 
235 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
236 {
237 	struct swap_info_struct * p;
238 	unsigned long offset, type;
239 
240 	if (!entry.val)
241 		goto out;
242 	type = swp_type(entry);
243 	if (type >= nr_swapfiles)
244 		goto bad_nofile;
245 	p = & swap_info[type];
246 	if (!(p->flags & SWP_USED))
247 		goto bad_device;
248 	offset = swp_offset(entry);
249 	if (offset >= p->max)
250 		goto bad_offset;
251 	if (!p->swap_map[offset])
252 		goto bad_free;
253 	spin_lock(&swap_lock);
254 	return p;
255 
256 bad_free:
257 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
258 	goto out;
259 bad_offset:
260 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
261 	goto out;
262 bad_device:
263 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
264 	goto out;
265 bad_nofile:
266 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
267 out:
268 	return NULL;
269 }
270 
271 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
272 {
273 	int count = p->swap_map[offset];
274 
275 	if (count < SWAP_MAP_MAX) {
276 		count--;
277 		p->swap_map[offset] = count;
278 		if (!count) {
279 			if (offset < p->lowest_bit)
280 				p->lowest_bit = offset;
281 			if (offset > p->highest_bit)
282 				p->highest_bit = offset;
283 			if (p->prio > swap_info[swap_list.next].prio)
284 				swap_list.next = p - swap_info;
285 			nr_swap_pages++;
286 			p->inuse_pages--;
287 		}
288 	}
289 	return count;
290 }
291 
292 /*
293  * Caller has made sure that the swapdevice corresponding to entry
294  * is still around or has not been recycled.
295  */
296 void swap_free(swp_entry_t entry)
297 {
298 	struct swap_info_struct * p;
299 
300 	p = swap_info_get(entry);
301 	if (p) {
302 		swap_entry_free(p, swp_offset(entry));
303 		spin_unlock(&swap_lock);
304 	}
305 }
306 
307 /*
308  * How many references to page are currently swapped out?
309  */
310 static inline int page_swapcount(struct page *page)
311 {
312 	int count = 0;
313 	struct swap_info_struct *p;
314 	swp_entry_t entry;
315 
316 	entry.val = page_private(page);
317 	p = swap_info_get(entry);
318 	if (p) {
319 		/* Subtract the 1 for the swap cache itself */
320 		count = p->swap_map[swp_offset(entry)] - 1;
321 		spin_unlock(&swap_lock);
322 	}
323 	return count;
324 }
325 
326 /*
327  * We can use this swap cache entry directly
328  * if there are no other references to it.
329  */
330 int can_share_swap_page(struct page *page)
331 {
332 	int count;
333 
334 	BUG_ON(!PageLocked(page));
335 	count = page_mapcount(page);
336 	if (count <= 1 && PageSwapCache(page))
337 		count += page_swapcount(page);
338 	return count == 1;
339 }
340 
341 /*
342  * Work out if there are any other processes sharing this
343  * swap cache page. Free it if you can. Return success.
344  */
345 int remove_exclusive_swap_page(struct page *page)
346 {
347 	int retval;
348 	struct swap_info_struct * p;
349 	swp_entry_t entry;
350 
351 	BUG_ON(PagePrivate(page));
352 	BUG_ON(!PageLocked(page));
353 
354 	if (!PageSwapCache(page))
355 		return 0;
356 	if (PageWriteback(page))
357 		return 0;
358 	if (page_count(page) != 2) /* 2: us + cache */
359 		return 0;
360 
361 	entry.val = page_private(page);
362 	p = swap_info_get(entry);
363 	if (!p)
364 		return 0;
365 
366 	/* Is the only swap cache user the cache itself? */
367 	retval = 0;
368 	if (p->swap_map[swp_offset(entry)] == 1) {
369 		/* Recheck the page count with the swapcache lock held.. */
370 		write_lock_irq(&swapper_space.tree_lock);
371 		if ((page_count(page) == 2) && !PageWriteback(page)) {
372 			__delete_from_swap_cache(page);
373 			SetPageDirty(page);
374 			retval = 1;
375 		}
376 		write_unlock_irq(&swapper_space.tree_lock);
377 	}
378 	spin_unlock(&swap_lock);
379 
380 	if (retval) {
381 		swap_free(entry);
382 		page_cache_release(page);
383 	}
384 
385 	return retval;
386 }
387 
388 /*
389  * Free the swap entry like above, but also try to
390  * free the page cache entry if it is the last user.
391  */
392 void free_swap_and_cache(swp_entry_t entry)
393 {
394 	struct swap_info_struct * p;
395 	struct page *page = NULL;
396 
397 	if (is_migration_entry(entry))
398 		return;
399 
400 	p = swap_info_get(entry);
401 	if (p) {
402 		if (swap_entry_free(p, swp_offset(entry)) == 1) {
403 			page = find_get_page(&swapper_space, entry.val);
404 			if (page && unlikely(TestSetPageLocked(page))) {
405 				page_cache_release(page);
406 				page = NULL;
407 			}
408 		}
409 		spin_unlock(&swap_lock);
410 	}
411 	if (page) {
412 		int one_user;
413 
414 		BUG_ON(PagePrivate(page));
415 		one_user = (page_count(page) == 2);
416 		/* Only cache user (+us), or swap space full? Free it! */
417 		/* Also recheck PageSwapCache after page is locked (above) */
418 		if (PageSwapCache(page) && !PageWriteback(page) &&
419 					(one_user || vm_swap_full())) {
420 			delete_from_swap_cache(page);
421 			SetPageDirty(page);
422 		}
423 		unlock_page(page);
424 		page_cache_release(page);
425 	}
426 }
427 
428 #ifdef CONFIG_SOFTWARE_SUSPEND
429 /*
430  * Find the swap type that corresponds to given device (if any)
431  *
432  * This is needed for software suspend and is done in such a way that inode
433  * aliasing is allowed.
434  */
435 int swap_type_of(dev_t device)
436 {
437 	int i;
438 
439 	spin_lock(&swap_lock);
440 	for (i = 0; i < nr_swapfiles; i++) {
441 		struct inode *inode;
442 
443 		if (!(swap_info[i].flags & SWP_WRITEOK))
444 			continue;
445 		if (!device) {
446 			spin_unlock(&swap_lock);
447 			return i;
448 		}
449 		inode = swap_info->swap_file->f_dentry->d_inode;
450 		if (S_ISBLK(inode->i_mode) &&
451 		    device == MKDEV(imajor(inode), iminor(inode))) {
452 			spin_unlock(&swap_lock);
453 			return i;
454 		}
455 	}
456 	spin_unlock(&swap_lock);
457 	return -ENODEV;
458 }
459 
460 /*
461  * Return either the total number of swap pages of given type, or the number
462  * of free pages of that type (depending on @free)
463  *
464  * This is needed for software suspend
465  */
466 unsigned int count_swap_pages(int type, int free)
467 {
468 	unsigned int n = 0;
469 
470 	if (type < nr_swapfiles) {
471 		spin_lock(&swap_lock);
472 		if (swap_info[type].flags & SWP_WRITEOK) {
473 			n = swap_info[type].pages;
474 			if (free)
475 				n -= swap_info[type].inuse_pages;
476 		}
477 		spin_unlock(&swap_lock);
478 	}
479 	return n;
480 }
481 #endif
482 
483 /*
484  * No need to decide whether this PTE shares the swap entry with others,
485  * just let do_wp_page work it out if a write is requested later - to
486  * force COW, vm_page_prot omits write permission from any private vma.
487  */
488 static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
489 		unsigned long addr, swp_entry_t entry, struct page *page)
490 {
491 	inc_mm_counter(vma->vm_mm, anon_rss);
492 	get_page(page);
493 	set_pte_at(vma->vm_mm, addr, pte,
494 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
495 	page_add_anon_rmap(page, vma, addr);
496 	swap_free(entry);
497 	/*
498 	 * Move the page to the active list so it is not
499 	 * immediately swapped out again after swapon.
500 	 */
501 	activate_page(page);
502 }
503 
504 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
505 				unsigned long addr, unsigned long end,
506 				swp_entry_t entry, struct page *page)
507 {
508 	pte_t swp_pte = swp_entry_to_pte(entry);
509 	pte_t *pte;
510 	spinlock_t *ptl;
511 	int found = 0;
512 
513 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
514 	do {
515 		/*
516 		 * swapoff spends a _lot_ of time in this loop!
517 		 * Test inline before going to call unuse_pte.
518 		 */
519 		if (unlikely(pte_same(*pte, swp_pte))) {
520 			unuse_pte(vma, pte++, addr, entry, page);
521 			found = 1;
522 			break;
523 		}
524 	} while (pte++, addr += PAGE_SIZE, addr != end);
525 	pte_unmap_unlock(pte - 1, ptl);
526 	return found;
527 }
528 
529 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
530 				unsigned long addr, unsigned long end,
531 				swp_entry_t entry, struct page *page)
532 {
533 	pmd_t *pmd;
534 	unsigned long next;
535 
536 	pmd = pmd_offset(pud, addr);
537 	do {
538 		next = pmd_addr_end(addr, end);
539 		if (pmd_none_or_clear_bad(pmd))
540 			continue;
541 		if (unuse_pte_range(vma, pmd, addr, next, entry, page))
542 			return 1;
543 	} while (pmd++, addr = next, addr != end);
544 	return 0;
545 }
546 
547 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
548 				unsigned long addr, unsigned long end,
549 				swp_entry_t entry, struct page *page)
550 {
551 	pud_t *pud;
552 	unsigned long next;
553 
554 	pud = pud_offset(pgd, addr);
555 	do {
556 		next = pud_addr_end(addr, end);
557 		if (pud_none_or_clear_bad(pud))
558 			continue;
559 		if (unuse_pmd_range(vma, pud, addr, next, entry, page))
560 			return 1;
561 	} while (pud++, addr = next, addr != end);
562 	return 0;
563 }
564 
565 static int unuse_vma(struct vm_area_struct *vma,
566 				swp_entry_t entry, struct page *page)
567 {
568 	pgd_t *pgd;
569 	unsigned long addr, end, next;
570 
571 	if (page->mapping) {
572 		addr = page_address_in_vma(page, vma);
573 		if (addr == -EFAULT)
574 			return 0;
575 		else
576 			end = addr + PAGE_SIZE;
577 	} else {
578 		addr = vma->vm_start;
579 		end = vma->vm_end;
580 	}
581 
582 	pgd = pgd_offset(vma->vm_mm, addr);
583 	do {
584 		next = pgd_addr_end(addr, end);
585 		if (pgd_none_or_clear_bad(pgd))
586 			continue;
587 		if (unuse_pud_range(vma, pgd, addr, next, entry, page))
588 			return 1;
589 	} while (pgd++, addr = next, addr != end);
590 	return 0;
591 }
592 
593 static int unuse_mm(struct mm_struct *mm,
594 				swp_entry_t entry, struct page *page)
595 {
596 	struct vm_area_struct *vma;
597 
598 	if (!down_read_trylock(&mm->mmap_sem)) {
599 		/*
600 		 * Activate page so shrink_cache is unlikely to unmap its
601 		 * ptes while lock is dropped, so swapoff can make progress.
602 		 */
603 		activate_page(page);
604 		unlock_page(page);
605 		down_read(&mm->mmap_sem);
606 		lock_page(page);
607 	}
608 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
609 		if (vma->anon_vma && unuse_vma(vma, entry, page))
610 			break;
611 	}
612 	up_read(&mm->mmap_sem);
613 	/*
614 	 * Currently unuse_mm cannot fail, but leave error handling
615 	 * at call sites for now, since we change it from time to time.
616 	 */
617 	return 0;
618 }
619 
620 /*
621  * Scan swap_map from current position to next entry still in use.
622  * Recycle to start on reaching the end, returning 0 when empty.
623  */
624 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
625 					unsigned int prev)
626 {
627 	unsigned int max = si->max;
628 	unsigned int i = prev;
629 	int count;
630 
631 	/*
632 	 * No need for swap_lock here: we're just looking
633 	 * for whether an entry is in use, not modifying it; false
634 	 * hits are okay, and sys_swapoff() has already prevented new
635 	 * allocations from this area (while holding swap_lock).
636 	 */
637 	for (;;) {
638 		if (++i >= max) {
639 			if (!prev) {
640 				i = 0;
641 				break;
642 			}
643 			/*
644 			 * No entries in use at top of swap_map,
645 			 * loop back to start and recheck there.
646 			 */
647 			max = prev + 1;
648 			prev = 0;
649 			i = 1;
650 		}
651 		count = si->swap_map[i];
652 		if (count && count != SWAP_MAP_BAD)
653 			break;
654 	}
655 	return i;
656 }
657 
658 /*
659  * We completely avoid races by reading each swap page in advance,
660  * and then search for the process using it.  All the necessary
661  * page table adjustments can then be made atomically.
662  */
663 static int try_to_unuse(unsigned int type)
664 {
665 	struct swap_info_struct * si = &swap_info[type];
666 	struct mm_struct *start_mm;
667 	unsigned short *swap_map;
668 	unsigned short swcount;
669 	struct page *page;
670 	swp_entry_t entry;
671 	unsigned int i = 0;
672 	int retval = 0;
673 	int reset_overflow = 0;
674 	int shmem;
675 
676 	/*
677 	 * When searching mms for an entry, a good strategy is to
678 	 * start at the first mm we freed the previous entry from
679 	 * (though actually we don't notice whether we or coincidence
680 	 * freed the entry).  Initialize this start_mm with a hold.
681 	 *
682 	 * A simpler strategy would be to start at the last mm we
683 	 * freed the previous entry from; but that would take less
684 	 * advantage of mmlist ordering, which clusters forked mms
685 	 * together, child after parent.  If we race with dup_mmap(), we
686 	 * prefer to resolve parent before child, lest we miss entries
687 	 * duplicated after we scanned child: using last mm would invert
688 	 * that.  Though it's only a serious concern when an overflowed
689 	 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
690 	 */
691 	start_mm = &init_mm;
692 	atomic_inc(&init_mm.mm_users);
693 
694 	/*
695 	 * Keep on scanning until all entries have gone.  Usually,
696 	 * one pass through swap_map is enough, but not necessarily:
697 	 * there are races when an instance of an entry might be missed.
698 	 */
699 	while ((i = find_next_to_unuse(si, i)) != 0) {
700 		if (signal_pending(current)) {
701 			retval = -EINTR;
702 			break;
703 		}
704 
705 		/*
706 		 * Get a page for the entry, using the existing swap
707 		 * cache page if there is one.  Otherwise, get a clean
708 		 * page and read the swap into it.
709 		 */
710 		swap_map = &si->swap_map[i];
711 		entry = swp_entry(type, i);
712 		page = read_swap_cache_async(entry, NULL, 0);
713 		if (!page) {
714 			/*
715 			 * Either swap_duplicate() failed because entry
716 			 * has been freed independently, and will not be
717 			 * reused since sys_swapoff() already disabled
718 			 * allocation from here, or alloc_page() failed.
719 			 */
720 			if (!*swap_map)
721 				continue;
722 			retval = -ENOMEM;
723 			break;
724 		}
725 
726 		/*
727 		 * Don't hold on to start_mm if it looks like exiting.
728 		 */
729 		if (atomic_read(&start_mm->mm_users) == 1) {
730 			mmput(start_mm);
731 			start_mm = &init_mm;
732 			atomic_inc(&init_mm.mm_users);
733 		}
734 
735 		/*
736 		 * Wait for and lock page.  When do_swap_page races with
737 		 * try_to_unuse, do_swap_page can handle the fault much
738 		 * faster than try_to_unuse can locate the entry.  This
739 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
740 		 * defer to do_swap_page in such a case - in some tests,
741 		 * do_swap_page and try_to_unuse repeatedly compete.
742 		 */
743 		wait_on_page_locked(page);
744 		wait_on_page_writeback(page);
745 		lock_page(page);
746 		wait_on_page_writeback(page);
747 
748 		/*
749 		 * Remove all references to entry.
750 		 * Whenever we reach init_mm, there's no address space
751 		 * to search, but use it as a reminder to search shmem.
752 		 */
753 		shmem = 0;
754 		swcount = *swap_map;
755 		if (swcount > 1) {
756 			if (start_mm == &init_mm)
757 				shmem = shmem_unuse(entry, page);
758 			else
759 				retval = unuse_mm(start_mm, entry, page);
760 		}
761 		if (*swap_map > 1) {
762 			int set_start_mm = (*swap_map >= swcount);
763 			struct list_head *p = &start_mm->mmlist;
764 			struct mm_struct *new_start_mm = start_mm;
765 			struct mm_struct *prev_mm = start_mm;
766 			struct mm_struct *mm;
767 
768 			atomic_inc(&new_start_mm->mm_users);
769 			atomic_inc(&prev_mm->mm_users);
770 			spin_lock(&mmlist_lock);
771 			while (*swap_map > 1 && !retval &&
772 					(p = p->next) != &start_mm->mmlist) {
773 				mm = list_entry(p, struct mm_struct, mmlist);
774 				if (!atomic_inc_not_zero(&mm->mm_users))
775 					continue;
776 				spin_unlock(&mmlist_lock);
777 				mmput(prev_mm);
778 				prev_mm = mm;
779 
780 				cond_resched();
781 
782 				swcount = *swap_map;
783 				if (swcount <= 1)
784 					;
785 				else if (mm == &init_mm) {
786 					set_start_mm = 1;
787 					shmem = shmem_unuse(entry, page);
788 				} else
789 					retval = unuse_mm(mm, entry, page);
790 				if (set_start_mm && *swap_map < swcount) {
791 					mmput(new_start_mm);
792 					atomic_inc(&mm->mm_users);
793 					new_start_mm = mm;
794 					set_start_mm = 0;
795 				}
796 				spin_lock(&mmlist_lock);
797 			}
798 			spin_unlock(&mmlist_lock);
799 			mmput(prev_mm);
800 			mmput(start_mm);
801 			start_mm = new_start_mm;
802 		}
803 		if (retval) {
804 			unlock_page(page);
805 			page_cache_release(page);
806 			break;
807 		}
808 
809 		/*
810 		 * How could swap count reach 0x7fff when the maximum
811 		 * pid is 0x7fff, and there's no way to repeat a swap
812 		 * page within an mm (except in shmem, where it's the
813 		 * shared object which takes the reference count)?
814 		 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
815 		 *
816 		 * If that's wrong, then we should worry more about
817 		 * exit_mmap() and do_munmap() cases described above:
818 		 * we might be resetting SWAP_MAP_MAX too early here.
819 		 * We know "Undead"s can happen, they're okay, so don't
820 		 * report them; but do report if we reset SWAP_MAP_MAX.
821 		 */
822 		if (*swap_map == SWAP_MAP_MAX) {
823 			spin_lock(&swap_lock);
824 			*swap_map = 1;
825 			spin_unlock(&swap_lock);
826 			reset_overflow = 1;
827 		}
828 
829 		/*
830 		 * If a reference remains (rare), we would like to leave
831 		 * the page in the swap cache; but try_to_unmap could
832 		 * then re-duplicate the entry once we drop page lock,
833 		 * so we might loop indefinitely; also, that page could
834 		 * not be swapped out to other storage meanwhile.  So:
835 		 * delete from cache even if there's another reference,
836 		 * after ensuring that the data has been saved to disk -
837 		 * since if the reference remains (rarer), it will be
838 		 * read from disk into another page.  Splitting into two
839 		 * pages would be incorrect if swap supported "shared
840 		 * private" pages, but they are handled by tmpfs files.
841 		 *
842 		 * Note shmem_unuse already deleted a swappage from
843 		 * the swap cache, unless the move to filepage failed:
844 		 * in which case it left swappage in cache, lowered its
845 		 * swap count to pass quickly through the loops above,
846 		 * and now we must reincrement count to try again later.
847 		 */
848 		if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
849 			struct writeback_control wbc = {
850 				.sync_mode = WB_SYNC_NONE,
851 			};
852 
853 			swap_writepage(page, &wbc);
854 			lock_page(page);
855 			wait_on_page_writeback(page);
856 		}
857 		if (PageSwapCache(page)) {
858 			if (shmem)
859 				swap_duplicate(entry);
860 			else
861 				delete_from_swap_cache(page);
862 		}
863 
864 		/*
865 		 * So we could skip searching mms once swap count went
866 		 * to 1, we did not mark any present ptes as dirty: must
867 		 * mark page dirty so shrink_list will preserve it.
868 		 */
869 		SetPageDirty(page);
870 		unlock_page(page);
871 		page_cache_release(page);
872 
873 		/*
874 		 * Make sure that we aren't completely killing
875 		 * interactive performance.
876 		 */
877 		cond_resched();
878 	}
879 
880 	mmput(start_mm);
881 	if (reset_overflow) {
882 		printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
883 		swap_overflow = 0;
884 	}
885 	return retval;
886 }
887 
888 /*
889  * After a successful try_to_unuse, if no swap is now in use, we know
890  * we can empty the mmlist.  swap_lock must be held on entry and exit.
891  * Note that mmlist_lock nests inside swap_lock, and an mm must be
892  * added to the mmlist just after page_duplicate - before would be racy.
893  */
894 static void drain_mmlist(void)
895 {
896 	struct list_head *p, *next;
897 	unsigned int i;
898 
899 	for (i = 0; i < nr_swapfiles; i++)
900 		if (swap_info[i].inuse_pages)
901 			return;
902 	spin_lock(&mmlist_lock);
903 	list_for_each_safe(p, next, &init_mm.mmlist)
904 		list_del_init(p);
905 	spin_unlock(&mmlist_lock);
906 }
907 
908 /*
909  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
910  * corresponds to page offset `offset'.
911  */
912 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
913 {
914 	struct swap_extent *se = sis->curr_swap_extent;
915 	struct swap_extent *start_se = se;
916 
917 	for ( ; ; ) {
918 		struct list_head *lh;
919 
920 		if (se->start_page <= offset &&
921 				offset < (se->start_page + se->nr_pages)) {
922 			return se->start_block + (offset - se->start_page);
923 		}
924 		lh = se->list.next;
925 		if (lh == &sis->extent_list)
926 			lh = lh->next;
927 		se = list_entry(lh, struct swap_extent, list);
928 		sis->curr_swap_extent = se;
929 		BUG_ON(se == start_se);		/* It *must* be present */
930 	}
931 }
932 
933 /*
934  * Free all of a swapdev's extent information
935  */
936 static void destroy_swap_extents(struct swap_info_struct *sis)
937 {
938 	while (!list_empty(&sis->extent_list)) {
939 		struct swap_extent *se;
940 
941 		se = list_entry(sis->extent_list.next,
942 				struct swap_extent, list);
943 		list_del(&se->list);
944 		kfree(se);
945 	}
946 }
947 
948 /*
949  * Add a block range (and the corresponding page range) into this swapdev's
950  * extent list.  The extent list is kept sorted in page order.
951  *
952  * This function rather assumes that it is called in ascending page order.
953  */
954 static int
955 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
956 		unsigned long nr_pages, sector_t start_block)
957 {
958 	struct swap_extent *se;
959 	struct swap_extent *new_se;
960 	struct list_head *lh;
961 
962 	lh = sis->extent_list.prev;	/* The highest page extent */
963 	if (lh != &sis->extent_list) {
964 		se = list_entry(lh, struct swap_extent, list);
965 		BUG_ON(se->start_page + se->nr_pages != start_page);
966 		if (se->start_block + se->nr_pages == start_block) {
967 			/* Merge it */
968 			se->nr_pages += nr_pages;
969 			return 0;
970 		}
971 	}
972 
973 	/*
974 	 * No merge.  Insert a new extent, preserving ordering.
975 	 */
976 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
977 	if (new_se == NULL)
978 		return -ENOMEM;
979 	new_se->start_page = start_page;
980 	new_se->nr_pages = nr_pages;
981 	new_se->start_block = start_block;
982 
983 	list_add_tail(&new_se->list, &sis->extent_list);
984 	return 1;
985 }
986 
987 /*
988  * A `swap extent' is a simple thing which maps a contiguous range of pages
989  * onto a contiguous range of disk blocks.  An ordered list of swap extents
990  * is built at swapon time and is then used at swap_writepage/swap_readpage
991  * time for locating where on disk a page belongs.
992  *
993  * If the swapfile is an S_ISBLK block device, a single extent is installed.
994  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
995  * swap files identically.
996  *
997  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
998  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
999  * swapfiles are handled *identically* after swapon time.
1000  *
1001  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1002  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1003  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1004  * requirements, they are simply tossed out - we will never use those blocks
1005  * for swapping.
1006  *
1007  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1008  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1009  * which will scribble on the fs.
1010  *
1011  * The amount of disk space which a single swap extent represents varies.
1012  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1013  * extents in the list.  To avoid much list walking, we cache the previous
1014  * search location in `curr_swap_extent', and start new searches from there.
1015  * This is extremely effective.  The average number of iterations in
1016  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1017  */
1018 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1019 {
1020 	struct inode *inode;
1021 	unsigned blocks_per_page;
1022 	unsigned long page_no;
1023 	unsigned blkbits;
1024 	sector_t probe_block;
1025 	sector_t last_block;
1026 	sector_t lowest_block = -1;
1027 	sector_t highest_block = 0;
1028 	int nr_extents = 0;
1029 	int ret;
1030 
1031 	inode = sis->swap_file->f_mapping->host;
1032 	if (S_ISBLK(inode->i_mode)) {
1033 		ret = add_swap_extent(sis, 0, sis->max, 0);
1034 		*span = sis->pages;
1035 		goto done;
1036 	}
1037 
1038 	blkbits = inode->i_blkbits;
1039 	blocks_per_page = PAGE_SIZE >> blkbits;
1040 
1041 	/*
1042 	 * Map all the blocks into the extent list.  This code doesn't try
1043 	 * to be very smart.
1044 	 */
1045 	probe_block = 0;
1046 	page_no = 0;
1047 	last_block = i_size_read(inode) >> blkbits;
1048 	while ((probe_block + blocks_per_page) <= last_block &&
1049 			page_no < sis->max) {
1050 		unsigned block_in_page;
1051 		sector_t first_block;
1052 
1053 		first_block = bmap(inode, probe_block);
1054 		if (first_block == 0)
1055 			goto bad_bmap;
1056 
1057 		/*
1058 		 * It must be PAGE_SIZE aligned on-disk
1059 		 */
1060 		if (first_block & (blocks_per_page - 1)) {
1061 			probe_block++;
1062 			goto reprobe;
1063 		}
1064 
1065 		for (block_in_page = 1; block_in_page < blocks_per_page;
1066 					block_in_page++) {
1067 			sector_t block;
1068 
1069 			block = bmap(inode, probe_block + block_in_page);
1070 			if (block == 0)
1071 				goto bad_bmap;
1072 			if (block != first_block + block_in_page) {
1073 				/* Discontiguity */
1074 				probe_block++;
1075 				goto reprobe;
1076 			}
1077 		}
1078 
1079 		first_block >>= (PAGE_SHIFT - blkbits);
1080 		if (page_no) {	/* exclude the header page */
1081 			if (first_block < lowest_block)
1082 				lowest_block = first_block;
1083 			if (first_block > highest_block)
1084 				highest_block = first_block;
1085 		}
1086 
1087 		/*
1088 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1089 		 */
1090 		ret = add_swap_extent(sis, page_no, 1, first_block);
1091 		if (ret < 0)
1092 			goto out;
1093 		nr_extents += ret;
1094 		page_no++;
1095 		probe_block += blocks_per_page;
1096 reprobe:
1097 		continue;
1098 	}
1099 	ret = nr_extents;
1100 	*span = 1 + highest_block - lowest_block;
1101 	if (page_no == 0)
1102 		page_no = 1;	/* force Empty message */
1103 	sis->max = page_no;
1104 	sis->pages = page_no - 1;
1105 	sis->highest_bit = page_no - 1;
1106 done:
1107 	sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1108 					struct swap_extent, list);
1109 	goto out;
1110 bad_bmap:
1111 	printk(KERN_ERR "swapon: swapfile has holes\n");
1112 	ret = -EINVAL;
1113 out:
1114 	return ret;
1115 }
1116 
1117 #if 0	/* We don't need this yet */
1118 #include <linux/backing-dev.h>
1119 int page_queue_congested(struct page *page)
1120 {
1121 	struct backing_dev_info *bdi;
1122 
1123 	BUG_ON(!PageLocked(page));	/* It pins the swap_info_struct */
1124 
1125 	if (PageSwapCache(page)) {
1126 		swp_entry_t entry = { .val = page_private(page) };
1127 		struct swap_info_struct *sis;
1128 
1129 		sis = get_swap_info_struct(swp_type(entry));
1130 		bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1131 	} else
1132 		bdi = page->mapping->backing_dev_info;
1133 	return bdi_write_congested(bdi);
1134 }
1135 #endif
1136 
1137 asmlinkage long sys_swapoff(const char __user * specialfile)
1138 {
1139 	struct swap_info_struct * p = NULL;
1140 	unsigned short *swap_map;
1141 	struct file *swap_file, *victim;
1142 	struct address_space *mapping;
1143 	struct inode *inode;
1144 	char * pathname;
1145 	int i, type, prev;
1146 	int err;
1147 
1148 	if (!capable(CAP_SYS_ADMIN))
1149 		return -EPERM;
1150 
1151 	pathname = getname(specialfile);
1152 	err = PTR_ERR(pathname);
1153 	if (IS_ERR(pathname))
1154 		goto out;
1155 
1156 	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1157 	putname(pathname);
1158 	err = PTR_ERR(victim);
1159 	if (IS_ERR(victim))
1160 		goto out;
1161 
1162 	mapping = victim->f_mapping;
1163 	prev = -1;
1164 	spin_lock(&swap_lock);
1165 	for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1166 		p = swap_info + type;
1167 		if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1168 			if (p->swap_file->f_mapping == mapping)
1169 				break;
1170 		}
1171 		prev = type;
1172 	}
1173 	if (type < 0) {
1174 		err = -EINVAL;
1175 		spin_unlock(&swap_lock);
1176 		goto out_dput;
1177 	}
1178 	if (!security_vm_enough_memory(p->pages))
1179 		vm_unacct_memory(p->pages);
1180 	else {
1181 		err = -ENOMEM;
1182 		spin_unlock(&swap_lock);
1183 		goto out_dput;
1184 	}
1185 	if (prev < 0) {
1186 		swap_list.head = p->next;
1187 	} else {
1188 		swap_info[prev].next = p->next;
1189 	}
1190 	if (type == swap_list.next) {
1191 		/* just pick something that's safe... */
1192 		swap_list.next = swap_list.head;
1193 	}
1194 	nr_swap_pages -= p->pages;
1195 	total_swap_pages -= p->pages;
1196 	p->flags &= ~SWP_WRITEOK;
1197 	spin_unlock(&swap_lock);
1198 
1199 	current->flags |= PF_SWAPOFF;
1200 	err = try_to_unuse(type);
1201 	current->flags &= ~PF_SWAPOFF;
1202 
1203 	if (err) {
1204 		/* re-insert swap space back into swap_list */
1205 		spin_lock(&swap_lock);
1206 		for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1207 			if (p->prio >= swap_info[i].prio)
1208 				break;
1209 		p->next = i;
1210 		if (prev < 0)
1211 			swap_list.head = swap_list.next = p - swap_info;
1212 		else
1213 			swap_info[prev].next = p - swap_info;
1214 		nr_swap_pages += p->pages;
1215 		total_swap_pages += p->pages;
1216 		p->flags |= SWP_WRITEOK;
1217 		spin_unlock(&swap_lock);
1218 		goto out_dput;
1219 	}
1220 
1221 	/* wait for any unplug function to finish */
1222 	down_write(&swap_unplug_sem);
1223 	up_write(&swap_unplug_sem);
1224 
1225 	destroy_swap_extents(p);
1226 	mutex_lock(&swapon_mutex);
1227 	spin_lock(&swap_lock);
1228 	drain_mmlist();
1229 
1230 	/* wait for anyone still in scan_swap_map */
1231 	p->highest_bit = 0;		/* cuts scans short */
1232 	while (p->flags >= SWP_SCANNING) {
1233 		spin_unlock(&swap_lock);
1234 		schedule_timeout_uninterruptible(1);
1235 		spin_lock(&swap_lock);
1236 	}
1237 
1238 	swap_file = p->swap_file;
1239 	p->swap_file = NULL;
1240 	p->max = 0;
1241 	swap_map = p->swap_map;
1242 	p->swap_map = NULL;
1243 	p->flags = 0;
1244 	spin_unlock(&swap_lock);
1245 	mutex_unlock(&swapon_mutex);
1246 	vfree(swap_map);
1247 	inode = mapping->host;
1248 	if (S_ISBLK(inode->i_mode)) {
1249 		struct block_device *bdev = I_BDEV(inode);
1250 		set_blocksize(bdev, p->old_block_size);
1251 		bd_release(bdev);
1252 	} else {
1253 		mutex_lock(&inode->i_mutex);
1254 		inode->i_flags &= ~S_SWAPFILE;
1255 		mutex_unlock(&inode->i_mutex);
1256 	}
1257 	filp_close(swap_file, NULL);
1258 	err = 0;
1259 
1260 out_dput:
1261 	filp_close(victim, NULL);
1262 out:
1263 	return err;
1264 }
1265 
1266 #ifdef CONFIG_PROC_FS
1267 /* iterator */
1268 static void *swap_start(struct seq_file *swap, loff_t *pos)
1269 {
1270 	struct swap_info_struct *ptr = swap_info;
1271 	int i;
1272 	loff_t l = *pos;
1273 
1274 	mutex_lock(&swapon_mutex);
1275 
1276 	for (i = 0; i < nr_swapfiles; i++, ptr++) {
1277 		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1278 			continue;
1279 		if (!l--)
1280 			return ptr;
1281 	}
1282 
1283 	return NULL;
1284 }
1285 
1286 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1287 {
1288 	struct swap_info_struct *ptr = v;
1289 	struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1290 
1291 	for (++ptr; ptr < endptr; ptr++) {
1292 		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1293 			continue;
1294 		++*pos;
1295 		return ptr;
1296 	}
1297 
1298 	return NULL;
1299 }
1300 
1301 static void swap_stop(struct seq_file *swap, void *v)
1302 {
1303 	mutex_unlock(&swapon_mutex);
1304 }
1305 
1306 static int swap_show(struct seq_file *swap, void *v)
1307 {
1308 	struct swap_info_struct *ptr = v;
1309 	struct file *file;
1310 	int len;
1311 
1312 	if (v == swap_info)
1313 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1314 
1315 	file = ptr->swap_file;
1316 	len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
1317 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1318 		       len < 40 ? 40 - len : 1, " ",
1319 		       S_ISBLK(file->f_dentry->d_inode->i_mode) ?
1320 				"partition" : "file\t",
1321 		       ptr->pages << (PAGE_SHIFT - 10),
1322 		       ptr->inuse_pages << (PAGE_SHIFT - 10),
1323 		       ptr->prio);
1324 	return 0;
1325 }
1326 
1327 static struct seq_operations swaps_op = {
1328 	.start =	swap_start,
1329 	.next =		swap_next,
1330 	.stop =		swap_stop,
1331 	.show =		swap_show
1332 };
1333 
1334 static int swaps_open(struct inode *inode, struct file *file)
1335 {
1336 	return seq_open(file, &swaps_op);
1337 }
1338 
1339 static struct file_operations proc_swaps_operations = {
1340 	.open		= swaps_open,
1341 	.read		= seq_read,
1342 	.llseek		= seq_lseek,
1343 	.release	= seq_release,
1344 };
1345 
1346 static int __init procswaps_init(void)
1347 {
1348 	struct proc_dir_entry *entry;
1349 
1350 	entry = create_proc_entry("swaps", 0, NULL);
1351 	if (entry)
1352 		entry->proc_fops = &proc_swaps_operations;
1353 	return 0;
1354 }
1355 __initcall(procswaps_init);
1356 #endif /* CONFIG_PROC_FS */
1357 
1358 /*
1359  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1360  *
1361  * The swapon system call
1362  */
1363 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1364 {
1365 	struct swap_info_struct * p;
1366 	char *name = NULL;
1367 	struct block_device *bdev = NULL;
1368 	struct file *swap_file = NULL;
1369 	struct address_space *mapping;
1370 	unsigned int type;
1371 	int i, prev;
1372 	int error;
1373 	static int least_priority;
1374 	union swap_header *swap_header = NULL;
1375 	int swap_header_version;
1376 	unsigned int nr_good_pages = 0;
1377 	int nr_extents = 0;
1378 	sector_t span;
1379 	unsigned long maxpages = 1;
1380 	int swapfilesize;
1381 	unsigned short *swap_map;
1382 	struct page *page = NULL;
1383 	struct inode *inode = NULL;
1384 	int did_down = 0;
1385 
1386 	if (!capable(CAP_SYS_ADMIN))
1387 		return -EPERM;
1388 	spin_lock(&swap_lock);
1389 	p = swap_info;
1390 	for (type = 0 ; type < nr_swapfiles ; type++,p++)
1391 		if (!(p->flags & SWP_USED))
1392 			break;
1393 	error = -EPERM;
1394 	if (type >= MAX_SWAPFILES) {
1395 		spin_unlock(&swap_lock);
1396 		goto out;
1397 	}
1398 	if (type >= nr_swapfiles)
1399 		nr_swapfiles = type+1;
1400 	INIT_LIST_HEAD(&p->extent_list);
1401 	p->flags = SWP_USED;
1402 	p->swap_file = NULL;
1403 	p->old_block_size = 0;
1404 	p->swap_map = NULL;
1405 	p->lowest_bit = 0;
1406 	p->highest_bit = 0;
1407 	p->cluster_nr = 0;
1408 	p->inuse_pages = 0;
1409 	p->next = -1;
1410 	if (swap_flags & SWAP_FLAG_PREFER) {
1411 		p->prio =
1412 		  (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1413 	} else {
1414 		p->prio = --least_priority;
1415 	}
1416 	spin_unlock(&swap_lock);
1417 	name = getname(specialfile);
1418 	error = PTR_ERR(name);
1419 	if (IS_ERR(name)) {
1420 		name = NULL;
1421 		goto bad_swap_2;
1422 	}
1423 	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1424 	error = PTR_ERR(swap_file);
1425 	if (IS_ERR(swap_file)) {
1426 		swap_file = NULL;
1427 		goto bad_swap_2;
1428 	}
1429 
1430 	p->swap_file = swap_file;
1431 	mapping = swap_file->f_mapping;
1432 	inode = mapping->host;
1433 
1434 	error = -EBUSY;
1435 	for (i = 0; i < nr_swapfiles; i++) {
1436 		struct swap_info_struct *q = &swap_info[i];
1437 
1438 		if (i == type || !q->swap_file)
1439 			continue;
1440 		if (mapping == q->swap_file->f_mapping)
1441 			goto bad_swap;
1442 	}
1443 
1444 	error = -EINVAL;
1445 	if (S_ISBLK(inode->i_mode)) {
1446 		bdev = I_BDEV(inode);
1447 		error = bd_claim(bdev, sys_swapon);
1448 		if (error < 0) {
1449 			bdev = NULL;
1450 			error = -EINVAL;
1451 			goto bad_swap;
1452 		}
1453 		p->old_block_size = block_size(bdev);
1454 		error = set_blocksize(bdev, PAGE_SIZE);
1455 		if (error < 0)
1456 			goto bad_swap;
1457 		p->bdev = bdev;
1458 	} else if (S_ISREG(inode->i_mode)) {
1459 		p->bdev = inode->i_sb->s_bdev;
1460 		mutex_lock(&inode->i_mutex);
1461 		did_down = 1;
1462 		if (IS_SWAPFILE(inode)) {
1463 			error = -EBUSY;
1464 			goto bad_swap;
1465 		}
1466 	} else {
1467 		goto bad_swap;
1468 	}
1469 
1470 	swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1471 
1472 	/*
1473 	 * Read the swap header.
1474 	 */
1475 	if (!mapping->a_ops->readpage) {
1476 		error = -EINVAL;
1477 		goto bad_swap;
1478 	}
1479 	page = read_mapping_page(mapping, 0, swap_file);
1480 	if (IS_ERR(page)) {
1481 		error = PTR_ERR(page);
1482 		goto bad_swap;
1483 	}
1484 	wait_on_page_locked(page);
1485 	if (!PageUptodate(page))
1486 		goto bad_swap;
1487 	kmap(page);
1488 	swap_header = page_address(page);
1489 
1490 	if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1491 		swap_header_version = 1;
1492 	else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1493 		swap_header_version = 2;
1494 	else {
1495 		printk(KERN_ERR "Unable to find swap-space signature\n");
1496 		error = -EINVAL;
1497 		goto bad_swap;
1498 	}
1499 
1500 	switch (swap_header_version) {
1501 	case 1:
1502 		printk(KERN_ERR "version 0 swap is no longer supported. "
1503 			"Use mkswap -v1 %s\n", name);
1504 		error = -EINVAL;
1505 		goto bad_swap;
1506 	case 2:
1507 		/* Check the swap header's sub-version and the size of
1508                    the swap file and bad block lists */
1509 		if (swap_header->info.version != 1) {
1510 			printk(KERN_WARNING
1511 			       "Unable to handle swap header version %d\n",
1512 			       swap_header->info.version);
1513 			error = -EINVAL;
1514 			goto bad_swap;
1515 		}
1516 
1517 		p->lowest_bit  = 1;
1518 		p->cluster_next = 1;
1519 
1520 		/*
1521 		 * Find out how many pages are allowed for a single swap
1522 		 * device. There are two limiting factors: 1) the number of
1523 		 * bits for the swap offset in the swp_entry_t type and
1524 		 * 2) the number of bits in the a swap pte as defined by
1525 		 * the different architectures. In order to find the
1526 		 * largest possible bit mask a swap entry with swap type 0
1527 		 * and swap offset ~0UL is created, encoded to a swap pte,
1528 		 * decoded to a swp_entry_t again and finally the swap
1529 		 * offset is extracted. This will mask all the bits from
1530 		 * the initial ~0UL mask that can't be encoded in either
1531 		 * the swp_entry_t or the architecture definition of a
1532 		 * swap pte.
1533 		 */
1534 		maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1535 		if (maxpages > swap_header->info.last_page)
1536 			maxpages = swap_header->info.last_page;
1537 		p->highest_bit = maxpages - 1;
1538 
1539 		error = -EINVAL;
1540 		if (!maxpages)
1541 			goto bad_swap;
1542 		if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1543 			goto bad_swap;
1544 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1545 			goto bad_swap;
1546 
1547 		/* OK, set up the swap map and apply the bad block list */
1548 		if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1549 			error = -ENOMEM;
1550 			goto bad_swap;
1551 		}
1552 
1553 		error = 0;
1554 		memset(p->swap_map, 0, maxpages * sizeof(short));
1555 		for (i = 0; i < swap_header->info.nr_badpages; i++) {
1556 			int page_nr = swap_header->info.badpages[i];
1557 			if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1558 				error = -EINVAL;
1559 			else
1560 				p->swap_map[page_nr] = SWAP_MAP_BAD;
1561 		}
1562 		nr_good_pages = swap_header->info.last_page -
1563 				swap_header->info.nr_badpages -
1564 				1 /* header page */;
1565 		if (error)
1566 			goto bad_swap;
1567 	}
1568 
1569 	if (swapfilesize && maxpages > swapfilesize) {
1570 		printk(KERN_WARNING
1571 		       "Swap area shorter than signature indicates\n");
1572 		error = -EINVAL;
1573 		goto bad_swap;
1574 	}
1575 	if (nr_good_pages) {
1576 		p->swap_map[0] = SWAP_MAP_BAD;
1577 		p->max = maxpages;
1578 		p->pages = nr_good_pages;
1579 		nr_extents = setup_swap_extents(p, &span);
1580 		if (nr_extents < 0) {
1581 			error = nr_extents;
1582 			goto bad_swap;
1583 		}
1584 		nr_good_pages = p->pages;
1585 	}
1586 	if (!nr_good_pages) {
1587 		printk(KERN_WARNING "Empty swap-file\n");
1588 		error = -EINVAL;
1589 		goto bad_swap;
1590 	}
1591 
1592 	mutex_lock(&swapon_mutex);
1593 	spin_lock(&swap_lock);
1594 	p->flags = SWP_ACTIVE;
1595 	nr_swap_pages += nr_good_pages;
1596 	total_swap_pages += nr_good_pages;
1597 
1598 	printk(KERN_INFO "Adding %uk swap on %s.  "
1599 			"Priority:%d extents:%d across:%lluk\n",
1600 		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1601 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1602 
1603 	/* insert swap space into swap_list: */
1604 	prev = -1;
1605 	for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1606 		if (p->prio >= swap_info[i].prio) {
1607 			break;
1608 		}
1609 		prev = i;
1610 	}
1611 	p->next = i;
1612 	if (prev < 0) {
1613 		swap_list.head = swap_list.next = p - swap_info;
1614 	} else {
1615 		swap_info[prev].next = p - swap_info;
1616 	}
1617 	spin_unlock(&swap_lock);
1618 	mutex_unlock(&swapon_mutex);
1619 	error = 0;
1620 	goto out;
1621 bad_swap:
1622 	if (bdev) {
1623 		set_blocksize(bdev, p->old_block_size);
1624 		bd_release(bdev);
1625 	}
1626 	destroy_swap_extents(p);
1627 bad_swap_2:
1628 	spin_lock(&swap_lock);
1629 	swap_map = p->swap_map;
1630 	p->swap_file = NULL;
1631 	p->swap_map = NULL;
1632 	p->flags = 0;
1633 	if (!(swap_flags & SWAP_FLAG_PREFER))
1634 		++least_priority;
1635 	spin_unlock(&swap_lock);
1636 	vfree(swap_map);
1637 	if (swap_file)
1638 		filp_close(swap_file, NULL);
1639 out:
1640 	if (page && !IS_ERR(page)) {
1641 		kunmap(page);
1642 		page_cache_release(page);
1643 	}
1644 	if (name)
1645 		putname(name);
1646 	if (did_down) {
1647 		if (!error)
1648 			inode->i_flags |= S_SWAPFILE;
1649 		mutex_unlock(&inode->i_mutex);
1650 	}
1651 	return error;
1652 }
1653 
1654 void si_swapinfo(struct sysinfo *val)
1655 {
1656 	unsigned int i;
1657 	unsigned long nr_to_be_unused = 0;
1658 
1659 	spin_lock(&swap_lock);
1660 	for (i = 0; i < nr_swapfiles; i++) {
1661 		if (!(swap_info[i].flags & SWP_USED) ||
1662 		     (swap_info[i].flags & SWP_WRITEOK))
1663 			continue;
1664 		nr_to_be_unused += swap_info[i].inuse_pages;
1665 	}
1666 	val->freeswap = nr_swap_pages + nr_to_be_unused;
1667 	val->totalswap = total_swap_pages + nr_to_be_unused;
1668 	spin_unlock(&swap_lock);
1669 }
1670 
1671 /*
1672  * Verify that a swap entry is valid and increment its swap map count.
1673  *
1674  * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1675  * "permanent", but will be reclaimed by the next swapoff.
1676  */
1677 int swap_duplicate(swp_entry_t entry)
1678 {
1679 	struct swap_info_struct * p;
1680 	unsigned long offset, type;
1681 	int result = 0;
1682 
1683 	if (is_migration_entry(entry))
1684 		return 1;
1685 
1686 	type = swp_type(entry);
1687 	if (type >= nr_swapfiles)
1688 		goto bad_file;
1689 	p = type + swap_info;
1690 	offset = swp_offset(entry);
1691 
1692 	spin_lock(&swap_lock);
1693 	if (offset < p->max && p->swap_map[offset]) {
1694 		if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1695 			p->swap_map[offset]++;
1696 			result = 1;
1697 		} else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1698 			if (swap_overflow++ < 5)
1699 				printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1700 			p->swap_map[offset] = SWAP_MAP_MAX;
1701 			result = 1;
1702 		}
1703 	}
1704 	spin_unlock(&swap_lock);
1705 out:
1706 	return result;
1707 
1708 bad_file:
1709 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1710 	goto out;
1711 }
1712 
1713 struct swap_info_struct *
1714 get_swap_info_struct(unsigned type)
1715 {
1716 	return &swap_info[type];
1717 }
1718 
1719 /*
1720  * swap_lock prevents swap_map being freed. Don't grab an extra
1721  * reference on the swaphandle, it doesn't matter if it becomes unused.
1722  */
1723 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1724 {
1725 	int ret = 0, i = 1 << page_cluster;
1726 	unsigned long toff;
1727 	struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1728 
1729 	if (!page_cluster)	/* no readahead */
1730 		return 0;
1731 	toff = (swp_offset(entry) >> page_cluster) << page_cluster;
1732 	if (!toff)		/* first page is swap header */
1733 		toff++, i--;
1734 	*offset = toff;
1735 
1736 	spin_lock(&swap_lock);
1737 	do {
1738 		/* Don't read-ahead past the end of the swap area */
1739 		if (toff >= swapdev->max)
1740 			break;
1741 		/* Don't read in free or bad pages */
1742 		if (!swapdev->swap_map[toff])
1743 			break;
1744 		if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1745 			break;
1746 		toff++;
1747 		ret++;
1748 	} while (--i);
1749 	spin_unlock(&swap_lock);
1750 	return ret;
1751 }
1752