xref: /linux/mm/swapfile.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37 
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/swap_cgroup.h>
42 
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 				 unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47 
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /*
52  * Some modules use swappable objects and may try to swap them out under
53  * memory pressure (via the shrinker). Before doing so, they may wish to
54  * check to see if any swap space is available.
55  */
56 EXPORT_SYMBOL_GPL(nr_swap_pages);
57 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
58 long total_swap_pages;
59 static int least_priority;
60 
61 static const char Bad_file[] = "Bad swap file entry ";
62 static const char Unused_file[] = "Unused swap file entry ";
63 static const char Bad_offset[] = "Bad swap offset entry ";
64 static const char Unused_offset[] = "Unused swap offset entry ";
65 
66 /*
67  * all active swap_info_structs
68  * protected with swap_lock, and ordered by priority.
69  */
70 PLIST_HEAD(swap_active_head);
71 
72 /*
73  * all available (active, not full) swap_info_structs
74  * protected with swap_avail_lock, ordered by priority.
75  * This is used by get_swap_page() instead of swap_active_head
76  * because swap_active_head includes all swap_info_structs,
77  * but get_swap_page() doesn't need to look at full ones.
78  * This uses its own lock instead of swap_lock because when a
79  * swap_info_struct changes between not-full/full, it needs to
80  * add/remove itself to/from this list, but the swap_info_struct->lock
81  * is held and the locking order requires swap_lock to be taken
82  * before any swap_info_struct->lock.
83  */
84 static PLIST_HEAD(swap_avail_head);
85 static DEFINE_SPINLOCK(swap_avail_lock);
86 
87 struct swap_info_struct *swap_info[MAX_SWAPFILES];
88 
89 static DEFINE_MUTEX(swapon_mutex);
90 
91 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
92 /* Activity counter to indicate that a swapon or swapoff has occurred */
93 static atomic_t proc_poll_event = ATOMIC_INIT(0);
94 
95 static inline unsigned char swap_count(unsigned char ent)
96 {
97 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
98 }
99 
100 /* returns 1 if swap entry is freed */
101 static int
102 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
103 {
104 	swp_entry_t entry = swp_entry(si->type, offset);
105 	struct page *page;
106 	int ret = 0;
107 
108 	page = find_get_page(swap_address_space(entry), entry.val);
109 	if (!page)
110 		return 0;
111 	/*
112 	 * This function is called from scan_swap_map() and it's called
113 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
114 	 * We have to use trylock for avoiding deadlock. This is a special
115 	 * case and you should use try_to_free_swap() with explicit lock_page()
116 	 * in usual operations.
117 	 */
118 	if (trylock_page(page)) {
119 		ret = try_to_free_swap(page);
120 		unlock_page(page);
121 	}
122 	put_page(page);
123 	return ret;
124 }
125 
126 /*
127  * swapon tell device that all the old swap contents can be discarded,
128  * to allow the swap device to optimize its wear-levelling.
129  */
130 static int discard_swap(struct swap_info_struct *si)
131 {
132 	struct swap_extent *se;
133 	sector_t start_block;
134 	sector_t nr_blocks;
135 	int err = 0;
136 
137 	/* Do not discard the swap header page! */
138 	se = &si->first_swap_extent;
139 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
140 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
141 	if (nr_blocks) {
142 		err = blkdev_issue_discard(si->bdev, start_block,
143 				nr_blocks, GFP_KERNEL, 0);
144 		if (err)
145 			return err;
146 		cond_resched();
147 	}
148 
149 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
150 		start_block = se->start_block << (PAGE_SHIFT - 9);
151 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
152 
153 		err = blkdev_issue_discard(si->bdev, start_block,
154 				nr_blocks, GFP_KERNEL, 0);
155 		if (err)
156 			break;
157 
158 		cond_resched();
159 	}
160 	return err;		/* That will often be -EOPNOTSUPP */
161 }
162 
163 /*
164  * swap allocation tell device that a cluster of swap can now be discarded,
165  * to allow the swap device to optimize its wear-levelling.
166  */
167 static void discard_swap_cluster(struct swap_info_struct *si,
168 				 pgoff_t start_page, pgoff_t nr_pages)
169 {
170 	struct swap_extent *se = si->curr_swap_extent;
171 	int found_extent = 0;
172 
173 	while (nr_pages) {
174 		if (se->start_page <= start_page &&
175 		    start_page < se->start_page + se->nr_pages) {
176 			pgoff_t offset = start_page - se->start_page;
177 			sector_t start_block = se->start_block + offset;
178 			sector_t nr_blocks = se->nr_pages - offset;
179 
180 			if (nr_blocks > nr_pages)
181 				nr_blocks = nr_pages;
182 			start_page += nr_blocks;
183 			nr_pages -= nr_blocks;
184 
185 			if (!found_extent++)
186 				si->curr_swap_extent = se;
187 
188 			start_block <<= PAGE_SHIFT - 9;
189 			nr_blocks <<= PAGE_SHIFT - 9;
190 			if (blkdev_issue_discard(si->bdev, start_block,
191 				    nr_blocks, GFP_NOIO, 0))
192 				break;
193 		}
194 
195 		se = list_next_entry(se, list);
196 	}
197 }
198 
199 #define SWAPFILE_CLUSTER	256
200 #define LATENCY_LIMIT		256
201 
202 static inline void cluster_set_flag(struct swap_cluster_info *info,
203 	unsigned int flag)
204 {
205 	info->flags = flag;
206 }
207 
208 static inline unsigned int cluster_count(struct swap_cluster_info *info)
209 {
210 	return info->data;
211 }
212 
213 static inline void cluster_set_count(struct swap_cluster_info *info,
214 				     unsigned int c)
215 {
216 	info->data = c;
217 }
218 
219 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
220 					 unsigned int c, unsigned int f)
221 {
222 	info->flags = f;
223 	info->data = c;
224 }
225 
226 static inline unsigned int cluster_next(struct swap_cluster_info *info)
227 {
228 	return info->data;
229 }
230 
231 static inline void cluster_set_next(struct swap_cluster_info *info,
232 				    unsigned int n)
233 {
234 	info->data = n;
235 }
236 
237 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
238 					 unsigned int n, unsigned int f)
239 {
240 	info->flags = f;
241 	info->data = n;
242 }
243 
244 static inline bool cluster_is_free(struct swap_cluster_info *info)
245 {
246 	return info->flags & CLUSTER_FLAG_FREE;
247 }
248 
249 static inline bool cluster_is_null(struct swap_cluster_info *info)
250 {
251 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
252 }
253 
254 static inline void cluster_set_null(struct swap_cluster_info *info)
255 {
256 	info->flags = CLUSTER_FLAG_NEXT_NULL;
257 	info->data = 0;
258 }
259 
260 /* Add a cluster to discard list and schedule it to do discard */
261 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
262 		unsigned int idx)
263 {
264 	/*
265 	 * If scan_swap_map() can't find a free cluster, it will check
266 	 * si->swap_map directly. To make sure the discarding cluster isn't
267 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
268 	 * will be cleared after discard
269 	 */
270 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
271 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
272 
273 	if (cluster_is_null(&si->discard_cluster_head)) {
274 		cluster_set_next_flag(&si->discard_cluster_head,
275 						idx, 0);
276 		cluster_set_next_flag(&si->discard_cluster_tail,
277 						idx, 0);
278 	} else {
279 		unsigned int tail = cluster_next(&si->discard_cluster_tail);
280 		cluster_set_next(&si->cluster_info[tail], idx);
281 		cluster_set_next_flag(&si->discard_cluster_tail,
282 						idx, 0);
283 	}
284 
285 	schedule_work(&si->discard_work);
286 }
287 
288 /*
289  * Doing discard actually. After a cluster discard is finished, the cluster
290  * will be added to free cluster list. caller should hold si->lock.
291 */
292 static void swap_do_scheduled_discard(struct swap_info_struct *si)
293 {
294 	struct swap_cluster_info *info;
295 	unsigned int idx;
296 
297 	info = si->cluster_info;
298 
299 	while (!cluster_is_null(&si->discard_cluster_head)) {
300 		idx = cluster_next(&si->discard_cluster_head);
301 
302 		cluster_set_next_flag(&si->discard_cluster_head,
303 						cluster_next(&info[idx]), 0);
304 		if (cluster_next(&si->discard_cluster_tail) == idx) {
305 			cluster_set_null(&si->discard_cluster_head);
306 			cluster_set_null(&si->discard_cluster_tail);
307 		}
308 		spin_unlock(&si->lock);
309 
310 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
311 				SWAPFILE_CLUSTER);
312 
313 		spin_lock(&si->lock);
314 		cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
315 		if (cluster_is_null(&si->free_cluster_head)) {
316 			cluster_set_next_flag(&si->free_cluster_head,
317 						idx, 0);
318 			cluster_set_next_flag(&si->free_cluster_tail,
319 						idx, 0);
320 		} else {
321 			unsigned int tail;
322 
323 			tail = cluster_next(&si->free_cluster_tail);
324 			cluster_set_next(&info[tail], idx);
325 			cluster_set_next_flag(&si->free_cluster_tail,
326 						idx, 0);
327 		}
328 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
329 				0, SWAPFILE_CLUSTER);
330 	}
331 }
332 
333 static void swap_discard_work(struct work_struct *work)
334 {
335 	struct swap_info_struct *si;
336 
337 	si = container_of(work, struct swap_info_struct, discard_work);
338 
339 	spin_lock(&si->lock);
340 	swap_do_scheduled_discard(si);
341 	spin_unlock(&si->lock);
342 }
343 
344 /*
345  * The cluster corresponding to page_nr will be used. The cluster will be
346  * removed from free cluster list and its usage counter will be increased.
347  */
348 static void inc_cluster_info_page(struct swap_info_struct *p,
349 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
350 {
351 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
352 
353 	if (!cluster_info)
354 		return;
355 	if (cluster_is_free(&cluster_info[idx])) {
356 		VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
357 		cluster_set_next_flag(&p->free_cluster_head,
358 			cluster_next(&cluster_info[idx]), 0);
359 		if (cluster_next(&p->free_cluster_tail) == idx) {
360 			cluster_set_null(&p->free_cluster_tail);
361 			cluster_set_null(&p->free_cluster_head);
362 		}
363 		cluster_set_count_flag(&cluster_info[idx], 0, 0);
364 	}
365 
366 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
367 	cluster_set_count(&cluster_info[idx],
368 		cluster_count(&cluster_info[idx]) + 1);
369 }
370 
371 /*
372  * The cluster corresponding to page_nr decreases one usage. If the usage
373  * counter becomes 0, which means no page in the cluster is in using, we can
374  * optionally discard the cluster and add it to free cluster list.
375  */
376 static void dec_cluster_info_page(struct swap_info_struct *p,
377 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
378 {
379 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
380 
381 	if (!cluster_info)
382 		return;
383 
384 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
385 	cluster_set_count(&cluster_info[idx],
386 		cluster_count(&cluster_info[idx]) - 1);
387 
388 	if (cluster_count(&cluster_info[idx]) == 0) {
389 		/*
390 		 * If the swap is discardable, prepare discard the cluster
391 		 * instead of free it immediately. The cluster will be freed
392 		 * after discard.
393 		 */
394 		if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
395 				 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
396 			swap_cluster_schedule_discard(p, idx);
397 			return;
398 		}
399 
400 		cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
401 		if (cluster_is_null(&p->free_cluster_head)) {
402 			cluster_set_next_flag(&p->free_cluster_head, idx, 0);
403 			cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
404 		} else {
405 			unsigned int tail = cluster_next(&p->free_cluster_tail);
406 			cluster_set_next(&cluster_info[tail], idx);
407 			cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
408 		}
409 	}
410 }
411 
412 /*
413  * It's possible scan_swap_map() uses a free cluster in the middle of free
414  * cluster list. Avoiding such abuse to avoid list corruption.
415  */
416 static bool
417 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
418 	unsigned long offset)
419 {
420 	struct percpu_cluster *percpu_cluster;
421 	bool conflict;
422 
423 	offset /= SWAPFILE_CLUSTER;
424 	conflict = !cluster_is_null(&si->free_cluster_head) &&
425 		offset != cluster_next(&si->free_cluster_head) &&
426 		cluster_is_free(&si->cluster_info[offset]);
427 
428 	if (!conflict)
429 		return false;
430 
431 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
432 	cluster_set_null(&percpu_cluster->index);
433 	return true;
434 }
435 
436 /*
437  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
438  * might involve allocating a new cluster for current CPU too.
439  */
440 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
441 	unsigned long *offset, unsigned long *scan_base)
442 {
443 	struct percpu_cluster *cluster;
444 	bool found_free;
445 	unsigned long tmp;
446 
447 new_cluster:
448 	cluster = this_cpu_ptr(si->percpu_cluster);
449 	if (cluster_is_null(&cluster->index)) {
450 		if (!cluster_is_null(&si->free_cluster_head)) {
451 			cluster->index = si->free_cluster_head;
452 			cluster->next = cluster_next(&cluster->index) *
453 					SWAPFILE_CLUSTER;
454 		} else if (!cluster_is_null(&si->discard_cluster_head)) {
455 			/*
456 			 * we don't have free cluster but have some clusters in
457 			 * discarding, do discard now and reclaim them
458 			 */
459 			swap_do_scheduled_discard(si);
460 			*scan_base = *offset = si->cluster_next;
461 			goto new_cluster;
462 		} else
463 			return;
464 	}
465 
466 	found_free = false;
467 
468 	/*
469 	 * Other CPUs can use our cluster if they can't find a free cluster,
470 	 * check if there is still free entry in the cluster
471 	 */
472 	tmp = cluster->next;
473 	while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
474 	       SWAPFILE_CLUSTER) {
475 		if (!si->swap_map[tmp]) {
476 			found_free = true;
477 			break;
478 		}
479 		tmp++;
480 	}
481 	if (!found_free) {
482 		cluster_set_null(&cluster->index);
483 		goto new_cluster;
484 	}
485 	cluster->next = tmp + 1;
486 	*offset = tmp;
487 	*scan_base = tmp;
488 }
489 
490 static unsigned long scan_swap_map(struct swap_info_struct *si,
491 				   unsigned char usage)
492 {
493 	unsigned long offset;
494 	unsigned long scan_base;
495 	unsigned long last_in_cluster = 0;
496 	int latency_ration = LATENCY_LIMIT;
497 
498 	/*
499 	 * We try to cluster swap pages by allocating them sequentially
500 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
501 	 * way, however, we resort to first-free allocation, starting
502 	 * a new cluster.  This prevents us from scattering swap pages
503 	 * all over the entire swap partition, so that we reduce
504 	 * overall disk seek times between swap pages.  -- sct
505 	 * But we do now try to find an empty cluster.  -Andrea
506 	 * And we let swap pages go all over an SSD partition.  Hugh
507 	 */
508 
509 	si->flags += SWP_SCANNING;
510 	scan_base = offset = si->cluster_next;
511 
512 	/* SSD algorithm */
513 	if (si->cluster_info) {
514 		scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
515 		goto checks;
516 	}
517 
518 	if (unlikely(!si->cluster_nr--)) {
519 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
520 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
521 			goto checks;
522 		}
523 
524 		spin_unlock(&si->lock);
525 
526 		/*
527 		 * If seek is expensive, start searching for new cluster from
528 		 * start of partition, to minimize the span of allocated swap.
529 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
530 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
531 		 */
532 		scan_base = offset = si->lowest_bit;
533 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
534 
535 		/* Locate the first empty (unaligned) cluster */
536 		for (; last_in_cluster <= si->highest_bit; offset++) {
537 			if (si->swap_map[offset])
538 				last_in_cluster = offset + SWAPFILE_CLUSTER;
539 			else if (offset == last_in_cluster) {
540 				spin_lock(&si->lock);
541 				offset -= SWAPFILE_CLUSTER - 1;
542 				si->cluster_next = offset;
543 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
544 				goto checks;
545 			}
546 			if (unlikely(--latency_ration < 0)) {
547 				cond_resched();
548 				latency_ration = LATENCY_LIMIT;
549 			}
550 		}
551 
552 		offset = scan_base;
553 		spin_lock(&si->lock);
554 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
555 	}
556 
557 checks:
558 	if (si->cluster_info) {
559 		while (scan_swap_map_ssd_cluster_conflict(si, offset))
560 			scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
561 	}
562 	if (!(si->flags & SWP_WRITEOK))
563 		goto no_page;
564 	if (!si->highest_bit)
565 		goto no_page;
566 	if (offset > si->highest_bit)
567 		scan_base = offset = si->lowest_bit;
568 
569 	/* reuse swap entry of cache-only swap if not busy. */
570 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
571 		int swap_was_freed;
572 		spin_unlock(&si->lock);
573 		swap_was_freed = __try_to_reclaim_swap(si, offset);
574 		spin_lock(&si->lock);
575 		/* entry was freed successfully, try to use this again */
576 		if (swap_was_freed)
577 			goto checks;
578 		goto scan; /* check next one */
579 	}
580 
581 	if (si->swap_map[offset])
582 		goto scan;
583 
584 	if (offset == si->lowest_bit)
585 		si->lowest_bit++;
586 	if (offset == si->highest_bit)
587 		si->highest_bit--;
588 	si->inuse_pages++;
589 	if (si->inuse_pages == si->pages) {
590 		si->lowest_bit = si->max;
591 		si->highest_bit = 0;
592 		spin_lock(&swap_avail_lock);
593 		plist_del(&si->avail_list, &swap_avail_head);
594 		spin_unlock(&swap_avail_lock);
595 	}
596 	si->swap_map[offset] = usage;
597 	inc_cluster_info_page(si, si->cluster_info, offset);
598 	si->cluster_next = offset + 1;
599 	si->flags -= SWP_SCANNING;
600 
601 	return offset;
602 
603 scan:
604 	spin_unlock(&si->lock);
605 	while (++offset <= si->highest_bit) {
606 		if (!si->swap_map[offset]) {
607 			spin_lock(&si->lock);
608 			goto checks;
609 		}
610 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
611 			spin_lock(&si->lock);
612 			goto checks;
613 		}
614 		if (unlikely(--latency_ration < 0)) {
615 			cond_resched();
616 			latency_ration = LATENCY_LIMIT;
617 		}
618 	}
619 	offset = si->lowest_bit;
620 	while (offset < scan_base) {
621 		if (!si->swap_map[offset]) {
622 			spin_lock(&si->lock);
623 			goto checks;
624 		}
625 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
626 			spin_lock(&si->lock);
627 			goto checks;
628 		}
629 		if (unlikely(--latency_ration < 0)) {
630 			cond_resched();
631 			latency_ration = LATENCY_LIMIT;
632 		}
633 		offset++;
634 	}
635 	spin_lock(&si->lock);
636 
637 no_page:
638 	si->flags -= SWP_SCANNING;
639 	return 0;
640 }
641 
642 swp_entry_t get_swap_page(void)
643 {
644 	struct swap_info_struct *si, *next;
645 	pgoff_t offset;
646 
647 	if (atomic_long_read(&nr_swap_pages) <= 0)
648 		goto noswap;
649 	atomic_long_dec(&nr_swap_pages);
650 
651 	spin_lock(&swap_avail_lock);
652 
653 start_over:
654 	plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
655 		/* requeue si to after same-priority siblings */
656 		plist_requeue(&si->avail_list, &swap_avail_head);
657 		spin_unlock(&swap_avail_lock);
658 		spin_lock(&si->lock);
659 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
660 			spin_lock(&swap_avail_lock);
661 			if (plist_node_empty(&si->avail_list)) {
662 				spin_unlock(&si->lock);
663 				goto nextsi;
664 			}
665 			WARN(!si->highest_bit,
666 			     "swap_info %d in list but !highest_bit\n",
667 			     si->type);
668 			WARN(!(si->flags & SWP_WRITEOK),
669 			     "swap_info %d in list but !SWP_WRITEOK\n",
670 			     si->type);
671 			plist_del(&si->avail_list, &swap_avail_head);
672 			spin_unlock(&si->lock);
673 			goto nextsi;
674 		}
675 
676 		/* This is called for allocating swap entry for cache */
677 		offset = scan_swap_map(si, SWAP_HAS_CACHE);
678 		spin_unlock(&si->lock);
679 		if (offset)
680 			return swp_entry(si->type, offset);
681 		pr_debug("scan_swap_map of si %d failed to find offset\n",
682 		       si->type);
683 		spin_lock(&swap_avail_lock);
684 nextsi:
685 		/*
686 		 * if we got here, it's likely that si was almost full before,
687 		 * and since scan_swap_map() can drop the si->lock, multiple
688 		 * callers probably all tried to get a page from the same si
689 		 * and it filled up before we could get one; or, the si filled
690 		 * up between us dropping swap_avail_lock and taking si->lock.
691 		 * Since we dropped the swap_avail_lock, the swap_avail_head
692 		 * list may have been modified; so if next is still in the
693 		 * swap_avail_head list then try it, otherwise start over.
694 		 */
695 		if (plist_node_empty(&next->avail_list))
696 			goto start_over;
697 	}
698 
699 	spin_unlock(&swap_avail_lock);
700 
701 	atomic_long_inc(&nr_swap_pages);
702 noswap:
703 	return (swp_entry_t) {0};
704 }
705 
706 /* The only caller of this function is now suspend routine */
707 swp_entry_t get_swap_page_of_type(int type)
708 {
709 	struct swap_info_struct *si;
710 	pgoff_t offset;
711 
712 	si = swap_info[type];
713 	spin_lock(&si->lock);
714 	if (si && (si->flags & SWP_WRITEOK)) {
715 		atomic_long_dec(&nr_swap_pages);
716 		/* This is called for allocating swap entry, not cache */
717 		offset = scan_swap_map(si, 1);
718 		if (offset) {
719 			spin_unlock(&si->lock);
720 			return swp_entry(type, offset);
721 		}
722 		atomic_long_inc(&nr_swap_pages);
723 	}
724 	spin_unlock(&si->lock);
725 	return (swp_entry_t) {0};
726 }
727 
728 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
729 {
730 	struct swap_info_struct *p;
731 	unsigned long offset, type;
732 
733 	if (!entry.val)
734 		goto out;
735 	type = swp_type(entry);
736 	if (type >= nr_swapfiles)
737 		goto bad_nofile;
738 	p = swap_info[type];
739 	if (!(p->flags & SWP_USED))
740 		goto bad_device;
741 	offset = swp_offset(entry);
742 	if (offset >= p->max)
743 		goto bad_offset;
744 	if (!p->swap_map[offset])
745 		goto bad_free;
746 	spin_lock(&p->lock);
747 	return p;
748 
749 bad_free:
750 	pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
751 	goto out;
752 bad_offset:
753 	pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
754 	goto out;
755 bad_device:
756 	pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
757 	goto out;
758 bad_nofile:
759 	pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
760 out:
761 	return NULL;
762 }
763 
764 static unsigned char swap_entry_free(struct swap_info_struct *p,
765 				     swp_entry_t entry, unsigned char usage)
766 {
767 	unsigned long offset = swp_offset(entry);
768 	unsigned char count;
769 	unsigned char has_cache;
770 
771 	count = p->swap_map[offset];
772 	has_cache = count & SWAP_HAS_CACHE;
773 	count &= ~SWAP_HAS_CACHE;
774 
775 	if (usage == SWAP_HAS_CACHE) {
776 		VM_BUG_ON(!has_cache);
777 		has_cache = 0;
778 	} else if (count == SWAP_MAP_SHMEM) {
779 		/*
780 		 * Or we could insist on shmem.c using a special
781 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
782 		 */
783 		count = 0;
784 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
785 		if (count == COUNT_CONTINUED) {
786 			if (swap_count_continued(p, offset, count))
787 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
788 			else
789 				count = SWAP_MAP_MAX;
790 		} else
791 			count--;
792 	}
793 
794 	usage = count | has_cache;
795 	p->swap_map[offset] = usage;
796 
797 	/* free if no reference */
798 	if (!usage) {
799 		mem_cgroup_uncharge_swap(entry);
800 		dec_cluster_info_page(p, p->cluster_info, offset);
801 		if (offset < p->lowest_bit)
802 			p->lowest_bit = offset;
803 		if (offset > p->highest_bit) {
804 			bool was_full = !p->highest_bit;
805 			p->highest_bit = offset;
806 			if (was_full && (p->flags & SWP_WRITEOK)) {
807 				spin_lock(&swap_avail_lock);
808 				WARN_ON(!plist_node_empty(&p->avail_list));
809 				if (plist_node_empty(&p->avail_list))
810 					plist_add(&p->avail_list,
811 						  &swap_avail_head);
812 				spin_unlock(&swap_avail_lock);
813 			}
814 		}
815 		atomic_long_inc(&nr_swap_pages);
816 		p->inuse_pages--;
817 		frontswap_invalidate_page(p->type, offset);
818 		if (p->flags & SWP_BLKDEV) {
819 			struct gendisk *disk = p->bdev->bd_disk;
820 			if (disk->fops->swap_slot_free_notify)
821 				disk->fops->swap_slot_free_notify(p->bdev,
822 								  offset);
823 		}
824 	}
825 
826 	return usage;
827 }
828 
829 /*
830  * Caller has made sure that the swap device corresponding to entry
831  * is still around or has not been recycled.
832  */
833 void swap_free(swp_entry_t entry)
834 {
835 	struct swap_info_struct *p;
836 
837 	p = swap_info_get(entry);
838 	if (p) {
839 		swap_entry_free(p, entry, 1);
840 		spin_unlock(&p->lock);
841 	}
842 }
843 
844 /*
845  * Called after dropping swapcache to decrease refcnt to swap entries.
846  */
847 void swapcache_free(swp_entry_t entry)
848 {
849 	struct swap_info_struct *p;
850 
851 	p = swap_info_get(entry);
852 	if (p) {
853 		swap_entry_free(p, entry, SWAP_HAS_CACHE);
854 		spin_unlock(&p->lock);
855 	}
856 }
857 
858 /*
859  * How many references to page are currently swapped out?
860  * This does not give an exact answer when swap count is continued,
861  * but does include the high COUNT_CONTINUED flag to allow for that.
862  */
863 int page_swapcount(struct page *page)
864 {
865 	int count = 0;
866 	struct swap_info_struct *p;
867 	swp_entry_t entry;
868 
869 	entry.val = page_private(page);
870 	p = swap_info_get(entry);
871 	if (p) {
872 		count = swap_count(p->swap_map[swp_offset(entry)]);
873 		spin_unlock(&p->lock);
874 	}
875 	return count;
876 }
877 
878 /*
879  * How many references to @entry are currently swapped out?
880  * This considers COUNT_CONTINUED so it returns exact answer.
881  */
882 int swp_swapcount(swp_entry_t entry)
883 {
884 	int count, tmp_count, n;
885 	struct swap_info_struct *p;
886 	struct page *page;
887 	pgoff_t offset;
888 	unsigned char *map;
889 
890 	p = swap_info_get(entry);
891 	if (!p)
892 		return 0;
893 
894 	count = swap_count(p->swap_map[swp_offset(entry)]);
895 	if (!(count & COUNT_CONTINUED))
896 		goto out;
897 
898 	count &= ~COUNT_CONTINUED;
899 	n = SWAP_MAP_MAX + 1;
900 
901 	offset = swp_offset(entry);
902 	page = vmalloc_to_page(p->swap_map + offset);
903 	offset &= ~PAGE_MASK;
904 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
905 
906 	do {
907 		page = list_next_entry(page, lru);
908 		map = kmap_atomic(page);
909 		tmp_count = map[offset];
910 		kunmap_atomic(map);
911 
912 		count += (tmp_count & ~COUNT_CONTINUED) * n;
913 		n *= (SWAP_CONT_MAX + 1);
914 	} while (tmp_count & COUNT_CONTINUED);
915 out:
916 	spin_unlock(&p->lock);
917 	return count;
918 }
919 
920 /*
921  * We can write to an anon page without COW if there are no other references
922  * to it.  And as a side-effect, free up its swap: because the old content
923  * on disk will never be read, and seeking back there to write new content
924  * later would only waste time away from clustering.
925  */
926 int reuse_swap_page(struct page *page)
927 {
928 	int count;
929 
930 	VM_BUG_ON_PAGE(!PageLocked(page), page);
931 	if (unlikely(PageKsm(page)))
932 		return 0;
933 	/* The page is part of THP and cannot be reused */
934 	if (PageTransCompound(page))
935 		return 0;
936 	count = page_mapcount(page);
937 	if (count <= 1 && PageSwapCache(page)) {
938 		count += page_swapcount(page);
939 		if (count == 1 && !PageWriteback(page)) {
940 			delete_from_swap_cache(page);
941 			SetPageDirty(page);
942 		}
943 	}
944 	return count <= 1;
945 }
946 
947 /*
948  * If swap is getting full, or if there are no more mappings of this page,
949  * then try_to_free_swap is called to free its swap space.
950  */
951 int try_to_free_swap(struct page *page)
952 {
953 	VM_BUG_ON_PAGE(!PageLocked(page), page);
954 
955 	if (!PageSwapCache(page))
956 		return 0;
957 	if (PageWriteback(page))
958 		return 0;
959 	if (page_swapcount(page))
960 		return 0;
961 
962 	/*
963 	 * Once hibernation has begun to create its image of memory,
964 	 * there's a danger that one of the calls to try_to_free_swap()
965 	 * - most probably a call from __try_to_reclaim_swap() while
966 	 * hibernation is allocating its own swap pages for the image,
967 	 * but conceivably even a call from memory reclaim - will free
968 	 * the swap from a page which has already been recorded in the
969 	 * image as a clean swapcache page, and then reuse its swap for
970 	 * another page of the image.  On waking from hibernation, the
971 	 * original page might be freed under memory pressure, then
972 	 * later read back in from swap, now with the wrong data.
973 	 *
974 	 * Hibernation suspends storage while it is writing the image
975 	 * to disk so check that here.
976 	 */
977 	if (pm_suspended_storage())
978 		return 0;
979 
980 	delete_from_swap_cache(page);
981 	SetPageDirty(page);
982 	return 1;
983 }
984 
985 /*
986  * Free the swap entry like above, but also try to
987  * free the page cache entry if it is the last user.
988  */
989 int free_swap_and_cache(swp_entry_t entry)
990 {
991 	struct swap_info_struct *p;
992 	struct page *page = NULL;
993 
994 	if (non_swap_entry(entry))
995 		return 1;
996 
997 	p = swap_info_get(entry);
998 	if (p) {
999 		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
1000 			page = find_get_page(swap_address_space(entry),
1001 						entry.val);
1002 			if (page && !trylock_page(page)) {
1003 				put_page(page);
1004 				page = NULL;
1005 			}
1006 		}
1007 		spin_unlock(&p->lock);
1008 	}
1009 	if (page) {
1010 		/*
1011 		 * Not mapped elsewhere, or swap space full? Free it!
1012 		 * Also recheck PageSwapCache now page is locked (above).
1013 		 */
1014 		if (PageSwapCache(page) && !PageWriteback(page) &&
1015 		    (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1016 			delete_from_swap_cache(page);
1017 			SetPageDirty(page);
1018 		}
1019 		unlock_page(page);
1020 		put_page(page);
1021 	}
1022 	return p != NULL;
1023 }
1024 
1025 #ifdef CONFIG_HIBERNATION
1026 /*
1027  * Find the swap type that corresponds to given device (if any).
1028  *
1029  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1030  * from 0, in which the swap header is expected to be located.
1031  *
1032  * This is needed for the suspend to disk (aka swsusp).
1033  */
1034 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1035 {
1036 	struct block_device *bdev = NULL;
1037 	int type;
1038 
1039 	if (device)
1040 		bdev = bdget(device);
1041 
1042 	spin_lock(&swap_lock);
1043 	for (type = 0; type < nr_swapfiles; type++) {
1044 		struct swap_info_struct *sis = swap_info[type];
1045 
1046 		if (!(sis->flags & SWP_WRITEOK))
1047 			continue;
1048 
1049 		if (!bdev) {
1050 			if (bdev_p)
1051 				*bdev_p = bdgrab(sis->bdev);
1052 
1053 			spin_unlock(&swap_lock);
1054 			return type;
1055 		}
1056 		if (bdev == sis->bdev) {
1057 			struct swap_extent *se = &sis->first_swap_extent;
1058 
1059 			if (se->start_block == offset) {
1060 				if (bdev_p)
1061 					*bdev_p = bdgrab(sis->bdev);
1062 
1063 				spin_unlock(&swap_lock);
1064 				bdput(bdev);
1065 				return type;
1066 			}
1067 		}
1068 	}
1069 	spin_unlock(&swap_lock);
1070 	if (bdev)
1071 		bdput(bdev);
1072 
1073 	return -ENODEV;
1074 }
1075 
1076 /*
1077  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1078  * corresponding to given index in swap_info (swap type).
1079  */
1080 sector_t swapdev_block(int type, pgoff_t offset)
1081 {
1082 	struct block_device *bdev;
1083 
1084 	if ((unsigned int)type >= nr_swapfiles)
1085 		return 0;
1086 	if (!(swap_info[type]->flags & SWP_WRITEOK))
1087 		return 0;
1088 	return map_swap_entry(swp_entry(type, offset), &bdev);
1089 }
1090 
1091 /*
1092  * Return either the total number of swap pages of given type, or the number
1093  * of free pages of that type (depending on @free)
1094  *
1095  * This is needed for software suspend
1096  */
1097 unsigned int count_swap_pages(int type, int free)
1098 {
1099 	unsigned int n = 0;
1100 
1101 	spin_lock(&swap_lock);
1102 	if ((unsigned int)type < nr_swapfiles) {
1103 		struct swap_info_struct *sis = swap_info[type];
1104 
1105 		spin_lock(&sis->lock);
1106 		if (sis->flags & SWP_WRITEOK) {
1107 			n = sis->pages;
1108 			if (free)
1109 				n -= sis->inuse_pages;
1110 		}
1111 		spin_unlock(&sis->lock);
1112 	}
1113 	spin_unlock(&swap_lock);
1114 	return n;
1115 }
1116 #endif /* CONFIG_HIBERNATION */
1117 
1118 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1119 {
1120 	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1121 }
1122 
1123 /*
1124  * No need to decide whether this PTE shares the swap entry with others,
1125  * just let do_wp_page work it out if a write is requested later - to
1126  * force COW, vm_page_prot omits write permission from any private vma.
1127  */
1128 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1129 		unsigned long addr, swp_entry_t entry, struct page *page)
1130 {
1131 	struct page *swapcache;
1132 	struct mem_cgroup *memcg;
1133 	spinlock_t *ptl;
1134 	pte_t *pte;
1135 	int ret = 1;
1136 
1137 	swapcache = page;
1138 	page = ksm_might_need_to_copy(page, vma, addr);
1139 	if (unlikely(!page))
1140 		return -ENOMEM;
1141 
1142 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1143 				&memcg, false)) {
1144 		ret = -ENOMEM;
1145 		goto out_nolock;
1146 	}
1147 
1148 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1149 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1150 		mem_cgroup_cancel_charge(page, memcg, false);
1151 		ret = 0;
1152 		goto out;
1153 	}
1154 
1155 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1156 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1157 	get_page(page);
1158 	set_pte_at(vma->vm_mm, addr, pte,
1159 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1160 	if (page == swapcache) {
1161 		page_add_anon_rmap(page, vma, addr, false);
1162 		mem_cgroup_commit_charge(page, memcg, true, false);
1163 	} else { /* ksm created a completely new copy */
1164 		page_add_new_anon_rmap(page, vma, addr, false);
1165 		mem_cgroup_commit_charge(page, memcg, false, false);
1166 		lru_cache_add_active_or_unevictable(page, vma);
1167 	}
1168 	swap_free(entry);
1169 	/*
1170 	 * Move the page to the active list so it is not
1171 	 * immediately swapped out again after swapon.
1172 	 */
1173 	activate_page(page);
1174 out:
1175 	pte_unmap_unlock(pte, ptl);
1176 out_nolock:
1177 	if (page != swapcache) {
1178 		unlock_page(page);
1179 		put_page(page);
1180 	}
1181 	return ret;
1182 }
1183 
1184 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1185 				unsigned long addr, unsigned long end,
1186 				swp_entry_t entry, struct page *page)
1187 {
1188 	pte_t swp_pte = swp_entry_to_pte(entry);
1189 	pte_t *pte;
1190 	int ret = 0;
1191 
1192 	/*
1193 	 * We don't actually need pte lock while scanning for swp_pte: since
1194 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1195 	 * page table while we're scanning; though it could get zapped, and on
1196 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1197 	 * of unmatched parts which look like swp_pte, so unuse_pte must
1198 	 * recheck under pte lock.  Scanning without pte lock lets it be
1199 	 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1200 	 */
1201 	pte = pte_offset_map(pmd, addr);
1202 	do {
1203 		/*
1204 		 * swapoff spends a _lot_ of time in this loop!
1205 		 * Test inline before going to call unuse_pte.
1206 		 */
1207 		if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1208 			pte_unmap(pte);
1209 			ret = unuse_pte(vma, pmd, addr, entry, page);
1210 			if (ret)
1211 				goto out;
1212 			pte = pte_offset_map(pmd, addr);
1213 		}
1214 	} while (pte++, addr += PAGE_SIZE, addr != end);
1215 	pte_unmap(pte - 1);
1216 out:
1217 	return ret;
1218 }
1219 
1220 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1221 				unsigned long addr, unsigned long end,
1222 				swp_entry_t entry, struct page *page)
1223 {
1224 	pmd_t *pmd;
1225 	unsigned long next;
1226 	int ret;
1227 
1228 	pmd = pmd_offset(pud, addr);
1229 	do {
1230 		next = pmd_addr_end(addr, end);
1231 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1232 			continue;
1233 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1234 		if (ret)
1235 			return ret;
1236 	} while (pmd++, addr = next, addr != end);
1237 	return 0;
1238 }
1239 
1240 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1241 				unsigned long addr, unsigned long end,
1242 				swp_entry_t entry, struct page *page)
1243 {
1244 	pud_t *pud;
1245 	unsigned long next;
1246 	int ret;
1247 
1248 	pud = pud_offset(pgd, addr);
1249 	do {
1250 		next = pud_addr_end(addr, end);
1251 		if (pud_none_or_clear_bad(pud))
1252 			continue;
1253 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1254 		if (ret)
1255 			return ret;
1256 	} while (pud++, addr = next, addr != end);
1257 	return 0;
1258 }
1259 
1260 static int unuse_vma(struct vm_area_struct *vma,
1261 				swp_entry_t entry, struct page *page)
1262 {
1263 	pgd_t *pgd;
1264 	unsigned long addr, end, next;
1265 	int ret;
1266 
1267 	if (page_anon_vma(page)) {
1268 		addr = page_address_in_vma(page, vma);
1269 		if (addr == -EFAULT)
1270 			return 0;
1271 		else
1272 			end = addr + PAGE_SIZE;
1273 	} else {
1274 		addr = vma->vm_start;
1275 		end = vma->vm_end;
1276 	}
1277 
1278 	pgd = pgd_offset(vma->vm_mm, addr);
1279 	do {
1280 		next = pgd_addr_end(addr, end);
1281 		if (pgd_none_or_clear_bad(pgd))
1282 			continue;
1283 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1284 		if (ret)
1285 			return ret;
1286 	} while (pgd++, addr = next, addr != end);
1287 	return 0;
1288 }
1289 
1290 static int unuse_mm(struct mm_struct *mm,
1291 				swp_entry_t entry, struct page *page)
1292 {
1293 	struct vm_area_struct *vma;
1294 	int ret = 0;
1295 
1296 	if (!down_read_trylock(&mm->mmap_sem)) {
1297 		/*
1298 		 * Activate page so shrink_inactive_list is unlikely to unmap
1299 		 * its ptes while lock is dropped, so swapoff can make progress.
1300 		 */
1301 		activate_page(page);
1302 		unlock_page(page);
1303 		down_read(&mm->mmap_sem);
1304 		lock_page(page);
1305 	}
1306 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1307 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1308 			break;
1309 	}
1310 	up_read(&mm->mmap_sem);
1311 	return (ret < 0)? ret: 0;
1312 }
1313 
1314 /*
1315  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1316  * from current position to next entry still in use.
1317  * Recycle to start on reaching the end, returning 0 when empty.
1318  */
1319 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1320 					unsigned int prev, bool frontswap)
1321 {
1322 	unsigned int max = si->max;
1323 	unsigned int i = prev;
1324 	unsigned char count;
1325 
1326 	/*
1327 	 * No need for swap_lock here: we're just looking
1328 	 * for whether an entry is in use, not modifying it; false
1329 	 * hits are okay, and sys_swapoff() has already prevented new
1330 	 * allocations from this area (while holding swap_lock).
1331 	 */
1332 	for (;;) {
1333 		if (++i >= max) {
1334 			if (!prev) {
1335 				i = 0;
1336 				break;
1337 			}
1338 			/*
1339 			 * No entries in use at top of swap_map,
1340 			 * loop back to start and recheck there.
1341 			 */
1342 			max = prev + 1;
1343 			prev = 0;
1344 			i = 1;
1345 		}
1346 		if (frontswap) {
1347 			if (frontswap_test(si, i))
1348 				break;
1349 			else
1350 				continue;
1351 		}
1352 		count = READ_ONCE(si->swap_map[i]);
1353 		if (count && swap_count(count) != SWAP_MAP_BAD)
1354 			break;
1355 	}
1356 	return i;
1357 }
1358 
1359 /*
1360  * We completely avoid races by reading each swap page in advance,
1361  * and then search for the process using it.  All the necessary
1362  * page table adjustments can then be made atomically.
1363  *
1364  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1365  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1366  */
1367 int try_to_unuse(unsigned int type, bool frontswap,
1368 		 unsigned long pages_to_unuse)
1369 {
1370 	struct swap_info_struct *si = swap_info[type];
1371 	struct mm_struct *start_mm;
1372 	volatile unsigned char *swap_map; /* swap_map is accessed without
1373 					   * locking. Mark it as volatile
1374 					   * to prevent compiler doing
1375 					   * something odd.
1376 					   */
1377 	unsigned char swcount;
1378 	struct page *page;
1379 	swp_entry_t entry;
1380 	unsigned int i = 0;
1381 	int retval = 0;
1382 
1383 	/*
1384 	 * When searching mms for an entry, a good strategy is to
1385 	 * start at the first mm we freed the previous entry from
1386 	 * (though actually we don't notice whether we or coincidence
1387 	 * freed the entry).  Initialize this start_mm with a hold.
1388 	 *
1389 	 * A simpler strategy would be to start at the last mm we
1390 	 * freed the previous entry from; but that would take less
1391 	 * advantage of mmlist ordering, which clusters forked mms
1392 	 * together, child after parent.  If we race with dup_mmap(), we
1393 	 * prefer to resolve parent before child, lest we miss entries
1394 	 * duplicated after we scanned child: using last mm would invert
1395 	 * that.
1396 	 */
1397 	start_mm = &init_mm;
1398 	atomic_inc(&init_mm.mm_users);
1399 
1400 	/*
1401 	 * Keep on scanning until all entries have gone.  Usually,
1402 	 * one pass through swap_map is enough, but not necessarily:
1403 	 * there are races when an instance of an entry might be missed.
1404 	 */
1405 	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1406 		if (signal_pending(current)) {
1407 			retval = -EINTR;
1408 			break;
1409 		}
1410 
1411 		/*
1412 		 * Get a page for the entry, using the existing swap
1413 		 * cache page if there is one.  Otherwise, get a clean
1414 		 * page and read the swap into it.
1415 		 */
1416 		swap_map = &si->swap_map[i];
1417 		entry = swp_entry(type, i);
1418 		page = read_swap_cache_async(entry,
1419 					GFP_HIGHUSER_MOVABLE, NULL, 0);
1420 		if (!page) {
1421 			/*
1422 			 * Either swap_duplicate() failed because entry
1423 			 * has been freed independently, and will not be
1424 			 * reused since sys_swapoff() already disabled
1425 			 * allocation from here, or alloc_page() failed.
1426 			 */
1427 			swcount = *swap_map;
1428 			/*
1429 			 * We don't hold lock here, so the swap entry could be
1430 			 * SWAP_MAP_BAD (when the cluster is discarding).
1431 			 * Instead of fail out, We can just skip the swap
1432 			 * entry because swapoff will wait for discarding
1433 			 * finish anyway.
1434 			 */
1435 			if (!swcount || swcount == SWAP_MAP_BAD)
1436 				continue;
1437 			retval = -ENOMEM;
1438 			break;
1439 		}
1440 
1441 		/*
1442 		 * Don't hold on to start_mm if it looks like exiting.
1443 		 */
1444 		if (atomic_read(&start_mm->mm_users) == 1) {
1445 			mmput(start_mm);
1446 			start_mm = &init_mm;
1447 			atomic_inc(&init_mm.mm_users);
1448 		}
1449 
1450 		/*
1451 		 * Wait for and lock page.  When do_swap_page races with
1452 		 * try_to_unuse, do_swap_page can handle the fault much
1453 		 * faster than try_to_unuse can locate the entry.  This
1454 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1455 		 * defer to do_swap_page in such a case - in some tests,
1456 		 * do_swap_page and try_to_unuse repeatedly compete.
1457 		 */
1458 		wait_on_page_locked(page);
1459 		wait_on_page_writeback(page);
1460 		lock_page(page);
1461 		wait_on_page_writeback(page);
1462 
1463 		/*
1464 		 * Remove all references to entry.
1465 		 */
1466 		swcount = *swap_map;
1467 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1468 			retval = shmem_unuse(entry, page);
1469 			/* page has already been unlocked and released */
1470 			if (retval < 0)
1471 				break;
1472 			continue;
1473 		}
1474 		if (swap_count(swcount) && start_mm != &init_mm)
1475 			retval = unuse_mm(start_mm, entry, page);
1476 
1477 		if (swap_count(*swap_map)) {
1478 			int set_start_mm = (*swap_map >= swcount);
1479 			struct list_head *p = &start_mm->mmlist;
1480 			struct mm_struct *new_start_mm = start_mm;
1481 			struct mm_struct *prev_mm = start_mm;
1482 			struct mm_struct *mm;
1483 
1484 			atomic_inc(&new_start_mm->mm_users);
1485 			atomic_inc(&prev_mm->mm_users);
1486 			spin_lock(&mmlist_lock);
1487 			while (swap_count(*swap_map) && !retval &&
1488 					(p = p->next) != &start_mm->mmlist) {
1489 				mm = list_entry(p, struct mm_struct, mmlist);
1490 				if (!atomic_inc_not_zero(&mm->mm_users))
1491 					continue;
1492 				spin_unlock(&mmlist_lock);
1493 				mmput(prev_mm);
1494 				prev_mm = mm;
1495 
1496 				cond_resched();
1497 
1498 				swcount = *swap_map;
1499 				if (!swap_count(swcount)) /* any usage ? */
1500 					;
1501 				else if (mm == &init_mm)
1502 					set_start_mm = 1;
1503 				else
1504 					retval = unuse_mm(mm, entry, page);
1505 
1506 				if (set_start_mm && *swap_map < swcount) {
1507 					mmput(new_start_mm);
1508 					atomic_inc(&mm->mm_users);
1509 					new_start_mm = mm;
1510 					set_start_mm = 0;
1511 				}
1512 				spin_lock(&mmlist_lock);
1513 			}
1514 			spin_unlock(&mmlist_lock);
1515 			mmput(prev_mm);
1516 			mmput(start_mm);
1517 			start_mm = new_start_mm;
1518 		}
1519 		if (retval) {
1520 			unlock_page(page);
1521 			put_page(page);
1522 			break;
1523 		}
1524 
1525 		/*
1526 		 * If a reference remains (rare), we would like to leave
1527 		 * the page in the swap cache; but try_to_unmap could
1528 		 * then re-duplicate the entry once we drop page lock,
1529 		 * so we might loop indefinitely; also, that page could
1530 		 * not be swapped out to other storage meanwhile.  So:
1531 		 * delete from cache even if there's another reference,
1532 		 * after ensuring that the data has been saved to disk -
1533 		 * since if the reference remains (rarer), it will be
1534 		 * read from disk into another page.  Splitting into two
1535 		 * pages would be incorrect if swap supported "shared
1536 		 * private" pages, but they are handled by tmpfs files.
1537 		 *
1538 		 * Given how unuse_vma() targets one particular offset
1539 		 * in an anon_vma, once the anon_vma has been determined,
1540 		 * this splitting happens to be just what is needed to
1541 		 * handle where KSM pages have been swapped out: re-reading
1542 		 * is unnecessarily slow, but we can fix that later on.
1543 		 */
1544 		if (swap_count(*swap_map) &&
1545 		     PageDirty(page) && PageSwapCache(page)) {
1546 			struct writeback_control wbc = {
1547 				.sync_mode = WB_SYNC_NONE,
1548 			};
1549 
1550 			swap_writepage(page, &wbc);
1551 			lock_page(page);
1552 			wait_on_page_writeback(page);
1553 		}
1554 
1555 		/*
1556 		 * It is conceivable that a racing task removed this page from
1557 		 * swap cache just before we acquired the page lock at the top,
1558 		 * or while we dropped it in unuse_mm().  The page might even
1559 		 * be back in swap cache on another swap area: that we must not
1560 		 * delete, since it may not have been written out to swap yet.
1561 		 */
1562 		if (PageSwapCache(page) &&
1563 		    likely(page_private(page) == entry.val))
1564 			delete_from_swap_cache(page);
1565 
1566 		/*
1567 		 * So we could skip searching mms once swap count went
1568 		 * to 1, we did not mark any present ptes as dirty: must
1569 		 * mark page dirty so shrink_page_list will preserve it.
1570 		 */
1571 		SetPageDirty(page);
1572 		unlock_page(page);
1573 		put_page(page);
1574 
1575 		/*
1576 		 * Make sure that we aren't completely killing
1577 		 * interactive performance.
1578 		 */
1579 		cond_resched();
1580 		if (frontswap && pages_to_unuse > 0) {
1581 			if (!--pages_to_unuse)
1582 				break;
1583 		}
1584 	}
1585 
1586 	mmput(start_mm);
1587 	return retval;
1588 }
1589 
1590 /*
1591  * After a successful try_to_unuse, if no swap is now in use, we know
1592  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1593  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1594  * added to the mmlist just after page_duplicate - before would be racy.
1595  */
1596 static void drain_mmlist(void)
1597 {
1598 	struct list_head *p, *next;
1599 	unsigned int type;
1600 
1601 	for (type = 0; type < nr_swapfiles; type++)
1602 		if (swap_info[type]->inuse_pages)
1603 			return;
1604 	spin_lock(&mmlist_lock);
1605 	list_for_each_safe(p, next, &init_mm.mmlist)
1606 		list_del_init(p);
1607 	spin_unlock(&mmlist_lock);
1608 }
1609 
1610 /*
1611  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1612  * corresponds to page offset for the specified swap entry.
1613  * Note that the type of this function is sector_t, but it returns page offset
1614  * into the bdev, not sector offset.
1615  */
1616 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1617 {
1618 	struct swap_info_struct *sis;
1619 	struct swap_extent *start_se;
1620 	struct swap_extent *se;
1621 	pgoff_t offset;
1622 
1623 	sis = swap_info[swp_type(entry)];
1624 	*bdev = sis->bdev;
1625 
1626 	offset = swp_offset(entry);
1627 	start_se = sis->curr_swap_extent;
1628 	se = start_se;
1629 
1630 	for ( ; ; ) {
1631 		if (se->start_page <= offset &&
1632 				offset < (se->start_page + se->nr_pages)) {
1633 			return se->start_block + (offset - se->start_page);
1634 		}
1635 		se = list_next_entry(se, list);
1636 		sis->curr_swap_extent = se;
1637 		BUG_ON(se == start_se);		/* It *must* be present */
1638 	}
1639 }
1640 
1641 /*
1642  * Returns the page offset into bdev for the specified page's swap entry.
1643  */
1644 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1645 {
1646 	swp_entry_t entry;
1647 	entry.val = page_private(page);
1648 	return map_swap_entry(entry, bdev);
1649 }
1650 
1651 /*
1652  * Free all of a swapdev's extent information
1653  */
1654 static void destroy_swap_extents(struct swap_info_struct *sis)
1655 {
1656 	while (!list_empty(&sis->first_swap_extent.list)) {
1657 		struct swap_extent *se;
1658 
1659 		se = list_first_entry(&sis->first_swap_extent.list,
1660 				struct swap_extent, list);
1661 		list_del(&se->list);
1662 		kfree(se);
1663 	}
1664 
1665 	if (sis->flags & SWP_FILE) {
1666 		struct file *swap_file = sis->swap_file;
1667 		struct address_space *mapping = swap_file->f_mapping;
1668 
1669 		sis->flags &= ~SWP_FILE;
1670 		mapping->a_ops->swap_deactivate(swap_file);
1671 	}
1672 }
1673 
1674 /*
1675  * Add a block range (and the corresponding page range) into this swapdev's
1676  * extent list.  The extent list is kept sorted in page order.
1677  *
1678  * This function rather assumes that it is called in ascending page order.
1679  */
1680 int
1681 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1682 		unsigned long nr_pages, sector_t start_block)
1683 {
1684 	struct swap_extent *se;
1685 	struct swap_extent *new_se;
1686 	struct list_head *lh;
1687 
1688 	if (start_page == 0) {
1689 		se = &sis->first_swap_extent;
1690 		sis->curr_swap_extent = se;
1691 		se->start_page = 0;
1692 		se->nr_pages = nr_pages;
1693 		se->start_block = start_block;
1694 		return 1;
1695 	} else {
1696 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1697 		se = list_entry(lh, struct swap_extent, list);
1698 		BUG_ON(se->start_page + se->nr_pages != start_page);
1699 		if (se->start_block + se->nr_pages == start_block) {
1700 			/* Merge it */
1701 			se->nr_pages += nr_pages;
1702 			return 0;
1703 		}
1704 	}
1705 
1706 	/*
1707 	 * No merge.  Insert a new extent, preserving ordering.
1708 	 */
1709 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1710 	if (new_se == NULL)
1711 		return -ENOMEM;
1712 	new_se->start_page = start_page;
1713 	new_se->nr_pages = nr_pages;
1714 	new_se->start_block = start_block;
1715 
1716 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1717 	return 1;
1718 }
1719 
1720 /*
1721  * A `swap extent' is a simple thing which maps a contiguous range of pages
1722  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1723  * is built at swapon time and is then used at swap_writepage/swap_readpage
1724  * time for locating where on disk a page belongs.
1725  *
1726  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1727  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1728  * swap files identically.
1729  *
1730  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1731  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1732  * swapfiles are handled *identically* after swapon time.
1733  *
1734  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1735  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1736  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1737  * requirements, they are simply tossed out - we will never use those blocks
1738  * for swapping.
1739  *
1740  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1741  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1742  * which will scribble on the fs.
1743  *
1744  * The amount of disk space which a single swap extent represents varies.
1745  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1746  * extents in the list.  To avoid much list walking, we cache the previous
1747  * search location in `curr_swap_extent', and start new searches from there.
1748  * This is extremely effective.  The average number of iterations in
1749  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1750  */
1751 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1752 {
1753 	struct file *swap_file = sis->swap_file;
1754 	struct address_space *mapping = swap_file->f_mapping;
1755 	struct inode *inode = mapping->host;
1756 	int ret;
1757 
1758 	if (S_ISBLK(inode->i_mode)) {
1759 		ret = add_swap_extent(sis, 0, sis->max, 0);
1760 		*span = sis->pages;
1761 		return ret;
1762 	}
1763 
1764 	if (mapping->a_ops->swap_activate) {
1765 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1766 		if (!ret) {
1767 			sis->flags |= SWP_FILE;
1768 			ret = add_swap_extent(sis, 0, sis->max, 0);
1769 			*span = sis->pages;
1770 		}
1771 		return ret;
1772 	}
1773 
1774 	return generic_swapfile_activate(sis, swap_file, span);
1775 }
1776 
1777 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1778 				unsigned char *swap_map,
1779 				struct swap_cluster_info *cluster_info)
1780 {
1781 	if (prio >= 0)
1782 		p->prio = prio;
1783 	else
1784 		p->prio = --least_priority;
1785 	/*
1786 	 * the plist prio is negated because plist ordering is
1787 	 * low-to-high, while swap ordering is high-to-low
1788 	 */
1789 	p->list.prio = -p->prio;
1790 	p->avail_list.prio = -p->prio;
1791 	p->swap_map = swap_map;
1792 	p->cluster_info = cluster_info;
1793 	p->flags |= SWP_WRITEOK;
1794 	atomic_long_add(p->pages, &nr_swap_pages);
1795 	total_swap_pages += p->pages;
1796 
1797 	assert_spin_locked(&swap_lock);
1798 	/*
1799 	 * both lists are plists, and thus priority ordered.
1800 	 * swap_active_head needs to be priority ordered for swapoff(),
1801 	 * which on removal of any swap_info_struct with an auto-assigned
1802 	 * (i.e. negative) priority increments the auto-assigned priority
1803 	 * of any lower-priority swap_info_structs.
1804 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
1805 	 * which allocates swap pages from the highest available priority
1806 	 * swap_info_struct.
1807 	 */
1808 	plist_add(&p->list, &swap_active_head);
1809 	spin_lock(&swap_avail_lock);
1810 	plist_add(&p->avail_list, &swap_avail_head);
1811 	spin_unlock(&swap_avail_lock);
1812 }
1813 
1814 static void enable_swap_info(struct swap_info_struct *p, int prio,
1815 				unsigned char *swap_map,
1816 				struct swap_cluster_info *cluster_info,
1817 				unsigned long *frontswap_map)
1818 {
1819 	frontswap_init(p->type, frontswap_map);
1820 	spin_lock(&swap_lock);
1821 	spin_lock(&p->lock);
1822 	 _enable_swap_info(p, prio, swap_map, cluster_info);
1823 	spin_unlock(&p->lock);
1824 	spin_unlock(&swap_lock);
1825 }
1826 
1827 static void reinsert_swap_info(struct swap_info_struct *p)
1828 {
1829 	spin_lock(&swap_lock);
1830 	spin_lock(&p->lock);
1831 	_enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1832 	spin_unlock(&p->lock);
1833 	spin_unlock(&swap_lock);
1834 }
1835 
1836 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1837 {
1838 	struct swap_info_struct *p = NULL;
1839 	unsigned char *swap_map;
1840 	struct swap_cluster_info *cluster_info;
1841 	unsigned long *frontswap_map;
1842 	struct file *swap_file, *victim;
1843 	struct address_space *mapping;
1844 	struct inode *inode;
1845 	struct filename *pathname;
1846 	int err, found = 0;
1847 	unsigned int old_block_size;
1848 
1849 	if (!capable(CAP_SYS_ADMIN))
1850 		return -EPERM;
1851 
1852 	BUG_ON(!current->mm);
1853 
1854 	pathname = getname(specialfile);
1855 	if (IS_ERR(pathname))
1856 		return PTR_ERR(pathname);
1857 
1858 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1859 	err = PTR_ERR(victim);
1860 	if (IS_ERR(victim))
1861 		goto out;
1862 
1863 	mapping = victim->f_mapping;
1864 	spin_lock(&swap_lock);
1865 	plist_for_each_entry(p, &swap_active_head, list) {
1866 		if (p->flags & SWP_WRITEOK) {
1867 			if (p->swap_file->f_mapping == mapping) {
1868 				found = 1;
1869 				break;
1870 			}
1871 		}
1872 	}
1873 	if (!found) {
1874 		err = -EINVAL;
1875 		spin_unlock(&swap_lock);
1876 		goto out_dput;
1877 	}
1878 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
1879 		vm_unacct_memory(p->pages);
1880 	else {
1881 		err = -ENOMEM;
1882 		spin_unlock(&swap_lock);
1883 		goto out_dput;
1884 	}
1885 	spin_lock(&swap_avail_lock);
1886 	plist_del(&p->avail_list, &swap_avail_head);
1887 	spin_unlock(&swap_avail_lock);
1888 	spin_lock(&p->lock);
1889 	if (p->prio < 0) {
1890 		struct swap_info_struct *si = p;
1891 
1892 		plist_for_each_entry_continue(si, &swap_active_head, list) {
1893 			si->prio++;
1894 			si->list.prio--;
1895 			si->avail_list.prio--;
1896 		}
1897 		least_priority++;
1898 	}
1899 	plist_del(&p->list, &swap_active_head);
1900 	atomic_long_sub(p->pages, &nr_swap_pages);
1901 	total_swap_pages -= p->pages;
1902 	p->flags &= ~SWP_WRITEOK;
1903 	spin_unlock(&p->lock);
1904 	spin_unlock(&swap_lock);
1905 
1906 	set_current_oom_origin();
1907 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
1908 	clear_current_oom_origin();
1909 
1910 	if (err) {
1911 		/* re-insert swap space back into swap_list */
1912 		reinsert_swap_info(p);
1913 		goto out_dput;
1914 	}
1915 
1916 	flush_work(&p->discard_work);
1917 
1918 	destroy_swap_extents(p);
1919 	if (p->flags & SWP_CONTINUED)
1920 		free_swap_count_continuations(p);
1921 
1922 	mutex_lock(&swapon_mutex);
1923 	spin_lock(&swap_lock);
1924 	spin_lock(&p->lock);
1925 	drain_mmlist();
1926 
1927 	/* wait for anyone still in scan_swap_map */
1928 	p->highest_bit = 0;		/* cuts scans short */
1929 	while (p->flags >= SWP_SCANNING) {
1930 		spin_unlock(&p->lock);
1931 		spin_unlock(&swap_lock);
1932 		schedule_timeout_uninterruptible(1);
1933 		spin_lock(&swap_lock);
1934 		spin_lock(&p->lock);
1935 	}
1936 
1937 	swap_file = p->swap_file;
1938 	old_block_size = p->old_block_size;
1939 	p->swap_file = NULL;
1940 	p->max = 0;
1941 	swap_map = p->swap_map;
1942 	p->swap_map = NULL;
1943 	cluster_info = p->cluster_info;
1944 	p->cluster_info = NULL;
1945 	frontswap_map = frontswap_map_get(p);
1946 	spin_unlock(&p->lock);
1947 	spin_unlock(&swap_lock);
1948 	frontswap_invalidate_area(p->type);
1949 	frontswap_map_set(p, NULL);
1950 	mutex_unlock(&swapon_mutex);
1951 	free_percpu(p->percpu_cluster);
1952 	p->percpu_cluster = NULL;
1953 	vfree(swap_map);
1954 	vfree(cluster_info);
1955 	vfree(frontswap_map);
1956 	/* Destroy swap account information */
1957 	swap_cgroup_swapoff(p->type);
1958 
1959 	inode = mapping->host;
1960 	if (S_ISBLK(inode->i_mode)) {
1961 		struct block_device *bdev = I_BDEV(inode);
1962 		set_blocksize(bdev, old_block_size);
1963 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1964 	} else {
1965 		inode_lock(inode);
1966 		inode->i_flags &= ~S_SWAPFILE;
1967 		inode_unlock(inode);
1968 	}
1969 	filp_close(swap_file, NULL);
1970 
1971 	/*
1972 	 * Clear the SWP_USED flag after all resources are freed so that swapon
1973 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
1974 	 * not hold p->lock after we cleared its SWP_WRITEOK.
1975 	 */
1976 	spin_lock(&swap_lock);
1977 	p->flags = 0;
1978 	spin_unlock(&swap_lock);
1979 
1980 	err = 0;
1981 	atomic_inc(&proc_poll_event);
1982 	wake_up_interruptible(&proc_poll_wait);
1983 
1984 out_dput:
1985 	filp_close(victim, NULL);
1986 out:
1987 	putname(pathname);
1988 	return err;
1989 }
1990 
1991 #ifdef CONFIG_PROC_FS
1992 static unsigned swaps_poll(struct file *file, poll_table *wait)
1993 {
1994 	struct seq_file *seq = file->private_data;
1995 
1996 	poll_wait(file, &proc_poll_wait, wait);
1997 
1998 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
1999 		seq->poll_event = atomic_read(&proc_poll_event);
2000 		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2001 	}
2002 
2003 	return POLLIN | POLLRDNORM;
2004 }
2005 
2006 /* iterator */
2007 static void *swap_start(struct seq_file *swap, loff_t *pos)
2008 {
2009 	struct swap_info_struct *si;
2010 	int type;
2011 	loff_t l = *pos;
2012 
2013 	mutex_lock(&swapon_mutex);
2014 
2015 	if (!l)
2016 		return SEQ_START_TOKEN;
2017 
2018 	for (type = 0; type < nr_swapfiles; type++) {
2019 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2020 		si = swap_info[type];
2021 		if (!(si->flags & SWP_USED) || !si->swap_map)
2022 			continue;
2023 		if (!--l)
2024 			return si;
2025 	}
2026 
2027 	return NULL;
2028 }
2029 
2030 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2031 {
2032 	struct swap_info_struct *si = v;
2033 	int type;
2034 
2035 	if (v == SEQ_START_TOKEN)
2036 		type = 0;
2037 	else
2038 		type = si->type + 1;
2039 
2040 	for (; type < nr_swapfiles; type++) {
2041 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2042 		si = swap_info[type];
2043 		if (!(si->flags & SWP_USED) || !si->swap_map)
2044 			continue;
2045 		++*pos;
2046 		return si;
2047 	}
2048 
2049 	return NULL;
2050 }
2051 
2052 static void swap_stop(struct seq_file *swap, void *v)
2053 {
2054 	mutex_unlock(&swapon_mutex);
2055 }
2056 
2057 static int swap_show(struct seq_file *swap, void *v)
2058 {
2059 	struct swap_info_struct *si = v;
2060 	struct file *file;
2061 	int len;
2062 
2063 	if (si == SEQ_START_TOKEN) {
2064 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2065 		return 0;
2066 	}
2067 
2068 	file = si->swap_file;
2069 	len = seq_file_path(swap, file, " \t\n\\");
2070 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2071 			len < 40 ? 40 - len : 1, " ",
2072 			S_ISBLK(file_inode(file)->i_mode) ?
2073 				"partition" : "file\t",
2074 			si->pages << (PAGE_SHIFT - 10),
2075 			si->inuse_pages << (PAGE_SHIFT - 10),
2076 			si->prio);
2077 	return 0;
2078 }
2079 
2080 static const struct seq_operations swaps_op = {
2081 	.start =	swap_start,
2082 	.next =		swap_next,
2083 	.stop =		swap_stop,
2084 	.show =		swap_show
2085 };
2086 
2087 static int swaps_open(struct inode *inode, struct file *file)
2088 {
2089 	struct seq_file *seq;
2090 	int ret;
2091 
2092 	ret = seq_open(file, &swaps_op);
2093 	if (ret)
2094 		return ret;
2095 
2096 	seq = file->private_data;
2097 	seq->poll_event = atomic_read(&proc_poll_event);
2098 	return 0;
2099 }
2100 
2101 static const struct file_operations proc_swaps_operations = {
2102 	.open		= swaps_open,
2103 	.read		= seq_read,
2104 	.llseek		= seq_lseek,
2105 	.release	= seq_release,
2106 	.poll		= swaps_poll,
2107 };
2108 
2109 static int __init procswaps_init(void)
2110 {
2111 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
2112 	return 0;
2113 }
2114 __initcall(procswaps_init);
2115 #endif /* CONFIG_PROC_FS */
2116 
2117 #ifdef MAX_SWAPFILES_CHECK
2118 static int __init max_swapfiles_check(void)
2119 {
2120 	MAX_SWAPFILES_CHECK();
2121 	return 0;
2122 }
2123 late_initcall(max_swapfiles_check);
2124 #endif
2125 
2126 static struct swap_info_struct *alloc_swap_info(void)
2127 {
2128 	struct swap_info_struct *p;
2129 	unsigned int type;
2130 
2131 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2132 	if (!p)
2133 		return ERR_PTR(-ENOMEM);
2134 
2135 	spin_lock(&swap_lock);
2136 	for (type = 0; type < nr_swapfiles; type++) {
2137 		if (!(swap_info[type]->flags & SWP_USED))
2138 			break;
2139 	}
2140 	if (type >= MAX_SWAPFILES) {
2141 		spin_unlock(&swap_lock);
2142 		kfree(p);
2143 		return ERR_PTR(-EPERM);
2144 	}
2145 	if (type >= nr_swapfiles) {
2146 		p->type = type;
2147 		swap_info[type] = p;
2148 		/*
2149 		 * Write swap_info[type] before nr_swapfiles, in case a
2150 		 * racing procfs swap_start() or swap_next() is reading them.
2151 		 * (We never shrink nr_swapfiles, we never free this entry.)
2152 		 */
2153 		smp_wmb();
2154 		nr_swapfiles++;
2155 	} else {
2156 		kfree(p);
2157 		p = swap_info[type];
2158 		/*
2159 		 * Do not memset this entry: a racing procfs swap_next()
2160 		 * would be relying on p->type to remain valid.
2161 		 */
2162 	}
2163 	INIT_LIST_HEAD(&p->first_swap_extent.list);
2164 	plist_node_init(&p->list, 0);
2165 	plist_node_init(&p->avail_list, 0);
2166 	p->flags = SWP_USED;
2167 	spin_unlock(&swap_lock);
2168 	spin_lock_init(&p->lock);
2169 
2170 	return p;
2171 }
2172 
2173 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2174 {
2175 	int error;
2176 
2177 	if (S_ISBLK(inode->i_mode)) {
2178 		p->bdev = bdgrab(I_BDEV(inode));
2179 		error = blkdev_get(p->bdev,
2180 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2181 		if (error < 0) {
2182 			p->bdev = NULL;
2183 			return error;
2184 		}
2185 		p->old_block_size = block_size(p->bdev);
2186 		error = set_blocksize(p->bdev, PAGE_SIZE);
2187 		if (error < 0)
2188 			return error;
2189 		p->flags |= SWP_BLKDEV;
2190 	} else if (S_ISREG(inode->i_mode)) {
2191 		p->bdev = inode->i_sb->s_bdev;
2192 		inode_lock(inode);
2193 		if (IS_SWAPFILE(inode))
2194 			return -EBUSY;
2195 	} else
2196 		return -EINVAL;
2197 
2198 	return 0;
2199 }
2200 
2201 static unsigned long read_swap_header(struct swap_info_struct *p,
2202 					union swap_header *swap_header,
2203 					struct inode *inode)
2204 {
2205 	int i;
2206 	unsigned long maxpages;
2207 	unsigned long swapfilepages;
2208 	unsigned long last_page;
2209 
2210 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2211 		pr_err("Unable to find swap-space signature\n");
2212 		return 0;
2213 	}
2214 
2215 	/* swap partition endianess hack... */
2216 	if (swab32(swap_header->info.version) == 1) {
2217 		swab32s(&swap_header->info.version);
2218 		swab32s(&swap_header->info.last_page);
2219 		swab32s(&swap_header->info.nr_badpages);
2220 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2221 			swab32s(&swap_header->info.badpages[i]);
2222 	}
2223 	/* Check the swap header's sub-version */
2224 	if (swap_header->info.version != 1) {
2225 		pr_warn("Unable to handle swap header version %d\n",
2226 			swap_header->info.version);
2227 		return 0;
2228 	}
2229 
2230 	p->lowest_bit  = 1;
2231 	p->cluster_next = 1;
2232 	p->cluster_nr = 0;
2233 
2234 	/*
2235 	 * Find out how many pages are allowed for a single swap
2236 	 * device. There are two limiting factors: 1) the number
2237 	 * of bits for the swap offset in the swp_entry_t type, and
2238 	 * 2) the number of bits in the swap pte as defined by the
2239 	 * different architectures. In order to find the
2240 	 * largest possible bit mask, a swap entry with swap type 0
2241 	 * and swap offset ~0UL is created, encoded to a swap pte,
2242 	 * decoded to a swp_entry_t again, and finally the swap
2243 	 * offset is extracted. This will mask all the bits from
2244 	 * the initial ~0UL mask that can't be encoded in either
2245 	 * the swp_entry_t or the architecture definition of a
2246 	 * swap pte.
2247 	 */
2248 	maxpages = swp_offset(pte_to_swp_entry(
2249 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2250 	last_page = swap_header->info.last_page;
2251 	if (last_page > maxpages) {
2252 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2253 			maxpages << (PAGE_SHIFT - 10),
2254 			last_page << (PAGE_SHIFT - 10));
2255 	}
2256 	if (maxpages > last_page) {
2257 		maxpages = last_page + 1;
2258 		/* p->max is an unsigned int: don't overflow it */
2259 		if ((unsigned int)maxpages == 0)
2260 			maxpages = UINT_MAX;
2261 	}
2262 	p->highest_bit = maxpages - 1;
2263 
2264 	if (!maxpages)
2265 		return 0;
2266 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2267 	if (swapfilepages && maxpages > swapfilepages) {
2268 		pr_warn("Swap area shorter than signature indicates\n");
2269 		return 0;
2270 	}
2271 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2272 		return 0;
2273 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2274 		return 0;
2275 
2276 	return maxpages;
2277 }
2278 
2279 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2280 					union swap_header *swap_header,
2281 					unsigned char *swap_map,
2282 					struct swap_cluster_info *cluster_info,
2283 					unsigned long maxpages,
2284 					sector_t *span)
2285 {
2286 	int i;
2287 	unsigned int nr_good_pages;
2288 	int nr_extents;
2289 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2290 	unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2291 
2292 	nr_good_pages = maxpages - 1;	/* omit header page */
2293 
2294 	cluster_set_null(&p->free_cluster_head);
2295 	cluster_set_null(&p->free_cluster_tail);
2296 	cluster_set_null(&p->discard_cluster_head);
2297 	cluster_set_null(&p->discard_cluster_tail);
2298 
2299 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2300 		unsigned int page_nr = swap_header->info.badpages[i];
2301 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2302 			return -EINVAL;
2303 		if (page_nr < maxpages) {
2304 			swap_map[page_nr] = SWAP_MAP_BAD;
2305 			nr_good_pages--;
2306 			/*
2307 			 * Haven't marked the cluster free yet, no list
2308 			 * operation involved
2309 			 */
2310 			inc_cluster_info_page(p, cluster_info, page_nr);
2311 		}
2312 	}
2313 
2314 	/* Haven't marked the cluster free yet, no list operation involved */
2315 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2316 		inc_cluster_info_page(p, cluster_info, i);
2317 
2318 	if (nr_good_pages) {
2319 		swap_map[0] = SWAP_MAP_BAD;
2320 		/*
2321 		 * Not mark the cluster free yet, no list
2322 		 * operation involved
2323 		 */
2324 		inc_cluster_info_page(p, cluster_info, 0);
2325 		p->max = maxpages;
2326 		p->pages = nr_good_pages;
2327 		nr_extents = setup_swap_extents(p, span);
2328 		if (nr_extents < 0)
2329 			return nr_extents;
2330 		nr_good_pages = p->pages;
2331 	}
2332 	if (!nr_good_pages) {
2333 		pr_warn("Empty swap-file\n");
2334 		return -EINVAL;
2335 	}
2336 
2337 	if (!cluster_info)
2338 		return nr_extents;
2339 
2340 	for (i = 0; i < nr_clusters; i++) {
2341 		if (!cluster_count(&cluster_info[idx])) {
2342 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2343 			if (cluster_is_null(&p->free_cluster_head)) {
2344 				cluster_set_next_flag(&p->free_cluster_head,
2345 								idx, 0);
2346 				cluster_set_next_flag(&p->free_cluster_tail,
2347 								idx, 0);
2348 			} else {
2349 				unsigned int tail;
2350 
2351 				tail = cluster_next(&p->free_cluster_tail);
2352 				cluster_set_next(&cluster_info[tail], idx);
2353 				cluster_set_next_flag(&p->free_cluster_tail,
2354 								idx, 0);
2355 			}
2356 		}
2357 		idx++;
2358 		if (idx == nr_clusters)
2359 			idx = 0;
2360 	}
2361 	return nr_extents;
2362 }
2363 
2364 /*
2365  * Helper to sys_swapon determining if a given swap
2366  * backing device queue supports DISCARD operations.
2367  */
2368 static bool swap_discardable(struct swap_info_struct *si)
2369 {
2370 	struct request_queue *q = bdev_get_queue(si->bdev);
2371 
2372 	if (!q || !blk_queue_discard(q))
2373 		return false;
2374 
2375 	return true;
2376 }
2377 
2378 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2379 {
2380 	struct swap_info_struct *p;
2381 	struct filename *name;
2382 	struct file *swap_file = NULL;
2383 	struct address_space *mapping;
2384 	int prio;
2385 	int error;
2386 	union swap_header *swap_header;
2387 	int nr_extents;
2388 	sector_t span;
2389 	unsigned long maxpages;
2390 	unsigned char *swap_map = NULL;
2391 	struct swap_cluster_info *cluster_info = NULL;
2392 	unsigned long *frontswap_map = NULL;
2393 	struct page *page = NULL;
2394 	struct inode *inode = NULL;
2395 
2396 	if (swap_flags & ~SWAP_FLAGS_VALID)
2397 		return -EINVAL;
2398 
2399 	if (!capable(CAP_SYS_ADMIN))
2400 		return -EPERM;
2401 
2402 	p = alloc_swap_info();
2403 	if (IS_ERR(p))
2404 		return PTR_ERR(p);
2405 
2406 	INIT_WORK(&p->discard_work, swap_discard_work);
2407 
2408 	name = getname(specialfile);
2409 	if (IS_ERR(name)) {
2410 		error = PTR_ERR(name);
2411 		name = NULL;
2412 		goto bad_swap;
2413 	}
2414 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2415 	if (IS_ERR(swap_file)) {
2416 		error = PTR_ERR(swap_file);
2417 		swap_file = NULL;
2418 		goto bad_swap;
2419 	}
2420 
2421 	p->swap_file = swap_file;
2422 	mapping = swap_file->f_mapping;
2423 	inode = mapping->host;
2424 
2425 	/* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2426 	error = claim_swapfile(p, inode);
2427 	if (unlikely(error))
2428 		goto bad_swap;
2429 
2430 	/*
2431 	 * Read the swap header.
2432 	 */
2433 	if (!mapping->a_ops->readpage) {
2434 		error = -EINVAL;
2435 		goto bad_swap;
2436 	}
2437 	page = read_mapping_page(mapping, 0, swap_file);
2438 	if (IS_ERR(page)) {
2439 		error = PTR_ERR(page);
2440 		goto bad_swap;
2441 	}
2442 	swap_header = kmap(page);
2443 
2444 	maxpages = read_swap_header(p, swap_header, inode);
2445 	if (unlikely(!maxpages)) {
2446 		error = -EINVAL;
2447 		goto bad_swap;
2448 	}
2449 
2450 	/* OK, set up the swap map and apply the bad block list */
2451 	swap_map = vzalloc(maxpages);
2452 	if (!swap_map) {
2453 		error = -ENOMEM;
2454 		goto bad_swap;
2455 	}
2456 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2457 		int cpu;
2458 
2459 		p->flags |= SWP_SOLIDSTATE;
2460 		/*
2461 		 * select a random position to start with to help wear leveling
2462 		 * SSD
2463 		 */
2464 		p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2465 
2466 		cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2467 			SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2468 		if (!cluster_info) {
2469 			error = -ENOMEM;
2470 			goto bad_swap;
2471 		}
2472 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2473 		if (!p->percpu_cluster) {
2474 			error = -ENOMEM;
2475 			goto bad_swap;
2476 		}
2477 		for_each_possible_cpu(cpu) {
2478 			struct percpu_cluster *cluster;
2479 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2480 			cluster_set_null(&cluster->index);
2481 		}
2482 	}
2483 
2484 	error = swap_cgroup_swapon(p->type, maxpages);
2485 	if (error)
2486 		goto bad_swap;
2487 
2488 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2489 		cluster_info, maxpages, &span);
2490 	if (unlikely(nr_extents < 0)) {
2491 		error = nr_extents;
2492 		goto bad_swap;
2493 	}
2494 	/* frontswap enabled? set up bit-per-page map for frontswap */
2495 	if (frontswap_enabled)
2496 		frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2497 
2498 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2499 		/*
2500 		 * When discard is enabled for swap with no particular
2501 		 * policy flagged, we set all swap discard flags here in
2502 		 * order to sustain backward compatibility with older
2503 		 * swapon(8) releases.
2504 		 */
2505 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2506 			     SWP_PAGE_DISCARD);
2507 
2508 		/*
2509 		 * By flagging sys_swapon, a sysadmin can tell us to
2510 		 * either do single-time area discards only, or to just
2511 		 * perform discards for released swap page-clusters.
2512 		 * Now it's time to adjust the p->flags accordingly.
2513 		 */
2514 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2515 			p->flags &= ~SWP_PAGE_DISCARD;
2516 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2517 			p->flags &= ~SWP_AREA_DISCARD;
2518 
2519 		/* issue a swapon-time discard if it's still required */
2520 		if (p->flags & SWP_AREA_DISCARD) {
2521 			int err = discard_swap(p);
2522 			if (unlikely(err))
2523 				pr_err("swapon: discard_swap(%p): %d\n",
2524 					p, err);
2525 		}
2526 	}
2527 
2528 	mutex_lock(&swapon_mutex);
2529 	prio = -1;
2530 	if (swap_flags & SWAP_FLAG_PREFER)
2531 		prio =
2532 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2533 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2534 
2535 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2536 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2537 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2538 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2539 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
2540 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
2541 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2542 		(frontswap_map) ? "FS" : "");
2543 
2544 	mutex_unlock(&swapon_mutex);
2545 	atomic_inc(&proc_poll_event);
2546 	wake_up_interruptible(&proc_poll_wait);
2547 
2548 	if (S_ISREG(inode->i_mode))
2549 		inode->i_flags |= S_SWAPFILE;
2550 	error = 0;
2551 	goto out;
2552 bad_swap:
2553 	free_percpu(p->percpu_cluster);
2554 	p->percpu_cluster = NULL;
2555 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2556 		set_blocksize(p->bdev, p->old_block_size);
2557 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2558 	}
2559 	destroy_swap_extents(p);
2560 	swap_cgroup_swapoff(p->type);
2561 	spin_lock(&swap_lock);
2562 	p->swap_file = NULL;
2563 	p->flags = 0;
2564 	spin_unlock(&swap_lock);
2565 	vfree(swap_map);
2566 	vfree(cluster_info);
2567 	if (swap_file) {
2568 		if (inode && S_ISREG(inode->i_mode)) {
2569 			inode_unlock(inode);
2570 			inode = NULL;
2571 		}
2572 		filp_close(swap_file, NULL);
2573 	}
2574 out:
2575 	if (page && !IS_ERR(page)) {
2576 		kunmap(page);
2577 		put_page(page);
2578 	}
2579 	if (name)
2580 		putname(name);
2581 	if (inode && S_ISREG(inode->i_mode))
2582 		inode_unlock(inode);
2583 	return error;
2584 }
2585 
2586 void si_swapinfo(struct sysinfo *val)
2587 {
2588 	unsigned int type;
2589 	unsigned long nr_to_be_unused = 0;
2590 
2591 	spin_lock(&swap_lock);
2592 	for (type = 0; type < nr_swapfiles; type++) {
2593 		struct swap_info_struct *si = swap_info[type];
2594 
2595 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2596 			nr_to_be_unused += si->inuse_pages;
2597 	}
2598 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2599 	val->totalswap = total_swap_pages + nr_to_be_unused;
2600 	spin_unlock(&swap_lock);
2601 }
2602 
2603 /*
2604  * Verify that a swap entry is valid and increment its swap map count.
2605  *
2606  * Returns error code in following case.
2607  * - success -> 0
2608  * - swp_entry is invalid -> EINVAL
2609  * - swp_entry is migration entry -> EINVAL
2610  * - swap-cache reference is requested but there is already one. -> EEXIST
2611  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2612  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2613  */
2614 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2615 {
2616 	struct swap_info_struct *p;
2617 	unsigned long offset, type;
2618 	unsigned char count;
2619 	unsigned char has_cache;
2620 	int err = -EINVAL;
2621 
2622 	if (non_swap_entry(entry))
2623 		goto out;
2624 
2625 	type = swp_type(entry);
2626 	if (type >= nr_swapfiles)
2627 		goto bad_file;
2628 	p = swap_info[type];
2629 	offset = swp_offset(entry);
2630 
2631 	spin_lock(&p->lock);
2632 	if (unlikely(offset >= p->max))
2633 		goto unlock_out;
2634 
2635 	count = p->swap_map[offset];
2636 
2637 	/*
2638 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
2639 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2640 	 */
2641 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2642 		err = -ENOENT;
2643 		goto unlock_out;
2644 	}
2645 
2646 	has_cache = count & SWAP_HAS_CACHE;
2647 	count &= ~SWAP_HAS_CACHE;
2648 	err = 0;
2649 
2650 	if (usage == SWAP_HAS_CACHE) {
2651 
2652 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2653 		if (!has_cache && count)
2654 			has_cache = SWAP_HAS_CACHE;
2655 		else if (has_cache)		/* someone else added cache */
2656 			err = -EEXIST;
2657 		else				/* no users remaining */
2658 			err = -ENOENT;
2659 
2660 	} else if (count || has_cache) {
2661 
2662 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2663 			count += usage;
2664 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2665 			err = -EINVAL;
2666 		else if (swap_count_continued(p, offset, count))
2667 			count = COUNT_CONTINUED;
2668 		else
2669 			err = -ENOMEM;
2670 	} else
2671 		err = -ENOENT;			/* unused swap entry */
2672 
2673 	p->swap_map[offset] = count | has_cache;
2674 
2675 unlock_out:
2676 	spin_unlock(&p->lock);
2677 out:
2678 	return err;
2679 
2680 bad_file:
2681 	pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2682 	goto out;
2683 }
2684 
2685 /*
2686  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2687  * (in which case its reference count is never incremented).
2688  */
2689 void swap_shmem_alloc(swp_entry_t entry)
2690 {
2691 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2692 }
2693 
2694 /*
2695  * Increase reference count of swap entry by 1.
2696  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2697  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2698  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2699  * might occur if a page table entry has got corrupted.
2700  */
2701 int swap_duplicate(swp_entry_t entry)
2702 {
2703 	int err = 0;
2704 
2705 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2706 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2707 	return err;
2708 }
2709 
2710 /*
2711  * @entry: swap entry for which we allocate swap cache.
2712  *
2713  * Called when allocating swap cache for existing swap entry,
2714  * This can return error codes. Returns 0 at success.
2715  * -EBUSY means there is a swap cache.
2716  * Note: return code is different from swap_duplicate().
2717  */
2718 int swapcache_prepare(swp_entry_t entry)
2719 {
2720 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2721 }
2722 
2723 struct swap_info_struct *page_swap_info(struct page *page)
2724 {
2725 	swp_entry_t swap = { .val = page_private(page) };
2726 	BUG_ON(!PageSwapCache(page));
2727 	return swap_info[swp_type(swap)];
2728 }
2729 
2730 /*
2731  * out-of-line __page_file_ methods to avoid include hell.
2732  */
2733 struct address_space *__page_file_mapping(struct page *page)
2734 {
2735 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2736 	return page_swap_info(page)->swap_file->f_mapping;
2737 }
2738 EXPORT_SYMBOL_GPL(__page_file_mapping);
2739 
2740 pgoff_t __page_file_index(struct page *page)
2741 {
2742 	swp_entry_t swap = { .val = page_private(page) };
2743 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2744 	return swp_offset(swap);
2745 }
2746 EXPORT_SYMBOL_GPL(__page_file_index);
2747 
2748 /*
2749  * add_swap_count_continuation - called when a swap count is duplicated
2750  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2751  * page of the original vmalloc'ed swap_map, to hold the continuation count
2752  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2753  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2754  *
2755  * These continuation pages are seldom referenced: the common paths all work
2756  * on the original swap_map, only referring to a continuation page when the
2757  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2758  *
2759  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2760  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2761  * can be called after dropping locks.
2762  */
2763 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2764 {
2765 	struct swap_info_struct *si;
2766 	struct page *head;
2767 	struct page *page;
2768 	struct page *list_page;
2769 	pgoff_t offset;
2770 	unsigned char count;
2771 
2772 	/*
2773 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2774 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2775 	 */
2776 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2777 
2778 	si = swap_info_get(entry);
2779 	if (!si) {
2780 		/*
2781 		 * An acceptable race has occurred since the failing
2782 		 * __swap_duplicate(): the swap entry has been freed,
2783 		 * perhaps even the whole swap_map cleared for swapoff.
2784 		 */
2785 		goto outer;
2786 	}
2787 
2788 	offset = swp_offset(entry);
2789 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2790 
2791 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2792 		/*
2793 		 * The higher the swap count, the more likely it is that tasks
2794 		 * will race to add swap count continuation: we need to avoid
2795 		 * over-provisioning.
2796 		 */
2797 		goto out;
2798 	}
2799 
2800 	if (!page) {
2801 		spin_unlock(&si->lock);
2802 		return -ENOMEM;
2803 	}
2804 
2805 	/*
2806 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2807 	 * no architecture is using highmem pages for kernel page tables: so it
2808 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2809 	 */
2810 	head = vmalloc_to_page(si->swap_map + offset);
2811 	offset &= ~PAGE_MASK;
2812 
2813 	/*
2814 	 * Page allocation does not initialize the page's lru field,
2815 	 * but it does always reset its private field.
2816 	 */
2817 	if (!page_private(head)) {
2818 		BUG_ON(count & COUNT_CONTINUED);
2819 		INIT_LIST_HEAD(&head->lru);
2820 		set_page_private(head, SWP_CONTINUED);
2821 		si->flags |= SWP_CONTINUED;
2822 	}
2823 
2824 	list_for_each_entry(list_page, &head->lru, lru) {
2825 		unsigned char *map;
2826 
2827 		/*
2828 		 * If the previous map said no continuation, but we've found
2829 		 * a continuation page, free our allocation and use this one.
2830 		 */
2831 		if (!(count & COUNT_CONTINUED))
2832 			goto out;
2833 
2834 		map = kmap_atomic(list_page) + offset;
2835 		count = *map;
2836 		kunmap_atomic(map);
2837 
2838 		/*
2839 		 * If this continuation count now has some space in it,
2840 		 * free our allocation and use this one.
2841 		 */
2842 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2843 			goto out;
2844 	}
2845 
2846 	list_add_tail(&page->lru, &head->lru);
2847 	page = NULL;			/* now it's attached, don't free it */
2848 out:
2849 	spin_unlock(&si->lock);
2850 outer:
2851 	if (page)
2852 		__free_page(page);
2853 	return 0;
2854 }
2855 
2856 /*
2857  * swap_count_continued - when the original swap_map count is incremented
2858  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2859  * into, carry if so, or else fail until a new continuation page is allocated;
2860  * when the original swap_map count is decremented from 0 with continuation,
2861  * borrow from the continuation and report whether it still holds more.
2862  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2863  */
2864 static bool swap_count_continued(struct swap_info_struct *si,
2865 				 pgoff_t offset, unsigned char count)
2866 {
2867 	struct page *head;
2868 	struct page *page;
2869 	unsigned char *map;
2870 
2871 	head = vmalloc_to_page(si->swap_map + offset);
2872 	if (page_private(head) != SWP_CONTINUED) {
2873 		BUG_ON(count & COUNT_CONTINUED);
2874 		return false;		/* need to add count continuation */
2875 	}
2876 
2877 	offset &= ~PAGE_MASK;
2878 	page = list_entry(head->lru.next, struct page, lru);
2879 	map = kmap_atomic(page) + offset;
2880 
2881 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2882 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2883 
2884 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2885 		/*
2886 		 * Think of how you add 1 to 999
2887 		 */
2888 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2889 			kunmap_atomic(map);
2890 			page = list_entry(page->lru.next, struct page, lru);
2891 			BUG_ON(page == head);
2892 			map = kmap_atomic(page) + offset;
2893 		}
2894 		if (*map == SWAP_CONT_MAX) {
2895 			kunmap_atomic(map);
2896 			page = list_entry(page->lru.next, struct page, lru);
2897 			if (page == head)
2898 				return false;	/* add count continuation */
2899 			map = kmap_atomic(page) + offset;
2900 init_map:		*map = 0;		/* we didn't zero the page */
2901 		}
2902 		*map += 1;
2903 		kunmap_atomic(map);
2904 		page = list_entry(page->lru.prev, struct page, lru);
2905 		while (page != head) {
2906 			map = kmap_atomic(page) + offset;
2907 			*map = COUNT_CONTINUED;
2908 			kunmap_atomic(map);
2909 			page = list_entry(page->lru.prev, struct page, lru);
2910 		}
2911 		return true;			/* incremented */
2912 
2913 	} else {				/* decrementing */
2914 		/*
2915 		 * Think of how you subtract 1 from 1000
2916 		 */
2917 		BUG_ON(count != COUNT_CONTINUED);
2918 		while (*map == COUNT_CONTINUED) {
2919 			kunmap_atomic(map);
2920 			page = list_entry(page->lru.next, struct page, lru);
2921 			BUG_ON(page == head);
2922 			map = kmap_atomic(page) + offset;
2923 		}
2924 		BUG_ON(*map == 0);
2925 		*map -= 1;
2926 		if (*map == 0)
2927 			count = 0;
2928 		kunmap_atomic(map);
2929 		page = list_entry(page->lru.prev, struct page, lru);
2930 		while (page != head) {
2931 			map = kmap_atomic(page) + offset;
2932 			*map = SWAP_CONT_MAX | count;
2933 			count = COUNT_CONTINUED;
2934 			kunmap_atomic(map);
2935 			page = list_entry(page->lru.prev, struct page, lru);
2936 		}
2937 		return count == COUNT_CONTINUED;
2938 	}
2939 }
2940 
2941 /*
2942  * free_swap_count_continuations - swapoff free all the continuation pages
2943  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2944  */
2945 static void free_swap_count_continuations(struct swap_info_struct *si)
2946 {
2947 	pgoff_t offset;
2948 
2949 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2950 		struct page *head;
2951 		head = vmalloc_to_page(si->swap_map + offset);
2952 		if (page_private(head)) {
2953 			struct page *page, *next;
2954 
2955 			list_for_each_entry_safe(page, next, &head->lru, lru) {
2956 				list_del(&page->lru);
2957 				__free_page(page);
2958 			}
2959 		}
2960 	}
2961 }
2962