1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/swap_state.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 * 8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie 9 */ 10 #include <linux/mm.h> 11 #include <linux/gfp.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/init.h> 16 #include <linux/pagemap.h> 17 #include <linux/backing-dev.h> 18 #include <linux/blkdev.h> 19 #include <linux/pagevec.h> 20 #include <linux/migrate.h> 21 #include <linux/vmalloc.h> 22 #include <linux/swap_slots.h> 23 #include <linux/huge_mm.h> 24 #include <linux/shmem_fs.h> 25 #include "internal.h" 26 #include "swap.h" 27 28 /* 29 * swapper_space is a fiction, retained to simplify the path through 30 * vmscan's shrink_page_list. 31 */ 32 static const struct address_space_operations swap_aops = { 33 .writepage = swap_writepage, 34 .dirty_folio = noop_dirty_folio, 35 #ifdef CONFIG_MIGRATION 36 .migrate_folio = migrate_folio, 37 #endif 38 }; 39 40 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly; 41 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly; 42 static bool enable_vma_readahead __read_mostly = true; 43 44 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2) 45 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1) 46 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK 47 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK) 48 49 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK) 50 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT) 51 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK) 52 53 #define SWAP_RA_VAL(addr, win, hits) \ 54 (((addr) & PAGE_MASK) | \ 55 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \ 56 ((hits) & SWAP_RA_HITS_MASK)) 57 58 /* Initial readahead hits is 4 to start up with a small window */ 59 #define GET_SWAP_RA_VAL(vma) \ 60 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4) 61 62 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); 63 64 void show_swap_cache_info(void) 65 { 66 printk("%lu pages in swap cache\n", total_swapcache_pages()); 67 printk("Free swap = %ldkB\n", 68 get_nr_swap_pages() << (PAGE_SHIFT - 10)); 69 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); 70 } 71 72 void *get_shadow_from_swap_cache(swp_entry_t entry) 73 { 74 struct address_space *address_space = swap_address_space(entry); 75 pgoff_t idx = swp_offset(entry); 76 struct page *page; 77 78 page = xa_load(&address_space->i_pages, idx); 79 if (xa_is_value(page)) 80 return page; 81 return NULL; 82 } 83 84 /* 85 * add_to_swap_cache resembles filemap_add_folio on swapper_space, 86 * but sets SwapCache flag and private instead of mapping and index. 87 */ 88 int add_to_swap_cache(struct folio *folio, swp_entry_t entry, 89 gfp_t gfp, void **shadowp) 90 { 91 struct address_space *address_space = swap_address_space(entry); 92 pgoff_t idx = swp_offset(entry); 93 XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio)); 94 unsigned long i, nr = folio_nr_pages(folio); 95 void *old; 96 97 xas_set_update(&xas, workingset_update_node); 98 99 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 100 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 101 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 102 103 folio_ref_add(folio, nr); 104 folio_set_swapcache(folio); 105 106 do { 107 xas_lock_irq(&xas); 108 xas_create_range(&xas); 109 if (xas_error(&xas)) 110 goto unlock; 111 for (i = 0; i < nr; i++) { 112 VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio); 113 old = xas_load(&xas); 114 if (xa_is_value(old)) { 115 if (shadowp) 116 *shadowp = old; 117 } 118 set_page_private(folio_page(folio, i), entry.val + i); 119 xas_store(&xas, folio); 120 xas_next(&xas); 121 } 122 address_space->nrpages += nr; 123 __node_stat_mod_folio(folio, NR_FILE_PAGES, nr); 124 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr); 125 unlock: 126 xas_unlock_irq(&xas); 127 } while (xas_nomem(&xas, gfp)); 128 129 if (!xas_error(&xas)) 130 return 0; 131 132 folio_clear_swapcache(folio); 133 folio_ref_sub(folio, nr); 134 return xas_error(&xas); 135 } 136 137 /* 138 * This must be called only on folios that have 139 * been verified to be in the swap cache. 140 */ 141 void __delete_from_swap_cache(struct folio *folio, 142 swp_entry_t entry, void *shadow) 143 { 144 struct address_space *address_space = swap_address_space(entry); 145 int i; 146 long nr = folio_nr_pages(folio); 147 pgoff_t idx = swp_offset(entry); 148 XA_STATE(xas, &address_space->i_pages, idx); 149 150 xas_set_update(&xas, workingset_update_node); 151 152 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 153 VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio); 154 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 155 156 for (i = 0; i < nr; i++) { 157 void *entry = xas_store(&xas, shadow); 158 VM_BUG_ON_PAGE(entry != folio, entry); 159 set_page_private(folio_page(folio, i), 0); 160 xas_next(&xas); 161 } 162 folio_clear_swapcache(folio); 163 address_space->nrpages -= nr; 164 __node_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 165 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr); 166 } 167 168 /** 169 * add_to_swap - allocate swap space for a folio 170 * @folio: folio we want to move to swap 171 * 172 * Allocate swap space for the folio and add the folio to the 173 * swap cache. 174 * 175 * Context: Caller needs to hold the folio lock. 176 * Return: Whether the folio was added to the swap cache. 177 */ 178 bool add_to_swap(struct folio *folio) 179 { 180 swp_entry_t entry; 181 int err; 182 183 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 184 VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio); 185 186 entry = folio_alloc_swap(folio); 187 if (!entry.val) 188 return false; 189 190 /* 191 * XArray node allocations from PF_MEMALLOC contexts could 192 * completely exhaust the page allocator. __GFP_NOMEMALLOC 193 * stops emergency reserves from being allocated. 194 * 195 * TODO: this could cause a theoretical memory reclaim 196 * deadlock in the swap out path. 197 */ 198 /* 199 * Add it to the swap cache. 200 */ 201 err = add_to_swap_cache(folio, entry, 202 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL); 203 if (err) 204 /* 205 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 206 * clear SWAP_HAS_CACHE flag. 207 */ 208 goto fail; 209 /* 210 * Normally the folio will be dirtied in unmap because its 211 * pte should be dirty. A special case is MADV_FREE page. The 212 * page's pte could have dirty bit cleared but the folio's 213 * SwapBacked flag is still set because clearing the dirty bit 214 * and SwapBacked flag has no lock protected. For such folio, 215 * unmap will not set dirty bit for it, so folio reclaim will 216 * not write the folio out. This can cause data corruption when 217 * the folio is swapped in later. Always setting the dirty flag 218 * for the folio solves the problem. 219 */ 220 folio_mark_dirty(folio); 221 222 return true; 223 224 fail: 225 put_swap_folio(folio, entry); 226 return false; 227 } 228 229 /* 230 * This must be called only on folios that have 231 * been verified to be in the swap cache and locked. 232 * It will never put the folio into the free list, 233 * the caller has a reference on the folio. 234 */ 235 void delete_from_swap_cache(struct folio *folio) 236 { 237 swp_entry_t entry = folio_swap_entry(folio); 238 struct address_space *address_space = swap_address_space(entry); 239 240 xa_lock_irq(&address_space->i_pages); 241 __delete_from_swap_cache(folio, entry, NULL); 242 xa_unlock_irq(&address_space->i_pages); 243 244 put_swap_folio(folio, entry); 245 folio_ref_sub(folio, folio_nr_pages(folio)); 246 } 247 248 void clear_shadow_from_swap_cache(int type, unsigned long begin, 249 unsigned long end) 250 { 251 unsigned long curr = begin; 252 void *old; 253 254 for (;;) { 255 swp_entry_t entry = swp_entry(type, curr); 256 struct address_space *address_space = swap_address_space(entry); 257 XA_STATE(xas, &address_space->i_pages, curr); 258 259 xas_set_update(&xas, workingset_update_node); 260 261 xa_lock_irq(&address_space->i_pages); 262 xas_for_each(&xas, old, end) { 263 if (!xa_is_value(old)) 264 continue; 265 xas_store(&xas, NULL); 266 } 267 xa_unlock_irq(&address_space->i_pages); 268 269 /* search the next swapcache until we meet end */ 270 curr >>= SWAP_ADDRESS_SPACE_SHIFT; 271 curr++; 272 curr <<= SWAP_ADDRESS_SPACE_SHIFT; 273 if (curr > end) 274 break; 275 } 276 } 277 278 /* 279 * If we are the only user, then try to free up the swap cache. 280 * 281 * Its ok to check the swapcache flag without the folio lock 282 * here because we are going to recheck again inside 283 * folio_free_swap() _with_ the lock. 284 * - Marcelo 285 */ 286 void free_swap_cache(struct page *page) 287 { 288 struct folio *folio = page_folio(page); 289 290 if (folio_test_swapcache(folio) && !folio_mapped(folio) && 291 folio_trylock(folio)) { 292 folio_free_swap(folio); 293 folio_unlock(folio); 294 } 295 } 296 297 /* 298 * Perform a free_page(), also freeing any swap cache associated with 299 * this page if it is the last user of the page. 300 */ 301 void free_page_and_swap_cache(struct page *page) 302 { 303 free_swap_cache(page); 304 if (!is_huge_zero_page(page)) 305 put_page(page); 306 } 307 308 /* 309 * Passed an array of pages, drop them all from swapcache and then release 310 * them. They are removed from the LRU and freed if this is their last use. 311 */ 312 void free_pages_and_swap_cache(struct encoded_page **pages, int nr) 313 { 314 lru_add_drain(); 315 for (int i = 0; i < nr; i++) 316 free_swap_cache(encoded_page_ptr(pages[i])); 317 release_pages(pages, nr); 318 } 319 320 static inline bool swap_use_vma_readahead(void) 321 { 322 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap); 323 } 324 325 /* 326 * Lookup a swap entry in the swap cache. A found folio will be returned 327 * unlocked and with its refcount incremented - we rely on the kernel 328 * lock getting page table operations atomic even if we drop the folio 329 * lock before returning. 330 * 331 * Caller must lock the swap device or hold a reference to keep it valid. 332 */ 333 struct folio *swap_cache_get_folio(swp_entry_t entry, 334 struct vm_area_struct *vma, unsigned long addr) 335 { 336 struct folio *folio; 337 338 folio = filemap_get_folio(swap_address_space(entry), swp_offset(entry)); 339 if (folio) { 340 bool vma_ra = swap_use_vma_readahead(); 341 bool readahead; 342 343 /* 344 * At the moment, we don't support PG_readahead for anon THP 345 * so let's bail out rather than confusing the readahead stat. 346 */ 347 if (unlikely(folio_test_large(folio))) 348 return folio; 349 350 readahead = folio_test_clear_readahead(folio); 351 if (vma && vma_ra) { 352 unsigned long ra_val; 353 int win, hits; 354 355 ra_val = GET_SWAP_RA_VAL(vma); 356 win = SWAP_RA_WIN(ra_val); 357 hits = SWAP_RA_HITS(ra_val); 358 if (readahead) 359 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX); 360 atomic_long_set(&vma->swap_readahead_info, 361 SWAP_RA_VAL(addr, win, hits)); 362 } 363 364 if (readahead) { 365 count_vm_event(SWAP_RA_HIT); 366 if (!vma || !vma_ra) 367 atomic_inc(&swapin_readahead_hits); 368 } 369 } 370 371 return folio; 372 } 373 374 /** 375 * filemap_get_incore_folio - Find and get a folio from the page or swap caches. 376 * @mapping: The address_space to search. 377 * @index: The page cache index. 378 * 379 * This differs from filemap_get_folio() in that it will also look for the 380 * folio in the swap cache. 381 * 382 * Return: The found folio or %NULL. 383 */ 384 struct folio *filemap_get_incore_folio(struct address_space *mapping, 385 pgoff_t index) 386 { 387 swp_entry_t swp; 388 struct swap_info_struct *si; 389 struct folio *folio = __filemap_get_folio(mapping, index, FGP_ENTRY, 0); 390 391 if (!xa_is_value(folio)) 392 goto out; 393 if (!shmem_mapping(mapping)) 394 return NULL; 395 396 swp = radix_to_swp_entry(folio); 397 /* There might be swapin error entries in shmem mapping. */ 398 if (non_swap_entry(swp)) 399 return NULL; 400 /* Prevent swapoff from happening to us */ 401 si = get_swap_device(swp); 402 if (!si) 403 return NULL; 404 index = swp_offset(swp); 405 folio = filemap_get_folio(swap_address_space(swp), index); 406 put_swap_device(si); 407 out: 408 return folio; 409 } 410 411 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 412 struct vm_area_struct *vma, unsigned long addr, 413 bool *new_page_allocated) 414 { 415 struct swap_info_struct *si; 416 struct folio *folio; 417 void *shadow = NULL; 418 419 *new_page_allocated = false; 420 421 for (;;) { 422 int err; 423 /* 424 * First check the swap cache. Since this is normally 425 * called after swap_cache_get_folio() failed, re-calling 426 * that would confuse statistics. 427 */ 428 si = get_swap_device(entry); 429 if (!si) 430 return NULL; 431 folio = filemap_get_folio(swap_address_space(entry), 432 swp_offset(entry)); 433 put_swap_device(si); 434 if (folio) 435 return folio_file_page(folio, swp_offset(entry)); 436 437 /* 438 * Just skip read ahead for unused swap slot. 439 * During swap_off when swap_slot_cache is disabled, 440 * we have to handle the race between putting 441 * swap entry in swap cache and marking swap slot 442 * as SWAP_HAS_CACHE. That's done in later part of code or 443 * else swap_off will be aborted if we return NULL. 444 */ 445 if (!__swp_swapcount(entry) && swap_slot_cache_enabled) 446 return NULL; 447 448 /* 449 * Get a new page to read into from swap. Allocate it now, 450 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will 451 * cause any racers to loop around until we add it to cache. 452 */ 453 folio = vma_alloc_folio(gfp_mask, 0, vma, addr, false); 454 if (!folio) 455 return NULL; 456 457 /* 458 * Swap entry may have been freed since our caller observed it. 459 */ 460 err = swapcache_prepare(entry); 461 if (!err) 462 break; 463 464 folio_put(folio); 465 if (err != -EEXIST) 466 return NULL; 467 468 /* 469 * We might race against __delete_from_swap_cache(), and 470 * stumble across a swap_map entry whose SWAP_HAS_CACHE 471 * has not yet been cleared. Or race against another 472 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE 473 * in swap_map, but not yet added its page to swap cache. 474 */ 475 schedule_timeout_uninterruptible(1); 476 } 477 478 /* 479 * The swap entry is ours to swap in. Prepare the new page. 480 */ 481 482 __folio_set_locked(folio); 483 __folio_set_swapbacked(folio); 484 485 if (mem_cgroup_swapin_charge_folio(folio, NULL, gfp_mask, entry)) 486 goto fail_unlock; 487 488 /* May fail (-ENOMEM) if XArray node allocation failed. */ 489 if (add_to_swap_cache(folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow)) 490 goto fail_unlock; 491 492 mem_cgroup_swapin_uncharge_swap(entry); 493 494 if (shadow) 495 workingset_refault(folio, shadow); 496 497 /* Caller will initiate read into locked folio */ 498 folio_add_lru(folio); 499 *new_page_allocated = true; 500 return &folio->page; 501 502 fail_unlock: 503 put_swap_folio(folio, entry); 504 folio_unlock(folio); 505 folio_put(folio); 506 return NULL; 507 } 508 509 /* 510 * Locate a page of swap in physical memory, reserving swap cache space 511 * and reading the disk if it is not already cached. 512 * A failure return means that either the page allocation failed or that 513 * the swap entry is no longer in use. 514 */ 515 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 516 struct vm_area_struct *vma, 517 unsigned long addr, bool do_poll, 518 struct swap_iocb **plug) 519 { 520 bool page_was_allocated; 521 struct page *retpage = __read_swap_cache_async(entry, gfp_mask, 522 vma, addr, &page_was_allocated); 523 524 if (page_was_allocated) 525 swap_readpage(retpage, do_poll, plug); 526 527 return retpage; 528 } 529 530 static unsigned int __swapin_nr_pages(unsigned long prev_offset, 531 unsigned long offset, 532 int hits, 533 int max_pages, 534 int prev_win) 535 { 536 unsigned int pages, last_ra; 537 538 /* 539 * This heuristic has been found to work well on both sequential and 540 * random loads, swapping to hard disk or to SSD: please don't ask 541 * what the "+ 2" means, it just happens to work well, that's all. 542 */ 543 pages = hits + 2; 544 if (pages == 2) { 545 /* 546 * We can have no readahead hits to judge by: but must not get 547 * stuck here forever, so check for an adjacent offset instead 548 * (and don't even bother to check whether swap type is same). 549 */ 550 if (offset != prev_offset + 1 && offset != prev_offset - 1) 551 pages = 1; 552 } else { 553 unsigned int roundup = 4; 554 while (roundup < pages) 555 roundup <<= 1; 556 pages = roundup; 557 } 558 559 if (pages > max_pages) 560 pages = max_pages; 561 562 /* Don't shrink readahead too fast */ 563 last_ra = prev_win / 2; 564 if (pages < last_ra) 565 pages = last_ra; 566 567 return pages; 568 } 569 570 static unsigned long swapin_nr_pages(unsigned long offset) 571 { 572 static unsigned long prev_offset; 573 unsigned int hits, pages, max_pages; 574 static atomic_t last_readahead_pages; 575 576 max_pages = 1 << READ_ONCE(page_cluster); 577 if (max_pages <= 1) 578 return 1; 579 580 hits = atomic_xchg(&swapin_readahead_hits, 0); 581 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits, 582 max_pages, 583 atomic_read(&last_readahead_pages)); 584 if (!hits) 585 WRITE_ONCE(prev_offset, offset); 586 atomic_set(&last_readahead_pages, pages); 587 588 return pages; 589 } 590 591 /** 592 * swap_cluster_readahead - swap in pages in hope we need them soon 593 * @entry: swap entry of this memory 594 * @gfp_mask: memory allocation flags 595 * @vmf: fault information 596 * 597 * Returns the struct page for entry and addr, after queueing swapin. 598 * 599 * Primitive swap readahead code. We simply read an aligned block of 600 * (1 << page_cluster) entries in the swap area. This method is chosen 601 * because it doesn't cost us any seek time. We also make sure to queue 602 * the 'original' request together with the readahead ones... 603 * 604 * This has been extended to use the NUMA policies from the mm triggering 605 * the readahead. 606 * 607 * Caller must hold read mmap_lock if vmf->vma is not NULL. 608 */ 609 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, 610 struct vm_fault *vmf) 611 { 612 struct page *page; 613 unsigned long entry_offset = swp_offset(entry); 614 unsigned long offset = entry_offset; 615 unsigned long start_offset, end_offset; 616 unsigned long mask; 617 struct swap_info_struct *si = swp_swap_info(entry); 618 struct blk_plug plug; 619 struct swap_iocb *splug = NULL; 620 bool do_poll = true, page_allocated; 621 struct vm_area_struct *vma = vmf->vma; 622 unsigned long addr = vmf->address; 623 624 mask = swapin_nr_pages(offset) - 1; 625 if (!mask) 626 goto skip; 627 628 do_poll = false; 629 /* Read a page_cluster sized and aligned cluster around offset. */ 630 start_offset = offset & ~mask; 631 end_offset = offset | mask; 632 if (!start_offset) /* First page is swap header. */ 633 start_offset++; 634 if (end_offset >= si->max) 635 end_offset = si->max - 1; 636 637 blk_start_plug(&plug); 638 for (offset = start_offset; offset <= end_offset ; offset++) { 639 /* Ok, do the async read-ahead now */ 640 page = __read_swap_cache_async( 641 swp_entry(swp_type(entry), offset), 642 gfp_mask, vma, addr, &page_allocated); 643 if (!page) 644 continue; 645 if (page_allocated) { 646 swap_readpage(page, false, &splug); 647 if (offset != entry_offset) { 648 SetPageReadahead(page); 649 count_vm_event(SWAP_RA); 650 } 651 } 652 put_page(page); 653 } 654 blk_finish_plug(&plug); 655 swap_read_unplug(splug); 656 657 lru_add_drain(); /* Push any new pages onto the LRU now */ 658 skip: 659 /* The page was likely read above, so no need for plugging here */ 660 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll, NULL); 661 } 662 663 int init_swap_address_space(unsigned int type, unsigned long nr_pages) 664 { 665 struct address_space *spaces, *space; 666 unsigned int i, nr; 667 668 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); 669 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL); 670 if (!spaces) 671 return -ENOMEM; 672 for (i = 0; i < nr; i++) { 673 space = spaces + i; 674 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ); 675 atomic_set(&space->i_mmap_writable, 0); 676 space->a_ops = &swap_aops; 677 /* swap cache doesn't use writeback related tags */ 678 mapping_set_no_writeback_tags(space); 679 } 680 nr_swapper_spaces[type] = nr; 681 swapper_spaces[type] = spaces; 682 683 return 0; 684 } 685 686 void exit_swap_address_space(unsigned int type) 687 { 688 int i; 689 struct address_space *spaces = swapper_spaces[type]; 690 691 for (i = 0; i < nr_swapper_spaces[type]; i++) 692 VM_WARN_ON_ONCE(!mapping_empty(&spaces[i])); 693 kvfree(spaces); 694 nr_swapper_spaces[type] = 0; 695 swapper_spaces[type] = NULL; 696 } 697 698 static void swap_ra_info(struct vm_fault *vmf, 699 struct vma_swap_readahead *ra_info) 700 { 701 struct vm_area_struct *vma = vmf->vma; 702 unsigned long ra_val; 703 unsigned long faddr, pfn, fpfn, lpfn, rpfn; 704 unsigned long start, end; 705 pte_t *pte, *orig_pte; 706 unsigned int max_win, hits, prev_win, win; 707 #ifndef CONFIG_64BIT 708 pte_t *tpte; 709 #endif 710 711 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster), 712 SWAP_RA_ORDER_CEILING); 713 if (max_win == 1) { 714 ra_info->win = 1; 715 return; 716 } 717 718 faddr = vmf->address; 719 fpfn = PFN_DOWN(faddr); 720 ra_val = GET_SWAP_RA_VAL(vma); 721 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val)); 722 prev_win = SWAP_RA_WIN(ra_val); 723 hits = SWAP_RA_HITS(ra_val); 724 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits, 725 max_win, prev_win); 726 atomic_long_set(&vma->swap_readahead_info, 727 SWAP_RA_VAL(faddr, win, 0)); 728 729 if (win == 1) 730 return; 731 732 /* Copy the PTEs because the page table may be unmapped */ 733 orig_pte = pte = pte_offset_map(vmf->pmd, faddr); 734 if (fpfn == pfn + 1) { 735 lpfn = fpfn; 736 rpfn = fpfn + win; 737 } else if (pfn == fpfn + 1) { 738 lpfn = fpfn - win + 1; 739 rpfn = fpfn + 1; 740 } else { 741 unsigned int left = (win - 1) / 2; 742 743 lpfn = fpfn - left; 744 rpfn = fpfn + win - left; 745 } 746 start = max3(lpfn, PFN_DOWN(vma->vm_start), 747 PFN_DOWN(faddr & PMD_MASK)); 748 end = min3(rpfn, PFN_DOWN(vma->vm_end), 749 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE)); 750 751 ra_info->nr_pte = end - start; 752 ra_info->offset = fpfn - start; 753 pte -= ra_info->offset; 754 #ifdef CONFIG_64BIT 755 ra_info->ptes = pte; 756 #else 757 tpte = ra_info->ptes; 758 for (pfn = start; pfn != end; pfn++) 759 *tpte++ = *pte++; 760 #endif 761 pte_unmap(orig_pte); 762 } 763 764 /** 765 * swap_vma_readahead - swap in pages in hope we need them soon 766 * @fentry: swap entry of this memory 767 * @gfp_mask: memory allocation flags 768 * @vmf: fault information 769 * 770 * Returns the struct page for entry and addr, after queueing swapin. 771 * 772 * Primitive swap readahead code. We simply read in a few pages whose 773 * virtual addresses are around the fault address in the same vma. 774 * 775 * Caller must hold read mmap_lock if vmf->vma is not NULL. 776 * 777 */ 778 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask, 779 struct vm_fault *vmf) 780 { 781 struct blk_plug plug; 782 struct swap_iocb *splug = NULL; 783 struct vm_area_struct *vma = vmf->vma; 784 struct page *page; 785 pte_t *pte, pentry; 786 swp_entry_t entry; 787 unsigned int i; 788 bool page_allocated; 789 struct vma_swap_readahead ra_info = { 790 .win = 1, 791 }; 792 793 swap_ra_info(vmf, &ra_info); 794 if (ra_info.win == 1) 795 goto skip; 796 797 blk_start_plug(&plug); 798 for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte; 799 i++, pte++) { 800 pentry = *pte; 801 if (!is_swap_pte(pentry)) 802 continue; 803 entry = pte_to_swp_entry(pentry); 804 if (unlikely(non_swap_entry(entry))) 805 continue; 806 page = __read_swap_cache_async(entry, gfp_mask, vma, 807 vmf->address, &page_allocated); 808 if (!page) 809 continue; 810 if (page_allocated) { 811 swap_readpage(page, false, &splug); 812 if (i != ra_info.offset) { 813 SetPageReadahead(page); 814 count_vm_event(SWAP_RA); 815 } 816 } 817 put_page(page); 818 } 819 blk_finish_plug(&plug); 820 swap_read_unplug(splug); 821 lru_add_drain(); 822 skip: 823 /* The page was likely read above, so no need for plugging here */ 824 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address, 825 ra_info.win == 1, NULL); 826 } 827 828 /** 829 * swapin_readahead - swap in pages in hope we need them soon 830 * @entry: swap entry of this memory 831 * @gfp_mask: memory allocation flags 832 * @vmf: fault information 833 * 834 * Returns the struct page for entry and addr, after queueing swapin. 835 * 836 * It's a main entry function for swap readahead. By the configuration, 837 * it will read ahead blocks by cluster-based(ie, physical disk based) 838 * or vma-based(ie, virtual address based on faulty address) readahead. 839 */ 840 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, 841 struct vm_fault *vmf) 842 { 843 return swap_use_vma_readahead() ? 844 swap_vma_readahead(entry, gfp_mask, vmf) : 845 swap_cluster_readahead(entry, gfp_mask, vmf); 846 } 847 848 #ifdef CONFIG_SYSFS 849 static ssize_t vma_ra_enabled_show(struct kobject *kobj, 850 struct kobj_attribute *attr, char *buf) 851 { 852 return sysfs_emit(buf, "%s\n", 853 enable_vma_readahead ? "true" : "false"); 854 } 855 static ssize_t vma_ra_enabled_store(struct kobject *kobj, 856 struct kobj_attribute *attr, 857 const char *buf, size_t count) 858 { 859 ssize_t ret; 860 861 ret = kstrtobool(buf, &enable_vma_readahead); 862 if (ret) 863 return ret; 864 865 return count; 866 } 867 static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled); 868 869 static struct attribute *swap_attrs[] = { 870 &vma_ra_enabled_attr.attr, 871 NULL, 872 }; 873 874 static const struct attribute_group swap_attr_group = { 875 .attrs = swap_attrs, 876 }; 877 878 static int __init swap_init_sysfs(void) 879 { 880 int err; 881 struct kobject *swap_kobj; 882 883 swap_kobj = kobject_create_and_add("swap", mm_kobj); 884 if (!swap_kobj) { 885 pr_err("failed to create swap kobject\n"); 886 return -ENOMEM; 887 } 888 err = sysfs_create_group(swap_kobj, &swap_attr_group); 889 if (err) { 890 pr_err("failed to register swap group\n"); 891 goto delete_obj; 892 } 893 return 0; 894 895 delete_obj: 896 kobject_put(swap_kobj); 897 return err; 898 } 899 subsys_initcall(swap_init_sysfs); 900 #endif 901