xref: /linux/mm/swapfile.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37 
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/swap_cgroup.h>
42 
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 				 unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47 
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages;
53 static int least_priority;
54 
55 static const char Bad_file[] = "Bad swap file entry ";
56 static const char Unused_file[] = "Unused swap file entry ";
57 static const char Bad_offset[] = "Bad swap offset entry ";
58 static const char Unused_offset[] = "Unused swap offset entry ";
59 
60 /*
61  * all active swap_info_structs
62  * protected with swap_lock, and ordered by priority.
63  */
64 PLIST_HEAD(swap_active_head);
65 
66 /*
67  * all available (active, not full) swap_info_structs
68  * protected with swap_avail_lock, ordered by priority.
69  * This is used by get_swap_page() instead of swap_active_head
70  * because swap_active_head includes all swap_info_structs,
71  * but get_swap_page() doesn't need to look at full ones.
72  * This uses its own lock instead of swap_lock because when a
73  * swap_info_struct changes between not-full/full, it needs to
74  * add/remove itself to/from this list, but the swap_info_struct->lock
75  * is held and the locking order requires swap_lock to be taken
76  * before any swap_info_struct->lock.
77  */
78 static PLIST_HEAD(swap_avail_head);
79 static DEFINE_SPINLOCK(swap_avail_lock);
80 
81 struct swap_info_struct *swap_info[MAX_SWAPFILES];
82 
83 static DEFINE_MUTEX(swapon_mutex);
84 
85 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
86 /* Activity counter to indicate that a swapon or swapoff has occurred */
87 static atomic_t proc_poll_event = ATOMIC_INIT(0);
88 
89 static inline unsigned char swap_count(unsigned char ent)
90 {
91 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
92 }
93 
94 /* returns 1 if swap entry is freed */
95 static int
96 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
97 {
98 	swp_entry_t entry = swp_entry(si->type, offset);
99 	struct page *page;
100 	int ret = 0;
101 
102 	page = find_get_page(swap_address_space(entry), entry.val);
103 	if (!page)
104 		return 0;
105 	/*
106 	 * This function is called from scan_swap_map() and it's called
107 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
108 	 * We have to use trylock for avoiding deadlock. This is a special
109 	 * case and you should use try_to_free_swap() with explicit lock_page()
110 	 * in usual operations.
111 	 */
112 	if (trylock_page(page)) {
113 		ret = try_to_free_swap(page);
114 		unlock_page(page);
115 	}
116 	page_cache_release(page);
117 	return ret;
118 }
119 
120 /*
121  * swapon tell device that all the old swap contents can be discarded,
122  * to allow the swap device to optimize its wear-levelling.
123  */
124 static int discard_swap(struct swap_info_struct *si)
125 {
126 	struct swap_extent *se;
127 	sector_t start_block;
128 	sector_t nr_blocks;
129 	int err = 0;
130 
131 	/* Do not discard the swap header page! */
132 	se = &si->first_swap_extent;
133 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
134 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
135 	if (nr_blocks) {
136 		err = blkdev_issue_discard(si->bdev, start_block,
137 				nr_blocks, GFP_KERNEL, 0);
138 		if (err)
139 			return err;
140 		cond_resched();
141 	}
142 
143 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
144 		start_block = se->start_block << (PAGE_SHIFT - 9);
145 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
146 
147 		err = blkdev_issue_discard(si->bdev, start_block,
148 				nr_blocks, GFP_KERNEL, 0);
149 		if (err)
150 			break;
151 
152 		cond_resched();
153 	}
154 	return err;		/* That will often be -EOPNOTSUPP */
155 }
156 
157 /*
158  * swap allocation tell device that a cluster of swap can now be discarded,
159  * to allow the swap device to optimize its wear-levelling.
160  */
161 static void discard_swap_cluster(struct swap_info_struct *si,
162 				 pgoff_t start_page, pgoff_t nr_pages)
163 {
164 	struct swap_extent *se = si->curr_swap_extent;
165 	int found_extent = 0;
166 
167 	while (nr_pages) {
168 		struct list_head *lh;
169 
170 		if (se->start_page <= start_page &&
171 		    start_page < se->start_page + se->nr_pages) {
172 			pgoff_t offset = start_page - se->start_page;
173 			sector_t start_block = se->start_block + offset;
174 			sector_t nr_blocks = se->nr_pages - offset;
175 
176 			if (nr_blocks > nr_pages)
177 				nr_blocks = nr_pages;
178 			start_page += nr_blocks;
179 			nr_pages -= nr_blocks;
180 
181 			if (!found_extent++)
182 				si->curr_swap_extent = se;
183 
184 			start_block <<= PAGE_SHIFT - 9;
185 			nr_blocks <<= PAGE_SHIFT - 9;
186 			if (blkdev_issue_discard(si->bdev, start_block,
187 				    nr_blocks, GFP_NOIO, 0))
188 				break;
189 		}
190 
191 		lh = se->list.next;
192 		se = list_entry(lh, struct swap_extent, list);
193 	}
194 }
195 
196 #define SWAPFILE_CLUSTER	256
197 #define LATENCY_LIMIT		256
198 
199 static inline void cluster_set_flag(struct swap_cluster_info *info,
200 	unsigned int flag)
201 {
202 	info->flags = flag;
203 }
204 
205 static inline unsigned int cluster_count(struct swap_cluster_info *info)
206 {
207 	return info->data;
208 }
209 
210 static inline void cluster_set_count(struct swap_cluster_info *info,
211 				     unsigned int c)
212 {
213 	info->data = c;
214 }
215 
216 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
217 					 unsigned int c, unsigned int f)
218 {
219 	info->flags = f;
220 	info->data = c;
221 }
222 
223 static inline unsigned int cluster_next(struct swap_cluster_info *info)
224 {
225 	return info->data;
226 }
227 
228 static inline void cluster_set_next(struct swap_cluster_info *info,
229 				    unsigned int n)
230 {
231 	info->data = n;
232 }
233 
234 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
235 					 unsigned int n, unsigned int f)
236 {
237 	info->flags = f;
238 	info->data = n;
239 }
240 
241 static inline bool cluster_is_free(struct swap_cluster_info *info)
242 {
243 	return info->flags & CLUSTER_FLAG_FREE;
244 }
245 
246 static inline bool cluster_is_null(struct swap_cluster_info *info)
247 {
248 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
249 }
250 
251 static inline void cluster_set_null(struct swap_cluster_info *info)
252 {
253 	info->flags = CLUSTER_FLAG_NEXT_NULL;
254 	info->data = 0;
255 }
256 
257 /* Add a cluster to discard list and schedule it to do discard */
258 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
259 		unsigned int idx)
260 {
261 	/*
262 	 * If scan_swap_map() can't find a free cluster, it will check
263 	 * si->swap_map directly. To make sure the discarding cluster isn't
264 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
265 	 * will be cleared after discard
266 	 */
267 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
268 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
269 
270 	if (cluster_is_null(&si->discard_cluster_head)) {
271 		cluster_set_next_flag(&si->discard_cluster_head,
272 						idx, 0);
273 		cluster_set_next_flag(&si->discard_cluster_tail,
274 						idx, 0);
275 	} else {
276 		unsigned int tail = cluster_next(&si->discard_cluster_tail);
277 		cluster_set_next(&si->cluster_info[tail], idx);
278 		cluster_set_next_flag(&si->discard_cluster_tail,
279 						idx, 0);
280 	}
281 
282 	schedule_work(&si->discard_work);
283 }
284 
285 /*
286  * Doing discard actually. After a cluster discard is finished, the cluster
287  * will be added to free cluster list. caller should hold si->lock.
288 */
289 static void swap_do_scheduled_discard(struct swap_info_struct *si)
290 {
291 	struct swap_cluster_info *info;
292 	unsigned int idx;
293 
294 	info = si->cluster_info;
295 
296 	while (!cluster_is_null(&si->discard_cluster_head)) {
297 		idx = cluster_next(&si->discard_cluster_head);
298 
299 		cluster_set_next_flag(&si->discard_cluster_head,
300 						cluster_next(&info[idx]), 0);
301 		if (cluster_next(&si->discard_cluster_tail) == idx) {
302 			cluster_set_null(&si->discard_cluster_head);
303 			cluster_set_null(&si->discard_cluster_tail);
304 		}
305 		spin_unlock(&si->lock);
306 
307 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
308 				SWAPFILE_CLUSTER);
309 
310 		spin_lock(&si->lock);
311 		cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
312 		if (cluster_is_null(&si->free_cluster_head)) {
313 			cluster_set_next_flag(&si->free_cluster_head,
314 						idx, 0);
315 			cluster_set_next_flag(&si->free_cluster_tail,
316 						idx, 0);
317 		} else {
318 			unsigned int tail;
319 
320 			tail = cluster_next(&si->free_cluster_tail);
321 			cluster_set_next(&info[tail], idx);
322 			cluster_set_next_flag(&si->free_cluster_tail,
323 						idx, 0);
324 		}
325 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
326 				0, SWAPFILE_CLUSTER);
327 	}
328 }
329 
330 static void swap_discard_work(struct work_struct *work)
331 {
332 	struct swap_info_struct *si;
333 
334 	si = container_of(work, struct swap_info_struct, discard_work);
335 
336 	spin_lock(&si->lock);
337 	swap_do_scheduled_discard(si);
338 	spin_unlock(&si->lock);
339 }
340 
341 /*
342  * The cluster corresponding to page_nr will be used. The cluster will be
343  * removed from free cluster list and its usage counter will be increased.
344  */
345 static void inc_cluster_info_page(struct swap_info_struct *p,
346 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
347 {
348 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
349 
350 	if (!cluster_info)
351 		return;
352 	if (cluster_is_free(&cluster_info[idx])) {
353 		VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
354 		cluster_set_next_flag(&p->free_cluster_head,
355 			cluster_next(&cluster_info[idx]), 0);
356 		if (cluster_next(&p->free_cluster_tail) == idx) {
357 			cluster_set_null(&p->free_cluster_tail);
358 			cluster_set_null(&p->free_cluster_head);
359 		}
360 		cluster_set_count_flag(&cluster_info[idx], 0, 0);
361 	}
362 
363 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
364 	cluster_set_count(&cluster_info[idx],
365 		cluster_count(&cluster_info[idx]) + 1);
366 }
367 
368 /*
369  * The cluster corresponding to page_nr decreases one usage. If the usage
370  * counter becomes 0, which means no page in the cluster is in using, we can
371  * optionally discard the cluster and add it to free cluster list.
372  */
373 static void dec_cluster_info_page(struct swap_info_struct *p,
374 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
375 {
376 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
377 
378 	if (!cluster_info)
379 		return;
380 
381 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
382 	cluster_set_count(&cluster_info[idx],
383 		cluster_count(&cluster_info[idx]) - 1);
384 
385 	if (cluster_count(&cluster_info[idx]) == 0) {
386 		/*
387 		 * If the swap is discardable, prepare discard the cluster
388 		 * instead of free it immediately. The cluster will be freed
389 		 * after discard.
390 		 */
391 		if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
392 				 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
393 			swap_cluster_schedule_discard(p, idx);
394 			return;
395 		}
396 
397 		cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
398 		if (cluster_is_null(&p->free_cluster_head)) {
399 			cluster_set_next_flag(&p->free_cluster_head, idx, 0);
400 			cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
401 		} else {
402 			unsigned int tail = cluster_next(&p->free_cluster_tail);
403 			cluster_set_next(&cluster_info[tail], idx);
404 			cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
405 		}
406 	}
407 }
408 
409 /*
410  * It's possible scan_swap_map() uses a free cluster in the middle of free
411  * cluster list. Avoiding such abuse to avoid list corruption.
412  */
413 static bool
414 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
415 	unsigned long offset)
416 {
417 	struct percpu_cluster *percpu_cluster;
418 	bool conflict;
419 
420 	offset /= SWAPFILE_CLUSTER;
421 	conflict = !cluster_is_null(&si->free_cluster_head) &&
422 		offset != cluster_next(&si->free_cluster_head) &&
423 		cluster_is_free(&si->cluster_info[offset]);
424 
425 	if (!conflict)
426 		return false;
427 
428 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
429 	cluster_set_null(&percpu_cluster->index);
430 	return true;
431 }
432 
433 /*
434  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
435  * might involve allocating a new cluster for current CPU too.
436  */
437 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
438 	unsigned long *offset, unsigned long *scan_base)
439 {
440 	struct percpu_cluster *cluster;
441 	bool found_free;
442 	unsigned long tmp;
443 
444 new_cluster:
445 	cluster = this_cpu_ptr(si->percpu_cluster);
446 	if (cluster_is_null(&cluster->index)) {
447 		if (!cluster_is_null(&si->free_cluster_head)) {
448 			cluster->index = si->free_cluster_head;
449 			cluster->next = cluster_next(&cluster->index) *
450 					SWAPFILE_CLUSTER;
451 		} else if (!cluster_is_null(&si->discard_cluster_head)) {
452 			/*
453 			 * we don't have free cluster but have some clusters in
454 			 * discarding, do discard now and reclaim them
455 			 */
456 			swap_do_scheduled_discard(si);
457 			*scan_base = *offset = si->cluster_next;
458 			goto new_cluster;
459 		} else
460 			return;
461 	}
462 
463 	found_free = false;
464 
465 	/*
466 	 * Other CPUs can use our cluster if they can't find a free cluster,
467 	 * check if there is still free entry in the cluster
468 	 */
469 	tmp = cluster->next;
470 	while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
471 	       SWAPFILE_CLUSTER) {
472 		if (!si->swap_map[tmp]) {
473 			found_free = true;
474 			break;
475 		}
476 		tmp++;
477 	}
478 	if (!found_free) {
479 		cluster_set_null(&cluster->index);
480 		goto new_cluster;
481 	}
482 	cluster->next = tmp + 1;
483 	*offset = tmp;
484 	*scan_base = tmp;
485 }
486 
487 static unsigned long scan_swap_map(struct swap_info_struct *si,
488 				   unsigned char usage)
489 {
490 	unsigned long offset;
491 	unsigned long scan_base;
492 	unsigned long last_in_cluster = 0;
493 	int latency_ration = LATENCY_LIMIT;
494 
495 	/*
496 	 * We try to cluster swap pages by allocating them sequentially
497 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
498 	 * way, however, we resort to first-free allocation, starting
499 	 * a new cluster.  This prevents us from scattering swap pages
500 	 * all over the entire swap partition, so that we reduce
501 	 * overall disk seek times between swap pages.  -- sct
502 	 * But we do now try to find an empty cluster.  -Andrea
503 	 * And we let swap pages go all over an SSD partition.  Hugh
504 	 */
505 
506 	si->flags += SWP_SCANNING;
507 	scan_base = offset = si->cluster_next;
508 
509 	/* SSD algorithm */
510 	if (si->cluster_info) {
511 		scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
512 		goto checks;
513 	}
514 
515 	if (unlikely(!si->cluster_nr--)) {
516 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
517 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
518 			goto checks;
519 		}
520 
521 		spin_unlock(&si->lock);
522 
523 		/*
524 		 * If seek is expensive, start searching for new cluster from
525 		 * start of partition, to minimize the span of allocated swap.
526 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
527 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
528 		 */
529 		scan_base = offset = si->lowest_bit;
530 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
531 
532 		/* Locate the first empty (unaligned) cluster */
533 		for (; last_in_cluster <= si->highest_bit; offset++) {
534 			if (si->swap_map[offset])
535 				last_in_cluster = offset + SWAPFILE_CLUSTER;
536 			else if (offset == last_in_cluster) {
537 				spin_lock(&si->lock);
538 				offset -= SWAPFILE_CLUSTER - 1;
539 				si->cluster_next = offset;
540 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
541 				goto checks;
542 			}
543 			if (unlikely(--latency_ration < 0)) {
544 				cond_resched();
545 				latency_ration = LATENCY_LIMIT;
546 			}
547 		}
548 
549 		offset = scan_base;
550 		spin_lock(&si->lock);
551 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
552 	}
553 
554 checks:
555 	if (si->cluster_info) {
556 		while (scan_swap_map_ssd_cluster_conflict(si, offset))
557 			scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
558 	}
559 	if (!(si->flags & SWP_WRITEOK))
560 		goto no_page;
561 	if (!si->highest_bit)
562 		goto no_page;
563 	if (offset > si->highest_bit)
564 		scan_base = offset = si->lowest_bit;
565 
566 	/* reuse swap entry of cache-only swap if not busy. */
567 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
568 		int swap_was_freed;
569 		spin_unlock(&si->lock);
570 		swap_was_freed = __try_to_reclaim_swap(si, offset);
571 		spin_lock(&si->lock);
572 		/* entry was freed successfully, try to use this again */
573 		if (swap_was_freed)
574 			goto checks;
575 		goto scan; /* check next one */
576 	}
577 
578 	if (si->swap_map[offset])
579 		goto scan;
580 
581 	if (offset == si->lowest_bit)
582 		si->lowest_bit++;
583 	if (offset == si->highest_bit)
584 		si->highest_bit--;
585 	si->inuse_pages++;
586 	if (si->inuse_pages == si->pages) {
587 		si->lowest_bit = si->max;
588 		si->highest_bit = 0;
589 		spin_lock(&swap_avail_lock);
590 		plist_del(&si->avail_list, &swap_avail_head);
591 		spin_unlock(&swap_avail_lock);
592 	}
593 	si->swap_map[offset] = usage;
594 	inc_cluster_info_page(si, si->cluster_info, offset);
595 	si->cluster_next = offset + 1;
596 	si->flags -= SWP_SCANNING;
597 
598 	return offset;
599 
600 scan:
601 	spin_unlock(&si->lock);
602 	while (++offset <= si->highest_bit) {
603 		if (!si->swap_map[offset]) {
604 			spin_lock(&si->lock);
605 			goto checks;
606 		}
607 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
608 			spin_lock(&si->lock);
609 			goto checks;
610 		}
611 		if (unlikely(--latency_ration < 0)) {
612 			cond_resched();
613 			latency_ration = LATENCY_LIMIT;
614 		}
615 	}
616 	offset = si->lowest_bit;
617 	while (offset < scan_base) {
618 		if (!si->swap_map[offset]) {
619 			spin_lock(&si->lock);
620 			goto checks;
621 		}
622 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
623 			spin_lock(&si->lock);
624 			goto checks;
625 		}
626 		if (unlikely(--latency_ration < 0)) {
627 			cond_resched();
628 			latency_ration = LATENCY_LIMIT;
629 		}
630 		offset++;
631 	}
632 	spin_lock(&si->lock);
633 
634 no_page:
635 	si->flags -= SWP_SCANNING;
636 	return 0;
637 }
638 
639 swp_entry_t get_swap_page(void)
640 {
641 	struct swap_info_struct *si, *next;
642 	pgoff_t offset;
643 
644 	if (atomic_long_read(&nr_swap_pages) <= 0)
645 		goto noswap;
646 	atomic_long_dec(&nr_swap_pages);
647 
648 	spin_lock(&swap_avail_lock);
649 
650 start_over:
651 	plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
652 		/* requeue si to after same-priority siblings */
653 		plist_requeue(&si->avail_list, &swap_avail_head);
654 		spin_unlock(&swap_avail_lock);
655 		spin_lock(&si->lock);
656 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
657 			spin_lock(&swap_avail_lock);
658 			if (plist_node_empty(&si->avail_list)) {
659 				spin_unlock(&si->lock);
660 				goto nextsi;
661 			}
662 			WARN(!si->highest_bit,
663 			     "swap_info %d in list but !highest_bit\n",
664 			     si->type);
665 			WARN(!(si->flags & SWP_WRITEOK),
666 			     "swap_info %d in list but !SWP_WRITEOK\n",
667 			     si->type);
668 			plist_del(&si->avail_list, &swap_avail_head);
669 			spin_unlock(&si->lock);
670 			goto nextsi;
671 		}
672 
673 		/* This is called for allocating swap entry for cache */
674 		offset = scan_swap_map(si, SWAP_HAS_CACHE);
675 		spin_unlock(&si->lock);
676 		if (offset)
677 			return swp_entry(si->type, offset);
678 		pr_debug("scan_swap_map of si %d failed to find offset\n",
679 		       si->type);
680 		spin_lock(&swap_avail_lock);
681 nextsi:
682 		/*
683 		 * if we got here, it's likely that si was almost full before,
684 		 * and since scan_swap_map() can drop the si->lock, multiple
685 		 * callers probably all tried to get a page from the same si
686 		 * and it filled up before we could get one; or, the si filled
687 		 * up between us dropping swap_avail_lock and taking si->lock.
688 		 * Since we dropped the swap_avail_lock, the swap_avail_head
689 		 * list may have been modified; so if next is still in the
690 		 * swap_avail_head list then try it, otherwise start over.
691 		 */
692 		if (plist_node_empty(&next->avail_list))
693 			goto start_over;
694 	}
695 
696 	spin_unlock(&swap_avail_lock);
697 
698 	atomic_long_inc(&nr_swap_pages);
699 noswap:
700 	return (swp_entry_t) {0};
701 }
702 
703 /* The only caller of this function is now suspend routine */
704 swp_entry_t get_swap_page_of_type(int type)
705 {
706 	struct swap_info_struct *si;
707 	pgoff_t offset;
708 
709 	si = swap_info[type];
710 	spin_lock(&si->lock);
711 	if (si && (si->flags & SWP_WRITEOK)) {
712 		atomic_long_dec(&nr_swap_pages);
713 		/* This is called for allocating swap entry, not cache */
714 		offset = scan_swap_map(si, 1);
715 		if (offset) {
716 			spin_unlock(&si->lock);
717 			return swp_entry(type, offset);
718 		}
719 		atomic_long_inc(&nr_swap_pages);
720 	}
721 	spin_unlock(&si->lock);
722 	return (swp_entry_t) {0};
723 }
724 
725 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
726 {
727 	struct swap_info_struct *p;
728 	unsigned long offset, type;
729 
730 	if (!entry.val)
731 		goto out;
732 	type = swp_type(entry);
733 	if (type >= nr_swapfiles)
734 		goto bad_nofile;
735 	p = swap_info[type];
736 	if (!(p->flags & SWP_USED))
737 		goto bad_device;
738 	offset = swp_offset(entry);
739 	if (offset >= p->max)
740 		goto bad_offset;
741 	if (!p->swap_map[offset])
742 		goto bad_free;
743 	spin_lock(&p->lock);
744 	return p;
745 
746 bad_free:
747 	pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
748 	goto out;
749 bad_offset:
750 	pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
751 	goto out;
752 bad_device:
753 	pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
754 	goto out;
755 bad_nofile:
756 	pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
757 out:
758 	return NULL;
759 }
760 
761 static unsigned char swap_entry_free(struct swap_info_struct *p,
762 				     swp_entry_t entry, unsigned char usage)
763 {
764 	unsigned long offset = swp_offset(entry);
765 	unsigned char count;
766 	unsigned char has_cache;
767 
768 	count = p->swap_map[offset];
769 	has_cache = count & SWAP_HAS_CACHE;
770 	count &= ~SWAP_HAS_CACHE;
771 
772 	if (usage == SWAP_HAS_CACHE) {
773 		VM_BUG_ON(!has_cache);
774 		has_cache = 0;
775 	} else if (count == SWAP_MAP_SHMEM) {
776 		/*
777 		 * Or we could insist on shmem.c using a special
778 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
779 		 */
780 		count = 0;
781 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
782 		if (count == COUNT_CONTINUED) {
783 			if (swap_count_continued(p, offset, count))
784 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
785 			else
786 				count = SWAP_MAP_MAX;
787 		} else
788 			count--;
789 	}
790 
791 	if (!count)
792 		mem_cgroup_uncharge_swap(entry);
793 
794 	usage = count | has_cache;
795 	p->swap_map[offset] = usage;
796 
797 	/* free if no reference */
798 	if (!usage) {
799 		dec_cluster_info_page(p, p->cluster_info, offset);
800 		if (offset < p->lowest_bit)
801 			p->lowest_bit = offset;
802 		if (offset > p->highest_bit) {
803 			bool was_full = !p->highest_bit;
804 			p->highest_bit = offset;
805 			if (was_full && (p->flags & SWP_WRITEOK)) {
806 				spin_lock(&swap_avail_lock);
807 				WARN_ON(!plist_node_empty(&p->avail_list));
808 				if (plist_node_empty(&p->avail_list))
809 					plist_add(&p->avail_list,
810 						  &swap_avail_head);
811 				spin_unlock(&swap_avail_lock);
812 			}
813 		}
814 		atomic_long_inc(&nr_swap_pages);
815 		p->inuse_pages--;
816 		frontswap_invalidate_page(p->type, offset);
817 		if (p->flags & SWP_BLKDEV) {
818 			struct gendisk *disk = p->bdev->bd_disk;
819 			if (disk->fops->swap_slot_free_notify)
820 				disk->fops->swap_slot_free_notify(p->bdev,
821 								  offset);
822 		}
823 	}
824 
825 	return usage;
826 }
827 
828 /*
829  * Caller has made sure that the swap device corresponding to entry
830  * is still around or has not been recycled.
831  */
832 void swap_free(swp_entry_t entry)
833 {
834 	struct swap_info_struct *p;
835 
836 	p = swap_info_get(entry);
837 	if (p) {
838 		swap_entry_free(p, entry, 1);
839 		spin_unlock(&p->lock);
840 	}
841 }
842 
843 /*
844  * Called after dropping swapcache to decrease refcnt to swap entries.
845  */
846 void swapcache_free(swp_entry_t entry)
847 {
848 	struct swap_info_struct *p;
849 
850 	p = swap_info_get(entry);
851 	if (p) {
852 		swap_entry_free(p, entry, SWAP_HAS_CACHE);
853 		spin_unlock(&p->lock);
854 	}
855 }
856 
857 /*
858  * How many references to page are currently swapped out?
859  * This does not give an exact answer when swap count is continued,
860  * but does include the high COUNT_CONTINUED flag to allow for that.
861  */
862 int page_swapcount(struct page *page)
863 {
864 	int count = 0;
865 	struct swap_info_struct *p;
866 	swp_entry_t entry;
867 
868 	entry.val = page_private(page);
869 	p = swap_info_get(entry);
870 	if (p) {
871 		count = swap_count(p->swap_map[swp_offset(entry)]);
872 		spin_unlock(&p->lock);
873 	}
874 	return count;
875 }
876 
877 /*
878  * We can write to an anon page without COW if there are no other references
879  * to it.  And as a side-effect, free up its swap: because the old content
880  * on disk will never be read, and seeking back there to write new content
881  * later would only waste time away from clustering.
882  */
883 int reuse_swap_page(struct page *page)
884 {
885 	int count;
886 
887 	VM_BUG_ON_PAGE(!PageLocked(page), page);
888 	if (unlikely(PageKsm(page)))
889 		return 0;
890 	count = page_mapcount(page);
891 	if (count <= 1 && PageSwapCache(page)) {
892 		count += page_swapcount(page);
893 		if (count == 1 && !PageWriteback(page)) {
894 			delete_from_swap_cache(page);
895 			SetPageDirty(page);
896 		}
897 	}
898 	return count <= 1;
899 }
900 
901 /*
902  * If swap is getting full, or if there are no more mappings of this page,
903  * then try_to_free_swap is called to free its swap space.
904  */
905 int try_to_free_swap(struct page *page)
906 {
907 	VM_BUG_ON_PAGE(!PageLocked(page), page);
908 
909 	if (!PageSwapCache(page))
910 		return 0;
911 	if (PageWriteback(page))
912 		return 0;
913 	if (page_swapcount(page))
914 		return 0;
915 
916 	/*
917 	 * Once hibernation has begun to create its image of memory,
918 	 * there's a danger that one of the calls to try_to_free_swap()
919 	 * - most probably a call from __try_to_reclaim_swap() while
920 	 * hibernation is allocating its own swap pages for the image,
921 	 * but conceivably even a call from memory reclaim - will free
922 	 * the swap from a page which has already been recorded in the
923 	 * image as a clean swapcache page, and then reuse its swap for
924 	 * another page of the image.  On waking from hibernation, the
925 	 * original page might be freed under memory pressure, then
926 	 * later read back in from swap, now with the wrong data.
927 	 *
928 	 * Hibernation suspends storage while it is writing the image
929 	 * to disk so check that here.
930 	 */
931 	if (pm_suspended_storage())
932 		return 0;
933 
934 	delete_from_swap_cache(page);
935 	SetPageDirty(page);
936 	return 1;
937 }
938 
939 /*
940  * Free the swap entry like above, but also try to
941  * free the page cache entry if it is the last user.
942  */
943 int free_swap_and_cache(swp_entry_t entry)
944 {
945 	struct swap_info_struct *p;
946 	struct page *page = NULL;
947 
948 	if (non_swap_entry(entry))
949 		return 1;
950 
951 	p = swap_info_get(entry);
952 	if (p) {
953 		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
954 			page = find_get_page(swap_address_space(entry),
955 						entry.val);
956 			if (page && !trylock_page(page)) {
957 				page_cache_release(page);
958 				page = NULL;
959 			}
960 		}
961 		spin_unlock(&p->lock);
962 	}
963 	if (page) {
964 		/*
965 		 * Not mapped elsewhere, or swap space full? Free it!
966 		 * Also recheck PageSwapCache now page is locked (above).
967 		 */
968 		if (PageSwapCache(page) && !PageWriteback(page) &&
969 				(!page_mapped(page) || vm_swap_full())) {
970 			delete_from_swap_cache(page);
971 			SetPageDirty(page);
972 		}
973 		unlock_page(page);
974 		page_cache_release(page);
975 	}
976 	return p != NULL;
977 }
978 
979 #ifdef CONFIG_HIBERNATION
980 /*
981  * Find the swap type that corresponds to given device (if any).
982  *
983  * @offset - number of the PAGE_SIZE-sized block of the device, starting
984  * from 0, in which the swap header is expected to be located.
985  *
986  * This is needed for the suspend to disk (aka swsusp).
987  */
988 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
989 {
990 	struct block_device *bdev = NULL;
991 	int type;
992 
993 	if (device)
994 		bdev = bdget(device);
995 
996 	spin_lock(&swap_lock);
997 	for (type = 0; type < nr_swapfiles; type++) {
998 		struct swap_info_struct *sis = swap_info[type];
999 
1000 		if (!(sis->flags & SWP_WRITEOK))
1001 			continue;
1002 
1003 		if (!bdev) {
1004 			if (bdev_p)
1005 				*bdev_p = bdgrab(sis->bdev);
1006 
1007 			spin_unlock(&swap_lock);
1008 			return type;
1009 		}
1010 		if (bdev == sis->bdev) {
1011 			struct swap_extent *se = &sis->first_swap_extent;
1012 
1013 			if (se->start_block == offset) {
1014 				if (bdev_p)
1015 					*bdev_p = bdgrab(sis->bdev);
1016 
1017 				spin_unlock(&swap_lock);
1018 				bdput(bdev);
1019 				return type;
1020 			}
1021 		}
1022 	}
1023 	spin_unlock(&swap_lock);
1024 	if (bdev)
1025 		bdput(bdev);
1026 
1027 	return -ENODEV;
1028 }
1029 
1030 /*
1031  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1032  * corresponding to given index in swap_info (swap type).
1033  */
1034 sector_t swapdev_block(int type, pgoff_t offset)
1035 {
1036 	struct block_device *bdev;
1037 
1038 	if ((unsigned int)type >= nr_swapfiles)
1039 		return 0;
1040 	if (!(swap_info[type]->flags & SWP_WRITEOK))
1041 		return 0;
1042 	return map_swap_entry(swp_entry(type, offset), &bdev);
1043 }
1044 
1045 /*
1046  * Return either the total number of swap pages of given type, or the number
1047  * of free pages of that type (depending on @free)
1048  *
1049  * This is needed for software suspend
1050  */
1051 unsigned int count_swap_pages(int type, int free)
1052 {
1053 	unsigned int n = 0;
1054 
1055 	spin_lock(&swap_lock);
1056 	if ((unsigned int)type < nr_swapfiles) {
1057 		struct swap_info_struct *sis = swap_info[type];
1058 
1059 		spin_lock(&sis->lock);
1060 		if (sis->flags & SWP_WRITEOK) {
1061 			n = sis->pages;
1062 			if (free)
1063 				n -= sis->inuse_pages;
1064 		}
1065 		spin_unlock(&sis->lock);
1066 	}
1067 	spin_unlock(&swap_lock);
1068 	return n;
1069 }
1070 #endif /* CONFIG_HIBERNATION */
1071 
1072 static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1073 {
1074 #ifdef CONFIG_MEM_SOFT_DIRTY
1075 	/*
1076 	 * When pte keeps soft dirty bit the pte generated
1077 	 * from swap entry does not has it, still it's same
1078 	 * pte from logical point of view.
1079 	 */
1080 	pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1081 	return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1082 #else
1083 	return pte_same(pte, swp_pte);
1084 #endif
1085 }
1086 
1087 /*
1088  * No need to decide whether this PTE shares the swap entry with others,
1089  * just let do_wp_page work it out if a write is requested later - to
1090  * force COW, vm_page_prot omits write permission from any private vma.
1091  */
1092 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1093 		unsigned long addr, swp_entry_t entry, struct page *page)
1094 {
1095 	struct page *swapcache;
1096 	struct mem_cgroup *memcg;
1097 	spinlock_t *ptl;
1098 	pte_t *pte;
1099 	int ret = 1;
1100 
1101 	swapcache = page;
1102 	page = ksm_might_need_to_copy(page, vma, addr);
1103 	if (unlikely(!page))
1104 		return -ENOMEM;
1105 
1106 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg)) {
1107 		ret = -ENOMEM;
1108 		goto out_nolock;
1109 	}
1110 
1111 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1112 	if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
1113 		mem_cgroup_cancel_charge(page, memcg);
1114 		ret = 0;
1115 		goto out;
1116 	}
1117 
1118 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1119 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1120 	get_page(page);
1121 	set_pte_at(vma->vm_mm, addr, pte,
1122 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1123 	if (page == swapcache) {
1124 		page_add_anon_rmap(page, vma, addr);
1125 		mem_cgroup_commit_charge(page, memcg, true);
1126 	} else { /* ksm created a completely new copy */
1127 		page_add_new_anon_rmap(page, vma, addr);
1128 		mem_cgroup_commit_charge(page, memcg, false);
1129 		lru_cache_add_active_or_unevictable(page, vma);
1130 	}
1131 	swap_free(entry);
1132 	/*
1133 	 * Move the page to the active list so it is not
1134 	 * immediately swapped out again after swapon.
1135 	 */
1136 	activate_page(page);
1137 out:
1138 	pte_unmap_unlock(pte, ptl);
1139 out_nolock:
1140 	if (page != swapcache) {
1141 		unlock_page(page);
1142 		put_page(page);
1143 	}
1144 	return ret;
1145 }
1146 
1147 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1148 				unsigned long addr, unsigned long end,
1149 				swp_entry_t entry, struct page *page)
1150 {
1151 	pte_t swp_pte = swp_entry_to_pte(entry);
1152 	pte_t *pte;
1153 	int ret = 0;
1154 
1155 	/*
1156 	 * We don't actually need pte lock while scanning for swp_pte: since
1157 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1158 	 * page table while we're scanning; though it could get zapped, and on
1159 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1160 	 * of unmatched parts which look like swp_pte, so unuse_pte must
1161 	 * recheck under pte lock.  Scanning without pte lock lets it be
1162 	 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1163 	 */
1164 	pte = pte_offset_map(pmd, addr);
1165 	do {
1166 		/*
1167 		 * swapoff spends a _lot_ of time in this loop!
1168 		 * Test inline before going to call unuse_pte.
1169 		 */
1170 		if (unlikely(maybe_same_pte(*pte, swp_pte))) {
1171 			pte_unmap(pte);
1172 			ret = unuse_pte(vma, pmd, addr, entry, page);
1173 			if (ret)
1174 				goto out;
1175 			pte = pte_offset_map(pmd, addr);
1176 		}
1177 	} while (pte++, addr += PAGE_SIZE, addr != end);
1178 	pte_unmap(pte - 1);
1179 out:
1180 	return ret;
1181 }
1182 
1183 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1184 				unsigned long addr, unsigned long end,
1185 				swp_entry_t entry, struct page *page)
1186 {
1187 	pmd_t *pmd;
1188 	unsigned long next;
1189 	int ret;
1190 
1191 	pmd = pmd_offset(pud, addr);
1192 	do {
1193 		next = pmd_addr_end(addr, end);
1194 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1195 			continue;
1196 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1197 		if (ret)
1198 			return ret;
1199 	} while (pmd++, addr = next, addr != end);
1200 	return 0;
1201 }
1202 
1203 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1204 				unsigned long addr, unsigned long end,
1205 				swp_entry_t entry, struct page *page)
1206 {
1207 	pud_t *pud;
1208 	unsigned long next;
1209 	int ret;
1210 
1211 	pud = pud_offset(pgd, addr);
1212 	do {
1213 		next = pud_addr_end(addr, end);
1214 		if (pud_none_or_clear_bad(pud))
1215 			continue;
1216 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1217 		if (ret)
1218 			return ret;
1219 	} while (pud++, addr = next, addr != end);
1220 	return 0;
1221 }
1222 
1223 static int unuse_vma(struct vm_area_struct *vma,
1224 				swp_entry_t entry, struct page *page)
1225 {
1226 	pgd_t *pgd;
1227 	unsigned long addr, end, next;
1228 	int ret;
1229 
1230 	if (page_anon_vma(page)) {
1231 		addr = page_address_in_vma(page, vma);
1232 		if (addr == -EFAULT)
1233 			return 0;
1234 		else
1235 			end = addr + PAGE_SIZE;
1236 	} else {
1237 		addr = vma->vm_start;
1238 		end = vma->vm_end;
1239 	}
1240 
1241 	pgd = pgd_offset(vma->vm_mm, addr);
1242 	do {
1243 		next = pgd_addr_end(addr, end);
1244 		if (pgd_none_or_clear_bad(pgd))
1245 			continue;
1246 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1247 		if (ret)
1248 			return ret;
1249 	} while (pgd++, addr = next, addr != end);
1250 	return 0;
1251 }
1252 
1253 static int unuse_mm(struct mm_struct *mm,
1254 				swp_entry_t entry, struct page *page)
1255 {
1256 	struct vm_area_struct *vma;
1257 	int ret = 0;
1258 
1259 	if (!down_read_trylock(&mm->mmap_sem)) {
1260 		/*
1261 		 * Activate page so shrink_inactive_list is unlikely to unmap
1262 		 * its ptes while lock is dropped, so swapoff can make progress.
1263 		 */
1264 		activate_page(page);
1265 		unlock_page(page);
1266 		down_read(&mm->mmap_sem);
1267 		lock_page(page);
1268 	}
1269 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1270 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1271 			break;
1272 	}
1273 	up_read(&mm->mmap_sem);
1274 	return (ret < 0)? ret: 0;
1275 }
1276 
1277 /*
1278  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1279  * from current position to next entry still in use.
1280  * Recycle to start on reaching the end, returning 0 when empty.
1281  */
1282 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1283 					unsigned int prev, bool frontswap)
1284 {
1285 	unsigned int max = si->max;
1286 	unsigned int i = prev;
1287 	unsigned char count;
1288 
1289 	/*
1290 	 * No need for swap_lock here: we're just looking
1291 	 * for whether an entry is in use, not modifying it; false
1292 	 * hits are okay, and sys_swapoff() has already prevented new
1293 	 * allocations from this area (while holding swap_lock).
1294 	 */
1295 	for (;;) {
1296 		if (++i >= max) {
1297 			if (!prev) {
1298 				i = 0;
1299 				break;
1300 			}
1301 			/*
1302 			 * No entries in use at top of swap_map,
1303 			 * loop back to start and recheck there.
1304 			 */
1305 			max = prev + 1;
1306 			prev = 0;
1307 			i = 1;
1308 		}
1309 		if (frontswap) {
1310 			if (frontswap_test(si, i))
1311 				break;
1312 			else
1313 				continue;
1314 		}
1315 		count = READ_ONCE(si->swap_map[i]);
1316 		if (count && swap_count(count) != SWAP_MAP_BAD)
1317 			break;
1318 	}
1319 	return i;
1320 }
1321 
1322 /*
1323  * We completely avoid races by reading each swap page in advance,
1324  * and then search for the process using it.  All the necessary
1325  * page table adjustments can then be made atomically.
1326  *
1327  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1328  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1329  */
1330 int try_to_unuse(unsigned int type, bool frontswap,
1331 		 unsigned long pages_to_unuse)
1332 {
1333 	struct swap_info_struct *si = swap_info[type];
1334 	struct mm_struct *start_mm;
1335 	volatile unsigned char *swap_map; /* swap_map is accessed without
1336 					   * locking. Mark it as volatile
1337 					   * to prevent compiler doing
1338 					   * something odd.
1339 					   */
1340 	unsigned char swcount;
1341 	struct page *page;
1342 	swp_entry_t entry;
1343 	unsigned int i = 0;
1344 	int retval = 0;
1345 
1346 	/*
1347 	 * When searching mms for an entry, a good strategy is to
1348 	 * start at the first mm we freed the previous entry from
1349 	 * (though actually we don't notice whether we or coincidence
1350 	 * freed the entry).  Initialize this start_mm with a hold.
1351 	 *
1352 	 * A simpler strategy would be to start at the last mm we
1353 	 * freed the previous entry from; but that would take less
1354 	 * advantage of mmlist ordering, which clusters forked mms
1355 	 * together, child after parent.  If we race with dup_mmap(), we
1356 	 * prefer to resolve parent before child, lest we miss entries
1357 	 * duplicated after we scanned child: using last mm would invert
1358 	 * that.
1359 	 */
1360 	start_mm = &init_mm;
1361 	atomic_inc(&init_mm.mm_users);
1362 
1363 	/*
1364 	 * Keep on scanning until all entries have gone.  Usually,
1365 	 * one pass through swap_map is enough, but not necessarily:
1366 	 * there are races when an instance of an entry might be missed.
1367 	 */
1368 	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1369 		if (signal_pending(current)) {
1370 			retval = -EINTR;
1371 			break;
1372 		}
1373 
1374 		/*
1375 		 * Get a page for the entry, using the existing swap
1376 		 * cache page if there is one.  Otherwise, get a clean
1377 		 * page and read the swap into it.
1378 		 */
1379 		swap_map = &si->swap_map[i];
1380 		entry = swp_entry(type, i);
1381 		page = read_swap_cache_async(entry,
1382 					GFP_HIGHUSER_MOVABLE, NULL, 0);
1383 		if (!page) {
1384 			/*
1385 			 * Either swap_duplicate() failed because entry
1386 			 * has been freed independently, and will not be
1387 			 * reused since sys_swapoff() already disabled
1388 			 * allocation from here, or alloc_page() failed.
1389 			 */
1390 			swcount = *swap_map;
1391 			/*
1392 			 * We don't hold lock here, so the swap entry could be
1393 			 * SWAP_MAP_BAD (when the cluster is discarding).
1394 			 * Instead of fail out, We can just skip the swap
1395 			 * entry because swapoff will wait for discarding
1396 			 * finish anyway.
1397 			 */
1398 			if (!swcount || swcount == SWAP_MAP_BAD)
1399 				continue;
1400 			retval = -ENOMEM;
1401 			break;
1402 		}
1403 
1404 		/*
1405 		 * Don't hold on to start_mm if it looks like exiting.
1406 		 */
1407 		if (atomic_read(&start_mm->mm_users) == 1) {
1408 			mmput(start_mm);
1409 			start_mm = &init_mm;
1410 			atomic_inc(&init_mm.mm_users);
1411 		}
1412 
1413 		/*
1414 		 * Wait for and lock page.  When do_swap_page races with
1415 		 * try_to_unuse, do_swap_page can handle the fault much
1416 		 * faster than try_to_unuse can locate the entry.  This
1417 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1418 		 * defer to do_swap_page in such a case - in some tests,
1419 		 * do_swap_page and try_to_unuse repeatedly compete.
1420 		 */
1421 		wait_on_page_locked(page);
1422 		wait_on_page_writeback(page);
1423 		lock_page(page);
1424 		wait_on_page_writeback(page);
1425 
1426 		/*
1427 		 * Remove all references to entry.
1428 		 */
1429 		swcount = *swap_map;
1430 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1431 			retval = shmem_unuse(entry, page);
1432 			/* page has already been unlocked and released */
1433 			if (retval < 0)
1434 				break;
1435 			continue;
1436 		}
1437 		if (swap_count(swcount) && start_mm != &init_mm)
1438 			retval = unuse_mm(start_mm, entry, page);
1439 
1440 		if (swap_count(*swap_map)) {
1441 			int set_start_mm = (*swap_map >= swcount);
1442 			struct list_head *p = &start_mm->mmlist;
1443 			struct mm_struct *new_start_mm = start_mm;
1444 			struct mm_struct *prev_mm = start_mm;
1445 			struct mm_struct *mm;
1446 
1447 			atomic_inc(&new_start_mm->mm_users);
1448 			atomic_inc(&prev_mm->mm_users);
1449 			spin_lock(&mmlist_lock);
1450 			while (swap_count(*swap_map) && !retval &&
1451 					(p = p->next) != &start_mm->mmlist) {
1452 				mm = list_entry(p, struct mm_struct, mmlist);
1453 				if (!atomic_inc_not_zero(&mm->mm_users))
1454 					continue;
1455 				spin_unlock(&mmlist_lock);
1456 				mmput(prev_mm);
1457 				prev_mm = mm;
1458 
1459 				cond_resched();
1460 
1461 				swcount = *swap_map;
1462 				if (!swap_count(swcount)) /* any usage ? */
1463 					;
1464 				else if (mm == &init_mm)
1465 					set_start_mm = 1;
1466 				else
1467 					retval = unuse_mm(mm, entry, page);
1468 
1469 				if (set_start_mm && *swap_map < swcount) {
1470 					mmput(new_start_mm);
1471 					atomic_inc(&mm->mm_users);
1472 					new_start_mm = mm;
1473 					set_start_mm = 0;
1474 				}
1475 				spin_lock(&mmlist_lock);
1476 			}
1477 			spin_unlock(&mmlist_lock);
1478 			mmput(prev_mm);
1479 			mmput(start_mm);
1480 			start_mm = new_start_mm;
1481 		}
1482 		if (retval) {
1483 			unlock_page(page);
1484 			page_cache_release(page);
1485 			break;
1486 		}
1487 
1488 		/*
1489 		 * If a reference remains (rare), we would like to leave
1490 		 * the page in the swap cache; but try_to_unmap could
1491 		 * then re-duplicate the entry once we drop page lock,
1492 		 * so we might loop indefinitely; also, that page could
1493 		 * not be swapped out to other storage meanwhile.  So:
1494 		 * delete from cache even if there's another reference,
1495 		 * after ensuring that the data has been saved to disk -
1496 		 * since if the reference remains (rarer), it will be
1497 		 * read from disk into another page.  Splitting into two
1498 		 * pages would be incorrect if swap supported "shared
1499 		 * private" pages, but they are handled by tmpfs files.
1500 		 *
1501 		 * Given how unuse_vma() targets one particular offset
1502 		 * in an anon_vma, once the anon_vma has been determined,
1503 		 * this splitting happens to be just what is needed to
1504 		 * handle where KSM pages have been swapped out: re-reading
1505 		 * is unnecessarily slow, but we can fix that later on.
1506 		 */
1507 		if (swap_count(*swap_map) &&
1508 		     PageDirty(page) && PageSwapCache(page)) {
1509 			struct writeback_control wbc = {
1510 				.sync_mode = WB_SYNC_NONE,
1511 			};
1512 
1513 			swap_writepage(page, &wbc);
1514 			lock_page(page);
1515 			wait_on_page_writeback(page);
1516 		}
1517 
1518 		/*
1519 		 * It is conceivable that a racing task removed this page from
1520 		 * swap cache just before we acquired the page lock at the top,
1521 		 * or while we dropped it in unuse_mm().  The page might even
1522 		 * be back in swap cache on another swap area: that we must not
1523 		 * delete, since it may not have been written out to swap yet.
1524 		 */
1525 		if (PageSwapCache(page) &&
1526 		    likely(page_private(page) == entry.val))
1527 			delete_from_swap_cache(page);
1528 
1529 		/*
1530 		 * So we could skip searching mms once swap count went
1531 		 * to 1, we did not mark any present ptes as dirty: must
1532 		 * mark page dirty so shrink_page_list will preserve it.
1533 		 */
1534 		SetPageDirty(page);
1535 		unlock_page(page);
1536 		page_cache_release(page);
1537 
1538 		/*
1539 		 * Make sure that we aren't completely killing
1540 		 * interactive performance.
1541 		 */
1542 		cond_resched();
1543 		if (frontswap && pages_to_unuse > 0) {
1544 			if (!--pages_to_unuse)
1545 				break;
1546 		}
1547 	}
1548 
1549 	mmput(start_mm);
1550 	return retval;
1551 }
1552 
1553 /*
1554  * After a successful try_to_unuse, if no swap is now in use, we know
1555  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1556  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1557  * added to the mmlist just after page_duplicate - before would be racy.
1558  */
1559 static void drain_mmlist(void)
1560 {
1561 	struct list_head *p, *next;
1562 	unsigned int type;
1563 
1564 	for (type = 0; type < nr_swapfiles; type++)
1565 		if (swap_info[type]->inuse_pages)
1566 			return;
1567 	spin_lock(&mmlist_lock);
1568 	list_for_each_safe(p, next, &init_mm.mmlist)
1569 		list_del_init(p);
1570 	spin_unlock(&mmlist_lock);
1571 }
1572 
1573 /*
1574  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1575  * corresponds to page offset for the specified swap entry.
1576  * Note that the type of this function is sector_t, but it returns page offset
1577  * into the bdev, not sector offset.
1578  */
1579 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1580 {
1581 	struct swap_info_struct *sis;
1582 	struct swap_extent *start_se;
1583 	struct swap_extent *se;
1584 	pgoff_t offset;
1585 
1586 	sis = swap_info[swp_type(entry)];
1587 	*bdev = sis->bdev;
1588 
1589 	offset = swp_offset(entry);
1590 	start_se = sis->curr_swap_extent;
1591 	se = start_se;
1592 
1593 	for ( ; ; ) {
1594 		struct list_head *lh;
1595 
1596 		if (se->start_page <= offset &&
1597 				offset < (se->start_page + se->nr_pages)) {
1598 			return se->start_block + (offset - se->start_page);
1599 		}
1600 		lh = se->list.next;
1601 		se = list_entry(lh, struct swap_extent, list);
1602 		sis->curr_swap_extent = se;
1603 		BUG_ON(se == start_se);		/* It *must* be present */
1604 	}
1605 }
1606 
1607 /*
1608  * Returns the page offset into bdev for the specified page's swap entry.
1609  */
1610 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1611 {
1612 	swp_entry_t entry;
1613 	entry.val = page_private(page);
1614 	return map_swap_entry(entry, bdev);
1615 }
1616 
1617 /*
1618  * Free all of a swapdev's extent information
1619  */
1620 static void destroy_swap_extents(struct swap_info_struct *sis)
1621 {
1622 	while (!list_empty(&sis->first_swap_extent.list)) {
1623 		struct swap_extent *se;
1624 
1625 		se = list_entry(sis->first_swap_extent.list.next,
1626 				struct swap_extent, list);
1627 		list_del(&se->list);
1628 		kfree(se);
1629 	}
1630 
1631 	if (sis->flags & SWP_FILE) {
1632 		struct file *swap_file = sis->swap_file;
1633 		struct address_space *mapping = swap_file->f_mapping;
1634 
1635 		sis->flags &= ~SWP_FILE;
1636 		mapping->a_ops->swap_deactivate(swap_file);
1637 	}
1638 }
1639 
1640 /*
1641  * Add a block range (and the corresponding page range) into this swapdev's
1642  * extent list.  The extent list is kept sorted in page order.
1643  *
1644  * This function rather assumes that it is called in ascending page order.
1645  */
1646 int
1647 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1648 		unsigned long nr_pages, sector_t start_block)
1649 {
1650 	struct swap_extent *se;
1651 	struct swap_extent *new_se;
1652 	struct list_head *lh;
1653 
1654 	if (start_page == 0) {
1655 		se = &sis->first_swap_extent;
1656 		sis->curr_swap_extent = se;
1657 		se->start_page = 0;
1658 		se->nr_pages = nr_pages;
1659 		se->start_block = start_block;
1660 		return 1;
1661 	} else {
1662 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1663 		se = list_entry(lh, struct swap_extent, list);
1664 		BUG_ON(se->start_page + se->nr_pages != start_page);
1665 		if (se->start_block + se->nr_pages == start_block) {
1666 			/* Merge it */
1667 			se->nr_pages += nr_pages;
1668 			return 0;
1669 		}
1670 	}
1671 
1672 	/*
1673 	 * No merge.  Insert a new extent, preserving ordering.
1674 	 */
1675 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1676 	if (new_se == NULL)
1677 		return -ENOMEM;
1678 	new_se->start_page = start_page;
1679 	new_se->nr_pages = nr_pages;
1680 	new_se->start_block = start_block;
1681 
1682 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1683 	return 1;
1684 }
1685 
1686 /*
1687  * A `swap extent' is a simple thing which maps a contiguous range of pages
1688  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1689  * is built at swapon time and is then used at swap_writepage/swap_readpage
1690  * time for locating where on disk a page belongs.
1691  *
1692  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1693  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1694  * swap files identically.
1695  *
1696  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1697  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1698  * swapfiles are handled *identically* after swapon time.
1699  *
1700  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1701  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1702  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1703  * requirements, they are simply tossed out - we will never use those blocks
1704  * for swapping.
1705  *
1706  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1707  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1708  * which will scribble on the fs.
1709  *
1710  * The amount of disk space which a single swap extent represents varies.
1711  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1712  * extents in the list.  To avoid much list walking, we cache the previous
1713  * search location in `curr_swap_extent', and start new searches from there.
1714  * This is extremely effective.  The average number of iterations in
1715  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1716  */
1717 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1718 {
1719 	struct file *swap_file = sis->swap_file;
1720 	struct address_space *mapping = swap_file->f_mapping;
1721 	struct inode *inode = mapping->host;
1722 	int ret;
1723 
1724 	if (S_ISBLK(inode->i_mode)) {
1725 		ret = add_swap_extent(sis, 0, sis->max, 0);
1726 		*span = sis->pages;
1727 		return ret;
1728 	}
1729 
1730 	if (mapping->a_ops->swap_activate) {
1731 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1732 		if (!ret) {
1733 			sis->flags |= SWP_FILE;
1734 			ret = add_swap_extent(sis, 0, sis->max, 0);
1735 			*span = sis->pages;
1736 		}
1737 		return ret;
1738 	}
1739 
1740 	return generic_swapfile_activate(sis, swap_file, span);
1741 }
1742 
1743 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1744 				unsigned char *swap_map,
1745 				struct swap_cluster_info *cluster_info)
1746 {
1747 	if (prio >= 0)
1748 		p->prio = prio;
1749 	else
1750 		p->prio = --least_priority;
1751 	/*
1752 	 * the plist prio is negated because plist ordering is
1753 	 * low-to-high, while swap ordering is high-to-low
1754 	 */
1755 	p->list.prio = -p->prio;
1756 	p->avail_list.prio = -p->prio;
1757 	p->swap_map = swap_map;
1758 	p->cluster_info = cluster_info;
1759 	p->flags |= SWP_WRITEOK;
1760 	atomic_long_add(p->pages, &nr_swap_pages);
1761 	total_swap_pages += p->pages;
1762 
1763 	assert_spin_locked(&swap_lock);
1764 	/*
1765 	 * both lists are plists, and thus priority ordered.
1766 	 * swap_active_head needs to be priority ordered for swapoff(),
1767 	 * which on removal of any swap_info_struct with an auto-assigned
1768 	 * (i.e. negative) priority increments the auto-assigned priority
1769 	 * of any lower-priority swap_info_structs.
1770 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
1771 	 * which allocates swap pages from the highest available priority
1772 	 * swap_info_struct.
1773 	 */
1774 	plist_add(&p->list, &swap_active_head);
1775 	spin_lock(&swap_avail_lock);
1776 	plist_add(&p->avail_list, &swap_avail_head);
1777 	spin_unlock(&swap_avail_lock);
1778 }
1779 
1780 static void enable_swap_info(struct swap_info_struct *p, int prio,
1781 				unsigned char *swap_map,
1782 				struct swap_cluster_info *cluster_info,
1783 				unsigned long *frontswap_map)
1784 {
1785 	frontswap_init(p->type, frontswap_map);
1786 	spin_lock(&swap_lock);
1787 	spin_lock(&p->lock);
1788 	 _enable_swap_info(p, prio, swap_map, cluster_info);
1789 	spin_unlock(&p->lock);
1790 	spin_unlock(&swap_lock);
1791 }
1792 
1793 static void reinsert_swap_info(struct swap_info_struct *p)
1794 {
1795 	spin_lock(&swap_lock);
1796 	spin_lock(&p->lock);
1797 	_enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1798 	spin_unlock(&p->lock);
1799 	spin_unlock(&swap_lock);
1800 }
1801 
1802 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1803 {
1804 	struct swap_info_struct *p = NULL;
1805 	unsigned char *swap_map;
1806 	struct swap_cluster_info *cluster_info;
1807 	unsigned long *frontswap_map;
1808 	struct file *swap_file, *victim;
1809 	struct address_space *mapping;
1810 	struct inode *inode;
1811 	struct filename *pathname;
1812 	int err, found = 0;
1813 	unsigned int old_block_size;
1814 
1815 	if (!capable(CAP_SYS_ADMIN))
1816 		return -EPERM;
1817 
1818 	BUG_ON(!current->mm);
1819 
1820 	pathname = getname(specialfile);
1821 	if (IS_ERR(pathname))
1822 		return PTR_ERR(pathname);
1823 
1824 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1825 	err = PTR_ERR(victim);
1826 	if (IS_ERR(victim))
1827 		goto out;
1828 
1829 	mapping = victim->f_mapping;
1830 	spin_lock(&swap_lock);
1831 	plist_for_each_entry(p, &swap_active_head, list) {
1832 		if (p->flags & SWP_WRITEOK) {
1833 			if (p->swap_file->f_mapping == mapping) {
1834 				found = 1;
1835 				break;
1836 			}
1837 		}
1838 	}
1839 	if (!found) {
1840 		err = -EINVAL;
1841 		spin_unlock(&swap_lock);
1842 		goto out_dput;
1843 	}
1844 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
1845 		vm_unacct_memory(p->pages);
1846 	else {
1847 		err = -ENOMEM;
1848 		spin_unlock(&swap_lock);
1849 		goto out_dput;
1850 	}
1851 	spin_lock(&swap_avail_lock);
1852 	plist_del(&p->avail_list, &swap_avail_head);
1853 	spin_unlock(&swap_avail_lock);
1854 	spin_lock(&p->lock);
1855 	if (p->prio < 0) {
1856 		struct swap_info_struct *si = p;
1857 
1858 		plist_for_each_entry_continue(si, &swap_active_head, list) {
1859 			si->prio++;
1860 			si->list.prio--;
1861 			si->avail_list.prio--;
1862 		}
1863 		least_priority++;
1864 	}
1865 	plist_del(&p->list, &swap_active_head);
1866 	atomic_long_sub(p->pages, &nr_swap_pages);
1867 	total_swap_pages -= p->pages;
1868 	p->flags &= ~SWP_WRITEOK;
1869 	spin_unlock(&p->lock);
1870 	spin_unlock(&swap_lock);
1871 
1872 	set_current_oom_origin();
1873 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
1874 	clear_current_oom_origin();
1875 
1876 	if (err) {
1877 		/* re-insert swap space back into swap_list */
1878 		reinsert_swap_info(p);
1879 		goto out_dput;
1880 	}
1881 
1882 	flush_work(&p->discard_work);
1883 
1884 	destroy_swap_extents(p);
1885 	if (p->flags & SWP_CONTINUED)
1886 		free_swap_count_continuations(p);
1887 
1888 	mutex_lock(&swapon_mutex);
1889 	spin_lock(&swap_lock);
1890 	spin_lock(&p->lock);
1891 	drain_mmlist();
1892 
1893 	/* wait for anyone still in scan_swap_map */
1894 	p->highest_bit = 0;		/* cuts scans short */
1895 	while (p->flags >= SWP_SCANNING) {
1896 		spin_unlock(&p->lock);
1897 		spin_unlock(&swap_lock);
1898 		schedule_timeout_uninterruptible(1);
1899 		spin_lock(&swap_lock);
1900 		spin_lock(&p->lock);
1901 	}
1902 
1903 	swap_file = p->swap_file;
1904 	old_block_size = p->old_block_size;
1905 	p->swap_file = NULL;
1906 	p->max = 0;
1907 	swap_map = p->swap_map;
1908 	p->swap_map = NULL;
1909 	cluster_info = p->cluster_info;
1910 	p->cluster_info = NULL;
1911 	frontswap_map = frontswap_map_get(p);
1912 	spin_unlock(&p->lock);
1913 	spin_unlock(&swap_lock);
1914 	frontswap_invalidate_area(p->type);
1915 	frontswap_map_set(p, NULL);
1916 	mutex_unlock(&swapon_mutex);
1917 	free_percpu(p->percpu_cluster);
1918 	p->percpu_cluster = NULL;
1919 	vfree(swap_map);
1920 	vfree(cluster_info);
1921 	vfree(frontswap_map);
1922 	/* Destroy swap account information */
1923 	swap_cgroup_swapoff(p->type);
1924 
1925 	inode = mapping->host;
1926 	if (S_ISBLK(inode->i_mode)) {
1927 		struct block_device *bdev = I_BDEV(inode);
1928 		set_blocksize(bdev, old_block_size);
1929 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1930 	} else {
1931 		mutex_lock(&inode->i_mutex);
1932 		inode->i_flags &= ~S_SWAPFILE;
1933 		mutex_unlock(&inode->i_mutex);
1934 	}
1935 	filp_close(swap_file, NULL);
1936 
1937 	/*
1938 	 * Clear the SWP_USED flag after all resources are freed so that swapon
1939 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
1940 	 * not hold p->lock after we cleared its SWP_WRITEOK.
1941 	 */
1942 	spin_lock(&swap_lock);
1943 	p->flags = 0;
1944 	spin_unlock(&swap_lock);
1945 
1946 	err = 0;
1947 	atomic_inc(&proc_poll_event);
1948 	wake_up_interruptible(&proc_poll_wait);
1949 
1950 out_dput:
1951 	filp_close(victim, NULL);
1952 out:
1953 	putname(pathname);
1954 	return err;
1955 }
1956 
1957 #ifdef CONFIG_PROC_FS
1958 static unsigned swaps_poll(struct file *file, poll_table *wait)
1959 {
1960 	struct seq_file *seq = file->private_data;
1961 
1962 	poll_wait(file, &proc_poll_wait, wait);
1963 
1964 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
1965 		seq->poll_event = atomic_read(&proc_poll_event);
1966 		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1967 	}
1968 
1969 	return POLLIN | POLLRDNORM;
1970 }
1971 
1972 /* iterator */
1973 static void *swap_start(struct seq_file *swap, loff_t *pos)
1974 {
1975 	struct swap_info_struct *si;
1976 	int type;
1977 	loff_t l = *pos;
1978 
1979 	mutex_lock(&swapon_mutex);
1980 
1981 	if (!l)
1982 		return SEQ_START_TOKEN;
1983 
1984 	for (type = 0; type < nr_swapfiles; type++) {
1985 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1986 		si = swap_info[type];
1987 		if (!(si->flags & SWP_USED) || !si->swap_map)
1988 			continue;
1989 		if (!--l)
1990 			return si;
1991 	}
1992 
1993 	return NULL;
1994 }
1995 
1996 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1997 {
1998 	struct swap_info_struct *si = v;
1999 	int type;
2000 
2001 	if (v == SEQ_START_TOKEN)
2002 		type = 0;
2003 	else
2004 		type = si->type + 1;
2005 
2006 	for (; type < nr_swapfiles; type++) {
2007 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2008 		si = swap_info[type];
2009 		if (!(si->flags & SWP_USED) || !si->swap_map)
2010 			continue;
2011 		++*pos;
2012 		return si;
2013 	}
2014 
2015 	return NULL;
2016 }
2017 
2018 static void swap_stop(struct seq_file *swap, void *v)
2019 {
2020 	mutex_unlock(&swapon_mutex);
2021 }
2022 
2023 static int swap_show(struct seq_file *swap, void *v)
2024 {
2025 	struct swap_info_struct *si = v;
2026 	struct file *file;
2027 	int len;
2028 
2029 	if (si == SEQ_START_TOKEN) {
2030 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2031 		return 0;
2032 	}
2033 
2034 	file = si->swap_file;
2035 	len = seq_file_path(swap, file, " \t\n\\");
2036 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2037 			len < 40 ? 40 - len : 1, " ",
2038 			S_ISBLK(file_inode(file)->i_mode) ?
2039 				"partition" : "file\t",
2040 			si->pages << (PAGE_SHIFT - 10),
2041 			si->inuse_pages << (PAGE_SHIFT - 10),
2042 			si->prio);
2043 	return 0;
2044 }
2045 
2046 static const struct seq_operations swaps_op = {
2047 	.start =	swap_start,
2048 	.next =		swap_next,
2049 	.stop =		swap_stop,
2050 	.show =		swap_show
2051 };
2052 
2053 static int swaps_open(struct inode *inode, struct file *file)
2054 {
2055 	struct seq_file *seq;
2056 	int ret;
2057 
2058 	ret = seq_open(file, &swaps_op);
2059 	if (ret)
2060 		return ret;
2061 
2062 	seq = file->private_data;
2063 	seq->poll_event = atomic_read(&proc_poll_event);
2064 	return 0;
2065 }
2066 
2067 static const struct file_operations proc_swaps_operations = {
2068 	.open		= swaps_open,
2069 	.read		= seq_read,
2070 	.llseek		= seq_lseek,
2071 	.release	= seq_release,
2072 	.poll		= swaps_poll,
2073 };
2074 
2075 static int __init procswaps_init(void)
2076 {
2077 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
2078 	return 0;
2079 }
2080 __initcall(procswaps_init);
2081 #endif /* CONFIG_PROC_FS */
2082 
2083 #ifdef MAX_SWAPFILES_CHECK
2084 static int __init max_swapfiles_check(void)
2085 {
2086 	MAX_SWAPFILES_CHECK();
2087 	return 0;
2088 }
2089 late_initcall(max_swapfiles_check);
2090 #endif
2091 
2092 static struct swap_info_struct *alloc_swap_info(void)
2093 {
2094 	struct swap_info_struct *p;
2095 	unsigned int type;
2096 
2097 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2098 	if (!p)
2099 		return ERR_PTR(-ENOMEM);
2100 
2101 	spin_lock(&swap_lock);
2102 	for (type = 0; type < nr_swapfiles; type++) {
2103 		if (!(swap_info[type]->flags & SWP_USED))
2104 			break;
2105 	}
2106 	if (type >= MAX_SWAPFILES) {
2107 		spin_unlock(&swap_lock);
2108 		kfree(p);
2109 		return ERR_PTR(-EPERM);
2110 	}
2111 	if (type >= nr_swapfiles) {
2112 		p->type = type;
2113 		swap_info[type] = p;
2114 		/*
2115 		 * Write swap_info[type] before nr_swapfiles, in case a
2116 		 * racing procfs swap_start() or swap_next() is reading them.
2117 		 * (We never shrink nr_swapfiles, we never free this entry.)
2118 		 */
2119 		smp_wmb();
2120 		nr_swapfiles++;
2121 	} else {
2122 		kfree(p);
2123 		p = swap_info[type];
2124 		/*
2125 		 * Do not memset this entry: a racing procfs swap_next()
2126 		 * would be relying on p->type to remain valid.
2127 		 */
2128 	}
2129 	INIT_LIST_HEAD(&p->first_swap_extent.list);
2130 	plist_node_init(&p->list, 0);
2131 	plist_node_init(&p->avail_list, 0);
2132 	p->flags = SWP_USED;
2133 	spin_unlock(&swap_lock);
2134 	spin_lock_init(&p->lock);
2135 
2136 	return p;
2137 }
2138 
2139 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2140 {
2141 	int error;
2142 
2143 	if (S_ISBLK(inode->i_mode)) {
2144 		p->bdev = bdgrab(I_BDEV(inode));
2145 		error = blkdev_get(p->bdev,
2146 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL,
2147 				   sys_swapon);
2148 		if (error < 0) {
2149 			p->bdev = NULL;
2150 			return -EINVAL;
2151 		}
2152 		p->old_block_size = block_size(p->bdev);
2153 		error = set_blocksize(p->bdev, PAGE_SIZE);
2154 		if (error < 0)
2155 			return error;
2156 		p->flags |= SWP_BLKDEV;
2157 	} else if (S_ISREG(inode->i_mode)) {
2158 		p->bdev = inode->i_sb->s_bdev;
2159 		mutex_lock(&inode->i_mutex);
2160 		if (IS_SWAPFILE(inode))
2161 			return -EBUSY;
2162 	} else
2163 		return -EINVAL;
2164 
2165 	return 0;
2166 }
2167 
2168 static unsigned long read_swap_header(struct swap_info_struct *p,
2169 					union swap_header *swap_header,
2170 					struct inode *inode)
2171 {
2172 	int i;
2173 	unsigned long maxpages;
2174 	unsigned long swapfilepages;
2175 	unsigned long last_page;
2176 
2177 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2178 		pr_err("Unable to find swap-space signature\n");
2179 		return 0;
2180 	}
2181 
2182 	/* swap partition endianess hack... */
2183 	if (swab32(swap_header->info.version) == 1) {
2184 		swab32s(&swap_header->info.version);
2185 		swab32s(&swap_header->info.last_page);
2186 		swab32s(&swap_header->info.nr_badpages);
2187 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2188 			swab32s(&swap_header->info.badpages[i]);
2189 	}
2190 	/* Check the swap header's sub-version */
2191 	if (swap_header->info.version != 1) {
2192 		pr_warn("Unable to handle swap header version %d\n",
2193 			swap_header->info.version);
2194 		return 0;
2195 	}
2196 
2197 	p->lowest_bit  = 1;
2198 	p->cluster_next = 1;
2199 	p->cluster_nr = 0;
2200 
2201 	/*
2202 	 * Find out how many pages are allowed for a single swap
2203 	 * device. There are two limiting factors: 1) the number
2204 	 * of bits for the swap offset in the swp_entry_t type, and
2205 	 * 2) the number of bits in the swap pte as defined by the
2206 	 * different architectures. In order to find the
2207 	 * largest possible bit mask, a swap entry with swap type 0
2208 	 * and swap offset ~0UL is created, encoded to a swap pte,
2209 	 * decoded to a swp_entry_t again, and finally the swap
2210 	 * offset is extracted. This will mask all the bits from
2211 	 * the initial ~0UL mask that can't be encoded in either
2212 	 * the swp_entry_t or the architecture definition of a
2213 	 * swap pte.
2214 	 */
2215 	maxpages = swp_offset(pte_to_swp_entry(
2216 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2217 	last_page = swap_header->info.last_page;
2218 	if (last_page > maxpages) {
2219 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2220 			maxpages << (PAGE_SHIFT - 10),
2221 			last_page << (PAGE_SHIFT - 10));
2222 	}
2223 	if (maxpages > last_page) {
2224 		maxpages = last_page + 1;
2225 		/* p->max is an unsigned int: don't overflow it */
2226 		if ((unsigned int)maxpages == 0)
2227 			maxpages = UINT_MAX;
2228 	}
2229 	p->highest_bit = maxpages - 1;
2230 
2231 	if (!maxpages)
2232 		return 0;
2233 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2234 	if (swapfilepages && maxpages > swapfilepages) {
2235 		pr_warn("Swap area shorter than signature indicates\n");
2236 		return 0;
2237 	}
2238 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2239 		return 0;
2240 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2241 		return 0;
2242 
2243 	return maxpages;
2244 }
2245 
2246 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2247 					union swap_header *swap_header,
2248 					unsigned char *swap_map,
2249 					struct swap_cluster_info *cluster_info,
2250 					unsigned long maxpages,
2251 					sector_t *span)
2252 {
2253 	int i;
2254 	unsigned int nr_good_pages;
2255 	int nr_extents;
2256 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2257 	unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2258 
2259 	nr_good_pages = maxpages - 1;	/* omit header page */
2260 
2261 	cluster_set_null(&p->free_cluster_head);
2262 	cluster_set_null(&p->free_cluster_tail);
2263 	cluster_set_null(&p->discard_cluster_head);
2264 	cluster_set_null(&p->discard_cluster_tail);
2265 
2266 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2267 		unsigned int page_nr = swap_header->info.badpages[i];
2268 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2269 			return -EINVAL;
2270 		if (page_nr < maxpages) {
2271 			swap_map[page_nr] = SWAP_MAP_BAD;
2272 			nr_good_pages--;
2273 			/*
2274 			 * Haven't marked the cluster free yet, no list
2275 			 * operation involved
2276 			 */
2277 			inc_cluster_info_page(p, cluster_info, page_nr);
2278 		}
2279 	}
2280 
2281 	/* Haven't marked the cluster free yet, no list operation involved */
2282 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2283 		inc_cluster_info_page(p, cluster_info, i);
2284 
2285 	if (nr_good_pages) {
2286 		swap_map[0] = SWAP_MAP_BAD;
2287 		/*
2288 		 * Not mark the cluster free yet, no list
2289 		 * operation involved
2290 		 */
2291 		inc_cluster_info_page(p, cluster_info, 0);
2292 		p->max = maxpages;
2293 		p->pages = nr_good_pages;
2294 		nr_extents = setup_swap_extents(p, span);
2295 		if (nr_extents < 0)
2296 			return nr_extents;
2297 		nr_good_pages = p->pages;
2298 	}
2299 	if (!nr_good_pages) {
2300 		pr_warn("Empty swap-file\n");
2301 		return -EINVAL;
2302 	}
2303 
2304 	if (!cluster_info)
2305 		return nr_extents;
2306 
2307 	for (i = 0; i < nr_clusters; i++) {
2308 		if (!cluster_count(&cluster_info[idx])) {
2309 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2310 			if (cluster_is_null(&p->free_cluster_head)) {
2311 				cluster_set_next_flag(&p->free_cluster_head,
2312 								idx, 0);
2313 				cluster_set_next_flag(&p->free_cluster_tail,
2314 								idx, 0);
2315 			} else {
2316 				unsigned int tail;
2317 
2318 				tail = cluster_next(&p->free_cluster_tail);
2319 				cluster_set_next(&cluster_info[tail], idx);
2320 				cluster_set_next_flag(&p->free_cluster_tail,
2321 								idx, 0);
2322 			}
2323 		}
2324 		idx++;
2325 		if (idx == nr_clusters)
2326 			idx = 0;
2327 	}
2328 	return nr_extents;
2329 }
2330 
2331 /*
2332  * Helper to sys_swapon determining if a given swap
2333  * backing device queue supports DISCARD operations.
2334  */
2335 static bool swap_discardable(struct swap_info_struct *si)
2336 {
2337 	struct request_queue *q = bdev_get_queue(si->bdev);
2338 
2339 	if (!q || !blk_queue_discard(q))
2340 		return false;
2341 
2342 	return true;
2343 }
2344 
2345 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2346 {
2347 	struct swap_info_struct *p;
2348 	struct filename *name;
2349 	struct file *swap_file = NULL;
2350 	struct address_space *mapping;
2351 	int i;
2352 	int prio;
2353 	int error;
2354 	union swap_header *swap_header;
2355 	int nr_extents;
2356 	sector_t span;
2357 	unsigned long maxpages;
2358 	unsigned char *swap_map = NULL;
2359 	struct swap_cluster_info *cluster_info = NULL;
2360 	unsigned long *frontswap_map = NULL;
2361 	struct page *page = NULL;
2362 	struct inode *inode = NULL;
2363 
2364 	if (swap_flags & ~SWAP_FLAGS_VALID)
2365 		return -EINVAL;
2366 
2367 	if (!capable(CAP_SYS_ADMIN))
2368 		return -EPERM;
2369 
2370 	p = alloc_swap_info();
2371 	if (IS_ERR(p))
2372 		return PTR_ERR(p);
2373 
2374 	INIT_WORK(&p->discard_work, swap_discard_work);
2375 
2376 	name = getname(specialfile);
2377 	if (IS_ERR(name)) {
2378 		error = PTR_ERR(name);
2379 		name = NULL;
2380 		goto bad_swap;
2381 	}
2382 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2383 	if (IS_ERR(swap_file)) {
2384 		error = PTR_ERR(swap_file);
2385 		swap_file = NULL;
2386 		goto bad_swap;
2387 	}
2388 
2389 	p->swap_file = swap_file;
2390 	mapping = swap_file->f_mapping;
2391 
2392 	for (i = 0; i < nr_swapfiles; i++) {
2393 		struct swap_info_struct *q = swap_info[i];
2394 
2395 		if (q == p || !q->swap_file)
2396 			continue;
2397 		if (mapping == q->swap_file->f_mapping) {
2398 			error = -EBUSY;
2399 			goto bad_swap;
2400 		}
2401 	}
2402 
2403 	inode = mapping->host;
2404 	/* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2405 	error = claim_swapfile(p, inode);
2406 	if (unlikely(error))
2407 		goto bad_swap;
2408 
2409 	/*
2410 	 * Read the swap header.
2411 	 */
2412 	if (!mapping->a_ops->readpage) {
2413 		error = -EINVAL;
2414 		goto bad_swap;
2415 	}
2416 	page = read_mapping_page(mapping, 0, swap_file);
2417 	if (IS_ERR(page)) {
2418 		error = PTR_ERR(page);
2419 		goto bad_swap;
2420 	}
2421 	swap_header = kmap(page);
2422 
2423 	maxpages = read_swap_header(p, swap_header, inode);
2424 	if (unlikely(!maxpages)) {
2425 		error = -EINVAL;
2426 		goto bad_swap;
2427 	}
2428 
2429 	/* OK, set up the swap map and apply the bad block list */
2430 	swap_map = vzalloc(maxpages);
2431 	if (!swap_map) {
2432 		error = -ENOMEM;
2433 		goto bad_swap;
2434 	}
2435 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2436 		p->flags |= SWP_SOLIDSTATE;
2437 		/*
2438 		 * select a random position to start with to help wear leveling
2439 		 * SSD
2440 		 */
2441 		p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2442 
2443 		cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2444 			SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2445 		if (!cluster_info) {
2446 			error = -ENOMEM;
2447 			goto bad_swap;
2448 		}
2449 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2450 		if (!p->percpu_cluster) {
2451 			error = -ENOMEM;
2452 			goto bad_swap;
2453 		}
2454 		for_each_possible_cpu(i) {
2455 			struct percpu_cluster *cluster;
2456 			cluster = per_cpu_ptr(p->percpu_cluster, i);
2457 			cluster_set_null(&cluster->index);
2458 		}
2459 	}
2460 
2461 	error = swap_cgroup_swapon(p->type, maxpages);
2462 	if (error)
2463 		goto bad_swap;
2464 
2465 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2466 		cluster_info, maxpages, &span);
2467 	if (unlikely(nr_extents < 0)) {
2468 		error = nr_extents;
2469 		goto bad_swap;
2470 	}
2471 	/* frontswap enabled? set up bit-per-page map for frontswap */
2472 	if (frontswap_enabled)
2473 		frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2474 
2475 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2476 		/*
2477 		 * When discard is enabled for swap with no particular
2478 		 * policy flagged, we set all swap discard flags here in
2479 		 * order to sustain backward compatibility with older
2480 		 * swapon(8) releases.
2481 		 */
2482 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2483 			     SWP_PAGE_DISCARD);
2484 
2485 		/*
2486 		 * By flagging sys_swapon, a sysadmin can tell us to
2487 		 * either do single-time area discards only, or to just
2488 		 * perform discards for released swap page-clusters.
2489 		 * Now it's time to adjust the p->flags accordingly.
2490 		 */
2491 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2492 			p->flags &= ~SWP_PAGE_DISCARD;
2493 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2494 			p->flags &= ~SWP_AREA_DISCARD;
2495 
2496 		/* issue a swapon-time discard if it's still required */
2497 		if (p->flags & SWP_AREA_DISCARD) {
2498 			int err = discard_swap(p);
2499 			if (unlikely(err))
2500 				pr_err("swapon: discard_swap(%p): %d\n",
2501 					p, err);
2502 		}
2503 	}
2504 
2505 	mutex_lock(&swapon_mutex);
2506 	prio = -1;
2507 	if (swap_flags & SWAP_FLAG_PREFER)
2508 		prio =
2509 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2510 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2511 
2512 	pr_info("Adding %uk swap on %s.  "
2513 			"Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2514 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2515 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2516 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2517 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
2518 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
2519 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2520 		(frontswap_map) ? "FS" : "");
2521 
2522 	mutex_unlock(&swapon_mutex);
2523 	atomic_inc(&proc_poll_event);
2524 	wake_up_interruptible(&proc_poll_wait);
2525 
2526 	if (S_ISREG(inode->i_mode))
2527 		inode->i_flags |= S_SWAPFILE;
2528 	error = 0;
2529 	goto out;
2530 bad_swap:
2531 	free_percpu(p->percpu_cluster);
2532 	p->percpu_cluster = NULL;
2533 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2534 		set_blocksize(p->bdev, p->old_block_size);
2535 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2536 	}
2537 	destroy_swap_extents(p);
2538 	swap_cgroup_swapoff(p->type);
2539 	spin_lock(&swap_lock);
2540 	p->swap_file = NULL;
2541 	p->flags = 0;
2542 	spin_unlock(&swap_lock);
2543 	vfree(swap_map);
2544 	vfree(cluster_info);
2545 	if (swap_file) {
2546 		if (inode && S_ISREG(inode->i_mode)) {
2547 			mutex_unlock(&inode->i_mutex);
2548 			inode = NULL;
2549 		}
2550 		filp_close(swap_file, NULL);
2551 	}
2552 out:
2553 	if (page && !IS_ERR(page)) {
2554 		kunmap(page);
2555 		page_cache_release(page);
2556 	}
2557 	if (name)
2558 		putname(name);
2559 	if (inode && S_ISREG(inode->i_mode))
2560 		mutex_unlock(&inode->i_mutex);
2561 	return error;
2562 }
2563 
2564 void si_swapinfo(struct sysinfo *val)
2565 {
2566 	unsigned int type;
2567 	unsigned long nr_to_be_unused = 0;
2568 
2569 	spin_lock(&swap_lock);
2570 	for (type = 0; type < nr_swapfiles; type++) {
2571 		struct swap_info_struct *si = swap_info[type];
2572 
2573 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2574 			nr_to_be_unused += si->inuse_pages;
2575 	}
2576 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2577 	val->totalswap = total_swap_pages + nr_to_be_unused;
2578 	spin_unlock(&swap_lock);
2579 }
2580 
2581 /*
2582  * Verify that a swap entry is valid and increment its swap map count.
2583  *
2584  * Returns error code in following case.
2585  * - success -> 0
2586  * - swp_entry is invalid -> EINVAL
2587  * - swp_entry is migration entry -> EINVAL
2588  * - swap-cache reference is requested but there is already one. -> EEXIST
2589  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2590  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2591  */
2592 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2593 {
2594 	struct swap_info_struct *p;
2595 	unsigned long offset, type;
2596 	unsigned char count;
2597 	unsigned char has_cache;
2598 	int err = -EINVAL;
2599 
2600 	if (non_swap_entry(entry))
2601 		goto out;
2602 
2603 	type = swp_type(entry);
2604 	if (type >= nr_swapfiles)
2605 		goto bad_file;
2606 	p = swap_info[type];
2607 	offset = swp_offset(entry);
2608 
2609 	spin_lock(&p->lock);
2610 	if (unlikely(offset >= p->max))
2611 		goto unlock_out;
2612 
2613 	count = p->swap_map[offset];
2614 
2615 	/*
2616 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
2617 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2618 	 */
2619 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2620 		err = -ENOENT;
2621 		goto unlock_out;
2622 	}
2623 
2624 	has_cache = count & SWAP_HAS_CACHE;
2625 	count &= ~SWAP_HAS_CACHE;
2626 	err = 0;
2627 
2628 	if (usage == SWAP_HAS_CACHE) {
2629 
2630 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2631 		if (!has_cache && count)
2632 			has_cache = SWAP_HAS_CACHE;
2633 		else if (has_cache)		/* someone else added cache */
2634 			err = -EEXIST;
2635 		else				/* no users remaining */
2636 			err = -ENOENT;
2637 
2638 	} else if (count || has_cache) {
2639 
2640 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2641 			count += usage;
2642 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2643 			err = -EINVAL;
2644 		else if (swap_count_continued(p, offset, count))
2645 			count = COUNT_CONTINUED;
2646 		else
2647 			err = -ENOMEM;
2648 	} else
2649 		err = -ENOENT;			/* unused swap entry */
2650 
2651 	p->swap_map[offset] = count | has_cache;
2652 
2653 unlock_out:
2654 	spin_unlock(&p->lock);
2655 out:
2656 	return err;
2657 
2658 bad_file:
2659 	pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2660 	goto out;
2661 }
2662 
2663 /*
2664  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2665  * (in which case its reference count is never incremented).
2666  */
2667 void swap_shmem_alloc(swp_entry_t entry)
2668 {
2669 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2670 }
2671 
2672 /*
2673  * Increase reference count of swap entry by 1.
2674  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2675  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2676  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2677  * might occur if a page table entry has got corrupted.
2678  */
2679 int swap_duplicate(swp_entry_t entry)
2680 {
2681 	int err = 0;
2682 
2683 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2684 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2685 	return err;
2686 }
2687 
2688 /*
2689  * @entry: swap entry for which we allocate swap cache.
2690  *
2691  * Called when allocating swap cache for existing swap entry,
2692  * This can return error codes. Returns 0 at success.
2693  * -EBUSY means there is a swap cache.
2694  * Note: return code is different from swap_duplicate().
2695  */
2696 int swapcache_prepare(swp_entry_t entry)
2697 {
2698 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2699 }
2700 
2701 struct swap_info_struct *page_swap_info(struct page *page)
2702 {
2703 	swp_entry_t swap = { .val = page_private(page) };
2704 	BUG_ON(!PageSwapCache(page));
2705 	return swap_info[swp_type(swap)];
2706 }
2707 
2708 /*
2709  * out-of-line __page_file_ methods to avoid include hell.
2710  */
2711 struct address_space *__page_file_mapping(struct page *page)
2712 {
2713 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2714 	return page_swap_info(page)->swap_file->f_mapping;
2715 }
2716 EXPORT_SYMBOL_GPL(__page_file_mapping);
2717 
2718 pgoff_t __page_file_index(struct page *page)
2719 {
2720 	swp_entry_t swap = { .val = page_private(page) };
2721 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2722 	return swp_offset(swap);
2723 }
2724 EXPORT_SYMBOL_GPL(__page_file_index);
2725 
2726 /*
2727  * add_swap_count_continuation - called when a swap count is duplicated
2728  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2729  * page of the original vmalloc'ed swap_map, to hold the continuation count
2730  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2731  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2732  *
2733  * These continuation pages are seldom referenced: the common paths all work
2734  * on the original swap_map, only referring to a continuation page when the
2735  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2736  *
2737  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2738  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2739  * can be called after dropping locks.
2740  */
2741 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2742 {
2743 	struct swap_info_struct *si;
2744 	struct page *head;
2745 	struct page *page;
2746 	struct page *list_page;
2747 	pgoff_t offset;
2748 	unsigned char count;
2749 
2750 	/*
2751 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2752 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2753 	 */
2754 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2755 
2756 	si = swap_info_get(entry);
2757 	if (!si) {
2758 		/*
2759 		 * An acceptable race has occurred since the failing
2760 		 * __swap_duplicate(): the swap entry has been freed,
2761 		 * perhaps even the whole swap_map cleared for swapoff.
2762 		 */
2763 		goto outer;
2764 	}
2765 
2766 	offset = swp_offset(entry);
2767 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2768 
2769 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2770 		/*
2771 		 * The higher the swap count, the more likely it is that tasks
2772 		 * will race to add swap count continuation: we need to avoid
2773 		 * over-provisioning.
2774 		 */
2775 		goto out;
2776 	}
2777 
2778 	if (!page) {
2779 		spin_unlock(&si->lock);
2780 		return -ENOMEM;
2781 	}
2782 
2783 	/*
2784 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2785 	 * no architecture is using highmem pages for kernel page tables: so it
2786 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2787 	 */
2788 	head = vmalloc_to_page(si->swap_map + offset);
2789 	offset &= ~PAGE_MASK;
2790 
2791 	/*
2792 	 * Page allocation does not initialize the page's lru field,
2793 	 * but it does always reset its private field.
2794 	 */
2795 	if (!page_private(head)) {
2796 		BUG_ON(count & COUNT_CONTINUED);
2797 		INIT_LIST_HEAD(&head->lru);
2798 		set_page_private(head, SWP_CONTINUED);
2799 		si->flags |= SWP_CONTINUED;
2800 	}
2801 
2802 	list_for_each_entry(list_page, &head->lru, lru) {
2803 		unsigned char *map;
2804 
2805 		/*
2806 		 * If the previous map said no continuation, but we've found
2807 		 * a continuation page, free our allocation and use this one.
2808 		 */
2809 		if (!(count & COUNT_CONTINUED))
2810 			goto out;
2811 
2812 		map = kmap_atomic(list_page) + offset;
2813 		count = *map;
2814 		kunmap_atomic(map);
2815 
2816 		/*
2817 		 * If this continuation count now has some space in it,
2818 		 * free our allocation and use this one.
2819 		 */
2820 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2821 			goto out;
2822 	}
2823 
2824 	list_add_tail(&page->lru, &head->lru);
2825 	page = NULL;			/* now it's attached, don't free it */
2826 out:
2827 	spin_unlock(&si->lock);
2828 outer:
2829 	if (page)
2830 		__free_page(page);
2831 	return 0;
2832 }
2833 
2834 /*
2835  * swap_count_continued - when the original swap_map count is incremented
2836  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2837  * into, carry if so, or else fail until a new continuation page is allocated;
2838  * when the original swap_map count is decremented from 0 with continuation,
2839  * borrow from the continuation and report whether it still holds more.
2840  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2841  */
2842 static bool swap_count_continued(struct swap_info_struct *si,
2843 				 pgoff_t offset, unsigned char count)
2844 {
2845 	struct page *head;
2846 	struct page *page;
2847 	unsigned char *map;
2848 
2849 	head = vmalloc_to_page(si->swap_map + offset);
2850 	if (page_private(head) != SWP_CONTINUED) {
2851 		BUG_ON(count & COUNT_CONTINUED);
2852 		return false;		/* need to add count continuation */
2853 	}
2854 
2855 	offset &= ~PAGE_MASK;
2856 	page = list_entry(head->lru.next, struct page, lru);
2857 	map = kmap_atomic(page) + offset;
2858 
2859 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2860 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2861 
2862 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2863 		/*
2864 		 * Think of how you add 1 to 999
2865 		 */
2866 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2867 			kunmap_atomic(map);
2868 			page = list_entry(page->lru.next, struct page, lru);
2869 			BUG_ON(page == head);
2870 			map = kmap_atomic(page) + offset;
2871 		}
2872 		if (*map == SWAP_CONT_MAX) {
2873 			kunmap_atomic(map);
2874 			page = list_entry(page->lru.next, struct page, lru);
2875 			if (page == head)
2876 				return false;	/* add count continuation */
2877 			map = kmap_atomic(page) + offset;
2878 init_map:		*map = 0;		/* we didn't zero the page */
2879 		}
2880 		*map += 1;
2881 		kunmap_atomic(map);
2882 		page = list_entry(page->lru.prev, struct page, lru);
2883 		while (page != head) {
2884 			map = kmap_atomic(page) + offset;
2885 			*map = COUNT_CONTINUED;
2886 			kunmap_atomic(map);
2887 			page = list_entry(page->lru.prev, struct page, lru);
2888 		}
2889 		return true;			/* incremented */
2890 
2891 	} else {				/* decrementing */
2892 		/*
2893 		 * Think of how you subtract 1 from 1000
2894 		 */
2895 		BUG_ON(count != COUNT_CONTINUED);
2896 		while (*map == COUNT_CONTINUED) {
2897 			kunmap_atomic(map);
2898 			page = list_entry(page->lru.next, struct page, lru);
2899 			BUG_ON(page == head);
2900 			map = kmap_atomic(page) + offset;
2901 		}
2902 		BUG_ON(*map == 0);
2903 		*map -= 1;
2904 		if (*map == 0)
2905 			count = 0;
2906 		kunmap_atomic(map);
2907 		page = list_entry(page->lru.prev, struct page, lru);
2908 		while (page != head) {
2909 			map = kmap_atomic(page) + offset;
2910 			*map = SWAP_CONT_MAX | count;
2911 			count = COUNT_CONTINUED;
2912 			kunmap_atomic(map);
2913 			page = list_entry(page->lru.prev, struct page, lru);
2914 		}
2915 		return count == COUNT_CONTINUED;
2916 	}
2917 }
2918 
2919 /*
2920  * free_swap_count_continuations - swapoff free all the continuation pages
2921  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2922  */
2923 static void free_swap_count_continuations(struct swap_info_struct *si)
2924 {
2925 	pgoff_t offset;
2926 
2927 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2928 		struct page *head;
2929 		head = vmalloc_to_page(si->swap_map + offset);
2930 		if (page_private(head)) {
2931 			struct list_head *this, *next;
2932 			list_for_each_safe(this, next, &head->lru) {
2933 				struct page *page;
2934 				page = list_entry(this, struct page, lru);
2935 				list_del(this);
2936 				__free_page(page);
2937 			}
2938 		}
2939 	}
2940 }
2941