1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/hugetlb.h> 10 #include <linux/mman.h> 11 #include <linux/slab.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/shmem_fs.h> 18 #include <linux/blkdev.h> 19 #include <linux/random.h> 20 #include <linux/writeback.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/init.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/security.h> 27 #include <linux/backing-dev.h> 28 #include <linux/mutex.h> 29 #include <linux/capability.h> 30 #include <linux/syscalls.h> 31 #include <linux/memcontrol.h> 32 #include <linux/poll.h> 33 #include <linux/oom.h> 34 #include <linux/frontswap.h> 35 #include <linux/swapfile.h> 36 #include <linux/export.h> 37 38 #include <asm/pgtable.h> 39 #include <asm/tlbflush.h> 40 #include <linux/swapops.h> 41 #include <linux/swap_cgroup.h> 42 43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 44 unsigned char); 45 static void free_swap_count_continuations(struct swap_info_struct *); 46 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 47 48 DEFINE_SPINLOCK(swap_lock); 49 static unsigned int nr_swapfiles; 50 atomic_long_t nr_swap_pages; 51 /* 52 * Some modules use swappable objects and may try to swap them out under 53 * memory pressure (via the shrinker). Before doing so, they may wish to 54 * check to see if any swap space is available. 55 */ 56 EXPORT_SYMBOL_GPL(nr_swap_pages); 57 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 58 long total_swap_pages; 59 static int least_priority; 60 61 static const char Bad_file[] = "Bad swap file entry "; 62 static const char Unused_file[] = "Unused swap file entry "; 63 static const char Bad_offset[] = "Bad swap offset entry "; 64 static const char Unused_offset[] = "Unused swap offset entry "; 65 66 /* 67 * all active swap_info_structs 68 * protected with swap_lock, and ordered by priority. 69 */ 70 PLIST_HEAD(swap_active_head); 71 72 /* 73 * all available (active, not full) swap_info_structs 74 * protected with swap_avail_lock, ordered by priority. 75 * This is used by get_swap_page() instead of swap_active_head 76 * because swap_active_head includes all swap_info_structs, 77 * but get_swap_page() doesn't need to look at full ones. 78 * This uses its own lock instead of swap_lock because when a 79 * swap_info_struct changes between not-full/full, it needs to 80 * add/remove itself to/from this list, but the swap_info_struct->lock 81 * is held and the locking order requires swap_lock to be taken 82 * before any swap_info_struct->lock. 83 */ 84 static PLIST_HEAD(swap_avail_head); 85 static DEFINE_SPINLOCK(swap_avail_lock); 86 87 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 88 89 static DEFINE_MUTEX(swapon_mutex); 90 91 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 92 /* Activity counter to indicate that a swapon or swapoff has occurred */ 93 static atomic_t proc_poll_event = ATOMIC_INIT(0); 94 95 static inline unsigned char swap_count(unsigned char ent) 96 { 97 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */ 98 } 99 100 /* returns 1 if swap entry is freed */ 101 static int 102 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) 103 { 104 swp_entry_t entry = swp_entry(si->type, offset); 105 struct page *page; 106 int ret = 0; 107 108 page = find_get_page(swap_address_space(entry), entry.val); 109 if (!page) 110 return 0; 111 /* 112 * This function is called from scan_swap_map() and it's called 113 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. 114 * We have to use trylock for avoiding deadlock. This is a special 115 * case and you should use try_to_free_swap() with explicit lock_page() 116 * in usual operations. 117 */ 118 if (trylock_page(page)) { 119 ret = try_to_free_swap(page); 120 unlock_page(page); 121 } 122 put_page(page); 123 return ret; 124 } 125 126 /* 127 * swapon tell device that all the old swap contents can be discarded, 128 * to allow the swap device to optimize its wear-levelling. 129 */ 130 static int discard_swap(struct swap_info_struct *si) 131 { 132 struct swap_extent *se; 133 sector_t start_block; 134 sector_t nr_blocks; 135 int err = 0; 136 137 /* Do not discard the swap header page! */ 138 se = &si->first_swap_extent; 139 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 140 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 141 if (nr_blocks) { 142 err = blkdev_issue_discard(si->bdev, start_block, 143 nr_blocks, GFP_KERNEL, 0); 144 if (err) 145 return err; 146 cond_resched(); 147 } 148 149 list_for_each_entry(se, &si->first_swap_extent.list, list) { 150 start_block = se->start_block << (PAGE_SHIFT - 9); 151 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 152 153 err = blkdev_issue_discard(si->bdev, start_block, 154 nr_blocks, GFP_KERNEL, 0); 155 if (err) 156 break; 157 158 cond_resched(); 159 } 160 return err; /* That will often be -EOPNOTSUPP */ 161 } 162 163 /* 164 * swap allocation tell device that a cluster of swap can now be discarded, 165 * to allow the swap device to optimize its wear-levelling. 166 */ 167 static void discard_swap_cluster(struct swap_info_struct *si, 168 pgoff_t start_page, pgoff_t nr_pages) 169 { 170 struct swap_extent *se = si->curr_swap_extent; 171 int found_extent = 0; 172 173 while (nr_pages) { 174 if (se->start_page <= start_page && 175 start_page < se->start_page + se->nr_pages) { 176 pgoff_t offset = start_page - se->start_page; 177 sector_t start_block = se->start_block + offset; 178 sector_t nr_blocks = se->nr_pages - offset; 179 180 if (nr_blocks > nr_pages) 181 nr_blocks = nr_pages; 182 start_page += nr_blocks; 183 nr_pages -= nr_blocks; 184 185 if (!found_extent++) 186 si->curr_swap_extent = se; 187 188 start_block <<= PAGE_SHIFT - 9; 189 nr_blocks <<= PAGE_SHIFT - 9; 190 if (blkdev_issue_discard(si->bdev, start_block, 191 nr_blocks, GFP_NOIO, 0)) 192 break; 193 } 194 195 se = list_next_entry(se, list); 196 } 197 } 198 199 #define SWAPFILE_CLUSTER 256 200 #define LATENCY_LIMIT 256 201 202 static inline void cluster_set_flag(struct swap_cluster_info *info, 203 unsigned int flag) 204 { 205 info->flags = flag; 206 } 207 208 static inline unsigned int cluster_count(struct swap_cluster_info *info) 209 { 210 return info->data; 211 } 212 213 static inline void cluster_set_count(struct swap_cluster_info *info, 214 unsigned int c) 215 { 216 info->data = c; 217 } 218 219 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 220 unsigned int c, unsigned int f) 221 { 222 info->flags = f; 223 info->data = c; 224 } 225 226 static inline unsigned int cluster_next(struct swap_cluster_info *info) 227 { 228 return info->data; 229 } 230 231 static inline void cluster_set_next(struct swap_cluster_info *info, 232 unsigned int n) 233 { 234 info->data = n; 235 } 236 237 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 238 unsigned int n, unsigned int f) 239 { 240 info->flags = f; 241 info->data = n; 242 } 243 244 static inline bool cluster_is_free(struct swap_cluster_info *info) 245 { 246 return info->flags & CLUSTER_FLAG_FREE; 247 } 248 249 static inline bool cluster_is_null(struct swap_cluster_info *info) 250 { 251 return info->flags & CLUSTER_FLAG_NEXT_NULL; 252 } 253 254 static inline void cluster_set_null(struct swap_cluster_info *info) 255 { 256 info->flags = CLUSTER_FLAG_NEXT_NULL; 257 info->data = 0; 258 } 259 260 /* Add a cluster to discard list and schedule it to do discard */ 261 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 262 unsigned int idx) 263 { 264 /* 265 * If scan_swap_map() can't find a free cluster, it will check 266 * si->swap_map directly. To make sure the discarding cluster isn't 267 * taken by scan_swap_map(), mark the swap entries bad (occupied). It 268 * will be cleared after discard 269 */ 270 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 271 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 272 273 if (cluster_is_null(&si->discard_cluster_head)) { 274 cluster_set_next_flag(&si->discard_cluster_head, 275 idx, 0); 276 cluster_set_next_flag(&si->discard_cluster_tail, 277 idx, 0); 278 } else { 279 unsigned int tail = cluster_next(&si->discard_cluster_tail); 280 cluster_set_next(&si->cluster_info[tail], idx); 281 cluster_set_next_flag(&si->discard_cluster_tail, 282 idx, 0); 283 } 284 285 schedule_work(&si->discard_work); 286 } 287 288 /* 289 * Doing discard actually. After a cluster discard is finished, the cluster 290 * will be added to free cluster list. caller should hold si->lock. 291 */ 292 static void swap_do_scheduled_discard(struct swap_info_struct *si) 293 { 294 struct swap_cluster_info *info; 295 unsigned int idx; 296 297 info = si->cluster_info; 298 299 while (!cluster_is_null(&si->discard_cluster_head)) { 300 idx = cluster_next(&si->discard_cluster_head); 301 302 cluster_set_next_flag(&si->discard_cluster_head, 303 cluster_next(&info[idx]), 0); 304 if (cluster_next(&si->discard_cluster_tail) == idx) { 305 cluster_set_null(&si->discard_cluster_head); 306 cluster_set_null(&si->discard_cluster_tail); 307 } 308 spin_unlock(&si->lock); 309 310 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 311 SWAPFILE_CLUSTER); 312 313 spin_lock(&si->lock); 314 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE); 315 if (cluster_is_null(&si->free_cluster_head)) { 316 cluster_set_next_flag(&si->free_cluster_head, 317 idx, 0); 318 cluster_set_next_flag(&si->free_cluster_tail, 319 idx, 0); 320 } else { 321 unsigned int tail; 322 323 tail = cluster_next(&si->free_cluster_tail); 324 cluster_set_next(&info[tail], idx); 325 cluster_set_next_flag(&si->free_cluster_tail, 326 idx, 0); 327 } 328 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 329 0, SWAPFILE_CLUSTER); 330 } 331 } 332 333 static void swap_discard_work(struct work_struct *work) 334 { 335 struct swap_info_struct *si; 336 337 si = container_of(work, struct swap_info_struct, discard_work); 338 339 spin_lock(&si->lock); 340 swap_do_scheduled_discard(si); 341 spin_unlock(&si->lock); 342 } 343 344 /* 345 * The cluster corresponding to page_nr will be used. The cluster will be 346 * removed from free cluster list and its usage counter will be increased. 347 */ 348 static void inc_cluster_info_page(struct swap_info_struct *p, 349 struct swap_cluster_info *cluster_info, unsigned long page_nr) 350 { 351 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 352 353 if (!cluster_info) 354 return; 355 if (cluster_is_free(&cluster_info[idx])) { 356 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx); 357 cluster_set_next_flag(&p->free_cluster_head, 358 cluster_next(&cluster_info[idx]), 0); 359 if (cluster_next(&p->free_cluster_tail) == idx) { 360 cluster_set_null(&p->free_cluster_tail); 361 cluster_set_null(&p->free_cluster_head); 362 } 363 cluster_set_count_flag(&cluster_info[idx], 0, 0); 364 } 365 366 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 367 cluster_set_count(&cluster_info[idx], 368 cluster_count(&cluster_info[idx]) + 1); 369 } 370 371 /* 372 * The cluster corresponding to page_nr decreases one usage. If the usage 373 * counter becomes 0, which means no page in the cluster is in using, we can 374 * optionally discard the cluster and add it to free cluster list. 375 */ 376 static void dec_cluster_info_page(struct swap_info_struct *p, 377 struct swap_cluster_info *cluster_info, unsigned long page_nr) 378 { 379 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 380 381 if (!cluster_info) 382 return; 383 384 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 385 cluster_set_count(&cluster_info[idx], 386 cluster_count(&cluster_info[idx]) - 1); 387 388 if (cluster_count(&cluster_info[idx]) == 0) { 389 /* 390 * If the swap is discardable, prepare discard the cluster 391 * instead of free it immediately. The cluster will be freed 392 * after discard. 393 */ 394 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 395 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 396 swap_cluster_schedule_discard(p, idx); 397 return; 398 } 399 400 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 401 if (cluster_is_null(&p->free_cluster_head)) { 402 cluster_set_next_flag(&p->free_cluster_head, idx, 0); 403 cluster_set_next_flag(&p->free_cluster_tail, idx, 0); 404 } else { 405 unsigned int tail = cluster_next(&p->free_cluster_tail); 406 cluster_set_next(&cluster_info[tail], idx); 407 cluster_set_next_flag(&p->free_cluster_tail, idx, 0); 408 } 409 } 410 } 411 412 /* 413 * It's possible scan_swap_map() uses a free cluster in the middle of free 414 * cluster list. Avoiding such abuse to avoid list corruption. 415 */ 416 static bool 417 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 418 unsigned long offset) 419 { 420 struct percpu_cluster *percpu_cluster; 421 bool conflict; 422 423 offset /= SWAPFILE_CLUSTER; 424 conflict = !cluster_is_null(&si->free_cluster_head) && 425 offset != cluster_next(&si->free_cluster_head) && 426 cluster_is_free(&si->cluster_info[offset]); 427 428 if (!conflict) 429 return false; 430 431 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 432 cluster_set_null(&percpu_cluster->index); 433 return true; 434 } 435 436 /* 437 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 438 * might involve allocating a new cluster for current CPU too. 439 */ 440 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 441 unsigned long *offset, unsigned long *scan_base) 442 { 443 struct percpu_cluster *cluster; 444 bool found_free; 445 unsigned long tmp; 446 447 new_cluster: 448 cluster = this_cpu_ptr(si->percpu_cluster); 449 if (cluster_is_null(&cluster->index)) { 450 if (!cluster_is_null(&si->free_cluster_head)) { 451 cluster->index = si->free_cluster_head; 452 cluster->next = cluster_next(&cluster->index) * 453 SWAPFILE_CLUSTER; 454 } else if (!cluster_is_null(&si->discard_cluster_head)) { 455 /* 456 * we don't have free cluster but have some clusters in 457 * discarding, do discard now and reclaim them 458 */ 459 swap_do_scheduled_discard(si); 460 *scan_base = *offset = si->cluster_next; 461 goto new_cluster; 462 } else 463 return; 464 } 465 466 found_free = false; 467 468 /* 469 * Other CPUs can use our cluster if they can't find a free cluster, 470 * check if there is still free entry in the cluster 471 */ 472 tmp = cluster->next; 473 while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) * 474 SWAPFILE_CLUSTER) { 475 if (!si->swap_map[tmp]) { 476 found_free = true; 477 break; 478 } 479 tmp++; 480 } 481 if (!found_free) { 482 cluster_set_null(&cluster->index); 483 goto new_cluster; 484 } 485 cluster->next = tmp + 1; 486 *offset = tmp; 487 *scan_base = tmp; 488 } 489 490 static unsigned long scan_swap_map(struct swap_info_struct *si, 491 unsigned char usage) 492 { 493 unsigned long offset; 494 unsigned long scan_base; 495 unsigned long last_in_cluster = 0; 496 int latency_ration = LATENCY_LIMIT; 497 498 /* 499 * We try to cluster swap pages by allocating them sequentially 500 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 501 * way, however, we resort to first-free allocation, starting 502 * a new cluster. This prevents us from scattering swap pages 503 * all over the entire swap partition, so that we reduce 504 * overall disk seek times between swap pages. -- sct 505 * But we do now try to find an empty cluster. -Andrea 506 * And we let swap pages go all over an SSD partition. Hugh 507 */ 508 509 si->flags += SWP_SCANNING; 510 scan_base = offset = si->cluster_next; 511 512 /* SSD algorithm */ 513 if (si->cluster_info) { 514 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base); 515 goto checks; 516 } 517 518 if (unlikely(!si->cluster_nr--)) { 519 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 520 si->cluster_nr = SWAPFILE_CLUSTER - 1; 521 goto checks; 522 } 523 524 spin_unlock(&si->lock); 525 526 /* 527 * If seek is expensive, start searching for new cluster from 528 * start of partition, to minimize the span of allocated swap. 529 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 530 * case, just handled by scan_swap_map_try_ssd_cluster() above. 531 */ 532 scan_base = offset = si->lowest_bit; 533 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 534 535 /* Locate the first empty (unaligned) cluster */ 536 for (; last_in_cluster <= si->highest_bit; offset++) { 537 if (si->swap_map[offset]) 538 last_in_cluster = offset + SWAPFILE_CLUSTER; 539 else if (offset == last_in_cluster) { 540 spin_lock(&si->lock); 541 offset -= SWAPFILE_CLUSTER - 1; 542 si->cluster_next = offset; 543 si->cluster_nr = SWAPFILE_CLUSTER - 1; 544 goto checks; 545 } 546 if (unlikely(--latency_ration < 0)) { 547 cond_resched(); 548 latency_ration = LATENCY_LIMIT; 549 } 550 } 551 552 offset = scan_base; 553 spin_lock(&si->lock); 554 si->cluster_nr = SWAPFILE_CLUSTER - 1; 555 } 556 557 checks: 558 if (si->cluster_info) { 559 while (scan_swap_map_ssd_cluster_conflict(si, offset)) 560 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base); 561 } 562 if (!(si->flags & SWP_WRITEOK)) 563 goto no_page; 564 if (!si->highest_bit) 565 goto no_page; 566 if (offset > si->highest_bit) 567 scan_base = offset = si->lowest_bit; 568 569 /* reuse swap entry of cache-only swap if not busy. */ 570 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 571 int swap_was_freed; 572 spin_unlock(&si->lock); 573 swap_was_freed = __try_to_reclaim_swap(si, offset); 574 spin_lock(&si->lock); 575 /* entry was freed successfully, try to use this again */ 576 if (swap_was_freed) 577 goto checks; 578 goto scan; /* check next one */ 579 } 580 581 if (si->swap_map[offset]) 582 goto scan; 583 584 if (offset == si->lowest_bit) 585 si->lowest_bit++; 586 if (offset == si->highest_bit) 587 si->highest_bit--; 588 si->inuse_pages++; 589 if (si->inuse_pages == si->pages) { 590 si->lowest_bit = si->max; 591 si->highest_bit = 0; 592 spin_lock(&swap_avail_lock); 593 plist_del(&si->avail_list, &swap_avail_head); 594 spin_unlock(&swap_avail_lock); 595 } 596 si->swap_map[offset] = usage; 597 inc_cluster_info_page(si, si->cluster_info, offset); 598 si->cluster_next = offset + 1; 599 si->flags -= SWP_SCANNING; 600 601 return offset; 602 603 scan: 604 spin_unlock(&si->lock); 605 while (++offset <= si->highest_bit) { 606 if (!si->swap_map[offset]) { 607 spin_lock(&si->lock); 608 goto checks; 609 } 610 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 611 spin_lock(&si->lock); 612 goto checks; 613 } 614 if (unlikely(--latency_ration < 0)) { 615 cond_resched(); 616 latency_ration = LATENCY_LIMIT; 617 } 618 } 619 offset = si->lowest_bit; 620 while (offset < scan_base) { 621 if (!si->swap_map[offset]) { 622 spin_lock(&si->lock); 623 goto checks; 624 } 625 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 626 spin_lock(&si->lock); 627 goto checks; 628 } 629 if (unlikely(--latency_ration < 0)) { 630 cond_resched(); 631 latency_ration = LATENCY_LIMIT; 632 } 633 offset++; 634 } 635 spin_lock(&si->lock); 636 637 no_page: 638 si->flags -= SWP_SCANNING; 639 return 0; 640 } 641 642 swp_entry_t get_swap_page(void) 643 { 644 struct swap_info_struct *si, *next; 645 pgoff_t offset; 646 647 if (atomic_long_read(&nr_swap_pages) <= 0) 648 goto noswap; 649 atomic_long_dec(&nr_swap_pages); 650 651 spin_lock(&swap_avail_lock); 652 653 start_over: 654 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) { 655 /* requeue si to after same-priority siblings */ 656 plist_requeue(&si->avail_list, &swap_avail_head); 657 spin_unlock(&swap_avail_lock); 658 spin_lock(&si->lock); 659 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 660 spin_lock(&swap_avail_lock); 661 if (plist_node_empty(&si->avail_list)) { 662 spin_unlock(&si->lock); 663 goto nextsi; 664 } 665 WARN(!si->highest_bit, 666 "swap_info %d in list but !highest_bit\n", 667 si->type); 668 WARN(!(si->flags & SWP_WRITEOK), 669 "swap_info %d in list but !SWP_WRITEOK\n", 670 si->type); 671 plist_del(&si->avail_list, &swap_avail_head); 672 spin_unlock(&si->lock); 673 goto nextsi; 674 } 675 676 /* This is called for allocating swap entry for cache */ 677 offset = scan_swap_map(si, SWAP_HAS_CACHE); 678 spin_unlock(&si->lock); 679 if (offset) 680 return swp_entry(si->type, offset); 681 pr_debug("scan_swap_map of si %d failed to find offset\n", 682 si->type); 683 spin_lock(&swap_avail_lock); 684 nextsi: 685 /* 686 * if we got here, it's likely that si was almost full before, 687 * and since scan_swap_map() can drop the si->lock, multiple 688 * callers probably all tried to get a page from the same si 689 * and it filled up before we could get one; or, the si filled 690 * up between us dropping swap_avail_lock and taking si->lock. 691 * Since we dropped the swap_avail_lock, the swap_avail_head 692 * list may have been modified; so if next is still in the 693 * swap_avail_head list then try it, otherwise start over. 694 */ 695 if (plist_node_empty(&next->avail_list)) 696 goto start_over; 697 } 698 699 spin_unlock(&swap_avail_lock); 700 701 atomic_long_inc(&nr_swap_pages); 702 noswap: 703 return (swp_entry_t) {0}; 704 } 705 706 /* The only caller of this function is now suspend routine */ 707 swp_entry_t get_swap_page_of_type(int type) 708 { 709 struct swap_info_struct *si; 710 pgoff_t offset; 711 712 si = swap_info[type]; 713 spin_lock(&si->lock); 714 if (si && (si->flags & SWP_WRITEOK)) { 715 atomic_long_dec(&nr_swap_pages); 716 /* This is called for allocating swap entry, not cache */ 717 offset = scan_swap_map(si, 1); 718 if (offset) { 719 spin_unlock(&si->lock); 720 return swp_entry(type, offset); 721 } 722 atomic_long_inc(&nr_swap_pages); 723 } 724 spin_unlock(&si->lock); 725 return (swp_entry_t) {0}; 726 } 727 728 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 729 { 730 struct swap_info_struct *p; 731 unsigned long offset, type; 732 733 if (!entry.val) 734 goto out; 735 type = swp_type(entry); 736 if (type >= nr_swapfiles) 737 goto bad_nofile; 738 p = swap_info[type]; 739 if (!(p->flags & SWP_USED)) 740 goto bad_device; 741 offset = swp_offset(entry); 742 if (offset >= p->max) 743 goto bad_offset; 744 if (!p->swap_map[offset]) 745 goto bad_free; 746 spin_lock(&p->lock); 747 return p; 748 749 bad_free: 750 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val); 751 goto out; 752 bad_offset: 753 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val); 754 goto out; 755 bad_device: 756 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val); 757 goto out; 758 bad_nofile: 759 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val); 760 out: 761 return NULL; 762 } 763 764 static unsigned char swap_entry_free(struct swap_info_struct *p, 765 swp_entry_t entry, unsigned char usage) 766 { 767 unsigned long offset = swp_offset(entry); 768 unsigned char count; 769 unsigned char has_cache; 770 771 count = p->swap_map[offset]; 772 has_cache = count & SWAP_HAS_CACHE; 773 count &= ~SWAP_HAS_CACHE; 774 775 if (usage == SWAP_HAS_CACHE) { 776 VM_BUG_ON(!has_cache); 777 has_cache = 0; 778 } else if (count == SWAP_MAP_SHMEM) { 779 /* 780 * Or we could insist on shmem.c using a special 781 * swap_shmem_free() and free_shmem_swap_and_cache()... 782 */ 783 count = 0; 784 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 785 if (count == COUNT_CONTINUED) { 786 if (swap_count_continued(p, offset, count)) 787 count = SWAP_MAP_MAX | COUNT_CONTINUED; 788 else 789 count = SWAP_MAP_MAX; 790 } else 791 count--; 792 } 793 794 usage = count | has_cache; 795 p->swap_map[offset] = usage; 796 797 /* free if no reference */ 798 if (!usage) { 799 mem_cgroup_uncharge_swap(entry); 800 dec_cluster_info_page(p, p->cluster_info, offset); 801 if (offset < p->lowest_bit) 802 p->lowest_bit = offset; 803 if (offset > p->highest_bit) { 804 bool was_full = !p->highest_bit; 805 p->highest_bit = offset; 806 if (was_full && (p->flags & SWP_WRITEOK)) { 807 spin_lock(&swap_avail_lock); 808 WARN_ON(!plist_node_empty(&p->avail_list)); 809 if (plist_node_empty(&p->avail_list)) 810 plist_add(&p->avail_list, 811 &swap_avail_head); 812 spin_unlock(&swap_avail_lock); 813 } 814 } 815 atomic_long_inc(&nr_swap_pages); 816 p->inuse_pages--; 817 frontswap_invalidate_page(p->type, offset); 818 if (p->flags & SWP_BLKDEV) { 819 struct gendisk *disk = p->bdev->bd_disk; 820 if (disk->fops->swap_slot_free_notify) 821 disk->fops->swap_slot_free_notify(p->bdev, 822 offset); 823 } 824 } 825 826 return usage; 827 } 828 829 /* 830 * Caller has made sure that the swap device corresponding to entry 831 * is still around or has not been recycled. 832 */ 833 void swap_free(swp_entry_t entry) 834 { 835 struct swap_info_struct *p; 836 837 p = swap_info_get(entry); 838 if (p) { 839 swap_entry_free(p, entry, 1); 840 spin_unlock(&p->lock); 841 } 842 } 843 844 /* 845 * Called after dropping swapcache to decrease refcnt to swap entries. 846 */ 847 void swapcache_free(swp_entry_t entry) 848 { 849 struct swap_info_struct *p; 850 851 p = swap_info_get(entry); 852 if (p) { 853 swap_entry_free(p, entry, SWAP_HAS_CACHE); 854 spin_unlock(&p->lock); 855 } 856 } 857 858 /* 859 * How many references to page are currently swapped out? 860 * This does not give an exact answer when swap count is continued, 861 * but does include the high COUNT_CONTINUED flag to allow for that. 862 */ 863 int page_swapcount(struct page *page) 864 { 865 int count = 0; 866 struct swap_info_struct *p; 867 swp_entry_t entry; 868 869 entry.val = page_private(page); 870 p = swap_info_get(entry); 871 if (p) { 872 count = swap_count(p->swap_map[swp_offset(entry)]); 873 spin_unlock(&p->lock); 874 } 875 return count; 876 } 877 878 /* 879 * How many references to @entry are currently swapped out? 880 * This considers COUNT_CONTINUED so it returns exact answer. 881 */ 882 int swp_swapcount(swp_entry_t entry) 883 { 884 int count, tmp_count, n; 885 struct swap_info_struct *p; 886 struct page *page; 887 pgoff_t offset; 888 unsigned char *map; 889 890 p = swap_info_get(entry); 891 if (!p) 892 return 0; 893 894 count = swap_count(p->swap_map[swp_offset(entry)]); 895 if (!(count & COUNT_CONTINUED)) 896 goto out; 897 898 count &= ~COUNT_CONTINUED; 899 n = SWAP_MAP_MAX + 1; 900 901 offset = swp_offset(entry); 902 page = vmalloc_to_page(p->swap_map + offset); 903 offset &= ~PAGE_MASK; 904 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 905 906 do { 907 page = list_next_entry(page, lru); 908 map = kmap_atomic(page); 909 tmp_count = map[offset]; 910 kunmap_atomic(map); 911 912 count += (tmp_count & ~COUNT_CONTINUED) * n; 913 n *= (SWAP_CONT_MAX + 1); 914 } while (tmp_count & COUNT_CONTINUED); 915 out: 916 spin_unlock(&p->lock); 917 return count; 918 } 919 920 /* 921 * We can write to an anon page without COW if there are no other references 922 * to it. And as a side-effect, free up its swap: because the old content 923 * on disk will never be read, and seeking back there to write new content 924 * later would only waste time away from clustering. 925 */ 926 int reuse_swap_page(struct page *page) 927 { 928 int count; 929 930 VM_BUG_ON_PAGE(!PageLocked(page), page); 931 if (unlikely(PageKsm(page))) 932 return 0; 933 /* The page is part of THP and cannot be reused */ 934 if (PageTransCompound(page)) 935 return 0; 936 count = page_mapcount(page); 937 if (count <= 1 && PageSwapCache(page)) { 938 count += page_swapcount(page); 939 if (count == 1 && !PageWriteback(page)) { 940 delete_from_swap_cache(page); 941 SetPageDirty(page); 942 } 943 } 944 return count <= 1; 945 } 946 947 /* 948 * If swap is getting full, or if there are no more mappings of this page, 949 * then try_to_free_swap is called to free its swap space. 950 */ 951 int try_to_free_swap(struct page *page) 952 { 953 VM_BUG_ON_PAGE(!PageLocked(page), page); 954 955 if (!PageSwapCache(page)) 956 return 0; 957 if (PageWriteback(page)) 958 return 0; 959 if (page_swapcount(page)) 960 return 0; 961 962 /* 963 * Once hibernation has begun to create its image of memory, 964 * there's a danger that one of the calls to try_to_free_swap() 965 * - most probably a call from __try_to_reclaim_swap() while 966 * hibernation is allocating its own swap pages for the image, 967 * but conceivably even a call from memory reclaim - will free 968 * the swap from a page which has already been recorded in the 969 * image as a clean swapcache page, and then reuse its swap for 970 * another page of the image. On waking from hibernation, the 971 * original page might be freed under memory pressure, then 972 * later read back in from swap, now with the wrong data. 973 * 974 * Hibernation suspends storage while it is writing the image 975 * to disk so check that here. 976 */ 977 if (pm_suspended_storage()) 978 return 0; 979 980 delete_from_swap_cache(page); 981 SetPageDirty(page); 982 return 1; 983 } 984 985 /* 986 * Free the swap entry like above, but also try to 987 * free the page cache entry if it is the last user. 988 */ 989 int free_swap_and_cache(swp_entry_t entry) 990 { 991 struct swap_info_struct *p; 992 struct page *page = NULL; 993 994 if (non_swap_entry(entry)) 995 return 1; 996 997 p = swap_info_get(entry); 998 if (p) { 999 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) { 1000 page = find_get_page(swap_address_space(entry), 1001 entry.val); 1002 if (page && !trylock_page(page)) { 1003 put_page(page); 1004 page = NULL; 1005 } 1006 } 1007 spin_unlock(&p->lock); 1008 } 1009 if (page) { 1010 /* 1011 * Not mapped elsewhere, or swap space full? Free it! 1012 * Also recheck PageSwapCache now page is locked (above). 1013 */ 1014 if (PageSwapCache(page) && !PageWriteback(page) && 1015 (!page_mapped(page) || mem_cgroup_swap_full(page))) { 1016 delete_from_swap_cache(page); 1017 SetPageDirty(page); 1018 } 1019 unlock_page(page); 1020 put_page(page); 1021 } 1022 return p != NULL; 1023 } 1024 1025 #ifdef CONFIG_HIBERNATION 1026 /* 1027 * Find the swap type that corresponds to given device (if any). 1028 * 1029 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1030 * from 0, in which the swap header is expected to be located. 1031 * 1032 * This is needed for the suspend to disk (aka swsusp). 1033 */ 1034 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 1035 { 1036 struct block_device *bdev = NULL; 1037 int type; 1038 1039 if (device) 1040 bdev = bdget(device); 1041 1042 spin_lock(&swap_lock); 1043 for (type = 0; type < nr_swapfiles; type++) { 1044 struct swap_info_struct *sis = swap_info[type]; 1045 1046 if (!(sis->flags & SWP_WRITEOK)) 1047 continue; 1048 1049 if (!bdev) { 1050 if (bdev_p) 1051 *bdev_p = bdgrab(sis->bdev); 1052 1053 spin_unlock(&swap_lock); 1054 return type; 1055 } 1056 if (bdev == sis->bdev) { 1057 struct swap_extent *se = &sis->first_swap_extent; 1058 1059 if (se->start_block == offset) { 1060 if (bdev_p) 1061 *bdev_p = bdgrab(sis->bdev); 1062 1063 spin_unlock(&swap_lock); 1064 bdput(bdev); 1065 return type; 1066 } 1067 } 1068 } 1069 spin_unlock(&swap_lock); 1070 if (bdev) 1071 bdput(bdev); 1072 1073 return -ENODEV; 1074 } 1075 1076 /* 1077 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1078 * corresponding to given index in swap_info (swap type). 1079 */ 1080 sector_t swapdev_block(int type, pgoff_t offset) 1081 { 1082 struct block_device *bdev; 1083 1084 if ((unsigned int)type >= nr_swapfiles) 1085 return 0; 1086 if (!(swap_info[type]->flags & SWP_WRITEOK)) 1087 return 0; 1088 return map_swap_entry(swp_entry(type, offset), &bdev); 1089 } 1090 1091 /* 1092 * Return either the total number of swap pages of given type, or the number 1093 * of free pages of that type (depending on @free) 1094 * 1095 * This is needed for software suspend 1096 */ 1097 unsigned int count_swap_pages(int type, int free) 1098 { 1099 unsigned int n = 0; 1100 1101 spin_lock(&swap_lock); 1102 if ((unsigned int)type < nr_swapfiles) { 1103 struct swap_info_struct *sis = swap_info[type]; 1104 1105 spin_lock(&sis->lock); 1106 if (sis->flags & SWP_WRITEOK) { 1107 n = sis->pages; 1108 if (free) 1109 n -= sis->inuse_pages; 1110 } 1111 spin_unlock(&sis->lock); 1112 } 1113 spin_unlock(&swap_lock); 1114 return n; 1115 } 1116 #endif /* CONFIG_HIBERNATION */ 1117 1118 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1119 { 1120 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte); 1121 } 1122 1123 /* 1124 * No need to decide whether this PTE shares the swap entry with others, 1125 * just let do_wp_page work it out if a write is requested later - to 1126 * force COW, vm_page_prot omits write permission from any private vma. 1127 */ 1128 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1129 unsigned long addr, swp_entry_t entry, struct page *page) 1130 { 1131 struct page *swapcache; 1132 struct mem_cgroup *memcg; 1133 spinlock_t *ptl; 1134 pte_t *pte; 1135 int ret = 1; 1136 1137 swapcache = page; 1138 page = ksm_might_need_to_copy(page, vma, addr); 1139 if (unlikely(!page)) 1140 return -ENOMEM; 1141 1142 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, 1143 &memcg, false)) { 1144 ret = -ENOMEM; 1145 goto out_nolock; 1146 } 1147 1148 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1149 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { 1150 mem_cgroup_cancel_charge(page, memcg, false); 1151 ret = 0; 1152 goto out; 1153 } 1154 1155 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1156 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1157 get_page(page); 1158 set_pte_at(vma->vm_mm, addr, pte, 1159 pte_mkold(mk_pte(page, vma->vm_page_prot))); 1160 if (page == swapcache) { 1161 page_add_anon_rmap(page, vma, addr, false); 1162 mem_cgroup_commit_charge(page, memcg, true, false); 1163 } else { /* ksm created a completely new copy */ 1164 page_add_new_anon_rmap(page, vma, addr, false); 1165 mem_cgroup_commit_charge(page, memcg, false, false); 1166 lru_cache_add_active_or_unevictable(page, vma); 1167 } 1168 swap_free(entry); 1169 /* 1170 * Move the page to the active list so it is not 1171 * immediately swapped out again after swapon. 1172 */ 1173 activate_page(page); 1174 out: 1175 pte_unmap_unlock(pte, ptl); 1176 out_nolock: 1177 if (page != swapcache) { 1178 unlock_page(page); 1179 put_page(page); 1180 } 1181 return ret; 1182 } 1183 1184 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1185 unsigned long addr, unsigned long end, 1186 swp_entry_t entry, struct page *page) 1187 { 1188 pte_t swp_pte = swp_entry_to_pte(entry); 1189 pte_t *pte; 1190 int ret = 0; 1191 1192 /* 1193 * We don't actually need pte lock while scanning for swp_pte: since 1194 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 1195 * page table while we're scanning; though it could get zapped, and on 1196 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 1197 * of unmatched parts which look like swp_pte, so unuse_pte must 1198 * recheck under pte lock. Scanning without pte lock lets it be 1199 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 1200 */ 1201 pte = pte_offset_map(pmd, addr); 1202 do { 1203 /* 1204 * swapoff spends a _lot_ of time in this loop! 1205 * Test inline before going to call unuse_pte. 1206 */ 1207 if (unlikely(pte_same_as_swp(*pte, swp_pte))) { 1208 pte_unmap(pte); 1209 ret = unuse_pte(vma, pmd, addr, entry, page); 1210 if (ret) 1211 goto out; 1212 pte = pte_offset_map(pmd, addr); 1213 } 1214 } while (pte++, addr += PAGE_SIZE, addr != end); 1215 pte_unmap(pte - 1); 1216 out: 1217 return ret; 1218 } 1219 1220 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1221 unsigned long addr, unsigned long end, 1222 swp_entry_t entry, struct page *page) 1223 { 1224 pmd_t *pmd; 1225 unsigned long next; 1226 int ret; 1227 1228 pmd = pmd_offset(pud, addr); 1229 do { 1230 next = pmd_addr_end(addr, end); 1231 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1232 continue; 1233 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 1234 if (ret) 1235 return ret; 1236 } while (pmd++, addr = next, addr != end); 1237 return 0; 1238 } 1239 1240 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 1241 unsigned long addr, unsigned long end, 1242 swp_entry_t entry, struct page *page) 1243 { 1244 pud_t *pud; 1245 unsigned long next; 1246 int ret; 1247 1248 pud = pud_offset(pgd, addr); 1249 do { 1250 next = pud_addr_end(addr, end); 1251 if (pud_none_or_clear_bad(pud)) 1252 continue; 1253 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 1254 if (ret) 1255 return ret; 1256 } while (pud++, addr = next, addr != end); 1257 return 0; 1258 } 1259 1260 static int unuse_vma(struct vm_area_struct *vma, 1261 swp_entry_t entry, struct page *page) 1262 { 1263 pgd_t *pgd; 1264 unsigned long addr, end, next; 1265 int ret; 1266 1267 if (page_anon_vma(page)) { 1268 addr = page_address_in_vma(page, vma); 1269 if (addr == -EFAULT) 1270 return 0; 1271 else 1272 end = addr + PAGE_SIZE; 1273 } else { 1274 addr = vma->vm_start; 1275 end = vma->vm_end; 1276 } 1277 1278 pgd = pgd_offset(vma->vm_mm, addr); 1279 do { 1280 next = pgd_addr_end(addr, end); 1281 if (pgd_none_or_clear_bad(pgd)) 1282 continue; 1283 ret = unuse_pud_range(vma, pgd, addr, next, entry, page); 1284 if (ret) 1285 return ret; 1286 } while (pgd++, addr = next, addr != end); 1287 return 0; 1288 } 1289 1290 static int unuse_mm(struct mm_struct *mm, 1291 swp_entry_t entry, struct page *page) 1292 { 1293 struct vm_area_struct *vma; 1294 int ret = 0; 1295 1296 if (!down_read_trylock(&mm->mmap_sem)) { 1297 /* 1298 * Activate page so shrink_inactive_list is unlikely to unmap 1299 * its ptes while lock is dropped, so swapoff can make progress. 1300 */ 1301 activate_page(page); 1302 unlock_page(page); 1303 down_read(&mm->mmap_sem); 1304 lock_page(page); 1305 } 1306 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1307 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 1308 break; 1309 } 1310 up_read(&mm->mmap_sem); 1311 return (ret < 0)? ret: 0; 1312 } 1313 1314 /* 1315 * Scan swap_map (or frontswap_map if frontswap parameter is true) 1316 * from current position to next entry still in use. 1317 * Recycle to start on reaching the end, returning 0 when empty. 1318 */ 1319 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 1320 unsigned int prev, bool frontswap) 1321 { 1322 unsigned int max = si->max; 1323 unsigned int i = prev; 1324 unsigned char count; 1325 1326 /* 1327 * No need for swap_lock here: we're just looking 1328 * for whether an entry is in use, not modifying it; false 1329 * hits are okay, and sys_swapoff() has already prevented new 1330 * allocations from this area (while holding swap_lock). 1331 */ 1332 for (;;) { 1333 if (++i >= max) { 1334 if (!prev) { 1335 i = 0; 1336 break; 1337 } 1338 /* 1339 * No entries in use at top of swap_map, 1340 * loop back to start and recheck there. 1341 */ 1342 max = prev + 1; 1343 prev = 0; 1344 i = 1; 1345 } 1346 if (frontswap) { 1347 if (frontswap_test(si, i)) 1348 break; 1349 else 1350 continue; 1351 } 1352 count = READ_ONCE(si->swap_map[i]); 1353 if (count && swap_count(count) != SWAP_MAP_BAD) 1354 break; 1355 } 1356 return i; 1357 } 1358 1359 /* 1360 * We completely avoid races by reading each swap page in advance, 1361 * and then search for the process using it. All the necessary 1362 * page table adjustments can then be made atomically. 1363 * 1364 * if the boolean frontswap is true, only unuse pages_to_unuse pages; 1365 * pages_to_unuse==0 means all pages; ignored if frontswap is false 1366 */ 1367 int try_to_unuse(unsigned int type, bool frontswap, 1368 unsigned long pages_to_unuse) 1369 { 1370 struct swap_info_struct *si = swap_info[type]; 1371 struct mm_struct *start_mm; 1372 volatile unsigned char *swap_map; /* swap_map is accessed without 1373 * locking. Mark it as volatile 1374 * to prevent compiler doing 1375 * something odd. 1376 */ 1377 unsigned char swcount; 1378 struct page *page; 1379 swp_entry_t entry; 1380 unsigned int i = 0; 1381 int retval = 0; 1382 1383 /* 1384 * When searching mms for an entry, a good strategy is to 1385 * start at the first mm we freed the previous entry from 1386 * (though actually we don't notice whether we or coincidence 1387 * freed the entry). Initialize this start_mm with a hold. 1388 * 1389 * A simpler strategy would be to start at the last mm we 1390 * freed the previous entry from; but that would take less 1391 * advantage of mmlist ordering, which clusters forked mms 1392 * together, child after parent. If we race with dup_mmap(), we 1393 * prefer to resolve parent before child, lest we miss entries 1394 * duplicated after we scanned child: using last mm would invert 1395 * that. 1396 */ 1397 start_mm = &init_mm; 1398 atomic_inc(&init_mm.mm_users); 1399 1400 /* 1401 * Keep on scanning until all entries have gone. Usually, 1402 * one pass through swap_map is enough, but not necessarily: 1403 * there are races when an instance of an entry might be missed. 1404 */ 1405 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) { 1406 if (signal_pending(current)) { 1407 retval = -EINTR; 1408 break; 1409 } 1410 1411 /* 1412 * Get a page for the entry, using the existing swap 1413 * cache page if there is one. Otherwise, get a clean 1414 * page and read the swap into it. 1415 */ 1416 swap_map = &si->swap_map[i]; 1417 entry = swp_entry(type, i); 1418 page = read_swap_cache_async(entry, 1419 GFP_HIGHUSER_MOVABLE, NULL, 0); 1420 if (!page) { 1421 /* 1422 * Either swap_duplicate() failed because entry 1423 * has been freed independently, and will not be 1424 * reused since sys_swapoff() already disabled 1425 * allocation from here, or alloc_page() failed. 1426 */ 1427 swcount = *swap_map; 1428 /* 1429 * We don't hold lock here, so the swap entry could be 1430 * SWAP_MAP_BAD (when the cluster is discarding). 1431 * Instead of fail out, We can just skip the swap 1432 * entry because swapoff will wait for discarding 1433 * finish anyway. 1434 */ 1435 if (!swcount || swcount == SWAP_MAP_BAD) 1436 continue; 1437 retval = -ENOMEM; 1438 break; 1439 } 1440 1441 /* 1442 * Don't hold on to start_mm if it looks like exiting. 1443 */ 1444 if (atomic_read(&start_mm->mm_users) == 1) { 1445 mmput(start_mm); 1446 start_mm = &init_mm; 1447 atomic_inc(&init_mm.mm_users); 1448 } 1449 1450 /* 1451 * Wait for and lock page. When do_swap_page races with 1452 * try_to_unuse, do_swap_page can handle the fault much 1453 * faster than try_to_unuse can locate the entry. This 1454 * apparently redundant "wait_on_page_locked" lets try_to_unuse 1455 * defer to do_swap_page in such a case - in some tests, 1456 * do_swap_page and try_to_unuse repeatedly compete. 1457 */ 1458 wait_on_page_locked(page); 1459 wait_on_page_writeback(page); 1460 lock_page(page); 1461 wait_on_page_writeback(page); 1462 1463 /* 1464 * Remove all references to entry. 1465 */ 1466 swcount = *swap_map; 1467 if (swap_count(swcount) == SWAP_MAP_SHMEM) { 1468 retval = shmem_unuse(entry, page); 1469 /* page has already been unlocked and released */ 1470 if (retval < 0) 1471 break; 1472 continue; 1473 } 1474 if (swap_count(swcount) && start_mm != &init_mm) 1475 retval = unuse_mm(start_mm, entry, page); 1476 1477 if (swap_count(*swap_map)) { 1478 int set_start_mm = (*swap_map >= swcount); 1479 struct list_head *p = &start_mm->mmlist; 1480 struct mm_struct *new_start_mm = start_mm; 1481 struct mm_struct *prev_mm = start_mm; 1482 struct mm_struct *mm; 1483 1484 atomic_inc(&new_start_mm->mm_users); 1485 atomic_inc(&prev_mm->mm_users); 1486 spin_lock(&mmlist_lock); 1487 while (swap_count(*swap_map) && !retval && 1488 (p = p->next) != &start_mm->mmlist) { 1489 mm = list_entry(p, struct mm_struct, mmlist); 1490 if (!atomic_inc_not_zero(&mm->mm_users)) 1491 continue; 1492 spin_unlock(&mmlist_lock); 1493 mmput(prev_mm); 1494 prev_mm = mm; 1495 1496 cond_resched(); 1497 1498 swcount = *swap_map; 1499 if (!swap_count(swcount)) /* any usage ? */ 1500 ; 1501 else if (mm == &init_mm) 1502 set_start_mm = 1; 1503 else 1504 retval = unuse_mm(mm, entry, page); 1505 1506 if (set_start_mm && *swap_map < swcount) { 1507 mmput(new_start_mm); 1508 atomic_inc(&mm->mm_users); 1509 new_start_mm = mm; 1510 set_start_mm = 0; 1511 } 1512 spin_lock(&mmlist_lock); 1513 } 1514 spin_unlock(&mmlist_lock); 1515 mmput(prev_mm); 1516 mmput(start_mm); 1517 start_mm = new_start_mm; 1518 } 1519 if (retval) { 1520 unlock_page(page); 1521 put_page(page); 1522 break; 1523 } 1524 1525 /* 1526 * If a reference remains (rare), we would like to leave 1527 * the page in the swap cache; but try_to_unmap could 1528 * then re-duplicate the entry once we drop page lock, 1529 * so we might loop indefinitely; also, that page could 1530 * not be swapped out to other storage meanwhile. So: 1531 * delete from cache even if there's another reference, 1532 * after ensuring that the data has been saved to disk - 1533 * since if the reference remains (rarer), it will be 1534 * read from disk into another page. Splitting into two 1535 * pages would be incorrect if swap supported "shared 1536 * private" pages, but they are handled by tmpfs files. 1537 * 1538 * Given how unuse_vma() targets one particular offset 1539 * in an anon_vma, once the anon_vma has been determined, 1540 * this splitting happens to be just what is needed to 1541 * handle where KSM pages have been swapped out: re-reading 1542 * is unnecessarily slow, but we can fix that later on. 1543 */ 1544 if (swap_count(*swap_map) && 1545 PageDirty(page) && PageSwapCache(page)) { 1546 struct writeback_control wbc = { 1547 .sync_mode = WB_SYNC_NONE, 1548 }; 1549 1550 swap_writepage(page, &wbc); 1551 lock_page(page); 1552 wait_on_page_writeback(page); 1553 } 1554 1555 /* 1556 * It is conceivable that a racing task removed this page from 1557 * swap cache just before we acquired the page lock at the top, 1558 * or while we dropped it in unuse_mm(). The page might even 1559 * be back in swap cache on another swap area: that we must not 1560 * delete, since it may not have been written out to swap yet. 1561 */ 1562 if (PageSwapCache(page) && 1563 likely(page_private(page) == entry.val)) 1564 delete_from_swap_cache(page); 1565 1566 /* 1567 * So we could skip searching mms once swap count went 1568 * to 1, we did not mark any present ptes as dirty: must 1569 * mark page dirty so shrink_page_list will preserve it. 1570 */ 1571 SetPageDirty(page); 1572 unlock_page(page); 1573 put_page(page); 1574 1575 /* 1576 * Make sure that we aren't completely killing 1577 * interactive performance. 1578 */ 1579 cond_resched(); 1580 if (frontswap && pages_to_unuse > 0) { 1581 if (!--pages_to_unuse) 1582 break; 1583 } 1584 } 1585 1586 mmput(start_mm); 1587 return retval; 1588 } 1589 1590 /* 1591 * After a successful try_to_unuse, if no swap is now in use, we know 1592 * we can empty the mmlist. swap_lock must be held on entry and exit. 1593 * Note that mmlist_lock nests inside swap_lock, and an mm must be 1594 * added to the mmlist just after page_duplicate - before would be racy. 1595 */ 1596 static void drain_mmlist(void) 1597 { 1598 struct list_head *p, *next; 1599 unsigned int type; 1600 1601 for (type = 0; type < nr_swapfiles; type++) 1602 if (swap_info[type]->inuse_pages) 1603 return; 1604 spin_lock(&mmlist_lock); 1605 list_for_each_safe(p, next, &init_mm.mmlist) 1606 list_del_init(p); 1607 spin_unlock(&mmlist_lock); 1608 } 1609 1610 /* 1611 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 1612 * corresponds to page offset for the specified swap entry. 1613 * Note that the type of this function is sector_t, but it returns page offset 1614 * into the bdev, not sector offset. 1615 */ 1616 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 1617 { 1618 struct swap_info_struct *sis; 1619 struct swap_extent *start_se; 1620 struct swap_extent *se; 1621 pgoff_t offset; 1622 1623 sis = swap_info[swp_type(entry)]; 1624 *bdev = sis->bdev; 1625 1626 offset = swp_offset(entry); 1627 start_se = sis->curr_swap_extent; 1628 se = start_se; 1629 1630 for ( ; ; ) { 1631 if (se->start_page <= offset && 1632 offset < (se->start_page + se->nr_pages)) { 1633 return se->start_block + (offset - se->start_page); 1634 } 1635 se = list_next_entry(se, list); 1636 sis->curr_swap_extent = se; 1637 BUG_ON(se == start_se); /* It *must* be present */ 1638 } 1639 } 1640 1641 /* 1642 * Returns the page offset into bdev for the specified page's swap entry. 1643 */ 1644 sector_t map_swap_page(struct page *page, struct block_device **bdev) 1645 { 1646 swp_entry_t entry; 1647 entry.val = page_private(page); 1648 return map_swap_entry(entry, bdev); 1649 } 1650 1651 /* 1652 * Free all of a swapdev's extent information 1653 */ 1654 static void destroy_swap_extents(struct swap_info_struct *sis) 1655 { 1656 while (!list_empty(&sis->first_swap_extent.list)) { 1657 struct swap_extent *se; 1658 1659 se = list_first_entry(&sis->first_swap_extent.list, 1660 struct swap_extent, list); 1661 list_del(&se->list); 1662 kfree(se); 1663 } 1664 1665 if (sis->flags & SWP_FILE) { 1666 struct file *swap_file = sis->swap_file; 1667 struct address_space *mapping = swap_file->f_mapping; 1668 1669 sis->flags &= ~SWP_FILE; 1670 mapping->a_ops->swap_deactivate(swap_file); 1671 } 1672 } 1673 1674 /* 1675 * Add a block range (and the corresponding page range) into this swapdev's 1676 * extent list. The extent list is kept sorted in page order. 1677 * 1678 * This function rather assumes that it is called in ascending page order. 1679 */ 1680 int 1681 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 1682 unsigned long nr_pages, sector_t start_block) 1683 { 1684 struct swap_extent *se; 1685 struct swap_extent *new_se; 1686 struct list_head *lh; 1687 1688 if (start_page == 0) { 1689 se = &sis->first_swap_extent; 1690 sis->curr_swap_extent = se; 1691 se->start_page = 0; 1692 se->nr_pages = nr_pages; 1693 se->start_block = start_block; 1694 return 1; 1695 } else { 1696 lh = sis->first_swap_extent.list.prev; /* Highest extent */ 1697 se = list_entry(lh, struct swap_extent, list); 1698 BUG_ON(se->start_page + se->nr_pages != start_page); 1699 if (se->start_block + se->nr_pages == start_block) { 1700 /* Merge it */ 1701 se->nr_pages += nr_pages; 1702 return 0; 1703 } 1704 } 1705 1706 /* 1707 * No merge. Insert a new extent, preserving ordering. 1708 */ 1709 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 1710 if (new_se == NULL) 1711 return -ENOMEM; 1712 new_se->start_page = start_page; 1713 new_se->nr_pages = nr_pages; 1714 new_se->start_block = start_block; 1715 1716 list_add_tail(&new_se->list, &sis->first_swap_extent.list); 1717 return 1; 1718 } 1719 1720 /* 1721 * A `swap extent' is a simple thing which maps a contiguous range of pages 1722 * onto a contiguous range of disk blocks. An ordered list of swap extents 1723 * is built at swapon time and is then used at swap_writepage/swap_readpage 1724 * time for locating where on disk a page belongs. 1725 * 1726 * If the swapfile is an S_ISBLK block device, a single extent is installed. 1727 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 1728 * swap files identically. 1729 * 1730 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 1731 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 1732 * swapfiles are handled *identically* after swapon time. 1733 * 1734 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 1735 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 1736 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 1737 * requirements, they are simply tossed out - we will never use those blocks 1738 * for swapping. 1739 * 1740 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 1741 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 1742 * which will scribble on the fs. 1743 * 1744 * The amount of disk space which a single swap extent represents varies. 1745 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 1746 * extents in the list. To avoid much list walking, we cache the previous 1747 * search location in `curr_swap_extent', and start new searches from there. 1748 * This is extremely effective. The average number of iterations in 1749 * map_swap_page() has been measured at about 0.3 per page. - akpm. 1750 */ 1751 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 1752 { 1753 struct file *swap_file = sis->swap_file; 1754 struct address_space *mapping = swap_file->f_mapping; 1755 struct inode *inode = mapping->host; 1756 int ret; 1757 1758 if (S_ISBLK(inode->i_mode)) { 1759 ret = add_swap_extent(sis, 0, sis->max, 0); 1760 *span = sis->pages; 1761 return ret; 1762 } 1763 1764 if (mapping->a_ops->swap_activate) { 1765 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 1766 if (!ret) { 1767 sis->flags |= SWP_FILE; 1768 ret = add_swap_extent(sis, 0, sis->max, 0); 1769 *span = sis->pages; 1770 } 1771 return ret; 1772 } 1773 1774 return generic_swapfile_activate(sis, swap_file, span); 1775 } 1776 1777 static void _enable_swap_info(struct swap_info_struct *p, int prio, 1778 unsigned char *swap_map, 1779 struct swap_cluster_info *cluster_info) 1780 { 1781 if (prio >= 0) 1782 p->prio = prio; 1783 else 1784 p->prio = --least_priority; 1785 /* 1786 * the plist prio is negated because plist ordering is 1787 * low-to-high, while swap ordering is high-to-low 1788 */ 1789 p->list.prio = -p->prio; 1790 p->avail_list.prio = -p->prio; 1791 p->swap_map = swap_map; 1792 p->cluster_info = cluster_info; 1793 p->flags |= SWP_WRITEOK; 1794 atomic_long_add(p->pages, &nr_swap_pages); 1795 total_swap_pages += p->pages; 1796 1797 assert_spin_locked(&swap_lock); 1798 /* 1799 * both lists are plists, and thus priority ordered. 1800 * swap_active_head needs to be priority ordered for swapoff(), 1801 * which on removal of any swap_info_struct with an auto-assigned 1802 * (i.e. negative) priority increments the auto-assigned priority 1803 * of any lower-priority swap_info_structs. 1804 * swap_avail_head needs to be priority ordered for get_swap_page(), 1805 * which allocates swap pages from the highest available priority 1806 * swap_info_struct. 1807 */ 1808 plist_add(&p->list, &swap_active_head); 1809 spin_lock(&swap_avail_lock); 1810 plist_add(&p->avail_list, &swap_avail_head); 1811 spin_unlock(&swap_avail_lock); 1812 } 1813 1814 static void enable_swap_info(struct swap_info_struct *p, int prio, 1815 unsigned char *swap_map, 1816 struct swap_cluster_info *cluster_info, 1817 unsigned long *frontswap_map) 1818 { 1819 frontswap_init(p->type, frontswap_map); 1820 spin_lock(&swap_lock); 1821 spin_lock(&p->lock); 1822 _enable_swap_info(p, prio, swap_map, cluster_info); 1823 spin_unlock(&p->lock); 1824 spin_unlock(&swap_lock); 1825 } 1826 1827 static void reinsert_swap_info(struct swap_info_struct *p) 1828 { 1829 spin_lock(&swap_lock); 1830 spin_lock(&p->lock); 1831 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info); 1832 spin_unlock(&p->lock); 1833 spin_unlock(&swap_lock); 1834 } 1835 1836 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 1837 { 1838 struct swap_info_struct *p = NULL; 1839 unsigned char *swap_map; 1840 struct swap_cluster_info *cluster_info; 1841 unsigned long *frontswap_map; 1842 struct file *swap_file, *victim; 1843 struct address_space *mapping; 1844 struct inode *inode; 1845 struct filename *pathname; 1846 int err, found = 0; 1847 unsigned int old_block_size; 1848 1849 if (!capable(CAP_SYS_ADMIN)) 1850 return -EPERM; 1851 1852 BUG_ON(!current->mm); 1853 1854 pathname = getname(specialfile); 1855 if (IS_ERR(pathname)) 1856 return PTR_ERR(pathname); 1857 1858 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 1859 err = PTR_ERR(victim); 1860 if (IS_ERR(victim)) 1861 goto out; 1862 1863 mapping = victim->f_mapping; 1864 spin_lock(&swap_lock); 1865 plist_for_each_entry(p, &swap_active_head, list) { 1866 if (p->flags & SWP_WRITEOK) { 1867 if (p->swap_file->f_mapping == mapping) { 1868 found = 1; 1869 break; 1870 } 1871 } 1872 } 1873 if (!found) { 1874 err = -EINVAL; 1875 spin_unlock(&swap_lock); 1876 goto out_dput; 1877 } 1878 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 1879 vm_unacct_memory(p->pages); 1880 else { 1881 err = -ENOMEM; 1882 spin_unlock(&swap_lock); 1883 goto out_dput; 1884 } 1885 spin_lock(&swap_avail_lock); 1886 plist_del(&p->avail_list, &swap_avail_head); 1887 spin_unlock(&swap_avail_lock); 1888 spin_lock(&p->lock); 1889 if (p->prio < 0) { 1890 struct swap_info_struct *si = p; 1891 1892 plist_for_each_entry_continue(si, &swap_active_head, list) { 1893 si->prio++; 1894 si->list.prio--; 1895 si->avail_list.prio--; 1896 } 1897 least_priority++; 1898 } 1899 plist_del(&p->list, &swap_active_head); 1900 atomic_long_sub(p->pages, &nr_swap_pages); 1901 total_swap_pages -= p->pages; 1902 p->flags &= ~SWP_WRITEOK; 1903 spin_unlock(&p->lock); 1904 spin_unlock(&swap_lock); 1905 1906 set_current_oom_origin(); 1907 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */ 1908 clear_current_oom_origin(); 1909 1910 if (err) { 1911 /* re-insert swap space back into swap_list */ 1912 reinsert_swap_info(p); 1913 goto out_dput; 1914 } 1915 1916 flush_work(&p->discard_work); 1917 1918 destroy_swap_extents(p); 1919 if (p->flags & SWP_CONTINUED) 1920 free_swap_count_continuations(p); 1921 1922 mutex_lock(&swapon_mutex); 1923 spin_lock(&swap_lock); 1924 spin_lock(&p->lock); 1925 drain_mmlist(); 1926 1927 /* wait for anyone still in scan_swap_map */ 1928 p->highest_bit = 0; /* cuts scans short */ 1929 while (p->flags >= SWP_SCANNING) { 1930 spin_unlock(&p->lock); 1931 spin_unlock(&swap_lock); 1932 schedule_timeout_uninterruptible(1); 1933 spin_lock(&swap_lock); 1934 spin_lock(&p->lock); 1935 } 1936 1937 swap_file = p->swap_file; 1938 old_block_size = p->old_block_size; 1939 p->swap_file = NULL; 1940 p->max = 0; 1941 swap_map = p->swap_map; 1942 p->swap_map = NULL; 1943 cluster_info = p->cluster_info; 1944 p->cluster_info = NULL; 1945 frontswap_map = frontswap_map_get(p); 1946 spin_unlock(&p->lock); 1947 spin_unlock(&swap_lock); 1948 frontswap_invalidate_area(p->type); 1949 frontswap_map_set(p, NULL); 1950 mutex_unlock(&swapon_mutex); 1951 free_percpu(p->percpu_cluster); 1952 p->percpu_cluster = NULL; 1953 vfree(swap_map); 1954 vfree(cluster_info); 1955 vfree(frontswap_map); 1956 /* Destroy swap account information */ 1957 swap_cgroup_swapoff(p->type); 1958 1959 inode = mapping->host; 1960 if (S_ISBLK(inode->i_mode)) { 1961 struct block_device *bdev = I_BDEV(inode); 1962 set_blocksize(bdev, old_block_size); 1963 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 1964 } else { 1965 inode_lock(inode); 1966 inode->i_flags &= ~S_SWAPFILE; 1967 inode_unlock(inode); 1968 } 1969 filp_close(swap_file, NULL); 1970 1971 /* 1972 * Clear the SWP_USED flag after all resources are freed so that swapon 1973 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 1974 * not hold p->lock after we cleared its SWP_WRITEOK. 1975 */ 1976 spin_lock(&swap_lock); 1977 p->flags = 0; 1978 spin_unlock(&swap_lock); 1979 1980 err = 0; 1981 atomic_inc(&proc_poll_event); 1982 wake_up_interruptible(&proc_poll_wait); 1983 1984 out_dput: 1985 filp_close(victim, NULL); 1986 out: 1987 putname(pathname); 1988 return err; 1989 } 1990 1991 #ifdef CONFIG_PROC_FS 1992 static unsigned swaps_poll(struct file *file, poll_table *wait) 1993 { 1994 struct seq_file *seq = file->private_data; 1995 1996 poll_wait(file, &proc_poll_wait, wait); 1997 1998 if (seq->poll_event != atomic_read(&proc_poll_event)) { 1999 seq->poll_event = atomic_read(&proc_poll_event); 2000 return POLLIN | POLLRDNORM | POLLERR | POLLPRI; 2001 } 2002 2003 return POLLIN | POLLRDNORM; 2004 } 2005 2006 /* iterator */ 2007 static void *swap_start(struct seq_file *swap, loff_t *pos) 2008 { 2009 struct swap_info_struct *si; 2010 int type; 2011 loff_t l = *pos; 2012 2013 mutex_lock(&swapon_mutex); 2014 2015 if (!l) 2016 return SEQ_START_TOKEN; 2017 2018 for (type = 0; type < nr_swapfiles; type++) { 2019 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 2020 si = swap_info[type]; 2021 if (!(si->flags & SWP_USED) || !si->swap_map) 2022 continue; 2023 if (!--l) 2024 return si; 2025 } 2026 2027 return NULL; 2028 } 2029 2030 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2031 { 2032 struct swap_info_struct *si = v; 2033 int type; 2034 2035 if (v == SEQ_START_TOKEN) 2036 type = 0; 2037 else 2038 type = si->type + 1; 2039 2040 for (; type < nr_swapfiles; type++) { 2041 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 2042 si = swap_info[type]; 2043 if (!(si->flags & SWP_USED) || !si->swap_map) 2044 continue; 2045 ++*pos; 2046 return si; 2047 } 2048 2049 return NULL; 2050 } 2051 2052 static void swap_stop(struct seq_file *swap, void *v) 2053 { 2054 mutex_unlock(&swapon_mutex); 2055 } 2056 2057 static int swap_show(struct seq_file *swap, void *v) 2058 { 2059 struct swap_info_struct *si = v; 2060 struct file *file; 2061 int len; 2062 2063 if (si == SEQ_START_TOKEN) { 2064 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 2065 return 0; 2066 } 2067 2068 file = si->swap_file; 2069 len = seq_file_path(swap, file, " \t\n\\"); 2070 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 2071 len < 40 ? 40 - len : 1, " ", 2072 S_ISBLK(file_inode(file)->i_mode) ? 2073 "partition" : "file\t", 2074 si->pages << (PAGE_SHIFT - 10), 2075 si->inuse_pages << (PAGE_SHIFT - 10), 2076 si->prio); 2077 return 0; 2078 } 2079 2080 static const struct seq_operations swaps_op = { 2081 .start = swap_start, 2082 .next = swap_next, 2083 .stop = swap_stop, 2084 .show = swap_show 2085 }; 2086 2087 static int swaps_open(struct inode *inode, struct file *file) 2088 { 2089 struct seq_file *seq; 2090 int ret; 2091 2092 ret = seq_open(file, &swaps_op); 2093 if (ret) 2094 return ret; 2095 2096 seq = file->private_data; 2097 seq->poll_event = atomic_read(&proc_poll_event); 2098 return 0; 2099 } 2100 2101 static const struct file_operations proc_swaps_operations = { 2102 .open = swaps_open, 2103 .read = seq_read, 2104 .llseek = seq_lseek, 2105 .release = seq_release, 2106 .poll = swaps_poll, 2107 }; 2108 2109 static int __init procswaps_init(void) 2110 { 2111 proc_create("swaps", 0, NULL, &proc_swaps_operations); 2112 return 0; 2113 } 2114 __initcall(procswaps_init); 2115 #endif /* CONFIG_PROC_FS */ 2116 2117 #ifdef MAX_SWAPFILES_CHECK 2118 static int __init max_swapfiles_check(void) 2119 { 2120 MAX_SWAPFILES_CHECK(); 2121 return 0; 2122 } 2123 late_initcall(max_swapfiles_check); 2124 #endif 2125 2126 static struct swap_info_struct *alloc_swap_info(void) 2127 { 2128 struct swap_info_struct *p; 2129 unsigned int type; 2130 2131 p = kzalloc(sizeof(*p), GFP_KERNEL); 2132 if (!p) 2133 return ERR_PTR(-ENOMEM); 2134 2135 spin_lock(&swap_lock); 2136 for (type = 0; type < nr_swapfiles; type++) { 2137 if (!(swap_info[type]->flags & SWP_USED)) 2138 break; 2139 } 2140 if (type >= MAX_SWAPFILES) { 2141 spin_unlock(&swap_lock); 2142 kfree(p); 2143 return ERR_PTR(-EPERM); 2144 } 2145 if (type >= nr_swapfiles) { 2146 p->type = type; 2147 swap_info[type] = p; 2148 /* 2149 * Write swap_info[type] before nr_swapfiles, in case a 2150 * racing procfs swap_start() or swap_next() is reading them. 2151 * (We never shrink nr_swapfiles, we never free this entry.) 2152 */ 2153 smp_wmb(); 2154 nr_swapfiles++; 2155 } else { 2156 kfree(p); 2157 p = swap_info[type]; 2158 /* 2159 * Do not memset this entry: a racing procfs swap_next() 2160 * would be relying on p->type to remain valid. 2161 */ 2162 } 2163 INIT_LIST_HEAD(&p->first_swap_extent.list); 2164 plist_node_init(&p->list, 0); 2165 plist_node_init(&p->avail_list, 0); 2166 p->flags = SWP_USED; 2167 spin_unlock(&swap_lock); 2168 spin_lock_init(&p->lock); 2169 2170 return p; 2171 } 2172 2173 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2174 { 2175 int error; 2176 2177 if (S_ISBLK(inode->i_mode)) { 2178 p->bdev = bdgrab(I_BDEV(inode)); 2179 error = blkdev_get(p->bdev, 2180 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); 2181 if (error < 0) { 2182 p->bdev = NULL; 2183 return error; 2184 } 2185 p->old_block_size = block_size(p->bdev); 2186 error = set_blocksize(p->bdev, PAGE_SIZE); 2187 if (error < 0) 2188 return error; 2189 p->flags |= SWP_BLKDEV; 2190 } else if (S_ISREG(inode->i_mode)) { 2191 p->bdev = inode->i_sb->s_bdev; 2192 inode_lock(inode); 2193 if (IS_SWAPFILE(inode)) 2194 return -EBUSY; 2195 } else 2196 return -EINVAL; 2197 2198 return 0; 2199 } 2200 2201 static unsigned long read_swap_header(struct swap_info_struct *p, 2202 union swap_header *swap_header, 2203 struct inode *inode) 2204 { 2205 int i; 2206 unsigned long maxpages; 2207 unsigned long swapfilepages; 2208 unsigned long last_page; 2209 2210 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2211 pr_err("Unable to find swap-space signature\n"); 2212 return 0; 2213 } 2214 2215 /* swap partition endianess hack... */ 2216 if (swab32(swap_header->info.version) == 1) { 2217 swab32s(&swap_header->info.version); 2218 swab32s(&swap_header->info.last_page); 2219 swab32s(&swap_header->info.nr_badpages); 2220 for (i = 0; i < swap_header->info.nr_badpages; i++) 2221 swab32s(&swap_header->info.badpages[i]); 2222 } 2223 /* Check the swap header's sub-version */ 2224 if (swap_header->info.version != 1) { 2225 pr_warn("Unable to handle swap header version %d\n", 2226 swap_header->info.version); 2227 return 0; 2228 } 2229 2230 p->lowest_bit = 1; 2231 p->cluster_next = 1; 2232 p->cluster_nr = 0; 2233 2234 /* 2235 * Find out how many pages are allowed for a single swap 2236 * device. There are two limiting factors: 1) the number 2237 * of bits for the swap offset in the swp_entry_t type, and 2238 * 2) the number of bits in the swap pte as defined by the 2239 * different architectures. In order to find the 2240 * largest possible bit mask, a swap entry with swap type 0 2241 * and swap offset ~0UL is created, encoded to a swap pte, 2242 * decoded to a swp_entry_t again, and finally the swap 2243 * offset is extracted. This will mask all the bits from 2244 * the initial ~0UL mask that can't be encoded in either 2245 * the swp_entry_t or the architecture definition of a 2246 * swap pte. 2247 */ 2248 maxpages = swp_offset(pte_to_swp_entry( 2249 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2250 last_page = swap_header->info.last_page; 2251 if (last_page > maxpages) { 2252 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2253 maxpages << (PAGE_SHIFT - 10), 2254 last_page << (PAGE_SHIFT - 10)); 2255 } 2256 if (maxpages > last_page) { 2257 maxpages = last_page + 1; 2258 /* p->max is an unsigned int: don't overflow it */ 2259 if ((unsigned int)maxpages == 0) 2260 maxpages = UINT_MAX; 2261 } 2262 p->highest_bit = maxpages - 1; 2263 2264 if (!maxpages) 2265 return 0; 2266 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2267 if (swapfilepages && maxpages > swapfilepages) { 2268 pr_warn("Swap area shorter than signature indicates\n"); 2269 return 0; 2270 } 2271 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2272 return 0; 2273 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2274 return 0; 2275 2276 return maxpages; 2277 } 2278 2279 static int setup_swap_map_and_extents(struct swap_info_struct *p, 2280 union swap_header *swap_header, 2281 unsigned char *swap_map, 2282 struct swap_cluster_info *cluster_info, 2283 unsigned long maxpages, 2284 sector_t *span) 2285 { 2286 int i; 2287 unsigned int nr_good_pages; 2288 int nr_extents; 2289 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2290 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER; 2291 2292 nr_good_pages = maxpages - 1; /* omit header page */ 2293 2294 cluster_set_null(&p->free_cluster_head); 2295 cluster_set_null(&p->free_cluster_tail); 2296 cluster_set_null(&p->discard_cluster_head); 2297 cluster_set_null(&p->discard_cluster_tail); 2298 2299 for (i = 0; i < swap_header->info.nr_badpages; i++) { 2300 unsigned int page_nr = swap_header->info.badpages[i]; 2301 if (page_nr == 0 || page_nr > swap_header->info.last_page) 2302 return -EINVAL; 2303 if (page_nr < maxpages) { 2304 swap_map[page_nr] = SWAP_MAP_BAD; 2305 nr_good_pages--; 2306 /* 2307 * Haven't marked the cluster free yet, no list 2308 * operation involved 2309 */ 2310 inc_cluster_info_page(p, cluster_info, page_nr); 2311 } 2312 } 2313 2314 /* Haven't marked the cluster free yet, no list operation involved */ 2315 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 2316 inc_cluster_info_page(p, cluster_info, i); 2317 2318 if (nr_good_pages) { 2319 swap_map[0] = SWAP_MAP_BAD; 2320 /* 2321 * Not mark the cluster free yet, no list 2322 * operation involved 2323 */ 2324 inc_cluster_info_page(p, cluster_info, 0); 2325 p->max = maxpages; 2326 p->pages = nr_good_pages; 2327 nr_extents = setup_swap_extents(p, span); 2328 if (nr_extents < 0) 2329 return nr_extents; 2330 nr_good_pages = p->pages; 2331 } 2332 if (!nr_good_pages) { 2333 pr_warn("Empty swap-file\n"); 2334 return -EINVAL; 2335 } 2336 2337 if (!cluster_info) 2338 return nr_extents; 2339 2340 for (i = 0; i < nr_clusters; i++) { 2341 if (!cluster_count(&cluster_info[idx])) { 2342 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 2343 if (cluster_is_null(&p->free_cluster_head)) { 2344 cluster_set_next_flag(&p->free_cluster_head, 2345 idx, 0); 2346 cluster_set_next_flag(&p->free_cluster_tail, 2347 idx, 0); 2348 } else { 2349 unsigned int tail; 2350 2351 tail = cluster_next(&p->free_cluster_tail); 2352 cluster_set_next(&cluster_info[tail], idx); 2353 cluster_set_next_flag(&p->free_cluster_tail, 2354 idx, 0); 2355 } 2356 } 2357 idx++; 2358 if (idx == nr_clusters) 2359 idx = 0; 2360 } 2361 return nr_extents; 2362 } 2363 2364 /* 2365 * Helper to sys_swapon determining if a given swap 2366 * backing device queue supports DISCARD operations. 2367 */ 2368 static bool swap_discardable(struct swap_info_struct *si) 2369 { 2370 struct request_queue *q = bdev_get_queue(si->bdev); 2371 2372 if (!q || !blk_queue_discard(q)) 2373 return false; 2374 2375 return true; 2376 } 2377 2378 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 2379 { 2380 struct swap_info_struct *p; 2381 struct filename *name; 2382 struct file *swap_file = NULL; 2383 struct address_space *mapping; 2384 int prio; 2385 int error; 2386 union swap_header *swap_header; 2387 int nr_extents; 2388 sector_t span; 2389 unsigned long maxpages; 2390 unsigned char *swap_map = NULL; 2391 struct swap_cluster_info *cluster_info = NULL; 2392 unsigned long *frontswap_map = NULL; 2393 struct page *page = NULL; 2394 struct inode *inode = NULL; 2395 2396 if (swap_flags & ~SWAP_FLAGS_VALID) 2397 return -EINVAL; 2398 2399 if (!capable(CAP_SYS_ADMIN)) 2400 return -EPERM; 2401 2402 p = alloc_swap_info(); 2403 if (IS_ERR(p)) 2404 return PTR_ERR(p); 2405 2406 INIT_WORK(&p->discard_work, swap_discard_work); 2407 2408 name = getname(specialfile); 2409 if (IS_ERR(name)) { 2410 error = PTR_ERR(name); 2411 name = NULL; 2412 goto bad_swap; 2413 } 2414 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 2415 if (IS_ERR(swap_file)) { 2416 error = PTR_ERR(swap_file); 2417 swap_file = NULL; 2418 goto bad_swap; 2419 } 2420 2421 p->swap_file = swap_file; 2422 mapping = swap_file->f_mapping; 2423 inode = mapping->host; 2424 2425 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */ 2426 error = claim_swapfile(p, inode); 2427 if (unlikely(error)) 2428 goto bad_swap; 2429 2430 /* 2431 * Read the swap header. 2432 */ 2433 if (!mapping->a_ops->readpage) { 2434 error = -EINVAL; 2435 goto bad_swap; 2436 } 2437 page = read_mapping_page(mapping, 0, swap_file); 2438 if (IS_ERR(page)) { 2439 error = PTR_ERR(page); 2440 goto bad_swap; 2441 } 2442 swap_header = kmap(page); 2443 2444 maxpages = read_swap_header(p, swap_header, inode); 2445 if (unlikely(!maxpages)) { 2446 error = -EINVAL; 2447 goto bad_swap; 2448 } 2449 2450 /* OK, set up the swap map and apply the bad block list */ 2451 swap_map = vzalloc(maxpages); 2452 if (!swap_map) { 2453 error = -ENOMEM; 2454 goto bad_swap; 2455 } 2456 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { 2457 int cpu; 2458 2459 p->flags |= SWP_SOLIDSTATE; 2460 /* 2461 * select a random position to start with to help wear leveling 2462 * SSD 2463 */ 2464 p->cluster_next = 1 + (prandom_u32() % p->highest_bit); 2465 2466 cluster_info = vzalloc(DIV_ROUND_UP(maxpages, 2467 SWAPFILE_CLUSTER) * sizeof(*cluster_info)); 2468 if (!cluster_info) { 2469 error = -ENOMEM; 2470 goto bad_swap; 2471 } 2472 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 2473 if (!p->percpu_cluster) { 2474 error = -ENOMEM; 2475 goto bad_swap; 2476 } 2477 for_each_possible_cpu(cpu) { 2478 struct percpu_cluster *cluster; 2479 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 2480 cluster_set_null(&cluster->index); 2481 } 2482 } 2483 2484 error = swap_cgroup_swapon(p->type, maxpages); 2485 if (error) 2486 goto bad_swap; 2487 2488 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 2489 cluster_info, maxpages, &span); 2490 if (unlikely(nr_extents < 0)) { 2491 error = nr_extents; 2492 goto bad_swap; 2493 } 2494 /* frontswap enabled? set up bit-per-page map for frontswap */ 2495 if (frontswap_enabled) 2496 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long)); 2497 2498 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { 2499 /* 2500 * When discard is enabled for swap with no particular 2501 * policy flagged, we set all swap discard flags here in 2502 * order to sustain backward compatibility with older 2503 * swapon(8) releases. 2504 */ 2505 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 2506 SWP_PAGE_DISCARD); 2507 2508 /* 2509 * By flagging sys_swapon, a sysadmin can tell us to 2510 * either do single-time area discards only, or to just 2511 * perform discards for released swap page-clusters. 2512 * Now it's time to adjust the p->flags accordingly. 2513 */ 2514 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 2515 p->flags &= ~SWP_PAGE_DISCARD; 2516 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 2517 p->flags &= ~SWP_AREA_DISCARD; 2518 2519 /* issue a swapon-time discard if it's still required */ 2520 if (p->flags & SWP_AREA_DISCARD) { 2521 int err = discard_swap(p); 2522 if (unlikely(err)) 2523 pr_err("swapon: discard_swap(%p): %d\n", 2524 p, err); 2525 } 2526 } 2527 2528 mutex_lock(&swapon_mutex); 2529 prio = -1; 2530 if (swap_flags & SWAP_FLAG_PREFER) 2531 prio = 2532 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 2533 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 2534 2535 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 2536 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 2537 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 2538 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 2539 (p->flags & SWP_DISCARDABLE) ? "D" : "", 2540 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 2541 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 2542 (frontswap_map) ? "FS" : ""); 2543 2544 mutex_unlock(&swapon_mutex); 2545 atomic_inc(&proc_poll_event); 2546 wake_up_interruptible(&proc_poll_wait); 2547 2548 if (S_ISREG(inode->i_mode)) 2549 inode->i_flags |= S_SWAPFILE; 2550 error = 0; 2551 goto out; 2552 bad_swap: 2553 free_percpu(p->percpu_cluster); 2554 p->percpu_cluster = NULL; 2555 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 2556 set_blocksize(p->bdev, p->old_block_size); 2557 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2558 } 2559 destroy_swap_extents(p); 2560 swap_cgroup_swapoff(p->type); 2561 spin_lock(&swap_lock); 2562 p->swap_file = NULL; 2563 p->flags = 0; 2564 spin_unlock(&swap_lock); 2565 vfree(swap_map); 2566 vfree(cluster_info); 2567 if (swap_file) { 2568 if (inode && S_ISREG(inode->i_mode)) { 2569 inode_unlock(inode); 2570 inode = NULL; 2571 } 2572 filp_close(swap_file, NULL); 2573 } 2574 out: 2575 if (page && !IS_ERR(page)) { 2576 kunmap(page); 2577 put_page(page); 2578 } 2579 if (name) 2580 putname(name); 2581 if (inode && S_ISREG(inode->i_mode)) 2582 inode_unlock(inode); 2583 return error; 2584 } 2585 2586 void si_swapinfo(struct sysinfo *val) 2587 { 2588 unsigned int type; 2589 unsigned long nr_to_be_unused = 0; 2590 2591 spin_lock(&swap_lock); 2592 for (type = 0; type < nr_swapfiles; type++) { 2593 struct swap_info_struct *si = swap_info[type]; 2594 2595 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 2596 nr_to_be_unused += si->inuse_pages; 2597 } 2598 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 2599 val->totalswap = total_swap_pages + nr_to_be_unused; 2600 spin_unlock(&swap_lock); 2601 } 2602 2603 /* 2604 * Verify that a swap entry is valid and increment its swap map count. 2605 * 2606 * Returns error code in following case. 2607 * - success -> 0 2608 * - swp_entry is invalid -> EINVAL 2609 * - swp_entry is migration entry -> EINVAL 2610 * - swap-cache reference is requested but there is already one. -> EEXIST 2611 * - swap-cache reference is requested but the entry is not used. -> ENOENT 2612 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 2613 */ 2614 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 2615 { 2616 struct swap_info_struct *p; 2617 unsigned long offset, type; 2618 unsigned char count; 2619 unsigned char has_cache; 2620 int err = -EINVAL; 2621 2622 if (non_swap_entry(entry)) 2623 goto out; 2624 2625 type = swp_type(entry); 2626 if (type >= nr_swapfiles) 2627 goto bad_file; 2628 p = swap_info[type]; 2629 offset = swp_offset(entry); 2630 2631 spin_lock(&p->lock); 2632 if (unlikely(offset >= p->max)) 2633 goto unlock_out; 2634 2635 count = p->swap_map[offset]; 2636 2637 /* 2638 * swapin_readahead() doesn't check if a swap entry is valid, so the 2639 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 2640 */ 2641 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 2642 err = -ENOENT; 2643 goto unlock_out; 2644 } 2645 2646 has_cache = count & SWAP_HAS_CACHE; 2647 count &= ~SWAP_HAS_CACHE; 2648 err = 0; 2649 2650 if (usage == SWAP_HAS_CACHE) { 2651 2652 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 2653 if (!has_cache && count) 2654 has_cache = SWAP_HAS_CACHE; 2655 else if (has_cache) /* someone else added cache */ 2656 err = -EEXIST; 2657 else /* no users remaining */ 2658 err = -ENOENT; 2659 2660 } else if (count || has_cache) { 2661 2662 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 2663 count += usage; 2664 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 2665 err = -EINVAL; 2666 else if (swap_count_continued(p, offset, count)) 2667 count = COUNT_CONTINUED; 2668 else 2669 err = -ENOMEM; 2670 } else 2671 err = -ENOENT; /* unused swap entry */ 2672 2673 p->swap_map[offset] = count | has_cache; 2674 2675 unlock_out: 2676 spin_unlock(&p->lock); 2677 out: 2678 return err; 2679 2680 bad_file: 2681 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val); 2682 goto out; 2683 } 2684 2685 /* 2686 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 2687 * (in which case its reference count is never incremented). 2688 */ 2689 void swap_shmem_alloc(swp_entry_t entry) 2690 { 2691 __swap_duplicate(entry, SWAP_MAP_SHMEM); 2692 } 2693 2694 /* 2695 * Increase reference count of swap entry by 1. 2696 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 2697 * but could not be atomically allocated. Returns 0, just as if it succeeded, 2698 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 2699 * might occur if a page table entry has got corrupted. 2700 */ 2701 int swap_duplicate(swp_entry_t entry) 2702 { 2703 int err = 0; 2704 2705 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 2706 err = add_swap_count_continuation(entry, GFP_ATOMIC); 2707 return err; 2708 } 2709 2710 /* 2711 * @entry: swap entry for which we allocate swap cache. 2712 * 2713 * Called when allocating swap cache for existing swap entry, 2714 * This can return error codes. Returns 0 at success. 2715 * -EBUSY means there is a swap cache. 2716 * Note: return code is different from swap_duplicate(). 2717 */ 2718 int swapcache_prepare(swp_entry_t entry) 2719 { 2720 return __swap_duplicate(entry, SWAP_HAS_CACHE); 2721 } 2722 2723 struct swap_info_struct *page_swap_info(struct page *page) 2724 { 2725 swp_entry_t swap = { .val = page_private(page) }; 2726 BUG_ON(!PageSwapCache(page)); 2727 return swap_info[swp_type(swap)]; 2728 } 2729 2730 /* 2731 * out-of-line __page_file_ methods to avoid include hell. 2732 */ 2733 struct address_space *__page_file_mapping(struct page *page) 2734 { 2735 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 2736 return page_swap_info(page)->swap_file->f_mapping; 2737 } 2738 EXPORT_SYMBOL_GPL(__page_file_mapping); 2739 2740 pgoff_t __page_file_index(struct page *page) 2741 { 2742 swp_entry_t swap = { .val = page_private(page) }; 2743 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 2744 return swp_offset(swap); 2745 } 2746 EXPORT_SYMBOL_GPL(__page_file_index); 2747 2748 /* 2749 * add_swap_count_continuation - called when a swap count is duplicated 2750 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 2751 * page of the original vmalloc'ed swap_map, to hold the continuation count 2752 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 2753 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 2754 * 2755 * These continuation pages are seldom referenced: the common paths all work 2756 * on the original swap_map, only referring to a continuation page when the 2757 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 2758 * 2759 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 2760 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 2761 * can be called after dropping locks. 2762 */ 2763 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 2764 { 2765 struct swap_info_struct *si; 2766 struct page *head; 2767 struct page *page; 2768 struct page *list_page; 2769 pgoff_t offset; 2770 unsigned char count; 2771 2772 /* 2773 * When debugging, it's easier to use __GFP_ZERO here; but it's better 2774 * for latency not to zero a page while GFP_ATOMIC and holding locks. 2775 */ 2776 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 2777 2778 si = swap_info_get(entry); 2779 if (!si) { 2780 /* 2781 * An acceptable race has occurred since the failing 2782 * __swap_duplicate(): the swap entry has been freed, 2783 * perhaps even the whole swap_map cleared for swapoff. 2784 */ 2785 goto outer; 2786 } 2787 2788 offset = swp_offset(entry); 2789 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 2790 2791 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 2792 /* 2793 * The higher the swap count, the more likely it is that tasks 2794 * will race to add swap count continuation: we need to avoid 2795 * over-provisioning. 2796 */ 2797 goto out; 2798 } 2799 2800 if (!page) { 2801 spin_unlock(&si->lock); 2802 return -ENOMEM; 2803 } 2804 2805 /* 2806 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 2807 * no architecture is using highmem pages for kernel page tables: so it 2808 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 2809 */ 2810 head = vmalloc_to_page(si->swap_map + offset); 2811 offset &= ~PAGE_MASK; 2812 2813 /* 2814 * Page allocation does not initialize the page's lru field, 2815 * but it does always reset its private field. 2816 */ 2817 if (!page_private(head)) { 2818 BUG_ON(count & COUNT_CONTINUED); 2819 INIT_LIST_HEAD(&head->lru); 2820 set_page_private(head, SWP_CONTINUED); 2821 si->flags |= SWP_CONTINUED; 2822 } 2823 2824 list_for_each_entry(list_page, &head->lru, lru) { 2825 unsigned char *map; 2826 2827 /* 2828 * If the previous map said no continuation, but we've found 2829 * a continuation page, free our allocation and use this one. 2830 */ 2831 if (!(count & COUNT_CONTINUED)) 2832 goto out; 2833 2834 map = kmap_atomic(list_page) + offset; 2835 count = *map; 2836 kunmap_atomic(map); 2837 2838 /* 2839 * If this continuation count now has some space in it, 2840 * free our allocation and use this one. 2841 */ 2842 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 2843 goto out; 2844 } 2845 2846 list_add_tail(&page->lru, &head->lru); 2847 page = NULL; /* now it's attached, don't free it */ 2848 out: 2849 spin_unlock(&si->lock); 2850 outer: 2851 if (page) 2852 __free_page(page); 2853 return 0; 2854 } 2855 2856 /* 2857 * swap_count_continued - when the original swap_map count is incremented 2858 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 2859 * into, carry if so, or else fail until a new continuation page is allocated; 2860 * when the original swap_map count is decremented from 0 with continuation, 2861 * borrow from the continuation and report whether it still holds more. 2862 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock. 2863 */ 2864 static bool swap_count_continued(struct swap_info_struct *si, 2865 pgoff_t offset, unsigned char count) 2866 { 2867 struct page *head; 2868 struct page *page; 2869 unsigned char *map; 2870 2871 head = vmalloc_to_page(si->swap_map + offset); 2872 if (page_private(head) != SWP_CONTINUED) { 2873 BUG_ON(count & COUNT_CONTINUED); 2874 return false; /* need to add count continuation */ 2875 } 2876 2877 offset &= ~PAGE_MASK; 2878 page = list_entry(head->lru.next, struct page, lru); 2879 map = kmap_atomic(page) + offset; 2880 2881 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 2882 goto init_map; /* jump over SWAP_CONT_MAX checks */ 2883 2884 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 2885 /* 2886 * Think of how you add 1 to 999 2887 */ 2888 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 2889 kunmap_atomic(map); 2890 page = list_entry(page->lru.next, struct page, lru); 2891 BUG_ON(page == head); 2892 map = kmap_atomic(page) + offset; 2893 } 2894 if (*map == SWAP_CONT_MAX) { 2895 kunmap_atomic(map); 2896 page = list_entry(page->lru.next, struct page, lru); 2897 if (page == head) 2898 return false; /* add count continuation */ 2899 map = kmap_atomic(page) + offset; 2900 init_map: *map = 0; /* we didn't zero the page */ 2901 } 2902 *map += 1; 2903 kunmap_atomic(map); 2904 page = list_entry(page->lru.prev, struct page, lru); 2905 while (page != head) { 2906 map = kmap_atomic(page) + offset; 2907 *map = COUNT_CONTINUED; 2908 kunmap_atomic(map); 2909 page = list_entry(page->lru.prev, struct page, lru); 2910 } 2911 return true; /* incremented */ 2912 2913 } else { /* decrementing */ 2914 /* 2915 * Think of how you subtract 1 from 1000 2916 */ 2917 BUG_ON(count != COUNT_CONTINUED); 2918 while (*map == COUNT_CONTINUED) { 2919 kunmap_atomic(map); 2920 page = list_entry(page->lru.next, struct page, lru); 2921 BUG_ON(page == head); 2922 map = kmap_atomic(page) + offset; 2923 } 2924 BUG_ON(*map == 0); 2925 *map -= 1; 2926 if (*map == 0) 2927 count = 0; 2928 kunmap_atomic(map); 2929 page = list_entry(page->lru.prev, struct page, lru); 2930 while (page != head) { 2931 map = kmap_atomic(page) + offset; 2932 *map = SWAP_CONT_MAX | count; 2933 count = COUNT_CONTINUED; 2934 kunmap_atomic(map); 2935 page = list_entry(page->lru.prev, struct page, lru); 2936 } 2937 return count == COUNT_CONTINUED; 2938 } 2939 } 2940 2941 /* 2942 * free_swap_count_continuations - swapoff free all the continuation pages 2943 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 2944 */ 2945 static void free_swap_count_continuations(struct swap_info_struct *si) 2946 { 2947 pgoff_t offset; 2948 2949 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 2950 struct page *head; 2951 head = vmalloc_to_page(si->swap_map + offset); 2952 if (page_private(head)) { 2953 struct page *page, *next; 2954 2955 list_for_each_entry_safe(page, next, &head->lru, lru) { 2956 list_del(&page->lru); 2957 __free_page(page); 2958 } 2959 } 2960 } 2961 } 2962