xref: /linux/mm/swap_state.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/swap_state.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  *
8  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
9  */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/mempolicy.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/init.h>
17 #include <linux/pagemap.h>
18 #include <linux/pagevec.h>
19 #include <linux/backing-dev.h>
20 #include <linux/blkdev.h>
21 #include <linux/migrate.h>
22 #include <linux/vmalloc.h>
23 #include <linux/swap_slots.h>
24 #include <linux/huge_mm.h>
25 #include <linux/shmem_fs.h>
26 #include "internal.h"
27 #include "swap.h"
28 
29 /*
30  * swapper_space is a fiction, retained to simplify the path through
31  * vmscan's shrink_folio_list.
32  */
33 static const struct address_space_operations swap_aops = {
34 	.writepage	= swap_writepage,
35 	.dirty_folio	= noop_dirty_folio,
36 #ifdef CONFIG_MIGRATION
37 	.migrate_folio	= migrate_folio,
38 #endif
39 };
40 
41 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
42 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
43 static bool enable_vma_readahead __read_mostly = true;
44 
45 #define SWAP_RA_ORDER_CEILING	5
46 
47 #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
48 #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
49 #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
50 #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
51 
52 #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
53 #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
54 #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
55 
56 #define SWAP_RA_VAL(addr, win, hits)				\
57 	(((addr) & PAGE_MASK) |					\
58 	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
59 	 ((hits) & SWAP_RA_HITS_MASK))
60 
61 /* Initial readahead hits is 4 to start up with a small window */
62 #define GET_SWAP_RA_VAL(vma)					\
63 	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
64 
65 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
66 
67 void show_swap_cache_info(void)
68 {
69 	printk("%lu pages in swap cache\n", total_swapcache_pages());
70 	printk("Free swap  = %ldkB\n", K(get_nr_swap_pages()));
71 	printk("Total swap = %lukB\n", K(total_swap_pages));
72 }
73 
74 void *get_shadow_from_swap_cache(swp_entry_t entry)
75 {
76 	struct address_space *address_space = swap_address_space(entry);
77 	pgoff_t idx = swap_cache_index(entry);
78 	void *shadow;
79 
80 	shadow = xa_load(&address_space->i_pages, idx);
81 	if (xa_is_value(shadow))
82 		return shadow;
83 	return NULL;
84 }
85 
86 /*
87  * add_to_swap_cache resembles filemap_add_folio on swapper_space,
88  * but sets SwapCache flag and private instead of mapping and index.
89  */
90 int add_to_swap_cache(struct folio *folio, swp_entry_t entry,
91 			gfp_t gfp, void **shadowp)
92 {
93 	struct address_space *address_space = swap_address_space(entry);
94 	pgoff_t idx = swap_cache_index(entry);
95 	XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio));
96 	unsigned long i, nr = folio_nr_pages(folio);
97 	void *old;
98 
99 	xas_set_update(&xas, workingset_update_node);
100 
101 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
102 	VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
103 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
104 
105 	folio_ref_add(folio, nr);
106 	folio_set_swapcache(folio);
107 	folio->swap = entry;
108 
109 	do {
110 		xas_lock_irq(&xas);
111 		xas_create_range(&xas);
112 		if (xas_error(&xas))
113 			goto unlock;
114 		for (i = 0; i < nr; i++) {
115 			VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio);
116 			if (shadowp) {
117 				old = xas_load(&xas);
118 				if (xa_is_value(old))
119 					*shadowp = old;
120 			}
121 			xas_store(&xas, folio);
122 			xas_next(&xas);
123 		}
124 		address_space->nrpages += nr;
125 		__node_stat_mod_folio(folio, NR_FILE_PAGES, nr);
126 		__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr);
127 unlock:
128 		xas_unlock_irq(&xas);
129 	} while (xas_nomem(&xas, gfp));
130 
131 	if (!xas_error(&xas))
132 		return 0;
133 
134 	folio_clear_swapcache(folio);
135 	folio_ref_sub(folio, nr);
136 	return xas_error(&xas);
137 }
138 
139 /*
140  * This must be called only on folios that have
141  * been verified to be in the swap cache.
142  */
143 void __delete_from_swap_cache(struct folio *folio,
144 			swp_entry_t entry, void *shadow)
145 {
146 	struct address_space *address_space = swap_address_space(entry);
147 	int i;
148 	long nr = folio_nr_pages(folio);
149 	pgoff_t idx = swap_cache_index(entry);
150 	XA_STATE(xas, &address_space->i_pages, idx);
151 
152 	xas_set_update(&xas, workingset_update_node);
153 
154 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
155 	VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
156 	VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
157 
158 	for (i = 0; i < nr; i++) {
159 		void *entry = xas_store(&xas, shadow);
160 		VM_BUG_ON_PAGE(entry != folio, entry);
161 		xas_next(&xas);
162 	}
163 	folio->swap.val = 0;
164 	folio_clear_swapcache(folio);
165 	address_space->nrpages -= nr;
166 	__node_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
167 	__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr);
168 }
169 
170 /**
171  * add_to_swap - allocate swap space for a folio
172  * @folio: folio we want to move to swap
173  *
174  * Allocate swap space for the folio and add the folio to the
175  * swap cache.
176  *
177  * Context: Caller needs to hold the folio lock.
178  * Return: Whether the folio was added to the swap cache.
179  */
180 bool add_to_swap(struct folio *folio)
181 {
182 	swp_entry_t entry;
183 	int err;
184 
185 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
186 	VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
187 
188 	entry = folio_alloc_swap(folio);
189 	if (!entry.val)
190 		return false;
191 
192 	/*
193 	 * XArray node allocations from PF_MEMALLOC contexts could
194 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
195 	 * stops emergency reserves from being allocated.
196 	 *
197 	 * TODO: this could cause a theoretical memory reclaim
198 	 * deadlock in the swap out path.
199 	 */
200 	/*
201 	 * Add it to the swap cache.
202 	 */
203 	err = add_to_swap_cache(folio, entry,
204 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
205 	if (err)
206 		/*
207 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
208 		 * clear SWAP_HAS_CACHE flag.
209 		 */
210 		goto fail;
211 	/*
212 	 * Normally the folio will be dirtied in unmap because its
213 	 * pte should be dirty. A special case is MADV_FREE page. The
214 	 * page's pte could have dirty bit cleared but the folio's
215 	 * SwapBacked flag is still set because clearing the dirty bit
216 	 * and SwapBacked flag has no lock protected. For such folio,
217 	 * unmap will not set dirty bit for it, so folio reclaim will
218 	 * not write the folio out. This can cause data corruption when
219 	 * the folio is swapped in later. Always setting the dirty flag
220 	 * for the folio solves the problem.
221 	 */
222 	folio_mark_dirty(folio);
223 
224 	return true;
225 
226 fail:
227 	put_swap_folio(folio, entry);
228 	return false;
229 }
230 
231 /*
232  * This must be called only on folios that have
233  * been verified to be in the swap cache and locked.
234  * It will never put the folio into the free list,
235  * the caller has a reference on the folio.
236  */
237 void delete_from_swap_cache(struct folio *folio)
238 {
239 	swp_entry_t entry = folio->swap;
240 	struct address_space *address_space = swap_address_space(entry);
241 
242 	xa_lock_irq(&address_space->i_pages);
243 	__delete_from_swap_cache(folio, entry, NULL);
244 	xa_unlock_irq(&address_space->i_pages);
245 
246 	put_swap_folio(folio, entry);
247 	folio_ref_sub(folio, folio_nr_pages(folio));
248 }
249 
250 void clear_shadow_from_swap_cache(int type, unsigned long begin,
251 				unsigned long end)
252 {
253 	unsigned long curr = begin;
254 	void *old;
255 
256 	for (;;) {
257 		swp_entry_t entry = swp_entry(type, curr);
258 		unsigned long index = curr & SWAP_ADDRESS_SPACE_MASK;
259 		struct address_space *address_space = swap_address_space(entry);
260 		XA_STATE(xas, &address_space->i_pages, index);
261 
262 		xas_set_update(&xas, workingset_update_node);
263 
264 		xa_lock_irq(&address_space->i_pages);
265 		xas_for_each(&xas, old, min(index + (end - curr), SWAP_ADDRESS_SPACE_PAGES)) {
266 			if (!xa_is_value(old))
267 				continue;
268 			xas_store(&xas, NULL);
269 		}
270 		xa_unlock_irq(&address_space->i_pages);
271 
272 		/* search the next swapcache until we meet end */
273 		curr >>= SWAP_ADDRESS_SPACE_SHIFT;
274 		curr++;
275 		curr <<= SWAP_ADDRESS_SPACE_SHIFT;
276 		if (curr > end)
277 			break;
278 	}
279 }
280 
281 /*
282  * If we are the only user, then try to free up the swap cache.
283  *
284  * Its ok to check the swapcache flag without the folio lock
285  * here because we are going to recheck again inside
286  * folio_free_swap() _with_ the lock.
287  * 					- Marcelo
288  */
289 void free_swap_cache(struct folio *folio)
290 {
291 	if (folio_test_swapcache(folio) && !folio_mapped(folio) &&
292 	    folio_trylock(folio)) {
293 		folio_free_swap(folio);
294 		folio_unlock(folio);
295 	}
296 }
297 
298 /*
299  * Perform a free_page(), also freeing any swap cache associated with
300  * this page if it is the last user of the page.
301  */
302 void free_page_and_swap_cache(struct page *page)
303 {
304 	struct folio *folio = page_folio(page);
305 
306 	free_swap_cache(folio);
307 	if (!is_huge_zero_folio(folio))
308 		folio_put(folio);
309 }
310 
311 /*
312  * Passed an array of pages, drop them all from swapcache and then release
313  * them.  They are removed from the LRU and freed if this is their last use.
314  */
315 void free_pages_and_swap_cache(struct encoded_page **pages, int nr)
316 {
317 	struct folio_batch folios;
318 	unsigned int refs[PAGEVEC_SIZE];
319 
320 	lru_add_drain();
321 	folio_batch_init(&folios);
322 	for (int i = 0; i < nr; i++) {
323 		struct folio *folio = page_folio(encoded_page_ptr(pages[i]));
324 
325 		free_swap_cache(folio);
326 		refs[folios.nr] = 1;
327 		if (unlikely(encoded_page_flags(pages[i]) &
328 			     ENCODED_PAGE_BIT_NR_PAGES_NEXT))
329 			refs[folios.nr] = encoded_nr_pages(pages[++i]);
330 
331 		if (folio_batch_add(&folios, folio) == 0)
332 			folios_put_refs(&folios, refs);
333 	}
334 	if (folios.nr)
335 		folios_put_refs(&folios, refs);
336 }
337 
338 static inline bool swap_use_vma_readahead(void)
339 {
340 	return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
341 }
342 
343 /*
344  * Lookup a swap entry in the swap cache. A found folio will be returned
345  * unlocked and with its refcount incremented - we rely on the kernel
346  * lock getting page table operations atomic even if we drop the folio
347  * lock before returning.
348  *
349  * Caller must lock the swap device or hold a reference to keep it valid.
350  */
351 struct folio *swap_cache_get_folio(swp_entry_t entry,
352 		struct vm_area_struct *vma, unsigned long addr)
353 {
354 	struct folio *folio;
355 
356 	folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry));
357 	if (!IS_ERR(folio)) {
358 		bool vma_ra = swap_use_vma_readahead();
359 		bool readahead;
360 
361 		/*
362 		 * At the moment, we don't support PG_readahead for anon THP
363 		 * so let's bail out rather than confusing the readahead stat.
364 		 */
365 		if (unlikely(folio_test_large(folio)))
366 			return folio;
367 
368 		readahead = folio_test_clear_readahead(folio);
369 		if (vma && vma_ra) {
370 			unsigned long ra_val;
371 			int win, hits;
372 
373 			ra_val = GET_SWAP_RA_VAL(vma);
374 			win = SWAP_RA_WIN(ra_val);
375 			hits = SWAP_RA_HITS(ra_val);
376 			if (readahead)
377 				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
378 			atomic_long_set(&vma->swap_readahead_info,
379 					SWAP_RA_VAL(addr, win, hits));
380 		}
381 
382 		if (readahead) {
383 			count_vm_event(SWAP_RA_HIT);
384 			if (!vma || !vma_ra)
385 				atomic_inc(&swapin_readahead_hits);
386 		}
387 	} else {
388 		folio = NULL;
389 	}
390 
391 	return folio;
392 }
393 
394 /**
395  * filemap_get_incore_folio - Find and get a folio from the page or swap caches.
396  * @mapping: The address_space to search.
397  * @index: The page cache index.
398  *
399  * This differs from filemap_get_folio() in that it will also look for the
400  * folio in the swap cache.
401  *
402  * Return: The found folio or %NULL.
403  */
404 struct folio *filemap_get_incore_folio(struct address_space *mapping,
405 		pgoff_t index)
406 {
407 	swp_entry_t swp;
408 	struct swap_info_struct *si;
409 	struct folio *folio = filemap_get_entry(mapping, index);
410 
411 	if (!folio)
412 		return ERR_PTR(-ENOENT);
413 	if (!xa_is_value(folio))
414 		return folio;
415 	if (!shmem_mapping(mapping))
416 		return ERR_PTR(-ENOENT);
417 
418 	swp = radix_to_swp_entry(folio);
419 	/* There might be swapin error entries in shmem mapping. */
420 	if (non_swap_entry(swp))
421 		return ERR_PTR(-ENOENT);
422 	/* Prevent swapoff from happening to us */
423 	si = get_swap_device(swp);
424 	if (!si)
425 		return ERR_PTR(-ENOENT);
426 	index = swap_cache_index(swp);
427 	folio = filemap_get_folio(swap_address_space(swp), index);
428 	put_swap_device(si);
429 	return folio;
430 }
431 
432 struct folio *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
433 		struct mempolicy *mpol, pgoff_t ilx, bool *new_page_allocated,
434 		bool skip_if_exists)
435 {
436 	struct swap_info_struct *si;
437 	struct folio *folio;
438 	struct folio *new_folio = NULL;
439 	struct folio *result = NULL;
440 	void *shadow = NULL;
441 
442 	*new_page_allocated = false;
443 	si = get_swap_device(entry);
444 	if (!si)
445 		return NULL;
446 
447 	for (;;) {
448 		int err;
449 		/*
450 		 * First check the swap cache.  Since this is normally
451 		 * called after swap_cache_get_folio() failed, re-calling
452 		 * that would confuse statistics.
453 		 */
454 		folio = filemap_get_folio(swap_address_space(entry),
455 					  swap_cache_index(entry));
456 		if (!IS_ERR(folio))
457 			goto got_folio;
458 
459 		/*
460 		 * Just skip read ahead for unused swap slot.
461 		 * During swap_off when swap_slot_cache is disabled,
462 		 * we have to handle the race between putting
463 		 * swap entry in swap cache and marking swap slot
464 		 * as SWAP_HAS_CACHE.  That's done in later part of code or
465 		 * else swap_off will be aborted if we return NULL.
466 		 */
467 		if (!swap_swapcount(si, entry) && swap_slot_cache_enabled)
468 			goto put_and_return;
469 
470 		/*
471 		 * Get a new folio to read into from swap.  Allocate it now if
472 		 * new_folio not exist, before marking swap_map SWAP_HAS_CACHE,
473 		 * when -EEXIST will cause any racers to loop around until we
474 		 * add it to cache.
475 		 */
476 		if (!new_folio) {
477 			new_folio = folio_alloc_mpol(gfp_mask, 0, mpol, ilx, numa_node_id());
478 			if (!new_folio)
479 				goto put_and_return;
480 		}
481 
482 		/*
483 		 * Swap entry may have been freed since our caller observed it.
484 		 */
485 		err = swapcache_prepare(entry, 1);
486 		if (!err)
487 			break;
488 		else if (err != -EEXIST)
489 			goto put_and_return;
490 
491 		/*
492 		 * Protect against a recursive call to __read_swap_cache_async()
493 		 * on the same entry waiting forever here because SWAP_HAS_CACHE
494 		 * is set but the folio is not the swap cache yet. This can
495 		 * happen today if mem_cgroup_swapin_charge_folio() below
496 		 * triggers reclaim through zswap, which may call
497 		 * __read_swap_cache_async() in the writeback path.
498 		 */
499 		if (skip_if_exists)
500 			goto put_and_return;
501 
502 		/*
503 		 * We might race against __delete_from_swap_cache(), and
504 		 * stumble across a swap_map entry whose SWAP_HAS_CACHE
505 		 * has not yet been cleared.  Or race against another
506 		 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
507 		 * in swap_map, but not yet added its folio to swap cache.
508 		 */
509 		schedule_timeout_uninterruptible(1);
510 	}
511 
512 	/*
513 	 * The swap entry is ours to swap in. Prepare the new folio.
514 	 */
515 	__folio_set_locked(new_folio);
516 	__folio_set_swapbacked(new_folio);
517 
518 	if (mem_cgroup_swapin_charge_folio(new_folio, NULL, gfp_mask, entry))
519 		goto fail_unlock;
520 
521 	/* May fail (-ENOMEM) if XArray node allocation failed. */
522 	if (add_to_swap_cache(new_folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
523 		goto fail_unlock;
524 
525 	mem_cgroup_swapin_uncharge_swap(entry, 1);
526 
527 	if (shadow)
528 		workingset_refault(new_folio, shadow);
529 
530 	/* Caller will initiate read into locked new_folio */
531 	folio_add_lru(new_folio);
532 	*new_page_allocated = true;
533 	folio = new_folio;
534 got_folio:
535 	result = folio;
536 	goto put_and_return;
537 
538 fail_unlock:
539 	put_swap_folio(new_folio, entry);
540 	folio_unlock(new_folio);
541 put_and_return:
542 	put_swap_device(si);
543 	if (!(*new_page_allocated) && new_folio)
544 		folio_put(new_folio);
545 	return result;
546 }
547 
548 /*
549  * Locate a page of swap in physical memory, reserving swap cache space
550  * and reading the disk if it is not already cached.
551  * A failure return means that either the page allocation failed or that
552  * the swap entry is no longer in use.
553  *
554  * get/put_swap_device() aren't needed to call this function, because
555  * __read_swap_cache_async() call them and swap_read_folio() holds the
556  * swap cache folio lock.
557  */
558 struct folio *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
559 		struct vm_area_struct *vma, unsigned long addr,
560 		struct swap_iocb **plug)
561 {
562 	bool page_allocated;
563 	struct mempolicy *mpol;
564 	pgoff_t ilx;
565 	struct folio *folio;
566 
567 	mpol = get_vma_policy(vma, addr, 0, &ilx);
568 	folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
569 					&page_allocated, false);
570 	mpol_cond_put(mpol);
571 
572 	if (page_allocated)
573 		swap_read_folio(folio, plug);
574 	return folio;
575 }
576 
577 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
578 				      unsigned long offset,
579 				      int hits,
580 				      int max_pages,
581 				      int prev_win)
582 {
583 	unsigned int pages, last_ra;
584 
585 	/*
586 	 * This heuristic has been found to work well on both sequential and
587 	 * random loads, swapping to hard disk or to SSD: please don't ask
588 	 * what the "+ 2" means, it just happens to work well, that's all.
589 	 */
590 	pages = hits + 2;
591 	if (pages == 2) {
592 		/*
593 		 * We can have no readahead hits to judge by: but must not get
594 		 * stuck here forever, so check for an adjacent offset instead
595 		 * (and don't even bother to check whether swap type is same).
596 		 */
597 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
598 			pages = 1;
599 	} else {
600 		unsigned int roundup = 4;
601 		while (roundup < pages)
602 			roundup <<= 1;
603 		pages = roundup;
604 	}
605 
606 	if (pages > max_pages)
607 		pages = max_pages;
608 
609 	/* Don't shrink readahead too fast */
610 	last_ra = prev_win / 2;
611 	if (pages < last_ra)
612 		pages = last_ra;
613 
614 	return pages;
615 }
616 
617 static unsigned long swapin_nr_pages(unsigned long offset)
618 {
619 	static unsigned long prev_offset;
620 	unsigned int hits, pages, max_pages;
621 	static atomic_t last_readahead_pages;
622 
623 	max_pages = 1 << READ_ONCE(page_cluster);
624 	if (max_pages <= 1)
625 		return 1;
626 
627 	hits = atomic_xchg(&swapin_readahead_hits, 0);
628 	pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
629 				  max_pages,
630 				  atomic_read(&last_readahead_pages));
631 	if (!hits)
632 		WRITE_ONCE(prev_offset, offset);
633 	atomic_set(&last_readahead_pages, pages);
634 
635 	return pages;
636 }
637 
638 /**
639  * swap_cluster_readahead - swap in pages in hope we need them soon
640  * @entry: swap entry of this memory
641  * @gfp_mask: memory allocation flags
642  * @mpol: NUMA memory allocation policy to be applied
643  * @ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
644  *
645  * Returns the struct folio for entry and addr, after queueing swapin.
646  *
647  * Primitive swap readahead code. We simply read an aligned block of
648  * (1 << page_cluster) entries in the swap area. This method is chosen
649  * because it doesn't cost us any seek time.  We also make sure to queue
650  * the 'original' request together with the readahead ones...
651  *
652  * Note: it is intentional that the same NUMA policy and interleave index
653  * are used for every page of the readahead: neighbouring pages on swap
654  * are fairly likely to have been swapped out from the same node.
655  */
656 struct folio *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
657 				    struct mempolicy *mpol, pgoff_t ilx)
658 {
659 	struct folio *folio;
660 	unsigned long entry_offset = swp_offset(entry);
661 	unsigned long offset = entry_offset;
662 	unsigned long start_offset, end_offset;
663 	unsigned long mask;
664 	struct swap_info_struct *si = swp_swap_info(entry);
665 	struct blk_plug plug;
666 	struct swap_iocb *splug = NULL;
667 	bool page_allocated;
668 
669 	mask = swapin_nr_pages(offset) - 1;
670 	if (!mask)
671 		goto skip;
672 
673 	/* Read a page_cluster sized and aligned cluster around offset. */
674 	start_offset = offset & ~mask;
675 	end_offset = offset | mask;
676 	if (!start_offset)	/* First page is swap header. */
677 		start_offset++;
678 	if (end_offset >= si->max)
679 		end_offset = si->max - 1;
680 
681 	blk_start_plug(&plug);
682 	for (offset = start_offset; offset <= end_offset ; offset++) {
683 		/* Ok, do the async read-ahead now */
684 		folio = __read_swap_cache_async(
685 				swp_entry(swp_type(entry), offset),
686 				gfp_mask, mpol, ilx, &page_allocated, false);
687 		if (!folio)
688 			continue;
689 		if (page_allocated) {
690 			swap_read_folio(folio, &splug);
691 			if (offset != entry_offset) {
692 				folio_set_readahead(folio);
693 				count_vm_event(SWAP_RA);
694 			}
695 		}
696 		folio_put(folio);
697 	}
698 	blk_finish_plug(&plug);
699 	swap_read_unplug(splug);
700 	lru_add_drain();	/* Push any new pages onto the LRU now */
701 skip:
702 	/* The page was likely read above, so no need for plugging here */
703 	folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
704 					&page_allocated, false);
705 	if (unlikely(page_allocated))
706 		swap_read_folio(folio, NULL);
707 	return folio;
708 }
709 
710 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
711 {
712 	struct address_space *spaces, *space;
713 	unsigned int i, nr;
714 
715 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
716 	spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
717 	if (!spaces)
718 		return -ENOMEM;
719 	for (i = 0; i < nr; i++) {
720 		space = spaces + i;
721 		xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
722 		atomic_set(&space->i_mmap_writable, 0);
723 		space->a_ops = &swap_aops;
724 		/* swap cache doesn't use writeback related tags */
725 		mapping_set_no_writeback_tags(space);
726 	}
727 	nr_swapper_spaces[type] = nr;
728 	swapper_spaces[type] = spaces;
729 
730 	return 0;
731 }
732 
733 void exit_swap_address_space(unsigned int type)
734 {
735 	int i;
736 	struct address_space *spaces = swapper_spaces[type];
737 
738 	for (i = 0; i < nr_swapper_spaces[type]; i++)
739 		VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
740 	kvfree(spaces);
741 	nr_swapper_spaces[type] = 0;
742 	swapper_spaces[type] = NULL;
743 }
744 
745 static int swap_vma_ra_win(struct vm_fault *vmf, unsigned long *start,
746 			   unsigned long *end)
747 {
748 	struct vm_area_struct *vma = vmf->vma;
749 	unsigned long ra_val;
750 	unsigned long faddr, prev_faddr, left, right;
751 	unsigned int max_win, hits, prev_win, win;
752 
753 	max_win = 1 << min(READ_ONCE(page_cluster), SWAP_RA_ORDER_CEILING);
754 	if (max_win == 1)
755 		return 1;
756 
757 	faddr = vmf->address;
758 	ra_val = GET_SWAP_RA_VAL(vma);
759 	prev_faddr = SWAP_RA_ADDR(ra_val);
760 	prev_win = SWAP_RA_WIN(ra_val);
761 	hits = SWAP_RA_HITS(ra_val);
762 	win = __swapin_nr_pages(PFN_DOWN(prev_faddr), PFN_DOWN(faddr), hits,
763 				max_win, prev_win);
764 	atomic_long_set(&vma->swap_readahead_info, SWAP_RA_VAL(faddr, win, 0));
765 	if (win == 1)
766 		return 1;
767 
768 	if (faddr == prev_faddr + PAGE_SIZE)
769 		left = faddr;
770 	else if (prev_faddr == faddr + PAGE_SIZE)
771 		left = faddr - (win << PAGE_SHIFT) + PAGE_SIZE;
772 	else
773 		left = faddr - (((win - 1) / 2) << PAGE_SHIFT);
774 	right = left + (win << PAGE_SHIFT);
775 	if ((long)left < 0)
776 		left = 0;
777 	*start = max3(left, vma->vm_start, faddr & PMD_MASK);
778 	*end = min3(right, vma->vm_end, (faddr & PMD_MASK) + PMD_SIZE);
779 
780 	return win;
781 }
782 
783 /**
784  * swap_vma_readahead - swap in pages in hope we need them soon
785  * @targ_entry: swap entry of the targeted memory
786  * @gfp_mask: memory allocation flags
787  * @mpol: NUMA memory allocation policy to be applied
788  * @targ_ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
789  * @vmf: fault information
790  *
791  * Returns the struct folio for entry and addr, after queueing swapin.
792  *
793  * Primitive swap readahead code. We simply read in a few pages whose
794  * virtual addresses are around the fault address in the same vma.
795  *
796  * Caller must hold read mmap_lock if vmf->vma is not NULL.
797  *
798  */
799 static struct folio *swap_vma_readahead(swp_entry_t targ_entry, gfp_t gfp_mask,
800 		struct mempolicy *mpol, pgoff_t targ_ilx, struct vm_fault *vmf)
801 {
802 	struct blk_plug plug;
803 	struct swap_iocb *splug = NULL;
804 	struct folio *folio;
805 	pte_t *pte = NULL, pentry;
806 	int win;
807 	unsigned long start, end, addr;
808 	swp_entry_t entry;
809 	pgoff_t ilx;
810 	bool page_allocated;
811 
812 	win = swap_vma_ra_win(vmf, &start, &end);
813 	if (win == 1)
814 		goto skip;
815 
816 	ilx = targ_ilx - PFN_DOWN(vmf->address - start);
817 
818 	blk_start_plug(&plug);
819 	for (addr = start; addr < end; ilx++, addr += PAGE_SIZE) {
820 		if (!pte++) {
821 			pte = pte_offset_map(vmf->pmd, addr);
822 			if (!pte)
823 				break;
824 		}
825 		pentry = ptep_get_lockless(pte);
826 		if (!is_swap_pte(pentry))
827 			continue;
828 		entry = pte_to_swp_entry(pentry);
829 		if (unlikely(non_swap_entry(entry)))
830 			continue;
831 		pte_unmap(pte);
832 		pte = NULL;
833 		folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
834 						&page_allocated, false);
835 		if (!folio)
836 			continue;
837 		if (page_allocated) {
838 			swap_read_folio(folio, &splug);
839 			if (addr != vmf->address) {
840 				folio_set_readahead(folio);
841 				count_vm_event(SWAP_RA);
842 			}
843 		}
844 		folio_put(folio);
845 	}
846 	if (pte)
847 		pte_unmap(pte);
848 	blk_finish_plug(&plug);
849 	swap_read_unplug(splug);
850 	lru_add_drain();
851 skip:
852 	/* The folio was likely read above, so no need for plugging here */
853 	folio = __read_swap_cache_async(targ_entry, gfp_mask, mpol, targ_ilx,
854 					&page_allocated, false);
855 	if (unlikely(page_allocated))
856 		swap_read_folio(folio, NULL);
857 	return folio;
858 }
859 
860 /**
861  * swapin_readahead - swap in pages in hope we need them soon
862  * @entry: swap entry of this memory
863  * @gfp_mask: memory allocation flags
864  * @vmf: fault information
865  *
866  * Returns the struct folio for entry and addr, after queueing swapin.
867  *
868  * It's a main entry function for swap readahead. By the configuration,
869  * it will read ahead blocks by cluster-based(ie, physical disk based)
870  * or vma-based(ie, virtual address based on faulty address) readahead.
871  */
872 struct folio *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
873 				struct vm_fault *vmf)
874 {
875 	struct mempolicy *mpol;
876 	pgoff_t ilx;
877 	struct folio *folio;
878 
879 	mpol = get_vma_policy(vmf->vma, vmf->address, 0, &ilx);
880 	folio = swap_use_vma_readahead() ?
881 		swap_vma_readahead(entry, gfp_mask, mpol, ilx, vmf) :
882 		swap_cluster_readahead(entry, gfp_mask, mpol, ilx);
883 	mpol_cond_put(mpol);
884 
885 	return folio;
886 }
887 
888 #ifdef CONFIG_SYSFS
889 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
890 				     struct kobj_attribute *attr, char *buf)
891 {
892 	return sysfs_emit(buf, "%s\n",
893 			  enable_vma_readahead ? "true" : "false");
894 }
895 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
896 				      struct kobj_attribute *attr,
897 				      const char *buf, size_t count)
898 {
899 	ssize_t ret;
900 
901 	ret = kstrtobool(buf, &enable_vma_readahead);
902 	if (ret)
903 		return ret;
904 
905 	return count;
906 }
907 static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
908 
909 static struct attribute *swap_attrs[] = {
910 	&vma_ra_enabled_attr.attr,
911 	NULL,
912 };
913 
914 static const struct attribute_group swap_attr_group = {
915 	.attrs = swap_attrs,
916 };
917 
918 static int __init swap_init_sysfs(void)
919 {
920 	int err;
921 	struct kobject *swap_kobj;
922 
923 	swap_kobj = kobject_create_and_add("swap", mm_kobj);
924 	if (!swap_kobj) {
925 		pr_err("failed to create swap kobject\n");
926 		return -ENOMEM;
927 	}
928 	err = sysfs_create_group(swap_kobj, &swap_attr_group);
929 	if (err) {
930 		pr_err("failed to register swap group\n");
931 		goto delete_obj;
932 	}
933 	return 0;
934 
935 delete_obj:
936 	kobject_put(swap_kobj);
937 	return err;
938 }
939 subsys_initcall(swap_init_sysfs);
940 #endif
941