1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/sched/mm.h> 10 #include <linux/sched/task.h> 11 #include <linux/hugetlb.h> 12 #include <linux/mman.h> 13 #include <linux/slab.h> 14 #include <linux/kernel_stat.h> 15 #include <linux/swap.h> 16 #include <linux/vmalloc.h> 17 #include <linux/pagemap.h> 18 #include <linux/namei.h> 19 #include <linux/shmem_fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/random.h> 22 #include <linux/writeback.h> 23 #include <linux/proc_fs.h> 24 #include <linux/seq_file.h> 25 #include <linux/init.h> 26 #include <linux/ksm.h> 27 #include <linux/rmap.h> 28 #include <linux/security.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mutex.h> 31 #include <linux/capability.h> 32 #include <linux/syscalls.h> 33 #include <linux/memcontrol.h> 34 #include <linux/poll.h> 35 #include <linux/oom.h> 36 #include <linux/frontswap.h> 37 #include <linux/swapfile.h> 38 #include <linux/export.h> 39 #include <linux/swap_slots.h> 40 #include <linux/sort.h> 41 42 #include <asm/pgtable.h> 43 #include <asm/tlbflush.h> 44 #include <linux/swapops.h> 45 #include <linux/swap_cgroup.h> 46 47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 48 unsigned char); 49 static void free_swap_count_continuations(struct swap_info_struct *); 50 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 51 52 DEFINE_SPINLOCK(swap_lock); 53 static unsigned int nr_swapfiles; 54 atomic_long_t nr_swap_pages; 55 /* 56 * Some modules use swappable objects and may try to swap them out under 57 * memory pressure (via the shrinker). Before doing so, they may wish to 58 * check to see if any swap space is available. 59 */ 60 EXPORT_SYMBOL_GPL(nr_swap_pages); 61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 62 long total_swap_pages; 63 static int least_priority = -1; 64 65 static const char Bad_file[] = "Bad swap file entry "; 66 static const char Unused_file[] = "Unused swap file entry "; 67 static const char Bad_offset[] = "Bad swap offset entry "; 68 static const char Unused_offset[] = "Unused swap offset entry "; 69 70 /* 71 * all active swap_info_structs 72 * protected with swap_lock, and ordered by priority. 73 */ 74 PLIST_HEAD(swap_active_head); 75 76 /* 77 * all available (active, not full) swap_info_structs 78 * protected with swap_avail_lock, ordered by priority. 79 * This is used by get_swap_page() instead of swap_active_head 80 * because swap_active_head includes all swap_info_structs, 81 * but get_swap_page() doesn't need to look at full ones. 82 * This uses its own lock instead of swap_lock because when a 83 * swap_info_struct changes between not-full/full, it needs to 84 * add/remove itself to/from this list, but the swap_info_struct->lock 85 * is held and the locking order requires swap_lock to be taken 86 * before any swap_info_struct->lock. 87 */ 88 static struct plist_head *swap_avail_heads; 89 static DEFINE_SPINLOCK(swap_avail_lock); 90 91 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 92 93 static DEFINE_MUTEX(swapon_mutex); 94 95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 96 /* Activity counter to indicate that a swapon or swapoff has occurred */ 97 static atomic_t proc_poll_event = ATOMIC_INIT(0); 98 99 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 100 101 static inline unsigned char swap_count(unsigned char ent) 102 { 103 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 104 } 105 106 /* Reclaim the swap entry anyway if possible */ 107 #define TTRS_ANYWAY 0x1 108 /* 109 * Reclaim the swap entry if there are no more mappings of the 110 * corresponding page 111 */ 112 #define TTRS_UNMAPPED 0x2 113 /* Reclaim the swap entry if swap is getting full*/ 114 #define TTRS_FULL 0x4 115 116 /* returns 1 if swap entry is freed */ 117 static int __try_to_reclaim_swap(struct swap_info_struct *si, 118 unsigned long offset, unsigned long flags) 119 { 120 swp_entry_t entry = swp_entry(si->type, offset); 121 struct page *page; 122 int ret = 0; 123 124 page = find_get_page(swap_address_space(entry), offset); 125 if (!page) 126 return 0; 127 /* 128 * When this function is called from scan_swap_map_slots() and it's 129 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page, 130 * here. We have to use trylock for avoiding deadlock. This is a special 131 * case and you should use try_to_free_swap() with explicit lock_page() 132 * in usual operations. 133 */ 134 if (trylock_page(page)) { 135 if ((flags & TTRS_ANYWAY) || 136 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) || 137 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page))) 138 ret = try_to_free_swap(page); 139 unlock_page(page); 140 } 141 put_page(page); 142 return ret; 143 } 144 145 /* 146 * swapon tell device that all the old swap contents can be discarded, 147 * to allow the swap device to optimize its wear-levelling. 148 */ 149 static int discard_swap(struct swap_info_struct *si) 150 { 151 struct swap_extent *se; 152 sector_t start_block; 153 sector_t nr_blocks; 154 int err = 0; 155 156 /* Do not discard the swap header page! */ 157 se = &si->first_swap_extent; 158 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 159 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 160 if (nr_blocks) { 161 err = blkdev_issue_discard(si->bdev, start_block, 162 nr_blocks, GFP_KERNEL, 0); 163 if (err) 164 return err; 165 cond_resched(); 166 } 167 168 list_for_each_entry(se, &si->first_swap_extent.list, list) { 169 start_block = se->start_block << (PAGE_SHIFT - 9); 170 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 171 172 err = blkdev_issue_discard(si->bdev, start_block, 173 nr_blocks, GFP_KERNEL, 0); 174 if (err) 175 break; 176 177 cond_resched(); 178 } 179 return err; /* That will often be -EOPNOTSUPP */ 180 } 181 182 /* 183 * swap allocation tell device that a cluster of swap can now be discarded, 184 * to allow the swap device to optimize its wear-levelling. 185 */ 186 static void discard_swap_cluster(struct swap_info_struct *si, 187 pgoff_t start_page, pgoff_t nr_pages) 188 { 189 struct swap_extent *se = si->curr_swap_extent; 190 int found_extent = 0; 191 192 while (nr_pages) { 193 if (se->start_page <= start_page && 194 start_page < se->start_page + se->nr_pages) { 195 pgoff_t offset = start_page - se->start_page; 196 sector_t start_block = se->start_block + offset; 197 sector_t nr_blocks = se->nr_pages - offset; 198 199 if (nr_blocks > nr_pages) 200 nr_blocks = nr_pages; 201 start_page += nr_blocks; 202 nr_pages -= nr_blocks; 203 204 if (!found_extent++) 205 si->curr_swap_extent = se; 206 207 start_block <<= PAGE_SHIFT - 9; 208 nr_blocks <<= PAGE_SHIFT - 9; 209 if (blkdev_issue_discard(si->bdev, start_block, 210 nr_blocks, GFP_NOIO, 0)) 211 break; 212 } 213 214 se = list_next_entry(se, list); 215 } 216 } 217 218 #ifdef CONFIG_THP_SWAP 219 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 220 221 #define swap_entry_size(size) (size) 222 #else 223 #define SWAPFILE_CLUSTER 256 224 225 /* 226 * Define swap_entry_size() as constant to let compiler to optimize 227 * out some code if !CONFIG_THP_SWAP 228 */ 229 #define swap_entry_size(size) 1 230 #endif 231 #define LATENCY_LIMIT 256 232 233 static inline void cluster_set_flag(struct swap_cluster_info *info, 234 unsigned int flag) 235 { 236 info->flags = flag; 237 } 238 239 static inline unsigned int cluster_count(struct swap_cluster_info *info) 240 { 241 return info->data; 242 } 243 244 static inline void cluster_set_count(struct swap_cluster_info *info, 245 unsigned int c) 246 { 247 info->data = c; 248 } 249 250 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 251 unsigned int c, unsigned int f) 252 { 253 info->flags = f; 254 info->data = c; 255 } 256 257 static inline unsigned int cluster_next(struct swap_cluster_info *info) 258 { 259 return info->data; 260 } 261 262 static inline void cluster_set_next(struct swap_cluster_info *info, 263 unsigned int n) 264 { 265 info->data = n; 266 } 267 268 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 269 unsigned int n, unsigned int f) 270 { 271 info->flags = f; 272 info->data = n; 273 } 274 275 static inline bool cluster_is_free(struct swap_cluster_info *info) 276 { 277 return info->flags & CLUSTER_FLAG_FREE; 278 } 279 280 static inline bool cluster_is_null(struct swap_cluster_info *info) 281 { 282 return info->flags & CLUSTER_FLAG_NEXT_NULL; 283 } 284 285 static inline void cluster_set_null(struct swap_cluster_info *info) 286 { 287 info->flags = CLUSTER_FLAG_NEXT_NULL; 288 info->data = 0; 289 } 290 291 static inline bool cluster_is_huge(struct swap_cluster_info *info) 292 { 293 if (IS_ENABLED(CONFIG_THP_SWAP)) 294 return info->flags & CLUSTER_FLAG_HUGE; 295 return false; 296 } 297 298 static inline void cluster_clear_huge(struct swap_cluster_info *info) 299 { 300 info->flags &= ~CLUSTER_FLAG_HUGE; 301 } 302 303 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 304 unsigned long offset) 305 { 306 struct swap_cluster_info *ci; 307 308 ci = si->cluster_info; 309 if (ci) { 310 ci += offset / SWAPFILE_CLUSTER; 311 spin_lock(&ci->lock); 312 } 313 return ci; 314 } 315 316 static inline void unlock_cluster(struct swap_cluster_info *ci) 317 { 318 if (ci) 319 spin_unlock(&ci->lock); 320 } 321 322 /* 323 * Determine the locking method in use for this device. Return 324 * swap_cluster_info if SSD-style cluster-based locking is in place. 325 */ 326 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 327 struct swap_info_struct *si, unsigned long offset) 328 { 329 struct swap_cluster_info *ci; 330 331 /* Try to use fine-grained SSD-style locking if available: */ 332 ci = lock_cluster(si, offset); 333 /* Otherwise, fall back to traditional, coarse locking: */ 334 if (!ci) 335 spin_lock(&si->lock); 336 337 return ci; 338 } 339 340 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 341 struct swap_cluster_info *ci) 342 { 343 if (ci) 344 unlock_cluster(ci); 345 else 346 spin_unlock(&si->lock); 347 } 348 349 static inline bool cluster_list_empty(struct swap_cluster_list *list) 350 { 351 return cluster_is_null(&list->head); 352 } 353 354 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 355 { 356 return cluster_next(&list->head); 357 } 358 359 static void cluster_list_init(struct swap_cluster_list *list) 360 { 361 cluster_set_null(&list->head); 362 cluster_set_null(&list->tail); 363 } 364 365 static void cluster_list_add_tail(struct swap_cluster_list *list, 366 struct swap_cluster_info *ci, 367 unsigned int idx) 368 { 369 if (cluster_list_empty(list)) { 370 cluster_set_next_flag(&list->head, idx, 0); 371 cluster_set_next_flag(&list->tail, idx, 0); 372 } else { 373 struct swap_cluster_info *ci_tail; 374 unsigned int tail = cluster_next(&list->tail); 375 376 /* 377 * Nested cluster lock, but both cluster locks are 378 * only acquired when we held swap_info_struct->lock 379 */ 380 ci_tail = ci + tail; 381 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 382 cluster_set_next(ci_tail, idx); 383 spin_unlock(&ci_tail->lock); 384 cluster_set_next_flag(&list->tail, idx, 0); 385 } 386 } 387 388 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 389 struct swap_cluster_info *ci) 390 { 391 unsigned int idx; 392 393 idx = cluster_next(&list->head); 394 if (cluster_next(&list->tail) == idx) { 395 cluster_set_null(&list->head); 396 cluster_set_null(&list->tail); 397 } else 398 cluster_set_next_flag(&list->head, 399 cluster_next(&ci[idx]), 0); 400 401 return idx; 402 } 403 404 /* Add a cluster to discard list and schedule it to do discard */ 405 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 406 unsigned int idx) 407 { 408 /* 409 * If scan_swap_map() can't find a free cluster, it will check 410 * si->swap_map directly. To make sure the discarding cluster isn't 411 * taken by scan_swap_map(), mark the swap entries bad (occupied). It 412 * will be cleared after discard 413 */ 414 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 415 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 416 417 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 418 419 schedule_work(&si->discard_work); 420 } 421 422 static void __free_cluster(struct swap_info_struct *si, unsigned long idx) 423 { 424 struct swap_cluster_info *ci = si->cluster_info; 425 426 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); 427 cluster_list_add_tail(&si->free_clusters, ci, idx); 428 } 429 430 /* 431 * Doing discard actually. After a cluster discard is finished, the cluster 432 * will be added to free cluster list. caller should hold si->lock. 433 */ 434 static void swap_do_scheduled_discard(struct swap_info_struct *si) 435 { 436 struct swap_cluster_info *info, *ci; 437 unsigned int idx; 438 439 info = si->cluster_info; 440 441 while (!cluster_list_empty(&si->discard_clusters)) { 442 idx = cluster_list_del_first(&si->discard_clusters, info); 443 spin_unlock(&si->lock); 444 445 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 446 SWAPFILE_CLUSTER); 447 448 spin_lock(&si->lock); 449 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 450 __free_cluster(si, idx); 451 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 452 0, SWAPFILE_CLUSTER); 453 unlock_cluster(ci); 454 } 455 } 456 457 static void swap_discard_work(struct work_struct *work) 458 { 459 struct swap_info_struct *si; 460 461 si = container_of(work, struct swap_info_struct, discard_work); 462 463 spin_lock(&si->lock); 464 swap_do_scheduled_discard(si); 465 spin_unlock(&si->lock); 466 } 467 468 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) 469 { 470 struct swap_cluster_info *ci = si->cluster_info; 471 472 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); 473 cluster_list_del_first(&si->free_clusters, ci); 474 cluster_set_count_flag(ci + idx, 0, 0); 475 } 476 477 static void free_cluster(struct swap_info_struct *si, unsigned long idx) 478 { 479 struct swap_cluster_info *ci = si->cluster_info + idx; 480 481 VM_BUG_ON(cluster_count(ci) != 0); 482 /* 483 * If the swap is discardable, prepare discard the cluster 484 * instead of free it immediately. The cluster will be freed 485 * after discard. 486 */ 487 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 488 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 489 swap_cluster_schedule_discard(si, idx); 490 return; 491 } 492 493 __free_cluster(si, idx); 494 } 495 496 /* 497 * The cluster corresponding to page_nr will be used. The cluster will be 498 * removed from free cluster list and its usage counter will be increased. 499 */ 500 static void inc_cluster_info_page(struct swap_info_struct *p, 501 struct swap_cluster_info *cluster_info, unsigned long page_nr) 502 { 503 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 504 505 if (!cluster_info) 506 return; 507 if (cluster_is_free(&cluster_info[idx])) 508 alloc_cluster(p, idx); 509 510 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 511 cluster_set_count(&cluster_info[idx], 512 cluster_count(&cluster_info[idx]) + 1); 513 } 514 515 /* 516 * The cluster corresponding to page_nr decreases one usage. If the usage 517 * counter becomes 0, which means no page in the cluster is in using, we can 518 * optionally discard the cluster and add it to free cluster list. 519 */ 520 static void dec_cluster_info_page(struct swap_info_struct *p, 521 struct swap_cluster_info *cluster_info, unsigned long page_nr) 522 { 523 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 524 525 if (!cluster_info) 526 return; 527 528 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 529 cluster_set_count(&cluster_info[idx], 530 cluster_count(&cluster_info[idx]) - 1); 531 532 if (cluster_count(&cluster_info[idx]) == 0) 533 free_cluster(p, idx); 534 } 535 536 /* 537 * It's possible scan_swap_map() uses a free cluster in the middle of free 538 * cluster list. Avoiding such abuse to avoid list corruption. 539 */ 540 static bool 541 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 542 unsigned long offset) 543 { 544 struct percpu_cluster *percpu_cluster; 545 bool conflict; 546 547 offset /= SWAPFILE_CLUSTER; 548 conflict = !cluster_list_empty(&si->free_clusters) && 549 offset != cluster_list_first(&si->free_clusters) && 550 cluster_is_free(&si->cluster_info[offset]); 551 552 if (!conflict) 553 return false; 554 555 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 556 cluster_set_null(&percpu_cluster->index); 557 return true; 558 } 559 560 /* 561 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 562 * might involve allocating a new cluster for current CPU too. 563 */ 564 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 565 unsigned long *offset, unsigned long *scan_base) 566 { 567 struct percpu_cluster *cluster; 568 struct swap_cluster_info *ci; 569 bool found_free; 570 unsigned long tmp, max; 571 572 new_cluster: 573 cluster = this_cpu_ptr(si->percpu_cluster); 574 if (cluster_is_null(&cluster->index)) { 575 if (!cluster_list_empty(&si->free_clusters)) { 576 cluster->index = si->free_clusters.head; 577 cluster->next = cluster_next(&cluster->index) * 578 SWAPFILE_CLUSTER; 579 } else if (!cluster_list_empty(&si->discard_clusters)) { 580 /* 581 * we don't have free cluster but have some clusters in 582 * discarding, do discard now and reclaim them 583 */ 584 swap_do_scheduled_discard(si); 585 *scan_base = *offset = si->cluster_next; 586 goto new_cluster; 587 } else 588 return false; 589 } 590 591 found_free = false; 592 593 /* 594 * Other CPUs can use our cluster if they can't find a free cluster, 595 * check if there is still free entry in the cluster 596 */ 597 tmp = cluster->next; 598 max = min_t(unsigned long, si->max, 599 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); 600 if (tmp >= max) { 601 cluster_set_null(&cluster->index); 602 goto new_cluster; 603 } 604 ci = lock_cluster(si, tmp); 605 while (tmp < max) { 606 if (!si->swap_map[tmp]) { 607 found_free = true; 608 break; 609 } 610 tmp++; 611 } 612 unlock_cluster(ci); 613 if (!found_free) { 614 cluster_set_null(&cluster->index); 615 goto new_cluster; 616 } 617 cluster->next = tmp + 1; 618 *offset = tmp; 619 *scan_base = tmp; 620 return found_free; 621 } 622 623 static void __del_from_avail_list(struct swap_info_struct *p) 624 { 625 int nid; 626 627 for_each_node(nid) 628 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); 629 } 630 631 static void del_from_avail_list(struct swap_info_struct *p) 632 { 633 spin_lock(&swap_avail_lock); 634 __del_from_avail_list(p); 635 spin_unlock(&swap_avail_lock); 636 } 637 638 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 639 unsigned int nr_entries) 640 { 641 unsigned int end = offset + nr_entries - 1; 642 643 if (offset == si->lowest_bit) 644 si->lowest_bit += nr_entries; 645 if (end == si->highest_bit) 646 si->highest_bit -= nr_entries; 647 si->inuse_pages += nr_entries; 648 if (si->inuse_pages == si->pages) { 649 si->lowest_bit = si->max; 650 si->highest_bit = 0; 651 del_from_avail_list(si); 652 } 653 } 654 655 static void add_to_avail_list(struct swap_info_struct *p) 656 { 657 int nid; 658 659 spin_lock(&swap_avail_lock); 660 for_each_node(nid) { 661 WARN_ON(!plist_node_empty(&p->avail_lists[nid])); 662 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); 663 } 664 spin_unlock(&swap_avail_lock); 665 } 666 667 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 668 unsigned int nr_entries) 669 { 670 unsigned long end = offset + nr_entries - 1; 671 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 672 673 if (offset < si->lowest_bit) 674 si->lowest_bit = offset; 675 if (end > si->highest_bit) { 676 bool was_full = !si->highest_bit; 677 678 si->highest_bit = end; 679 if (was_full && (si->flags & SWP_WRITEOK)) 680 add_to_avail_list(si); 681 } 682 atomic_long_add(nr_entries, &nr_swap_pages); 683 si->inuse_pages -= nr_entries; 684 if (si->flags & SWP_BLKDEV) 685 swap_slot_free_notify = 686 si->bdev->bd_disk->fops->swap_slot_free_notify; 687 else 688 swap_slot_free_notify = NULL; 689 while (offset <= end) { 690 frontswap_invalidate_page(si->type, offset); 691 if (swap_slot_free_notify) 692 swap_slot_free_notify(si->bdev, offset); 693 offset++; 694 } 695 } 696 697 static int scan_swap_map_slots(struct swap_info_struct *si, 698 unsigned char usage, int nr, 699 swp_entry_t slots[]) 700 { 701 struct swap_cluster_info *ci; 702 unsigned long offset; 703 unsigned long scan_base; 704 unsigned long last_in_cluster = 0; 705 int latency_ration = LATENCY_LIMIT; 706 int n_ret = 0; 707 708 if (nr > SWAP_BATCH) 709 nr = SWAP_BATCH; 710 711 /* 712 * We try to cluster swap pages by allocating them sequentially 713 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 714 * way, however, we resort to first-free allocation, starting 715 * a new cluster. This prevents us from scattering swap pages 716 * all over the entire swap partition, so that we reduce 717 * overall disk seek times between swap pages. -- sct 718 * But we do now try to find an empty cluster. -Andrea 719 * And we let swap pages go all over an SSD partition. Hugh 720 */ 721 722 si->flags += SWP_SCANNING; 723 scan_base = offset = si->cluster_next; 724 725 /* SSD algorithm */ 726 if (si->cluster_info) { 727 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 728 goto checks; 729 else 730 goto scan; 731 } 732 733 if (unlikely(!si->cluster_nr--)) { 734 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 735 si->cluster_nr = SWAPFILE_CLUSTER - 1; 736 goto checks; 737 } 738 739 spin_unlock(&si->lock); 740 741 /* 742 * If seek is expensive, start searching for new cluster from 743 * start of partition, to minimize the span of allocated swap. 744 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 745 * case, just handled by scan_swap_map_try_ssd_cluster() above. 746 */ 747 scan_base = offset = si->lowest_bit; 748 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 749 750 /* Locate the first empty (unaligned) cluster */ 751 for (; last_in_cluster <= si->highest_bit; offset++) { 752 if (si->swap_map[offset]) 753 last_in_cluster = offset + SWAPFILE_CLUSTER; 754 else if (offset == last_in_cluster) { 755 spin_lock(&si->lock); 756 offset -= SWAPFILE_CLUSTER - 1; 757 si->cluster_next = offset; 758 si->cluster_nr = SWAPFILE_CLUSTER - 1; 759 goto checks; 760 } 761 if (unlikely(--latency_ration < 0)) { 762 cond_resched(); 763 latency_ration = LATENCY_LIMIT; 764 } 765 } 766 767 offset = scan_base; 768 spin_lock(&si->lock); 769 si->cluster_nr = SWAPFILE_CLUSTER - 1; 770 } 771 772 checks: 773 if (si->cluster_info) { 774 while (scan_swap_map_ssd_cluster_conflict(si, offset)) { 775 /* take a break if we already got some slots */ 776 if (n_ret) 777 goto done; 778 if (!scan_swap_map_try_ssd_cluster(si, &offset, 779 &scan_base)) 780 goto scan; 781 } 782 } 783 if (!(si->flags & SWP_WRITEOK)) 784 goto no_page; 785 if (!si->highest_bit) 786 goto no_page; 787 if (offset > si->highest_bit) 788 scan_base = offset = si->lowest_bit; 789 790 ci = lock_cluster(si, offset); 791 /* reuse swap entry of cache-only swap if not busy. */ 792 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 793 int swap_was_freed; 794 unlock_cluster(ci); 795 spin_unlock(&si->lock); 796 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 797 spin_lock(&si->lock); 798 /* entry was freed successfully, try to use this again */ 799 if (swap_was_freed) 800 goto checks; 801 goto scan; /* check next one */ 802 } 803 804 if (si->swap_map[offset]) { 805 unlock_cluster(ci); 806 if (!n_ret) 807 goto scan; 808 else 809 goto done; 810 } 811 si->swap_map[offset] = usage; 812 inc_cluster_info_page(si, si->cluster_info, offset); 813 unlock_cluster(ci); 814 815 swap_range_alloc(si, offset, 1); 816 si->cluster_next = offset + 1; 817 slots[n_ret++] = swp_entry(si->type, offset); 818 819 /* got enough slots or reach max slots? */ 820 if ((n_ret == nr) || (offset >= si->highest_bit)) 821 goto done; 822 823 /* search for next available slot */ 824 825 /* time to take a break? */ 826 if (unlikely(--latency_ration < 0)) { 827 if (n_ret) 828 goto done; 829 spin_unlock(&si->lock); 830 cond_resched(); 831 spin_lock(&si->lock); 832 latency_ration = LATENCY_LIMIT; 833 } 834 835 /* try to get more slots in cluster */ 836 if (si->cluster_info) { 837 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 838 goto checks; 839 else 840 goto done; 841 } 842 /* non-ssd case */ 843 ++offset; 844 845 /* non-ssd case, still more slots in cluster? */ 846 if (si->cluster_nr && !si->swap_map[offset]) { 847 --si->cluster_nr; 848 goto checks; 849 } 850 851 done: 852 si->flags -= SWP_SCANNING; 853 return n_ret; 854 855 scan: 856 spin_unlock(&si->lock); 857 while (++offset <= si->highest_bit) { 858 if (!si->swap_map[offset]) { 859 spin_lock(&si->lock); 860 goto checks; 861 } 862 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 863 spin_lock(&si->lock); 864 goto checks; 865 } 866 if (unlikely(--latency_ration < 0)) { 867 cond_resched(); 868 latency_ration = LATENCY_LIMIT; 869 } 870 } 871 offset = si->lowest_bit; 872 while (offset < scan_base) { 873 if (!si->swap_map[offset]) { 874 spin_lock(&si->lock); 875 goto checks; 876 } 877 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 878 spin_lock(&si->lock); 879 goto checks; 880 } 881 if (unlikely(--latency_ration < 0)) { 882 cond_resched(); 883 latency_ration = LATENCY_LIMIT; 884 } 885 offset++; 886 } 887 spin_lock(&si->lock); 888 889 no_page: 890 si->flags -= SWP_SCANNING; 891 return n_ret; 892 } 893 894 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) 895 { 896 unsigned long idx; 897 struct swap_cluster_info *ci; 898 unsigned long offset, i; 899 unsigned char *map; 900 901 /* 902 * Should not even be attempting cluster allocations when huge 903 * page swap is disabled. Warn and fail the allocation. 904 */ 905 if (!IS_ENABLED(CONFIG_THP_SWAP)) { 906 VM_WARN_ON_ONCE(1); 907 return 0; 908 } 909 910 if (cluster_list_empty(&si->free_clusters)) 911 return 0; 912 913 idx = cluster_list_first(&si->free_clusters); 914 offset = idx * SWAPFILE_CLUSTER; 915 ci = lock_cluster(si, offset); 916 alloc_cluster(si, idx); 917 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); 918 919 map = si->swap_map + offset; 920 for (i = 0; i < SWAPFILE_CLUSTER; i++) 921 map[i] = SWAP_HAS_CACHE; 922 unlock_cluster(ci); 923 swap_range_alloc(si, offset, SWAPFILE_CLUSTER); 924 *slot = swp_entry(si->type, offset); 925 926 return 1; 927 } 928 929 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) 930 { 931 unsigned long offset = idx * SWAPFILE_CLUSTER; 932 struct swap_cluster_info *ci; 933 934 ci = lock_cluster(si, offset); 935 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER); 936 cluster_set_count_flag(ci, 0, 0); 937 free_cluster(si, idx); 938 unlock_cluster(ci); 939 swap_range_free(si, offset, SWAPFILE_CLUSTER); 940 } 941 942 static unsigned long scan_swap_map(struct swap_info_struct *si, 943 unsigned char usage) 944 { 945 swp_entry_t entry; 946 int n_ret; 947 948 n_ret = scan_swap_map_slots(si, usage, 1, &entry); 949 950 if (n_ret) 951 return swp_offset(entry); 952 else 953 return 0; 954 955 } 956 957 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size) 958 { 959 unsigned long size = swap_entry_size(entry_size); 960 struct swap_info_struct *si, *next; 961 long avail_pgs; 962 int n_ret = 0; 963 int node; 964 965 /* Only single cluster request supported */ 966 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER); 967 968 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 969 if (avail_pgs <= 0) 970 goto noswap; 971 972 if (n_goal > SWAP_BATCH) 973 n_goal = SWAP_BATCH; 974 975 if (n_goal > avail_pgs) 976 n_goal = avail_pgs; 977 978 atomic_long_sub(n_goal * size, &nr_swap_pages); 979 980 spin_lock(&swap_avail_lock); 981 982 start_over: 983 node = numa_node_id(); 984 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 985 /* requeue si to after same-priority siblings */ 986 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 987 spin_unlock(&swap_avail_lock); 988 spin_lock(&si->lock); 989 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 990 spin_lock(&swap_avail_lock); 991 if (plist_node_empty(&si->avail_lists[node])) { 992 spin_unlock(&si->lock); 993 goto nextsi; 994 } 995 WARN(!si->highest_bit, 996 "swap_info %d in list but !highest_bit\n", 997 si->type); 998 WARN(!(si->flags & SWP_WRITEOK), 999 "swap_info %d in list but !SWP_WRITEOK\n", 1000 si->type); 1001 __del_from_avail_list(si); 1002 spin_unlock(&si->lock); 1003 goto nextsi; 1004 } 1005 if (size == SWAPFILE_CLUSTER) { 1006 if (!(si->flags & SWP_FS)) 1007 n_ret = swap_alloc_cluster(si, swp_entries); 1008 } else 1009 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 1010 n_goal, swp_entries); 1011 spin_unlock(&si->lock); 1012 if (n_ret || size == SWAPFILE_CLUSTER) 1013 goto check_out; 1014 pr_debug("scan_swap_map of si %d failed to find offset\n", 1015 si->type); 1016 1017 spin_lock(&swap_avail_lock); 1018 nextsi: 1019 /* 1020 * if we got here, it's likely that si was almost full before, 1021 * and since scan_swap_map() can drop the si->lock, multiple 1022 * callers probably all tried to get a page from the same si 1023 * and it filled up before we could get one; or, the si filled 1024 * up between us dropping swap_avail_lock and taking si->lock. 1025 * Since we dropped the swap_avail_lock, the swap_avail_head 1026 * list may have been modified; so if next is still in the 1027 * swap_avail_head list then try it, otherwise start over 1028 * if we have not gotten any slots. 1029 */ 1030 if (plist_node_empty(&next->avail_lists[node])) 1031 goto start_over; 1032 } 1033 1034 spin_unlock(&swap_avail_lock); 1035 1036 check_out: 1037 if (n_ret < n_goal) 1038 atomic_long_add((long)(n_goal - n_ret) * size, 1039 &nr_swap_pages); 1040 noswap: 1041 return n_ret; 1042 } 1043 1044 /* The only caller of this function is now suspend routine */ 1045 swp_entry_t get_swap_page_of_type(int type) 1046 { 1047 struct swap_info_struct *si; 1048 pgoff_t offset; 1049 1050 si = swap_info[type]; 1051 spin_lock(&si->lock); 1052 if (si && (si->flags & SWP_WRITEOK)) { 1053 atomic_long_dec(&nr_swap_pages); 1054 /* This is called for allocating swap entry, not cache */ 1055 offset = scan_swap_map(si, 1); 1056 if (offset) { 1057 spin_unlock(&si->lock); 1058 return swp_entry(type, offset); 1059 } 1060 atomic_long_inc(&nr_swap_pages); 1061 } 1062 spin_unlock(&si->lock); 1063 return (swp_entry_t) {0}; 1064 } 1065 1066 static struct swap_info_struct *__swap_info_get(swp_entry_t entry) 1067 { 1068 struct swap_info_struct *p; 1069 unsigned long offset, type; 1070 1071 if (!entry.val) 1072 goto out; 1073 type = swp_type(entry); 1074 if (type >= nr_swapfiles) 1075 goto bad_nofile; 1076 p = swap_info[type]; 1077 if (!(p->flags & SWP_USED)) 1078 goto bad_device; 1079 offset = swp_offset(entry); 1080 if (offset >= p->max) 1081 goto bad_offset; 1082 return p; 1083 1084 bad_offset: 1085 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val); 1086 goto out; 1087 bad_device: 1088 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val); 1089 goto out; 1090 bad_nofile: 1091 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val); 1092 out: 1093 return NULL; 1094 } 1095 1096 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1097 { 1098 struct swap_info_struct *p; 1099 1100 p = __swap_info_get(entry); 1101 if (!p) 1102 goto out; 1103 if (!p->swap_map[swp_offset(entry)]) 1104 goto bad_free; 1105 return p; 1106 1107 bad_free: 1108 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val); 1109 goto out; 1110 out: 1111 return NULL; 1112 } 1113 1114 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 1115 { 1116 struct swap_info_struct *p; 1117 1118 p = _swap_info_get(entry); 1119 if (p) 1120 spin_lock(&p->lock); 1121 return p; 1122 } 1123 1124 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1125 struct swap_info_struct *q) 1126 { 1127 struct swap_info_struct *p; 1128 1129 p = _swap_info_get(entry); 1130 1131 if (p != q) { 1132 if (q != NULL) 1133 spin_unlock(&q->lock); 1134 if (p != NULL) 1135 spin_lock(&p->lock); 1136 } 1137 return p; 1138 } 1139 1140 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, 1141 unsigned long offset, 1142 unsigned char usage) 1143 { 1144 unsigned char count; 1145 unsigned char has_cache; 1146 1147 count = p->swap_map[offset]; 1148 1149 has_cache = count & SWAP_HAS_CACHE; 1150 count &= ~SWAP_HAS_CACHE; 1151 1152 if (usage == SWAP_HAS_CACHE) { 1153 VM_BUG_ON(!has_cache); 1154 has_cache = 0; 1155 } else if (count == SWAP_MAP_SHMEM) { 1156 /* 1157 * Or we could insist on shmem.c using a special 1158 * swap_shmem_free() and free_shmem_swap_and_cache()... 1159 */ 1160 count = 0; 1161 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1162 if (count == COUNT_CONTINUED) { 1163 if (swap_count_continued(p, offset, count)) 1164 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1165 else 1166 count = SWAP_MAP_MAX; 1167 } else 1168 count--; 1169 } 1170 1171 usage = count | has_cache; 1172 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE; 1173 1174 return usage; 1175 } 1176 1177 static unsigned char __swap_entry_free(struct swap_info_struct *p, 1178 swp_entry_t entry, unsigned char usage) 1179 { 1180 struct swap_cluster_info *ci; 1181 unsigned long offset = swp_offset(entry); 1182 1183 ci = lock_cluster_or_swap_info(p, offset); 1184 usage = __swap_entry_free_locked(p, offset, usage); 1185 unlock_cluster_or_swap_info(p, ci); 1186 if (!usage) 1187 free_swap_slot(entry); 1188 1189 return usage; 1190 } 1191 1192 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 1193 { 1194 struct swap_cluster_info *ci; 1195 unsigned long offset = swp_offset(entry); 1196 unsigned char count; 1197 1198 ci = lock_cluster(p, offset); 1199 count = p->swap_map[offset]; 1200 VM_BUG_ON(count != SWAP_HAS_CACHE); 1201 p->swap_map[offset] = 0; 1202 dec_cluster_info_page(p, p->cluster_info, offset); 1203 unlock_cluster(ci); 1204 1205 mem_cgroup_uncharge_swap(entry, 1); 1206 swap_range_free(p, offset, 1); 1207 } 1208 1209 /* 1210 * Caller has made sure that the swap device corresponding to entry 1211 * is still around or has not been recycled. 1212 */ 1213 void swap_free(swp_entry_t entry) 1214 { 1215 struct swap_info_struct *p; 1216 1217 p = _swap_info_get(entry); 1218 if (p) 1219 __swap_entry_free(p, entry, 1); 1220 } 1221 1222 /* 1223 * Called after dropping swapcache to decrease refcnt to swap entries. 1224 */ 1225 void put_swap_page(struct page *page, swp_entry_t entry) 1226 { 1227 unsigned long offset = swp_offset(entry); 1228 unsigned long idx = offset / SWAPFILE_CLUSTER; 1229 struct swap_cluster_info *ci; 1230 struct swap_info_struct *si; 1231 unsigned char *map; 1232 unsigned int i, free_entries = 0; 1233 unsigned char val; 1234 int size = swap_entry_size(hpage_nr_pages(page)); 1235 1236 si = _swap_info_get(entry); 1237 if (!si) 1238 return; 1239 1240 ci = lock_cluster_or_swap_info(si, offset); 1241 if (size == SWAPFILE_CLUSTER) { 1242 VM_BUG_ON(!cluster_is_huge(ci)); 1243 map = si->swap_map + offset; 1244 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1245 val = map[i]; 1246 VM_BUG_ON(!(val & SWAP_HAS_CACHE)); 1247 if (val == SWAP_HAS_CACHE) 1248 free_entries++; 1249 } 1250 cluster_clear_huge(ci); 1251 if (free_entries == SWAPFILE_CLUSTER) { 1252 unlock_cluster_or_swap_info(si, ci); 1253 spin_lock(&si->lock); 1254 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); 1255 swap_free_cluster(si, idx); 1256 spin_unlock(&si->lock); 1257 return; 1258 } 1259 } 1260 for (i = 0; i < size; i++, entry.val++) { 1261 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { 1262 unlock_cluster_or_swap_info(si, ci); 1263 free_swap_slot(entry); 1264 if (i == size - 1) 1265 return; 1266 lock_cluster_or_swap_info(si, offset); 1267 } 1268 } 1269 unlock_cluster_or_swap_info(si, ci); 1270 } 1271 1272 #ifdef CONFIG_THP_SWAP 1273 int split_swap_cluster(swp_entry_t entry) 1274 { 1275 struct swap_info_struct *si; 1276 struct swap_cluster_info *ci; 1277 unsigned long offset = swp_offset(entry); 1278 1279 si = _swap_info_get(entry); 1280 if (!si) 1281 return -EBUSY; 1282 ci = lock_cluster(si, offset); 1283 cluster_clear_huge(ci); 1284 unlock_cluster(ci); 1285 return 0; 1286 } 1287 #endif 1288 1289 static int swp_entry_cmp(const void *ent1, const void *ent2) 1290 { 1291 const swp_entry_t *e1 = ent1, *e2 = ent2; 1292 1293 return (int)swp_type(*e1) - (int)swp_type(*e2); 1294 } 1295 1296 void swapcache_free_entries(swp_entry_t *entries, int n) 1297 { 1298 struct swap_info_struct *p, *prev; 1299 int i; 1300 1301 if (n <= 0) 1302 return; 1303 1304 prev = NULL; 1305 p = NULL; 1306 1307 /* 1308 * Sort swap entries by swap device, so each lock is only taken once. 1309 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1310 * so low that it isn't necessary to optimize further. 1311 */ 1312 if (nr_swapfiles > 1) 1313 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1314 for (i = 0; i < n; ++i) { 1315 p = swap_info_get_cont(entries[i], prev); 1316 if (p) 1317 swap_entry_free(p, entries[i]); 1318 prev = p; 1319 } 1320 if (p) 1321 spin_unlock(&p->lock); 1322 } 1323 1324 /* 1325 * How many references to page are currently swapped out? 1326 * This does not give an exact answer when swap count is continued, 1327 * but does include the high COUNT_CONTINUED flag to allow for that. 1328 */ 1329 int page_swapcount(struct page *page) 1330 { 1331 int count = 0; 1332 struct swap_info_struct *p; 1333 struct swap_cluster_info *ci; 1334 swp_entry_t entry; 1335 unsigned long offset; 1336 1337 entry.val = page_private(page); 1338 p = _swap_info_get(entry); 1339 if (p) { 1340 offset = swp_offset(entry); 1341 ci = lock_cluster_or_swap_info(p, offset); 1342 count = swap_count(p->swap_map[offset]); 1343 unlock_cluster_or_swap_info(p, ci); 1344 } 1345 return count; 1346 } 1347 1348 int __swap_count(struct swap_info_struct *si, swp_entry_t entry) 1349 { 1350 pgoff_t offset = swp_offset(entry); 1351 1352 return swap_count(si->swap_map[offset]); 1353 } 1354 1355 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1356 { 1357 int count = 0; 1358 pgoff_t offset = swp_offset(entry); 1359 struct swap_cluster_info *ci; 1360 1361 ci = lock_cluster_or_swap_info(si, offset); 1362 count = swap_count(si->swap_map[offset]); 1363 unlock_cluster_or_swap_info(si, ci); 1364 return count; 1365 } 1366 1367 /* 1368 * How many references to @entry are currently swapped out? 1369 * This does not give an exact answer when swap count is continued, 1370 * but does include the high COUNT_CONTINUED flag to allow for that. 1371 */ 1372 int __swp_swapcount(swp_entry_t entry) 1373 { 1374 int count = 0; 1375 struct swap_info_struct *si; 1376 1377 si = __swap_info_get(entry); 1378 if (si) 1379 count = swap_swapcount(si, entry); 1380 return count; 1381 } 1382 1383 /* 1384 * How many references to @entry are currently swapped out? 1385 * This considers COUNT_CONTINUED so it returns exact answer. 1386 */ 1387 int swp_swapcount(swp_entry_t entry) 1388 { 1389 int count, tmp_count, n; 1390 struct swap_info_struct *p; 1391 struct swap_cluster_info *ci; 1392 struct page *page; 1393 pgoff_t offset; 1394 unsigned char *map; 1395 1396 p = _swap_info_get(entry); 1397 if (!p) 1398 return 0; 1399 1400 offset = swp_offset(entry); 1401 1402 ci = lock_cluster_or_swap_info(p, offset); 1403 1404 count = swap_count(p->swap_map[offset]); 1405 if (!(count & COUNT_CONTINUED)) 1406 goto out; 1407 1408 count &= ~COUNT_CONTINUED; 1409 n = SWAP_MAP_MAX + 1; 1410 1411 page = vmalloc_to_page(p->swap_map + offset); 1412 offset &= ~PAGE_MASK; 1413 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1414 1415 do { 1416 page = list_next_entry(page, lru); 1417 map = kmap_atomic(page); 1418 tmp_count = map[offset]; 1419 kunmap_atomic(map); 1420 1421 count += (tmp_count & ~COUNT_CONTINUED) * n; 1422 n *= (SWAP_CONT_MAX + 1); 1423 } while (tmp_count & COUNT_CONTINUED); 1424 out: 1425 unlock_cluster_or_swap_info(p, ci); 1426 return count; 1427 } 1428 1429 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1430 swp_entry_t entry) 1431 { 1432 struct swap_cluster_info *ci; 1433 unsigned char *map = si->swap_map; 1434 unsigned long roffset = swp_offset(entry); 1435 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); 1436 int i; 1437 bool ret = false; 1438 1439 ci = lock_cluster_or_swap_info(si, offset); 1440 if (!ci || !cluster_is_huge(ci)) { 1441 if (swap_count(map[roffset])) 1442 ret = true; 1443 goto unlock_out; 1444 } 1445 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1446 if (swap_count(map[offset + i])) { 1447 ret = true; 1448 break; 1449 } 1450 } 1451 unlock_out: 1452 unlock_cluster_or_swap_info(si, ci); 1453 return ret; 1454 } 1455 1456 static bool page_swapped(struct page *page) 1457 { 1458 swp_entry_t entry; 1459 struct swap_info_struct *si; 1460 1461 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) 1462 return page_swapcount(page) != 0; 1463 1464 page = compound_head(page); 1465 entry.val = page_private(page); 1466 si = _swap_info_get(entry); 1467 if (si) 1468 return swap_page_trans_huge_swapped(si, entry); 1469 return false; 1470 } 1471 1472 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount, 1473 int *total_swapcount) 1474 { 1475 int i, map_swapcount, _total_mapcount, _total_swapcount; 1476 unsigned long offset = 0; 1477 struct swap_info_struct *si; 1478 struct swap_cluster_info *ci = NULL; 1479 unsigned char *map = NULL; 1480 int mapcount, swapcount = 0; 1481 1482 /* hugetlbfs shouldn't call it */ 1483 VM_BUG_ON_PAGE(PageHuge(page), page); 1484 1485 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) { 1486 mapcount = page_trans_huge_mapcount(page, total_mapcount); 1487 if (PageSwapCache(page)) 1488 swapcount = page_swapcount(page); 1489 if (total_swapcount) 1490 *total_swapcount = swapcount; 1491 return mapcount + swapcount; 1492 } 1493 1494 page = compound_head(page); 1495 1496 _total_mapcount = _total_swapcount = map_swapcount = 0; 1497 if (PageSwapCache(page)) { 1498 swp_entry_t entry; 1499 1500 entry.val = page_private(page); 1501 si = _swap_info_get(entry); 1502 if (si) { 1503 map = si->swap_map; 1504 offset = swp_offset(entry); 1505 } 1506 } 1507 if (map) 1508 ci = lock_cluster(si, offset); 1509 for (i = 0; i < HPAGE_PMD_NR; i++) { 1510 mapcount = atomic_read(&page[i]._mapcount) + 1; 1511 _total_mapcount += mapcount; 1512 if (map) { 1513 swapcount = swap_count(map[offset + i]); 1514 _total_swapcount += swapcount; 1515 } 1516 map_swapcount = max(map_swapcount, mapcount + swapcount); 1517 } 1518 unlock_cluster(ci); 1519 if (PageDoubleMap(page)) { 1520 map_swapcount -= 1; 1521 _total_mapcount -= HPAGE_PMD_NR; 1522 } 1523 mapcount = compound_mapcount(page); 1524 map_swapcount += mapcount; 1525 _total_mapcount += mapcount; 1526 if (total_mapcount) 1527 *total_mapcount = _total_mapcount; 1528 if (total_swapcount) 1529 *total_swapcount = _total_swapcount; 1530 1531 return map_swapcount; 1532 } 1533 1534 /* 1535 * We can write to an anon page without COW if there are no other references 1536 * to it. And as a side-effect, free up its swap: because the old content 1537 * on disk will never be read, and seeking back there to write new content 1538 * later would only waste time away from clustering. 1539 * 1540 * NOTE: total_map_swapcount should not be relied upon by the caller if 1541 * reuse_swap_page() returns false, but it may be always overwritten 1542 * (see the other implementation for CONFIG_SWAP=n). 1543 */ 1544 bool reuse_swap_page(struct page *page, int *total_map_swapcount) 1545 { 1546 int count, total_mapcount, total_swapcount; 1547 1548 VM_BUG_ON_PAGE(!PageLocked(page), page); 1549 if (unlikely(PageKsm(page))) 1550 return false; 1551 count = page_trans_huge_map_swapcount(page, &total_mapcount, 1552 &total_swapcount); 1553 if (total_map_swapcount) 1554 *total_map_swapcount = total_mapcount + total_swapcount; 1555 if (count == 1 && PageSwapCache(page) && 1556 (likely(!PageTransCompound(page)) || 1557 /* The remaining swap count will be freed soon */ 1558 total_swapcount == page_swapcount(page))) { 1559 if (!PageWriteback(page)) { 1560 page = compound_head(page); 1561 delete_from_swap_cache(page); 1562 SetPageDirty(page); 1563 } else { 1564 swp_entry_t entry; 1565 struct swap_info_struct *p; 1566 1567 entry.val = page_private(page); 1568 p = swap_info_get(entry); 1569 if (p->flags & SWP_STABLE_WRITES) { 1570 spin_unlock(&p->lock); 1571 return false; 1572 } 1573 spin_unlock(&p->lock); 1574 } 1575 } 1576 1577 return count <= 1; 1578 } 1579 1580 /* 1581 * If swap is getting full, or if there are no more mappings of this page, 1582 * then try_to_free_swap is called to free its swap space. 1583 */ 1584 int try_to_free_swap(struct page *page) 1585 { 1586 VM_BUG_ON_PAGE(!PageLocked(page), page); 1587 1588 if (!PageSwapCache(page)) 1589 return 0; 1590 if (PageWriteback(page)) 1591 return 0; 1592 if (page_swapped(page)) 1593 return 0; 1594 1595 /* 1596 * Once hibernation has begun to create its image of memory, 1597 * there's a danger that one of the calls to try_to_free_swap() 1598 * - most probably a call from __try_to_reclaim_swap() while 1599 * hibernation is allocating its own swap pages for the image, 1600 * but conceivably even a call from memory reclaim - will free 1601 * the swap from a page which has already been recorded in the 1602 * image as a clean swapcache page, and then reuse its swap for 1603 * another page of the image. On waking from hibernation, the 1604 * original page might be freed under memory pressure, then 1605 * later read back in from swap, now with the wrong data. 1606 * 1607 * Hibernation suspends storage while it is writing the image 1608 * to disk so check that here. 1609 */ 1610 if (pm_suspended_storage()) 1611 return 0; 1612 1613 page = compound_head(page); 1614 delete_from_swap_cache(page); 1615 SetPageDirty(page); 1616 return 1; 1617 } 1618 1619 /* 1620 * Free the swap entry like above, but also try to 1621 * free the page cache entry if it is the last user. 1622 */ 1623 int free_swap_and_cache(swp_entry_t entry) 1624 { 1625 struct swap_info_struct *p; 1626 unsigned char count; 1627 1628 if (non_swap_entry(entry)) 1629 return 1; 1630 1631 p = _swap_info_get(entry); 1632 if (p) { 1633 count = __swap_entry_free(p, entry, 1); 1634 if (count == SWAP_HAS_CACHE && 1635 !swap_page_trans_huge_swapped(p, entry)) 1636 __try_to_reclaim_swap(p, swp_offset(entry), 1637 TTRS_UNMAPPED | TTRS_FULL); 1638 } 1639 return p != NULL; 1640 } 1641 1642 #ifdef CONFIG_HIBERNATION 1643 /* 1644 * Find the swap type that corresponds to given device (if any). 1645 * 1646 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1647 * from 0, in which the swap header is expected to be located. 1648 * 1649 * This is needed for the suspend to disk (aka swsusp). 1650 */ 1651 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 1652 { 1653 struct block_device *bdev = NULL; 1654 int type; 1655 1656 if (device) 1657 bdev = bdget(device); 1658 1659 spin_lock(&swap_lock); 1660 for (type = 0; type < nr_swapfiles; type++) { 1661 struct swap_info_struct *sis = swap_info[type]; 1662 1663 if (!(sis->flags & SWP_WRITEOK)) 1664 continue; 1665 1666 if (!bdev) { 1667 if (bdev_p) 1668 *bdev_p = bdgrab(sis->bdev); 1669 1670 spin_unlock(&swap_lock); 1671 return type; 1672 } 1673 if (bdev == sis->bdev) { 1674 struct swap_extent *se = &sis->first_swap_extent; 1675 1676 if (se->start_block == offset) { 1677 if (bdev_p) 1678 *bdev_p = bdgrab(sis->bdev); 1679 1680 spin_unlock(&swap_lock); 1681 bdput(bdev); 1682 return type; 1683 } 1684 } 1685 } 1686 spin_unlock(&swap_lock); 1687 if (bdev) 1688 bdput(bdev); 1689 1690 return -ENODEV; 1691 } 1692 1693 /* 1694 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1695 * corresponding to given index in swap_info (swap type). 1696 */ 1697 sector_t swapdev_block(int type, pgoff_t offset) 1698 { 1699 struct block_device *bdev; 1700 1701 if ((unsigned int)type >= nr_swapfiles) 1702 return 0; 1703 if (!(swap_info[type]->flags & SWP_WRITEOK)) 1704 return 0; 1705 return map_swap_entry(swp_entry(type, offset), &bdev); 1706 } 1707 1708 /* 1709 * Return either the total number of swap pages of given type, or the number 1710 * of free pages of that type (depending on @free) 1711 * 1712 * This is needed for software suspend 1713 */ 1714 unsigned int count_swap_pages(int type, int free) 1715 { 1716 unsigned int n = 0; 1717 1718 spin_lock(&swap_lock); 1719 if ((unsigned int)type < nr_swapfiles) { 1720 struct swap_info_struct *sis = swap_info[type]; 1721 1722 spin_lock(&sis->lock); 1723 if (sis->flags & SWP_WRITEOK) { 1724 n = sis->pages; 1725 if (free) 1726 n -= sis->inuse_pages; 1727 } 1728 spin_unlock(&sis->lock); 1729 } 1730 spin_unlock(&swap_lock); 1731 return n; 1732 } 1733 #endif /* CONFIG_HIBERNATION */ 1734 1735 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1736 { 1737 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte); 1738 } 1739 1740 /* 1741 * No need to decide whether this PTE shares the swap entry with others, 1742 * just let do_wp_page work it out if a write is requested later - to 1743 * force COW, vm_page_prot omits write permission from any private vma. 1744 */ 1745 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1746 unsigned long addr, swp_entry_t entry, struct page *page) 1747 { 1748 struct page *swapcache; 1749 struct mem_cgroup *memcg; 1750 spinlock_t *ptl; 1751 pte_t *pte; 1752 int ret = 1; 1753 1754 swapcache = page; 1755 page = ksm_might_need_to_copy(page, vma, addr); 1756 if (unlikely(!page)) 1757 return -ENOMEM; 1758 1759 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, 1760 &memcg, false)) { 1761 ret = -ENOMEM; 1762 goto out_nolock; 1763 } 1764 1765 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1766 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { 1767 mem_cgroup_cancel_charge(page, memcg, false); 1768 ret = 0; 1769 goto out; 1770 } 1771 1772 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1773 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1774 get_page(page); 1775 set_pte_at(vma->vm_mm, addr, pte, 1776 pte_mkold(mk_pte(page, vma->vm_page_prot))); 1777 if (page == swapcache) { 1778 page_add_anon_rmap(page, vma, addr, false); 1779 mem_cgroup_commit_charge(page, memcg, true, false); 1780 } else { /* ksm created a completely new copy */ 1781 page_add_new_anon_rmap(page, vma, addr, false); 1782 mem_cgroup_commit_charge(page, memcg, false, false); 1783 lru_cache_add_active_or_unevictable(page, vma); 1784 } 1785 swap_free(entry); 1786 /* 1787 * Move the page to the active list so it is not 1788 * immediately swapped out again after swapon. 1789 */ 1790 activate_page(page); 1791 out: 1792 pte_unmap_unlock(pte, ptl); 1793 out_nolock: 1794 if (page != swapcache) { 1795 unlock_page(page); 1796 put_page(page); 1797 } 1798 return ret; 1799 } 1800 1801 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1802 unsigned long addr, unsigned long end, 1803 swp_entry_t entry, struct page *page) 1804 { 1805 pte_t swp_pte = swp_entry_to_pte(entry); 1806 pte_t *pte; 1807 int ret = 0; 1808 1809 /* 1810 * We don't actually need pte lock while scanning for swp_pte: since 1811 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 1812 * page table while we're scanning; though it could get zapped, and on 1813 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 1814 * of unmatched parts which look like swp_pte, so unuse_pte must 1815 * recheck under pte lock. Scanning without pte lock lets it be 1816 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 1817 */ 1818 pte = pte_offset_map(pmd, addr); 1819 do { 1820 /* 1821 * swapoff spends a _lot_ of time in this loop! 1822 * Test inline before going to call unuse_pte. 1823 */ 1824 if (unlikely(pte_same_as_swp(*pte, swp_pte))) { 1825 pte_unmap(pte); 1826 ret = unuse_pte(vma, pmd, addr, entry, page); 1827 if (ret) 1828 goto out; 1829 pte = pte_offset_map(pmd, addr); 1830 } 1831 } while (pte++, addr += PAGE_SIZE, addr != end); 1832 pte_unmap(pte - 1); 1833 out: 1834 return ret; 1835 } 1836 1837 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1838 unsigned long addr, unsigned long end, 1839 swp_entry_t entry, struct page *page) 1840 { 1841 pmd_t *pmd; 1842 unsigned long next; 1843 int ret; 1844 1845 pmd = pmd_offset(pud, addr); 1846 do { 1847 cond_resched(); 1848 next = pmd_addr_end(addr, end); 1849 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1850 continue; 1851 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 1852 if (ret) 1853 return ret; 1854 } while (pmd++, addr = next, addr != end); 1855 return 0; 1856 } 1857 1858 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 1859 unsigned long addr, unsigned long end, 1860 swp_entry_t entry, struct page *page) 1861 { 1862 pud_t *pud; 1863 unsigned long next; 1864 int ret; 1865 1866 pud = pud_offset(p4d, addr); 1867 do { 1868 next = pud_addr_end(addr, end); 1869 if (pud_none_or_clear_bad(pud)) 1870 continue; 1871 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 1872 if (ret) 1873 return ret; 1874 } while (pud++, addr = next, addr != end); 1875 return 0; 1876 } 1877 1878 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 1879 unsigned long addr, unsigned long end, 1880 swp_entry_t entry, struct page *page) 1881 { 1882 p4d_t *p4d; 1883 unsigned long next; 1884 int ret; 1885 1886 p4d = p4d_offset(pgd, addr); 1887 do { 1888 next = p4d_addr_end(addr, end); 1889 if (p4d_none_or_clear_bad(p4d)) 1890 continue; 1891 ret = unuse_pud_range(vma, p4d, addr, next, entry, page); 1892 if (ret) 1893 return ret; 1894 } while (p4d++, addr = next, addr != end); 1895 return 0; 1896 } 1897 1898 static int unuse_vma(struct vm_area_struct *vma, 1899 swp_entry_t entry, struct page *page) 1900 { 1901 pgd_t *pgd; 1902 unsigned long addr, end, next; 1903 int ret; 1904 1905 if (page_anon_vma(page)) { 1906 addr = page_address_in_vma(page, vma); 1907 if (addr == -EFAULT) 1908 return 0; 1909 else 1910 end = addr + PAGE_SIZE; 1911 } else { 1912 addr = vma->vm_start; 1913 end = vma->vm_end; 1914 } 1915 1916 pgd = pgd_offset(vma->vm_mm, addr); 1917 do { 1918 next = pgd_addr_end(addr, end); 1919 if (pgd_none_or_clear_bad(pgd)) 1920 continue; 1921 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page); 1922 if (ret) 1923 return ret; 1924 } while (pgd++, addr = next, addr != end); 1925 return 0; 1926 } 1927 1928 static int unuse_mm(struct mm_struct *mm, 1929 swp_entry_t entry, struct page *page) 1930 { 1931 struct vm_area_struct *vma; 1932 int ret = 0; 1933 1934 if (!down_read_trylock(&mm->mmap_sem)) { 1935 /* 1936 * Activate page so shrink_inactive_list is unlikely to unmap 1937 * its ptes while lock is dropped, so swapoff can make progress. 1938 */ 1939 activate_page(page); 1940 unlock_page(page); 1941 down_read(&mm->mmap_sem); 1942 lock_page(page); 1943 } 1944 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1945 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 1946 break; 1947 cond_resched(); 1948 } 1949 up_read(&mm->mmap_sem); 1950 return (ret < 0)? ret: 0; 1951 } 1952 1953 /* 1954 * Scan swap_map (or frontswap_map if frontswap parameter is true) 1955 * from current position to next entry still in use. 1956 * Recycle to start on reaching the end, returning 0 when empty. 1957 */ 1958 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 1959 unsigned int prev, bool frontswap) 1960 { 1961 unsigned int max = si->max; 1962 unsigned int i = prev; 1963 unsigned char count; 1964 1965 /* 1966 * No need for swap_lock here: we're just looking 1967 * for whether an entry is in use, not modifying it; false 1968 * hits are okay, and sys_swapoff() has already prevented new 1969 * allocations from this area (while holding swap_lock). 1970 */ 1971 for (;;) { 1972 if (++i >= max) { 1973 if (!prev) { 1974 i = 0; 1975 break; 1976 } 1977 /* 1978 * No entries in use at top of swap_map, 1979 * loop back to start and recheck there. 1980 */ 1981 max = prev + 1; 1982 prev = 0; 1983 i = 1; 1984 } 1985 count = READ_ONCE(si->swap_map[i]); 1986 if (count && swap_count(count) != SWAP_MAP_BAD) 1987 if (!frontswap || frontswap_test(si, i)) 1988 break; 1989 if ((i % LATENCY_LIMIT) == 0) 1990 cond_resched(); 1991 } 1992 return i; 1993 } 1994 1995 /* 1996 * We completely avoid races by reading each swap page in advance, 1997 * and then search for the process using it. All the necessary 1998 * page table adjustments can then be made atomically. 1999 * 2000 * if the boolean frontswap is true, only unuse pages_to_unuse pages; 2001 * pages_to_unuse==0 means all pages; ignored if frontswap is false 2002 */ 2003 int try_to_unuse(unsigned int type, bool frontswap, 2004 unsigned long pages_to_unuse) 2005 { 2006 struct swap_info_struct *si = swap_info[type]; 2007 struct mm_struct *start_mm; 2008 volatile unsigned char *swap_map; /* swap_map is accessed without 2009 * locking. Mark it as volatile 2010 * to prevent compiler doing 2011 * something odd. 2012 */ 2013 unsigned char swcount; 2014 struct page *page; 2015 swp_entry_t entry; 2016 unsigned int i = 0; 2017 int retval = 0; 2018 2019 /* 2020 * When searching mms for an entry, a good strategy is to 2021 * start at the first mm we freed the previous entry from 2022 * (though actually we don't notice whether we or coincidence 2023 * freed the entry). Initialize this start_mm with a hold. 2024 * 2025 * A simpler strategy would be to start at the last mm we 2026 * freed the previous entry from; but that would take less 2027 * advantage of mmlist ordering, which clusters forked mms 2028 * together, child after parent. If we race with dup_mmap(), we 2029 * prefer to resolve parent before child, lest we miss entries 2030 * duplicated after we scanned child: using last mm would invert 2031 * that. 2032 */ 2033 start_mm = &init_mm; 2034 mmget(&init_mm); 2035 2036 /* 2037 * Keep on scanning until all entries have gone. Usually, 2038 * one pass through swap_map is enough, but not necessarily: 2039 * there are races when an instance of an entry might be missed. 2040 */ 2041 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) { 2042 if (signal_pending(current)) { 2043 retval = -EINTR; 2044 break; 2045 } 2046 2047 /* 2048 * Get a page for the entry, using the existing swap 2049 * cache page if there is one. Otherwise, get a clean 2050 * page and read the swap into it. 2051 */ 2052 swap_map = &si->swap_map[i]; 2053 entry = swp_entry(type, i); 2054 page = read_swap_cache_async(entry, 2055 GFP_HIGHUSER_MOVABLE, NULL, 0, false); 2056 if (!page) { 2057 /* 2058 * Either swap_duplicate() failed because entry 2059 * has been freed independently, and will not be 2060 * reused since sys_swapoff() already disabled 2061 * allocation from here, or alloc_page() failed. 2062 */ 2063 swcount = *swap_map; 2064 /* 2065 * We don't hold lock here, so the swap entry could be 2066 * SWAP_MAP_BAD (when the cluster is discarding). 2067 * Instead of fail out, We can just skip the swap 2068 * entry because swapoff will wait for discarding 2069 * finish anyway. 2070 */ 2071 if (!swcount || swcount == SWAP_MAP_BAD) 2072 continue; 2073 retval = -ENOMEM; 2074 break; 2075 } 2076 2077 /* 2078 * Don't hold on to start_mm if it looks like exiting. 2079 */ 2080 if (atomic_read(&start_mm->mm_users) == 1) { 2081 mmput(start_mm); 2082 start_mm = &init_mm; 2083 mmget(&init_mm); 2084 } 2085 2086 /* 2087 * Wait for and lock page. When do_swap_page races with 2088 * try_to_unuse, do_swap_page can handle the fault much 2089 * faster than try_to_unuse can locate the entry. This 2090 * apparently redundant "wait_on_page_locked" lets try_to_unuse 2091 * defer to do_swap_page in such a case - in some tests, 2092 * do_swap_page and try_to_unuse repeatedly compete. 2093 */ 2094 wait_on_page_locked(page); 2095 wait_on_page_writeback(page); 2096 lock_page(page); 2097 wait_on_page_writeback(page); 2098 2099 /* 2100 * Remove all references to entry. 2101 */ 2102 swcount = *swap_map; 2103 if (swap_count(swcount) == SWAP_MAP_SHMEM) { 2104 retval = shmem_unuse(entry, page); 2105 /* page has already been unlocked and released */ 2106 if (retval < 0) 2107 break; 2108 continue; 2109 } 2110 if (swap_count(swcount) && start_mm != &init_mm) 2111 retval = unuse_mm(start_mm, entry, page); 2112 2113 if (swap_count(*swap_map)) { 2114 int set_start_mm = (*swap_map >= swcount); 2115 struct list_head *p = &start_mm->mmlist; 2116 struct mm_struct *new_start_mm = start_mm; 2117 struct mm_struct *prev_mm = start_mm; 2118 struct mm_struct *mm; 2119 2120 mmget(new_start_mm); 2121 mmget(prev_mm); 2122 spin_lock(&mmlist_lock); 2123 while (swap_count(*swap_map) && !retval && 2124 (p = p->next) != &start_mm->mmlist) { 2125 mm = list_entry(p, struct mm_struct, mmlist); 2126 if (!mmget_not_zero(mm)) 2127 continue; 2128 spin_unlock(&mmlist_lock); 2129 mmput(prev_mm); 2130 prev_mm = mm; 2131 2132 cond_resched(); 2133 2134 swcount = *swap_map; 2135 if (!swap_count(swcount)) /* any usage ? */ 2136 ; 2137 else if (mm == &init_mm) 2138 set_start_mm = 1; 2139 else 2140 retval = unuse_mm(mm, entry, page); 2141 2142 if (set_start_mm && *swap_map < swcount) { 2143 mmput(new_start_mm); 2144 mmget(mm); 2145 new_start_mm = mm; 2146 set_start_mm = 0; 2147 } 2148 spin_lock(&mmlist_lock); 2149 } 2150 spin_unlock(&mmlist_lock); 2151 mmput(prev_mm); 2152 mmput(start_mm); 2153 start_mm = new_start_mm; 2154 } 2155 if (retval) { 2156 unlock_page(page); 2157 put_page(page); 2158 break; 2159 } 2160 2161 /* 2162 * If a reference remains (rare), we would like to leave 2163 * the page in the swap cache; but try_to_unmap could 2164 * then re-duplicate the entry once we drop page lock, 2165 * so we might loop indefinitely; also, that page could 2166 * not be swapped out to other storage meanwhile. So: 2167 * delete from cache even if there's another reference, 2168 * after ensuring that the data has been saved to disk - 2169 * since if the reference remains (rarer), it will be 2170 * read from disk into another page. Splitting into two 2171 * pages would be incorrect if swap supported "shared 2172 * private" pages, but they are handled by tmpfs files. 2173 * 2174 * Given how unuse_vma() targets one particular offset 2175 * in an anon_vma, once the anon_vma has been determined, 2176 * this splitting happens to be just what is needed to 2177 * handle where KSM pages have been swapped out: re-reading 2178 * is unnecessarily slow, but we can fix that later on. 2179 */ 2180 if (swap_count(*swap_map) && 2181 PageDirty(page) && PageSwapCache(page)) { 2182 struct writeback_control wbc = { 2183 .sync_mode = WB_SYNC_NONE, 2184 }; 2185 2186 swap_writepage(compound_head(page), &wbc); 2187 lock_page(page); 2188 wait_on_page_writeback(page); 2189 } 2190 2191 /* 2192 * It is conceivable that a racing task removed this page from 2193 * swap cache just before we acquired the page lock at the top, 2194 * or while we dropped it in unuse_mm(). The page might even 2195 * be back in swap cache on another swap area: that we must not 2196 * delete, since it may not have been written out to swap yet. 2197 */ 2198 if (PageSwapCache(page) && 2199 likely(page_private(page) == entry.val) && 2200 !page_swapped(page)) 2201 delete_from_swap_cache(compound_head(page)); 2202 2203 /* 2204 * So we could skip searching mms once swap count went 2205 * to 1, we did not mark any present ptes as dirty: must 2206 * mark page dirty so shrink_page_list will preserve it. 2207 */ 2208 SetPageDirty(page); 2209 unlock_page(page); 2210 put_page(page); 2211 2212 /* 2213 * Make sure that we aren't completely killing 2214 * interactive performance. 2215 */ 2216 cond_resched(); 2217 if (frontswap && pages_to_unuse > 0) { 2218 if (!--pages_to_unuse) 2219 break; 2220 } 2221 } 2222 2223 mmput(start_mm); 2224 return retval; 2225 } 2226 2227 /* 2228 * After a successful try_to_unuse, if no swap is now in use, we know 2229 * we can empty the mmlist. swap_lock must be held on entry and exit. 2230 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2231 * added to the mmlist just after page_duplicate - before would be racy. 2232 */ 2233 static void drain_mmlist(void) 2234 { 2235 struct list_head *p, *next; 2236 unsigned int type; 2237 2238 for (type = 0; type < nr_swapfiles; type++) 2239 if (swap_info[type]->inuse_pages) 2240 return; 2241 spin_lock(&mmlist_lock); 2242 list_for_each_safe(p, next, &init_mm.mmlist) 2243 list_del_init(p); 2244 spin_unlock(&mmlist_lock); 2245 } 2246 2247 /* 2248 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 2249 * corresponds to page offset for the specified swap entry. 2250 * Note that the type of this function is sector_t, but it returns page offset 2251 * into the bdev, not sector offset. 2252 */ 2253 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 2254 { 2255 struct swap_info_struct *sis; 2256 struct swap_extent *start_se; 2257 struct swap_extent *se; 2258 pgoff_t offset; 2259 2260 sis = swap_info[swp_type(entry)]; 2261 *bdev = sis->bdev; 2262 2263 offset = swp_offset(entry); 2264 start_se = sis->curr_swap_extent; 2265 se = start_se; 2266 2267 for ( ; ; ) { 2268 if (se->start_page <= offset && 2269 offset < (se->start_page + se->nr_pages)) { 2270 return se->start_block + (offset - se->start_page); 2271 } 2272 se = list_next_entry(se, list); 2273 sis->curr_swap_extent = se; 2274 BUG_ON(se == start_se); /* It *must* be present */ 2275 } 2276 } 2277 2278 /* 2279 * Returns the page offset into bdev for the specified page's swap entry. 2280 */ 2281 sector_t map_swap_page(struct page *page, struct block_device **bdev) 2282 { 2283 swp_entry_t entry; 2284 entry.val = page_private(page); 2285 return map_swap_entry(entry, bdev); 2286 } 2287 2288 /* 2289 * Free all of a swapdev's extent information 2290 */ 2291 static void destroy_swap_extents(struct swap_info_struct *sis) 2292 { 2293 while (!list_empty(&sis->first_swap_extent.list)) { 2294 struct swap_extent *se; 2295 2296 se = list_first_entry(&sis->first_swap_extent.list, 2297 struct swap_extent, list); 2298 list_del(&se->list); 2299 kfree(se); 2300 } 2301 2302 if (sis->flags & SWP_ACTIVATED) { 2303 struct file *swap_file = sis->swap_file; 2304 struct address_space *mapping = swap_file->f_mapping; 2305 2306 sis->flags &= ~SWP_ACTIVATED; 2307 if (mapping->a_ops->swap_deactivate) 2308 mapping->a_ops->swap_deactivate(swap_file); 2309 } 2310 } 2311 2312 /* 2313 * Add a block range (and the corresponding page range) into this swapdev's 2314 * extent list. The extent list is kept sorted in page order. 2315 * 2316 * This function rather assumes that it is called in ascending page order. 2317 */ 2318 int 2319 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2320 unsigned long nr_pages, sector_t start_block) 2321 { 2322 struct swap_extent *se; 2323 struct swap_extent *new_se; 2324 struct list_head *lh; 2325 2326 if (start_page == 0) { 2327 se = &sis->first_swap_extent; 2328 sis->curr_swap_extent = se; 2329 se->start_page = 0; 2330 se->nr_pages = nr_pages; 2331 se->start_block = start_block; 2332 return 1; 2333 } else { 2334 lh = sis->first_swap_extent.list.prev; /* Highest extent */ 2335 se = list_entry(lh, struct swap_extent, list); 2336 BUG_ON(se->start_page + se->nr_pages != start_page); 2337 if (se->start_block + se->nr_pages == start_block) { 2338 /* Merge it */ 2339 se->nr_pages += nr_pages; 2340 return 0; 2341 } 2342 } 2343 2344 /* 2345 * No merge. Insert a new extent, preserving ordering. 2346 */ 2347 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2348 if (new_se == NULL) 2349 return -ENOMEM; 2350 new_se->start_page = start_page; 2351 new_se->nr_pages = nr_pages; 2352 new_se->start_block = start_block; 2353 2354 list_add_tail(&new_se->list, &sis->first_swap_extent.list); 2355 return 1; 2356 } 2357 EXPORT_SYMBOL_GPL(add_swap_extent); 2358 2359 /* 2360 * A `swap extent' is a simple thing which maps a contiguous range of pages 2361 * onto a contiguous range of disk blocks. An ordered list of swap extents 2362 * is built at swapon time and is then used at swap_writepage/swap_readpage 2363 * time for locating where on disk a page belongs. 2364 * 2365 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2366 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2367 * swap files identically. 2368 * 2369 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2370 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2371 * swapfiles are handled *identically* after swapon time. 2372 * 2373 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2374 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 2375 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 2376 * requirements, they are simply tossed out - we will never use those blocks 2377 * for swapping. 2378 * 2379 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 2380 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 2381 * which will scribble on the fs. 2382 * 2383 * The amount of disk space which a single swap extent represents varies. 2384 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2385 * extents in the list. To avoid much list walking, we cache the previous 2386 * search location in `curr_swap_extent', and start new searches from there. 2387 * This is extremely effective. The average number of iterations in 2388 * map_swap_page() has been measured at about 0.3 per page. - akpm. 2389 */ 2390 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2391 { 2392 struct file *swap_file = sis->swap_file; 2393 struct address_space *mapping = swap_file->f_mapping; 2394 struct inode *inode = mapping->host; 2395 int ret; 2396 2397 if (S_ISBLK(inode->i_mode)) { 2398 ret = add_swap_extent(sis, 0, sis->max, 0); 2399 *span = sis->pages; 2400 return ret; 2401 } 2402 2403 if (mapping->a_ops->swap_activate) { 2404 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2405 if (ret >= 0) 2406 sis->flags |= SWP_ACTIVATED; 2407 if (!ret) { 2408 sis->flags |= SWP_FS; 2409 ret = add_swap_extent(sis, 0, sis->max, 0); 2410 *span = sis->pages; 2411 } 2412 return ret; 2413 } 2414 2415 return generic_swapfile_activate(sis, swap_file, span); 2416 } 2417 2418 static int swap_node(struct swap_info_struct *p) 2419 { 2420 struct block_device *bdev; 2421 2422 if (p->bdev) 2423 bdev = p->bdev; 2424 else 2425 bdev = p->swap_file->f_inode->i_sb->s_bdev; 2426 2427 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2428 } 2429 2430 static void _enable_swap_info(struct swap_info_struct *p, int prio, 2431 unsigned char *swap_map, 2432 struct swap_cluster_info *cluster_info) 2433 { 2434 int i; 2435 2436 if (prio >= 0) 2437 p->prio = prio; 2438 else 2439 p->prio = --least_priority; 2440 /* 2441 * the plist prio is negated because plist ordering is 2442 * low-to-high, while swap ordering is high-to-low 2443 */ 2444 p->list.prio = -p->prio; 2445 for_each_node(i) { 2446 if (p->prio >= 0) 2447 p->avail_lists[i].prio = -p->prio; 2448 else { 2449 if (swap_node(p) == i) 2450 p->avail_lists[i].prio = 1; 2451 else 2452 p->avail_lists[i].prio = -p->prio; 2453 } 2454 } 2455 p->swap_map = swap_map; 2456 p->cluster_info = cluster_info; 2457 p->flags |= SWP_WRITEOK; 2458 atomic_long_add(p->pages, &nr_swap_pages); 2459 total_swap_pages += p->pages; 2460 2461 assert_spin_locked(&swap_lock); 2462 /* 2463 * both lists are plists, and thus priority ordered. 2464 * swap_active_head needs to be priority ordered for swapoff(), 2465 * which on removal of any swap_info_struct with an auto-assigned 2466 * (i.e. negative) priority increments the auto-assigned priority 2467 * of any lower-priority swap_info_structs. 2468 * swap_avail_head needs to be priority ordered for get_swap_page(), 2469 * which allocates swap pages from the highest available priority 2470 * swap_info_struct. 2471 */ 2472 plist_add(&p->list, &swap_active_head); 2473 add_to_avail_list(p); 2474 } 2475 2476 static void enable_swap_info(struct swap_info_struct *p, int prio, 2477 unsigned char *swap_map, 2478 struct swap_cluster_info *cluster_info, 2479 unsigned long *frontswap_map) 2480 { 2481 frontswap_init(p->type, frontswap_map); 2482 spin_lock(&swap_lock); 2483 spin_lock(&p->lock); 2484 _enable_swap_info(p, prio, swap_map, cluster_info); 2485 spin_unlock(&p->lock); 2486 spin_unlock(&swap_lock); 2487 } 2488 2489 static void reinsert_swap_info(struct swap_info_struct *p) 2490 { 2491 spin_lock(&swap_lock); 2492 spin_lock(&p->lock); 2493 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2494 spin_unlock(&p->lock); 2495 spin_unlock(&swap_lock); 2496 } 2497 2498 bool has_usable_swap(void) 2499 { 2500 bool ret = true; 2501 2502 spin_lock(&swap_lock); 2503 if (plist_head_empty(&swap_active_head)) 2504 ret = false; 2505 spin_unlock(&swap_lock); 2506 return ret; 2507 } 2508 2509 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2510 { 2511 struct swap_info_struct *p = NULL; 2512 unsigned char *swap_map; 2513 struct swap_cluster_info *cluster_info; 2514 unsigned long *frontswap_map; 2515 struct file *swap_file, *victim; 2516 struct address_space *mapping; 2517 struct inode *inode; 2518 struct filename *pathname; 2519 int err, found = 0; 2520 unsigned int old_block_size; 2521 2522 if (!capable(CAP_SYS_ADMIN)) 2523 return -EPERM; 2524 2525 BUG_ON(!current->mm); 2526 2527 pathname = getname(specialfile); 2528 if (IS_ERR(pathname)) 2529 return PTR_ERR(pathname); 2530 2531 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2532 err = PTR_ERR(victim); 2533 if (IS_ERR(victim)) 2534 goto out; 2535 2536 mapping = victim->f_mapping; 2537 spin_lock(&swap_lock); 2538 plist_for_each_entry(p, &swap_active_head, list) { 2539 if (p->flags & SWP_WRITEOK) { 2540 if (p->swap_file->f_mapping == mapping) { 2541 found = 1; 2542 break; 2543 } 2544 } 2545 } 2546 if (!found) { 2547 err = -EINVAL; 2548 spin_unlock(&swap_lock); 2549 goto out_dput; 2550 } 2551 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2552 vm_unacct_memory(p->pages); 2553 else { 2554 err = -ENOMEM; 2555 spin_unlock(&swap_lock); 2556 goto out_dput; 2557 } 2558 del_from_avail_list(p); 2559 spin_lock(&p->lock); 2560 if (p->prio < 0) { 2561 struct swap_info_struct *si = p; 2562 int nid; 2563 2564 plist_for_each_entry_continue(si, &swap_active_head, list) { 2565 si->prio++; 2566 si->list.prio--; 2567 for_each_node(nid) { 2568 if (si->avail_lists[nid].prio != 1) 2569 si->avail_lists[nid].prio--; 2570 } 2571 } 2572 least_priority++; 2573 } 2574 plist_del(&p->list, &swap_active_head); 2575 atomic_long_sub(p->pages, &nr_swap_pages); 2576 total_swap_pages -= p->pages; 2577 p->flags &= ~SWP_WRITEOK; 2578 spin_unlock(&p->lock); 2579 spin_unlock(&swap_lock); 2580 2581 disable_swap_slots_cache_lock(); 2582 2583 set_current_oom_origin(); 2584 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */ 2585 clear_current_oom_origin(); 2586 2587 if (err) { 2588 /* re-insert swap space back into swap_list */ 2589 reinsert_swap_info(p); 2590 reenable_swap_slots_cache_unlock(); 2591 goto out_dput; 2592 } 2593 2594 reenable_swap_slots_cache_unlock(); 2595 2596 flush_work(&p->discard_work); 2597 2598 destroy_swap_extents(p); 2599 if (p->flags & SWP_CONTINUED) 2600 free_swap_count_continuations(p); 2601 2602 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev))) 2603 atomic_dec(&nr_rotate_swap); 2604 2605 mutex_lock(&swapon_mutex); 2606 spin_lock(&swap_lock); 2607 spin_lock(&p->lock); 2608 drain_mmlist(); 2609 2610 /* wait for anyone still in scan_swap_map */ 2611 p->highest_bit = 0; /* cuts scans short */ 2612 while (p->flags >= SWP_SCANNING) { 2613 spin_unlock(&p->lock); 2614 spin_unlock(&swap_lock); 2615 schedule_timeout_uninterruptible(1); 2616 spin_lock(&swap_lock); 2617 spin_lock(&p->lock); 2618 } 2619 2620 swap_file = p->swap_file; 2621 old_block_size = p->old_block_size; 2622 p->swap_file = NULL; 2623 p->max = 0; 2624 swap_map = p->swap_map; 2625 p->swap_map = NULL; 2626 cluster_info = p->cluster_info; 2627 p->cluster_info = NULL; 2628 frontswap_map = frontswap_map_get(p); 2629 spin_unlock(&p->lock); 2630 spin_unlock(&swap_lock); 2631 frontswap_invalidate_area(p->type); 2632 frontswap_map_set(p, NULL); 2633 mutex_unlock(&swapon_mutex); 2634 free_percpu(p->percpu_cluster); 2635 p->percpu_cluster = NULL; 2636 vfree(swap_map); 2637 kvfree(cluster_info); 2638 kvfree(frontswap_map); 2639 /* Destroy swap account information */ 2640 swap_cgroup_swapoff(p->type); 2641 exit_swap_address_space(p->type); 2642 2643 inode = mapping->host; 2644 if (S_ISBLK(inode->i_mode)) { 2645 struct block_device *bdev = I_BDEV(inode); 2646 set_blocksize(bdev, old_block_size); 2647 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2648 } else { 2649 inode_lock(inode); 2650 inode->i_flags &= ~S_SWAPFILE; 2651 inode_unlock(inode); 2652 } 2653 filp_close(swap_file, NULL); 2654 2655 /* 2656 * Clear the SWP_USED flag after all resources are freed so that swapon 2657 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2658 * not hold p->lock after we cleared its SWP_WRITEOK. 2659 */ 2660 spin_lock(&swap_lock); 2661 p->flags = 0; 2662 spin_unlock(&swap_lock); 2663 2664 err = 0; 2665 atomic_inc(&proc_poll_event); 2666 wake_up_interruptible(&proc_poll_wait); 2667 2668 out_dput: 2669 filp_close(victim, NULL); 2670 out: 2671 putname(pathname); 2672 return err; 2673 } 2674 2675 #ifdef CONFIG_PROC_FS 2676 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2677 { 2678 struct seq_file *seq = file->private_data; 2679 2680 poll_wait(file, &proc_poll_wait, wait); 2681 2682 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2683 seq->poll_event = atomic_read(&proc_poll_event); 2684 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2685 } 2686 2687 return EPOLLIN | EPOLLRDNORM; 2688 } 2689 2690 /* iterator */ 2691 static void *swap_start(struct seq_file *swap, loff_t *pos) 2692 { 2693 struct swap_info_struct *si; 2694 int type; 2695 loff_t l = *pos; 2696 2697 mutex_lock(&swapon_mutex); 2698 2699 if (!l) 2700 return SEQ_START_TOKEN; 2701 2702 for (type = 0; type < nr_swapfiles; type++) { 2703 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 2704 si = swap_info[type]; 2705 if (!(si->flags & SWP_USED) || !si->swap_map) 2706 continue; 2707 if (!--l) 2708 return si; 2709 } 2710 2711 return NULL; 2712 } 2713 2714 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2715 { 2716 struct swap_info_struct *si = v; 2717 int type; 2718 2719 if (v == SEQ_START_TOKEN) 2720 type = 0; 2721 else 2722 type = si->type + 1; 2723 2724 for (; type < nr_swapfiles; type++) { 2725 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 2726 si = swap_info[type]; 2727 if (!(si->flags & SWP_USED) || !si->swap_map) 2728 continue; 2729 ++*pos; 2730 return si; 2731 } 2732 2733 return NULL; 2734 } 2735 2736 static void swap_stop(struct seq_file *swap, void *v) 2737 { 2738 mutex_unlock(&swapon_mutex); 2739 } 2740 2741 static int swap_show(struct seq_file *swap, void *v) 2742 { 2743 struct swap_info_struct *si = v; 2744 struct file *file; 2745 int len; 2746 2747 if (si == SEQ_START_TOKEN) { 2748 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 2749 return 0; 2750 } 2751 2752 file = si->swap_file; 2753 len = seq_file_path(swap, file, " \t\n\\"); 2754 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 2755 len < 40 ? 40 - len : 1, " ", 2756 S_ISBLK(file_inode(file)->i_mode) ? 2757 "partition" : "file\t", 2758 si->pages << (PAGE_SHIFT - 10), 2759 si->inuse_pages << (PAGE_SHIFT - 10), 2760 si->prio); 2761 return 0; 2762 } 2763 2764 static const struct seq_operations swaps_op = { 2765 .start = swap_start, 2766 .next = swap_next, 2767 .stop = swap_stop, 2768 .show = swap_show 2769 }; 2770 2771 static int swaps_open(struct inode *inode, struct file *file) 2772 { 2773 struct seq_file *seq; 2774 int ret; 2775 2776 ret = seq_open(file, &swaps_op); 2777 if (ret) 2778 return ret; 2779 2780 seq = file->private_data; 2781 seq->poll_event = atomic_read(&proc_poll_event); 2782 return 0; 2783 } 2784 2785 static const struct file_operations proc_swaps_operations = { 2786 .open = swaps_open, 2787 .read = seq_read, 2788 .llseek = seq_lseek, 2789 .release = seq_release, 2790 .poll = swaps_poll, 2791 }; 2792 2793 static int __init procswaps_init(void) 2794 { 2795 proc_create("swaps", 0, NULL, &proc_swaps_operations); 2796 return 0; 2797 } 2798 __initcall(procswaps_init); 2799 #endif /* CONFIG_PROC_FS */ 2800 2801 #ifdef MAX_SWAPFILES_CHECK 2802 static int __init max_swapfiles_check(void) 2803 { 2804 MAX_SWAPFILES_CHECK(); 2805 return 0; 2806 } 2807 late_initcall(max_swapfiles_check); 2808 #endif 2809 2810 static struct swap_info_struct *alloc_swap_info(void) 2811 { 2812 struct swap_info_struct *p; 2813 unsigned int type; 2814 int i; 2815 2816 p = kzalloc(sizeof(*p), GFP_KERNEL); 2817 if (!p) 2818 return ERR_PTR(-ENOMEM); 2819 2820 spin_lock(&swap_lock); 2821 for (type = 0; type < nr_swapfiles; type++) { 2822 if (!(swap_info[type]->flags & SWP_USED)) 2823 break; 2824 } 2825 if (type >= MAX_SWAPFILES) { 2826 spin_unlock(&swap_lock); 2827 kfree(p); 2828 return ERR_PTR(-EPERM); 2829 } 2830 if (type >= nr_swapfiles) { 2831 p->type = type; 2832 swap_info[type] = p; 2833 /* 2834 * Write swap_info[type] before nr_swapfiles, in case a 2835 * racing procfs swap_start() or swap_next() is reading them. 2836 * (We never shrink nr_swapfiles, we never free this entry.) 2837 */ 2838 smp_wmb(); 2839 nr_swapfiles++; 2840 } else { 2841 kfree(p); 2842 p = swap_info[type]; 2843 /* 2844 * Do not memset this entry: a racing procfs swap_next() 2845 * would be relying on p->type to remain valid. 2846 */ 2847 } 2848 INIT_LIST_HEAD(&p->first_swap_extent.list); 2849 plist_node_init(&p->list, 0); 2850 for_each_node(i) 2851 plist_node_init(&p->avail_lists[i], 0); 2852 p->flags = SWP_USED; 2853 spin_unlock(&swap_lock); 2854 spin_lock_init(&p->lock); 2855 spin_lock_init(&p->cont_lock); 2856 2857 return p; 2858 } 2859 2860 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2861 { 2862 int error; 2863 2864 if (S_ISBLK(inode->i_mode)) { 2865 p->bdev = bdgrab(I_BDEV(inode)); 2866 error = blkdev_get(p->bdev, 2867 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); 2868 if (error < 0) { 2869 p->bdev = NULL; 2870 return error; 2871 } 2872 p->old_block_size = block_size(p->bdev); 2873 error = set_blocksize(p->bdev, PAGE_SIZE); 2874 if (error < 0) 2875 return error; 2876 p->flags |= SWP_BLKDEV; 2877 } else if (S_ISREG(inode->i_mode)) { 2878 p->bdev = inode->i_sb->s_bdev; 2879 inode_lock(inode); 2880 if (IS_SWAPFILE(inode)) 2881 return -EBUSY; 2882 } else 2883 return -EINVAL; 2884 2885 return 0; 2886 } 2887 2888 2889 /* 2890 * Find out how many pages are allowed for a single swap device. There 2891 * are two limiting factors: 2892 * 1) the number of bits for the swap offset in the swp_entry_t type, and 2893 * 2) the number of bits in the swap pte, as defined by the different 2894 * architectures. 2895 * 2896 * In order to find the largest possible bit mask, a swap entry with 2897 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 2898 * decoded to a swp_entry_t again, and finally the swap offset is 2899 * extracted. 2900 * 2901 * This will mask all the bits from the initial ~0UL mask that can't 2902 * be encoded in either the swp_entry_t or the architecture definition 2903 * of a swap pte. 2904 */ 2905 unsigned long generic_max_swapfile_size(void) 2906 { 2907 return swp_offset(pte_to_swp_entry( 2908 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2909 } 2910 2911 /* Can be overridden by an architecture for additional checks. */ 2912 __weak unsigned long max_swapfile_size(void) 2913 { 2914 return generic_max_swapfile_size(); 2915 } 2916 2917 static unsigned long read_swap_header(struct swap_info_struct *p, 2918 union swap_header *swap_header, 2919 struct inode *inode) 2920 { 2921 int i; 2922 unsigned long maxpages; 2923 unsigned long swapfilepages; 2924 unsigned long last_page; 2925 2926 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2927 pr_err("Unable to find swap-space signature\n"); 2928 return 0; 2929 } 2930 2931 /* swap partition endianess hack... */ 2932 if (swab32(swap_header->info.version) == 1) { 2933 swab32s(&swap_header->info.version); 2934 swab32s(&swap_header->info.last_page); 2935 swab32s(&swap_header->info.nr_badpages); 2936 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2937 return 0; 2938 for (i = 0; i < swap_header->info.nr_badpages; i++) 2939 swab32s(&swap_header->info.badpages[i]); 2940 } 2941 /* Check the swap header's sub-version */ 2942 if (swap_header->info.version != 1) { 2943 pr_warn("Unable to handle swap header version %d\n", 2944 swap_header->info.version); 2945 return 0; 2946 } 2947 2948 p->lowest_bit = 1; 2949 p->cluster_next = 1; 2950 p->cluster_nr = 0; 2951 2952 maxpages = max_swapfile_size(); 2953 last_page = swap_header->info.last_page; 2954 if (!last_page) { 2955 pr_warn("Empty swap-file\n"); 2956 return 0; 2957 } 2958 if (last_page > maxpages) { 2959 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2960 maxpages << (PAGE_SHIFT - 10), 2961 last_page << (PAGE_SHIFT - 10)); 2962 } 2963 if (maxpages > last_page) { 2964 maxpages = last_page + 1; 2965 /* p->max is an unsigned int: don't overflow it */ 2966 if ((unsigned int)maxpages == 0) 2967 maxpages = UINT_MAX; 2968 } 2969 p->highest_bit = maxpages - 1; 2970 2971 if (!maxpages) 2972 return 0; 2973 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2974 if (swapfilepages && maxpages > swapfilepages) { 2975 pr_warn("Swap area shorter than signature indicates\n"); 2976 return 0; 2977 } 2978 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2979 return 0; 2980 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2981 return 0; 2982 2983 return maxpages; 2984 } 2985 2986 #define SWAP_CLUSTER_INFO_COLS \ 2987 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 2988 #define SWAP_CLUSTER_SPACE_COLS \ 2989 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 2990 #define SWAP_CLUSTER_COLS \ 2991 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 2992 2993 static int setup_swap_map_and_extents(struct swap_info_struct *p, 2994 union swap_header *swap_header, 2995 unsigned char *swap_map, 2996 struct swap_cluster_info *cluster_info, 2997 unsigned long maxpages, 2998 sector_t *span) 2999 { 3000 unsigned int j, k; 3001 unsigned int nr_good_pages; 3002 int nr_extents; 3003 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3004 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 3005 unsigned long i, idx; 3006 3007 nr_good_pages = maxpages - 1; /* omit header page */ 3008 3009 cluster_list_init(&p->free_clusters); 3010 cluster_list_init(&p->discard_clusters); 3011 3012 for (i = 0; i < swap_header->info.nr_badpages; i++) { 3013 unsigned int page_nr = swap_header->info.badpages[i]; 3014 if (page_nr == 0 || page_nr > swap_header->info.last_page) 3015 return -EINVAL; 3016 if (page_nr < maxpages) { 3017 swap_map[page_nr] = SWAP_MAP_BAD; 3018 nr_good_pages--; 3019 /* 3020 * Haven't marked the cluster free yet, no list 3021 * operation involved 3022 */ 3023 inc_cluster_info_page(p, cluster_info, page_nr); 3024 } 3025 } 3026 3027 /* Haven't marked the cluster free yet, no list operation involved */ 3028 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 3029 inc_cluster_info_page(p, cluster_info, i); 3030 3031 if (nr_good_pages) { 3032 swap_map[0] = SWAP_MAP_BAD; 3033 /* 3034 * Not mark the cluster free yet, no list 3035 * operation involved 3036 */ 3037 inc_cluster_info_page(p, cluster_info, 0); 3038 p->max = maxpages; 3039 p->pages = nr_good_pages; 3040 nr_extents = setup_swap_extents(p, span); 3041 if (nr_extents < 0) 3042 return nr_extents; 3043 nr_good_pages = p->pages; 3044 } 3045 if (!nr_good_pages) { 3046 pr_warn("Empty swap-file\n"); 3047 return -EINVAL; 3048 } 3049 3050 if (!cluster_info) 3051 return nr_extents; 3052 3053 3054 /* 3055 * Reduce false cache line sharing between cluster_info and 3056 * sharing same address space. 3057 */ 3058 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 3059 j = (k + col) % SWAP_CLUSTER_COLS; 3060 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 3061 idx = i * SWAP_CLUSTER_COLS + j; 3062 if (idx >= nr_clusters) 3063 continue; 3064 if (cluster_count(&cluster_info[idx])) 3065 continue; 3066 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 3067 cluster_list_add_tail(&p->free_clusters, cluster_info, 3068 idx); 3069 } 3070 } 3071 return nr_extents; 3072 } 3073 3074 /* 3075 * Helper to sys_swapon determining if a given swap 3076 * backing device queue supports DISCARD operations. 3077 */ 3078 static bool swap_discardable(struct swap_info_struct *si) 3079 { 3080 struct request_queue *q = bdev_get_queue(si->bdev); 3081 3082 if (!q || !blk_queue_discard(q)) 3083 return false; 3084 3085 return true; 3086 } 3087 3088 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 3089 { 3090 struct swap_info_struct *p; 3091 struct filename *name; 3092 struct file *swap_file = NULL; 3093 struct address_space *mapping; 3094 int prio; 3095 int error; 3096 union swap_header *swap_header; 3097 int nr_extents; 3098 sector_t span; 3099 unsigned long maxpages; 3100 unsigned char *swap_map = NULL; 3101 struct swap_cluster_info *cluster_info = NULL; 3102 unsigned long *frontswap_map = NULL; 3103 struct page *page = NULL; 3104 struct inode *inode = NULL; 3105 bool inced_nr_rotate_swap = false; 3106 3107 if (swap_flags & ~SWAP_FLAGS_VALID) 3108 return -EINVAL; 3109 3110 if (!capable(CAP_SYS_ADMIN)) 3111 return -EPERM; 3112 3113 if (!swap_avail_heads) 3114 return -ENOMEM; 3115 3116 p = alloc_swap_info(); 3117 if (IS_ERR(p)) 3118 return PTR_ERR(p); 3119 3120 INIT_WORK(&p->discard_work, swap_discard_work); 3121 3122 name = getname(specialfile); 3123 if (IS_ERR(name)) { 3124 error = PTR_ERR(name); 3125 name = NULL; 3126 goto bad_swap; 3127 } 3128 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 3129 if (IS_ERR(swap_file)) { 3130 error = PTR_ERR(swap_file); 3131 swap_file = NULL; 3132 goto bad_swap; 3133 } 3134 3135 p->swap_file = swap_file; 3136 mapping = swap_file->f_mapping; 3137 inode = mapping->host; 3138 3139 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */ 3140 error = claim_swapfile(p, inode); 3141 if (unlikely(error)) 3142 goto bad_swap; 3143 3144 /* 3145 * Read the swap header. 3146 */ 3147 if (!mapping->a_ops->readpage) { 3148 error = -EINVAL; 3149 goto bad_swap; 3150 } 3151 page = read_mapping_page(mapping, 0, swap_file); 3152 if (IS_ERR(page)) { 3153 error = PTR_ERR(page); 3154 goto bad_swap; 3155 } 3156 swap_header = kmap(page); 3157 3158 maxpages = read_swap_header(p, swap_header, inode); 3159 if (unlikely(!maxpages)) { 3160 error = -EINVAL; 3161 goto bad_swap; 3162 } 3163 3164 /* OK, set up the swap map and apply the bad block list */ 3165 swap_map = vzalloc(maxpages); 3166 if (!swap_map) { 3167 error = -ENOMEM; 3168 goto bad_swap; 3169 } 3170 3171 if (bdi_cap_stable_pages_required(inode_to_bdi(inode))) 3172 p->flags |= SWP_STABLE_WRITES; 3173 3174 if (bdi_cap_synchronous_io(inode_to_bdi(inode))) 3175 p->flags |= SWP_SYNCHRONOUS_IO; 3176 3177 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { 3178 int cpu; 3179 unsigned long ci, nr_cluster; 3180 3181 p->flags |= SWP_SOLIDSTATE; 3182 /* 3183 * select a random position to start with to help wear leveling 3184 * SSD 3185 */ 3186 p->cluster_next = 1 + (prandom_u32() % p->highest_bit); 3187 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3188 3189 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), 3190 GFP_KERNEL); 3191 if (!cluster_info) { 3192 error = -ENOMEM; 3193 goto bad_swap; 3194 } 3195 3196 for (ci = 0; ci < nr_cluster; ci++) 3197 spin_lock_init(&((cluster_info + ci)->lock)); 3198 3199 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 3200 if (!p->percpu_cluster) { 3201 error = -ENOMEM; 3202 goto bad_swap; 3203 } 3204 for_each_possible_cpu(cpu) { 3205 struct percpu_cluster *cluster; 3206 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 3207 cluster_set_null(&cluster->index); 3208 } 3209 } else { 3210 atomic_inc(&nr_rotate_swap); 3211 inced_nr_rotate_swap = true; 3212 } 3213 3214 error = swap_cgroup_swapon(p->type, maxpages); 3215 if (error) 3216 goto bad_swap; 3217 3218 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 3219 cluster_info, maxpages, &span); 3220 if (unlikely(nr_extents < 0)) { 3221 error = nr_extents; 3222 goto bad_swap; 3223 } 3224 /* frontswap enabled? set up bit-per-page map for frontswap */ 3225 if (IS_ENABLED(CONFIG_FRONTSWAP)) 3226 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages), 3227 sizeof(long), 3228 GFP_KERNEL); 3229 3230 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { 3231 /* 3232 * When discard is enabled for swap with no particular 3233 * policy flagged, we set all swap discard flags here in 3234 * order to sustain backward compatibility with older 3235 * swapon(8) releases. 3236 */ 3237 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3238 SWP_PAGE_DISCARD); 3239 3240 /* 3241 * By flagging sys_swapon, a sysadmin can tell us to 3242 * either do single-time area discards only, or to just 3243 * perform discards for released swap page-clusters. 3244 * Now it's time to adjust the p->flags accordingly. 3245 */ 3246 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3247 p->flags &= ~SWP_PAGE_DISCARD; 3248 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3249 p->flags &= ~SWP_AREA_DISCARD; 3250 3251 /* issue a swapon-time discard if it's still required */ 3252 if (p->flags & SWP_AREA_DISCARD) { 3253 int err = discard_swap(p); 3254 if (unlikely(err)) 3255 pr_err("swapon: discard_swap(%p): %d\n", 3256 p, err); 3257 } 3258 } 3259 3260 error = init_swap_address_space(p->type, maxpages); 3261 if (error) 3262 goto bad_swap; 3263 3264 mutex_lock(&swapon_mutex); 3265 prio = -1; 3266 if (swap_flags & SWAP_FLAG_PREFER) 3267 prio = 3268 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3269 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 3270 3271 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 3272 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 3273 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 3274 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 3275 (p->flags & SWP_DISCARDABLE) ? "D" : "", 3276 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 3277 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 3278 (frontswap_map) ? "FS" : ""); 3279 3280 mutex_unlock(&swapon_mutex); 3281 atomic_inc(&proc_poll_event); 3282 wake_up_interruptible(&proc_poll_wait); 3283 3284 if (S_ISREG(inode->i_mode)) 3285 inode->i_flags |= S_SWAPFILE; 3286 error = 0; 3287 goto out; 3288 bad_swap: 3289 free_percpu(p->percpu_cluster); 3290 p->percpu_cluster = NULL; 3291 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 3292 set_blocksize(p->bdev, p->old_block_size); 3293 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 3294 } 3295 destroy_swap_extents(p); 3296 swap_cgroup_swapoff(p->type); 3297 spin_lock(&swap_lock); 3298 p->swap_file = NULL; 3299 p->flags = 0; 3300 spin_unlock(&swap_lock); 3301 vfree(swap_map); 3302 kvfree(cluster_info); 3303 kvfree(frontswap_map); 3304 if (inced_nr_rotate_swap) 3305 atomic_dec(&nr_rotate_swap); 3306 if (swap_file) { 3307 if (inode && S_ISREG(inode->i_mode)) { 3308 inode_unlock(inode); 3309 inode = NULL; 3310 } 3311 filp_close(swap_file, NULL); 3312 } 3313 out: 3314 if (page && !IS_ERR(page)) { 3315 kunmap(page); 3316 put_page(page); 3317 } 3318 if (name) 3319 putname(name); 3320 if (inode && S_ISREG(inode->i_mode)) 3321 inode_unlock(inode); 3322 if (!error) 3323 enable_swap_slots_cache(); 3324 return error; 3325 } 3326 3327 void si_swapinfo(struct sysinfo *val) 3328 { 3329 unsigned int type; 3330 unsigned long nr_to_be_unused = 0; 3331 3332 spin_lock(&swap_lock); 3333 for (type = 0; type < nr_swapfiles; type++) { 3334 struct swap_info_struct *si = swap_info[type]; 3335 3336 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3337 nr_to_be_unused += si->inuse_pages; 3338 } 3339 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3340 val->totalswap = total_swap_pages + nr_to_be_unused; 3341 spin_unlock(&swap_lock); 3342 } 3343 3344 /* 3345 * Verify that a swap entry is valid and increment its swap map count. 3346 * 3347 * Returns error code in following case. 3348 * - success -> 0 3349 * - swp_entry is invalid -> EINVAL 3350 * - swp_entry is migration entry -> EINVAL 3351 * - swap-cache reference is requested but there is already one. -> EEXIST 3352 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3353 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3354 */ 3355 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 3356 { 3357 struct swap_info_struct *p; 3358 struct swap_cluster_info *ci; 3359 unsigned long offset, type; 3360 unsigned char count; 3361 unsigned char has_cache; 3362 int err = -EINVAL; 3363 3364 if (non_swap_entry(entry)) 3365 goto out; 3366 3367 type = swp_type(entry); 3368 if (type >= nr_swapfiles) 3369 goto bad_file; 3370 p = swap_info[type]; 3371 offset = swp_offset(entry); 3372 if (unlikely(offset >= p->max)) 3373 goto out; 3374 3375 ci = lock_cluster_or_swap_info(p, offset); 3376 3377 count = p->swap_map[offset]; 3378 3379 /* 3380 * swapin_readahead() doesn't check if a swap entry is valid, so the 3381 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3382 */ 3383 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3384 err = -ENOENT; 3385 goto unlock_out; 3386 } 3387 3388 has_cache = count & SWAP_HAS_CACHE; 3389 count &= ~SWAP_HAS_CACHE; 3390 err = 0; 3391 3392 if (usage == SWAP_HAS_CACHE) { 3393 3394 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 3395 if (!has_cache && count) 3396 has_cache = SWAP_HAS_CACHE; 3397 else if (has_cache) /* someone else added cache */ 3398 err = -EEXIST; 3399 else /* no users remaining */ 3400 err = -ENOENT; 3401 3402 } else if (count || has_cache) { 3403 3404 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3405 count += usage; 3406 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3407 err = -EINVAL; 3408 else if (swap_count_continued(p, offset, count)) 3409 count = COUNT_CONTINUED; 3410 else 3411 err = -ENOMEM; 3412 } else 3413 err = -ENOENT; /* unused swap entry */ 3414 3415 p->swap_map[offset] = count | has_cache; 3416 3417 unlock_out: 3418 unlock_cluster_or_swap_info(p, ci); 3419 out: 3420 return err; 3421 3422 bad_file: 3423 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val); 3424 goto out; 3425 } 3426 3427 /* 3428 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3429 * (in which case its reference count is never incremented). 3430 */ 3431 void swap_shmem_alloc(swp_entry_t entry) 3432 { 3433 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3434 } 3435 3436 /* 3437 * Increase reference count of swap entry by 1. 3438 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3439 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3440 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3441 * might occur if a page table entry has got corrupted. 3442 */ 3443 int swap_duplicate(swp_entry_t entry) 3444 { 3445 int err = 0; 3446 3447 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3448 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3449 return err; 3450 } 3451 3452 /* 3453 * @entry: swap entry for which we allocate swap cache. 3454 * 3455 * Called when allocating swap cache for existing swap entry, 3456 * This can return error codes. Returns 0 at success. 3457 * -EBUSY means there is a swap cache. 3458 * Note: return code is different from swap_duplicate(). 3459 */ 3460 int swapcache_prepare(swp_entry_t entry) 3461 { 3462 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3463 } 3464 3465 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3466 { 3467 return swap_info[swp_type(entry)]; 3468 } 3469 3470 struct swap_info_struct *page_swap_info(struct page *page) 3471 { 3472 swp_entry_t entry = { .val = page_private(page) }; 3473 return swp_swap_info(entry); 3474 } 3475 3476 /* 3477 * out-of-line __page_file_ methods to avoid include hell. 3478 */ 3479 struct address_space *__page_file_mapping(struct page *page) 3480 { 3481 return page_swap_info(page)->swap_file->f_mapping; 3482 } 3483 EXPORT_SYMBOL_GPL(__page_file_mapping); 3484 3485 pgoff_t __page_file_index(struct page *page) 3486 { 3487 swp_entry_t swap = { .val = page_private(page) }; 3488 return swp_offset(swap); 3489 } 3490 EXPORT_SYMBOL_GPL(__page_file_index); 3491 3492 /* 3493 * add_swap_count_continuation - called when a swap count is duplicated 3494 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3495 * page of the original vmalloc'ed swap_map, to hold the continuation count 3496 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3497 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3498 * 3499 * These continuation pages are seldom referenced: the common paths all work 3500 * on the original swap_map, only referring to a continuation page when the 3501 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3502 * 3503 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3504 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3505 * can be called after dropping locks. 3506 */ 3507 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3508 { 3509 struct swap_info_struct *si; 3510 struct swap_cluster_info *ci; 3511 struct page *head; 3512 struct page *page; 3513 struct page *list_page; 3514 pgoff_t offset; 3515 unsigned char count; 3516 3517 /* 3518 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3519 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3520 */ 3521 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3522 3523 si = swap_info_get(entry); 3524 if (!si) { 3525 /* 3526 * An acceptable race has occurred since the failing 3527 * __swap_duplicate(): the swap entry has been freed, 3528 * perhaps even the whole swap_map cleared for swapoff. 3529 */ 3530 goto outer; 3531 } 3532 3533 offset = swp_offset(entry); 3534 3535 ci = lock_cluster(si, offset); 3536 3537 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 3538 3539 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3540 /* 3541 * The higher the swap count, the more likely it is that tasks 3542 * will race to add swap count continuation: we need to avoid 3543 * over-provisioning. 3544 */ 3545 goto out; 3546 } 3547 3548 if (!page) { 3549 unlock_cluster(ci); 3550 spin_unlock(&si->lock); 3551 return -ENOMEM; 3552 } 3553 3554 /* 3555 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 3556 * no architecture is using highmem pages for kernel page tables: so it 3557 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 3558 */ 3559 head = vmalloc_to_page(si->swap_map + offset); 3560 offset &= ~PAGE_MASK; 3561 3562 spin_lock(&si->cont_lock); 3563 /* 3564 * Page allocation does not initialize the page's lru field, 3565 * but it does always reset its private field. 3566 */ 3567 if (!page_private(head)) { 3568 BUG_ON(count & COUNT_CONTINUED); 3569 INIT_LIST_HEAD(&head->lru); 3570 set_page_private(head, SWP_CONTINUED); 3571 si->flags |= SWP_CONTINUED; 3572 } 3573 3574 list_for_each_entry(list_page, &head->lru, lru) { 3575 unsigned char *map; 3576 3577 /* 3578 * If the previous map said no continuation, but we've found 3579 * a continuation page, free our allocation and use this one. 3580 */ 3581 if (!(count & COUNT_CONTINUED)) 3582 goto out_unlock_cont; 3583 3584 map = kmap_atomic(list_page) + offset; 3585 count = *map; 3586 kunmap_atomic(map); 3587 3588 /* 3589 * If this continuation count now has some space in it, 3590 * free our allocation and use this one. 3591 */ 3592 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3593 goto out_unlock_cont; 3594 } 3595 3596 list_add_tail(&page->lru, &head->lru); 3597 page = NULL; /* now it's attached, don't free it */ 3598 out_unlock_cont: 3599 spin_unlock(&si->cont_lock); 3600 out: 3601 unlock_cluster(ci); 3602 spin_unlock(&si->lock); 3603 outer: 3604 if (page) 3605 __free_page(page); 3606 return 0; 3607 } 3608 3609 /* 3610 * swap_count_continued - when the original swap_map count is incremented 3611 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3612 * into, carry if so, or else fail until a new continuation page is allocated; 3613 * when the original swap_map count is decremented from 0 with continuation, 3614 * borrow from the continuation and report whether it still holds more. 3615 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3616 * lock. 3617 */ 3618 static bool swap_count_continued(struct swap_info_struct *si, 3619 pgoff_t offset, unsigned char count) 3620 { 3621 struct page *head; 3622 struct page *page; 3623 unsigned char *map; 3624 bool ret; 3625 3626 head = vmalloc_to_page(si->swap_map + offset); 3627 if (page_private(head) != SWP_CONTINUED) { 3628 BUG_ON(count & COUNT_CONTINUED); 3629 return false; /* need to add count continuation */ 3630 } 3631 3632 spin_lock(&si->cont_lock); 3633 offset &= ~PAGE_MASK; 3634 page = list_entry(head->lru.next, struct page, lru); 3635 map = kmap_atomic(page) + offset; 3636 3637 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3638 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3639 3640 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3641 /* 3642 * Think of how you add 1 to 999 3643 */ 3644 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3645 kunmap_atomic(map); 3646 page = list_entry(page->lru.next, struct page, lru); 3647 BUG_ON(page == head); 3648 map = kmap_atomic(page) + offset; 3649 } 3650 if (*map == SWAP_CONT_MAX) { 3651 kunmap_atomic(map); 3652 page = list_entry(page->lru.next, struct page, lru); 3653 if (page == head) { 3654 ret = false; /* add count continuation */ 3655 goto out; 3656 } 3657 map = kmap_atomic(page) + offset; 3658 init_map: *map = 0; /* we didn't zero the page */ 3659 } 3660 *map += 1; 3661 kunmap_atomic(map); 3662 page = list_entry(page->lru.prev, struct page, lru); 3663 while (page != head) { 3664 map = kmap_atomic(page) + offset; 3665 *map = COUNT_CONTINUED; 3666 kunmap_atomic(map); 3667 page = list_entry(page->lru.prev, struct page, lru); 3668 } 3669 ret = true; /* incremented */ 3670 3671 } else { /* decrementing */ 3672 /* 3673 * Think of how you subtract 1 from 1000 3674 */ 3675 BUG_ON(count != COUNT_CONTINUED); 3676 while (*map == COUNT_CONTINUED) { 3677 kunmap_atomic(map); 3678 page = list_entry(page->lru.next, struct page, lru); 3679 BUG_ON(page == head); 3680 map = kmap_atomic(page) + offset; 3681 } 3682 BUG_ON(*map == 0); 3683 *map -= 1; 3684 if (*map == 0) 3685 count = 0; 3686 kunmap_atomic(map); 3687 page = list_entry(page->lru.prev, struct page, lru); 3688 while (page != head) { 3689 map = kmap_atomic(page) + offset; 3690 *map = SWAP_CONT_MAX | count; 3691 count = COUNT_CONTINUED; 3692 kunmap_atomic(map); 3693 page = list_entry(page->lru.prev, struct page, lru); 3694 } 3695 ret = count == COUNT_CONTINUED; 3696 } 3697 out: 3698 spin_unlock(&si->cont_lock); 3699 return ret; 3700 } 3701 3702 /* 3703 * free_swap_count_continuations - swapoff free all the continuation pages 3704 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3705 */ 3706 static void free_swap_count_continuations(struct swap_info_struct *si) 3707 { 3708 pgoff_t offset; 3709 3710 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3711 struct page *head; 3712 head = vmalloc_to_page(si->swap_map + offset); 3713 if (page_private(head)) { 3714 struct page *page, *next; 3715 3716 list_for_each_entry_safe(page, next, &head->lru, lru) { 3717 list_del(&page->lru); 3718 __free_page(page); 3719 } 3720 } 3721 } 3722 } 3723 3724 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3725 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node, 3726 gfp_t gfp_mask) 3727 { 3728 struct swap_info_struct *si, *next; 3729 if (!(gfp_mask & __GFP_IO) || !memcg) 3730 return; 3731 3732 if (!blk_cgroup_congested()) 3733 return; 3734 3735 /* 3736 * We've already scheduled a throttle, avoid taking the global swap 3737 * lock. 3738 */ 3739 if (current->throttle_queue) 3740 return; 3741 3742 spin_lock(&swap_avail_lock); 3743 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], 3744 avail_lists[node]) { 3745 if (si->bdev) { 3746 blkcg_schedule_throttle(bdev_get_queue(si->bdev), 3747 true); 3748 break; 3749 } 3750 } 3751 spin_unlock(&swap_avail_lock); 3752 } 3753 #endif 3754 3755 static int __init swapfile_init(void) 3756 { 3757 int nid; 3758 3759 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3760 GFP_KERNEL); 3761 if (!swap_avail_heads) { 3762 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3763 return -ENOMEM; 3764 } 3765 3766 for_each_node(nid) 3767 plist_head_init(&swap_avail_heads[nid]); 3768 3769 return 0; 3770 } 3771 subsys_initcall(swapfile_init); 3772