xref: /linux/mm/swap_state.c (revision f5db8841ebe59dbdf07fda797c88ccb51e0c893d)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   *  linux/mm/swap_state.c
4   *
5   *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6   *  Swap reorganised 29.12.95, Stephen Tweedie
7   *
8   *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
9   */
10  #include <linux/mm.h>
11  #include <linux/gfp.h>
12  #include <linux/kernel_stat.h>
13  #include <linux/mempolicy.h>
14  #include <linux/swap.h>
15  #include <linux/swapops.h>
16  #include <linux/init.h>
17  #include <linux/pagemap.h>
18  #include <linux/backing-dev.h>
19  #include <linux/blkdev.h>
20  #include <linux/migrate.h>
21  #include <linux/vmalloc.h>
22  #include <linux/swap_slots.h>
23  #include <linux/huge_mm.h>
24  #include <linux/shmem_fs.h>
25  #include "internal.h"
26  #include "swap.h"
27  
28  /*
29   * swapper_space is a fiction, retained to simplify the path through
30   * vmscan's shrink_page_list.
31   */
32  static const struct address_space_operations swap_aops = {
33  	.writepage	= swap_writepage,
34  	.dirty_folio	= noop_dirty_folio,
35  #ifdef CONFIG_MIGRATION
36  	.migrate_folio	= migrate_folio,
37  #endif
38  };
39  
40  struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
41  static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
42  static bool enable_vma_readahead __read_mostly = true;
43  
44  #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
45  #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
46  #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
47  #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
48  
49  #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
50  #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
51  #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
52  
53  #define SWAP_RA_VAL(addr, win, hits)				\
54  	(((addr) & PAGE_MASK) |					\
55  	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
56  	 ((hits) & SWAP_RA_HITS_MASK))
57  
58  /* Initial readahead hits is 4 to start up with a small window */
59  #define GET_SWAP_RA_VAL(vma)					\
60  	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
61  
62  static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
63  
64  void show_swap_cache_info(void)
65  {
66  	printk("%lu pages in swap cache\n", total_swapcache_pages());
67  	printk("Free swap  = %ldkB\n", K(get_nr_swap_pages()));
68  	printk("Total swap = %lukB\n", K(total_swap_pages));
69  }
70  
71  void *get_shadow_from_swap_cache(swp_entry_t entry)
72  {
73  	struct address_space *address_space = swap_address_space(entry);
74  	pgoff_t idx = swp_offset(entry);
75  	struct page *page;
76  
77  	page = xa_load(&address_space->i_pages, idx);
78  	if (xa_is_value(page))
79  		return page;
80  	return NULL;
81  }
82  
83  /*
84   * add_to_swap_cache resembles filemap_add_folio on swapper_space,
85   * but sets SwapCache flag and private instead of mapping and index.
86   */
87  int add_to_swap_cache(struct folio *folio, swp_entry_t entry,
88  			gfp_t gfp, void **shadowp)
89  {
90  	struct address_space *address_space = swap_address_space(entry);
91  	pgoff_t idx = swp_offset(entry);
92  	XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio));
93  	unsigned long i, nr = folio_nr_pages(folio);
94  	void *old;
95  
96  	xas_set_update(&xas, workingset_update_node);
97  
98  	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
99  	VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
100  	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
101  
102  	folio_ref_add(folio, nr);
103  	folio_set_swapcache(folio);
104  	folio->swap = entry;
105  
106  	do {
107  		xas_lock_irq(&xas);
108  		xas_create_range(&xas);
109  		if (xas_error(&xas))
110  			goto unlock;
111  		for (i = 0; i < nr; i++) {
112  			VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio);
113  			if (shadowp) {
114  				old = xas_load(&xas);
115  				if (xa_is_value(old))
116  					*shadowp = old;
117  			}
118  			xas_store(&xas, folio);
119  			xas_next(&xas);
120  		}
121  		address_space->nrpages += nr;
122  		__node_stat_mod_folio(folio, NR_FILE_PAGES, nr);
123  		__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr);
124  unlock:
125  		xas_unlock_irq(&xas);
126  	} while (xas_nomem(&xas, gfp));
127  
128  	if (!xas_error(&xas))
129  		return 0;
130  
131  	folio_clear_swapcache(folio);
132  	folio_ref_sub(folio, nr);
133  	return xas_error(&xas);
134  }
135  
136  /*
137   * This must be called only on folios that have
138   * been verified to be in the swap cache.
139   */
140  void __delete_from_swap_cache(struct folio *folio,
141  			swp_entry_t entry, void *shadow)
142  {
143  	struct address_space *address_space = swap_address_space(entry);
144  	int i;
145  	long nr = folio_nr_pages(folio);
146  	pgoff_t idx = swp_offset(entry);
147  	XA_STATE(xas, &address_space->i_pages, idx);
148  
149  	xas_set_update(&xas, workingset_update_node);
150  
151  	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
152  	VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
153  	VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
154  
155  	for (i = 0; i < nr; i++) {
156  		void *entry = xas_store(&xas, shadow);
157  		VM_BUG_ON_PAGE(entry != folio, entry);
158  		xas_next(&xas);
159  	}
160  	folio->swap.val = 0;
161  	folio_clear_swapcache(folio);
162  	address_space->nrpages -= nr;
163  	__node_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
164  	__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr);
165  }
166  
167  /**
168   * add_to_swap - allocate swap space for a folio
169   * @folio: folio we want to move to swap
170   *
171   * Allocate swap space for the folio and add the folio to the
172   * swap cache.
173   *
174   * Context: Caller needs to hold the folio lock.
175   * Return: Whether the folio was added to the swap cache.
176   */
177  bool add_to_swap(struct folio *folio)
178  {
179  	swp_entry_t entry;
180  	int err;
181  
182  	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
183  	VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
184  
185  	entry = folio_alloc_swap(folio);
186  	if (!entry.val)
187  		return false;
188  
189  	/*
190  	 * XArray node allocations from PF_MEMALLOC contexts could
191  	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
192  	 * stops emergency reserves from being allocated.
193  	 *
194  	 * TODO: this could cause a theoretical memory reclaim
195  	 * deadlock in the swap out path.
196  	 */
197  	/*
198  	 * Add it to the swap cache.
199  	 */
200  	err = add_to_swap_cache(folio, entry,
201  			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
202  	if (err)
203  		/*
204  		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
205  		 * clear SWAP_HAS_CACHE flag.
206  		 */
207  		goto fail;
208  	/*
209  	 * Normally the folio will be dirtied in unmap because its
210  	 * pte should be dirty. A special case is MADV_FREE page. The
211  	 * page's pte could have dirty bit cleared but the folio's
212  	 * SwapBacked flag is still set because clearing the dirty bit
213  	 * and SwapBacked flag has no lock protected. For such folio,
214  	 * unmap will not set dirty bit for it, so folio reclaim will
215  	 * not write the folio out. This can cause data corruption when
216  	 * the folio is swapped in later. Always setting the dirty flag
217  	 * for the folio solves the problem.
218  	 */
219  	folio_mark_dirty(folio);
220  
221  	return true;
222  
223  fail:
224  	put_swap_folio(folio, entry);
225  	return false;
226  }
227  
228  /*
229   * This must be called only on folios that have
230   * been verified to be in the swap cache and locked.
231   * It will never put the folio into the free list,
232   * the caller has a reference on the folio.
233   */
234  void delete_from_swap_cache(struct folio *folio)
235  {
236  	swp_entry_t entry = folio->swap;
237  	struct address_space *address_space = swap_address_space(entry);
238  
239  	xa_lock_irq(&address_space->i_pages);
240  	__delete_from_swap_cache(folio, entry, NULL);
241  	xa_unlock_irq(&address_space->i_pages);
242  
243  	put_swap_folio(folio, entry);
244  	folio_ref_sub(folio, folio_nr_pages(folio));
245  }
246  
247  void clear_shadow_from_swap_cache(int type, unsigned long begin,
248  				unsigned long end)
249  {
250  	unsigned long curr = begin;
251  	void *old;
252  
253  	for (;;) {
254  		swp_entry_t entry = swp_entry(type, curr);
255  		struct address_space *address_space = swap_address_space(entry);
256  		XA_STATE(xas, &address_space->i_pages, curr);
257  
258  		xas_set_update(&xas, workingset_update_node);
259  
260  		xa_lock_irq(&address_space->i_pages);
261  		xas_for_each(&xas, old, end) {
262  			if (!xa_is_value(old))
263  				continue;
264  			xas_store(&xas, NULL);
265  		}
266  		xa_unlock_irq(&address_space->i_pages);
267  
268  		/* search the next swapcache until we meet end */
269  		curr >>= SWAP_ADDRESS_SPACE_SHIFT;
270  		curr++;
271  		curr <<= SWAP_ADDRESS_SPACE_SHIFT;
272  		if (curr > end)
273  			break;
274  	}
275  }
276  
277  /*
278   * If we are the only user, then try to free up the swap cache.
279   *
280   * Its ok to check the swapcache flag without the folio lock
281   * here because we are going to recheck again inside
282   * folio_free_swap() _with_ the lock.
283   * 					- Marcelo
284   */
285  void free_swap_cache(struct page *page)
286  {
287  	struct folio *folio = page_folio(page);
288  
289  	if (folio_test_swapcache(folio) && !folio_mapped(folio) &&
290  	    folio_trylock(folio)) {
291  		folio_free_swap(folio);
292  		folio_unlock(folio);
293  	}
294  }
295  
296  /*
297   * Perform a free_page(), also freeing any swap cache associated with
298   * this page if it is the last user of the page.
299   */
300  void free_page_and_swap_cache(struct page *page)
301  {
302  	free_swap_cache(page);
303  	if (!is_huge_zero_page(page))
304  		put_page(page);
305  }
306  
307  /*
308   * Passed an array of pages, drop them all from swapcache and then release
309   * them.  They are removed from the LRU and freed if this is their last use.
310   */
311  void free_pages_and_swap_cache(struct encoded_page **pages, int nr)
312  {
313  	lru_add_drain();
314  	for (int i = 0; i < nr; i++)
315  		free_swap_cache(encoded_page_ptr(pages[i]));
316  	release_pages(pages, nr);
317  }
318  
319  static inline bool swap_use_vma_readahead(void)
320  {
321  	return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
322  }
323  
324  /*
325   * Lookup a swap entry in the swap cache. A found folio will be returned
326   * unlocked and with its refcount incremented - we rely on the kernel
327   * lock getting page table operations atomic even if we drop the folio
328   * lock before returning.
329   *
330   * Caller must lock the swap device or hold a reference to keep it valid.
331   */
332  struct folio *swap_cache_get_folio(swp_entry_t entry,
333  		struct vm_area_struct *vma, unsigned long addr)
334  {
335  	struct folio *folio;
336  
337  	folio = filemap_get_folio(swap_address_space(entry), swp_offset(entry));
338  	if (!IS_ERR(folio)) {
339  		bool vma_ra = swap_use_vma_readahead();
340  		bool readahead;
341  
342  		/*
343  		 * At the moment, we don't support PG_readahead for anon THP
344  		 * so let's bail out rather than confusing the readahead stat.
345  		 */
346  		if (unlikely(folio_test_large(folio)))
347  			return folio;
348  
349  		readahead = folio_test_clear_readahead(folio);
350  		if (vma && vma_ra) {
351  			unsigned long ra_val;
352  			int win, hits;
353  
354  			ra_val = GET_SWAP_RA_VAL(vma);
355  			win = SWAP_RA_WIN(ra_val);
356  			hits = SWAP_RA_HITS(ra_val);
357  			if (readahead)
358  				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
359  			atomic_long_set(&vma->swap_readahead_info,
360  					SWAP_RA_VAL(addr, win, hits));
361  		}
362  
363  		if (readahead) {
364  			count_vm_event(SWAP_RA_HIT);
365  			if (!vma || !vma_ra)
366  				atomic_inc(&swapin_readahead_hits);
367  		}
368  	} else {
369  		folio = NULL;
370  	}
371  
372  	return folio;
373  }
374  
375  /**
376   * filemap_get_incore_folio - Find and get a folio from the page or swap caches.
377   * @mapping: The address_space to search.
378   * @index: The page cache index.
379   *
380   * This differs from filemap_get_folio() in that it will also look for the
381   * folio in the swap cache.
382   *
383   * Return: The found folio or %NULL.
384   */
385  struct folio *filemap_get_incore_folio(struct address_space *mapping,
386  		pgoff_t index)
387  {
388  	swp_entry_t swp;
389  	struct swap_info_struct *si;
390  	struct folio *folio = filemap_get_entry(mapping, index);
391  
392  	if (!folio)
393  		return ERR_PTR(-ENOENT);
394  	if (!xa_is_value(folio))
395  		return folio;
396  	if (!shmem_mapping(mapping))
397  		return ERR_PTR(-ENOENT);
398  
399  	swp = radix_to_swp_entry(folio);
400  	/* There might be swapin error entries in shmem mapping. */
401  	if (non_swap_entry(swp))
402  		return ERR_PTR(-ENOENT);
403  	/* Prevent swapoff from happening to us */
404  	si = get_swap_device(swp);
405  	if (!si)
406  		return ERR_PTR(-ENOENT);
407  	index = swp_offset(swp);
408  	folio = filemap_get_folio(swap_address_space(swp), index);
409  	put_swap_device(si);
410  	return folio;
411  }
412  
413  struct folio *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
414  		struct mempolicy *mpol, pgoff_t ilx, bool *new_page_allocated,
415  		bool skip_if_exists)
416  {
417  	struct swap_info_struct *si;
418  	struct folio *folio;
419  	void *shadow = NULL;
420  
421  	*new_page_allocated = false;
422  	si = get_swap_device(entry);
423  	if (!si)
424  		return NULL;
425  
426  	for (;;) {
427  		int err;
428  		/*
429  		 * First check the swap cache.  Since this is normally
430  		 * called after swap_cache_get_folio() failed, re-calling
431  		 * that would confuse statistics.
432  		 */
433  		folio = filemap_get_folio(swap_address_space(entry),
434  						swp_offset(entry));
435  		if (!IS_ERR(folio))
436  			goto got_folio;
437  
438  		/*
439  		 * Just skip read ahead for unused swap slot.
440  		 * During swap_off when swap_slot_cache is disabled,
441  		 * we have to handle the race between putting
442  		 * swap entry in swap cache and marking swap slot
443  		 * as SWAP_HAS_CACHE.  That's done in later part of code or
444  		 * else swap_off will be aborted if we return NULL.
445  		 */
446  		if (!swap_swapcount(si, entry) && swap_slot_cache_enabled)
447  			goto fail_put_swap;
448  
449  		/*
450  		 * Get a new folio to read into from swap.  Allocate it now,
451  		 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
452  		 * cause any racers to loop around until we add it to cache.
453  		 */
454  		folio = (struct folio *)alloc_pages_mpol(gfp_mask, 0,
455  						mpol, ilx, numa_node_id());
456  		if (!folio)
457                          goto fail_put_swap;
458  
459  		/*
460  		 * Swap entry may have been freed since our caller observed it.
461  		 */
462  		err = swapcache_prepare(entry);
463  		if (!err)
464  			break;
465  
466  		folio_put(folio);
467  		if (err != -EEXIST)
468  			goto fail_put_swap;
469  
470  		/*
471  		 * Protect against a recursive call to __read_swap_cache_async()
472  		 * on the same entry waiting forever here because SWAP_HAS_CACHE
473  		 * is set but the folio is not the swap cache yet. This can
474  		 * happen today if mem_cgroup_swapin_charge_folio() below
475  		 * triggers reclaim through zswap, which may call
476  		 * __read_swap_cache_async() in the writeback path.
477  		 */
478  		if (skip_if_exists)
479  			goto fail_put_swap;
480  
481  		/*
482  		 * We might race against __delete_from_swap_cache(), and
483  		 * stumble across a swap_map entry whose SWAP_HAS_CACHE
484  		 * has not yet been cleared.  Or race against another
485  		 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
486  		 * in swap_map, but not yet added its folio to swap cache.
487  		 */
488  		schedule_timeout_uninterruptible(1);
489  	}
490  
491  	/*
492  	 * The swap entry is ours to swap in. Prepare the new folio.
493  	 */
494  
495  	__folio_set_locked(folio);
496  	__folio_set_swapbacked(folio);
497  
498  	if (mem_cgroup_swapin_charge_folio(folio, NULL, gfp_mask, entry))
499  		goto fail_unlock;
500  
501  	/* May fail (-ENOMEM) if XArray node allocation failed. */
502  	if (add_to_swap_cache(folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
503  		goto fail_unlock;
504  
505  	mem_cgroup_swapin_uncharge_swap(entry);
506  
507  	if (shadow)
508  		workingset_refault(folio, shadow);
509  
510  	/* Caller will initiate read into locked folio */
511  	folio_add_lru(folio);
512  	*new_page_allocated = true;
513  got_folio:
514  	put_swap_device(si);
515  	return folio;
516  
517  fail_unlock:
518  	put_swap_folio(folio, entry);
519  	folio_unlock(folio);
520  	folio_put(folio);
521  fail_put_swap:
522  	put_swap_device(si);
523  	return NULL;
524  }
525  
526  /*
527   * Locate a page of swap in physical memory, reserving swap cache space
528   * and reading the disk if it is not already cached.
529   * A failure return means that either the page allocation failed or that
530   * the swap entry is no longer in use.
531   *
532   * get/put_swap_device() aren't needed to call this function, because
533   * __read_swap_cache_async() call them and swap_read_folio() holds the
534   * swap cache folio lock.
535   */
536  struct folio *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
537  		struct vm_area_struct *vma, unsigned long addr,
538  		struct swap_iocb **plug)
539  {
540  	bool page_allocated;
541  	struct mempolicy *mpol;
542  	pgoff_t ilx;
543  	struct folio *folio;
544  
545  	mpol = get_vma_policy(vma, addr, 0, &ilx);
546  	folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
547  					&page_allocated, false);
548  	mpol_cond_put(mpol);
549  
550  	if (page_allocated)
551  		swap_read_folio(folio, false, plug);
552  	return folio;
553  }
554  
555  static unsigned int __swapin_nr_pages(unsigned long prev_offset,
556  				      unsigned long offset,
557  				      int hits,
558  				      int max_pages,
559  				      int prev_win)
560  {
561  	unsigned int pages, last_ra;
562  
563  	/*
564  	 * This heuristic has been found to work well on both sequential and
565  	 * random loads, swapping to hard disk or to SSD: please don't ask
566  	 * what the "+ 2" means, it just happens to work well, that's all.
567  	 */
568  	pages = hits + 2;
569  	if (pages == 2) {
570  		/*
571  		 * We can have no readahead hits to judge by: but must not get
572  		 * stuck here forever, so check for an adjacent offset instead
573  		 * (and don't even bother to check whether swap type is same).
574  		 */
575  		if (offset != prev_offset + 1 && offset != prev_offset - 1)
576  			pages = 1;
577  	} else {
578  		unsigned int roundup = 4;
579  		while (roundup < pages)
580  			roundup <<= 1;
581  		pages = roundup;
582  	}
583  
584  	if (pages > max_pages)
585  		pages = max_pages;
586  
587  	/* Don't shrink readahead too fast */
588  	last_ra = prev_win / 2;
589  	if (pages < last_ra)
590  		pages = last_ra;
591  
592  	return pages;
593  }
594  
595  static unsigned long swapin_nr_pages(unsigned long offset)
596  {
597  	static unsigned long prev_offset;
598  	unsigned int hits, pages, max_pages;
599  	static atomic_t last_readahead_pages;
600  
601  	max_pages = 1 << READ_ONCE(page_cluster);
602  	if (max_pages <= 1)
603  		return 1;
604  
605  	hits = atomic_xchg(&swapin_readahead_hits, 0);
606  	pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
607  				  max_pages,
608  				  atomic_read(&last_readahead_pages));
609  	if (!hits)
610  		WRITE_ONCE(prev_offset, offset);
611  	atomic_set(&last_readahead_pages, pages);
612  
613  	return pages;
614  }
615  
616  /**
617   * swap_cluster_readahead - swap in pages in hope we need them soon
618   * @entry: swap entry of this memory
619   * @gfp_mask: memory allocation flags
620   * @mpol: NUMA memory allocation policy to be applied
621   * @ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
622   *
623   * Returns the struct folio for entry and addr, after queueing swapin.
624   *
625   * Primitive swap readahead code. We simply read an aligned block of
626   * (1 << page_cluster) entries in the swap area. This method is chosen
627   * because it doesn't cost us any seek time.  We also make sure to queue
628   * the 'original' request together with the readahead ones...
629   *
630   * Note: it is intentional that the same NUMA policy and interleave index
631   * are used for every page of the readahead: neighbouring pages on swap
632   * are fairly likely to have been swapped out from the same node.
633   */
634  struct folio *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
635  				    struct mempolicy *mpol, pgoff_t ilx)
636  {
637  	struct folio *folio;
638  	unsigned long entry_offset = swp_offset(entry);
639  	unsigned long offset = entry_offset;
640  	unsigned long start_offset, end_offset;
641  	unsigned long mask;
642  	struct swap_info_struct *si = swp_swap_info(entry);
643  	struct blk_plug plug;
644  	struct swap_iocb *splug = NULL;
645  	bool page_allocated;
646  
647  	mask = swapin_nr_pages(offset) - 1;
648  	if (!mask)
649  		goto skip;
650  
651  	/* Read a page_cluster sized and aligned cluster around offset. */
652  	start_offset = offset & ~mask;
653  	end_offset = offset | mask;
654  	if (!start_offset)	/* First page is swap header. */
655  		start_offset++;
656  	if (end_offset >= si->max)
657  		end_offset = si->max - 1;
658  
659  	blk_start_plug(&plug);
660  	for (offset = start_offset; offset <= end_offset ; offset++) {
661  		/* Ok, do the async read-ahead now */
662  		folio = __read_swap_cache_async(
663  				swp_entry(swp_type(entry), offset),
664  				gfp_mask, mpol, ilx, &page_allocated, false);
665  		if (!folio)
666  			continue;
667  		if (page_allocated) {
668  			swap_read_folio(folio, false, &splug);
669  			if (offset != entry_offset) {
670  				folio_set_readahead(folio);
671  				count_vm_event(SWAP_RA);
672  			}
673  		}
674  		folio_put(folio);
675  	}
676  	blk_finish_plug(&plug);
677  	swap_read_unplug(splug);
678  	lru_add_drain();	/* Push any new pages onto the LRU now */
679  skip:
680  	/* The page was likely read above, so no need for plugging here */
681  	folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
682  					&page_allocated, false);
683  	if (unlikely(page_allocated))
684  		swap_read_folio(folio, false, NULL);
685  	zswap_folio_swapin(folio);
686  	return folio;
687  }
688  
689  int init_swap_address_space(unsigned int type, unsigned long nr_pages)
690  {
691  	struct address_space *spaces, *space;
692  	unsigned int i, nr;
693  
694  	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
695  	spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
696  	if (!spaces)
697  		return -ENOMEM;
698  	for (i = 0; i < nr; i++) {
699  		space = spaces + i;
700  		xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
701  		atomic_set(&space->i_mmap_writable, 0);
702  		space->a_ops = &swap_aops;
703  		/* swap cache doesn't use writeback related tags */
704  		mapping_set_no_writeback_tags(space);
705  	}
706  	nr_swapper_spaces[type] = nr;
707  	swapper_spaces[type] = spaces;
708  
709  	return 0;
710  }
711  
712  void exit_swap_address_space(unsigned int type)
713  {
714  	int i;
715  	struct address_space *spaces = swapper_spaces[type];
716  
717  	for (i = 0; i < nr_swapper_spaces[type]; i++)
718  		VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
719  	kvfree(spaces);
720  	nr_swapper_spaces[type] = 0;
721  	swapper_spaces[type] = NULL;
722  }
723  
724  #define SWAP_RA_ORDER_CEILING	5
725  
726  struct vma_swap_readahead {
727  	unsigned short win;
728  	unsigned short offset;
729  	unsigned short nr_pte;
730  };
731  
732  static void swap_ra_info(struct vm_fault *vmf,
733  			 struct vma_swap_readahead *ra_info)
734  {
735  	struct vm_area_struct *vma = vmf->vma;
736  	unsigned long ra_val;
737  	unsigned long faddr, pfn, fpfn, lpfn, rpfn;
738  	unsigned long start, end;
739  	unsigned int max_win, hits, prev_win, win;
740  
741  	max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
742  			     SWAP_RA_ORDER_CEILING);
743  	if (max_win == 1) {
744  		ra_info->win = 1;
745  		return;
746  	}
747  
748  	faddr = vmf->address;
749  	fpfn = PFN_DOWN(faddr);
750  	ra_val = GET_SWAP_RA_VAL(vma);
751  	pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
752  	prev_win = SWAP_RA_WIN(ra_val);
753  	hits = SWAP_RA_HITS(ra_val);
754  	ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
755  					       max_win, prev_win);
756  	atomic_long_set(&vma->swap_readahead_info,
757  			SWAP_RA_VAL(faddr, win, 0));
758  	if (win == 1)
759  		return;
760  
761  	if (fpfn == pfn + 1) {
762  		lpfn = fpfn;
763  		rpfn = fpfn + win;
764  	} else if (pfn == fpfn + 1) {
765  		lpfn = fpfn - win + 1;
766  		rpfn = fpfn + 1;
767  	} else {
768  		unsigned int left = (win - 1) / 2;
769  
770  		lpfn = fpfn - left;
771  		rpfn = fpfn + win - left;
772  	}
773  	start = max3(lpfn, PFN_DOWN(vma->vm_start),
774  		     PFN_DOWN(faddr & PMD_MASK));
775  	end = min3(rpfn, PFN_DOWN(vma->vm_end),
776  		   PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
777  
778  	ra_info->nr_pte = end - start;
779  	ra_info->offset = fpfn - start;
780  }
781  
782  /**
783   * swap_vma_readahead - swap in pages in hope we need them soon
784   * @targ_entry: swap entry of the targeted memory
785   * @gfp_mask: memory allocation flags
786   * @mpol: NUMA memory allocation policy to be applied
787   * @targ_ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
788   * @vmf: fault information
789   *
790   * Returns the struct folio for entry and addr, after queueing swapin.
791   *
792   * Primitive swap readahead code. We simply read in a few pages whose
793   * virtual addresses are around the fault address in the same vma.
794   *
795   * Caller must hold read mmap_lock if vmf->vma is not NULL.
796   *
797   */
798  static struct folio *swap_vma_readahead(swp_entry_t targ_entry, gfp_t gfp_mask,
799  		struct mempolicy *mpol, pgoff_t targ_ilx, struct vm_fault *vmf)
800  {
801  	struct blk_plug plug;
802  	struct swap_iocb *splug = NULL;
803  	struct folio *folio;
804  	pte_t *pte = NULL, pentry;
805  	unsigned long addr;
806  	swp_entry_t entry;
807  	pgoff_t ilx;
808  	unsigned int i;
809  	bool page_allocated;
810  	struct vma_swap_readahead ra_info = {
811  		.win = 1,
812  	};
813  
814  	swap_ra_info(vmf, &ra_info);
815  	if (ra_info.win == 1)
816  		goto skip;
817  
818  	addr = vmf->address - (ra_info.offset * PAGE_SIZE);
819  	ilx = targ_ilx - ra_info.offset;
820  
821  	blk_start_plug(&plug);
822  	for (i = 0; i < ra_info.nr_pte; i++, ilx++, addr += PAGE_SIZE) {
823  		if (!pte++) {
824  			pte = pte_offset_map(vmf->pmd, addr);
825  			if (!pte)
826  				break;
827  		}
828  		pentry = ptep_get_lockless(pte);
829  		if (!is_swap_pte(pentry))
830  			continue;
831  		entry = pte_to_swp_entry(pentry);
832  		if (unlikely(non_swap_entry(entry)))
833  			continue;
834  		pte_unmap(pte);
835  		pte = NULL;
836  		folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
837  						&page_allocated, false);
838  		if (!folio)
839  			continue;
840  		if (page_allocated) {
841  			swap_read_folio(folio, false, &splug);
842  			if (i != ra_info.offset) {
843  				folio_set_readahead(folio);
844  				count_vm_event(SWAP_RA);
845  			}
846  		}
847  		folio_put(folio);
848  	}
849  	if (pte)
850  		pte_unmap(pte);
851  	blk_finish_plug(&plug);
852  	swap_read_unplug(splug);
853  	lru_add_drain();
854  skip:
855  	/* The folio was likely read above, so no need for plugging here */
856  	folio = __read_swap_cache_async(targ_entry, gfp_mask, mpol, targ_ilx,
857  					&page_allocated, false);
858  	if (unlikely(page_allocated))
859  		swap_read_folio(folio, false, NULL);
860  	zswap_folio_swapin(folio);
861  	return folio;
862  }
863  
864  /**
865   * swapin_readahead - swap in pages in hope we need them soon
866   * @entry: swap entry of this memory
867   * @gfp_mask: memory allocation flags
868   * @vmf: fault information
869   *
870   * Returns the struct page for entry and addr, after queueing swapin.
871   *
872   * It's a main entry function for swap readahead. By the configuration,
873   * it will read ahead blocks by cluster-based(ie, physical disk based)
874   * or vma-based(ie, virtual address based on faulty address) readahead.
875   */
876  struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
877  				struct vm_fault *vmf)
878  {
879  	struct mempolicy *mpol;
880  	pgoff_t ilx;
881  	struct folio *folio;
882  
883  	mpol = get_vma_policy(vmf->vma, vmf->address, 0, &ilx);
884  	folio = swap_use_vma_readahead() ?
885  		swap_vma_readahead(entry, gfp_mask, mpol, ilx, vmf) :
886  		swap_cluster_readahead(entry, gfp_mask, mpol, ilx);
887  	mpol_cond_put(mpol);
888  
889  	if (!folio)
890  		return NULL;
891  	return folio_file_page(folio, swp_offset(entry));
892  }
893  
894  #ifdef CONFIG_SYSFS
895  static ssize_t vma_ra_enabled_show(struct kobject *kobj,
896  				     struct kobj_attribute *attr, char *buf)
897  {
898  	return sysfs_emit(buf, "%s\n",
899  			  enable_vma_readahead ? "true" : "false");
900  }
901  static ssize_t vma_ra_enabled_store(struct kobject *kobj,
902  				      struct kobj_attribute *attr,
903  				      const char *buf, size_t count)
904  {
905  	ssize_t ret;
906  
907  	ret = kstrtobool(buf, &enable_vma_readahead);
908  	if (ret)
909  		return ret;
910  
911  	return count;
912  }
913  static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
914  
915  static struct attribute *swap_attrs[] = {
916  	&vma_ra_enabled_attr.attr,
917  	NULL,
918  };
919  
920  static const struct attribute_group swap_attr_group = {
921  	.attrs = swap_attrs,
922  };
923  
924  static int __init swap_init_sysfs(void)
925  {
926  	int err;
927  	struct kobject *swap_kobj;
928  
929  	swap_kobj = kobject_create_and_add("swap", mm_kobj);
930  	if (!swap_kobj) {
931  		pr_err("failed to create swap kobject\n");
932  		return -ENOMEM;
933  	}
934  	err = sysfs_create_group(swap_kobj, &swap_attr_group);
935  	if (err) {
936  		pr_err("failed to register swap group\n");
937  		goto delete_obj;
938  	}
939  	return 0;
940  
941  delete_obj:
942  	kobject_put(swap_kobj);
943  	return err;
944  }
945  subsys_initcall(swap_init_sysfs);
946  #endif
947