1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/blkdev.h> 10 #include <linux/mm.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/task.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mman.h> 15 #include <linux/slab.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/swap.h> 18 #include <linux/vmalloc.h> 19 #include <linux/pagemap.h> 20 #include <linux/namei.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/blk-cgroup.h> 23 #include <linux/random.h> 24 #include <linux/writeback.h> 25 #include <linux/proc_fs.h> 26 #include <linux/seq_file.h> 27 #include <linux/init.h> 28 #include <linux/ksm.h> 29 #include <linux/rmap.h> 30 #include <linux/security.h> 31 #include <linux/backing-dev.h> 32 #include <linux/mutex.h> 33 #include <linux/capability.h> 34 #include <linux/syscalls.h> 35 #include <linux/memcontrol.h> 36 #include <linux/poll.h> 37 #include <linux/oom.h> 38 #include <linux/swapfile.h> 39 #include <linux/export.h> 40 #include <linux/sort.h> 41 #include <linux/completion.h> 42 #include <linux/suspend.h> 43 #include <linux/zswap.h> 44 #include <linux/plist.h> 45 46 #include <asm/tlbflush.h> 47 #include <linux/swapops.h> 48 #include <linux/swap_cgroup.h> 49 #include "swap_table.h" 50 #include "internal.h" 51 #include "swap.h" 52 53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 54 unsigned char); 55 static void free_swap_count_continuations(struct swap_info_struct *); 56 static void swap_entries_free(struct swap_info_struct *si, 57 struct swap_cluster_info *ci, 58 swp_entry_t entry, unsigned int nr_pages); 59 static void swap_range_alloc(struct swap_info_struct *si, 60 unsigned int nr_entries); 61 static bool folio_swapcache_freeable(struct folio *folio); 62 static void move_cluster(struct swap_info_struct *si, 63 struct swap_cluster_info *ci, struct list_head *list, 64 enum swap_cluster_flags new_flags); 65 66 static DEFINE_SPINLOCK(swap_lock); 67 static unsigned int nr_swapfiles; 68 atomic_long_t nr_swap_pages; 69 /* 70 * Some modules use swappable objects and may try to swap them out under 71 * memory pressure (via the shrinker). Before doing so, they may wish to 72 * check to see if any swap space is available. 73 */ 74 EXPORT_SYMBOL_GPL(nr_swap_pages); 75 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 76 long total_swap_pages; 77 static int least_priority = -1; 78 unsigned long swapfile_maximum_size; 79 #ifdef CONFIG_MIGRATION 80 bool swap_migration_ad_supported; 81 #endif /* CONFIG_MIGRATION */ 82 83 static const char Bad_file[] = "Bad swap file entry "; 84 static const char Unused_file[] = "Unused swap file entry "; 85 static const char Bad_offset[] = "Bad swap offset entry "; 86 static const char Unused_offset[] = "Unused swap offset entry "; 87 88 /* 89 * all active swap_info_structs 90 * protected with swap_lock, and ordered by priority. 91 */ 92 static PLIST_HEAD(swap_active_head); 93 94 /* 95 * all available (active, not full) swap_info_structs 96 * protected with swap_avail_lock, ordered by priority. 97 * This is used by folio_alloc_swap() instead of swap_active_head 98 * because swap_active_head includes all swap_info_structs, 99 * but folio_alloc_swap() doesn't need to look at full ones. 100 * This uses its own lock instead of swap_lock because when a 101 * swap_info_struct changes between not-full/full, it needs to 102 * add/remove itself to/from this list, but the swap_info_struct->lock 103 * is held and the locking order requires swap_lock to be taken 104 * before any swap_info_struct->lock. 105 */ 106 static struct plist_head *swap_avail_heads; 107 static DEFINE_SPINLOCK(swap_avail_lock); 108 109 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 110 111 static struct kmem_cache *swap_table_cachep; 112 113 static DEFINE_MUTEX(swapon_mutex); 114 115 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 116 /* Activity counter to indicate that a swapon or swapoff has occurred */ 117 static atomic_t proc_poll_event = ATOMIC_INIT(0); 118 119 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 120 121 struct percpu_swap_cluster { 122 struct swap_info_struct *si[SWAP_NR_ORDERS]; 123 unsigned long offset[SWAP_NR_ORDERS]; 124 local_lock_t lock; 125 }; 126 127 static DEFINE_PER_CPU(struct percpu_swap_cluster, percpu_swap_cluster) = { 128 .si = { NULL }, 129 .offset = { SWAP_ENTRY_INVALID }, 130 .lock = INIT_LOCAL_LOCK(), 131 }; 132 133 /* May return NULL on invalid type, caller must check for NULL return */ 134 static struct swap_info_struct *swap_type_to_info(int type) 135 { 136 if (type >= MAX_SWAPFILES) 137 return NULL; 138 return READ_ONCE(swap_info[type]); /* rcu_dereference() */ 139 } 140 141 /* May return NULL on invalid entry, caller must check for NULL return */ 142 static struct swap_info_struct *swap_entry_to_info(swp_entry_t entry) 143 { 144 return swap_type_to_info(swp_type(entry)); 145 } 146 147 static inline unsigned char swap_count(unsigned char ent) 148 { 149 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 150 } 151 152 /* 153 * Use the second highest bit of inuse_pages counter as the indicator 154 * if one swap device is on the available plist, so the atomic can 155 * still be updated arithmetically while having special data embedded. 156 * 157 * inuse_pages counter is the only thing indicating if a device should 158 * be on avail_lists or not (except swapon / swapoff). By embedding the 159 * off-list bit in the atomic counter, updates no longer need any lock 160 * to check the list status. 161 * 162 * This bit will be set if the device is not on the plist and not 163 * usable, will be cleared if the device is on the plist. 164 */ 165 #define SWAP_USAGE_OFFLIST_BIT (1UL << (BITS_PER_TYPE(atomic_t) - 2)) 166 #define SWAP_USAGE_COUNTER_MASK (~SWAP_USAGE_OFFLIST_BIT) 167 static long swap_usage_in_pages(struct swap_info_struct *si) 168 { 169 return atomic_long_read(&si->inuse_pages) & SWAP_USAGE_COUNTER_MASK; 170 } 171 172 /* Reclaim the swap entry anyway if possible */ 173 #define TTRS_ANYWAY 0x1 174 /* 175 * Reclaim the swap entry if there are no more mappings of the 176 * corresponding page 177 */ 178 #define TTRS_UNMAPPED 0x2 179 /* Reclaim the swap entry if swap is getting full */ 180 #define TTRS_FULL 0x4 181 182 static bool swap_only_has_cache(struct swap_info_struct *si, 183 unsigned long offset, int nr_pages) 184 { 185 unsigned char *map = si->swap_map + offset; 186 unsigned char *map_end = map + nr_pages; 187 188 do { 189 VM_BUG_ON(!(*map & SWAP_HAS_CACHE)); 190 if (*map != SWAP_HAS_CACHE) 191 return false; 192 } while (++map < map_end); 193 194 return true; 195 } 196 197 static bool swap_is_last_map(struct swap_info_struct *si, 198 unsigned long offset, int nr_pages, bool *has_cache) 199 { 200 unsigned char *map = si->swap_map + offset; 201 unsigned char *map_end = map + nr_pages; 202 unsigned char count = *map; 203 204 if (swap_count(count) != 1 && swap_count(count) != SWAP_MAP_SHMEM) 205 return false; 206 207 while (++map < map_end) { 208 if (*map != count) 209 return false; 210 } 211 212 *has_cache = !!(count & SWAP_HAS_CACHE); 213 return true; 214 } 215 216 /* 217 * returns number of pages in the folio that backs the swap entry. If positive, 218 * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no 219 * folio was associated with the swap entry. 220 */ 221 static int __try_to_reclaim_swap(struct swap_info_struct *si, 222 unsigned long offset, unsigned long flags) 223 { 224 const swp_entry_t entry = swp_entry(si->type, offset); 225 struct swap_cluster_info *ci; 226 struct folio *folio; 227 int ret, nr_pages; 228 bool need_reclaim; 229 230 again: 231 folio = swap_cache_get_folio(entry); 232 if (!folio) 233 return 0; 234 235 nr_pages = folio_nr_pages(folio); 236 ret = -nr_pages; 237 238 /* 239 * When this function is called from scan_swap_map_slots() and it's 240 * called by vmscan.c at reclaiming folios. So we hold a folio lock 241 * here. We have to use trylock for avoiding deadlock. This is a special 242 * case and you should use folio_free_swap() with explicit folio_lock() 243 * in usual operations. 244 */ 245 if (!folio_trylock(folio)) 246 goto out; 247 248 /* 249 * Offset could point to the middle of a large folio, or folio 250 * may no longer point to the expected offset before it's locked. 251 */ 252 if (!folio_matches_swap_entry(folio, entry)) { 253 folio_unlock(folio); 254 folio_put(folio); 255 goto again; 256 } 257 offset = swp_offset(folio->swap); 258 259 need_reclaim = ((flags & TTRS_ANYWAY) || 260 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) || 261 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio))); 262 if (!need_reclaim || !folio_swapcache_freeable(folio)) 263 goto out_unlock; 264 265 /* 266 * It's safe to delete the folio from swap cache only if the folio's 267 * swap_map is HAS_CACHE only, which means the slots have no page table 268 * reference or pending writeback, and can't be allocated to others. 269 */ 270 ci = swap_cluster_lock(si, offset); 271 need_reclaim = swap_only_has_cache(si, offset, nr_pages); 272 swap_cluster_unlock(ci); 273 if (!need_reclaim) 274 goto out_unlock; 275 276 swap_cache_del_folio(folio); 277 folio_set_dirty(folio); 278 ret = nr_pages; 279 out_unlock: 280 folio_unlock(folio); 281 out: 282 folio_put(folio); 283 return ret; 284 } 285 286 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 287 { 288 struct rb_node *rb = rb_first(&sis->swap_extent_root); 289 return rb_entry(rb, struct swap_extent, rb_node); 290 } 291 292 static inline struct swap_extent *next_se(struct swap_extent *se) 293 { 294 struct rb_node *rb = rb_next(&se->rb_node); 295 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 296 } 297 298 /* 299 * swapon tell device that all the old swap contents can be discarded, 300 * to allow the swap device to optimize its wear-levelling. 301 */ 302 static int discard_swap(struct swap_info_struct *si) 303 { 304 struct swap_extent *se; 305 sector_t start_block; 306 sector_t nr_blocks; 307 int err = 0; 308 309 /* Do not discard the swap header page! */ 310 se = first_se(si); 311 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 312 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 313 if (nr_blocks) { 314 err = blkdev_issue_discard(si->bdev, start_block, 315 nr_blocks, GFP_KERNEL); 316 if (err) 317 return err; 318 cond_resched(); 319 } 320 321 for (se = next_se(se); se; se = next_se(se)) { 322 start_block = se->start_block << (PAGE_SHIFT - 9); 323 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 324 325 err = blkdev_issue_discard(si->bdev, start_block, 326 nr_blocks, GFP_KERNEL); 327 if (err) 328 break; 329 330 cond_resched(); 331 } 332 return err; /* That will often be -EOPNOTSUPP */ 333 } 334 335 static struct swap_extent * 336 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 337 { 338 struct swap_extent *se; 339 struct rb_node *rb; 340 341 rb = sis->swap_extent_root.rb_node; 342 while (rb) { 343 se = rb_entry(rb, struct swap_extent, rb_node); 344 if (offset < se->start_page) 345 rb = rb->rb_left; 346 else if (offset >= se->start_page + se->nr_pages) 347 rb = rb->rb_right; 348 else 349 return se; 350 } 351 /* It *must* be present */ 352 BUG(); 353 } 354 355 sector_t swap_folio_sector(struct folio *folio) 356 { 357 struct swap_info_struct *sis = __swap_entry_to_info(folio->swap); 358 struct swap_extent *se; 359 sector_t sector; 360 pgoff_t offset; 361 362 offset = swp_offset(folio->swap); 363 se = offset_to_swap_extent(sis, offset); 364 sector = se->start_block + (offset - se->start_page); 365 return sector << (PAGE_SHIFT - 9); 366 } 367 368 /* 369 * swap allocation tell device that a cluster of swap can now be discarded, 370 * to allow the swap device to optimize its wear-levelling. 371 */ 372 static void discard_swap_cluster(struct swap_info_struct *si, 373 pgoff_t start_page, pgoff_t nr_pages) 374 { 375 struct swap_extent *se = offset_to_swap_extent(si, start_page); 376 377 while (nr_pages) { 378 pgoff_t offset = start_page - se->start_page; 379 sector_t start_block = se->start_block + offset; 380 sector_t nr_blocks = se->nr_pages - offset; 381 382 if (nr_blocks > nr_pages) 383 nr_blocks = nr_pages; 384 start_page += nr_blocks; 385 nr_pages -= nr_blocks; 386 387 start_block <<= PAGE_SHIFT - 9; 388 nr_blocks <<= PAGE_SHIFT - 9; 389 if (blkdev_issue_discard(si->bdev, start_block, 390 nr_blocks, GFP_NOIO)) 391 break; 392 393 se = next_se(se); 394 } 395 } 396 397 #define LATENCY_LIMIT 256 398 399 static inline bool cluster_is_empty(struct swap_cluster_info *info) 400 { 401 return info->count == 0; 402 } 403 404 static inline bool cluster_is_discard(struct swap_cluster_info *info) 405 { 406 return info->flags == CLUSTER_FLAG_DISCARD; 407 } 408 409 static inline bool cluster_table_is_alloced(struct swap_cluster_info *ci) 410 { 411 return rcu_dereference_protected(ci->table, lockdep_is_held(&ci->lock)); 412 } 413 414 static inline bool cluster_is_usable(struct swap_cluster_info *ci, int order) 415 { 416 if (unlikely(ci->flags > CLUSTER_FLAG_USABLE)) 417 return false; 418 if (!cluster_table_is_alloced(ci)) 419 return false; 420 if (!order) 421 return true; 422 return cluster_is_empty(ci) || order == ci->order; 423 } 424 425 static inline unsigned int cluster_index(struct swap_info_struct *si, 426 struct swap_cluster_info *ci) 427 { 428 return ci - si->cluster_info; 429 } 430 431 static inline unsigned int cluster_offset(struct swap_info_struct *si, 432 struct swap_cluster_info *ci) 433 { 434 return cluster_index(si, ci) * SWAPFILE_CLUSTER; 435 } 436 437 static struct swap_table *swap_table_alloc(gfp_t gfp) 438 { 439 struct folio *folio; 440 441 if (!SWP_TABLE_USE_PAGE) 442 return kmem_cache_zalloc(swap_table_cachep, gfp); 443 444 folio = folio_alloc(gfp | __GFP_ZERO, 0); 445 if (folio) 446 return folio_address(folio); 447 return NULL; 448 } 449 450 static void swap_table_free_folio_rcu_cb(struct rcu_head *head) 451 { 452 struct folio *folio; 453 454 folio = page_folio(container_of(head, struct page, rcu_head)); 455 folio_put(folio); 456 } 457 458 static void swap_table_free(struct swap_table *table) 459 { 460 if (!SWP_TABLE_USE_PAGE) { 461 kmem_cache_free(swap_table_cachep, table); 462 return; 463 } 464 465 call_rcu(&(folio_page(virt_to_folio(table), 0)->rcu_head), 466 swap_table_free_folio_rcu_cb); 467 } 468 469 static void swap_cluster_free_table(struct swap_cluster_info *ci) 470 { 471 unsigned int ci_off; 472 struct swap_table *table; 473 474 /* Only empty cluster's table is allow to be freed */ 475 lockdep_assert_held(&ci->lock); 476 VM_WARN_ON_ONCE(!cluster_is_empty(ci)); 477 for (ci_off = 0; ci_off < SWAPFILE_CLUSTER; ci_off++) 478 VM_WARN_ON_ONCE(!swp_tb_is_null(__swap_table_get(ci, ci_off))); 479 table = (void *)rcu_dereference_protected(ci->table, true); 480 rcu_assign_pointer(ci->table, NULL); 481 482 swap_table_free(table); 483 } 484 485 /* 486 * Allocate swap table for one cluster. Attempt an atomic allocation first, 487 * then fallback to sleeping allocation. 488 */ 489 static struct swap_cluster_info * 490 swap_cluster_alloc_table(struct swap_info_struct *si, 491 struct swap_cluster_info *ci) 492 { 493 struct swap_table *table; 494 495 /* 496 * Only cluster isolation from the allocator does table allocation. 497 * Swap allocator uses percpu clusters and holds the local lock. 498 */ 499 lockdep_assert_held(&ci->lock); 500 lockdep_assert_held(&this_cpu_ptr(&percpu_swap_cluster)->lock); 501 502 /* The cluster must be free and was just isolated from the free list. */ 503 VM_WARN_ON_ONCE(ci->flags || !cluster_is_empty(ci)); 504 505 table = swap_table_alloc(__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 506 if (table) { 507 rcu_assign_pointer(ci->table, table); 508 return ci; 509 } 510 511 /* 512 * Try a sleep allocation. Each isolated free cluster may cause 513 * a sleep allocation, but there is a limited number of them, so 514 * the potential recursive allocation is limited. 515 */ 516 spin_unlock(&ci->lock); 517 if (!(si->flags & SWP_SOLIDSTATE)) 518 spin_unlock(&si->global_cluster_lock); 519 local_unlock(&percpu_swap_cluster.lock); 520 521 table = swap_table_alloc(__GFP_HIGH | __GFP_NOMEMALLOC | GFP_KERNEL); 522 523 /* 524 * Back to atomic context. We might have migrated to a new CPU with a 525 * usable percpu cluster. But just keep using the isolated cluster to 526 * make things easier. Migration indicates a slight change of workload 527 * so using a new free cluster might not be a bad idea, and the worst 528 * could happen with ignoring the percpu cluster is fragmentation, 529 * which is acceptable since this fallback and race is rare. 530 */ 531 local_lock(&percpu_swap_cluster.lock); 532 if (!(si->flags & SWP_SOLIDSTATE)) 533 spin_lock(&si->global_cluster_lock); 534 spin_lock(&ci->lock); 535 536 /* Nothing except this helper should touch a dangling empty cluster. */ 537 if (WARN_ON_ONCE(cluster_table_is_alloced(ci))) { 538 if (table) 539 swap_table_free(table); 540 return ci; 541 } 542 543 if (!table) { 544 move_cluster(si, ci, &si->free_clusters, CLUSTER_FLAG_FREE); 545 spin_unlock(&ci->lock); 546 return NULL; 547 } 548 549 rcu_assign_pointer(ci->table, table); 550 return ci; 551 } 552 553 static void move_cluster(struct swap_info_struct *si, 554 struct swap_cluster_info *ci, struct list_head *list, 555 enum swap_cluster_flags new_flags) 556 { 557 VM_WARN_ON(ci->flags == new_flags); 558 559 BUILD_BUG_ON(1 << sizeof(ci->flags) * BITS_PER_BYTE < CLUSTER_FLAG_MAX); 560 lockdep_assert_held(&ci->lock); 561 562 spin_lock(&si->lock); 563 if (ci->flags == CLUSTER_FLAG_NONE) 564 list_add_tail(&ci->list, list); 565 else 566 list_move_tail(&ci->list, list); 567 spin_unlock(&si->lock); 568 ci->flags = new_flags; 569 } 570 571 /* Add a cluster to discard list and schedule it to do discard */ 572 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 573 struct swap_cluster_info *ci) 574 { 575 VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE); 576 move_cluster(si, ci, &si->discard_clusters, CLUSTER_FLAG_DISCARD); 577 schedule_work(&si->discard_work); 578 } 579 580 static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci) 581 { 582 swap_cluster_free_table(ci); 583 move_cluster(si, ci, &si->free_clusters, CLUSTER_FLAG_FREE); 584 ci->order = 0; 585 } 586 587 /* 588 * Isolate and lock the first cluster that is not contented on a list, 589 * clean its flag before taken off-list. Cluster flag must be in sync 590 * with list status, so cluster updaters can always know the cluster 591 * list status without touching si lock. 592 * 593 * Note it's possible that all clusters on a list are contented so 594 * this returns NULL for an non-empty list. 595 */ 596 static struct swap_cluster_info *isolate_lock_cluster( 597 struct swap_info_struct *si, struct list_head *list, int order) 598 { 599 struct swap_cluster_info *ci, *found = NULL; 600 601 spin_lock(&si->lock); 602 list_for_each_entry(ci, list, list) { 603 if (!spin_trylock(&ci->lock)) 604 continue; 605 606 /* We may only isolate and clear flags of following lists */ 607 VM_BUG_ON(!ci->flags); 608 VM_BUG_ON(ci->flags > CLUSTER_FLAG_USABLE && 609 ci->flags != CLUSTER_FLAG_FULL); 610 611 list_del(&ci->list); 612 ci->flags = CLUSTER_FLAG_NONE; 613 found = ci; 614 break; 615 } 616 spin_unlock(&si->lock); 617 618 if (found && !cluster_table_is_alloced(found)) { 619 /* Only an empty free cluster's swap table can be freed. */ 620 VM_WARN_ON_ONCE(list != &si->free_clusters); 621 VM_WARN_ON_ONCE(!cluster_is_empty(found)); 622 return swap_cluster_alloc_table(si, found); 623 } 624 625 return found; 626 } 627 628 /* 629 * Doing discard actually. After a cluster discard is finished, the cluster 630 * will be added to free cluster list. Discard cluster is a bit special as 631 * they don't participate in allocation or reclaim, so clusters marked as 632 * CLUSTER_FLAG_DISCARD must remain off-list or on discard list. 633 */ 634 static bool swap_do_scheduled_discard(struct swap_info_struct *si) 635 { 636 struct swap_cluster_info *ci; 637 bool ret = false; 638 unsigned int idx; 639 640 spin_lock(&si->lock); 641 while (!list_empty(&si->discard_clusters)) { 642 ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list); 643 /* 644 * Delete the cluster from list to prepare for discard, but keep 645 * the CLUSTER_FLAG_DISCARD flag, percpu_swap_cluster could be 646 * pointing to it, or ran into by relocate_cluster. 647 */ 648 list_del(&ci->list); 649 idx = cluster_index(si, ci); 650 spin_unlock(&si->lock); 651 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 652 SWAPFILE_CLUSTER); 653 654 spin_lock(&ci->lock); 655 /* 656 * Discard is done, clear its flags as it's off-list, then 657 * return the cluster to allocation list. 658 */ 659 ci->flags = CLUSTER_FLAG_NONE; 660 __free_cluster(si, ci); 661 spin_unlock(&ci->lock); 662 ret = true; 663 spin_lock(&si->lock); 664 } 665 spin_unlock(&si->lock); 666 return ret; 667 } 668 669 static void swap_discard_work(struct work_struct *work) 670 { 671 struct swap_info_struct *si; 672 673 si = container_of(work, struct swap_info_struct, discard_work); 674 675 swap_do_scheduled_discard(si); 676 } 677 678 static void swap_users_ref_free(struct percpu_ref *ref) 679 { 680 struct swap_info_struct *si; 681 682 si = container_of(ref, struct swap_info_struct, users); 683 complete(&si->comp); 684 } 685 686 /* 687 * Must be called after freeing if ci->count == 0, moves the cluster to free 688 * or discard list. 689 */ 690 static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci) 691 { 692 VM_BUG_ON(ci->count != 0); 693 VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE); 694 lockdep_assert_held(&ci->lock); 695 696 /* 697 * If the swap is discardable, prepare discard the cluster 698 * instead of free it immediately. The cluster will be freed 699 * after discard. 700 */ 701 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 702 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 703 swap_cluster_schedule_discard(si, ci); 704 return; 705 } 706 707 __free_cluster(si, ci); 708 } 709 710 /* 711 * Must be called after freeing if ci->count != 0, moves the cluster to 712 * nonfull list. 713 */ 714 static void partial_free_cluster(struct swap_info_struct *si, 715 struct swap_cluster_info *ci) 716 { 717 VM_BUG_ON(!ci->count || ci->count == SWAPFILE_CLUSTER); 718 lockdep_assert_held(&ci->lock); 719 720 if (ci->flags != CLUSTER_FLAG_NONFULL) 721 move_cluster(si, ci, &si->nonfull_clusters[ci->order], 722 CLUSTER_FLAG_NONFULL); 723 } 724 725 /* 726 * Must be called after allocation, moves the cluster to full or frag list. 727 * Note: allocation doesn't acquire si lock, and may drop the ci lock for 728 * reclaim, so the cluster could be any where when called. 729 */ 730 static void relocate_cluster(struct swap_info_struct *si, 731 struct swap_cluster_info *ci) 732 { 733 lockdep_assert_held(&ci->lock); 734 735 /* Discard cluster must remain off-list or on discard list */ 736 if (cluster_is_discard(ci)) 737 return; 738 739 if (!ci->count) { 740 if (ci->flags != CLUSTER_FLAG_FREE) 741 free_cluster(si, ci); 742 } else if (ci->count != SWAPFILE_CLUSTER) { 743 if (ci->flags != CLUSTER_FLAG_FRAG) 744 move_cluster(si, ci, &si->frag_clusters[ci->order], 745 CLUSTER_FLAG_FRAG); 746 } else { 747 if (ci->flags != CLUSTER_FLAG_FULL) 748 move_cluster(si, ci, &si->full_clusters, 749 CLUSTER_FLAG_FULL); 750 } 751 } 752 753 /* 754 * The cluster corresponding to page_nr will be used. The cluster will not be 755 * added to free cluster list and its usage counter will be increased by 1. 756 * Only used for initialization. 757 */ 758 static int inc_cluster_info_page(struct swap_info_struct *si, 759 struct swap_cluster_info *cluster_info, unsigned long page_nr) 760 { 761 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 762 struct swap_table *table; 763 struct swap_cluster_info *ci; 764 765 ci = cluster_info + idx; 766 if (!ci->table) { 767 table = swap_table_alloc(GFP_KERNEL); 768 if (!table) 769 return -ENOMEM; 770 rcu_assign_pointer(ci->table, table); 771 } 772 773 ci->count++; 774 775 VM_BUG_ON(ci->count > SWAPFILE_CLUSTER); 776 VM_BUG_ON(ci->flags); 777 778 return 0; 779 } 780 781 static bool cluster_reclaim_range(struct swap_info_struct *si, 782 struct swap_cluster_info *ci, 783 unsigned long start, unsigned long end) 784 { 785 unsigned char *map = si->swap_map; 786 unsigned long offset = start; 787 int nr_reclaim; 788 789 spin_unlock(&ci->lock); 790 do { 791 switch (READ_ONCE(map[offset])) { 792 case 0: 793 offset++; 794 break; 795 case SWAP_HAS_CACHE: 796 nr_reclaim = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 797 if (nr_reclaim > 0) 798 offset += nr_reclaim; 799 else 800 goto out; 801 break; 802 default: 803 goto out; 804 } 805 } while (offset < end); 806 out: 807 spin_lock(&ci->lock); 808 /* 809 * Recheck the range no matter reclaim succeeded or not, the slot 810 * could have been be freed while we are not holding the lock. 811 */ 812 for (offset = start; offset < end; offset++) 813 if (READ_ONCE(map[offset])) 814 return false; 815 816 return true; 817 } 818 819 static bool cluster_scan_range(struct swap_info_struct *si, 820 struct swap_cluster_info *ci, 821 unsigned long start, unsigned int nr_pages, 822 bool *need_reclaim) 823 { 824 unsigned long offset, end = start + nr_pages; 825 unsigned char *map = si->swap_map; 826 827 if (cluster_is_empty(ci)) 828 return true; 829 830 for (offset = start; offset < end; offset++) { 831 switch (READ_ONCE(map[offset])) { 832 case 0: 833 continue; 834 case SWAP_HAS_CACHE: 835 if (!vm_swap_full()) 836 return false; 837 *need_reclaim = true; 838 continue; 839 default: 840 return false; 841 } 842 } 843 844 return true; 845 } 846 847 /* 848 * Currently, the swap table is not used for count tracking, just 849 * do a sanity check here to ensure nothing leaked, so the swap 850 * table should be empty upon freeing. 851 */ 852 static void swap_cluster_assert_table_empty(struct swap_cluster_info *ci, 853 unsigned int start, unsigned int nr) 854 { 855 unsigned int ci_off = start % SWAPFILE_CLUSTER; 856 unsigned int ci_end = ci_off + nr; 857 unsigned long swp_tb; 858 859 if (IS_ENABLED(CONFIG_DEBUG_VM)) { 860 do { 861 swp_tb = __swap_table_get(ci, ci_off); 862 VM_WARN_ON_ONCE(!swp_tb_is_null(swp_tb)); 863 } while (++ci_off < ci_end); 864 } 865 } 866 867 static bool cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci, 868 unsigned int start, unsigned char usage, 869 unsigned int order) 870 { 871 unsigned int nr_pages = 1 << order; 872 873 lockdep_assert_held(&ci->lock); 874 875 if (!(si->flags & SWP_WRITEOK)) 876 return false; 877 878 /* 879 * The first allocation in a cluster makes the 880 * cluster exclusive to this order 881 */ 882 if (cluster_is_empty(ci)) 883 ci->order = order; 884 885 memset(si->swap_map + start, usage, nr_pages); 886 swap_cluster_assert_table_empty(ci, start, nr_pages); 887 swap_range_alloc(si, nr_pages); 888 ci->count += nr_pages; 889 890 return true; 891 } 892 893 /* Try use a new cluster for current CPU and allocate from it. */ 894 static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si, 895 struct swap_cluster_info *ci, 896 unsigned long offset, 897 unsigned int order, 898 unsigned char usage) 899 { 900 unsigned int next = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID; 901 unsigned long start = ALIGN_DOWN(offset, SWAPFILE_CLUSTER); 902 unsigned long end = min(start + SWAPFILE_CLUSTER, si->max); 903 unsigned int nr_pages = 1 << order; 904 bool need_reclaim, ret; 905 906 lockdep_assert_held(&ci->lock); 907 908 if (end < nr_pages || ci->count + nr_pages > SWAPFILE_CLUSTER) 909 goto out; 910 911 for (end -= nr_pages; offset <= end; offset += nr_pages) { 912 need_reclaim = false; 913 if (!cluster_scan_range(si, ci, offset, nr_pages, &need_reclaim)) 914 continue; 915 if (need_reclaim) { 916 ret = cluster_reclaim_range(si, ci, offset, offset + nr_pages); 917 /* 918 * Reclaim drops ci->lock and cluster could be used 919 * by another order. Not checking flag as off-list 920 * cluster has no flag set, and change of list 921 * won't cause fragmentation. 922 */ 923 if (!cluster_is_usable(ci, order)) 924 goto out; 925 if (cluster_is_empty(ci)) 926 offset = start; 927 /* Reclaim failed but cluster is usable, try next */ 928 if (!ret) 929 continue; 930 } 931 if (!cluster_alloc_range(si, ci, offset, usage, order)) 932 break; 933 found = offset; 934 offset += nr_pages; 935 if (ci->count < SWAPFILE_CLUSTER && offset <= end) 936 next = offset; 937 break; 938 } 939 out: 940 relocate_cluster(si, ci); 941 swap_cluster_unlock(ci); 942 if (si->flags & SWP_SOLIDSTATE) { 943 this_cpu_write(percpu_swap_cluster.offset[order], next); 944 this_cpu_write(percpu_swap_cluster.si[order], si); 945 } else { 946 si->global_cluster->next[order] = next; 947 } 948 return found; 949 } 950 951 static unsigned int alloc_swap_scan_list(struct swap_info_struct *si, 952 struct list_head *list, 953 unsigned int order, 954 unsigned char usage, 955 bool scan_all) 956 { 957 unsigned int found = SWAP_ENTRY_INVALID; 958 959 do { 960 struct swap_cluster_info *ci = isolate_lock_cluster(si, list, order); 961 unsigned long offset; 962 963 if (!ci) 964 break; 965 offset = cluster_offset(si, ci); 966 found = alloc_swap_scan_cluster(si, ci, offset, order, usage); 967 if (found) 968 break; 969 } while (scan_all); 970 971 return found; 972 } 973 974 static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force) 975 { 976 long to_scan = 1; 977 unsigned long offset, end; 978 struct swap_cluster_info *ci; 979 unsigned char *map = si->swap_map; 980 int nr_reclaim; 981 982 if (force) 983 to_scan = swap_usage_in_pages(si) / SWAPFILE_CLUSTER; 984 985 while ((ci = isolate_lock_cluster(si, &si->full_clusters, 0))) { 986 offset = cluster_offset(si, ci); 987 end = min(si->max, offset + SWAPFILE_CLUSTER); 988 to_scan--; 989 990 while (offset < end) { 991 if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) { 992 spin_unlock(&ci->lock); 993 nr_reclaim = __try_to_reclaim_swap(si, offset, 994 TTRS_ANYWAY); 995 spin_lock(&ci->lock); 996 if (nr_reclaim) { 997 offset += abs(nr_reclaim); 998 continue; 999 } 1000 } 1001 offset++; 1002 } 1003 1004 /* in case no swap cache is reclaimed */ 1005 if (ci->flags == CLUSTER_FLAG_NONE) 1006 relocate_cluster(si, ci); 1007 1008 swap_cluster_unlock(ci); 1009 if (to_scan <= 0) 1010 break; 1011 } 1012 } 1013 1014 static void swap_reclaim_work(struct work_struct *work) 1015 { 1016 struct swap_info_struct *si; 1017 1018 si = container_of(work, struct swap_info_struct, reclaim_work); 1019 1020 swap_reclaim_full_clusters(si, true); 1021 } 1022 1023 /* 1024 * Try to allocate swap entries with specified order and try set a new 1025 * cluster for current CPU too. 1026 */ 1027 static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order, 1028 unsigned char usage) 1029 { 1030 struct swap_cluster_info *ci; 1031 unsigned int offset = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID; 1032 1033 /* 1034 * Swapfile is not block device so unable 1035 * to allocate large entries. 1036 */ 1037 if (order && !(si->flags & SWP_BLKDEV)) 1038 return 0; 1039 1040 if (!(si->flags & SWP_SOLIDSTATE)) { 1041 /* Serialize HDD SWAP allocation for each device. */ 1042 spin_lock(&si->global_cluster_lock); 1043 offset = si->global_cluster->next[order]; 1044 if (offset == SWAP_ENTRY_INVALID) 1045 goto new_cluster; 1046 1047 ci = swap_cluster_lock(si, offset); 1048 /* Cluster could have been used by another order */ 1049 if (cluster_is_usable(ci, order)) { 1050 if (cluster_is_empty(ci)) 1051 offset = cluster_offset(si, ci); 1052 found = alloc_swap_scan_cluster(si, ci, offset, 1053 order, usage); 1054 } else { 1055 swap_cluster_unlock(ci); 1056 } 1057 if (found) 1058 goto done; 1059 } 1060 1061 new_cluster: 1062 /* 1063 * If the device need discard, prefer new cluster over nonfull 1064 * to spread out the writes. 1065 */ 1066 if (si->flags & SWP_PAGE_DISCARD) { 1067 found = alloc_swap_scan_list(si, &si->free_clusters, order, usage, 1068 false); 1069 if (found) 1070 goto done; 1071 } 1072 1073 if (order < PMD_ORDER) { 1074 found = alloc_swap_scan_list(si, &si->nonfull_clusters[order], 1075 order, usage, true); 1076 if (found) 1077 goto done; 1078 } 1079 1080 if (!(si->flags & SWP_PAGE_DISCARD)) { 1081 found = alloc_swap_scan_list(si, &si->free_clusters, order, usage, 1082 false); 1083 if (found) 1084 goto done; 1085 } 1086 1087 /* Try reclaim full clusters if free and nonfull lists are drained */ 1088 if (vm_swap_full()) 1089 swap_reclaim_full_clusters(si, false); 1090 1091 if (order < PMD_ORDER) { 1092 /* 1093 * Scan only one fragment cluster is good enough. Order 0 1094 * allocation will surely success, and large allocation 1095 * failure is not critical. Scanning one cluster still 1096 * keeps the list rotated and reclaimed (for HAS_CACHE). 1097 */ 1098 found = alloc_swap_scan_list(si, &si->frag_clusters[order], order, 1099 usage, false); 1100 if (found) 1101 goto done; 1102 } 1103 1104 /* 1105 * We don't have free cluster but have some clusters in discarding, 1106 * do discard now and reclaim them. 1107 */ 1108 if ((si->flags & SWP_PAGE_DISCARD) && swap_do_scheduled_discard(si)) 1109 goto new_cluster; 1110 1111 if (order) 1112 goto done; 1113 1114 /* Order 0 stealing from higher order */ 1115 for (int o = 1; o < SWAP_NR_ORDERS; o++) { 1116 /* 1117 * Clusters here have at least one usable slots and can't fail order 0 1118 * allocation, but reclaim may drop si->lock and race with another user. 1119 */ 1120 found = alloc_swap_scan_list(si, &si->frag_clusters[o], 1121 0, usage, true); 1122 if (found) 1123 goto done; 1124 1125 found = alloc_swap_scan_list(si, &si->nonfull_clusters[o], 1126 0, usage, true); 1127 if (found) 1128 goto done; 1129 } 1130 done: 1131 if (!(si->flags & SWP_SOLIDSTATE)) 1132 spin_unlock(&si->global_cluster_lock); 1133 1134 return found; 1135 } 1136 1137 /* SWAP_USAGE_OFFLIST_BIT can only be set by this helper. */ 1138 static void del_from_avail_list(struct swap_info_struct *si, bool swapoff) 1139 { 1140 int nid; 1141 unsigned long pages; 1142 1143 spin_lock(&swap_avail_lock); 1144 1145 if (swapoff) { 1146 /* 1147 * Forcefully remove it. Clear the SWP_WRITEOK flags for 1148 * swapoff here so it's synchronized by both si->lock and 1149 * swap_avail_lock, to ensure the result can be seen by 1150 * add_to_avail_list. 1151 */ 1152 lockdep_assert_held(&si->lock); 1153 si->flags &= ~SWP_WRITEOK; 1154 atomic_long_or(SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages); 1155 } else { 1156 /* 1157 * If not called by swapoff, take it off-list only if it's 1158 * full and SWAP_USAGE_OFFLIST_BIT is not set (strictly 1159 * si->inuse_pages == pages), any concurrent slot freeing, 1160 * or device already removed from plist by someone else 1161 * will make this return false. 1162 */ 1163 pages = si->pages; 1164 if (!atomic_long_try_cmpxchg(&si->inuse_pages, &pages, 1165 pages | SWAP_USAGE_OFFLIST_BIT)) 1166 goto skip; 1167 } 1168 1169 for_each_node(nid) 1170 plist_del(&si->avail_lists[nid], &swap_avail_heads[nid]); 1171 1172 skip: 1173 spin_unlock(&swap_avail_lock); 1174 } 1175 1176 /* SWAP_USAGE_OFFLIST_BIT can only be cleared by this helper. */ 1177 static void add_to_avail_list(struct swap_info_struct *si, bool swapon) 1178 { 1179 int nid; 1180 long val; 1181 unsigned long pages; 1182 1183 spin_lock(&swap_avail_lock); 1184 1185 /* Corresponding to SWP_WRITEOK clearing in del_from_avail_list */ 1186 if (swapon) { 1187 lockdep_assert_held(&si->lock); 1188 si->flags |= SWP_WRITEOK; 1189 } else { 1190 if (!(READ_ONCE(si->flags) & SWP_WRITEOK)) 1191 goto skip; 1192 } 1193 1194 if (!(atomic_long_read(&si->inuse_pages) & SWAP_USAGE_OFFLIST_BIT)) 1195 goto skip; 1196 1197 val = atomic_long_fetch_and_relaxed(~SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages); 1198 1199 /* 1200 * When device is full and device is on the plist, only one updater will 1201 * see (inuse_pages == si->pages) and will call del_from_avail_list. If 1202 * that updater happen to be here, just skip adding. 1203 */ 1204 pages = si->pages; 1205 if (val == pages) { 1206 /* Just like the cmpxchg in del_from_avail_list */ 1207 if (atomic_long_try_cmpxchg(&si->inuse_pages, &pages, 1208 pages | SWAP_USAGE_OFFLIST_BIT)) 1209 goto skip; 1210 } 1211 1212 for_each_node(nid) 1213 plist_add(&si->avail_lists[nid], &swap_avail_heads[nid]); 1214 1215 skip: 1216 spin_unlock(&swap_avail_lock); 1217 } 1218 1219 /* 1220 * swap_usage_add / swap_usage_sub of each slot are serialized by ci->lock 1221 * within each cluster, so the total contribution to the global counter should 1222 * always be positive and cannot exceed the total number of usable slots. 1223 */ 1224 static bool swap_usage_add(struct swap_info_struct *si, unsigned int nr_entries) 1225 { 1226 long val = atomic_long_add_return_relaxed(nr_entries, &si->inuse_pages); 1227 1228 /* 1229 * If device is full, and SWAP_USAGE_OFFLIST_BIT is not set, 1230 * remove it from the plist. 1231 */ 1232 if (unlikely(val == si->pages)) { 1233 del_from_avail_list(si, false); 1234 return true; 1235 } 1236 1237 return false; 1238 } 1239 1240 static void swap_usage_sub(struct swap_info_struct *si, unsigned int nr_entries) 1241 { 1242 long val = atomic_long_sub_return_relaxed(nr_entries, &si->inuse_pages); 1243 1244 /* 1245 * If device is not full, and SWAP_USAGE_OFFLIST_BIT is set, 1246 * add it to the plist. 1247 */ 1248 if (unlikely(val & SWAP_USAGE_OFFLIST_BIT)) 1249 add_to_avail_list(si, false); 1250 } 1251 1252 static void swap_range_alloc(struct swap_info_struct *si, 1253 unsigned int nr_entries) 1254 { 1255 if (swap_usage_add(si, nr_entries)) { 1256 if (vm_swap_full()) 1257 schedule_work(&si->reclaim_work); 1258 } 1259 atomic_long_sub(nr_entries, &nr_swap_pages); 1260 } 1261 1262 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 1263 unsigned int nr_entries) 1264 { 1265 unsigned long begin = offset; 1266 unsigned long end = offset + nr_entries - 1; 1267 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 1268 unsigned int i; 1269 1270 /* 1271 * Use atomic clear_bit operations only on zeromap instead of non-atomic 1272 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes. 1273 */ 1274 for (i = 0; i < nr_entries; i++) { 1275 clear_bit(offset + i, si->zeromap); 1276 zswap_invalidate(swp_entry(si->type, offset + i)); 1277 } 1278 1279 if (si->flags & SWP_BLKDEV) 1280 swap_slot_free_notify = 1281 si->bdev->bd_disk->fops->swap_slot_free_notify; 1282 else 1283 swap_slot_free_notify = NULL; 1284 while (offset <= end) { 1285 arch_swap_invalidate_page(si->type, offset); 1286 if (swap_slot_free_notify) 1287 swap_slot_free_notify(si->bdev, offset); 1288 offset++; 1289 } 1290 __swap_cache_clear_shadow(swp_entry(si->type, begin), nr_entries); 1291 1292 /* 1293 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0 1294 * only after the above cleanups are done. 1295 */ 1296 smp_wmb(); 1297 atomic_long_add(nr_entries, &nr_swap_pages); 1298 swap_usage_sub(si, nr_entries); 1299 } 1300 1301 static bool get_swap_device_info(struct swap_info_struct *si) 1302 { 1303 if (!percpu_ref_tryget_live(&si->users)) 1304 return false; 1305 /* 1306 * Guarantee the si->users are checked before accessing other 1307 * fields of swap_info_struct, and si->flags (SWP_WRITEOK) is 1308 * up to dated. 1309 * 1310 * Paired with the spin_unlock() after setup_swap_info() in 1311 * enable_swap_info(), and smp_wmb() in swapoff. 1312 */ 1313 smp_rmb(); 1314 return true; 1315 } 1316 1317 /* 1318 * Fast path try to get swap entries with specified order from current 1319 * CPU's swap entry pool (a cluster). 1320 */ 1321 static bool swap_alloc_fast(swp_entry_t *entry, 1322 int order) 1323 { 1324 struct swap_cluster_info *ci; 1325 struct swap_info_struct *si; 1326 unsigned int offset, found = SWAP_ENTRY_INVALID; 1327 1328 /* 1329 * Once allocated, swap_info_struct will never be completely freed, 1330 * so checking it's liveness by get_swap_device_info is enough. 1331 */ 1332 si = this_cpu_read(percpu_swap_cluster.si[order]); 1333 offset = this_cpu_read(percpu_swap_cluster.offset[order]); 1334 if (!si || !offset || !get_swap_device_info(si)) 1335 return false; 1336 1337 ci = swap_cluster_lock(si, offset); 1338 if (cluster_is_usable(ci, order)) { 1339 if (cluster_is_empty(ci)) 1340 offset = cluster_offset(si, ci); 1341 found = alloc_swap_scan_cluster(si, ci, offset, order, SWAP_HAS_CACHE); 1342 if (found) 1343 *entry = swp_entry(si->type, found); 1344 } else { 1345 swap_cluster_unlock(ci); 1346 } 1347 1348 put_swap_device(si); 1349 return !!found; 1350 } 1351 1352 /* Rotate the device and switch to a new cluster */ 1353 static bool swap_alloc_slow(swp_entry_t *entry, 1354 int order) 1355 { 1356 int node; 1357 unsigned long offset; 1358 struct swap_info_struct *si, *next; 1359 1360 node = numa_node_id(); 1361 spin_lock(&swap_avail_lock); 1362 start_over: 1363 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1364 /* Rotate the device and switch to a new cluster */ 1365 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1366 spin_unlock(&swap_avail_lock); 1367 if (get_swap_device_info(si)) { 1368 offset = cluster_alloc_swap_entry(si, order, SWAP_HAS_CACHE); 1369 put_swap_device(si); 1370 if (offset) { 1371 *entry = swp_entry(si->type, offset); 1372 return true; 1373 } 1374 if (order) 1375 return false; 1376 } 1377 1378 spin_lock(&swap_avail_lock); 1379 /* 1380 * if we got here, it's likely that si was almost full before, 1381 * and since scan_swap_map_slots() can drop the si->lock, 1382 * multiple callers probably all tried to get a page from the 1383 * same si and it filled up before we could get one; or, the si 1384 * filled up between us dropping swap_avail_lock and taking 1385 * si->lock. Since we dropped the swap_avail_lock, the 1386 * swap_avail_head list may have been modified; so if next is 1387 * still in the swap_avail_head list then try it, otherwise 1388 * start over if we have not gotten any slots. 1389 */ 1390 if (plist_node_empty(&next->avail_lists[node])) 1391 goto start_over; 1392 } 1393 spin_unlock(&swap_avail_lock); 1394 return false; 1395 } 1396 1397 /** 1398 * folio_alloc_swap - allocate swap space for a folio 1399 * @folio: folio we want to move to swap 1400 * @gfp: gfp mask for shadow nodes 1401 * 1402 * Allocate swap space for the folio and add the folio to the 1403 * swap cache. 1404 * 1405 * Context: Caller needs to hold the folio lock. 1406 * Return: Whether the folio was added to the swap cache. 1407 */ 1408 int folio_alloc_swap(struct folio *folio, gfp_t gfp) 1409 { 1410 unsigned int order = folio_order(folio); 1411 unsigned int size = 1 << order; 1412 swp_entry_t entry = {}; 1413 1414 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1415 VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio); 1416 1417 if (order) { 1418 /* 1419 * Reject large allocation when THP_SWAP is disabled, 1420 * the caller should split the folio and try again. 1421 */ 1422 if (!IS_ENABLED(CONFIG_THP_SWAP)) 1423 return -EAGAIN; 1424 1425 /* 1426 * Allocation size should never exceed cluster size 1427 * (HPAGE_PMD_SIZE). 1428 */ 1429 if (size > SWAPFILE_CLUSTER) { 1430 VM_WARN_ON_ONCE(1); 1431 return -EINVAL; 1432 } 1433 } 1434 1435 local_lock(&percpu_swap_cluster.lock); 1436 if (!swap_alloc_fast(&entry, order)) 1437 swap_alloc_slow(&entry, order); 1438 local_unlock(&percpu_swap_cluster.lock); 1439 1440 /* Need to call this even if allocation failed, for MEMCG_SWAP_FAIL. */ 1441 if (mem_cgroup_try_charge_swap(folio, entry)) 1442 goto out_free; 1443 1444 if (!entry.val) 1445 return -ENOMEM; 1446 1447 swap_cache_add_folio(folio, entry, NULL); 1448 1449 return 0; 1450 1451 out_free: 1452 put_swap_folio(folio, entry); 1453 return -ENOMEM; 1454 } 1455 1456 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1457 { 1458 struct swap_info_struct *si; 1459 unsigned long offset; 1460 1461 if (!entry.val) 1462 goto out; 1463 si = swap_entry_to_info(entry); 1464 if (!si) 1465 goto bad_nofile; 1466 if (data_race(!(si->flags & SWP_USED))) 1467 goto bad_device; 1468 offset = swp_offset(entry); 1469 if (offset >= si->max) 1470 goto bad_offset; 1471 if (data_race(!si->swap_map[swp_offset(entry)])) 1472 goto bad_free; 1473 return si; 1474 1475 bad_free: 1476 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); 1477 goto out; 1478 bad_offset: 1479 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1480 goto out; 1481 bad_device: 1482 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); 1483 goto out; 1484 bad_nofile: 1485 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1486 out: 1487 return NULL; 1488 } 1489 1490 static unsigned char swap_entry_put_locked(struct swap_info_struct *si, 1491 struct swap_cluster_info *ci, 1492 swp_entry_t entry, 1493 unsigned char usage) 1494 { 1495 unsigned long offset = swp_offset(entry); 1496 unsigned char count; 1497 unsigned char has_cache; 1498 1499 count = si->swap_map[offset]; 1500 1501 has_cache = count & SWAP_HAS_CACHE; 1502 count &= ~SWAP_HAS_CACHE; 1503 1504 if (usage == SWAP_HAS_CACHE) { 1505 VM_BUG_ON(!has_cache); 1506 has_cache = 0; 1507 } else if (count == SWAP_MAP_SHMEM) { 1508 /* 1509 * Or we could insist on shmem.c using a special 1510 * swap_shmem_free() and free_shmem_swap_and_cache()... 1511 */ 1512 count = 0; 1513 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1514 if (count == COUNT_CONTINUED) { 1515 if (swap_count_continued(si, offset, count)) 1516 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1517 else 1518 count = SWAP_MAP_MAX; 1519 } else 1520 count--; 1521 } 1522 1523 usage = count | has_cache; 1524 if (usage) 1525 WRITE_ONCE(si->swap_map[offset], usage); 1526 else 1527 swap_entries_free(si, ci, entry, 1); 1528 1529 return usage; 1530 } 1531 1532 /* 1533 * When we get a swap entry, if there aren't some other ways to 1534 * prevent swapoff, such as the folio in swap cache is locked, RCU 1535 * reader side is locked, etc., the swap entry may become invalid 1536 * because of swapoff. Then, we need to enclose all swap related 1537 * functions with get_swap_device() and put_swap_device(), unless the 1538 * swap functions call get/put_swap_device() by themselves. 1539 * 1540 * RCU reader side lock (including any spinlock) is sufficient to 1541 * prevent swapoff, because synchronize_rcu() is called in swapoff() 1542 * before freeing data structures. 1543 * 1544 * Check whether swap entry is valid in the swap device. If so, 1545 * return pointer to swap_info_struct, and keep the swap entry valid 1546 * via preventing the swap device from being swapoff, until 1547 * put_swap_device() is called. Otherwise return NULL. 1548 * 1549 * Notice that swapoff or swapoff+swapon can still happen before the 1550 * percpu_ref_tryget_live() in get_swap_device() or after the 1551 * percpu_ref_put() in put_swap_device() if there isn't any other way 1552 * to prevent swapoff. The caller must be prepared for that. For 1553 * example, the following situation is possible. 1554 * 1555 * CPU1 CPU2 1556 * do_swap_page() 1557 * ... swapoff+swapon 1558 * __read_swap_cache_async() 1559 * swapcache_prepare() 1560 * __swap_duplicate() 1561 * // check swap_map 1562 * // verify PTE not changed 1563 * 1564 * In __swap_duplicate(), the swap_map need to be checked before 1565 * changing partly because the specified swap entry may be for another 1566 * swap device which has been swapoff. And in do_swap_page(), after 1567 * the page is read from the swap device, the PTE is verified not 1568 * changed with the page table locked to check whether the swap device 1569 * has been swapoff or swapoff+swapon. 1570 */ 1571 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1572 { 1573 struct swap_info_struct *si; 1574 unsigned long offset; 1575 1576 if (!entry.val) 1577 goto out; 1578 si = swap_entry_to_info(entry); 1579 if (!si) 1580 goto bad_nofile; 1581 if (!get_swap_device_info(si)) 1582 goto out; 1583 offset = swp_offset(entry); 1584 if (offset >= si->max) 1585 goto put_out; 1586 1587 return si; 1588 bad_nofile: 1589 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1590 out: 1591 return NULL; 1592 put_out: 1593 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1594 percpu_ref_put(&si->users); 1595 return NULL; 1596 } 1597 1598 static void swap_entries_put_cache(struct swap_info_struct *si, 1599 swp_entry_t entry, int nr) 1600 { 1601 unsigned long offset = swp_offset(entry); 1602 struct swap_cluster_info *ci; 1603 1604 ci = swap_cluster_lock(si, offset); 1605 if (swap_only_has_cache(si, offset, nr)) { 1606 swap_entries_free(si, ci, entry, nr); 1607 } else { 1608 for (int i = 0; i < nr; i++, entry.val++) 1609 swap_entry_put_locked(si, ci, entry, SWAP_HAS_CACHE); 1610 } 1611 swap_cluster_unlock(ci); 1612 } 1613 1614 static bool swap_entries_put_map(struct swap_info_struct *si, 1615 swp_entry_t entry, int nr) 1616 { 1617 unsigned long offset = swp_offset(entry); 1618 struct swap_cluster_info *ci; 1619 bool has_cache = false; 1620 unsigned char count; 1621 int i; 1622 1623 if (nr <= 1) 1624 goto fallback; 1625 count = swap_count(data_race(si->swap_map[offset])); 1626 if (count != 1 && count != SWAP_MAP_SHMEM) 1627 goto fallback; 1628 1629 ci = swap_cluster_lock(si, offset); 1630 if (!swap_is_last_map(si, offset, nr, &has_cache)) { 1631 goto locked_fallback; 1632 } 1633 if (!has_cache) 1634 swap_entries_free(si, ci, entry, nr); 1635 else 1636 for (i = 0; i < nr; i++) 1637 WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE); 1638 swap_cluster_unlock(ci); 1639 1640 return has_cache; 1641 1642 fallback: 1643 ci = swap_cluster_lock(si, offset); 1644 locked_fallback: 1645 for (i = 0; i < nr; i++, entry.val++) { 1646 count = swap_entry_put_locked(si, ci, entry, 1); 1647 if (count == SWAP_HAS_CACHE) 1648 has_cache = true; 1649 } 1650 swap_cluster_unlock(ci); 1651 return has_cache; 1652 } 1653 1654 /* 1655 * Only functions with "_nr" suffix are able to free entries spanning 1656 * cross multi clusters, so ensure the range is within a single cluster 1657 * when freeing entries with functions without "_nr" suffix. 1658 */ 1659 static bool swap_entries_put_map_nr(struct swap_info_struct *si, 1660 swp_entry_t entry, int nr) 1661 { 1662 int cluster_nr, cluster_rest; 1663 unsigned long offset = swp_offset(entry); 1664 bool has_cache = false; 1665 1666 cluster_rest = SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER; 1667 while (nr) { 1668 cluster_nr = min(nr, cluster_rest); 1669 has_cache |= swap_entries_put_map(si, entry, cluster_nr); 1670 cluster_rest = SWAPFILE_CLUSTER; 1671 nr -= cluster_nr; 1672 entry.val += cluster_nr; 1673 } 1674 1675 return has_cache; 1676 } 1677 1678 /* 1679 * Check if it's the last ref of swap entry in the freeing path. 1680 * Qualified vlaue includes 1, SWAP_HAS_CACHE or SWAP_MAP_SHMEM. 1681 */ 1682 static inline bool __maybe_unused swap_is_last_ref(unsigned char count) 1683 { 1684 return (count == SWAP_HAS_CACHE) || (count == 1) || 1685 (count == SWAP_MAP_SHMEM); 1686 } 1687 1688 /* 1689 * Drop the last ref of swap entries, caller have to ensure all entries 1690 * belong to the same cgroup and cluster. 1691 */ 1692 static void swap_entries_free(struct swap_info_struct *si, 1693 struct swap_cluster_info *ci, 1694 swp_entry_t entry, unsigned int nr_pages) 1695 { 1696 unsigned long offset = swp_offset(entry); 1697 unsigned char *map = si->swap_map + offset; 1698 unsigned char *map_end = map + nr_pages; 1699 1700 /* It should never free entries across different clusters */ 1701 VM_BUG_ON(ci != __swap_offset_to_cluster(si, offset + nr_pages - 1)); 1702 VM_BUG_ON(cluster_is_empty(ci)); 1703 VM_BUG_ON(ci->count < nr_pages); 1704 1705 ci->count -= nr_pages; 1706 do { 1707 VM_BUG_ON(!swap_is_last_ref(*map)); 1708 *map = 0; 1709 } while (++map < map_end); 1710 1711 mem_cgroup_uncharge_swap(entry, nr_pages); 1712 swap_range_free(si, offset, nr_pages); 1713 swap_cluster_assert_table_empty(ci, offset, nr_pages); 1714 1715 if (!ci->count) 1716 free_cluster(si, ci); 1717 else 1718 partial_free_cluster(si, ci); 1719 } 1720 1721 /* 1722 * Caller has made sure that the swap device corresponding to entry 1723 * is still around or has not been recycled. 1724 */ 1725 void swap_free_nr(swp_entry_t entry, int nr_pages) 1726 { 1727 int nr; 1728 struct swap_info_struct *sis; 1729 unsigned long offset = swp_offset(entry); 1730 1731 sis = _swap_info_get(entry); 1732 if (!sis) 1733 return; 1734 1735 while (nr_pages) { 1736 nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER); 1737 swap_entries_put_map(sis, swp_entry(sis->type, offset), nr); 1738 offset += nr; 1739 nr_pages -= nr; 1740 } 1741 } 1742 1743 /* 1744 * Called after dropping swapcache to decrease refcnt to swap entries. 1745 */ 1746 void put_swap_folio(struct folio *folio, swp_entry_t entry) 1747 { 1748 struct swap_info_struct *si; 1749 int size = 1 << swap_entry_order(folio_order(folio)); 1750 1751 si = _swap_info_get(entry); 1752 if (!si) 1753 return; 1754 1755 swap_entries_put_cache(si, entry, size); 1756 } 1757 1758 int __swap_count(swp_entry_t entry) 1759 { 1760 struct swap_info_struct *si = __swap_entry_to_info(entry); 1761 pgoff_t offset = swp_offset(entry); 1762 1763 return swap_count(si->swap_map[offset]); 1764 } 1765 1766 /* 1767 * How many references to @entry are currently swapped out? 1768 * This does not give an exact answer when swap count is continued, 1769 * but does include the high COUNT_CONTINUED flag to allow for that. 1770 */ 1771 bool swap_entry_swapped(struct swap_info_struct *si, swp_entry_t entry) 1772 { 1773 pgoff_t offset = swp_offset(entry); 1774 struct swap_cluster_info *ci; 1775 int count; 1776 1777 ci = swap_cluster_lock(si, offset); 1778 count = swap_count(si->swap_map[offset]); 1779 swap_cluster_unlock(ci); 1780 return !!count; 1781 } 1782 1783 /* 1784 * How many references to @entry are currently swapped out? 1785 * This considers COUNT_CONTINUED so it returns exact answer. 1786 */ 1787 int swp_swapcount(swp_entry_t entry) 1788 { 1789 int count, tmp_count, n; 1790 struct swap_info_struct *si; 1791 struct swap_cluster_info *ci; 1792 struct page *page; 1793 pgoff_t offset; 1794 unsigned char *map; 1795 1796 si = _swap_info_get(entry); 1797 if (!si) 1798 return 0; 1799 1800 offset = swp_offset(entry); 1801 1802 ci = swap_cluster_lock(si, offset); 1803 1804 count = swap_count(si->swap_map[offset]); 1805 if (!(count & COUNT_CONTINUED)) 1806 goto out; 1807 1808 count &= ~COUNT_CONTINUED; 1809 n = SWAP_MAP_MAX + 1; 1810 1811 page = vmalloc_to_page(si->swap_map + offset); 1812 offset &= ~PAGE_MASK; 1813 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1814 1815 do { 1816 page = list_next_entry(page, lru); 1817 map = kmap_local_page(page); 1818 tmp_count = map[offset]; 1819 kunmap_local(map); 1820 1821 count += (tmp_count & ~COUNT_CONTINUED) * n; 1822 n *= (SWAP_CONT_MAX + 1); 1823 } while (tmp_count & COUNT_CONTINUED); 1824 out: 1825 swap_cluster_unlock(ci); 1826 return count; 1827 } 1828 1829 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1830 swp_entry_t entry, int order) 1831 { 1832 struct swap_cluster_info *ci; 1833 unsigned char *map = si->swap_map; 1834 unsigned int nr_pages = 1 << order; 1835 unsigned long roffset = swp_offset(entry); 1836 unsigned long offset = round_down(roffset, nr_pages); 1837 int i; 1838 bool ret = false; 1839 1840 ci = swap_cluster_lock(si, offset); 1841 if (nr_pages == 1) { 1842 if (swap_count(map[roffset])) 1843 ret = true; 1844 goto unlock_out; 1845 } 1846 for (i = 0; i < nr_pages; i++) { 1847 if (swap_count(map[offset + i])) { 1848 ret = true; 1849 break; 1850 } 1851 } 1852 unlock_out: 1853 swap_cluster_unlock(ci); 1854 return ret; 1855 } 1856 1857 static bool folio_swapped(struct folio *folio) 1858 { 1859 swp_entry_t entry = folio->swap; 1860 struct swap_info_struct *si = _swap_info_get(entry); 1861 1862 if (!si) 1863 return false; 1864 1865 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio))) 1866 return swap_entry_swapped(si, entry); 1867 1868 return swap_page_trans_huge_swapped(si, entry, folio_order(folio)); 1869 } 1870 1871 static bool folio_swapcache_freeable(struct folio *folio) 1872 { 1873 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1874 1875 if (!folio_test_swapcache(folio)) 1876 return false; 1877 if (folio_test_writeback(folio)) 1878 return false; 1879 1880 /* 1881 * Once hibernation has begun to create its image of memory, 1882 * there's a danger that one of the calls to folio_free_swap() 1883 * - most probably a call from __try_to_reclaim_swap() while 1884 * hibernation is allocating its own swap pages for the image, 1885 * but conceivably even a call from memory reclaim - will free 1886 * the swap from a folio which has already been recorded in the 1887 * image as a clean swapcache folio, and then reuse its swap for 1888 * another page of the image. On waking from hibernation, the 1889 * original folio might be freed under memory pressure, then 1890 * later read back in from swap, now with the wrong data. 1891 * 1892 * Hibernation suspends storage while it is writing the image 1893 * to disk so check that here. 1894 */ 1895 if (pm_suspended_storage()) 1896 return false; 1897 1898 return true; 1899 } 1900 1901 /** 1902 * folio_free_swap() - Free the swap space used for this folio. 1903 * @folio: The folio to remove. 1904 * 1905 * If swap is getting full, or if there are no more mappings of this folio, 1906 * then call folio_free_swap to free its swap space. 1907 * 1908 * Return: true if we were able to release the swap space. 1909 */ 1910 bool folio_free_swap(struct folio *folio) 1911 { 1912 if (!folio_swapcache_freeable(folio)) 1913 return false; 1914 if (folio_swapped(folio)) 1915 return false; 1916 1917 swap_cache_del_folio(folio); 1918 folio_set_dirty(folio); 1919 return true; 1920 } 1921 1922 /** 1923 * free_swap_and_cache_nr() - Release reference on range of swap entries and 1924 * reclaim their cache if no more references remain. 1925 * @entry: First entry of range. 1926 * @nr: Number of entries in range. 1927 * 1928 * For each swap entry in the contiguous range, release a reference. If any swap 1929 * entries become free, try to reclaim their underlying folios, if present. The 1930 * offset range is defined by [entry.offset, entry.offset + nr). 1931 */ 1932 void free_swap_and_cache_nr(swp_entry_t entry, int nr) 1933 { 1934 const unsigned long start_offset = swp_offset(entry); 1935 const unsigned long end_offset = start_offset + nr; 1936 struct swap_info_struct *si; 1937 bool any_only_cache = false; 1938 unsigned long offset; 1939 1940 si = get_swap_device(entry); 1941 if (!si) 1942 return; 1943 1944 if (WARN_ON(end_offset > si->max)) 1945 goto out; 1946 1947 /* 1948 * First free all entries in the range. 1949 */ 1950 any_only_cache = swap_entries_put_map_nr(si, entry, nr); 1951 1952 /* 1953 * Short-circuit the below loop if none of the entries had their 1954 * reference drop to zero. 1955 */ 1956 if (!any_only_cache) 1957 goto out; 1958 1959 /* 1960 * Now go back over the range trying to reclaim the swap cache. 1961 */ 1962 for (offset = start_offset; offset < end_offset; offset += nr) { 1963 nr = 1; 1964 if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 1965 /* 1966 * Folios are always naturally aligned in swap so 1967 * advance forward to the next boundary. Zero means no 1968 * folio was found for the swap entry, so advance by 1 1969 * in this case. Negative value means folio was found 1970 * but could not be reclaimed. Here we can still advance 1971 * to the next boundary. 1972 */ 1973 nr = __try_to_reclaim_swap(si, offset, 1974 TTRS_UNMAPPED | TTRS_FULL); 1975 if (nr == 0) 1976 nr = 1; 1977 else if (nr < 0) 1978 nr = -nr; 1979 nr = ALIGN(offset + 1, nr) - offset; 1980 } 1981 } 1982 1983 out: 1984 put_swap_device(si); 1985 } 1986 1987 #ifdef CONFIG_HIBERNATION 1988 1989 swp_entry_t get_swap_page_of_type(int type) 1990 { 1991 struct swap_info_struct *si = swap_type_to_info(type); 1992 unsigned long offset; 1993 swp_entry_t entry = {0}; 1994 1995 if (!si) 1996 goto fail; 1997 1998 /* This is called for allocating swap entry, not cache */ 1999 if (get_swap_device_info(si)) { 2000 if (si->flags & SWP_WRITEOK) { 2001 /* 2002 * Grab the local lock to be complaint 2003 * with swap table allocation. 2004 */ 2005 local_lock(&percpu_swap_cluster.lock); 2006 offset = cluster_alloc_swap_entry(si, 0, 1); 2007 local_unlock(&percpu_swap_cluster.lock); 2008 if (offset) 2009 entry = swp_entry(si->type, offset); 2010 } 2011 put_swap_device(si); 2012 } 2013 fail: 2014 return entry; 2015 } 2016 2017 /* 2018 * Find the swap type that corresponds to given device (if any). 2019 * 2020 * @offset - number of the PAGE_SIZE-sized block of the device, starting 2021 * from 0, in which the swap header is expected to be located. 2022 * 2023 * This is needed for the suspend to disk (aka swsusp). 2024 */ 2025 int swap_type_of(dev_t device, sector_t offset) 2026 { 2027 int type; 2028 2029 if (!device) 2030 return -1; 2031 2032 spin_lock(&swap_lock); 2033 for (type = 0; type < nr_swapfiles; type++) { 2034 struct swap_info_struct *sis = swap_info[type]; 2035 2036 if (!(sis->flags & SWP_WRITEOK)) 2037 continue; 2038 2039 if (device == sis->bdev->bd_dev) { 2040 struct swap_extent *se = first_se(sis); 2041 2042 if (se->start_block == offset) { 2043 spin_unlock(&swap_lock); 2044 return type; 2045 } 2046 } 2047 } 2048 spin_unlock(&swap_lock); 2049 return -ENODEV; 2050 } 2051 2052 int find_first_swap(dev_t *device) 2053 { 2054 int type; 2055 2056 spin_lock(&swap_lock); 2057 for (type = 0; type < nr_swapfiles; type++) { 2058 struct swap_info_struct *sis = swap_info[type]; 2059 2060 if (!(sis->flags & SWP_WRITEOK)) 2061 continue; 2062 *device = sis->bdev->bd_dev; 2063 spin_unlock(&swap_lock); 2064 return type; 2065 } 2066 spin_unlock(&swap_lock); 2067 return -ENODEV; 2068 } 2069 2070 /* 2071 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 2072 * corresponding to given index in swap_info (swap type). 2073 */ 2074 sector_t swapdev_block(int type, pgoff_t offset) 2075 { 2076 struct swap_info_struct *si = swap_type_to_info(type); 2077 struct swap_extent *se; 2078 2079 if (!si || !(si->flags & SWP_WRITEOK)) 2080 return 0; 2081 se = offset_to_swap_extent(si, offset); 2082 return se->start_block + (offset - se->start_page); 2083 } 2084 2085 /* 2086 * Return either the total number of swap pages of given type, or the number 2087 * of free pages of that type (depending on @free) 2088 * 2089 * This is needed for software suspend 2090 */ 2091 unsigned int count_swap_pages(int type, int free) 2092 { 2093 unsigned int n = 0; 2094 2095 spin_lock(&swap_lock); 2096 if ((unsigned int)type < nr_swapfiles) { 2097 struct swap_info_struct *sis = swap_info[type]; 2098 2099 spin_lock(&sis->lock); 2100 if (sis->flags & SWP_WRITEOK) { 2101 n = sis->pages; 2102 if (free) 2103 n -= swap_usage_in_pages(sis); 2104 } 2105 spin_unlock(&sis->lock); 2106 } 2107 spin_unlock(&swap_lock); 2108 return n; 2109 } 2110 #endif /* CONFIG_HIBERNATION */ 2111 2112 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 2113 { 2114 return pte_same(pte_swp_clear_flags(pte), swp_pte); 2115 } 2116 2117 /* 2118 * No need to decide whether this PTE shares the swap entry with others, 2119 * just let do_wp_page work it out if a write is requested later - to 2120 * force COW, vm_page_prot omits write permission from any private vma. 2121 */ 2122 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 2123 unsigned long addr, swp_entry_t entry, struct folio *folio) 2124 { 2125 struct page *page; 2126 struct folio *swapcache; 2127 spinlock_t *ptl; 2128 pte_t *pte, new_pte, old_pte; 2129 bool hwpoisoned = false; 2130 int ret = 1; 2131 2132 /* 2133 * If the folio is removed from swap cache by others, continue to 2134 * unuse other PTEs. try_to_unuse may try again if we missed this one. 2135 */ 2136 if (!folio_matches_swap_entry(folio, entry)) 2137 return 0; 2138 2139 swapcache = folio; 2140 folio = ksm_might_need_to_copy(folio, vma, addr); 2141 if (unlikely(!folio)) 2142 return -ENOMEM; 2143 else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 2144 hwpoisoned = true; 2145 folio = swapcache; 2146 } 2147 2148 page = folio_file_page(folio, swp_offset(entry)); 2149 if (PageHWPoison(page)) 2150 hwpoisoned = true; 2151 2152 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 2153 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte), 2154 swp_entry_to_pte(entry)))) { 2155 ret = 0; 2156 goto out; 2157 } 2158 2159 old_pte = ptep_get(pte); 2160 2161 if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) { 2162 swp_entry_t swp_entry; 2163 2164 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 2165 if (hwpoisoned) { 2166 swp_entry = make_hwpoison_entry(page); 2167 } else { 2168 swp_entry = make_poisoned_swp_entry(); 2169 } 2170 new_pte = swp_entry_to_pte(swp_entry); 2171 ret = 0; 2172 goto setpte; 2173 } 2174 2175 /* 2176 * Some architectures may have to restore extra metadata to the page 2177 * when reading from swap. This metadata may be indexed by swap entry 2178 * so this must be called before swap_free(). 2179 */ 2180 arch_swap_restore(folio_swap(entry, folio), folio); 2181 2182 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 2183 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 2184 folio_get(folio); 2185 if (folio == swapcache) { 2186 rmap_t rmap_flags = RMAP_NONE; 2187 2188 /* 2189 * See do_swap_page(): writeback would be problematic. 2190 * However, we do a folio_wait_writeback() just before this 2191 * call and have the folio locked. 2192 */ 2193 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 2194 if (pte_swp_exclusive(old_pte)) 2195 rmap_flags |= RMAP_EXCLUSIVE; 2196 /* 2197 * We currently only expect small !anon folios, which are either 2198 * fully exclusive or fully shared. If we ever get large folios 2199 * here, we have to be careful. 2200 */ 2201 if (!folio_test_anon(folio)) { 2202 VM_WARN_ON_ONCE(folio_test_large(folio)); 2203 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 2204 folio_add_new_anon_rmap(folio, vma, addr, rmap_flags); 2205 } else { 2206 folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags); 2207 } 2208 } else { /* ksm created a completely new copy */ 2209 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 2210 folio_add_lru_vma(folio, vma); 2211 } 2212 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot)); 2213 if (pte_swp_soft_dirty(old_pte)) 2214 new_pte = pte_mksoft_dirty(new_pte); 2215 if (pte_swp_uffd_wp(old_pte)) 2216 new_pte = pte_mkuffd_wp(new_pte); 2217 setpte: 2218 set_pte_at(vma->vm_mm, addr, pte, new_pte); 2219 swap_free(entry); 2220 out: 2221 if (pte) 2222 pte_unmap_unlock(pte, ptl); 2223 if (folio != swapcache) { 2224 folio_unlock(folio); 2225 folio_put(folio); 2226 } 2227 return ret; 2228 } 2229 2230 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 2231 unsigned long addr, unsigned long end, 2232 unsigned int type) 2233 { 2234 pte_t *pte = NULL; 2235 struct swap_info_struct *si; 2236 2237 si = swap_info[type]; 2238 do { 2239 struct folio *folio; 2240 unsigned long offset; 2241 unsigned char swp_count; 2242 swp_entry_t entry; 2243 int ret; 2244 pte_t ptent; 2245 2246 if (!pte++) { 2247 pte = pte_offset_map(pmd, addr); 2248 if (!pte) 2249 break; 2250 } 2251 2252 ptent = ptep_get_lockless(pte); 2253 2254 if (!is_swap_pte(ptent)) 2255 continue; 2256 2257 entry = pte_to_swp_entry(ptent); 2258 if (swp_type(entry) != type) 2259 continue; 2260 2261 offset = swp_offset(entry); 2262 pte_unmap(pte); 2263 pte = NULL; 2264 2265 folio = swap_cache_get_folio(entry); 2266 if (!folio) { 2267 struct vm_fault vmf = { 2268 .vma = vma, 2269 .address = addr, 2270 .real_address = addr, 2271 .pmd = pmd, 2272 }; 2273 2274 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 2275 &vmf); 2276 } 2277 if (!folio) { 2278 swp_count = READ_ONCE(si->swap_map[offset]); 2279 if (swp_count == 0 || swp_count == SWAP_MAP_BAD) 2280 continue; 2281 return -ENOMEM; 2282 } 2283 2284 folio_lock(folio); 2285 folio_wait_writeback(folio); 2286 ret = unuse_pte(vma, pmd, addr, entry, folio); 2287 if (ret < 0) { 2288 folio_unlock(folio); 2289 folio_put(folio); 2290 return ret; 2291 } 2292 2293 folio_free_swap(folio); 2294 folio_unlock(folio); 2295 folio_put(folio); 2296 } while (addr += PAGE_SIZE, addr != end); 2297 2298 if (pte) 2299 pte_unmap(pte); 2300 return 0; 2301 } 2302 2303 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 2304 unsigned long addr, unsigned long end, 2305 unsigned int type) 2306 { 2307 pmd_t *pmd; 2308 unsigned long next; 2309 int ret; 2310 2311 pmd = pmd_offset(pud, addr); 2312 do { 2313 cond_resched(); 2314 next = pmd_addr_end(addr, end); 2315 ret = unuse_pte_range(vma, pmd, addr, next, type); 2316 if (ret) 2317 return ret; 2318 } while (pmd++, addr = next, addr != end); 2319 return 0; 2320 } 2321 2322 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 2323 unsigned long addr, unsigned long end, 2324 unsigned int type) 2325 { 2326 pud_t *pud; 2327 unsigned long next; 2328 int ret; 2329 2330 pud = pud_offset(p4d, addr); 2331 do { 2332 next = pud_addr_end(addr, end); 2333 if (pud_none_or_clear_bad(pud)) 2334 continue; 2335 ret = unuse_pmd_range(vma, pud, addr, next, type); 2336 if (ret) 2337 return ret; 2338 } while (pud++, addr = next, addr != end); 2339 return 0; 2340 } 2341 2342 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 2343 unsigned long addr, unsigned long end, 2344 unsigned int type) 2345 { 2346 p4d_t *p4d; 2347 unsigned long next; 2348 int ret; 2349 2350 p4d = p4d_offset(pgd, addr); 2351 do { 2352 next = p4d_addr_end(addr, end); 2353 if (p4d_none_or_clear_bad(p4d)) 2354 continue; 2355 ret = unuse_pud_range(vma, p4d, addr, next, type); 2356 if (ret) 2357 return ret; 2358 } while (p4d++, addr = next, addr != end); 2359 return 0; 2360 } 2361 2362 static int unuse_vma(struct vm_area_struct *vma, unsigned int type) 2363 { 2364 pgd_t *pgd; 2365 unsigned long addr, end, next; 2366 int ret; 2367 2368 addr = vma->vm_start; 2369 end = vma->vm_end; 2370 2371 pgd = pgd_offset(vma->vm_mm, addr); 2372 do { 2373 next = pgd_addr_end(addr, end); 2374 if (pgd_none_or_clear_bad(pgd)) 2375 continue; 2376 ret = unuse_p4d_range(vma, pgd, addr, next, type); 2377 if (ret) 2378 return ret; 2379 } while (pgd++, addr = next, addr != end); 2380 return 0; 2381 } 2382 2383 static int unuse_mm(struct mm_struct *mm, unsigned int type) 2384 { 2385 struct vm_area_struct *vma; 2386 int ret = 0; 2387 VMA_ITERATOR(vmi, mm, 0); 2388 2389 mmap_read_lock(mm); 2390 if (check_stable_address_space(mm)) 2391 goto unlock; 2392 for_each_vma(vmi, vma) { 2393 if (vma->anon_vma && !is_vm_hugetlb_page(vma)) { 2394 ret = unuse_vma(vma, type); 2395 if (ret) 2396 break; 2397 } 2398 2399 cond_resched(); 2400 } 2401 unlock: 2402 mmap_read_unlock(mm); 2403 return ret; 2404 } 2405 2406 /* 2407 * Scan swap_map from current position to next entry still in use. 2408 * Return 0 if there are no inuse entries after prev till end of 2409 * the map. 2410 */ 2411 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 2412 unsigned int prev) 2413 { 2414 unsigned int i; 2415 unsigned char count; 2416 2417 /* 2418 * No need for swap_lock here: we're just looking 2419 * for whether an entry is in use, not modifying it; false 2420 * hits are okay, and sys_swapoff() has already prevented new 2421 * allocations from this area (while holding swap_lock). 2422 */ 2423 for (i = prev + 1; i < si->max; i++) { 2424 count = READ_ONCE(si->swap_map[i]); 2425 if (count && swap_count(count) != SWAP_MAP_BAD) 2426 break; 2427 if ((i % LATENCY_LIMIT) == 0) 2428 cond_resched(); 2429 } 2430 2431 if (i == si->max) 2432 i = 0; 2433 2434 return i; 2435 } 2436 2437 static int try_to_unuse(unsigned int type) 2438 { 2439 struct mm_struct *prev_mm; 2440 struct mm_struct *mm; 2441 struct list_head *p; 2442 int retval = 0; 2443 struct swap_info_struct *si = swap_info[type]; 2444 struct folio *folio; 2445 swp_entry_t entry; 2446 unsigned int i; 2447 2448 if (!swap_usage_in_pages(si)) 2449 goto success; 2450 2451 retry: 2452 retval = shmem_unuse(type); 2453 if (retval) 2454 return retval; 2455 2456 prev_mm = &init_mm; 2457 mmget(prev_mm); 2458 2459 spin_lock(&mmlist_lock); 2460 p = &init_mm.mmlist; 2461 while (swap_usage_in_pages(si) && 2462 !signal_pending(current) && 2463 (p = p->next) != &init_mm.mmlist) { 2464 2465 mm = list_entry(p, struct mm_struct, mmlist); 2466 if (!mmget_not_zero(mm)) 2467 continue; 2468 spin_unlock(&mmlist_lock); 2469 mmput(prev_mm); 2470 prev_mm = mm; 2471 retval = unuse_mm(mm, type); 2472 if (retval) { 2473 mmput(prev_mm); 2474 return retval; 2475 } 2476 2477 /* 2478 * Make sure that we aren't completely killing 2479 * interactive performance. 2480 */ 2481 cond_resched(); 2482 spin_lock(&mmlist_lock); 2483 } 2484 spin_unlock(&mmlist_lock); 2485 2486 mmput(prev_mm); 2487 2488 i = 0; 2489 while (swap_usage_in_pages(si) && 2490 !signal_pending(current) && 2491 (i = find_next_to_unuse(si, i)) != 0) { 2492 2493 entry = swp_entry(type, i); 2494 folio = swap_cache_get_folio(entry); 2495 if (!folio) 2496 continue; 2497 2498 /* 2499 * It is conceivable that a racing task removed this folio from 2500 * swap cache just before we acquired the page lock. The folio 2501 * might even be back in swap cache on another swap area. But 2502 * that is okay, folio_free_swap() only removes stale folios. 2503 */ 2504 folio_lock(folio); 2505 folio_wait_writeback(folio); 2506 folio_free_swap(folio); 2507 folio_unlock(folio); 2508 folio_put(folio); 2509 } 2510 2511 /* 2512 * Lets check again to see if there are still swap entries in the map. 2513 * If yes, we would need to do retry the unuse logic again. 2514 * Under global memory pressure, swap entries can be reinserted back 2515 * into process space after the mmlist loop above passes over them. 2516 * 2517 * Limit the number of retries? No: when mmget_not_zero() 2518 * above fails, that mm is likely to be freeing swap from 2519 * exit_mmap(), which proceeds at its own independent pace; 2520 * and even shmem_writeout() could have been preempted after 2521 * folio_alloc_swap(), temporarily hiding that swap. It's easy 2522 * and robust (though cpu-intensive) just to keep retrying. 2523 */ 2524 if (swap_usage_in_pages(si)) { 2525 if (!signal_pending(current)) 2526 goto retry; 2527 return -EINTR; 2528 } 2529 2530 success: 2531 /* 2532 * Make sure that further cleanups after try_to_unuse() returns happen 2533 * after swap_range_free() reduces si->inuse_pages to 0. 2534 */ 2535 smp_mb(); 2536 return 0; 2537 } 2538 2539 /* 2540 * After a successful try_to_unuse, if no swap is now in use, we know 2541 * we can empty the mmlist. swap_lock must be held on entry and exit. 2542 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2543 * added to the mmlist just after page_duplicate - before would be racy. 2544 */ 2545 static void drain_mmlist(void) 2546 { 2547 struct list_head *p, *next; 2548 unsigned int type; 2549 2550 for (type = 0; type < nr_swapfiles; type++) 2551 if (swap_usage_in_pages(swap_info[type])) 2552 return; 2553 spin_lock(&mmlist_lock); 2554 list_for_each_safe(p, next, &init_mm.mmlist) 2555 list_del_init(p); 2556 spin_unlock(&mmlist_lock); 2557 } 2558 2559 /* 2560 * Free all of a swapdev's extent information 2561 */ 2562 static void destroy_swap_extents(struct swap_info_struct *sis) 2563 { 2564 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2565 struct rb_node *rb = sis->swap_extent_root.rb_node; 2566 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2567 2568 rb_erase(rb, &sis->swap_extent_root); 2569 kfree(se); 2570 } 2571 2572 if (sis->flags & SWP_ACTIVATED) { 2573 struct file *swap_file = sis->swap_file; 2574 struct address_space *mapping = swap_file->f_mapping; 2575 2576 sis->flags &= ~SWP_ACTIVATED; 2577 if (mapping->a_ops->swap_deactivate) 2578 mapping->a_ops->swap_deactivate(swap_file); 2579 } 2580 } 2581 2582 /* 2583 * Add a block range (and the corresponding page range) into this swapdev's 2584 * extent tree. 2585 * 2586 * This function rather assumes that it is called in ascending page order. 2587 */ 2588 int 2589 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2590 unsigned long nr_pages, sector_t start_block) 2591 { 2592 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2593 struct swap_extent *se; 2594 struct swap_extent *new_se; 2595 2596 /* 2597 * place the new node at the right most since the 2598 * function is called in ascending page order. 2599 */ 2600 while (*link) { 2601 parent = *link; 2602 link = &parent->rb_right; 2603 } 2604 2605 if (parent) { 2606 se = rb_entry(parent, struct swap_extent, rb_node); 2607 BUG_ON(se->start_page + se->nr_pages != start_page); 2608 if (se->start_block + se->nr_pages == start_block) { 2609 /* Merge it */ 2610 se->nr_pages += nr_pages; 2611 return 0; 2612 } 2613 } 2614 2615 /* No merge, insert a new extent. */ 2616 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2617 if (new_se == NULL) 2618 return -ENOMEM; 2619 new_se->start_page = start_page; 2620 new_se->nr_pages = nr_pages; 2621 new_se->start_block = start_block; 2622 2623 rb_link_node(&new_se->rb_node, parent, link); 2624 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2625 return 1; 2626 } 2627 EXPORT_SYMBOL_GPL(add_swap_extent); 2628 2629 /* 2630 * A `swap extent' is a simple thing which maps a contiguous range of pages 2631 * onto a contiguous range of disk blocks. A rbtree of swap extents is 2632 * built at swapon time and is then used at swap_writepage/swap_read_folio 2633 * time for locating where on disk a page belongs. 2634 * 2635 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2636 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2637 * swap files identically. 2638 * 2639 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2640 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2641 * swapfiles are handled *identically* after swapon time. 2642 * 2643 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2644 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray 2645 * blocks are found which do not fall within the PAGE_SIZE alignment 2646 * requirements, they are simply tossed out - we will never use those blocks 2647 * for swapping. 2648 * 2649 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2650 * prevents users from writing to the swap device, which will corrupt memory. 2651 * 2652 * The amount of disk space which a single swap extent represents varies. 2653 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2654 * extents in the rbtree. - akpm. 2655 */ 2656 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2657 { 2658 struct file *swap_file = sis->swap_file; 2659 struct address_space *mapping = swap_file->f_mapping; 2660 struct inode *inode = mapping->host; 2661 int ret; 2662 2663 if (S_ISBLK(inode->i_mode)) { 2664 ret = add_swap_extent(sis, 0, sis->max, 0); 2665 *span = sis->pages; 2666 return ret; 2667 } 2668 2669 if (mapping->a_ops->swap_activate) { 2670 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2671 if (ret < 0) 2672 return ret; 2673 sis->flags |= SWP_ACTIVATED; 2674 if ((sis->flags & SWP_FS_OPS) && 2675 sio_pool_init() != 0) { 2676 destroy_swap_extents(sis); 2677 return -ENOMEM; 2678 } 2679 return ret; 2680 } 2681 2682 return generic_swapfile_activate(sis, swap_file, span); 2683 } 2684 2685 static int swap_node(struct swap_info_struct *si) 2686 { 2687 struct block_device *bdev; 2688 2689 if (si->bdev) 2690 bdev = si->bdev; 2691 else 2692 bdev = si->swap_file->f_inode->i_sb->s_bdev; 2693 2694 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2695 } 2696 2697 static void setup_swap_info(struct swap_info_struct *si, int prio, 2698 unsigned char *swap_map, 2699 struct swap_cluster_info *cluster_info, 2700 unsigned long *zeromap) 2701 { 2702 int i; 2703 2704 if (prio >= 0) 2705 si->prio = prio; 2706 else 2707 si->prio = --least_priority; 2708 /* 2709 * the plist prio is negated because plist ordering is 2710 * low-to-high, while swap ordering is high-to-low 2711 */ 2712 si->list.prio = -si->prio; 2713 for_each_node(i) { 2714 if (si->prio >= 0) 2715 si->avail_lists[i].prio = -si->prio; 2716 else { 2717 if (swap_node(si) == i) 2718 si->avail_lists[i].prio = 1; 2719 else 2720 si->avail_lists[i].prio = -si->prio; 2721 } 2722 } 2723 si->swap_map = swap_map; 2724 si->cluster_info = cluster_info; 2725 si->zeromap = zeromap; 2726 } 2727 2728 static void _enable_swap_info(struct swap_info_struct *si) 2729 { 2730 atomic_long_add(si->pages, &nr_swap_pages); 2731 total_swap_pages += si->pages; 2732 2733 assert_spin_locked(&swap_lock); 2734 /* 2735 * both lists are plists, and thus priority ordered. 2736 * swap_active_head needs to be priority ordered for swapoff(), 2737 * which on removal of any swap_info_struct with an auto-assigned 2738 * (i.e. negative) priority increments the auto-assigned priority 2739 * of any lower-priority swap_info_structs. 2740 * swap_avail_head needs to be priority ordered for folio_alloc_swap(), 2741 * which allocates swap pages from the highest available priority 2742 * swap_info_struct. 2743 */ 2744 plist_add(&si->list, &swap_active_head); 2745 2746 /* Add back to available list */ 2747 add_to_avail_list(si, true); 2748 } 2749 2750 static void enable_swap_info(struct swap_info_struct *si, int prio, 2751 unsigned char *swap_map, 2752 struct swap_cluster_info *cluster_info, 2753 unsigned long *zeromap) 2754 { 2755 spin_lock(&swap_lock); 2756 spin_lock(&si->lock); 2757 setup_swap_info(si, prio, swap_map, cluster_info, zeromap); 2758 spin_unlock(&si->lock); 2759 spin_unlock(&swap_lock); 2760 /* 2761 * Finished initializing swap device, now it's safe to reference it. 2762 */ 2763 percpu_ref_resurrect(&si->users); 2764 spin_lock(&swap_lock); 2765 spin_lock(&si->lock); 2766 _enable_swap_info(si); 2767 spin_unlock(&si->lock); 2768 spin_unlock(&swap_lock); 2769 } 2770 2771 static void reinsert_swap_info(struct swap_info_struct *si) 2772 { 2773 spin_lock(&swap_lock); 2774 spin_lock(&si->lock); 2775 setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap); 2776 _enable_swap_info(si); 2777 spin_unlock(&si->lock); 2778 spin_unlock(&swap_lock); 2779 } 2780 2781 /* 2782 * Called after clearing SWP_WRITEOK, ensures cluster_alloc_range 2783 * see the updated flags, so there will be no more allocations. 2784 */ 2785 static void wait_for_allocation(struct swap_info_struct *si) 2786 { 2787 unsigned long offset; 2788 unsigned long end = ALIGN(si->max, SWAPFILE_CLUSTER); 2789 struct swap_cluster_info *ci; 2790 2791 BUG_ON(si->flags & SWP_WRITEOK); 2792 2793 for (offset = 0; offset < end; offset += SWAPFILE_CLUSTER) { 2794 ci = swap_cluster_lock(si, offset); 2795 swap_cluster_unlock(ci); 2796 } 2797 } 2798 2799 static void free_cluster_info(struct swap_cluster_info *cluster_info, 2800 unsigned long maxpages) 2801 { 2802 struct swap_cluster_info *ci; 2803 int i, nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2804 2805 if (!cluster_info) 2806 return; 2807 for (i = 0; i < nr_clusters; i++) { 2808 ci = cluster_info + i; 2809 /* Cluster with bad marks count will have a remaining table */ 2810 spin_lock(&ci->lock); 2811 if (rcu_dereference_protected(ci->table, true)) { 2812 ci->count = 0; 2813 swap_cluster_free_table(ci); 2814 } 2815 spin_unlock(&ci->lock); 2816 } 2817 kvfree(cluster_info); 2818 } 2819 2820 /* 2821 * Called after swap device's reference count is dead, so 2822 * neither scan nor allocation will use it. 2823 */ 2824 static void flush_percpu_swap_cluster(struct swap_info_struct *si) 2825 { 2826 int cpu, i; 2827 struct swap_info_struct **pcp_si; 2828 2829 for_each_possible_cpu(cpu) { 2830 pcp_si = per_cpu_ptr(percpu_swap_cluster.si, cpu); 2831 /* 2832 * Invalidate the percpu swap cluster cache, si->users 2833 * is dead, so no new user will point to it, just flush 2834 * any existing user. 2835 */ 2836 for (i = 0; i < SWAP_NR_ORDERS; i++) 2837 cmpxchg(&pcp_si[i], si, NULL); 2838 } 2839 } 2840 2841 2842 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2843 { 2844 struct swap_info_struct *p = NULL; 2845 unsigned char *swap_map; 2846 unsigned long *zeromap; 2847 struct swap_cluster_info *cluster_info; 2848 struct file *swap_file, *victim; 2849 struct address_space *mapping; 2850 struct inode *inode; 2851 struct filename *pathname; 2852 unsigned int maxpages; 2853 int err, found = 0; 2854 2855 if (!capable(CAP_SYS_ADMIN)) 2856 return -EPERM; 2857 2858 BUG_ON(!current->mm); 2859 2860 pathname = getname(specialfile); 2861 if (IS_ERR(pathname)) 2862 return PTR_ERR(pathname); 2863 2864 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2865 err = PTR_ERR(victim); 2866 if (IS_ERR(victim)) 2867 goto out; 2868 2869 mapping = victim->f_mapping; 2870 spin_lock(&swap_lock); 2871 plist_for_each_entry(p, &swap_active_head, list) { 2872 if (p->flags & SWP_WRITEOK) { 2873 if (p->swap_file->f_mapping == mapping) { 2874 found = 1; 2875 break; 2876 } 2877 } 2878 } 2879 if (!found) { 2880 err = -EINVAL; 2881 spin_unlock(&swap_lock); 2882 goto out_dput; 2883 } 2884 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2885 vm_unacct_memory(p->pages); 2886 else { 2887 err = -ENOMEM; 2888 spin_unlock(&swap_lock); 2889 goto out_dput; 2890 } 2891 spin_lock(&p->lock); 2892 del_from_avail_list(p, true); 2893 if (p->prio < 0) { 2894 struct swap_info_struct *si = p; 2895 int nid; 2896 2897 plist_for_each_entry_continue(si, &swap_active_head, list) { 2898 si->prio++; 2899 si->list.prio--; 2900 for_each_node(nid) { 2901 if (si->avail_lists[nid].prio != 1) 2902 si->avail_lists[nid].prio--; 2903 } 2904 } 2905 least_priority++; 2906 } 2907 plist_del(&p->list, &swap_active_head); 2908 atomic_long_sub(p->pages, &nr_swap_pages); 2909 total_swap_pages -= p->pages; 2910 spin_unlock(&p->lock); 2911 spin_unlock(&swap_lock); 2912 2913 wait_for_allocation(p); 2914 2915 set_current_oom_origin(); 2916 err = try_to_unuse(p->type); 2917 clear_current_oom_origin(); 2918 2919 if (err) { 2920 /* re-insert swap space back into swap_list */ 2921 reinsert_swap_info(p); 2922 goto out_dput; 2923 } 2924 2925 /* 2926 * Wait for swap operations protected by get/put_swap_device() 2927 * to complete. Because of synchronize_rcu() here, all swap 2928 * operations protected by RCU reader side lock (including any 2929 * spinlock) will be waited too. This makes it easy to 2930 * prevent folio_test_swapcache() and the following swap cache 2931 * operations from racing with swapoff. 2932 */ 2933 percpu_ref_kill(&p->users); 2934 synchronize_rcu(); 2935 wait_for_completion(&p->comp); 2936 2937 flush_work(&p->discard_work); 2938 flush_work(&p->reclaim_work); 2939 flush_percpu_swap_cluster(p); 2940 2941 destroy_swap_extents(p); 2942 if (p->flags & SWP_CONTINUED) 2943 free_swap_count_continuations(p); 2944 2945 if (!p->bdev || !bdev_nonrot(p->bdev)) 2946 atomic_dec(&nr_rotate_swap); 2947 2948 mutex_lock(&swapon_mutex); 2949 spin_lock(&swap_lock); 2950 spin_lock(&p->lock); 2951 drain_mmlist(); 2952 2953 swap_file = p->swap_file; 2954 p->swap_file = NULL; 2955 swap_map = p->swap_map; 2956 p->swap_map = NULL; 2957 zeromap = p->zeromap; 2958 p->zeromap = NULL; 2959 maxpages = p->max; 2960 cluster_info = p->cluster_info; 2961 p->max = 0; 2962 p->cluster_info = NULL; 2963 spin_unlock(&p->lock); 2964 spin_unlock(&swap_lock); 2965 arch_swap_invalidate_area(p->type); 2966 zswap_swapoff(p->type); 2967 mutex_unlock(&swapon_mutex); 2968 kfree(p->global_cluster); 2969 p->global_cluster = NULL; 2970 vfree(swap_map); 2971 kvfree(zeromap); 2972 free_cluster_info(cluster_info, maxpages); 2973 /* Destroy swap account information */ 2974 swap_cgroup_swapoff(p->type); 2975 2976 inode = mapping->host; 2977 2978 inode_lock(inode); 2979 inode->i_flags &= ~S_SWAPFILE; 2980 inode_unlock(inode); 2981 filp_close(swap_file, NULL); 2982 2983 /* 2984 * Clear the SWP_USED flag after all resources are freed so that swapon 2985 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2986 * not hold p->lock after we cleared its SWP_WRITEOK. 2987 */ 2988 spin_lock(&swap_lock); 2989 p->flags = 0; 2990 spin_unlock(&swap_lock); 2991 2992 err = 0; 2993 atomic_inc(&proc_poll_event); 2994 wake_up_interruptible(&proc_poll_wait); 2995 2996 out_dput: 2997 filp_close(victim, NULL); 2998 out: 2999 putname(pathname); 3000 return err; 3001 } 3002 3003 #ifdef CONFIG_PROC_FS 3004 static __poll_t swaps_poll(struct file *file, poll_table *wait) 3005 { 3006 struct seq_file *seq = file->private_data; 3007 3008 poll_wait(file, &proc_poll_wait, wait); 3009 3010 if (seq->poll_event != atomic_read(&proc_poll_event)) { 3011 seq->poll_event = atomic_read(&proc_poll_event); 3012 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 3013 } 3014 3015 return EPOLLIN | EPOLLRDNORM; 3016 } 3017 3018 /* iterator */ 3019 static void *swap_start(struct seq_file *swap, loff_t *pos) 3020 { 3021 struct swap_info_struct *si; 3022 int type; 3023 loff_t l = *pos; 3024 3025 mutex_lock(&swapon_mutex); 3026 3027 if (!l) 3028 return SEQ_START_TOKEN; 3029 3030 for (type = 0; (si = swap_type_to_info(type)); type++) { 3031 if (!(si->flags & SWP_USED) || !si->swap_map) 3032 continue; 3033 if (!--l) 3034 return si; 3035 } 3036 3037 return NULL; 3038 } 3039 3040 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 3041 { 3042 struct swap_info_struct *si = v; 3043 int type; 3044 3045 if (v == SEQ_START_TOKEN) 3046 type = 0; 3047 else 3048 type = si->type + 1; 3049 3050 ++(*pos); 3051 for (; (si = swap_type_to_info(type)); type++) { 3052 if (!(si->flags & SWP_USED) || !si->swap_map) 3053 continue; 3054 return si; 3055 } 3056 3057 return NULL; 3058 } 3059 3060 static void swap_stop(struct seq_file *swap, void *v) 3061 { 3062 mutex_unlock(&swapon_mutex); 3063 } 3064 3065 static int swap_show(struct seq_file *swap, void *v) 3066 { 3067 struct swap_info_struct *si = v; 3068 struct file *file; 3069 int len; 3070 unsigned long bytes, inuse; 3071 3072 if (si == SEQ_START_TOKEN) { 3073 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 3074 return 0; 3075 } 3076 3077 bytes = K(si->pages); 3078 inuse = K(swap_usage_in_pages(si)); 3079 3080 file = si->swap_file; 3081 len = seq_file_path(swap, file, " \t\n\\"); 3082 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n", 3083 len < 40 ? 40 - len : 1, " ", 3084 S_ISBLK(file_inode(file)->i_mode) ? 3085 "partition" : "file\t", 3086 bytes, bytes < 10000000 ? "\t" : "", 3087 inuse, inuse < 10000000 ? "\t" : "", 3088 si->prio); 3089 return 0; 3090 } 3091 3092 static const struct seq_operations swaps_op = { 3093 .start = swap_start, 3094 .next = swap_next, 3095 .stop = swap_stop, 3096 .show = swap_show 3097 }; 3098 3099 static int swaps_open(struct inode *inode, struct file *file) 3100 { 3101 struct seq_file *seq; 3102 int ret; 3103 3104 ret = seq_open(file, &swaps_op); 3105 if (ret) 3106 return ret; 3107 3108 seq = file->private_data; 3109 seq->poll_event = atomic_read(&proc_poll_event); 3110 return 0; 3111 } 3112 3113 static const struct proc_ops swaps_proc_ops = { 3114 .proc_flags = PROC_ENTRY_PERMANENT, 3115 .proc_open = swaps_open, 3116 .proc_read = seq_read, 3117 .proc_lseek = seq_lseek, 3118 .proc_release = seq_release, 3119 .proc_poll = swaps_poll, 3120 }; 3121 3122 static int __init procswaps_init(void) 3123 { 3124 proc_create("swaps", 0, NULL, &swaps_proc_ops); 3125 return 0; 3126 } 3127 __initcall(procswaps_init); 3128 #endif /* CONFIG_PROC_FS */ 3129 3130 #ifdef MAX_SWAPFILES_CHECK 3131 static int __init max_swapfiles_check(void) 3132 { 3133 MAX_SWAPFILES_CHECK(); 3134 return 0; 3135 } 3136 late_initcall(max_swapfiles_check); 3137 #endif 3138 3139 static struct swap_info_struct *alloc_swap_info(void) 3140 { 3141 struct swap_info_struct *p; 3142 struct swap_info_struct *defer = NULL; 3143 unsigned int type; 3144 int i; 3145 3146 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 3147 if (!p) 3148 return ERR_PTR(-ENOMEM); 3149 3150 if (percpu_ref_init(&p->users, swap_users_ref_free, 3151 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { 3152 kvfree(p); 3153 return ERR_PTR(-ENOMEM); 3154 } 3155 3156 spin_lock(&swap_lock); 3157 for (type = 0; type < nr_swapfiles; type++) { 3158 if (!(swap_info[type]->flags & SWP_USED)) 3159 break; 3160 } 3161 if (type >= MAX_SWAPFILES) { 3162 spin_unlock(&swap_lock); 3163 percpu_ref_exit(&p->users); 3164 kvfree(p); 3165 return ERR_PTR(-EPERM); 3166 } 3167 if (type >= nr_swapfiles) { 3168 p->type = type; 3169 /* 3170 * Publish the swap_info_struct after initializing it. 3171 * Note that kvzalloc() above zeroes all its fields. 3172 */ 3173 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ 3174 nr_swapfiles++; 3175 } else { 3176 defer = p; 3177 p = swap_info[type]; 3178 /* 3179 * Do not memset this entry: a racing procfs swap_next() 3180 * would be relying on p->type to remain valid. 3181 */ 3182 } 3183 p->swap_extent_root = RB_ROOT; 3184 plist_node_init(&p->list, 0); 3185 for_each_node(i) 3186 plist_node_init(&p->avail_lists[i], 0); 3187 p->flags = SWP_USED; 3188 spin_unlock(&swap_lock); 3189 if (defer) { 3190 percpu_ref_exit(&defer->users); 3191 kvfree(defer); 3192 } 3193 spin_lock_init(&p->lock); 3194 spin_lock_init(&p->cont_lock); 3195 atomic_long_set(&p->inuse_pages, SWAP_USAGE_OFFLIST_BIT); 3196 init_completion(&p->comp); 3197 3198 return p; 3199 } 3200 3201 static int claim_swapfile(struct swap_info_struct *si, struct inode *inode) 3202 { 3203 if (S_ISBLK(inode->i_mode)) { 3204 si->bdev = I_BDEV(inode); 3205 /* 3206 * Zoned block devices contain zones that have a sequential 3207 * write only restriction. Hence zoned block devices are not 3208 * suitable for swapping. Disallow them here. 3209 */ 3210 if (bdev_is_zoned(si->bdev)) 3211 return -EINVAL; 3212 si->flags |= SWP_BLKDEV; 3213 } else if (S_ISREG(inode->i_mode)) { 3214 si->bdev = inode->i_sb->s_bdev; 3215 } 3216 3217 return 0; 3218 } 3219 3220 3221 /* 3222 * Find out how many pages are allowed for a single swap device. There 3223 * are two limiting factors: 3224 * 1) the number of bits for the swap offset in the swp_entry_t type, and 3225 * 2) the number of bits in the swap pte, as defined by the different 3226 * architectures. 3227 * 3228 * In order to find the largest possible bit mask, a swap entry with 3229 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 3230 * decoded to a swp_entry_t again, and finally the swap offset is 3231 * extracted. 3232 * 3233 * This will mask all the bits from the initial ~0UL mask that can't 3234 * be encoded in either the swp_entry_t or the architecture definition 3235 * of a swap pte. 3236 */ 3237 unsigned long generic_max_swapfile_size(void) 3238 { 3239 return swp_offset(pte_to_swp_entry( 3240 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 3241 } 3242 3243 /* Can be overridden by an architecture for additional checks. */ 3244 __weak unsigned long arch_max_swapfile_size(void) 3245 { 3246 return generic_max_swapfile_size(); 3247 } 3248 3249 static unsigned long read_swap_header(struct swap_info_struct *si, 3250 union swap_header *swap_header, 3251 struct inode *inode) 3252 { 3253 int i; 3254 unsigned long maxpages; 3255 unsigned long swapfilepages; 3256 unsigned long last_page; 3257 3258 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 3259 pr_err("Unable to find swap-space signature\n"); 3260 return 0; 3261 } 3262 3263 /* swap partition endianness hack... */ 3264 if (swab32(swap_header->info.version) == 1) { 3265 swab32s(&swap_header->info.version); 3266 swab32s(&swap_header->info.last_page); 3267 swab32s(&swap_header->info.nr_badpages); 3268 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 3269 return 0; 3270 for (i = 0; i < swap_header->info.nr_badpages; i++) 3271 swab32s(&swap_header->info.badpages[i]); 3272 } 3273 /* Check the swap header's sub-version */ 3274 if (swap_header->info.version != 1) { 3275 pr_warn("Unable to handle swap header version %d\n", 3276 swap_header->info.version); 3277 return 0; 3278 } 3279 3280 maxpages = swapfile_maximum_size; 3281 last_page = swap_header->info.last_page; 3282 if (!last_page) { 3283 pr_warn("Empty swap-file\n"); 3284 return 0; 3285 } 3286 if (last_page > maxpages) { 3287 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 3288 K(maxpages), K(last_page)); 3289 } 3290 if (maxpages > last_page) { 3291 maxpages = last_page + 1; 3292 /* p->max is an unsigned int: don't overflow it */ 3293 if ((unsigned int)maxpages == 0) 3294 maxpages = UINT_MAX; 3295 } 3296 3297 if (!maxpages) 3298 return 0; 3299 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 3300 if (swapfilepages && maxpages > swapfilepages) { 3301 pr_warn("Swap area shorter than signature indicates\n"); 3302 return 0; 3303 } 3304 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 3305 return 0; 3306 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 3307 return 0; 3308 3309 return maxpages; 3310 } 3311 3312 static int setup_swap_map(struct swap_info_struct *si, 3313 union swap_header *swap_header, 3314 unsigned char *swap_map, 3315 unsigned long maxpages) 3316 { 3317 unsigned long i; 3318 3319 swap_map[0] = SWAP_MAP_BAD; /* omit header page */ 3320 for (i = 0; i < swap_header->info.nr_badpages; i++) { 3321 unsigned int page_nr = swap_header->info.badpages[i]; 3322 if (page_nr == 0 || page_nr > swap_header->info.last_page) 3323 return -EINVAL; 3324 if (page_nr < maxpages) { 3325 swap_map[page_nr] = SWAP_MAP_BAD; 3326 si->pages--; 3327 } 3328 } 3329 3330 if (!si->pages) { 3331 pr_warn("Empty swap-file\n"); 3332 return -EINVAL; 3333 } 3334 3335 return 0; 3336 } 3337 3338 static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si, 3339 union swap_header *swap_header, 3340 unsigned long maxpages) 3341 { 3342 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3343 struct swap_cluster_info *cluster_info; 3344 int err = -ENOMEM; 3345 unsigned long i; 3346 3347 cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL); 3348 if (!cluster_info) 3349 goto err; 3350 3351 for (i = 0; i < nr_clusters; i++) 3352 spin_lock_init(&cluster_info[i].lock); 3353 3354 if (!(si->flags & SWP_SOLIDSTATE)) { 3355 si->global_cluster = kmalloc(sizeof(*si->global_cluster), 3356 GFP_KERNEL); 3357 if (!si->global_cluster) 3358 goto err_free; 3359 for (i = 0; i < SWAP_NR_ORDERS; i++) 3360 si->global_cluster->next[i] = SWAP_ENTRY_INVALID; 3361 spin_lock_init(&si->global_cluster_lock); 3362 } 3363 3364 /* 3365 * Mark unusable pages as unavailable. The clusters aren't 3366 * marked free yet, so no list operations are involved yet. 3367 * 3368 * See setup_swap_map(): header page, bad pages, 3369 * and the EOF part of the last cluster. 3370 */ 3371 err = inc_cluster_info_page(si, cluster_info, 0); 3372 if (err) 3373 goto err; 3374 for (i = 0; i < swap_header->info.nr_badpages; i++) { 3375 unsigned int page_nr = swap_header->info.badpages[i]; 3376 3377 if (page_nr >= maxpages) 3378 continue; 3379 err = inc_cluster_info_page(si, cluster_info, page_nr); 3380 if (err) 3381 goto err; 3382 } 3383 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) { 3384 err = inc_cluster_info_page(si, cluster_info, i); 3385 if (err) 3386 goto err; 3387 } 3388 3389 INIT_LIST_HEAD(&si->free_clusters); 3390 INIT_LIST_HEAD(&si->full_clusters); 3391 INIT_LIST_HEAD(&si->discard_clusters); 3392 3393 for (i = 0; i < SWAP_NR_ORDERS; i++) { 3394 INIT_LIST_HEAD(&si->nonfull_clusters[i]); 3395 INIT_LIST_HEAD(&si->frag_clusters[i]); 3396 } 3397 3398 for (i = 0; i < nr_clusters; i++) { 3399 struct swap_cluster_info *ci = &cluster_info[i]; 3400 3401 if (ci->count) { 3402 ci->flags = CLUSTER_FLAG_NONFULL; 3403 list_add_tail(&ci->list, &si->nonfull_clusters[0]); 3404 } else { 3405 ci->flags = CLUSTER_FLAG_FREE; 3406 list_add_tail(&ci->list, &si->free_clusters); 3407 } 3408 } 3409 3410 return cluster_info; 3411 err_free: 3412 free_cluster_info(cluster_info, maxpages); 3413 err: 3414 return ERR_PTR(err); 3415 } 3416 3417 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 3418 { 3419 struct swap_info_struct *si; 3420 struct filename *name; 3421 struct file *swap_file = NULL; 3422 struct address_space *mapping; 3423 struct dentry *dentry; 3424 int prio; 3425 int error; 3426 union swap_header *swap_header; 3427 int nr_extents; 3428 sector_t span; 3429 unsigned long maxpages; 3430 unsigned char *swap_map = NULL; 3431 unsigned long *zeromap = NULL; 3432 struct swap_cluster_info *cluster_info = NULL; 3433 struct folio *folio = NULL; 3434 struct inode *inode = NULL; 3435 bool inced_nr_rotate_swap = false; 3436 3437 if (swap_flags & ~SWAP_FLAGS_VALID) 3438 return -EINVAL; 3439 3440 if (!capable(CAP_SYS_ADMIN)) 3441 return -EPERM; 3442 3443 if (!swap_avail_heads) 3444 return -ENOMEM; 3445 3446 si = alloc_swap_info(); 3447 if (IS_ERR(si)) 3448 return PTR_ERR(si); 3449 3450 INIT_WORK(&si->discard_work, swap_discard_work); 3451 INIT_WORK(&si->reclaim_work, swap_reclaim_work); 3452 3453 name = getname(specialfile); 3454 if (IS_ERR(name)) { 3455 error = PTR_ERR(name); 3456 name = NULL; 3457 goto bad_swap; 3458 } 3459 swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0); 3460 if (IS_ERR(swap_file)) { 3461 error = PTR_ERR(swap_file); 3462 swap_file = NULL; 3463 goto bad_swap; 3464 } 3465 3466 si->swap_file = swap_file; 3467 mapping = swap_file->f_mapping; 3468 dentry = swap_file->f_path.dentry; 3469 inode = mapping->host; 3470 3471 error = claim_swapfile(si, inode); 3472 if (unlikely(error)) 3473 goto bad_swap; 3474 3475 inode_lock(inode); 3476 if (d_unlinked(dentry) || cant_mount(dentry)) { 3477 error = -ENOENT; 3478 goto bad_swap_unlock_inode; 3479 } 3480 if (IS_SWAPFILE(inode)) { 3481 error = -EBUSY; 3482 goto bad_swap_unlock_inode; 3483 } 3484 3485 /* 3486 * The swap subsystem needs a major overhaul to support this. 3487 * It doesn't work yet so just disable it for now. 3488 */ 3489 if (mapping_min_folio_order(mapping) > 0) { 3490 error = -EINVAL; 3491 goto bad_swap_unlock_inode; 3492 } 3493 3494 /* 3495 * Read the swap header. 3496 */ 3497 if (!mapping->a_ops->read_folio) { 3498 error = -EINVAL; 3499 goto bad_swap_unlock_inode; 3500 } 3501 folio = read_mapping_folio(mapping, 0, swap_file); 3502 if (IS_ERR(folio)) { 3503 error = PTR_ERR(folio); 3504 goto bad_swap_unlock_inode; 3505 } 3506 swap_header = kmap_local_folio(folio, 0); 3507 3508 maxpages = read_swap_header(si, swap_header, inode); 3509 if (unlikely(!maxpages)) { 3510 error = -EINVAL; 3511 goto bad_swap_unlock_inode; 3512 } 3513 3514 si->max = maxpages; 3515 si->pages = maxpages - 1; 3516 nr_extents = setup_swap_extents(si, &span); 3517 if (nr_extents < 0) { 3518 error = nr_extents; 3519 goto bad_swap_unlock_inode; 3520 } 3521 if (si->pages != si->max - 1) { 3522 pr_err("swap:%u != (max:%u - 1)\n", si->pages, si->max); 3523 error = -EINVAL; 3524 goto bad_swap_unlock_inode; 3525 } 3526 3527 maxpages = si->max; 3528 3529 /* OK, set up the swap map and apply the bad block list */ 3530 swap_map = vzalloc(maxpages); 3531 if (!swap_map) { 3532 error = -ENOMEM; 3533 goto bad_swap_unlock_inode; 3534 } 3535 3536 error = swap_cgroup_swapon(si->type, maxpages); 3537 if (error) 3538 goto bad_swap_unlock_inode; 3539 3540 error = setup_swap_map(si, swap_header, swap_map, maxpages); 3541 if (error) 3542 goto bad_swap_unlock_inode; 3543 3544 /* 3545 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might 3546 * be above MAX_PAGE_ORDER incase of a large swap file. 3547 */ 3548 zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long), 3549 GFP_KERNEL | __GFP_ZERO); 3550 if (!zeromap) { 3551 error = -ENOMEM; 3552 goto bad_swap_unlock_inode; 3553 } 3554 3555 if (si->bdev && bdev_stable_writes(si->bdev)) 3556 si->flags |= SWP_STABLE_WRITES; 3557 3558 if (si->bdev && bdev_synchronous(si->bdev)) 3559 si->flags |= SWP_SYNCHRONOUS_IO; 3560 3561 if (si->bdev && bdev_nonrot(si->bdev)) { 3562 si->flags |= SWP_SOLIDSTATE; 3563 } else { 3564 atomic_inc(&nr_rotate_swap); 3565 inced_nr_rotate_swap = true; 3566 } 3567 3568 cluster_info = setup_clusters(si, swap_header, maxpages); 3569 if (IS_ERR(cluster_info)) { 3570 error = PTR_ERR(cluster_info); 3571 cluster_info = NULL; 3572 goto bad_swap_unlock_inode; 3573 } 3574 3575 if ((swap_flags & SWAP_FLAG_DISCARD) && 3576 si->bdev && bdev_max_discard_sectors(si->bdev)) { 3577 /* 3578 * When discard is enabled for swap with no particular 3579 * policy flagged, we set all swap discard flags here in 3580 * order to sustain backward compatibility with older 3581 * swapon(8) releases. 3582 */ 3583 si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3584 SWP_PAGE_DISCARD); 3585 3586 /* 3587 * By flagging sys_swapon, a sysadmin can tell us to 3588 * either do single-time area discards only, or to just 3589 * perform discards for released swap page-clusters. 3590 * Now it's time to adjust the p->flags accordingly. 3591 */ 3592 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3593 si->flags &= ~SWP_PAGE_DISCARD; 3594 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3595 si->flags &= ~SWP_AREA_DISCARD; 3596 3597 /* issue a swapon-time discard if it's still required */ 3598 if (si->flags & SWP_AREA_DISCARD) { 3599 int err = discard_swap(si); 3600 if (unlikely(err)) 3601 pr_err("swapon: discard_swap(%p): %d\n", 3602 si, err); 3603 } 3604 } 3605 3606 error = zswap_swapon(si->type, maxpages); 3607 if (error) 3608 goto bad_swap_unlock_inode; 3609 3610 /* 3611 * Flush any pending IO and dirty mappings before we start using this 3612 * swap device. 3613 */ 3614 inode->i_flags |= S_SWAPFILE; 3615 error = inode_drain_writes(inode); 3616 if (error) { 3617 inode->i_flags &= ~S_SWAPFILE; 3618 goto free_swap_zswap; 3619 } 3620 3621 mutex_lock(&swapon_mutex); 3622 prio = -1; 3623 if (swap_flags & SWAP_FLAG_PREFER) 3624 prio = swap_flags & SWAP_FLAG_PRIO_MASK; 3625 enable_swap_info(si, prio, swap_map, cluster_info, zeromap); 3626 3627 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n", 3628 K(si->pages), name->name, si->prio, nr_extents, 3629 K((unsigned long long)span), 3630 (si->flags & SWP_SOLIDSTATE) ? "SS" : "", 3631 (si->flags & SWP_DISCARDABLE) ? "D" : "", 3632 (si->flags & SWP_AREA_DISCARD) ? "s" : "", 3633 (si->flags & SWP_PAGE_DISCARD) ? "c" : ""); 3634 3635 mutex_unlock(&swapon_mutex); 3636 atomic_inc(&proc_poll_event); 3637 wake_up_interruptible(&proc_poll_wait); 3638 3639 error = 0; 3640 goto out; 3641 free_swap_zswap: 3642 zswap_swapoff(si->type); 3643 bad_swap_unlock_inode: 3644 inode_unlock(inode); 3645 bad_swap: 3646 kfree(si->global_cluster); 3647 si->global_cluster = NULL; 3648 inode = NULL; 3649 destroy_swap_extents(si); 3650 swap_cgroup_swapoff(si->type); 3651 spin_lock(&swap_lock); 3652 si->swap_file = NULL; 3653 si->flags = 0; 3654 spin_unlock(&swap_lock); 3655 vfree(swap_map); 3656 kvfree(zeromap); 3657 if (cluster_info) 3658 free_cluster_info(cluster_info, maxpages); 3659 if (inced_nr_rotate_swap) 3660 atomic_dec(&nr_rotate_swap); 3661 if (swap_file) 3662 filp_close(swap_file, NULL); 3663 out: 3664 if (!IS_ERR_OR_NULL(folio)) 3665 folio_release_kmap(folio, swap_header); 3666 if (name) 3667 putname(name); 3668 if (inode) 3669 inode_unlock(inode); 3670 return error; 3671 } 3672 3673 void si_swapinfo(struct sysinfo *val) 3674 { 3675 unsigned int type; 3676 unsigned long nr_to_be_unused = 0; 3677 3678 spin_lock(&swap_lock); 3679 for (type = 0; type < nr_swapfiles; type++) { 3680 struct swap_info_struct *si = swap_info[type]; 3681 3682 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3683 nr_to_be_unused += swap_usage_in_pages(si); 3684 } 3685 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3686 val->totalswap = total_swap_pages + nr_to_be_unused; 3687 spin_unlock(&swap_lock); 3688 } 3689 3690 /* 3691 * Verify that nr swap entries are valid and increment their swap map counts. 3692 * 3693 * Returns error code in following case. 3694 * - success -> 0 3695 * - swp_entry is invalid -> EINVAL 3696 * - swap-cache reference is requested but there is already one. -> EEXIST 3697 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3698 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3699 */ 3700 static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr) 3701 { 3702 struct swap_info_struct *si; 3703 struct swap_cluster_info *ci; 3704 unsigned long offset; 3705 unsigned char count; 3706 unsigned char has_cache; 3707 int err, i; 3708 3709 si = swap_entry_to_info(entry); 3710 if (WARN_ON_ONCE(!si)) { 3711 pr_err("%s%08lx\n", Bad_file, entry.val); 3712 return -EINVAL; 3713 } 3714 3715 offset = swp_offset(entry); 3716 VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER); 3717 VM_WARN_ON(usage == 1 && nr > 1); 3718 ci = swap_cluster_lock(si, offset); 3719 3720 err = 0; 3721 for (i = 0; i < nr; i++) { 3722 count = si->swap_map[offset + i]; 3723 3724 /* 3725 * swapin_readahead() doesn't check if a swap entry is valid, so the 3726 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3727 */ 3728 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3729 err = -ENOENT; 3730 goto unlock_out; 3731 } 3732 3733 has_cache = count & SWAP_HAS_CACHE; 3734 count &= ~SWAP_HAS_CACHE; 3735 3736 if (!count && !has_cache) { 3737 err = -ENOENT; 3738 } else if (usage == SWAP_HAS_CACHE) { 3739 if (has_cache) 3740 err = -EEXIST; 3741 } else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) { 3742 err = -EINVAL; 3743 } 3744 3745 if (err) 3746 goto unlock_out; 3747 } 3748 3749 for (i = 0; i < nr; i++) { 3750 count = si->swap_map[offset + i]; 3751 has_cache = count & SWAP_HAS_CACHE; 3752 count &= ~SWAP_HAS_CACHE; 3753 3754 if (usage == SWAP_HAS_CACHE) 3755 has_cache = SWAP_HAS_CACHE; 3756 else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3757 count += usage; 3758 else if (swap_count_continued(si, offset + i, count)) 3759 count = COUNT_CONTINUED; 3760 else { 3761 /* 3762 * Don't need to rollback changes, because if 3763 * usage == 1, there must be nr == 1. 3764 */ 3765 err = -ENOMEM; 3766 goto unlock_out; 3767 } 3768 3769 WRITE_ONCE(si->swap_map[offset + i], count | has_cache); 3770 } 3771 3772 unlock_out: 3773 swap_cluster_unlock(ci); 3774 return err; 3775 } 3776 3777 /* 3778 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3779 * (in which case its reference count is never incremented). 3780 */ 3781 void swap_shmem_alloc(swp_entry_t entry, int nr) 3782 { 3783 __swap_duplicate(entry, SWAP_MAP_SHMEM, nr); 3784 } 3785 3786 /* 3787 * Increase reference count of swap entry by 1. 3788 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3789 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3790 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3791 * might occur if a page table entry has got corrupted. 3792 */ 3793 int swap_duplicate(swp_entry_t entry) 3794 { 3795 int err = 0; 3796 3797 while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM) 3798 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3799 return err; 3800 } 3801 3802 /* 3803 * @entry: first swap entry from which we allocate nr swap cache. 3804 * 3805 * Called when allocating swap cache for existing swap entries, 3806 * This can return error codes. Returns 0 at success. 3807 * -EEXIST means there is a swap cache. 3808 * Note: return code is different from swap_duplicate(). 3809 */ 3810 int swapcache_prepare(swp_entry_t entry, int nr) 3811 { 3812 return __swap_duplicate(entry, SWAP_HAS_CACHE, nr); 3813 } 3814 3815 /* 3816 * Caller should ensure entries belong to the same folio so 3817 * the entries won't span cross cluster boundary. 3818 */ 3819 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr) 3820 { 3821 swap_entries_put_cache(si, entry, nr); 3822 } 3823 3824 /* 3825 * add_swap_count_continuation - called when a swap count is duplicated 3826 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3827 * page of the original vmalloc'ed swap_map, to hold the continuation count 3828 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3829 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3830 * 3831 * These continuation pages are seldom referenced: the common paths all work 3832 * on the original swap_map, only referring to a continuation page when the 3833 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3834 * 3835 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3836 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3837 * can be called after dropping locks. 3838 */ 3839 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3840 { 3841 struct swap_info_struct *si; 3842 struct swap_cluster_info *ci; 3843 struct page *head; 3844 struct page *page; 3845 struct page *list_page; 3846 pgoff_t offset; 3847 unsigned char count; 3848 int ret = 0; 3849 3850 /* 3851 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3852 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3853 */ 3854 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3855 3856 si = get_swap_device(entry); 3857 if (!si) { 3858 /* 3859 * An acceptable race has occurred since the failing 3860 * __swap_duplicate(): the swap device may be swapoff 3861 */ 3862 goto outer; 3863 } 3864 3865 offset = swp_offset(entry); 3866 3867 ci = swap_cluster_lock(si, offset); 3868 3869 count = swap_count(si->swap_map[offset]); 3870 3871 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3872 /* 3873 * The higher the swap count, the more likely it is that tasks 3874 * will race to add swap count continuation: we need to avoid 3875 * over-provisioning. 3876 */ 3877 goto out; 3878 } 3879 3880 if (!page) { 3881 ret = -ENOMEM; 3882 goto out; 3883 } 3884 3885 head = vmalloc_to_page(si->swap_map + offset); 3886 offset &= ~PAGE_MASK; 3887 3888 spin_lock(&si->cont_lock); 3889 /* 3890 * Page allocation does not initialize the page's lru field, 3891 * but it does always reset its private field. 3892 */ 3893 if (!page_private(head)) { 3894 BUG_ON(count & COUNT_CONTINUED); 3895 INIT_LIST_HEAD(&head->lru); 3896 set_page_private(head, SWP_CONTINUED); 3897 si->flags |= SWP_CONTINUED; 3898 } 3899 3900 list_for_each_entry(list_page, &head->lru, lru) { 3901 unsigned char *map; 3902 3903 /* 3904 * If the previous map said no continuation, but we've found 3905 * a continuation page, free our allocation and use this one. 3906 */ 3907 if (!(count & COUNT_CONTINUED)) 3908 goto out_unlock_cont; 3909 3910 map = kmap_local_page(list_page) + offset; 3911 count = *map; 3912 kunmap_local(map); 3913 3914 /* 3915 * If this continuation count now has some space in it, 3916 * free our allocation and use this one. 3917 */ 3918 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3919 goto out_unlock_cont; 3920 } 3921 3922 list_add_tail(&page->lru, &head->lru); 3923 page = NULL; /* now it's attached, don't free it */ 3924 out_unlock_cont: 3925 spin_unlock(&si->cont_lock); 3926 out: 3927 swap_cluster_unlock(ci); 3928 put_swap_device(si); 3929 outer: 3930 if (page) 3931 __free_page(page); 3932 return ret; 3933 } 3934 3935 /* 3936 * swap_count_continued - when the original swap_map count is incremented 3937 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3938 * into, carry if so, or else fail until a new continuation page is allocated; 3939 * when the original swap_map count is decremented from 0 with continuation, 3940 * borrow from the continuation and report whether it still holds more. 3941 * Called while __swap_duplicate() or caller of swap_entry_put_locked() 3942 * holds cluster lock. 3943 */ 3944 static bool swap_count_continued(struct swap_info_struct *si, 3945 pgoff_t offset, unsigned char count) 3946 { 3947 struct page *head; 3948 struct page *page; 3949 unsigned char *map; 3950 bool ret; 3951 3952 head = vmalloc_to_page(si->swap_map + offset); 3953 if (page_private(head) != SWP_CONTINUED) { 3954 BUG_ON(count & COUNT_CONTINUED); 3955 return false; /* need to add count continuation */ 3956 } 3957 3958 spin_lock(&si->cont_lock); 3959 offset &= ~PAGE_MASK; 3960 page = list_next_entry(head, lru); 3961 map = kmap_local_page(page) + offset; 3962 3963 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3964 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3965 3966 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3967 /* 3968 * Think of how you add 1 to 999 3969 */ 3970 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3971 kunmap_local(map); 3972 page = list_next_entry(page, lru); 3973 BUG_ON(page == head); 3974 map = kmap_local_page(page) + offset; 3975 } 3976 if (*map == SWAP_CONT_MAX) { 3977 kunmap_local(map); 3978 page = list_next_entry(page, lru); 3979 if (page == head) { 3980 ret = false; /* add count continuation */ 3981 goto out; 3982 } 3983 map = kmap_local_page(page) + offset; 3984 init_map: *map = 0; /* we didn't zero the page */ 3985 } 3986 *map += 1; 3987 kunmap_local(map); 3988 while ((page = list_prev_entry(page, lru)) != head) { 3989 map = kmap_local_page(page) + offset; 3990 *map = COUNT_CONTINUED; 3991 kunmap_local(map); 3992 } 3993 ret = true; /* incremented */ 3994 3995 } else { /* decrementing */ 3996 /* 3997 * Think of how you subtract 1 from 1000 3998 */ 3999 BUG_ON(count != COUNT_CONTINUED); 4000 while (*map == COUNT_CONTINUED) { 4001 kunmap_local(map); 4002 page = list_next_entry(page, lru); 4003 BUG_ON(page == head); 4004 map = kmap_local_page(page) + offset; 4005 } 4006 BUG_ON(*map == 0); 4007 *map -= 1; 4008 if (*map == 0) 4009 count = 0; 4010 kunmap_local(map); 4011 while ((page = list_prev_entry(page, lru)) != head) { 4012 map = kmap_local_page(page) + offset; 4013 *map = SWAP_CONT_MAX | count; 4014 count = COUNT_CONTINUED; 4015 kunmap_local(map); 4016 } 4017 ret = count == COUNT_CONTINUED; 4018 } 4019 out: 4020 spin_unlock(&si->cont_lock); 4021 return ret; 4022 } 4023 4024 /* 4025 * free_swap_count_continuations - swapoff free all the continuation pages 4026 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 4027 */ 4028 static void free_swap_count_continuations(struct swap_info_struct *si) 4029 { 4030 pgoff_t offset; 4031 4032 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 4033 struct page *head; 4034 head = vmalloc_to_page(si->swap_map + offset); 4035 if (page_private(head)) { 4036 struct page *page, *next; 4037 4038 list_for_each_entry_safe(page, next, &head->lru, lru) { 4039 list_del(&page->lru); 4040 __free_page(page); 4041 } 4042 } 4043 } 4044 } 4045 4046 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 4047 static bool __has_usable_swap(void) 4048 { 4049 return !plist_head_empty(&swap_active_head); 4050 } 4051 4052 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp) 4053 { 4054 struct swap_info_struct *si, *next; 4055 int nid = folio_nid(folio); 4056 4057 if (!(gfp & __GFP_IO)) 4058 return; 4059 4060 if (!__has_usable_swap()) 4061 return; 4062 4063 if (!blk_cgroup_congested()) 4064 return; 4065 4066 /* 4067 * We've already scheduled a throttle, avoid taking the global swap 4068 * lock. 4069 */ 4070 if (current->throttle_disk) 4071 return; 4072 4073 spin_lock(&swap_avail_lock); 4074 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], 4075 avail_lists[nid]) { 4076 if (si->bdev) { 4077 blkcg_schedule_throttle(si->bdev->bd_disk, true); 4078 break; 4079 } 4080 } 4081 spin_unlock(&swap_avail_lock); 4082 } 4083 #endif 4084 4085 static int __init swapfile_init(void) 4086 { 4087 int nid; 4088 4089 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 4090 GFP_KERNEL); 4091 if (!swap_avail_heads) { 4092 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 4093 return -ENOMEM; 4094 } 4095 4096 for_each_node(nid) 4097 plist_head_init(&swap_avail_heads[nid]); 4098 4099 swapfile_maximum_size = arch_max_swapfile_size(); 4100 4101 /* 4102 * Once a cluster is freed, it's swap table content is read 4103 * only, and all swap cache readers (swap_cache_*) verifies 4104 * the content before use. So it's safe to use RCU slab here. 4105 */ 4106 if (!SWP_TABLE_USE_PAGE) 4107 swap_table_cachep = kmem_cache_create("swap_table", 4108 sizeof(struct swap_table), 4109 0, SLAB_PANIC | SLAB_TYPESAFE_BY_RCU, NULL); 4110 4111 #ifdef CONFIG_MIGRATION 4112 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS)) 4113 swap_migration_ad_supported = true; 4114 #endif /* CONFIG_MIGRATION */ 4115 4116 return 0; 4117 } 4118 subsys_initcall(swapfile_init); 4119