xref: /linux/mm/swap_state.c (revision d9afbb3509900a953f5cf90bc57e793ee80c1108)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/swap_state.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  *
8  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
9  */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
24 
25 #include <asm/pgtable.h>
26 
27 /*
28  * swapper_space is a fiction, retained to simplify the path through
29  * vmscan's shrink_page_list.
30  */
31 static const struct address_space_operations swap_aops = {
32 	.writepage	= swap_writepage,
33 	.set_page_dirty	= swap_set_page_dirty,
34 #ifdef CONFIG_MIGRATION
35 	.migratepage	= migrate_page,
36 #endif
37 };
38 
39 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
40 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
41 static bool enable_vma_readahead __read_mostly = true;
42 
43 #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
44 #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
45 #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
46 #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
47 
48 #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
49 #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
50 #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
51 
52 #define SWAP_RA_VAL(addr, win, hits)				\
53 	(((addr) & PAGE_MASK) |					\
54 	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
55 	 ((hits) & SWAP_RA_HITS_MASK))
56 
57 /* Initial readahead hits is 4 to start up with a small window */
58 #define GET_SWAP_RA_VAL(vma)					\
59 	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
60 
61 #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
62 #define ADD_CACHE_INFO(x, nr)	do { swap_cache_info.x += (nr); } while (0)
63 
64 static struct {
65 	unsigned long add_total;
66 	unsigned long del_total;
67 	unsigned long find_success;
68 	unsigned long find_total;
69 } swap_cache_info;
70 
71 unsigned long total_swapcache_pages(void)
72 {
73 	unsigned int i, j, nr;
74 	unsigned long ret = 0;
75 	struct address_space *spaces;
76 	struct swap_info_struct *si;
77 
78 	for (i = 0; i < MAX_SWAPFILES; i++) {
79 		swp_entry_t entry = swp_entry(i, 1);
80 
81 		/* Avoid get_swap_device() to warn for bad swap entry */
82 		if (!swp_swap_info(entry))
83 			continue;
84 		/* Prevent swapoff to free swapper_spaces */
85 		si = get_swap_device(entry);
86 		if (!si)
87 			continue;
88 		nr = nr_swapper_spaces[i];
89 		spaces = swapper_spaces[i];
90 		for (j = 0; j < nr; j++)
91 			ret += spaces[j].nrpages;
92 		put_swap_device(si);
93 	}
94 	return ret;
95 }
96 
97 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
98 
99 void show_swap_cache_info(void)
100 {
101 	printk("%lu pages in swap cache\n", total_swapcache_pages());
102 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
103 		swap_cache_info.add_total, swap_cache_info.del_total,
104 		swap_cache_info.find_success, swap_cache_info.find_total);
105 	printk("Free swap  = %ldkB\n",
106 		get_nr_swap_pages() << (PAGE_SHIFT - 10));
107 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
108 }
109 
110 /*
111  * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
112  * but sets SwapCache flag and private instead of mapping and index.
113  */
114 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp)
115 {
116 	struct address_space *address_space = swap_address_space(entry);
117 	pgoff_t idx = swp_offset(entry);
118 	XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page));
119 	unsigned long i, nr = hpage_nr_pages(page);
120 
121 	VM_BUG_ON_PAGE(!PageLocked(page), page);
122 	VM_BUG_ON_PAGE(PageSwapCache(page), page);
123 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
124 
125 	page_ref_add(page, nr);
126 	SetPageSwapCache(page);
127 
128 	do {
129 		xas_lock_irq(&xas);
130 		xas_create_range(&xas);
131 		if (xas_error(&xas))
132 			goto unlock;
133 		for (i = 0; i < nr; i++) {
134 			VM_BUG_ON_PAGE(xas.xa_index != idx + i, page);
135 			set_page_private(page + i, entry.val + i);
136 			xas_store(&xas, page);
137 			xas_next(&xas);
138 		}
139 		address_space->nrpages += nr;
140 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
141 		ADD_CACHE_INFO(add_total, nr);
142 unlock:
143 		xas_unlock_irq(&xas);
144 	} while (xas_nomem(&xas, gfp));
145 
146 	if (!xas_error(&xas))
147 		return 0;
148 
149 	ClearPageSwapCache(page);
150 	page_ref_sub(page, nr);
151 	return xas_error(&xas);
152 }
153 
154 /*
155  * This must be called only on pages that have
156  * been verified to be in the swap cache.
157  */
158 void __delete_from_swap_cache(struct page *page, swp_entry_t entry)
159 {
160 	struct address_space *address_space = swap_address_space(entry);
161 	int i, nr = hpage_nr_pages(page);
162 	pgoff_t idx = swp_offset(entry);
163 	XA_STATE(xas, &address_space->i_pages, idx);
164 
165 	VM_BUG_ON_PAGE(!PageLocked(page), page);
166 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
167 	VM_BUG_ON_PAGE(PageWriteback(page), page);
168 
169 	for (i = 0; i < nr; i++) {
170 		void *entry = xas_store(&xas, NULL);
171 		VM_BUG_ON_PAGE(entry != page, entry);
172 		set_page_private(page + i, 0);
173 		xas_next(&xas);
174 	}
175 	ClearPageSwapCache(page);
176 	address_space->nrpages -= nr;
177 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
178 	ADD_CACHE_INFO(del_total, nr);
179 }
180 
181 /**
182  * add_to_swap - allocate swap space for a page
183  * @page: page we want to move to swap
184  *
185  * Allocate swap space for the page and add the page to the
186  * swap cache.  Caller needs to hold the page lock.
187  */
188 int add_to_swap(struct page *page)
189 {
190 	swp_entry_t entry;
191 	int err;
192 
193 	VM_BUG_ON_PAGE(!PageLocked(page), page);
194 	VM_BUG_ON_PAGE(!PageUptodate(page), page);
195 
196 	entry = get_swap_page(page);
197 	if (!entry.val)
198 		return 0;
199 
200 	/*
201 	 * XArray node allocations from PF_MEMALLOC contexts could
202 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
203 	 * stops emergency reserves from being allocated.
204 	 *
205 	 * TODO: this could cause a theoretical memory reclaim
206 	 * deadlock in the swap out path.
207 	 */
208 	/*
209 	 * Add it to the swap cache.
210 	 */
211 	err = add_to_swap_cache(page, entry,
212 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
213 	if (err)
214 		/*
215 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
216 		 * clear SWAP_HAS_CACHE flag.
217 		 */
218 		goto fail;
219 	/*
220 	 * Normally the page will be dirtied in unmap because its pte should be
221 	 * dirty. A special case is MADV_FREE page. The page'e pte could have
222 	 * dirty bit cleared but the page's SwapBacked bit is still set because
223 	 * clearing the dirty bit and SwapBacked bit has no lock protected. For
224 	 * such page, unmap will not set dirty bit for it, so page reclaim will
225 	 * not write the page out. This can cause data corruption when the page
226 	 * is swap in later. Always setting the dirty bit for the page solves
227 	 * the problem.
228 	 */
229 	set_page_dirty(page);
230 
231 	return 1;
232 
233 fail:
234 	put_swap_page(page, entry);
235 	return 0;
236 }
237 
238 /*
239  * This must be called only on pages that have
240  * been verified to be in the swap cache and locked.
241  * It will never put the page into the free list,
242  * the caller has a reference on the page.
243  */
244 void delete_from_swap_cache(struct page *page)
245 {
246 	swp_entry_t entry = { .val = page_private(page) };
247 	struct address_space *address_space = swap_address_space(entry);
248 
249 	xa_lock_irq(&address_space->i_pages);
250 	__delete_from_swap_cache(page, entry);
251 	xa_unlock_irq(&address_space->i_pages);
252 
253 	put_swap_page(page, entry);
254 	page_ref_sub(page, hpage_nr_pages(page));
255 }
256 
257 /*
258  * If we are the only user, then try to free up the swap cache.
259  *
260  * Its ok to check for PageSwapCache without the page lock
261  * here because we are going to recheck again inside
262  * try_to_free_swap() _with_ the lock.
263  * 					- Marcelo
264  */
265 static inline void free_swap_cache(struct page *page)
266 {
267 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
268 		try_to_free_swap(page);
269 		unlock_page(page);
270 	}
271 }
272 
273 /*
274  * Perform a free_page(), also freeing any swap cache associated with
275  * this page if it is the last user of the page.
276  */
277 void free_page_and_swap_cache(struct page *page)
278 {
279 	free_swap_cache(page);
280 	if (!is_huge_zero_page(page))
281 		put_page(page);
282 }
283 
284 /*
285  * Passed an array of pages, drop them all from swapcache and then release
286  * them.  They are removed from the LRU and freed if this is their last use.
287  */
288 void free_pages_and_swap_cache(struct page **pages, int nr)
289 {
290 	struct page **pagep = pages;
291 	int i;
292 
293 	lru_add_drain();
294 	for (i = 0; i < nr; i++)
295 		free_swap_cache(pagep[i]);
296 	release_pages(pagep, nr);
297 }
298 
299 static inline bool swap_use_vma_readahead(void)
300 {
301 	return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
302 }
303 
304 /*
305  * Lookup a swap entry in the swap cache. A found page will be returned
306  * unlocked and with its refcount incremented - we rely on the kernel
307  * lock getting page table operations atomic even if we drop the page
308  * lock before returning.
309  */
310 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
311 			       unsigned long addr)
312 {
313 	struct page *page;
314 	struct swap_info_struct *si;
315 
316 	si = get_swap_device(entry);
317 	if (!si)
318 		return NULL;
319 	page = find_get_page(swap_address_space(entry), swp_offset(entry));
320 	put_swap_device(si);
321 
322 	INC_CACHE_INFO(find_total);
323 	if (page) {
324 		bool vma_ra = swap_use_vma_readahead();
325 		bool readahead;
326 
327 		INC_CACHE_INFO(find_success);
328 		/*
329 		 * At the moment, we don't support PG_readahead for anon THP
330 		 * so let's bail out rather than confusing the readahead stat.
331 		 */
332 		if (unlikely(PageTransCompound(page)))
333 			return page;
334 
335 		readahead = TestClearPageReadahead(page);
336 		if (vma && vma_ra) {
337 			unsigned long ra_val;
338 			int win, hits;
339 
340 			ra_val = GET_SWAP_RA_VAL(vma);
341 			win = SWAP_RA_WIN(ra_val);
342 			hits = SWAP_RA_HITS(ra_val);
343 			if (readahead)
344 				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
345 			atomic_long_set(&vma->swap_readahead_info,
346 					SWAP_RA_VAL(addr, win, hits));
347 		}
348 
349 		if (readahead) {
350 			count_vm_event(SWAP_RA_HIT);
351 			if (!vma || !vma_ra)
352 				atomic_inc(&swapin_readahead_hits);
353 		}
354 	}
355 
356 	return page;
357 }
358 
359 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
360 			struct vm_area_struct *vma, unsigned long addr,
361 			bool *new_page_allocated)
362 {
363 	struct page *found_page = NULL, *new_page = NULL;
364 	struct swap_info_struct *si;
365 	int err;
366 	*new_page_allocated = false;
367 
368 	do {
369 		/*
370 		 * First check the swap cache.  Since this is normally
371 		 * called after lookup_swap_cache() failed, re-calling
372 		 * that would confuse statistics.
373 		 */
374 		si = get_swap_device(entry);
375 		if (!si)
376 			break;
377 		found_page = find_get_page(swap_address_space(entry),
378 					   swp_offset(entry));
379 		put_swap_device(si);
380 		if (found_page)
381 			break;
382 
383 		/*
384 		 * Just skip read ahead for unused swap slot.
385 		 * During swap_off when swap_slot_cache is disabled,
386 		 * we have to handle the race between putting
387 		 * swap entry in swap cache and marking swap slot
388 		 * as SWAP_HAS_CACHE.  That's done in later part of code or
389 		 * else swap_off will be aborted if we return NULL.
390 		 */
391 		if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
392 			break;
393 
394 		/*
395 		 * Get a new page to read into from swap.
396 		 */
397 		if (!new_page) {
398 			new_page = alloc_page_vma(gfp_mask, vma, addr);
399 			if (!new_page)
400 				break;		/* Out of memory */
401 		}
402 
403 		/*
404 		 * Swap entry may have been freed since our caller observed it.
405 		 */
406 		err = swapcache_prepare(entry);
407 		if (err == -EEXIST) {
408 			/*
409 			 * We might race against get_swap_page() and stumble
410 			 * across a SWAP_HAS_CACHE swap_map entry whose page
411 			 * has not been brought into the swapcache yet.
412 			 */
413 			cond_resched();
414 			continue;
415 		} else if (err)		/* swp entry is obsolete ? */
416 			break;
417 
418 		/* May fail (-ENOMEM) if XArray node allocation failed. */
419 		__SetPageLocked(new_page);
420 		__SetPageSwapBacked(new_page);
421 		err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL);
422 		if (likely(!err)) {
423 			/* Initiate read into locked page */
424 			SetPageWorkingset(new_page);
425 			lru_cache_add_anon(new_page);
426 			*new_page_allocated = true;
427 			return new_page;
428 		}
429 		__ClearPageLocked(new_page);
430 		/*
431 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
432 		 * clear SWAP_HAS_CACHE flag.
433 		 */
434 		put_swap_page(new_page, entry);
435 	} while (err != -ENOMEM);
436 
437 	if (new_page)
438 		put_page(new_page);
439 	return found_page;
440 }
441 
442 /*
443  * Locate a page of swap in physical memory, reserving swap cache space
444  * and reading the disk if it is not already cached.
445  * A failure return means that either the page allocation failed or that
446  * the swap entry is no longer in use.
447  */
448 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
449 		struct vm_area_struct *vma, unsigned long addr, bool do_poll)
450 {
451 	bool page_was_allocated;
452 	struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
453 			vma, addr, &page_was_allocated);
454 
455 	if (page_was_allocated)
456 		swap_readpage(retpage, do_poll);
457 
458 	return retpage;
459 }
460 
461 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
462 				      unsigned long offset,
463 				      int hits,
464 				      int max_pages,
465 				      int prev_win)
466 {
467 	unsigned int pages, last_ra;
468 
469 	/*
470 	 * This heuristic has been found to work well on both sequential and
471 	 * random loads, swapping to hard disk or to SSD: please don't ask
472 	 * what the "+ 2" means, it just happens to work well, that's all.
473 	 */
474 	pages = hits + 2;
475 	if (pages == 2) {
476 		/*
477 		 * We can have no readahead hits to judge by: but must not get
478 		 * stuck here forever, so check for an adjacent offset instead
479 		 * (and don't even bother to check whether swap type is same).
480 		 */
481 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
482 			pages = 1;
483 	} else {
484 		unsigned int roundup = 4;
485 		while (roundup < pages)
486 			roundup <<= 1;
487 		pages = roundup;
488 	}
489 
490 	if (pages > max_pages)
491 		pages = max_pages;
492 
493 	/* Don't shrink readahead too fast */
494 	last_ra = prev_win / 2;
495 	if (pages < last_ra)
496 		pages = last_ra;
497 
498 	return pages;
499 }
500 
501 static unsigned long swapin_nr_pages(unsigned long offset)
502 {
503 	static unsigned long prev_offset;
504 	unsigned int hits, pages, max_pages;
505 	static atomic_t last_readahead_pages;
506 
507 	max_pages = 1 << READ_ONCE(page_cluster);
508 	if (max_pages <= 1)
509 		return 1;
510 
511 	hits = atomic_xchg(&swapin_readahead_hits, 0);
512 	pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
513 				  max_pages,
514 				  atomic_read(&last_readahead_pages));
515 	if (!hits)
516 		WRITE_ONCE(prev_offset, offset);
517 	atomic_set(&last_readahead_pages, pages);
518 
519 	return pages;
520 }
521 
522 /**
523  * swap_cluster_readahead - swap in pages in hope we need them soon
524  * @entry: swap entry of this memory
525  * @gfp_mask: memory allocation flags
526  * @vmf: fault information
527  *
528  * Returns the struct page for entry and addr, after queueing swapin.
529  *
530  * Primitive swap readahead code. We simply read an aligned block of
531  * (1 << page_cluster) entries in the swap area. This method is chosen
532  * because it doesn't cost us any seek time.  We also make sure to queue
533  * the 'original' request together with the readahead ones...
534  *
535  * This has been extended to use the NUMA policies from the mm triggering
536  * the readahead.
537  *
538  * Caller must hold read mmap_sem if vmf->vma is not NULL.
539  */
540 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
541 				struct vm_fault *vmf)
542 {
543 	struct page *page;
544 	unsigned long entry_offset = swp_offset(entry);
545 	unsigned long offset = entry_offset;
546 	unsigned long start_offset, end_offset;
547 	unsigned long mask;
548 	struct swap_info_struct *si = swp_swap_info(entry);
549 	struct blk_plug plug;
550 	bool do_poll = true, page_allocated;
551 	struct vm_area_struct *vma = vmf->vma;
552 	unsigned long addr = vmf->address;
553 
554 	mask = swapin_nr_pages(offset) - 1;
555 	if (!mask)
556 		goto skip;
557 
558 	/* Test swap type to make sure the dereference is safe */
559 	if (likely(si->flags & (SWP_BLKDEV | SWP_FS))) {
560 		struct inode *inode = si->swap_file->f_mapping->host;
561 		if (inode_read_congested(inode))
562 			goto skip;
563 	}
564 
565 	do_poll = false;
566 	/* Read a page_cluster sized and aligned cluster around offset. */
567 	start_offset = offset & ~mask;
568 	end_offset = offset | mask;
569 	if (!start_offset)	/* First page is swap header. */
570 		start_offset++;
571 	if (end_offset >= si->max)
572 		end_offset = si->max - 1;
573 
574 	blk_start_plug(&plug);
575 	for (offset = start_offset; offset <= end_offset ; offset++) {
576 		/* Ok, do the async read-ahead now */
577 		page = __read_swap_cache_async(
578 			swp_entry(swp_type(entry), offset),
579 			gfp_mask, vma, addr, &page_allocated);
580 		if (!page)
581 			continue;
582 		if (page_allocated) {
583 			swap_readpage(page, false);
584 			if (offset != entry_offset) {
585 				SetPageReadahead(page);
586 				count_vm_event(SWAP_RA);
587 			}
588 		}
589 		put_page(page);
590 	}
591 	blk_finish_plug(&plug);
592 
593 	lru_add_drain();	/* Push any new pages onto the LRU now */
594 skip:
595 	return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
596 }
597 
598 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
599 {
600 	struct address_space *spaces, *space;
601 	unsigned int i, nr;
602 
603 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
604 	spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
605 	if (!spaces)
606 		return -ENOMEM;
607 	for (i = 0; i < nr; i++) {
608 		space = spaces + i;
609 		xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
610 		atomic_set(&space->i_mmap_writable, 0);
611 		space->a_ops = &swap_aops;
612 		/* swap cache doesn't use writeback related tags */
613 		mapping_set_no_writeback_tags(space);
614 	}
615 	nr_swapper_spaces[type] = nr;
616 	swapper_spaces[type] = spaces;
617 
618 	return 0;
619 }
620 
621 void exit_swap_address_space(unsigned int type)
622 {
623 	kvfree(swapper_spaces[type]);
624 	nr_swapper_spaces[type] = 0;
625 	swapper_spaces[type] = NULL;
626 }
627 
628 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
629 				     unsigned long faddr,
630 				     unsigned long lpfn,
631 				     unsigned long rpfn,
632 				     unsigned long *start,
633 				     unsigned long *end)
634 {
635 	*start = max3(lpfn, PFN_DOWN(vma->vm_start),
636 		      PFN_DOWN(faddr & PMD_MASK));
637 	*end = min3(rpfn, PFN_DOWN(vma->vm_end),
638 		    PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
639 }
640 
641 static void swap_ra_info(struct vm_fault *vmf,
642 			struct vma_swap_readahead *ra_info)
643 {
644 	struct vm_area_struct *vma = vmf->vma;
645 	unsigned long ra_val;
646 	swp_entry_t entry;
647 	unsigned long faddr, pfn, fpfn;
648 	unsigned long start, end;
649 	pte_t *pte, *orig_pte;
650 	unsigned int max_win, hits, prev_win, win, left;
651 #ifndef CONFIG_64BIT
652 	pte_t *tpte;
653 #endif
654 
655 	max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
656 			     SWAP_RA_ORDER_CEILING);
657 	if (max_win == 1) {
658 		ra_info->win = 1;
659 		return;
660 	}
661 
662 	faddr = vmf->address;
663 	orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
664 	entry = pte_to_swp_entry(*pte);
665 	if ((unlikely(non_swap_entry(entry)))) {
666 		pte_unmap(orig_pte);
667 		return;
668 	}
669 
670 	fpfn = PFN_DOWN(faddr);
671 	ra_val = GET_SWAP_RA_VAL(vma);
672 	pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
673 	prev_win = SWAP_RA_WIN(ra_val);
674 	hits = SWAP_RA_HITS(ra_val);
675 	ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
676 					       max_win, prev_win);
677 	atomic_long_set(&vma->swap_readahead_info,
678 			SWAP_RA_VAL(faddr, win, 0));
679 
680 	if (win == 1) {
681 		pte_unmap(orig_pte);
682 		return;
683 	}
684 
685 	/* Copy the PTEs because the page table may be unmapped */
686 	if (fpfn == pfn + 1)
687 		swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
688 	else if (pfn == fpfn + 1)
689 		swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
690 				  &start, &end);
691 	else {
692 		left = (win - 1) / 2;
693 		swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
694 				  &start, &end);
695 	}
696 	ra_info->nr_pte = end - start;
697 	ra_info->offset = fpfn - start;
698 	pte -= ra_info->offset;
699 #ifdef CONFIG_64BIT
700 	ra_info->ptes = pte;
701 #else
702 	tpte = ra_info->ptes;
703 	for (pfn = start; pfn != end; pfn++)
704 		*tpte++ = *pte++;
705 #endif
706 	pte_unmap(orig_pte);
707 }
708 
709 /**
710  * swap_vma_readahead - swap in pages in hope we need them soon
711  * @entry: swap entry of this memory
712  * @gfp_mask: memory allocation flags
713  * @vmf: fault information
714  *
715  * Returns the struct page for entry and addr, after queueing swapin.
716  *
717  * Primitive swap readahead code. We simply read in a few pages whoes
718  * virtual addresses are around the fault address in the same vma.
719  *
720  * Caller must hold read mmap_sem if vmf->vma is not NULL.
721  *
722  */
723 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
724 				       struct vm_fault *vmf)
725 {
726 	struct blk_plug plug;
727 	struct vm_area_struct *vma = vmf->vma;
728 	struct page *page;
729 	pte_t *pte, pentry;
730 	swp_entry_t entry;
731 	unsigned int i;
732 	bool page_allocated;
733 	struct vma_swap_readahead ra_info = {0,};
734 
735 	swap_ra_info(vmf, &ra_info);
736 	if (ra_info.win == 1)
737 		goto skip;
738 
739 	blk_start_plug(&plug);
740 	for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
741 	     i++, pte++) {
742 		pentry = *pte;
743 		if (pte_none(pentry))
744 			continue;
745 		if (pte_present(pentry))
746 			continue;
747 		entry = pte_to_swp_entry(pentry);
748 		if (unlikely(non_swap_entry(entry)))
749 			continue;
750 		page = __read_swap_cache_async(entry, gfp_mask, vma,
751 					       vmf->address, &page_allocated);
752 		if (!page)
753 			continue;
754 		if (page_allocated) {
755 			swap_readpage(page, false);
756 			if (i != ra_info.offset) {
757 				SetPageReadahead(page);
758 				count_vm_event(SWAP_RA);
759 			}
760 		}
761 		put_page(page);
762 	}
763 	blk_finish_plug(&plug);
764 	lru_add_drain();
765 skip:
766 	return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
767 				     ra_info.win == 1);
768 }
769 
770 /**
771  * swapin_readahead - swap in pages in hope we need them soon
772  * @entry: swap entry of this memory
773  * @gfp_mask: memory allocation flags
774  * @vmf: fault information
775  *
776  * Returns the struct page for entry and addr, after queueing swapin.
777  *
778  * It's a main entry function for swap readahead. By the configuration,
779  * it will read ahead blocks by cluster-based(ie, physical disk based)
780  * or vma-based(ie, virtual address based on faulty address) readahead.
781  */
782 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
783 				struct vm_fault *vmf)
784 {
785 	return swap_use_vma_readahead() ?
786 			swap_vma_readahead(entry, gfp_mask, vmf) :
787 			swap_cluster_readahead(entry, gfp_mask, vmf);
788 }
789 
790 #ifdef CONFIG_SYSFS
791 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
792 				     struct kobj_attribute *attr, char *buf)
793 {
794 	return sprintf(buf, "%s\n", enable_vma_readahead ? "true" : "false");
795 }
796 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
797 				      struct kobj_attribute *attr,
798 				      const char *buf, size_t count)
799 {
800 	if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
801 		enable_vma_readahead = true;
802 	else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
803 		enable_vma_readahead = false;
804 	else
805 		return -EINVAL;
806 
807 	return count;
808 }
809 static struct kobj_attribute vma_ra_enabled_attr =
810 	__ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
811 	       vma_ra_enabled_store);
812 
813 static struct attribute *swap_attrs[] = {
814 	&vma_ra_enabled_attr.attr,
815 	NULL,
816 };
817 
818 static struct attribute_group swap_attr_group = {
819 	.attrs = swap_attrs,
820 };
821 
822 static int __init swap_init_sysfs(void)
823 {
824 	int err;
825 	struct kobject *swap_kobj;
826 
827 	swap_kobj = kobject_create_and_add("swap", mm_kobj);
828 	if (!swap_kobj) {
829 		pr_err("failed to create swap kobject\n");
830 		return -ENOMEM;
831 	}
832 	err = sysfs_create_group(swap_kobj, &swap_attr_group);
833 	if (err) {
834 		pr_err("failed to register swap group\n");
835 		goto delete_obj;
836 	}
837 	return 0;
838 
839 delete_obj:
840 	kobject_put(swap_kobj);
841 	return err;
842 }
843 subsys_initcall(swap_init_sysfs);
844 #endif
845