xref: /linux/mm/swapfile.c (revision 0c874100108f03401cb3154801d2671bbad40ad4)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
41 
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46 
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 				 unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51 
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64 
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69 
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75 
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90 
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92 
93 static DEFINE_MUTEX(swapon_mutex);
94 
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98 
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100 
101 static inline unsigned char swap_count(unsigned char ent)
102 {
103 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
104 }
105 
106 /* Reclaim the swap entry anyway if possible */
107 #define TTRS_ANYWAY		0x1
108 /*
109  * Reclaim the swap entry if there are no more mappings of the
110  * corresponding page
111  */
112 #define TTRS_UNMAPPED		0x2
113 /* Reclaim the swap entry if swap is getting full*/
114 #define TTRS_FULL		0x4
115 
116 /* returns 1 if swap entry is freed */
117 static int __try_to_reclaim_swap(struct swap_info_struct *si,
118 				 unsigned long offset, unsigned long flags)
119 {
120 	swp_entry_t entry = swp_entry(si->type, offset);
121 	struct page *page;
122 	int ret = 0;
123 
124 	page = find_get_page(swap_address_space(entry), offset);
125 	if (!page)
126 		return 0;
127 	/*
128 	 * When this function is called from scan_swap_map_slots() and it's
129 	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
130 	 * here. We have to use trylock for avoiding deadlock. This is a special
131 	 * case and you should use try_to_free_swap() with explicit lock_page()
132 	 * in usual operations.
133 	 */
134 	if (trylock_page(page)) {
135 		if ((flags & TTRS_ANYWAY) ||
136 		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
137 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
138 			ret = try_to_free_swap(page);
139 		unlock_page(page);
140 	}
141 	put_page(page);
142 	return ret;
143 }
144 
145 /*
146  * swapon tell device that all the old swap contents can be discarded,
147  * to allow the swap device to optimize its wear-levelling.
148  */
149 static int discard_swap(struct swap_info_struct *si)
150 {
151 	struct swap_extent *se;
152 	sector_t start_block;
153 	sector_t nr_blocks;
154 	int err = 0;
155 
156 	/* Do not discard the swap header page! */
157 	se = &si->first_swap_extent;
158 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
159 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
160 	if (nr_blocks) {
161 		err = blkdev_issue_discard(si->bdev, start_block,
162 				nr_blocks, GFP_KERNEL, 0);
163 		if (err)
164 			return err;
165 		cond_resched();
166 	}
167 
168 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
169 		start_block = se->start_block << (PAGE_SHIFT - 9);
170 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
171 
172 		err = blkdev_issue_discard(si->bdev, start_block,
173 				nr_blocks, GFP_KERNEL, 0);
174 		if (err)
175 			break;
176 
177 		cond_resched();
178 	}
179 	return err;		/* That will often be -EOPNOTSUPP */
180 }
181 
182 /*
183  * swap allocation tell device that a cluster of swap can now be discarded,
184  * to allow the swap device to optimize its wear-levelling.
185  */
186 static void discard_swap_cluster(struct swap_info_struct *si,
187 				 pgoff_t start_page, pgoff_t nr_pages)
188 {
189 	struct swap_extent *se = si->curr_swap_extent;
190 	int found_extent = 0;
191 
192 	while (nr_pages) {
193 		if (se->start_page <= start_page &&
194 		    start_page < se->start_page + se->nr_pages) {
195 			pgoff_t offset = start_page - se->start_page;
196 			sector_t start_block = se->start_block + offset;
197 			sector_t nr_blocks = se->nr_pages - offset;
198 
199 			if (nr_blocks > nr_pages)
200 				nr_blocks = nr_pages;
201 			start_page += nr_blocks;
202 			nr_pages -= nr_blocks;
203 
204 			if (!found_extent++)
205 				si->curr_swap_extent = se;
206 
207 			start_block <<= PAGE_SHIFT - 9;
208 			nr_blocks <<= PAGE_SHIFT - 9;
209 			if (blkdev_issue_discard(si->bdev, start_block,
210 				    nr_blocks, GFP_NOIO, 0))
211 				break;
212 		}
213 
214 		se = list_next_entry(se, list);
215 	}
216 }
217 
218 #ifdef CONFIG_THP_SWAP
219 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
220 
221 #define swap_entry_size(size)	(size)
222 #else
223 #define SWAPFILE_CLUSTER	256
224 
225 /*
226  * Define swap_entry_size() as constant to let compiler to optimize
227  * out some code if !CONFIG_THP_SWAP
228  */
229 #define swap_entry_size(size)	1
230 #endif
231 #define LATENCY_LIMIT		256
232 
233 static inline void cluster_set_flag(struct swap_cluster_info *info,
234 	unsigned int flag)
235 {
236 	info->flags = flag;
237 }
238 
239 static inline unsigned int cluster_count(struct swap_cluster_info *info)
240 {
241 	return info->data;
242 }
243 
244 static inline void cluster_set_count(struct swap_cluster_info *info,
245 				     unsigned int c)
246 {
247 	info->data = c;
248 }
249 
250 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
251 					 unsigned int c, unsigned int f)
252 {
253 	info->flags = f;
254 	info->data = c;
255 }
256 
257 static inline unsigned int cluster_next(struct swap_cluster_info *info)
258 {
259 	return info->data;
260 }
261 
262 static inline void cluster_set_next(struct swap_cluster_info *info,
263 				    unsigned int n)
264 {
265 	info->data = n;
266 }
267 
268 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
269 					 unsigned int n, unsigned int f)
270 {
271 	info->flags = f;
272 	info->data = n;
273 }
274 
275 static inline bool cluster_is_free(struct swap_cluster_info *info)
276 {
277 	return info->flags & CLUSTER_FLAG_FREE;
278 }
279 
280 static inline bool cluster_is_null(struct swap_cluster_info *info)
281 {
282 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
283 }
284 
285 static inline void cluster_set_null(struct swap_cluster_info *info)
286 {
287 	info->flags = CLUSTER_FLAG_NEXT_NULL;
288 	info->data = 0;
289 }
290 
291 static inline bool cluster_is_huge(struct swap_cluster_info *info)
292 {
293 	if (IS_ENABLED(CONFIG_THP_SWAP))
294 		return info->flags & CLUSTER_FLAG_HUGE;
295 	return false;
296 }
297 
298 static inline void cluster_clear_huge(struct swap_cluster_info *info)
299 {
300 	info->flags &= ~CLUSTER_FLAG_HUGE;
301 }
302 
303 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
304 						     unsigned long offset)
305 {
306 	struct swap_cluster_info *ci;
307 
308 	ci = si->cluster_info;
309 	if (ci) {
310 		ci += offset / SWAPFILE_CLUSTER;
311 		spin_lock(&ci->lock);
312 	}
313 	return ci;
314 }
315 
316 static inline void unlock_cluster(struct swap_cluster_info *ci)
317 {
318 	if (ci)
319 		spin_unlock(&ci->lock);
320 }
321 
322 /*
323  * Determine the locking method in use for this device.  Return
324  * swap_cluster_info if SSD-style cluster-based locking is in place.
325  */
326 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
327 		struct swap_info_struct *si, unsigned long offset)
328 {
329 	struct swap_cluster_info *ci;
330 
331 	/* Try to use fine-grained SSD-style locking if available: */
332 	ci = lock_cluster(si, offset);
333 	/* Otherwise, fall back to traditional, coarse locking: */
334 	if (!ci)
335 		spin_lock(&si->lock);
336 
337 	return ci;
338 }
339 
340 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
341 					       struct swap_cluster_info *ci)
342 {
343 	if (ci)
344 		unlock_cluster(ci);
345 	else
346 		spin_unlock(&si->lock);
347 }
348 
349 static inline bool cluster_list_empty(struct swap_cluster_list *list)
350 {
351 	return cluster_is_null(&list->head);
352 }
353 
354 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
355 {
356 	return cluster_next(&list->head);
357 }
358 
359 static void cluster_list_init(struct swap_cluster_list *list)
360 {
361 	cluster_set_null(&list->head);
362 	cluster_set_null(&list->tail);
363 }
364 
365 static void cluster_list_add_tail(struct swap_cluster_list *list,
366 				  struct swap_cluster_info *ci,
367 				  unsigned int idx)
368 {
369 	if (cluster_list_empty(list)) {
370 		cluster_set_next_flag(&list->head, idx, 0);
371 		cluster_set_next_flag(&list->tail, idx, 0);
372 	} else {
373 		struct swap_cluster_info *ci_tail;
374 		unsigned int tail = cluster_next(&list->tail);
375 
376 		/*
377 		 * Nested cluster lock, but both cluster locks are
378 		 * only acquired when we held swap_info_struct->lock
379 		 */
380 		ci_tail = ci + tail;
381 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
382 		cluster_set_next(ci_tail, idx);
383 		spin_unlock(&ci_tail->lock);
384 		cluster_set_next_flag(&list->tail, idx, 0);
385 	}
386 }
387 
388 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
389 					   struct swap_cluster_info *ci)
390 {
391 	unsigned int idx;
392 
393 	idx = cluster_next(&list->head);
394 	if (cluster_next(&list->tail) == idx) {
395 		cluster_set_null(&list->head);
396 		cluster_set_null(&list->tail);
397 	} else
398 		cluster_set_next_flag(&list->head,
399 				      cluster_next(&ci[idx]), 0);
400 
401 	return idx;
402 }
403 
404 /* Add a cluster to discard list and schedule it to do discard */
405 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
406 		unsigned int idx)
407 {
408 	/*
409 	 * If scan_swap_map() can't find a free cluster, it will check
410 	 * si->swap_map directly. To make sure the discarding cluster isn't
411 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
412 	 * will be cleared after discard
413 	 */
414 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
415 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
416 
417 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
418 
419 	schedule_work(&si->discard_work);
420 }
421 
422 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
423 {
424 	struct swap_cluster_info *ci = si->cluster_info;
425 
426 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
427 	cluster_list_add_tail(&si->free_clusters, ci, idx);
428 }
429 
430 /*
431  * Doing discard actually. After a cluster discard is finished, the cluster
432  * will be added to free cluster list. caller should hold si->lock.
433 */
434 static void swap_do_scheduled_discard(struct swap_info_struct *si)
435 {
436 	struct swap_cluster_info *info, *ci;
437 	unsigned int idx;
438 
439 	info = si->cluster_info;
440 
441 	while (!cluster_list_empty(&si->discard_clusters)) {
442 		idx = cluster_list_del_first(&si->discard_clusters, info);
443 		spin_unlock(&si->lock);
444 
445 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
446 				SWAPFILE_CLUSTER);
447 
448 		spin_lock(&si->lock);
449 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
450 		__free_cluster(si, idx);
451 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
452 				0, SWAPFILE_CLUSTER);
453 		unlock_cluster(ci);
454 	}
455 }
456 
457 static void swap_discard_work(struct work_struct *work)
458 {
459 	struct swap_info_struct *si;
460 
461 	si = container_of(work, struct swap_info_struct, discard_work);
462 
463 	spin_lock(&si->lock);
464 	swap_do_scheduled_discard(si);
465 	spin_unlock(&si->lock);
466 }
467 
468 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
469 {
470 	struct swap_cluster_info *ci = si->cluster_info;
471 
472 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
473 	cluster_list_del_first(&si->free_clusters, ci);
474 	cluster_set_count_flag(ci + idx, 0, 0);
475 }
476 
477 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
478 {
479 	struct swap_cluster_info *ci = si->cluster_info + idx;
480 
481 	VM_BUG_ON(cluster_count(ci) != 0);
482 	/*
483 	 * If the swap is discardable, prepare discard the cluster
484 	 * instead of free it immediately. The cluster will be freed
485 	 * after discard.
486 	 */
487 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
488 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
489 		swap_cluster_schedule_discard(si, idx);
490 		return;
491 	}
492 
493 	__free_cluster(si, idx);
494 }
495 
496 /*
497  * The cluster corresponding to page_nr will be used. The cluster will be
498  * removed from free cluster list and its usage counter will be increased.
499  */
500 static void inc_cluster_info_page(struct swap_info_struct *p,
501 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
502 {
503 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
504 
505 	if (!cluster_info)
506 		return;
507 	if (cluster_is_free(&cluster_info[idx]))
508 		alloc_cluster(p, idx);
509 
510 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
511 	cluster_set_count(&cluster_info[idx],
512 		cluster_count(&cluster_info[idx]) + 1);
513 }
514 
515 /*
516  * The cluster corresponding to page_nr decreases one usage. If the usage
517  * counter becomes 0, which means no page in the cluster is in using, we can
518  * optionally discard the cluster and add it to free cluster list.
519  */
520 static void dec_cluster_info_page(struct swap_info_struct *p,
521 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
522 {
523 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
524 
525 	if (!cluster_info)
526 		return;
527 
528 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
529 	cluster_set_count(&cluster_info[idx],
530 		cluster_count(&cluster_info[idx]) - 1);
531 
532 	if (cluster_count(&cluster_info[idx]) == 0)
533 		free_cluster(p, idx);
534 }
535 
536 /*
537  * It's possible scan_swap_map() uses a free cluster in the middle of free
538  * cluster list. Avoiding such abuse to avoid list corruption.
539  */
540 static bool
541 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
542 	unsigned long offset)
543 {
544 	struct percpu_cluster *percpu_cluster;
545 	bool conflict;
546 
547 	offset /= SWAPFILE_CLUSTER;
548 	conflict = !cluster_list_empty(&si->free_clusters) &&
549 		offset != cluster_list_first(&si->free_clusters) &&
550 		cluster_is_free(&si->cluster_info[offset]);
551 
552 	if (!conflict)
553 		return false;
554 
555 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
556 	cluster_set_null(&percpu_cluster->index);
557 	return true;
558 }
559 
560 /*
561  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
562  * might involve allocating a new cluster for current CPU too.
563  */
564 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
565 	unsigned long *offset, unsigned long *scan_base)
566 {
567 	struct percpu_cluster *cluster;
568 	struct swap_cluster_info *ci;
569 	bool found_free;
570 	unsigned long tmp, max;
571 
572 new_cluster:
573 	cluster = this_cpu_ptr(si->percpu_cluster);
574 	if (cluster_is_null(&cluster->index)) {
575 		if (!cluster_list_empty(&si->free_clusters)) {
576 			cluster->index = si->free_clusters.head;
577 			cluster->next = cluster_next(&cluster->index) *
578 					SWAPFILE_CLUSTER;
579 		} else if (!cluster_list_empty(&si->discard_clusters)) {
580 			/*
581 			 * we don't have free cluster but have some clusters in
582 			 * discarding, do discard now and reclaim them
583 			 */
584 			swap_do_scheduled_discard(si);
585 			*scan_base = *offset = si->cluster_next;
586 			goto new_cluster;
587 		} else
588 			return false;
589 	}
590 
591 	found_free = false;
592 
593 	/*
594 	 * Other CPUs can use our cluster if they can't find a free cluster,
595 	 * check if there is still free entry in the cluster
596 	 */
597 	tmp = cluster->next;
598 	max = min_t(unsigned long, si->max,
599 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
600 	if (tmp >= max) {
601 		cluster_set_null(&cluster->index);
602 		goto new_cluster;
603 	}
604 	ci = lock_cluster(si, tmp);
605 	while (tmp < max) {
606 		if (!si->swap_map[tmp]) {
607 			found_free = true;
608 			break;
609 		}
610 		tmp++;
611 	}
612 	unlock_cluster(ci);
613 	if (!found_free) {
614 		cluster_set_null(&cluster->index);
615 		goto new_cluster;
616 	}
617 	cluster->next = tmp + 1;
618 	*offset = tmp;
619 	*scan_base = tmp;
620 	return found_free;
621 }
622 
623 static void __del_from_avail_list(struct swap_info_struct *p)
624 {
625 	int nid;
626 
627 	for_each_node(nid)
628 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
629 }
630 
631 static void del_from_avail_list(struct swap_info_struct *p)
632 {
633 	spin_lock(&swap_avail_lock);
634 	__del_from_avail_list(p);
635 	spin_unlock(&swap_avail_lock);
636 }
637 
638 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
639 			     unsigned int nr_entries)
640 {
641 	unsigned int end = offset + nr_entries - 1;
642 
643 	if (offset == si->lowest_bit)
644 		si->lowest_bit += nr_entries;
645 	if (end == si->highest_bit)
646 		si->highest_bit -= nr_entries;
647 	si->inuse_pages += nr_entries;
648 	if (si->inuse_pages == si->pages) {
649 		si->lowest_bit = si->max;
650 		si->highest_bit = 0;
651 		del_from_avail_list(si);
652 	}
653 }
654 
655 static void add_to_avail_list(struct swap_info_struct *p)
656 {
657 	int nid;
658 
659 	spin_lock(&swap_avail_lock);
660 	for_each_node(nid) {
661 		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
662 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
663 	}
664 	spin_unlock(&swap_avail_lock);
665 }
666 
667 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
668 			    unsigned int nr_entries)
669 {
670 	unsigned long end = offset + nr_entries - 1;
671 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
672 
673 	if (offset < si->lowest_bit)
674 		si->lowest_bit = offset;
675 	if (end > si->highest_bit) {
676 		bool was_full = !si->highest_bit;
677 
678 		si->highest_bit = end;
679 		if (was_full && (si->flags & SWP_WRITEOK))
680 			add_to_avail_list(si);
681 	}
682 	atomic_long_add(nr_entries, &nr_swap_pages);
683 	si->inuse_pages -= nr_entries;
684 	if (si->flags & SWP_BLKDEV)
685 		swap_slot_free_notify =
686 			si->bdev->bd_disk->fops->swap_slot_free_notify;
687 	else
688 		swap_slot_free_notify = NULL;
689 	while (offset <= end) {
690 		frontswap_invalidate_page(si->type, offset);
691 		if (swap_slot_free_notify)
692 			swap_slot_free_notify(si->bdev, offset);
693 		offset++;
694 	}
695 }
696 
697 static int scan_swap_map_slots(struct swap_info_struct *si,
698 			       unsigned char usage, int nr,
699 			       swp_entry_t slots[])
700 {
701 	struct swap_cluster_info *ci;
702 	unsigned long offset;
703 	unsigned long scan_base;
704 	unsigned long last_in_cluster = 0;
705 	int latency_ration = LATENCY_LIMIT;
706 	int n_ret = 0;
707 
708 	if (nr > SWAP_BATCH)
709 		nr = SWAP_BATCH;
710 
711 	/*
712 	 * We try to cluster swap pages by allocating them sequentially
713 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
714 	 * way, however, we resort to first-free allocation, starting
715 	 * a new cluster.  This prevents us from scattering swap pages
716 	 * all over the entire swap partition, so that we reduce
717 	 * overall disk seek times between swap pages.  -- sct
718 	 * But we do now try to find an empty cluster.  -Andrea
719 	 * And we let swap pages go all over an SSD partition.  Hugh
720 	 */
721 
722 	si->flags += SWP_SCANNING;
723 	scan_base = offset = si->cluster_next;
724 
725 	/* SSD algorithm */
726 	if (si->cluster_info) {
727 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
728 			goto checks;
729 		else
730 			goto scan;
731 	}
732 
733 	if (unlikely(!si->cluster_nr--)) {
734 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
735 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
736 			goto checks;
737 		}
738 
739 		spin_unlock(&si->lock);
740 
741 		/*
742 		 * If seek is expensive, start searching for new cluster from
743 		 * start of partition, to minimize the span of allocated swap.
744 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
745 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
746 		 */
747 		scan_base = offset = si->lowest_bit;
748 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
749 
750 		/* Locate the first empty (unaligned) cluster */
751 		for (; last_in_cluster <= si->highest_bit; offset++) {
752 			if (si->swap_map[offset])
753 				last_in_cluster = offset + SWAPFILE_CLUSTER;
754 			else if (offset == last_in_cluster) {
755 				spin_lock(&si->lock);
756 				offset -= SWAPFILE_CLUSTER - 1;
757 				si->cluster_next = offset;
758 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
759 				goto checks;
760 			}
761 			if (unlikely(--latency_ration < 0)) {
762 				cond_resched();
763 				latency_ration = LATENCY_LIMIT;
764 			}
765 		}
766 
767 		offset = scan_base;
768 		spin_lock(&si->lock);
769 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
770 	}
771 
772 checks:
773 	if (si->cluster_info) {
774 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
775 		/* take a break if we already got some slots */
776 			if (n_ret)
777 				goto done;
778 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
779 							&scan_base))
780 				goto scan;
781 		}
782 	}
783 	if (!(si->flags & SWP_WRITEOK))
784 		goto no_page;
785 	if (!si->highest_bit)
786 		goto no_page;
787 	if (offset > si->highest_bit)
788 		scan_base = offset = si->lowest_bit;
789 
790 	ci = lock_cluster(si, offset);
791 	/* reuse swap entry of cache-only swap if not busy. */
792 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
793 		int swap_was_freed;
794 		unlock_cluster(ci);
795 		spin_unlock(&si->lock);
796 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
797 		spin_lock(&si->lock);
798 		/* entry was freed successfully, try to use this again */
799 		if (swap_was_freed)
800 			goto checks;
801 		goto scan; /* check next one */
802 	}
803 
804 	if (si->swap_map[offset]) {
805 		unlock_cluster(ci);
806 		if (!n_ret)
807 			goto scan;
808 		else
809 			goto done;
810 	}
811 	si->swap_map[offset] = usage;
812 	inc_cluster_info_page(si, si->cluster_info, offset);
813 	unlock_cluster(ci);
814 
815 	swap_range_alloc(si, offset, 1);
816 	si->cluster_next = offset + 1;
817 	slots[n_ret++] = swp_entry(si->type, offset);
818 
819 	/* got enough slots or reach max slots? */
820 	if ((n_ret == nr) || (offset >= si->highest_bit))
821 		goto done;
822 
823 	/* search for next available slot */
824 
825 	/* time to take a break? */
826 	if (unlikely(--latency_ration < 0)) {
827 		if (n_ret)
828 			goto done;
829 		spin_unlock(&si->lock);
830 		cond_resched();
831 		spin_lock(&si->lock);
832 		latency_ration = LATENCY_LIMIT;
833 	}
834 
835 	/* try to get more slots in cluster */
836 	if (si->cluster_info) {
837 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
838 			goto checks;
839 		else
840 			goto done;
841 	}
842 	/* non-ssd case */
843 	++offset;
844 
845 	/* non-ssd case, still more slots in cluster? */
846 	if (si->cluster_nr && !si->swap_map[offset]) {
847 		--si->cluster_nr;
848 		goto checks;
849 	}
850 
851 done:
852 	si->flags -= SWP_SCANNING;
853 	return n_ret;
854 
855 scan:
856 	spin_unlock(&si->lock);
857 	while (++offset <= si->highest_bit) {
858 		if (!si->swap_map[offset]) {
859 			spin_lock(&si->lock);
860 			goto checks;
861 		}
862 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
863 			spin_lock(&si->lock);
864 			goto checks;
865 		}
866 		if (unlikely(--latency_ration < 0)) {
867 			cond_resched();
868 			latency_ration = LATENCY_LIMIT;
869 		}
870 	}
871 	offset = si->lowest_bit;
872 	while (offset < scan_base) {
873 		if (!si->swap_map[offset]) {
874 			spin_lock(&si->lock);
875 			goto checks;
876 		}
877 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
878 			spin_lock(&si->lock);
879 			goto checks;
880 		}
881 		if (unlikely(--latency_ration < 0)) {
882 			cond_resched();
883 			latency_ration = LATENCY_LIMIT;
884 		}
885 		offset++;
886 	}
887 	spin_lock(&si->lock);
888 
889 no_page:
890 	si->flags -= SWP_SCANNING;
891 	return n_ret;
892 }
893 
894 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
895 {
896 	unsigned long idx;
897 	struct swap_cluster_info *ci;
898 	unsigned long offset, i;
899 	unsigned char *map;
900 
901 	/*
902 	 * Should not even be attempting cluster allocations when huge
903 	 * page swap is disabled.  Warn and fail the allocation.
904 	 */
905 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
906 		VM_WARN_ON_ONCE(1);
907 		return 0;
908 	}
909 
910 	if (cluster_list_empty(&si->free_clusters))
911 		return 0;
912 
913 	idx = cluster_list_first(&si->free_clusters);
914 	offset = idx * SWAPFILE_CLUSTER;
915 	ci = lock_cluster(si, offset);
916 	alloc_cluster(si, idx);
917 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
918 
919 	map = si->swap_map + offset;
920 	for (i = 0; i < SWAPFILE_CLUSTER; i++)
921 		map[i] = SWAP_HAS_CACHE;
922 	unlock_cluster(ci);
923 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
924 	*slot = swp_entry(si->type, offset);
925 
926 	return 1;
927 }
928 
929 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
930 {
931 	unsigned long offset = idx * SWAPFILE_CLUSTER;
932 	struct swap_cluster_info *ci;
933 
934 	ci = lock_cluster(si, offset);
935 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
936 	cluster_set_count_flag(ci, 0, 0);
937 	free_cluster(si, idx);
938 	unlock_cluster(ci);
939 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
940 }
941 
942 static unsigned long scan_swap_map(struct swap_info_struct *si,
943 				   unsigned char usage)
944 {
945 	swp_entry_t entry;
946 	int n_ret;
947 
948 	n_ret = scan_swap_map_slots(si, usage, 1, &entry);
949 
950 	if (n_ret)
951 		return swp_offset(entry);
952 	else
953 		return 0;
954 
955 }
956 
957 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
958 {
959 	unsigned long size = swap_entry_size(entry_size);
960 	struct swap_info_struct *si, *next;
961 	long avail_pgs;
962 	int n_ret = 0;
963 	int node;
964 
965 	/* Only single cluster request supported */
966 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
967 
968 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
969 	if (avail_pgs <= 0)
970 		goto noswap;
971 
972 	if (n_goal > SWAP_BATCH)
973 		n_goal = SWAP_BATCH;
974 
975 	if (n_goal > avail_pgs)
976 		n_goal = avail_pgs;
977 
978 	atomic_long_sub(n_goal * size, &nr_swap_pages);
979 
980 	spin_lock(&swap_avail_lock);
981 
982 start_over:
983 	node = numa_node_id();
984 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
985 		/* requeue si to after same-priority siblings */
986 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
987 		spin_unlock(&swap_avail_lock);
988 		spin_lock(&si->lock);
989 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
990 			spin_lock(&swap_avail_lock);
991 			if (plist_node_empty(&si->avail_lists[node])) {
992 				spin_unlock(&si->lock);
993 				goto nextsi;
994 			}
995 			WARN(!si->highest_bit,
996 			     "swap_info %d in list but !highest_bit\n",
997 			     si->type);
998 			WARN(!(si->flags & SWP_WRITEOK),
999 			     "swap_info %d in list but !SWP_WRITEOK\n",
1000 			     si->type);
1001 			__del_from_avail_list(si);
1002 			spin_unlock(&si->lock);
1003 			goto nextsi;
1004 		}
1005 		if (size == SWAPFILE_CLUSTER) {
1006 			if (!(si->flags & SWP_FS))
1007 				n_ret = swap_alloc_cluster(si, swp_entries);
1008 		} else
1009 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1010 						    n_goal, swp_entries);
1011 		spin_unlock(&si->lock);
1012 		if (n_ret || size == SWAPFILE_CLUSTER)
1013 			goto check_out;
1014 		pr_debug("scan_swap_map of si %d failed to find offset\n",
1015 			si->type);
1016 
1017 		spin_lock(&swap_avail_lock);
1018 nextsi:
1019 		/*
1020 		 * if we got here, it's likely that si was almost full before,
1021 		 * and since scan_swap_map() can drop the si->lock, multiple
1022 		 * callers probably all tried to get a page from the same si
1023 		 * and it filled up before we could get one; or, the si filled
1024 		 * up between us dropping swap_avail_lock and taking si->lock.
1025 		 * Since we dropped the swap_avail_lock, the swap_avail_head
1026 		 * list may have been modified; so if next is still in the
1027 		 * swap_avail_head list then try it, otherwise start over
1028 		 * if we have not gotten any slots.
1029 		 */
1030 		if (plist_node_empty(&next->avail_lists[node]))
1031 			goto start_over;
1032 	}
1033 
1034 	spin_unlock(&swap_avail_lock);
1035 
1036 check_out:
1037 	if (n_ret < n_goal)
1038 		atomic_long_add((long)(n_goal - n_ret) * size,
1039 				&nr_swap_pages);
1040 noswap:
1041 	return n_ret;
1042 }
1043 
1044 /* The only caller of this function is now suspend routine */
1045 swp_entry_t get_swap_page_of_type(int type)
1046 {
1047 	struct swap_info_struct *si;
1048 	pgoff_t offset;
1049 
1050 	si = swap_info[type];
1051 	spin_lock(&si->lock);
1052 	if (si && (si->flags & SWP_WRITEOK)) {
1053 		atomic_long_dec(&nr_swap_pages);
1054 		/* This is called for allocating swap entry, not cache */
1055 		offset = scan_swap_map(si, 1);
1056 		if (offset) {
1057 			spin_unlock(&si->lock);
1058 			return swp_entry(type, offset);
1059 		}
1060 		atomic_long_inc(&nr_swap_pages);
1061 	}
1062 	spin_unlock(&si->lock);
1063 	return (swp_entry_t) {0};
1064 }
1065 
1066 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1067 {
1068 	struct swap_info_struct *p;
1069 	unsigned long offset, type;
1070 
1071 	if (!entry.val)
1072 		goto out;
1073 	type = swp_type(entry);
1074 	if (type >= nr_swapfiles)
1075 		goto bad_nofile;
1076 	p = swap_info[type];
1077 	if (!(p->flags & SWP_USED))
1078 		goto bad_device;
1079 	offset = swp_offset(entry);
1080 	if (offset >= p->max)
1081 		goto bad_offset;
1082 	return p;
1083 
1084 bad_offset:
1085 	pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1086 	goto out;
1087 bad_device:
1088 	pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1089 	goto out;
1090 bad_nofile:
1091 	pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1092 out:
1093 	return NULL;
1094 }
1095 
1096 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1097 {
1098 	struct swap_info_struct *p;
1099 
1100 	p = __swap_info_get(entry);
1101 	if (!p)
1102 		goto out;
1103 	if (!p->swap_map[swp_offset(entry)])
1104 		goto bad_free;
1105 	return p;
1106 
1107 bad_free:
1108 	pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1109 	goto out;
1110 out:
1111 	return NULL;
1112 }
1113 
1114 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1115 {
1116 	struct swap_info_struct *p;
1117 
1118 	p = _swap_info_get(entry);
1119 	if (p)
1120 		spin_lock(&p->lock);
1121 	return p;
1122 }
1123 
1124 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1125 					struct swap_info_struct *q)
1126 {
1127 	struct swap_info_struct *p;
1128 
1129 	p = _swap_info_get(entry);
1130 
1131 	if (p != q) {
1132 		if (q != NULL)
1133 			spin_unlock(&q->lock);
1134 		if (p != NULL)
1135 			spin_lock(&p->lock);
1136 	}
1137 	return p;
1138 }
1139 
1140 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1141 					      unsigned long offset,
1142 					      unsigned char usage)
1143 {
1144 	unsigned char count;
1145 	unsigned char has_cache;
1146 
1147 	count = p->swap_map[offset];
1148 
1149 	has_cache = count & SWAP_HAS_CACHE;
1150 	count &= ~SWAP_HAS_CACHE;
1151 
1152 	if (usage == SWAP_HAS_CACHE) {
1153 		VM_BUG_ON(!has_cache);
1154 		has_cache = 0;
1155 	} else if (count == SWAP_MAP_SHMEM) {
1156 		/*
1157 		 * Or we could insist on shmem.c using a special
1158 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1159 		 */
1160 		count = 0;
1161 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1162 		if (count == COUNT_CONTINUED) {
1163 			if (swap_count_continued(p, offset, count))
1164 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1165 			else
1166 				count = SWAP_MAP_MAX;
1167 		} else
1168 			count--;
1169 	}
1170 
1171 	usage = count | has_cache;
1172 	p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1173 
1174 	return usage;
1175 }
1176 
1177 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1178 				       swp_entry_t entry, unsigned char usage)
1179 {
1180 	struct swap_cluster_info *ci;
1181 	unsigned long offset = swp_offset(entry);
1182 
1183 	ci = lock_cluster_or_swap_info(p, offset);
1184 	usage = __swap_entry_free_locked(p, offset, usage);
1185 	unlock_cluster_or_swap_info(p, ci);
1186 	if (!usage)
1187 		free_swap_slot(entry);
1188 
1189 	return usage;
1190 }
1191 
1192 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1193 {
1194 	struct swap_cluster_info *ci;
1195 	unsigned long offset = swp_offset(entry);
1196 	unsigned char count;
1197 
1198 	ci = lock_cluster(p, offset);
1199 	count = p->swap_map[offset];
1200 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1201 	p->swap_map[offset] = 0;
1202 	dec_cluster_info_page(p, p->cluster_info, offset);
1203 	unlock_cluster(ci);
1204 
1205 	mem_cgroup_uncharge_swap(entry, 1);
1206 	swap_range_free(p, offset, 1);
1207 }
1208 
1209 /*
1210  * Caller has made sure that the swap device corresponding to entry
1211  * is still around or has not been recycled.
1212  */
1213 void swap_free(swp_entry_t entry)
1214 {
1215 	struct swap_info_struct *p;
1216 
1217 	p = _swap_info_get(entry);
1218 	if (p)
1219 		__swap_entry_free(p, entry, 1);
1220 }
1221 
1222 /*
1223  * Called after dropping swapcache to decrease refcnt to swap entries.
1224  */
1225 void put_swap_page(struct page *page, swp_entry_t entry)
1226 {
1227 	unsigned long offset = swp_offset(entry);
1228 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1229 	struct swap_cluster_info *ci;
1230 	struct swap_info_struct *si;
1231 	unsigned char *map;
1232 	unsigned int i, free_entries = 0;
1233 	unsigned char val;
1234 	int size = swap_entry_size(hpage_nr_pages(page));
1235 
1236 	si = _swap_info_get(entry);
1237 	if (!si)
1238 		return;
1239 
1240 	ci = lock_cluster_or_swap_info(si, offset);
1241 	if (size == SWAPFILE_CLUSTER) {
1242 		VM_BUG_ON(!cluster_is_huge(ci));
1243 		map = si->swap_map + offset;
1244 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1245 			val = map[i];
1246 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1247 			if (val == SWAP_HAS_CACHE)
1248 				free_entries++;
1249 		}
1250 		cluster_clear_huge(ci);
1251 		if (free_entries == SWAPFILE_CLUSTER) {
1252 			unlock_cluster_or_swap_info(si, ci);
1253 			spin_lock(&si->lock);
1254 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1255 			swap_free_cluster(si, idx);
1256 			spin_unlock(&si->lock);
1257 			return;
1258 		}
1259 	}
1260 	for (i = 0; i < size; i++, entry.val++) {
1261 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1262 			unlock_cluster_or_swap_info(si, ci);
1263 			free_swap_slot(entry);
1264 			if (i == size - 1)
1265 				return;
1266 			lock_cluster_or_swap_info(si, offset);
1267 		}
1268 	}
1269 	unlock_cluster_or_swap_info(si, ci);
1270 }
1271 
1272 #ifdef CONFIG_THP_SWAP
1273 int split_swap_cluster(swp_entry_t entry)
1274 {
1275 	struct swap_info_struct *si;
1276 	struct swap_cluster_info *ci;
1277 	unsigned long offset = swp_offset(entry);
1278 
1279 	si = _swap_info_get(entry);
1280 	if (!si)
1281 		return -EBUSY;
1282 	ci = lock_cluster(si, offset);
1283 	cluster_clear_huge(ci);
1284 	unlock_cluster(ci);
1285 	return 0;
1286 }
1287 #endif
1288 
1289 static int swp_entry_cmp(const void *ent1, const void *ent2)
1290 {
1291 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1292 
1293 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1294 }
1295 
1296 void swapcache_free_entries(swp_entry_t *entries, int n)
1297 {
1298 	struct swap_info_struct *p, *prev;
1299 	int i;
1300 
1301 	if (n <= 0)
1302 		return;
1303 
1304 	prev = NULL;
1305 	p = NULL;
1306 
1307 	/*
1308 	 * Sort swap entries by swap device, so each lock is only taken once.
1309 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1310 	 * so low that it isn't necessary to optimize further.
1311 	 */
1312 	if (nr_swapfiles > 1)
1313 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1314 	for (i = 0; i < n; ++i) {
1315 		p = swap_info_get_cont(entries[i], prev);
1316 		if (p)
1317 			swap_entry_free(p, entries[i]);
1318 		prev = p;
1319 	}
1320 	if (p)
1321 		spin_unlock(&p->lock);
1322 }
1323 
1324 /*
1325  * How many references to page are currently swapped out?
1326  * This does not give an exact answer when swap count is continued,
1327  * but does include the high COUNT_CONTINUED flag to allow for that.
1328  */
1329 int page_swapcount(struct page *page)
1330 {
1331 	int count = 0;
1332 	struct swap_info_struct *p;
1333 	struct swap_cluster_info *ci;
1334 	swp_entry_t entry;
1335 	unsigned long offset;
1336 
1337 	entry.val = page_private(page);
1338 	p = _swap_info_get(entry);
1339 	if (p) {
1340 		offset = swp_offset(entry);
1341 		ci = lock_cluster_or_swap_info(p, offset);
1342 		count = swap_count(p->swap_map[offset]);
1343 		unlock_cluster_or_swap_info(p, ci);
1344 	}
1345 	return count;
1346 }
1347 
1348 int __swap_count(struct swap_info_struct *si, swp_entry_t entry)
1349 {
1350 	pgoff_t offset = swp_offset(entry);
1351 
1352 	return swap_count(si->swap_map[offset]);
1353 }
1354 
1355 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1356 {
1357 	int count = 0;
1358 	pgoff_t offset = swp_offset(entry);
1359 	struct swap_cluster_info *ci;
1360 
1361 	ci = lock_cluster_or_swap_info(si, offset);
1362 	count = swap_count(si->swap_map[offset]);
1363 	unlock_cluster_or_swap_info(si, ci);
1364 	return count;
1365 }
1366 
1367 /*
1368  * How many references to @entry are currently swapped out?
1369  * This does not give an exact answer when swap count is continued,
1370  * but does include the high COUNT_CONTINUED flag to allow for that.
1371  */
1372 int __swp_swapcount(swp_entry_t entry)
1373 {
1374 	int count = 0;
1375 	struct swap_info_struct *si;
1376 
1377 	si = __swap_info_get(entry);
1378 	if (si)
1379 		count = swap_swapcount(si, entry);
1380 	return count;
1381 }
1382 
1383 /*
1384  * How many references to @entry are currently swapped out?
1385  * This considers COUNT_CONTINUED so it returns exact answer.
1386  */
1387 int swp_swapcount(swp_entry_t entry)
1388 {
1389 	int count, tmp_count, n;
1390 	struct swap_info_struct *p;
1391 	struct swap_cluster_info *ci;
1392 	struct page *page;
1393 	pgoff_t offset;
1394 	unsigned char *map;
1395 
1396 	p = _swap_info_get(entry);
1397 	if (!p)
1398 		return 0;
1399 
1400 	offset = swp_offset(entry);
1401 
1402 	ci = lock_cluster_or_swap_info(p, offset);
1403 
1404 	count = swap_count(p->swap_map[offset]);
1405 	if (!(count & COUNT_CONTINUED))
1406 		goto out;
1407 
1408 	count &= ~COUNT_CONTINUED;
1409 	n = SWAP_MAP_MAX + 1;
1410 
1411 	page = vmalloc_to_page(p->swap_map + offset);
1412 	offset &= ~PAGE_MASK;
1413 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1414 
1415 	do {
1416 		page = list_next_entry(page, lru);
1417 		map = kmap_atomic(page);
1418 		tmp_count = map[offset];
1419 		kunmap_atomic(map);
1420 
1421 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1422 		n *= (SWAP_CONT_MAX + 1);
1423 	} while (tmp_count & COUNT_CONTINUED);
1424 out:
1425 	unlock_cluster_or_swap_info(p, ci);
1426 	return count;
1427 }
1428 
1429 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1430 					 swp_entry_t entry)
1431 {
1432 	struct swap_cluster_info *ci;
1433 	unsigned char *map = si->swap_map;
1434 	unsigned long roffset = swp_offset(entry);
1435 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1436 	int i;
1437 	bool ret = false;
1438 
1439 	ci = lock_cluster_or_swap_info(si, offset);
1440 	if (!ci || !cluster_is_huge(ci)) {
1441 		if (swap_count(map[roffset]))
1442 			ret = true;
1443 		goto unlock_out;
1444 	}
1445 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1446 		if (swap_count(map[offset + i])) {
1447 			ret = true;
1448 			break;
1449 		}
1450 	}
1451 unlock_out:
1452 	unlock_cluster_or_swap_info(si, ci);
1453 	return ret;
1454 }
1455 
1456 static bool page_swapped(struct page *page)
1457 {
1458 	swp_entry_t entry;
1459 	struct swap_info_struct *si;
1460 
1461 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1462 		return page_swapcount(page) != 0;
1463 
1464 	page = compound_head(page);
1465 	entry.val = page_private(page);
1466 	si = _swap_info_get(entry);
1467 	if (si)
1468 		return swap_page_trans_huge_swapped(si, entry);
1469 	return false;
1470 }
1471 
1472 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1473 					 int *total_swapcount)
1474 {
1475 	int i, map_swapcount, _total_mapcount, _total_swapcount;
1476 	unsigned long offset = 0;
1477 	struct swap_info_struct *si;
1478 	struct swap_cluster_info *ci = NULL;
1479 	unsigned char *map = NULL;
1480 	int mapcount, swapcount = 0;
1481 
1482 	/* hugetlbfs shouldn't call it */
1483 	VM_BUG_ON_PAGE(PageHuge(page), page);
1484 
1485 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1486 		mapcount = page_trans_huge_mapcount(page, total_mapcount);
1487 		if (PageSwapCache(page))
1488 			swapcount = page_swapcount(page);
1489 		if (total_swapcount)
1490 			*total_swapcount = swapcount;
1491 		return mapcount + swapcount;
1492 	}
1493 
1494 	page = compound_head(page);
1495 
1496 	_total_mapcount = _total_swapcount = map_swapcount = 0;
1497 	if (PageSwapCache(page)) {
1498 		swp_entry_t entry;
1499 
1500 		entry.val = page_private(page);
1501 		si = _swap_info_get(entry);
1502 		if (si) {
1503 			map = si->swap_map;
1504 			offset = swp_offset(entry);
1505 		}
1506 	}
1507 	if (map)
1508 		ci = lock_cluster(si, offset);
1509 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1510 		mapcount = atomic_read(&page[i]._mapcount) + 1;
1511 		_total_mapcount += mapcount;
1512 		if (map) {
1513 			swapcount = swap_count(map[offset + i]);
1514 			_total_swapcount += swapcount;
1515 		}
1516 		map_swapcount = max(map_swapcount, mapcount + swapcount);
1517 	}
1518 	unlock_cluster(ci);
1519 	if (PageDoubleMap(page)) {
1520 		map_swapcount -= 1;
1521 		_total_mapcount -= HPAGE_PMD_NR;
1522 	}
1523 	mapcount = compound_mapcount(page);
1524 	map_swapcount += mapcount;
1525 	_total_mapcount += mapcount;
1526 	if (total_mapcount)
1527 		*total_mapcount = _total_mapcount;
1528 	if (total_swapcount)
1529 		*total_swapcount = _total_swapcount;
1530 
1531 	return map_swapcount;
1532 }
1533 
1534 /*
1535  * We can write to an anon page without COW if there are no other references
1536  * to it.  And as a side-effect, free up its swap: because the old content
1537  * on disk will never be read, and seeking back there to write new content
1538  * later would only waste time away from clustering.
1539  *
1540  * NOTE: total_map_swapcount should not be relied upon by the caller if
1541  * reuse_swap_page() returns false, but it may be always overwritten
1542  * (see the other implementation for CONFIG_SWAP=n).
1543  */
1544 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1545 {
1546 	int count, total_mapcount, total_swapcount;
1547 
1548 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1549 	if (unlikely(PageKsm(page)))
1550 		return false;
1551 	count = page_trans_huge_map_swapcount(page, &total_mapcount,
1552 					      &total_swapcount);
1553 	if (total_map_swapcount)
1554 		*total_map_swapcount = total_mapcount + total_swapcount;
1555 	if (count == 1 && PageSwapCache(page) &&
1556 	    (likely(!PageTransCompound(page)) ||
1557 	     /* The remaining swap count will be freed soon */
1558 	     total_swapcount == page_swapcount(page))) {
1559 		if (!PageWriteback(page)) {
1560 			page = compound_head(page);
1561 			delete_from_swap_cache(page);
1562 			SetPageDirty(page);
1563 		} else {
1564 			swp_entry_t entry;
1565 			struct swap_info_struct *p;
1566 
1567 			entry.val = page_private(page);
1568 			p = swap_info_get(entry);
1569 			if (p->flags & SWP_STABLE_WRITES) {
1570 				spin_unlock(&p->lock);
1571 				return false;
1572 			}
1573 			spin_unlock(&p->lock);
1574 		}
1575 	}
1576 
1577 	return count <= 1;
1578 }
1579 
1580 /*
1581  * If swap is getting full, or if there are no more mappings of this page,
1582  * then try_to_free_swap is called to free its swap space.
1583  */
1584 int try_to_free_swap(struct page *page)
1585 {
1586 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1587 
1588 	if (!PageSwapCache(page))
1589 		return 0;
1590 	if (PageWriteback(page))
1591 		return 0;
1592 	if (page_swapped(page))
1593 		return 0;
1594 
1595 	/*
1596 	 * Once hibernation has begun to create its image of memory,
1597 	 * there's a danger that one of the calls to try_to_free_swap()
1598 	 * - most probably a call from __try_to_reclaim_swap() while
1599 	 * hibernation is allocating its own swap pages for the image,
1600 	 * but conceivably even a call from memory reclaim - will free
1601 	 * the swap from a page which has already been recorded in the
1602 	 * image as a clean swapcache page, and then reuse its swap for
1603 	 * another page of the image.  On waking from hibernation, the
1604 	 * original page might be freed under memory pressure, then
1605 	 * later read back in from swap, now with the wrong data.
1606 	 *
1607 	 * Hibernation suspends storage while it is writing the image
1608 	 * to disk so check that here.
1609 	 */
1610 	if (pm_suspended_storage())
1611 		return 0;
1612 
1613 	page = compound_head(page);
1614 	delete_from_swap_cache(page);
1615 	SetPageDirty(page);
1616 	return 1;
1617 }
1618 
1619 /*
1620  * Free the swap entry like above, but also try to
1621  * free the page cache entry if it is the last user.
1622  */
1623 int free_swap_and_cache(swp_entry_t entry)
1624 {
1625 	struct swap_info_struct *p;
1626 	unsigned char count;
1627 
1628 	if (non_swap_entry(entry))
1629 		return 1;
1630 
1631 	p = _swap_info_get(entry);
1632 	if (p) {
1633 		count = __swap_entry_free(p, entry, 1);
1634 		if (count == SWAP_HAS_CACHE &&
1635 		    !swap_page_trans_huge_swapped(p, entry))
1636 			__try_to_reclaim_swap(p, swp_offset(entry),
1637 					      TTRS_UNMAPPED | TTRS_FULL);
1638 	}
1639 	return p != NULL;
1640 }
1641 
1642 #ifdef CONFIG_HIBERNATION
1643 /*
1644  * Find the swap type that corresponds to given device (if any).
1645  *
1646  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1647  * from 0, in which the swap header is expected to be located.
1648  *
1649  * This is needed for the suspend to disk (aka swsusp).
1650  */
1651 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1652 {
1653 	struct block_device *bdev = NULL;
1654 	int type;
1655 
1656 	if (device)
1657 		bdev = bdget(device);
1658 
1659 	spin_lock(&swap_lock);
1660 	for (type = 0; type < nr_swapfiles; type++) {
1661 		struct swap_info_struct *sis = swap_info[type];
1662 
1663 		if (!(sis->flags & SWP_WRITEOK))
1664 			continue;
1665 
1666 		if (!bdev) {
1667 			if (bdev_p)
1668 				*bdev_p = bdgrab(sis->bdev);
1669 
1670 			spin_unlock(&swap_lock);
1671 			return type;
1672 		}
1673 		if (bdev == sis->bdev) {
1674 			struct swap_extent *se = &sis->first_swap_extent;
1675 
1676 			if (se->start_block == offset) {
1677 				if (bdev_p)
1678 					*bdev_p = bdgrab(sis->bdev);
1679 
1680 				spin_unlock(&swap_lock);
1681 				bdput(bdev);
1682 				return type;
1683 			}
1684 		}
1685 	}
1686 	spin_unlock(&swap_lock);
1687 	if (bdev)
1688 		bdput(bdev);
1689 
1690 	return -ENODEV;
1691 }
1692 
1693 /*
1694  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1695  * corresponding to given index in swap_info (swap type).
1696  */
1697 sector_t swapdev_block(int type, pgoff_t offset)
1698 {
1699 	struct block_device *bdev;
1700 
1701 	if ((unsigned int)type >= nr_swapfiles)
1702 		return 0;
1703 	if (!(swap_info[type]->flags & SWP_WRITEOK))
1704 		return 0;
1705 	return map_swap_entry(swp_entry(type, offset), &bdev);
1706 }
1707 
1708 /*
1709  * Return either the total number of swap pages of given type, or the number
1710  * of free pages of that type (depending on @free)
1711  *
1712  * This is needed for software suspend
1713  */
1714 unsigned int count_swap_pages(int type, int free)
1715 {
1716 	unsigned int n = 0;
1717 
1718 	spin_lock(&swap_lock);
1719 	if ((unsigned int)type < nr_swapfiles) {
1720 		struct swap_info_struct *sis = swap_info[type];
1721 
1722 		spin_lock(&sis->lock);
1723 		if (sis->flags & SWP_WRITEOK) {
1724 			n = sis->pages;
1725 			if (free)
1726 				n -= sis->inuse_pages;
1727 		}
1728 		spin_unlock(&sis->lock);
1729 	}
1730 	spin_unlock(&swap_lock);
1731 	return n;
1732 }
1733 #endif /* CONFIG_HIBERNATION */
1734 
1735 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1736 {
1737 	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1738 }
1739 
1740 /*
1741  * No need to decide whether this PTE shares the swap entry with others,
1742  * just let do_wp_page work it out if a write is requested later - to
1743  * force COW, vm_page_prot omits write permission from any private vma.
1744  */
1745 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1746 		unsigned long addr, swp_entry_t entry, struct page *page)
1747 {
1748 	struct page *swapcache;
1749 	struct mem_cgroup *memcg;
1750 	spinlock_t *ptl;
1751 	pte_t *pte;
1752 	int ret = 1;
1753 
1754 	swapcache = page;
1755 	page = ksm_might_need_to_copy(page, vma, addr);
1756 	if (unlikely(!page))
1757 		return -ENOMEM;
1758 
1759 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1760 				&memcg, false)) {
1761 		ret = -ENOMEM;
1762 		goto out_nolock;
1763 	}
1764 
1765 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1766 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1767 		mem_cgroup_cancel_charge(page, memcg, false);
1768 		ret = 0;
1769 		goto out;
1770 	}
1771 
1772 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1773 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1774 	get_page(page);
1775 	set_pte_at(vma->vm_mm, addr, pte,
1776 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1777 	if (page == swapcache) {
1778 		page_add_anon_rmap(page, vma, addr, false);
1779 		mem_cgroup_commit_charge(page, memcg, true, false);
1780 	} else { /* ksm created a completely new copy */
1781 		page_add_new_anon_rmap(page, vma, addr, false);
1782 		mem_cgroup_commit_charge(page, memcg, false, false);
1783 		lru_cache_add_active_or_unevictable(page, vma);
1784 	}
1785 	swap_free(entry);
1786 	/*
1787 	 * Move the page to the active list so it is not
1788 	 * immediately swapped out again after swapon.
1789 	 */
1790 	activate_page(page);
1791 out:
1792 	pte_unmap_unlock(pte, ptl);
1793 out_nolock:
1794 	if (page != swapcache) {
1795 		unlock_page(page);
1796 		put_page(page);
1797 	}
1798 	return ret;
1799 }
1800 
1801 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1802 				unsigned long addr, unsigned long end,
1803 				swp_entry_t entry, struct page *page)
1804 {
1805 	pte_t swp_pte = swp_entry_to_pte(entry);
1806 	pte_t *pte;
1807 	int ret = 0;
1808 
1809 	/*
1810 	 * We don't actually need pte lock while scanning for swp_pte: since
1811 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1812 	 * page table while we're scanning; though it could get zapped, and on
1813 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1814 	 * of unmatched parts which look like swp_pte, so unuse_pte must
1815 	 * recheck under pte lock.  Scanning without pte lock lets it be
1816 	 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1817 	 */
1818 	pte = pte_offset_map(pmd, addr);
1819 	do {
1820 		/*
1821 		 * swapoff spends a _lot_ of time in this loop!
1822 		 * Test inline before going to call unuse_pte.
1823 		 */
1824 		if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1825 			pte_unmap(pte);
1826 			ret = unuse_pte(vma, pmd, addr, entry, page);
1827 			if (ret)
1828 				goto out;
1829 			pte = pte_offset_map(pmd, addr);
1830 		}
1831 	} while (pte++, addr += PAGE_SIZE, addr != end);
1832 	pte_unmap(pte - 1);
1833 out:
1834 	return ret;
1835 }
1836 
1837 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1838 				unsigned long addr, unsigned long end,
1839 				swp_entry_t entry, struct page *page)
1840 {
1841 	pmd_t *pmd;
1842 	unsigned long next;
1843 	int ret;
1844 
1845 	pmd = pmd_offset(pud, addr);
1846 	do {
1847 		cond_resched();
1848 		next = pmd_addr_end(addr, end);
1849 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1850 			continue;
1851 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1852 		if (ret)
1853 			return ret;
1854 	} while (pmd++, addr = next, addr != end);
1855 	return 0;
1856 }
1857 
1858 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1859 				unsigned long addr, unsigned long end,
1860 				swp_entry_t entry, struct page *page)
1861 {
1862 	pud_t *pud;
1863 	unsigned long next;
1864 	int ret;
1865 
1866 	pud = pud_offset(p4d, addr);
1867 	do {
1868 		next = pud_addr_end(addr, end);
1869 		if (pud_none_or_clear_bad(pud))
1870 			continue;
1871 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1872 		if (ret)
1873 			return ret;
1874 	} while (pud++, addr = next, addr != end);
1875 	return 0;
1876 }
1877 
1878 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1879 				unsigned long addr, unsigned long end,
1880 				swp_entry_t entry, struct page *page)
1881 {
1882 	p4d_t *p4d;
1883 	unsigned long next;
1884 	int ret;
1885 
1886 	p4d = p4d_offset(pgd, addr);
1887 	do {
1888 		next = p4d_addr_end(addr, end);
1889 		if (p4d_none_or_clear_bad(p4d))
1890 			continue;
1891 		ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1892 		if (ret)
1893 			return ret;
1894 	} while (p4d++, addr = next, addr != end);
1895 	return 0;
1896 }
1897 
1898 static int unuse_vma(struct vm_area_struct *vma,
1899 				swp_entry_t entry, struct page *page)
1900 {
1901 	pgd_t *pgd;
1902 	unsigned long addr, end, next;
1903 	int ret;
1904 
1905 	if (page_anon_vma(page)) {
1906 		addr = page_address_in_vma(page, vma);
1907 		if (addr == -EFAULT)
1908 			return 0;
1909 		else
1910 			end = addr + PAGE_SIZE;
1911 	} else {
1912 		addr = vma->vm_start;
1913 		end = vma->vm_end;
1914 	}
1915 
1916 	pgd = pgd_offset(vma->vm_mm, addr);
1917 	do {
1918 		next = pgd_addr_end(addr, end);
1919 		if (pgd_none_or_clear_bad(pgd))
1920 			continue;
1921 		ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1922 		if (ret)
1923 			return ret;
1924 	} while (pgd++, addr = next, addr != end);
1925 	return 0;
1926 }
1927 
1928 static int unuse_mm(struct mm_struct *mm,
1929 				swp_entry_t entry, struct page *page)
1930 {
1931 	struct vm_area_struct *vma;
1932 	int ret = 0;
1933 
1934 	if (!down_read_trylock(&mm->mmap_sem)) {
1935 		/*
1936 		 * Activate page so shrink_inactive_list is unlikely to unmap
1937 		 * its ptes while lock is dropped, so swapoff can make progress.
1938 		 */
1939 		activate_page(page);
1940 		unlock_page(page);
1941 		down_read(&mm->mmap_sem);
1942 		lock_page(page);
1943 	}
1944 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1945 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1946 			break;
1947 		cond_resched();
1948 	}
1949 	up_read(&mm->mmap_sem);
1950 	return (ret < 0)? ret: 0;
1951 }
1952 
1953 /*
1954  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1955  * from current position to next entry still in use.
1956  * Recycle to start on reaching the end, returning 0 when empty.
1957  */
1958 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1959 					unsigned int prev, bool frontswap)
1960 {
1961 	unsigned int max = si->max;
1962 	unsigned int i = prev;
1963 	unsigned char count;
1964 
1965 	/*
1966 	 * No need for swap_lock here: we're just looking
1967 	 * for whether an entry is in use, not modifying it; false
1968 	 * hits are okay, and sys_swapoff() has already prevented new
1969 	 * allocations from this area (while holding swap_lock).
1970 	 */
1971 	for (;;) {
1972 		if (++i >= max) {
1973 			if (!prev) {
1974 				i = 0;
1975 				break;
1976 			}
1977 			/*
1978 			 * No entries in use at top of swap_map,
1979 			 * loop back to start and recheck there.
1980 			 */
1981 			max = prev + 1;
1982 			prev = 0;
1983 			i = 1;
1984 		}
1985 		count = READ_ONCE(si->swap_map[i]);
1986 		if (count && swap_count(count) != SWAP_MAP_BAD)
1987 			if (!frontswap || frontswap_test(si, i))
1988 				break;
1989 		if ((i % LATENCY_LIMIT) == 0)
1990 			cond_resched();
1991 	}
1992 	return i;
1993 }
1994 
1995 /*
1996  * We completely avoid races by reading each swap page in advance,
1997  * and then search for the process using it.  All the necessary
1998  * page table adjustments can then be made atomically.
1999  *
2000  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2001  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2002  */
2003 int try_to_unuse(unsigned int type, bool frontswap,
2004 		 unsigned long pages_to_unuse)
2005 {
2006 	struct swap_info_struct *si = swap_info[type];
2007 	struct mm_struct *start_mm;
2008 	volatile unsigned char *swap_map; /* swap_map is accessed without
2009 					   * locking. Mark it as volatile
2010 					   * to prevent compiler doing
2011 					   * something odd.
2012 					   */
2013 	unsigned char swcount;
2014 	struct page *page;
2015 	swp_entry_t entry;
2016 	unsigned int i = 0;
2017 	int retval = 0;
2018 
2019 	/*
2020 	 * When searching mms for an entry, a good strategy is to
2021 	 * start at the first mm we freed the previous entry from
2022 	 * (though actually we don't notice whether we or coincidence
2023 	 * freed the entry).  Initialize this start_mm with a hold.
2024 	 *
2025 	 * A simpler strategy would be to start at the last mm we
2026 	 * freed the previous entry from; but that would take less
2027 	 * advantage of mmlist ordering, which clusters forked mms
2028 	 * together, child after parent.  If we race with dup_mmap(), we
2029 	 * prefer to resolve parent before child, lest we miss entries
2030 	 * duplicated after we scanned child: using last mm would invert
2031 	 * that.
2032 	 */
2033 	start_mm = &init_mm;
2034 	mmget(&init_mm);
2035 
2036 	/*
2037 	 * Keep on scanning until all entries have gone.  Usually,
2038 	 * one pass through swap_map is enough, but not necessarily:
2039 	 * there are races when an instance of an entry might be missed.
2040 	 */
2041 	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
2042 		if (signal_pending(current)) {
2043 			retval = -EINTR;
2044 			break;
2045 		}
2046 
2047 		/*
2048 		 * Get a page for the entry, using the existing swap
2049 		 * cache page if there is one.  Otherwise, get a clean
2050 		 * page and read the swap into it.
2051 		 */
2052 		swap_map = &si->swap_map[i];
2053 		entry = swp_entry(type, i);
2054 		page = read_swap_cache_async(entry,
2055 					GFP_HIGHUSER_MOVABLE, NULL, 0, false);
2056 		if (!page) {
2057 			/*
2058 			 * Either swap_duplicate() failed because entry
2059 			 * has been freed independently, and will not be
2060 			 * reused since sys_swapoff() already disabled
2061 			 * allocation from here, or alloc_page() failed.
2062 			 */
2063 			swcount = *swap_map;
2064 			/*
2065 			 * We don't hold lock here, so the swap entry could be
2066 			 * SWAP_MAP_BAD (when the cluster is discarding).
2067 			 * Instead of fail out, We can just skip the swap
2068 			 * entry because swapoff will wait for discarding
2069 			 * finish anyway.
2070 			 */
2071 			if (!swcount || swcount == SWAP_MAP_BAD)
2072 				continue;
2073 			retval = -ENOMEM;
2074 			break;
2075 		}
2076 
2077 		/*
2078 		 * Don't hold on to start_mm if it looks like exiting.
2079 		 */
2080 		if (atomic_read(&start_mm->mm_users) == 1) {
2081 			mmput(start_mm);
2082 			start_mm = &init_mm;
2083 			mmget(&init_mm);
2084 		}
2085 
2086 		/*
2087 		 * Wait for and lock page.  When do_swap_page races with
2088 		 * try_to_unuse, do_swap_page can handle the fault much
2089 		 * faster than try_to_unuse can locate the entry.  This
2090 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
2091 		 * defer to do_swap_page in such a case - in some tests,
2092 		 * do_swap_page and try_to_unuse repeatedly compete.
2093 		 */
2094 		wait_on_page_locked(page);
2095 		wait_on_page_writeback(page);
2096 		lock_page(page);
2097 		wait_on_page_writeback(page);
2098 
2099 		/*
2100 		 * Remove all references to entry.
2101 		 */
2102 		swcount = *swap_map;
2103 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2104 			retval = shmem_unuse(entry, page);
2105 			/* page has already been unlocked and released */
2106 			if (retval < 0)
2107 				break;
2108 			continue;
2109 		}
2110 		if (swap_count(swcount) && start_mm != &init_mm)
2111 			retval = unuse_mm(start_mm, entry, page);
2112 
2113 		if (swap_count(*swap_map)) {
2114 			int set_start_mm = (*swap_map >= swcount);
2115 			struct list_head *p = &start_mm->mmlist;
2116 			struct mm_struct *new_start_mm = start_mm;
2117 			struct mm_struct *prev_mm = start_mm;
2118 			struct mm_struct *mm;
2119 
2120 			mmget(new_start_mm);
2121 			mmget(prev_mm);
2122 			spin_lock(&mmlist_lock);
2123 			while (swap_count(*swap_map) && !retval &&
2124 					(p = p->next) != &start_mm->mmlist) {
2125 				mm = list_entry(p, struct mm_struct, mmlist);
2126 				if (!mmget_not_zero(mm))
2127 					continue;
2128 				spin_unlock(&mmlist_lock);
2129 				mmput(prev_mm);
2130 				prev_mm = mm;
2131 
2132 				cond_resched();
2133 
2134 				swcount = *swap_map;
2135 				if (!swap_count(swcount)) /* any usage ? */
2136 					;
2137 				else if (mm == &init_mm)
2138 					set_start_mm = 1;
2139 				else
2140 					retval = unuse_mm(mm, entry, page);
2141 
2142 				if (set_start_mm && *swap_map < swcount) {
2143 					mmput(new_start_mm);
2144 					mmget(mm);
2145 					new_start_mm = mm;
2146 					set_start_mm = 0;
2147 				}
2148 				spin_lock(&mmlist_lock);
2149 			}
2150 			spin_unlock(&mmlist_lock);
2151 			mmput(prev_mm);
2152 			mmput(start_mm);
2153 			start_mm = new_start_mm;
2154 		}
2155 		if (retval) {
2156 			unlock_page(page);
2157 			put_page(page);
2158 			break;
2159 		}
2160 
2161 		/*
2162 		 * If a reference remains (rare), we would like to leave
2163 		 * the page in the swap cache; but try_to_unmap could
2164 		 * then re-duplicate the entry once we drop page lock,
2165 		 * so we might loop indefinitely; also, that page could
2166 		 * not be swapped out to other storage meanwhile.  So:
2167 		 * delete from cache even if there's another reference,
2168 		 * after ensuring that the data has been saved to disk -
2169 		 * since if the reference remains (rarer), it will be
2170 		 * read from disk into another page.  Splitting into two
2171 		 * pages would be incorrect if swap supported "shared
2172 		 * private" pages, but they are handled by tmpfs files.
2173 		 *
2174 		 * Given how unuse_vma() targets one particular offset
2175 		 * in an anon_vma, once the anon_vma has been determined,
2176 		 * this splitting happens to be just what is needed to
2177 		 * handle where KSM pages have been swapped out: re-reading
2178 		 * is unnecessarily slow, but we can fix that later on.
2179 		 */
2180 		if (swap_count(*swap_map) &&
2181 		     PageDirty(page) && PageSwapCache(page)) {
2182 			struct writeback_control wbc = {
2183 				.sync_mode = WB_SYNC_NONE,
2184 			};
2185 
2186 			swap_writepage(compound_head(page), &wbc);
2187 			lock_page(page);
2188 			wait_on_page_writeback(page);
2189 		}
2190 
2191 		/*
2192 		 * It is conceivable that a racing task removed this page from
2193 		 * swap cache just before we acquired the page lock at the top,
2194 		 * or while we dropped it in unuse_mm().  The page might even
2195 		 * be back in swap cache on another swap area: that we must not
2196 		 * delete, since it may not have been written out to swap yet.
2197 		 */
2198 		if (PageSwapCache(page) &&
2199 		    likely(page_private(page) == entry.val) &&
2200 		    !page_swapped(page))
2201 			delete_from_swap_cache(compound_head(page));
2202 
2203 		/*
2204 		 * So we could skip searching mms once swap count went
2205 		 * to 1, we did not mark any present ptes as dirty: must
2206 		 * mark page dirty so shrink_page_list will preserve it.
2207 		 */
2208 		SetPageDirty(page);
2209 		unlock_page(page);
2210 		put_page(page);
2211 
2212 		/*
2213 		 * Make sure that we aren't completely killing
2214 		 * interactive performance.
2215 		 */
2216 		cond_resched();
2217 		if (frontswap && pages_to_unuse > 0) {
2218 			if (!--pages_to_unuse)
2219 				break;
2220 		}
2221 	}
2222 
2223 	mmput(start_mm);
2224 	return retval;
2225 }
2226 
2227 /*
2228  * After a successful try_to_unuse, if no swap is now in use, we know
2229  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2230  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2231  * added to the mmlist just after page_duplicate - before would be racy.
2232  */
2233 static void drain_mmlist(void)
2234 {
2235 	struct list_head *p, *next;
2236 	unsigned int type;
2237 
2238 	for (type = 0; type < nr_swapfiles; type++)
2239 		if (swap_info[type]->inuse_pages)
2240 			return;
2241 	spin_lock(&mmlist_lock);
2242 	list_for_each_safe(p, next, &init_mm.mmlist)
2243 		list_del_init(p);
2244 	spin_unlock(&mmlist_lock);
2245 }
2246 
2247 /*
2248  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2249  * corresponds to page offset for the specified swap entry.
2250  * Note that the type of this function is sector_t, but it returns page offset
2251  * into the bdev, not sector offset.
2252  */
2253 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2254 {
2255 	struct swap_info_struct *sis;
2256 	struct swap_extent *start_se;
2257 	struct swap_extent *se;
2258 	pgoff_t offset;
2259 
2260 	sis = swap_info[swp_type(entry)];
2261 	*bdev = sis->bdev;
2262 
2263 	offset = swp_offset(entry);
2264 	start_se = sis->curr_swap_extent;
2265 	se = start_se;
2266 
2267 	for ( ; ; ) {
2268 		if (se->start_page <= offset &&
2269 				offset < (se->start_page + se->nr_pages)) {
2270 			return se->start_block + (offset - se->start_page);
2271 		}
2272 		se = list_next_entry(se, list);
2273 		sis->curr_swap_extent = se;
2274 		BUG_ON(se == start_se);		/* It *must* be present */
2275 	}
2276 }
2277 
2278 /*
2279  * Returns the page offset into bdev for the specified page's swap entry.
2280  */
2281 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2282 {
2283 	swp_entry_t entry;
2284 	entry.val = page_private(page);
2285 	return map_swap_entry(entry, bdev);
2286 }
2287 
2288 /*
2289  * Free all of a swapdev's extent information
2290  */
2291 static void destroy_swap_extents(struct swap_info_struct *sis)
2292 {
2293 	while (!list_empty(&sis->first_swap_extent.list)) {
2294 		struct swap_extent *se;
2295 
2296 		se = list_first_entry(&sis->first_swap_extent.list,
2297 				struct swap_extent, list);
2298 		list_del(&se->list);
2299 		kfree(se);
2300 	}
2301 
2302 	if (sis->flags & SWP_ACTIVATED) {
2303 		struct file *swap_file = sis->swap_file;
2304 		struct address_space *mapping = swap_file->f_mapping;
2305 
2306 		sis->flags &= ~SWP_ACTIVATED;
2307 		if (mapping->a_ops->swap_deactivate)
2308 			mapping->a_ops->swap_deactivate(swap_file);
2309 	}
2310 }
2311 
2312 /*
2313  * Add a block range (and the corresponding page range) into this swapdev's
2314  * extent list.  The extent list is kept sorted in page order.
2315  *
2316  * This function rather assumes that it is called in ascending page order.
2317  */
2318 int
2319 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2320 		unsigned long nr_pages, sector_t start_block)
2321 {
2322 	struct swap_extent *se;
2323 	struct swap_extent *new_se;
2324 	struct list_head *lh;
2325 
2326 	if (start_page == 0) {
2327 		se = &sis->first_swap_extent;
2328 		sis->curr_swap_extent = se;
2329 		se->start_page = 0;
2330 		se->nr_pages = nr_pages;
2331 		se->start_block = start_block;
2332 		return 1;
2333 	} else {
2334 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
2335 		se = list_entry(lh, struct swap_extent, list);
2336 		BUG_ON(se->start_page + se->nr_pages != start_page);
2337 		if (se->start_block + se->nr_pages == start_block) {
2338 			/* Merge it */
2339 			se->nr_pages += nr_pages;
2340 			return 0;
2341 		}
2342 	}
2343 
2344 	/*
2345 	 * No merge.  Insert a new extent, preserving ordering.
2346 	 */
2347 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2348 	if (new_se == NULL)
2349 		return -ENOMEM;
2350 	new_se->start_page = start_page;
2351 	new_se->nr_pages = nr_pages;
2352 	new_se->start_block = start_block;
2353 
2354 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2355 	return 1;
2356 }
2357 EXPORT_SYMBOL_GPL(add_swap_extent);
2358 
2359 /*
2360  * A `swap extent' is a simple thing which maps a contiguous range of pages
2361  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2362  * is built at swapon time and is then used at swap_writepage/swap_readpage
2363  * time for locating where on disk a page belongs.
2364  *
2365  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2366  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2367  * swap files identically.
2368  *
2369  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2370  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2371  * swapfiles are handled *identically* after swapon time.
2372  *
2373  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2374  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2375  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2376  * requirements, they are simply tossed out - we will never use those blocks
2377  * for swapping.
2378  *
2379  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2380  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2381  * which will scribble on the fs.
2382  *
2383  * The amount of disk space which a single swap extent represents varies.
2384  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2385  * extents in the list.  To avoid much list walking, we cache the previous
2386  * search location in `curr_swap_extent', and start new searches from there.
2387  * This is extremely effective.  The average number of iterations in
2388  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2389  */
2390 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2391 {
2392 	struct file *swap_file = sis->swap_file;
2393 	struct address_space *mapping = swap_file->f_mapping;
2394 	struct inode *inode = mapping->host;
2395 	int ret;
2396 
2397 	if (S_ISBLK(inode->i_mode)) {
2398 		ret = add_swap_extent(sis, 0, sis->max, 0);
2399 		*span = sis->pages;
2400 		return ret;
2401 	}
2402 
2403 	if (mapping->a_ops->swap_activate) {
2404 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2405 		if (ret >= 0)
2406 			sis->flags |= SWP_ACTIVATED;
2407 		if (!ret) {
2408 			sis->flags |= SWP_FS;
2409 			ret = add_swap_extent(sis, 0, sis->max, 0);
2410 			*span = sis->pages;
2411 		}
2412 		return ret;
2413 	}
2414 
2415 	return generic_swapfile_activate(sis, swap_file, span);
2416 }
2417 
2418 static int swap_node(struct swap_info_struct *p)
2419 {
2420 	struct block_device *bdev;
2421 
2422 	if (p->bdev)
2423 		bdev = p->bdev;
2424 	else
2425 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2426 
2427 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2428 }
2429 
2430 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2431 				unsigned char *swap_map,
2432 				struct swap_cluster_info *cluster_info)
2433 {
2434 	int i;
2435 
2436 	if (prio >= 0)
2437 		p->prio = prio;
2438 	else
2439 		p->prio = --least_priority;
2440 	/*
2441 	 * the plist prio is negated because plist ordering is
2442 	 * low-to-high, while swap ordering is high-to-low
2443 	 */
2444 	p->list.prio = -p->prio;
2445 	for_each_node(i) {
2446 		if (p->prio >= 0)
2447 			p->avail_lists[i].prio = -p->prio;
2448 		else {
2449 			if (swap_node(p) == i)
2450 				p->avail_lists[i].prio = 1;
2451 			else
2452 				p->avail_lists[i].prio = -p->prio;
2453 		}
2454 	}
2455 	p->swap_map = swap_map;
2456 	p->cluster_info = cluster_info;
2457 	p->flags |= SWP_WRITEOK;
2458 	atomic_long_add(p->pages, &nr_swap_pages);
2459 	total_swap_pages += p->pages;
2460 
2461 	assert_spin_locked(&swap_lock);
2462 	/*
2463 	 * both lists are plists, and thus priority ordered.
2464 	 * swap_active_head needs to be priority ordered for swapoff(),
2465 	 * which on removal of any swap_info_struct with an auto-assigned
2466 	 * (i.e. negative) priority increments the auto-assigned priority
2467 	 * of any lower-priority swap_info_structs.
2468 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2469 	 * which allocates swap pages from the highest available priority
2470 	 * swap_info_struct.
2471 	 */
2472 	plist_add(&p->list, &swap_active_head);
2473 	add_to_avail_list(p);
2474 }
2475 
2476 static void enable_swap_info(struct swap_info_struct *p, int prio,
2477 				unsigned char *swap_map,
2478 				struct swap_cluster_info *cluster_info,
2479 				unsigned long *frontswap_map)
2480 {
2481 	frontswap_init(p->type, frontswap_map);
2482 	spin_lock(&swap_lock);
2483 	spin_lock(&p->lock);
2484 	 _enable_swap_info(p, prio, swap_map, cluster_info);
2485 	spin_unlock(&p->lock);
2486 	spin_unlock(&swap_lock);
2487 }
2488 
2489 static void reinsert_swap_info(struct swap_info_struct *p)
2490 {
2491 	spin_lock(&swap_lock);
2492 	spin_lock(&p->lock);
2493 	_enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2494 	spin_unlock(&p->lock);
2495 	spin_unlock(&swap_lock);
2496 }
2497 
2498 bool has_usable_swap(void)
2499 {
2500 	bool ret = true;
2501 
2502 	spin_lock(&swap_lock);
2503 	if (plist_head_empty(&swap_active_head))
2504 		ret = false;
2505 	spin_unlock(&swap_lock);
2506 	return ret;
2507 }
2508 
2509 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2510 {
2511 	struct swap_info_struct *p = NULL;
2512 	unsigned char *swap_map;
2513 	struct swap_cluster_info *cluster_info;
2514 	unsigned long *frontswap_map;
2515 	struct file *swap_file, *victim;
2516 	struct address_space *mapping;
2517 	struct inode *inode;
2518 	struct filename *pathname;
2519 	int err, found = 0;
2520 	unsigned int old_block_size;
2521 
2522 	if (!capable(CAP_SYS_ADMIN))
2523 		return -EPERM;
2524 
2525 	BUG_ON(!current->mm);
2526 
2527 	pathname = getname(specialfile);
2528 	if (IS_ERR(pathname))
2529 		return PTR_ERR(pathname);
2530 
2531 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2532 	err = PTR_ERR(victim);
2533 	if (IS_ERR(victim))
2534 		goto out;
2535 
2536 	mapping = victim->f_mapping;
2537 	spin_lock(&swap_lock);
2538 	plist_for_each_entry(p, &swap_active_head, list) {
2539 		if (p->flags & SWP_WRITEOK) {
2540 			if (p->swap_file->f_mapping == mapping) {
2541 				found = 1;
2542 				break;
2543 			}
2544 		}
2545 	}
2546 	if (!found) {
2547 		err = -EINVAL;
2548 		spin_unlock(&swap_lock);
2549 		goto out_dput;
2550 	}
2551 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2552 		vm_unacct_memory(p->pages);
2553 	else {
2554 		err = -ENOMEM;
2555 		spin_unlock(&swap_lock);
2556 		goto out_dput;
2557 	}
2558 	del_from_avail_list(p);
2559 	spin_lock(&p->lock);
2560 	if (p->prio < 0) {
2561 		struct swap_info_struct *si = p;
2562 		int nid;
2563 
2564 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2565 			si->prio++;
2566 			si->list.prio--;
2567 			for_each_node(nid) {
2568 				if (si->avail_lists[nid].prio != 1)
2569 					si->avail_lists[nid].prio--;
2570 			}
2571 		}
2572 		least_priority++;
2573 	}
2574 	plist_del(&p->list, &swap_active_head);
2575 	atomic_long_sub(p->pages, &nr_swap_pages);
2576 	total_swap_pages -= p->pages;
2577 	p->flags &= ~SWP_WRITEOK;
2578 	spin_unlock(&p->lock);
2579 	spin_unlock(&swap_lock);
2580 
2581 	disable_swap_slots_cache_lock();
2582 
2583 	set_current_oom_origin();
2584 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2585 	clear_current_oom_origin();
2586 
2587 	if (err) {
2588 		/* re-insert swap space back into swap_list */
2589 		reinsert_swap_info(p);
2590 		reenable_swap_slots_cache_unlock();
2591 		goto out_dput;
2592 	}
2593 
2594 	reenable_swap_slots_cache_unlock();
2595 
2596 	flush_work(&p->discard_work);
2597 
2598 	destroy_swap_extents(p);
2599 	if (p->flags & SWP_CONTINUED)
2600 		free_swap_count_continuations(p);
2601 
2602 	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2603 		atomic_dec(&nr_rotate_swap);
2604 
2605 	mutex_lock(&swapon_mutex);
2606 	spin_lock(&swap_lock);
2607 	spin_lock(&p->lock);
2608 	drain_mmlist();
2609 
2610 	/* wait for anyone still in scan_swap_map */
2611 	p->highest_bit = 0;		/* cuts scans short */
2612 	while (p->flags >= SWP_SCANNING) {
2613 		spin_unlock(&p->lock);
2614 		spin_unlock(&swap_lock);
2615 		schedule_timeout_uninterruptible(1);
2616 		spin_lock(&swap_lock);
2617 		spin_lock(&p->lock);
2618 	}
2619 
2620 	swap_file = p->swap_file;
2621 	old_block_size = p->old_block_size;
2622 	p->swap_file = NULL;
2623 	p->max = 0;
2624 	swap_map = p->swap_map;
2625 	p->swap_map = NULL;
2626 	cluster_info = p->cluster_info;
2627 	p->cluster_info = NULL;
2628 	frontswap_map = frontswap_map_get(p);
2629 	spin_unlock(&p->lock);
2630 	spin_unlock(&swap_lock);
2631 	frontswap_invalidate_area(p->type);
2632 	frontswap_map_set(p, NULL);
2633 	mutex_unlock(&swapon_mutex);
2634 	free_percpu(p->percpu_cluster);
2635 	p->percpu_cluster = NULL;
2636 	vfree(swap_map);
2637 	kvfree(cluster_info);
2638 	kvfree(frontswap_map);
2639 	/* Destroy swap account information */
2640 	swap_cgroup_swapoff(p->type);
2641 	exit_swap_address_space(p->type);
2642 
2643 	inode = mapping->host;
2644 	if (S_ISBLK(inode->i_mode)) {
2645 		struct block_device *bdev = I_BDEV(inode);
2646 		set_blocksize(bdev, old_block_size);
2647 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2648 	} else {
2649 		inode_lock(inode);
2650 		inode->i_flags &= ~S_SWAPFILE;
2651 		inode_unlock(inode);
2652 	}
2653 	filp_close(swap_file, NULL);
2654 
2655 	/*
2656 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2657 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2658 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2659 	 */
2660 	spin_lock(&swap_lock);
2661 	p->flags = 0;
2662 	spin_unlock(&swap_lock);
2663 
2664 	err = 0;
2665 	atomic_inc(&proc_poll_event);
2666 	wake_up_interruptible(&proc_poll_wait);
2667 
2668 out_dput:
2669 	filp_close(victim, NULL);
2670 out:
2671 	putname(pathname);
2672 	return err;
2673 }
2674 
2675 #ifdef CONFIG_PROC_FS
2676 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2677 {
2678 	struct seq_file *seq = file->private_data;
2679 
2680 	poll_wait(file, &proc_poll_wait, wait);
2681 
2682 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2683 		seq->poll_event = atomic_read(&proc_poll_event);
2684 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2685 	}
2686 
2687 	return EPOLLIN | EPOLLRDNORM;
2688 }
2689 
2690 /* iterator */
2691 static void *swap_start(struct seq_file *swap, loff_t *pos)
2692 {
2693 	struct swap_info_struct *si;
2694 	int type;
2695 	loff_t l = *pos;
2696 
2697 	mutex_lock(&swapon_mutex);
2698 
2699 	if (!l)
2700 		return SEQ_START_TOKEN;
2701 
2702 	for (type = 0; type < nr_swapfiles; type++) {
2703 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2704 		si = swap_info[type];
2705 		if (!(si->flags & SWP_USED) || !si->swap_map)
2706 			continue;
2707 		if (!--l)
2708 			return si;
2709 	}
2710 
2711 	return NULL;
2712 }
2713 
2714 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2715 {
2716 	struct swap_info_struct *si = v;
2717 	int type;
2718 
2719 	if (v == SEQ_START_TOKEN)
2720 		type = 0;
2721 	else
2722 		type = si->type + 1;
2723 
2724 	for (; type < nr_swapfiles; type++) {
2725 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2726 		si = swap_info[type];
2727 		if (!(si->flags & SWP_USED) || !si->swap_map)
2728 			continue;
2729 		++*pos;
2730 		return si;
2731 	}
2732 
2733 	return NULL;
2734 }
2735 
2736 static void swap_stop(struct seq_file *swap, void *v)
2737 {
2738 	mutex_unlock(&swapon_mutex);
2739 }
2740 
2741 static int swap_show(struct seq_file *swap, void *v)
2742 {
2743 	struct swap_info_struct *si = v;
2744 	struct file *file;
2745 	int len;
2746 
2747 	if (si == SEQ_START_TOKEN) {
2748 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2749 		return 0;
2750 	}
2751 
2752 	file = si->swap_file;
2753 	len = seq_file_path(swap, file, " \t\n\\");
2754 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2755 			len < 40 ? 40 - len : 1, " ",
2756 			S_ISBLK(file_inode(file)->i_mode) ?
2757 				"partition" : "file\t",
2758 			si->pages << (PAGE_SHIFT - 10),
2759 			si->inuse_pages << (PAGE_SHIFT - 10),
2760 			si->prio);
2761 	return 0;
2762 }
2763 
2764 static const struct seq_operations swaps_op = {
2765 	.start =	swap_start,
2766 	.next =		swap_next,
2767 	.stop =		swap_stop,
2768 	.show =		swap_show
2769 };
2770 
2771 static int swaps_open(struct inode *inode, struct file *file)
2772 {
2773 	struct seq_file *seq;
2774 	int ret;
2775 
2776 	ret = seq_open(file, &swaps_op);
2777 	if (ret)
2778 		return ret;
2779 
2780 	seq = file->private_data;
2781 	seq->poll_event = atomic_read(&proc_poll_event);
2782 	return 0;
2783 }
2784 
2785 static const struct file_operations proc_swaps_operations = {
2786 	.open		= swaps_open,
2787 	.read		= seq_read,
2788 	.llseek		= seq_lseek,
2789 	.release	= seq_release,
2790 	.poll		= swaps_poll,
2791 };
2792 
2793 static int __init procswaps_init(void)
2794 {
2795 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
2796 	return 0;
2797 }
2798 __initcall(procswaps_init);
2799 #endif /* CONFIG_PROC_FS */
2800 
2801 #ifdef MAX_SWAPFILES_CHECK
2802 static int __init max_swapfiles_check(void)
2803 {
2804 	MAX_SWAPFILES_CHECK();
2805 	return 0;
2806 }
2807 late_initcall(max_swapfiles_check);
2808 #endif
2809 
2810 static struct swap_info_struct *alloc_swap_info(void)
2811 {
2812 	struct swap_info_struct *p;
2813 	unsigned int type;
2814 	int i;
2815 
2816 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2817 	if (!p)
2818 		return ERR_PTR(-ENOMEM);
2819 
2820 	spin_lock(&swap_lock);
2821 	for (type = 0; type < nr_swapfiles; type++) {
2822 		if (!(swap_info[type]->flags & SWP_USED))
2823 			break;
2824 	}
2825 	if (type >= MAX_SWAPFILES) {
2826 		spin_unlock(&swap_lock);
2827 		kfree(p);
2828 		return ERR_PTR(-EPERM);
2829 	}
2830 	if (type >= nr_swapfiles) {
2831 		p->type = type;
2832 		swap_info[type] = p;
2833 		/*
2834 		 * Write swap_info[type] before nr_swapfiles, in case a
2835 		 * racing procfs swap_start() or swap_next() is reading them.
2836 		 * (We never shrink nr_swapfiles, we never free this entry.)
2837 		 */
2838 		smp_wmb();
2839 		nr_swapfiles++;
2840 	} else {
2841 		kfree(p);
2842 		p = swap_info[type];
2843 		/*
2844 		 * Do not memset this entry: a racing procfs swap_next()
2845 		 * would be relying on p->type to remain valid.
2846 		 */
2847 	}
2848 	INIT_LIST_HEAD(&p->first_swap_extent.list);
2849 	plist_node_init(&p->list, 0);
2850 	for_each_node(i)
2851 		plist_node_init(&p->avail_lists[i], 0);
2852 	p->flags = SWP_USED;
2853 	spin_unlock(&swap_lock);
2854 	spin_lock_init(&p->lock);
2855 	spin_lock_init(&p->cont_lock);
2856 
2857 	return p;
2858 }
2859 
2860 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2861 {
2862 	int error;
2863 
2864 	if (S_ISBLK(inode->i_mode)) {
2865 		p->bdev = bdgrab(I_BDEV(inode));
2866 		error = blkdev_get(p->bdev,
2867 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2868 		if (error < 0) {
2869 			p->bdev = NULL;
2870 			return error;
2871 		}
2872 		p->old_block_size = block_size(p->bdev);
2873 		error = set_blocksize(p->bdev, PAGE_SIZE);
2874 		if (error < 0)
2875 			return error;
2876 		p->flags |= SWP_BLKDEV;
2877 	} else if (S_ISREG(inode->i_mode)) {
2878 		p->bdev = inode->i_sb->s_bdev;
2879 		inode_lock(inode);
2880 		if (IS_SWAPFILE(inode))
2881 			return -EBUSY;
2882 	} else
2883 		return -EINVAL;
2884 
2885 	return 0;
2886 }
2887 
2888 
2889 /*
2890  * Find out how many pages are allowed for a single swap device. There
2891  * are two limiting factors:
2892  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2893  * 2) the number of bits in the swap pte, as defined by the different
2894  * architectures.
2895  *
2896  * In order to find the largest possible bit mask, a swap entry with
2897  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2898  * decoded to a swp_entry_t again, and finally the swap offset is
2899  * extracted.
2900  *
2901  * This will mask all the bits from the initial ~0UL mask that can't
2902  * be encoded in either the swp_entry_t or the architecture definition
2903  * of a swap pte.
2904  */
2905 unsigned long generic_max_swapfile_size(void)
2906 {
2907 	return swp_offset(pte_to_swp_entry(
2908 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2909 }
2910 
2911 /* Can be overridden by an architecture for additional checks. */
2912 __weak unsigned long max_swapfile_size(void)
2913 {
2914 	return generic_max_swapfile_size();
2915 }
2916 
2917 static unsigned long read_swap_header(struct swap_info_struct *p,
2918 					union swap_header *swap_header,
2919 					struct inode *inode)
2920 {
2921 	int i;
2922 	unsigned long maxpages;
2923 	unsigned long swapfilepages;
2924 	unsigned long last_page;
2925 
2926 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2927 		pr_err("Unable to find swap-space signature\n");
2928 		return 0;
2929 	}
2930 
2931 	/* swap partition endianess hack... */
2932 	if (swab32(swap_header->info.version) == 1) {
2933 		swab32s(&swap_header->info.version);
2934 		swab32s(&swap_header->info.last_page);
2935 		swab32s(&swap_header->info.nr_badpages);
2936 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2937 			return 0;
2938 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2939 			swab32s(&swap_header->info.badpages[i]);
2940 	}
2941 	/* Check the swap header's sub-version */
2942 	if (swap_header->info.version != 1) {
2943 		pr_warn("Unable to handle swap header version %d\n",
2944 			swap_header->info.version);
2945 		return 0;
2946 	}
2947 
2948 	p->lowest_bit  = 1;
2949 	p->cluster_next = 1;
2950 	p->cluster_nr = 0;
2951 
2952 	maxpages = max_swapfile_size();
2953 	last_page = swap_header->info.last_page;
2954 	if (!last_page) {
2955 		pr_warn("Empty swap-file\n");
2956 		return 0;
2957 	}
2958 	if (last_page > maxpages) {
2959 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2960 			maxpages << (PAGE_SHIFT - 10),
2961 			last_page << (PAGE_SHIFT - 10));
2962 	}
2963 	if (maxpages > last_page) {
2964 		maxpages = last_page + 1;
2965 		/* p->max is an unsigned int: don't overflow it */
2966 		if ((unsigned int)maxpages == 0)
2967 			maxpages = UINT_MAX;
2968 	}
2969 	p->highest_bit = maxpages - 1;
2970 
2971 	if (!maxpages)
2972 		return 0;
2973 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2974 	if (swapfilepages && maxpages > swapfilepages) {
2975 		pr_warn("Swap area shorter than signature indicates\n");
2976 		return 0;
2977 	}
2978 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2979 		return 0;
2980 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2981 		return 0;
2982 
2983 	return maxpages;
2984 }
2985 
2986 #define SWAP_CLUSTER_INFO_COLS						\
2987 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2988 #define SWAP_CLUSTER_SPACE_COLS						\
2989 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2990 #define SWAP_CLUSTER_COLS						\
2991 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2992 
2993 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2994 					union swap_header *swap_header,
2995 					unsigned char *swap_map,
2996 					struct swap_cluster_info *cluster_info,
2997 					unsigned long maxpages,
2998 					sector_t *span)
2999 {
3000 	unsigned int j, k;
3001 	unsigned int nr_good_pages;
3002 	int nr_extents;
3003 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3004 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3005 	unsigned long i, idx;
3006 
3007 	nr_good_pages = maxpages - 1;	/* omit header page */
3008 
3009 	cluster_list_init(&p->free_clusters);
3010 	cluster_list_init(&p->discard_clusters);
3011 
3012 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3013 		unsigned int page_nr = swap_header->info.badpages[i];
3014 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3015 			return -EINVAL;
3016 		if (page_nr < maxpages) {
3017 			swap_map[page_nr] = SWAP_MAP_BAD;
3018 			nr_good_pages--;
3019 			/*
3020 			 * Haven't marked the cluster free yet, no list
3021 			 * operation involved
3022 			 */
3023 			inc_cluster_info_page(p, cluster_info, page_nr);
3024 		}
3025 	}
3026 
3027 	/* Haven't marked the cluster free yet, no list operation involved */
3028 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3029 		inc_cluster_info_page(p, cluster_info, i);
3030 
3031 	if (nr_good_pages) {
3032 		swap_map[0] = SWAP_MAP_BAD;
3033 		/*
3034 		 * Not mark the cluster free yet, no list
3035 		 * operation involved
3036 		 */
3037 		inc_cluster_info_page(p, cluster_info, 0);
3038 		p->max = maxpages;
3039 		p->pages = nr_good_pages;
3040 		nr_extents = setup_swap_extents(p, span);
3041 		if (nr_extents < 0)
3042 			return nr_extents;
3043 		nr_good_pages = p->pages;
3044 	}
3045 	if (!nr_good_pages) {
3046 		pr_warn("Empty swap-file\n");
3047 		return -EINVAL;
3048 	}
3049 
3050 	if (!cluster_info)
3051 		return nr_extents;
3052 
3053 
3054 	/*
3055 	 * Reduce false cache line sharing between cluster_info and
3056 	 * sharing same address space.
3057 	 */
3058 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3059 		j = (k + col) % SWAP_CLUSTER_COLS;
3060 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3061 			idx = i * SWAP_CLUSTER_COLS + j;
3062 			if (idx >= nr_clusters)
3063 				continue;
3064 			if (cluster_count(&cluster_info[idx]))
3065 				continue;
3066 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3067 			cluster_list_add_tail(&p->free_clusters, cluster_info,
3068 					      idx);
3069 		}
3070 	}
3071 	return nr_extents;
3072 }
3073 
3074 /*
3075  * Helper to sys_swapon determining if a given swap
3076  * backing device queue supports DISCARD operations.
3077  */
3078 static bool swap_discardable(struct swap_info_struct *si)
3079 {
3080 	struct request_queue *q = bdev_get_queue(si->bdev);
3081 
3082 	if (!q || !blk_queue_discard(q))
3083 		return false;
3084 
3085 	return true;
3086 }
3087 
3088 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3089 {
3090 	struct swap_info_struct *p;
3091 	struct filename *name;
3092 	struct file *swap_file = NULL;
3093 	struct address_space *mapping;
3094 	int prio;
3095 	int error;
3096 	union swap_header *swap_header;
3097 	int nr_extents;
3098 	sector_t span;
3099 	unsigned long maxpages;
3100 	unsigned char *swap_map = NULL;
3101 	struct swap_cluster_info *cluster_info = NULL;
3102 	unsigned long *frontswap_map = NULL;
3103 	struct page *page = NULL;
3104 	struct inode *inode = NULL;
3105 	bool inced_nr_rotate_swap = false;
3106 
3107 	if (swap_flags & ~SWAP_FLAGS_VALID)
3108 		return -EINVAL;
3109 
3110 	if (!capable(CAP_SYS_ADMIN))
3111 		return -EPERM;
3112 
3113 	if (!swap_avail_heads)
3114 		return -ENOMEM;
3115 
3116 	p = alloc_swap_info();
3117 	if (IS_ERR(p))
3118 		return PTR_ERR(p);
3119 
3120 	INIT_WORK(&p->discard_work, swap_discard_work);
3121 
3122 	name = getname(specialfile);
3123 	if (IS_ERR(name)) {
3124 		error = PTR_ERR(name);
3125 		name = NULL;
3126 		goto bad_swap;
3127 	}
3128 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3129 	if (IS_ERR(swap_file)) {
3130 		error = PTR_ERR(swap_file);
3131 		swap_file = NULL;
3132 		goto bad_swap;
3133 	}
3134 
3135 	p->swap_file = swap_file;
3136 	mapping = swap_file->f_mapping;
3137 	inode = mapping->host;
3138 
3139 	/* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3140 	error = claim_swapfile(p, inode);
3141 	if (unlikely(error))
3142 		goto bad_swap;
3143 
3144 	/*
3145 	 * Read the swap header.
3146 	 */
3147 	if (!mapping->a_ops->readpage) {
3148 		error = -EINVAL;
3149 		goto bad_swap;
3150 	}
3151 	page = read_mapping_page(mapping, 0, swap_file);
3152 	if (IS_ERR(page)) {
3153 		error = PTR_ERR(page);
3154 		goto bad_swap;
3155 	}
3156 	swap_header = kmap(page);
3157 
3158 	maxpages = read_swap_header(p, swap_header, inode);
3159 	if (unlikely(!maxpages)) {
3160 		error = -EINVAL;
3161 		goto bad_swap;
3162 	}
3163 
3164 	/* OK, set up the swap map and apply the bad block list */
3165 	swap_map = vzalloc(maxpages);
3166 	if (!swap_map) {
3167 		error = -ENOMEM;
3168 		goto bad_swap;
3169 	}
3170 
3171 	if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3172 		p->flags |= SWP_STABLE_WRITES;
3173 
3174 	if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3175 		p->flags |= SWP_SYNCHRONOUS_IO;
3176 
3177 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3178 		int cpu;
3179 		unsigned long ci, nr_cluster;
3180 
3181 		p->flags |= SWP_SOLIDSTATE;
3182 		/*
3183 		 * select a random position to start with to help wear leveling
3184 		 * SSD
3185 		 */
3186 		p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3187 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3188 
3189 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3190 					GFP_KERNEL);
3191 		if (!cluster_info) {
3192 			error = -ENOMEM;
3193 			goto bad_swap;
3194 		}
3195 
3196 		for (ci = 0; ci < nr_cluster; ci++)
3197 			spin_lock_init(&((cluster_info + ci)->lock));
3198 
3199 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3200 		if (!p->percpu_cluster) {
3201 			error = -ENOMEM;
3202 			goto bad_swap;
3203 		}
3204 		for_each_possible_cpu(cpu) {
3205 			struct percpu_cluster *cluster;
3206 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3207 			cluster_set_null(&cluster->index);
3208 		}
3209 	} else {
3210 		atomic_inc(&nr_rotate_swap);
3211 		inced_nr_rotate_swap = true;
3212 	}
3213 
3214 	error = swap_cgroup_swapon(p->type, maxpages);
3215 	if (error)
3216 		goto bad_swap;
3217 
3218 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3219 		cluster_info, maxpages, &span);
3220 	if (unlikely(nr_extents < 0)) {
3221 		error = nr_extents;
3222 		goto bad_swap;
3223 	}
3224 	/* frontswap enabled? set up bit-per-page map for frontswap */
3225 	if (IS_ENABLED(CONFIG_FRONTSWAP))
3226 		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3227 					 sizeof(long),
3228 					 GFP_KERNEL);
3229 
3230 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3231 		/*
3232 		 * When discard is enabled for swap with no particular
3233 		 * policy flagged, we set all swap discard flags here in
3234 		 * order to sustain backward compatibility with older
3235 		 * swapon(8) releases.
3236 		 */
3237 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3238 			     SWP_PAGE_DISCARD);
3239 
3240 		/*
3241 		 * By flagging sys_swapon, a sysadmin can tell us to
3242 		 * either do single-time area discards only, or to just
3243 		 * perform discards for released swap page-clusters.
3244 		 * Now it's time to adjust the p->flags accordingly.
3245 		 */
3246 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3247 			p->flags &= ~SWP_PAGE_DISCARD;
3248 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3249 			p->flags &= ~SWP_AREA_DISCARD;
3250 
3251 		/* issue a swapon-time discard if it's still required */
3252 		if (p->flags & SWP_AREA_DISCARD) {
3253 			int err = discard_swap(p);
3254 			if (unlikely(err))
3255 				pr_err("swapon: discard_swap(%p): %d\n",
3256 					p, err);
3257 		}
3258 	}
3259 
3260 	error = init_swap_address_space(p->type, maxpages);
3261 	if (error)
3262 		goto bad_swap;
3263 
3264 	mutex_lock(&swapon_mutex);
3265 	prio = -1;
3266 	if (swap_flags & SWAP_FLAG_PREFER)
3267 		prio =
3268 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3269 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3270 
3271 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3272 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3273 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3274 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3275 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3276 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3277 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3278 		(frontswap_map) ? "FS" : "");
3279 
3280 	mutex_unlock(&swapon_mutex);
3281 	atomic_inc(&proc_poll_event);
3282 	wake_up_interruptible(&proc_poll_wait);
3283 
3284 	if (S_ISREG(inode->i_mode))
3285 		inode->i_flags |= S_SWAPFILE;
3286 	error = 0;
3287 	goto out;
3288 bad_swap:
3289 	free_percpu(p->percpu_cluster);
3290 	p->percpu_cluster = NULL;
3291 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3292 		set_blocksize(p->bdev, p->old_block_size);
3293 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3294 	}
3295 	destroy_swap_extents(p);
3296 	swap_cgroup_swapoff(p->type);
3297 	spin_lock(&swap_lock);
3298 	p->swap_file = NULL;
3299 	p->flags = 0;
3300 	spin_unlock(&swap_lock);
3301 	vfree(swap_map);
3302 	kvfree(cluster_info);
3303 	kvfree(frontswap_map);
3304 	if (inced_nr_rotate_swap)
3305 		atomic_dec(&nr_rotate_swap);
3306 	if (swap_file) {
3307 		if (inode && S_ISREG(inode->i_mode)) {
3308 			inode_unlock(inode);
3309 			inode = NULL;
3310 		}
3311 		filp_close(swap_file, NULL);
3312 	}
3313 out:
3314 	if (page && !IS_ERR(page)) {
3315 		kunmap(page);
3316 		put_page(page);
3317 	}
3318 	if (name)
3319 		putname(name);
3320 	if (inode && S_ISREG(inode->i_mode))
3321 		inode_unlock(inode);
3322 	if (!error)
3323 		enable_swap_slots_cache();
3324 	return error;
3325 }
3326 
3327 void si_swapinfo(struct sysinfo *val)
3328 {
3329 	unsigned int type;
3330 	unsigned long nr_to_be_unused = 0;
3331 
3332 	spin_lock(&swap_lock);
3333 	for (type = 0; type < nr_swapfiles; type++) {
3334 		struct swap_info_struct *si = swap_info[type];
3335 
3336 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3337 			nr_to_be_unused += si->inuse_pages;
3338 	}
3339 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3340 	val->totalswap = total_swap_pages + nr_to_be_unused;
3341 	spin_unlock(&swap_lock);
3342 }
3343 
3344 /*
3345  * Verify that a swap entry is valid and increment its swap map count.
3346  *
3347  * Returns error code in following case.
3348  * - success -> 0
3349  * - swp_entry is invalid -> EINVAL
3350  * - swp_entry is migration entry -> EINVAL
3351  * - swap-cache reference is requested but there is already one. -> EEXIST
3352  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3353  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3354  */
3355 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3356 {
3357 	struct swap_info_struct *p;
3358 	struct swap_cluster_info *ci;
3359 	unsigned long offset, type;
3360 	unsigned char count;
3361 	unsigned char has_cache;
3362 	int err = -EINVAL;
3363 
3364 	if (non_swap_entry(entry))
3365 		goto out;
3366 
3367 	type = swp_type(entry);
3368 	if (type >= nr_swapfiles)
3369 		goto bad_file;
3370 	p = swap_info[type];
3371 	offset = swp_offset(entry);
3372 	if (unlikely(offset >= p->max))
3373 		goto out;
3374 
3375 	ci = lock_cluster_or_swap_info(p, offset);
3376 
3377 	count = p->swap_map[offset];
3378 
3379 	/*
3380 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3381 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3382 	 */
3383 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3384 		err = -ENOENT;
3385 		goto unlock_out;
3386 	}
3387 
3388 	has_cache = count & SWAP_HAS_CACHE;
3389 	count &= ~SWAP_HAS_CACHE;
3390 	err = 0;
3391 
3392 	if (usage == SWAP_HAS_CACHE) {
3393 
3394 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3395 		if (!has_cache && count)
3396 			has_cache = SWAP_HAS_CACHE;
3397 		else if (has_cache)		/* someone else added cache */
3398 			err = -EEXIST;
3399 		else				/* no users remaining */
3400 			err = -ENOENT;
3401 
3402 	} else if (count || has_cache) {
3403 
3404 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3405 			count += usage;
3406 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3407 			err = -EINVAL;
3408 		else if (swap_count_continued(p, offset, count))
3409 			count = COUNT_CONTINUED;
3410 		else
3411 			err = -ENOMEM;
3412 	} else
3413 		err = -ENOENT;			/* unused swap entry */
3414 
3415 	p->swap_map[offset] = count | has_cache;
3416 
3417 unlock_out:
3418 	unlock_cluster_or_swap_info(p, ci);
3419 out:
3420 	return err;
3421 
3422 bad_file:
3423 	pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3424 	goto out;
3425 }
3426 
3427 /*
3428  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3429  * (in which case its reference count is never incremented).
3430  */
3431 void swap_shmem_alloc(swp_entry_t entry)
3432 {
3433 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3434 }
3435 
3436 /*
3437  * Increase reference count of swap entry by 1.
3438  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3439  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3440  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3441  * might occur if a page table entry has got corrupted.
3442  */
3443 int swap_duplicate(swp_entry_t entry)
3444 {
3445 	int err = 0;
3446 
3447 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3448 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3449 	return err;
3450 }
3451 
3452 /*
3453  * @entry: swap entry for which we allocate swap cache.
3454  *
3455  * Called when allocating swap cache for existing swap entry,
3456  * This can return error codes. Returns 0 at success.
3457  * -EBUSY means there is a swap cache.
3458  * Note: return code is different from swap_duplicate().
3459  */
3460 int swapcache_prepare(swp_entry_t entry)
3461 {
3462 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3463 }
3464 
3465 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3466 {
3467 	return swap_info[swp_type(entry)];
3468 }
3469 
3470 struct swap_info_struct *page_swap_info(struct page *page)
3471 {
3472 	swp_entry_t entry = { .val = page_private(page) };
3473 	return swp_swap_info(entry);
3474 }
3475 
3476 /*
3477  * out-of-line __page_file_ methods to avoid include hell.
3478  */
3479 struct address_space *__page_file_mapping(struct page *page)
3480 {
3481 	return page_swap_info(page)->swap_file->f_mapping;
3482 }
3483 EXPORT_SYMBOL_GPL(__page_file_mapping);
3484 
3485 pgoff_t __page_file_index(struct page *page)
3486 {
3487 	swp_entry_t swap = { .val = page_private(page) };
3488 	return swp_offset(swap);
3489 }
3490 EXPORT_SYMBOL_GPL(__page_file_index);
3491 
3492 /*
3493  * add_swap_count_continuation - called when a swap count is duplicated
3494  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3495  * page of the original vmalloc'ed swap_map, to hold the continuation count
3496  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3497  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3498  *
3499  * These continuation pages are seldom referenced: the common paths all work
3500  * on the original swap_map, only referring to a continuation page when the
3501  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3502  *
3503  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3504  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3505  * can be called after dropping locks.
3506  */
3507 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3508 {
3509 	struct swap_info_struct *si;
3510 	struct swap_cluster_info *ci;
3511 	struct page *head;
3512 	struct page *page;
3513 	struct page *list_page;
3514 	pgoff_t offset;
3515 	unsigned char count;
3516 
3517 	/*
3518 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3519 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3520 	 */
3521 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3522 
3523 	si = swap_info_get(entry);
3524 	if (!si) {
3525 		/*
3526 		 * An acceptable race has occurred since the failing
3527 		 * __swap_duplicate(): the swap entry has been freed,
3528 		 * perhaps even the whole swap_map cleared for swapoff.
3529 		 */
3530 		goto outer;
3531 	}
3532 
3533 	offset = swp_offset(entry);
3534 
3535 	ci = lock_cluster(si, offset);
3536 
3537 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3538 
3539 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3540 		/*
3541 		 * The higher the swap count, the more likely it is that tasks
3542 		 * will race to add swap count continuation: we need to avoid
3543 		 * over-provisioning.
3544 		 */
3545 		goto out;
3546 	}
3547 
3548 	if (!page) {
3549 		unlock_cluster(ci);
3550 		spin_unlock(&si->lock);
3551 		return -ENOMEM;
3552 	}
3553 
3554 	/*
3555 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3556 	 * no architecture is using highmem pages for kernel page tables: so it
3557 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3558 	 */
3559 	head = vmalloc_to_page(si->swap_map + offset);
3560 	offset &= ~PAGE_MASK;
3561 
3562 	spin_lock(&si->cont_lock);
3563 	/*
3564 	 * Page allocation does not initialize the page's lru field,
3565 	 * but it does always reset its private field.
3566 	 */
3567 	if (!page_private(head)) {
3568 		BUG_ON(count & COUNT_CONTINUED);
3569 		INIT_LIST_HEAD(&head->lru);
3570 		set_page_private(head, SWP_CONTINUED);
3571 		si->flags |= SWP_CONTINUED;
3572 	}
3573 
3574 	list_for_each_entry(list_page, &head->lru, lru) {
3575 		unsigned char *map;
3576 
3577 		/*
3578 		 * If the previous map said no continuation, but we've found
3579 		 * a continuation page, free our allocation and use this one.
3580 		 */
3581 		if (!(count & COUNT_CONTINUED))
3582 			goto out_unlock_cont;
3583 
3584 		map = kmap_atomic(list_page) + offset;
3585 		count = *map;
3586 		kunmap_atomic(map);
3587 
3588 		/*
3589 		 * If this continuation count now has some space in it,
3590 		 * free our allocation and use this one.
3591 		 */
3592 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3593 			goto out_unlock_cont;
3594 	}
3595 
3596 	list_add_tail(&page->lru, &head->lru);
3597 	page = NULL;			/* now it's attached, don't free it */
3598 out_unlock_cont:
3599 	spin_unlock(&si->cont_lock);
3600 out:
3601 	unlock_cluster(ci);
3602 	spin_unlock(&si->lock);
3603 outer:
3604 	if (page)
3605 		__free_page(page);
3606 	return 0;
3607 }
3608 
3609 /*
3610  * swap_count_continued - when the original swap_map count is incremented
3611  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3612  * into, carry if so, or else fail until a new continuation page is allocated;
3613  * when the original swap_map count is decremented from 0 with continuation,
3614  * borrow from the continuation and report whether it still holds more.
3615  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3616  * lock.
3617  */
3618 static bool swap_count_continued(struct swap_info_struct *si,
3619 				 pgoff_t offset, unsigned char count)
3620 {
3621 	struct page *head;
3622 	struct page *page;
3623 	unsigned char *map;
3624 	bool ret;
3625 
3626 	head = vmalloc_to_page(si->swap_map + offset);
3627 	if (page_private(head) != SWP_CONTINUED) {
3628 		BUG_ON(count & COUNT_CONTINUED);
3629 		return false;		/* need to add count continuation */
3630 	}
3631 
3632 	spin_lock(&si->cont_lock);
3633 	offset &= ~PAGE_MASK;
3634 	page = list_entry(head->lru.next, struct page, lru);
3635 	map = kmap_atomic(page) + offset;
3636 
3637 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3638 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3639 
3640 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3641 		/*
3642 		 * Think of how you add 1 to 999
3643 		 */
3644 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3645 			kunmap_atomic(map);
3646 			page = list_entry(page->lru.next, struct page, lru);
3647 			BUG_ON(page == head);
3648 			map = kmap_atomic(page) + offset;
3649 		}
3650 		if (*map == SWAP_CONT_MAX) {
3651 			kunmap_atomic(map);
3652 			page = list_entry(page->lru.next, struct page, lru);
3653 			if (page == head) {
3654 				ret = false;	/* add count continuation */
3655 				goto out;
3656 			}
3657 			map = kmap_atomic(page) + offset;
3658 init_map:		*map = 0;		/* we didn't zero the page */
3659 		}
3660 		*map += 1;
3661 		kunmap_atomic(map);
3662 		page = list_entry(page->lru.prev, struct page, lru);
3663 		while (page != head) {
3664 			map = kmap_atomic(page) + offset;
3665 			*map = COUNT_CONTINUED;
3666 			kunmap_atomic(map);
3667 			page = list_entry(page->lru.prev, struct page, lru);
3668 		}
3669 		ret = true;			/* incremented */
3670 
3671 	} else {				/* decrementing */
3672 		/*
3673 		 * Think of how you subtract 1 from 1000
3674 		 */
3675 		BUG_ON(count != COUNT_CONTINUED);
3676 		while (*map == COUNT_CONTINUED) {
3677 			kunmap_atomic(map);
3678 			page = list_entry(page->lru.next, struct page, lru);
3679 			BUG_ON(page == head);
3680 			map = kmap_atomic(page) + offset;
3681 		}
3682 		BUG_ON(*map == 0);
3683 		*map -= 1;
3684 		if (*map == 0)
3685 			count = 0;
3686 		kunmap_atomic(map);
3687 		page = list_entry(page->lru.prev, struct page, lru);
3688 		while (page != head) {
3689 			map = kmap_atomic(page) + offset;
3690 			*map = SWAP_CONT_MAX | count;
3691 			count = COUNT_CONTINUED;
3692 			kunmap_atomic(map);
3693 			page = list_entry(page->lru.prev, struct page, lru);
3694 		}
3695 		ret = count == COUNT_CONTINUED;
3696 	}
3697 out:
3698 	spin_unlock(&si->cont_lock);
3699 	return ret;
3700 }
3701 
3702 /*
3703  * free_swap_count_continuations - swapoff free all the continuation pages
3704  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3705  */
3706 static void free_swap_count_continuations(struct swap_info_struct *si)
3707 {
3708 	pgoff_t offset;
3709 
3710 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3711 		struct page *head;
3712 		head = vmalloc_to_page(si->swap_map + offset);
3713 		if (page_private(head)) {
3714 			struct page *page, *next;
3715 
3716 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3717 				list_del(&page->lru);
3718 				__free_page(page);
3719 			}
3720 		}
3721 	}
3722 }
3723 
3724 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3725 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3726 				  gfp_t gfp_mask)
3727 {
3728 	struct swap_info_struct *si, *next;
3729 	if (!(gfp_mask & __GFP_IO) || !memcg)
3730 		return;
3731 
3732 	if (!blk_cgroup_congested())
3733 		return;
3734 
3735 	/*
3736 	 * We've already scheduled a throttle, avoid taking the global swap
3737 	 * lock.
3738 	 */
3739 	if (current->throttle_queue)
3740 		return;
3741 
3742 	spin_lock(&swap_avail_lock);
3743 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3744 				  avail_lists[node]) {
3745 		if (si->bdev) {
3746 			blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3747 						true);
3748 			break;
3749 		}
3750 	}
3751 	spin_unlock(&swap_avail_lock);
3752 }
3753 #endif
3754 
3755 static int __init swapfile_init(void)
3756 {
3757 	int nid;
3758 
3759 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3760 					 GFP_KERNEL);
3761 	if (!swap_avail_heads) {
3762 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3763 		return -ENOMEM;
3764 	}
3765 
3766 	for_each_node(nid)
3767 		plist_head_init(&swap_avail_heads[nid]);
3768 
3769 	return 0;
3770 }
3771 subsys_initcall(swapfile_init);
3772