1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/swap_state.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 * 8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie 9 */ 10 #include <linux/mm.h> 11 #include <linux/gfp.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/mempolicy.h> 14 #include <linux/swap.h> 15 #include <linux/swapops.h> 16 #include <linux/init.h> 17 #include <linux/pagemap.h> 18 #include <linux/backing-dev.h> 19 #include <linux/blkdev.h> 20 #include <linux/migrate.h> 21 #include <linux/vmalloc.h> 22 #include <linux/swap_slots.h> 23 #include <linux/huge_mm.h> 24 #include <linux/shmem_fs.h> 25 #include "internal.h" 26 #include "swap.h" 27 28 /* 29 * swapper_space is a fiction, retained to simplify the path through 30 * vmscan's shrink_page_list. 31 */ 32 static const struct address_space_operations swap_aops = { 33 .writepage = swap_writepage, 34 .dirty_folio = noop_dirty_folio, 35 #ifdef CONFIG_MIGRATION 36 .migrate_folio = migrate_folio, 37 #endif 38 }; 39 40 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly; 41 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly; 42 static bool enable_vma_readahead __read_mostly = true; 43 44 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2) 45 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1) 46 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK 47 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK) 48 49 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK) 50 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT) 51 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK) 52 53 #define SWAP_RA_VAL(addr, win, hits) \ 54 (((addr) & PAGE_MASK) | \ 55 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \ 56 ((hits) & SWAP_RA_HITS_MASK)) 57 58 /* Initial readahead hits is 4 to start up with a small window */ 59 #define GET_SWAP_RA_VAL(vma) \ 60 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4) 61 62 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); 63 64 void show_swap_cache_info(void) 65 { 66 printk("%lu pages in swap cache\n", total_swapcache_pages()); 67 printk("Free swap = %ldkB\n", K(get_nr_swap_pages())); 68 printk("Total swap = %lukB\n", K(total_swap_pages)); 69 } 70 71 void *get_shadow_from_swap_cache(swp_entry_t entry) 72 { 73 struct address_space *address_space = swap_address_space(entry); 74 pgoff_t idx = swp_offset(entry); 75 struct page *page; 76 77 page = xa_load(&address_space->i_pages, idx); 78 if (xa_is_value(page)) 79 return page; 80 return NULL; 81 } 82 83 /* 84 * add_to_swap_cache resembles filemap_add_folio on swapper_space, 85 * but sets SwapCache flag and private instead of mapping and index. 86 */ 87 int add_to_swap_cache(struct folio *folio, swp_entry_t entry, 88 gfp_t gfp, void **shadowp) 89 { 90 struct address_space *address_space = swap_address_space(entry); 91 pgoff_t idx = swp_offset(entry); 92 XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio)); 93 unsigned long i, nr = folio_nr_pages(folio); 94 void *old; 95 96 xas_set_update(&xas, workingset_update_node); 97 98 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 99 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 100 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 101 102 folio_ref_add(folio, nr); 103 folio_set_swapcache(folio); 104 folio->swap = entry; 105 106 do { 107 xas_lock_irq(&xas); 108 xas_create_range(&xas); 109 if (xas_error(&xas)) 110 goto unlock; 111 for (i = 0; i < nr; i++) { 112 VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio); 113 if (shadowp) { 114 old = xas_load(&xas); 115 if (xa_is_value(old)) 116 *shadowp = old; 117 } 118 xas_store(&xas, folio); 119 xas_next(&xas); 120 } 121 address_space->nrpages += nr; 122 __node_stat_mod_folio(folio, NR_FILE_PAGES, nr); 123 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr); 124 unlock: 125 xas_unlock_irq(&xas); 126 } while (xas_nomem(&xas, gfp)); 127 128 if (!xas_error(&xas)) 129 return 0; 130 131 folio_clear_swapcache(folio); 132 folio_ref_sub(folio, nr); 133 return xas_error(&xas); 134 } 135 136 /* 137 * This must be called only on folios that have 138 * been verified to be in the swap cache. 139 */ 140 void __delete_from_swap_cache(struct folio *folio, 141 swp_entry_t entry, void *shadow) 142 { 143 struct address_space *address_space = swap_address_space(entry); 144 int i; 145 long nr = folio_nr_pages(folio); 146 pgoff_t idx = swp_offset(entry); 147 XA_STATE(xas, &address_space->i_pages, idx); 148 149 xas_set_update(&xas, workingset_update_node); 150 151 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 152 VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio); 153 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 154 155 for (i = 0; i < nr; i++) { 156 void *entry = xas_store(&xas, shadow); 157 VM_BUG_ON_PAGE(entry != folio, entry); 158 xas_next(&xas); 159 } 160 folio->swap.val = 0; 161 folio_clear_swapcache(folio); 162 address_space->nrpages -= nr; 163 __node_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 164 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr); 165 } 166 167 /** 168 * add_to_swap - allocate swap space for a folio 169 * @folio: folio we want to move to swap 170 * 171 * Allocate swap space for the folio and add the folio to the 172 * swap cache. 173 * 174 * Context: Caller needs to hold the folio lock. 175 * Return: Whether the folio was added to the swap cache. 176 */ 177 bool add_to_swap(struct folio *folio) 178 { 179 swp_entry_t entry; 180 int err; 181 182 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 183 VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio); 184 185 entry = folio_alloc_swap(folio); 186 if (!entry.val) 187 return false; 188 189 /* 190 * XArray node allocations from PF_MEMALLOC contexts could 191 * completely exhaust the page allocator. __GFP_NOMEMALLOC 192 * stops emergency reserves from being allocated. 193 * 194 * TODO: this could cause a theoretical memory reclaim 195 * deadlock in the swap out path. 196 */ 197 /* 198 * Add it to the swap cache. 199 */ 200 err = add_to_swap_cache(folio, entry, 201 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL); 202 if (err) 203 /* 204 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 205 * clear SWAP_HAS_CACHE flag. 206 */ 207 goto fail; 208 /* 209 * Normally the folio will be dirtied in unmap because its 210 * pte should be dirty. A special case is MADV_FREE page. The 211 * page's pte could have dirty bit cleared but the folio's 212 * SwapBacked flag is still set because clearing the dirty bit 213 * and SwapBacked flag has no lock protected. For such folio, 214 * unmap will not set dirty bit for it, so folio reclaim will 215 * not write the folio out. This can cause data corruption when 216 * the folio is swapped in later. Always setting the dirty flag 217 * for the folio solves the problem. 218 */ 219 folio_mark_dirty(folio); 220 221 return true; 222 223 fail: 224 put_swap_folio(folio, entry); 225 return false; 226 } 227 228 /* 229 * This must be called only on folios that have 230 * been verified to be in the swap cache and locked. 231 * It will never put the folio into the free list, 232 * the caller has a reference on the folio. 233 */ 234 void delete_from_swap_cache(struct folio *folio) 235 { 236 swp_entry_t entry = folio->swap; 237 struct address_space *address_space = swap_address_space(entry); 238 239 xa_lock_irq(&address_space->i_pages); 240 __delete_from_swap_cache(folio, entry, NULL); 241 xa_unlock_irq(&address_space->i_pages); 242 243 put_swap_folio(folio, entry); 244 folio_ref_sub(folio, folio_nr_pages(folio)); 245 } 246 247 void clear_shadow_from_swap_cache(int type, unsigned long begin, 248 unsigned long end) 249 { 250 unsigned long curr = begin; 251 void *old; 252 253 for (;;) { 254 swp_entry_t entry = swp_entry(type, curr); 255 struct address_space *address_space = swap_address_space(entry); 256 XA_STATE(xas, &address_space->i_pages, curr); 257 258 xas_set_update(&xas, workingset_update_node); 259 260 xa_lock_irq(&address_space->i_pages); 261 xas_for_each(&xas, old, end) { 262 if (!xa_is_value(old)) 263 continue; 264 xas_store(&xas, NULL); 265 } 266 xa_unlock_irq(&address_space->i_pages); 267 268 /* search the next swapcache until we meet end */ 269 curr >>= SWAP_ADDRESS_SPACE_SHIFT; 270 curr++; 271 curr <<= SWAP_ADDRESS_SPACE_SHIFT; 272 if (curr > end) 273 break; 274 } 275 } 276 277 /* 278 * If we are the only user, then try to free up the swap cache. 279 * 280 * Its ok to check the swapcache flag without the folio lock 281 * here because we are going to recheck again inside 282 * folio_free_swap() _with_ the lock. 283 * - Marcelo 284 */ 285 void free_swap_cache(struct page *page) 286 { 287 struct folio *folio = page_folio(page); 288 289 if (folio_test_swapcache(folio) && !folio_mapped(folio) && 290 folio_trylock(folio)) { 291 folio_free_swap(folio); 292 folio_unlock(folio); 293 } 294 } 295 296 /* 297 * Perform a free_page(), also freeing any swap cache associated with 298 * this page if it is the last user of the page. 299 */ 300 void free_page_and_swap_cache(struct page *page) 301 { 302 free_swap_cache(page); 303 if (!is_huge_zero_page(page)) 304 put_page(page); 305 } 306 307 /* 308 * Passed an array of pages, drop them all from swapcache and then release 309 * them. They are removed from the LRU and freed if this is their last use. 310 */ 311 void free_pages_and_swap_cache(struct encoded_page **pages, int nr) 312 { 313 lru_add_drain(); 314 for (int i = 0; i < nr; i++) 315 free_swap_cache(encoded_page_ptr(pages[i])); 316 release_pages(pages, nr); 317 } 318 319 static inline bool swap_use_vma_readahead(void) 320 { 321 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap); 322 } 323 324 /* 325 * Lookup a swap entry in the swap cache. A found folio will be returned 326 * unlocked and with its refcount incremented - we rely on the kernel 327 * lock getting page table operations atomic even if we drop the folio 328 * lock before returning. 329 * 330 * Caller must lock the swap device or hold a reference to keep it valid. 331 */ 332 struct folio *swap_cache_get_folio(swp_entry_t entry, 333 struct vm_area_struct *vma, unsigned long addr) 334 { 335 struct folio *folio; 336 337 folio = filemap_get_folio(swap_address_space(entry), swp_offset(entry)); 338 if (!IS_ERR(folio)) { 339 bool vma_ra = swap_use_vma_readahead(); 340 bool readahead; 341 342 /* 343 * At the moment, we don't support PG_readahead for anon THP 344 * so let's bail out rather than confusing the readahead stat. 345 */ 346 if (unlikely(folio_test_large(folio))) 347 return folio; 348 349 readahead = folio_test_clear_readahead(folio); 350 if (vma && vma_ra) { 351 unsigned long ra_val; 352 int win, hits; 353 354 ra_val = GET_SWAP_RA_VAL(vma); 355 win = SWAP_RA_WIN(ra_val); 356 hits = SWAP_RA_HITS(ra_val); 357 if (readahead) 358 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX); 359 atomic_long_set(&vma->swap_readahead_info, 360 SWAP_RA_VAL(addr, win, hits)); 361 } 362 363 if (readahead) { 364 count_vm_event(SWAP_RA_HIT); 365 if (!vma || !vma_ra) 366 atomic_inc(&swapin_readahead_hits); 367 } 368 } else { 369 folio = NULL; 370 } 371 372 return folio; 373 } 374 375 /** 376 * filemap_get_incore_folio - Find and get a folio from the page or swap caches. 377 * @mapping: The address_space to search. 378 * @index: The page cache index. 379 * 380 * This differs from filemap_get_folio() in that it will also look for the 381 * folio in the swap cache. 382 * 383 * Return: The found folio or %NULL. 384 */ 385 struct folio *filemap_get_incore_folio(struct address_space *mapping, 386 pgoff_t index) 387 { 388 swp_entry_t swp; 389 struct swap_info_struct *si; 390 struct folio *folio = filemap_get_entry(mapping, index); 391 392 if (!folio) 393 return ERR_PTR(-ENOENT); 394 if (!xa_is_value(folio)) 395 return folio; 396 if (!shmem_mapping(mapping)) 397 return ERR_PTR(-ENOENT); 398 399 swp = radix_to_swp_entry(folio); 400 /* There might be swapin error entries in shmem mapping. */ 401 if (non_swap_entry(swp)) 402 return ERR_PTR(-ENOENT); 403 /* Prevent swapoff from happening to us */ 404 si = get_swap_device(swp); 405 if (!si) 406 return ERR_PTR(-ENOENT); 407 index = swp_offset(swp); 408 folio = filemap_get_folio(swap_address_space(swp), index); 409 put_swap_device(si); 410 return folio; 411 } 412 413 struct folio *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 414 struct mempolicy *mpol, pgoff_t ilx, bool *new_page_allocated, 415 bool skip_if_exists) 416 { 417 struct swap_info_struct *si; 418 struct folio *folio; 419 void *shadow = NULL; 420 421 *new_page_allocated = false; 422 si = get_swap_device(entry); 423 if (!si) 424 return NULL; 425 426 for (;;) { 427 int err; 428 /* 429 * First check the swap cache. Since this is normally 430 * called after swap_cache_get_folio() failed, re-calling 431 * that would confuse statistics. 432 */ 433 folio = filemap_get_folio(swap_address_space(entry), 434 swp_offset(entry)); 435 if (!IS_ERR(folio)) 436 goto got_folio; 437 438 /* 439 * Just skip read ahead for unused swap slot. 440 * During swap_off when swap_slot_cache is disabled, 441 * we have to handle the race between putting 442 * swap entry in swap cache and marking swap slot 443 * as SWAP_HAS_CACHE. That's done in later part of code or 444 * else swap_off will be aborted if we return NULL. 445 */ 446 if (!swap_swapcount(si, entry) && swap_slot_cache_enabled) 447 goto fail_put_swap; 448 449 /* 450 * Get a new folio to read into from swap. Allocate it now, 451 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will 452 * cause any racers to loop around until we add it to cache. 453 */ 454 folio = (struct folio *)alloc_pages_mpol(gfp_mask, 0, 455 mpol, ilx, numa_node_id()); 456 if (!folio) 457 goto fail_put_swap; 458 459 /* 460 * Swap entry may have been freed since our caller observed it. 461 */ 462 err = swapcache_prepare(entry); 463 if (!err) 464 break; 465 466 folio_put(folio); 467 if (err != -EEXIST) 468 goto fail_put_swap; 469 470 /* 471 * Protect against a recursive call to __read_swap_cache_async() 472 * on the same entry waiting forever here because SWAP_HAS_CACHE 473 * is set but the folio is not the swap cache yet. This can 474 * happen today if mem_cgroup_swapin_charge_folio() below 475 * triggers reclaim through zswap, which may call 476 * __read_swap_cache_async() in the writeback path. 477 */ 478 if (skip_if_exists) 479 goto fail_put_swap; 480 481 /* 482 * We might race against __delete_from_swap_cache(), and 483 * stumble across a swap_map entry whose SWAP_HAS_CACHE 484 * has not yet been cleared. Or race against another 485 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE 486 * in swap_map, but not yet added its folio to swap cache. 487 */ 488 schedule_timeout_uninterruptible(1); 489 } 490 491 /* 492 * The swap entry is ours to swap in. Prepare the new folio. 493 */ 494 495 __folio_set_locked(folio); 496 __folio_set_swapbacked(folio); 497 498 if (mem_cgroup_swapin_charge_folio(folio, NULL, gfp_mask, entry)) 499 goto fail_unlock; 500 501 /* May fail (-ENOMEM) if XArray node allocation failed. */ 502 if (add_to_swap_cache(folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow)) 503 goto fail_unlock; 504 505 mem_cgroup_swapin_uncharge_swap(entry); 506 507 if (shadow) 508 workingset_refault(folio, shadow); 509 510 /* Caller will initiate read into locked folio */ 511 folio_add_lru(folio); 512 *new_page_allocated = true; 513 got_folio: 514 put_swap_device(si); 515 return folio; 516 517 fail_unlock: 518 put_swap_folio(folio, entry); 519 folio_unlock(folio); 520 folio_put(folio); 521 fail_put_swap: 522 put_swap_device(si); 523 return NULL; 524 } 525 526 /* 527 * Locate a page of swap in physical memory, reserving swap cache space 528 * and reading the disk if it is not already cached. 529 * A failure return means that either the page allocation failed or that 530 * the swap entry is no longer in use. 531 * 532 * get/put_swap_device() aren't needed to call this function, because 533 * __read_swap_cache_async() call them and swap_read_folio() holds the 534 * swap cache folio lock. 535 */ 536 struct folio *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 537 struct vm_area_struct *vma, unsigned long addr, 538 struct swap_iocb **plug) 539 { 540 bool page_allocated; 541 struct mempolicy *mpol; 542 pgoff_t ilx; 543 struct folio *folio; 544 545 mpol = get_vma_policy(vma, addr, 0, &ilx); 546 folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx, 547 &page_allocated, false); 548 mpol_cond_put(mpol); 549 550 if (page_allocated) 551 swap_read_folio(folio, false, plug); 552 return folio; 553 } 554 555 static unsigned int __swapin_nr_pages(unsigned long prev_offset, 556 unsigned long offset, 557 int hits, 558 int max_pages, 559 int prev_win) 560 { 561 unsigned int pages, last_ra; 562 563 /* 564 * This heuristic has been found to work well on both sequential and 565 * random loads, swapping to hard disk or to SSD: please don't ask 566 * what the "+ 2" means, it just happens to work well, that's all. 567 */ 568 pages = hits + 2; 569 if (pages == 2) { 570 /* 571 * We can have no readahead hits to judge by: but must not get 572 * stuck here forever, so check for an adjacent offset instead 573 * (and don't even bother to check whether swap type is same). 574 */ 575 if (offset != prev_offset + 1 && offset != prev_offset - 1) 576 pages = 1; 577 } else { 578 unsigned int roundup = 4; 579 while (roundup < pages) 580 roundup <<= 1; 581 pages = roundup; 582 } 583 584 if (pages > max_pages) 585 pages = max_pages; 586 587 /* Don't shrink readahead too fast */ 588 last_ra = prev_win / 2; 589 if (pages < last_ra) 590 pages = last_ra; 591 592 return pages; 593 } 594 595 static unsigned long swapin_nr_pages(unsigned long offset) 596 { 597 static unsigned long prev_offset; 598 unsigned int hits, pages, max_pages; 599 static atomic_t last_readahead_pages; 600 601 max_pages = 1 << READ_ONCE(page_cluster); 602 if (max_pages <= 1) 603 return 1; 604 605 hits = atomic_xchg(&swapin_readahead_hits, 0); 606 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits, 607 max_pages, 608 atomic_read(&last_readahead_pages)); 609 if (!hits) 610 WRITE_ONCE(prev_offset, offset); 611 atomic_set(&last_readahead_pages, pages); 612 613 return pages; 614 } 615 616 /** 617 * swap_cluster_readahead - swap in pages in hope we need them soon 618 * @entry: swap entry of this memory 619 * @gfp_mask: memory allocation flags 620 * @mpol: NUMA memory allocation policy to be applied 621 * @ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE 622 * 623 * Returns the struct folio for entry and addr, after queueing swapin. 624 * 625 * Primitive swap readahead code. We simply read an aligned block of 626 * (1 << page_cluster) entries in the swap area. This method is chosen 627 * because it doesn't cost us any seek time. We also make sure to queue 628 * the 'original' request together with the readahead ones... 629 * 630 * Note: it is intentional that the same NUMA policy and interleave index 631 * are used for every page of the readahead: neighbouring pages on swap 632 * are fairly likely to have been swapped out from the same node. 633 */ 634 struct folio *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, 635 struct mempolicy *mpol, pgoff_t ilx) 636 { 637 struct folio *folio; 638 unsigned long entry_offset = swp_offset(entry); 639 unsigned long offset = entry_offset; 640 unsigned long start_offset, end_offset; 641 unsigned long mask; 642 struct swap_info_struct *si = swp_swap_info(entry); 643 struct blk_plug plug; 644 struct swap_iocb *splug = NULL; 645 bool page_allocated; 646 647 mask = swapin_nr_pages(offset) - 1; 648 if (!mask) 649 goto skip; 650 651 /* Read a page_cluster sized and aligned cluster around offset. */ 652 start_offset = offset & ~mask; 653 end_offset = offset | mask; 654 if (!start_offset) /* First page is swap header. */ 655 start_offset++; 656 if (end_offset >= si->max) 657 end_offset = si->max - 1; 658 659 blk_start_plug(&plug); 660 for (offset = start_offset; offset <= end_offset ; offset++) { 661 /* Ok, do the async read-ahead now */ 662 folio = __read_swap_cache_async( 663 swp_entry(swp_type(entry), offset), 664 gfp_mask, mpol, ilx, &page_allocated, false); 665 if (!folio) 666 continue; 667 if (page_allocated) { 668 swap_read_folio(folio, false, &splug); 669 if (offset != entry_offset) { 670 folio_set_readahead(folio); 671 count_vm_event(SWAP_RA); 672 } 673 } 674 folio_put(folio); 675 } 676 blk_finish_plug(&plug); 677 swap_read_unplug(splug); 678 lru_add_drain(); /* Push any new pages onto the LRU now */ 679 skip: 680 /* The page was likely read above, so no need for plugging here */ 681 folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx, 682 &page_allocated, false); 683 if (unlikely(page_allocated)) { 684 zswap_folio_swapin(folio); 685 swap_read_folio(folio, false, NULL); 686 } 687 return folio; 688 } 689 690 int init_swap_address_space(unsigned int type, unsigned long nr_pages) 691 { 692 struct address_space *spaces, *space; 693 unsigned int i, nr; 694 695 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); 696 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL); 697 if (!spaces) 698 return -ENOMEM; 699 for (i = 0; i < nr; i++) { 700 space = spaces + i; 701 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ); 702 atomic_set(&space->i_mmap_writable, 0); 703 space->a_ops = &swap_aops; 704 /* swap cache doesn't use writeback related tags */ 705 mapping_set_no_writeback_tags(space); 706 } 707 nr_swapper_spaces[type] = nr; 708 swapper_spaces[type] = spaces; 709 710 return 0; 711 } 712 713 void exit_swap_address_space(unsigned int type) 714 { 715 int i; 716 struct address_space *spaces = swapper_spaces[type]; 717 718 for (i = 0; i < nr_swapper_spaces[type]; i++) 719 VM_WARN_ON_ONCE(!mapping_empty(&spaces[i])); 720 kvfree(spaces); 721 nr_swapper_spaces[type] = 0; 722 swapper_spaces[type] = NULL; 723 } 724 725 #define SWAP_RA_ORDER_CEILING 5 726 727 struct vma_swap_readahead { 728 unsigned short win; 729 unsigned short offset; 730 unsigned short nr_pte; 731 }; 732 733 static void swap_ra_info(struct vm_fault *vmf, 734 struct vma_swap_readahead *ra_info) 735 { 736 struct vm_area_struct *vma = vmf->vma; 737 unsigned long ra_val; 738 unsigned long faddr, pfn, fpfn, lpfn, rpfn; 739 unsigned long start, end; 740 unsigned int max_win, hits, prev_win, win; 741 742 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster), 743 SWAP_RA_ORDER_CEILING); 744 if (max_win == 1) { 745 ra_info->win = 1; 746 return; 747 } 748 749 faddr = vmf->address; 750 fpfn = PFN_DOWN(faddr); 751 ra_val = GET_SWAP_RA_VAL(vma); 752 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val)); 753 prev_win = SWAP_RA_WIN(ra_val); 754 hits = SWAP_RA_HITS(ra_val); 755 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits, 756 max_win, prev_win); 757 atomic_long_set(&vma->swap_readahead_info, 758 SWAP_RA_VAL(faddr, win, 0)); 759 if (win == 1) 760 return; 761 762 if (fpfn == pfn + 1) { 763 lpfn = fpfn; 764 rpfn = fpfn + win; 765 } else if (pfn == fpfn + 1) { 766 lpfn = fpfn - win + 1; 767 rpfn = fpfn + 1; 768 } else { 769 unsigned int left = (win - 1) / 2; 770 771 lpfn = fpfn - left; 772 rpfn = fpfn + win - left; 773 } 774 start = max3(lpfn, PFN_DOWN(vma->vm_start), 775 PFN_DOWN(faddr & PMD_MASK)); 776 end = min3(rpfn, PFN_DOWN(vma->vm_end), 777 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE)); 778 779 ra_info->nr_pte = end - start; 780 ra_info->offset = fpfn - start; 781 } 782 783 /** 784 * swap_vma_readahead - swap in pages in hope we need them soon 785 * @targ_entry: swap entry of the targeted memory 786 * @gfp_mask: memory allocation flags 787 * @mpol: NUMA memory allocation policy to be applied 788 * @targ_ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE 789 * @vmf: fault information 790 * 791 * Returns the struct folio for entry and addr, after queueing swapin. 792 * 793 * Primitive swap readahead code. We simply read in a few pages whose 794 * virtual addresses are around the fault address in the same vma. 795 * 796 * Caller must hold read mmap_lock if vmf->vma is not NULL. 797 * 798 */ 799 static struct folio *swap_vma_readahead(swp_entry_t targ_entry, gfp_t gfp_mask, 800 struct mempolicy *mpol, pgoff_t targ_ilx, struct vm_fault *vmf) 801 { 802 struct blk_plug plug; 803 struct swap_iocb *splug = NULL; 804 struct folio *folio; 805 pte_t *pte = NULL, pentry; 806 unsigned long addr; 807 swp_entry_t entry; 808 pgoff_t ilx; 809 unsigned int i; 810 bool page_allocated; 811 struct vma_swap_readahead ra_info = { 812 .win = 1, 813 }; 814 815 swap_ra_info(vmf, &ra_info); 816 if (ra_info.win == 1) 817 goto skip; 818 819 addr = vmf->address - (ra_info.offset * PAGE_SIZE); 820 ilx = targ_ilx - ra_info.offset; 821 822 blk_start_plug(&plug); 823 for (i = 0; i < ra_info.nr_pte; i++, ilx++, addr += PAGE_SIZE) { 824 if (!pte++) { 825 pte = pte_offset_map(vmf->pmd, addr); 826 if (!pte) 827 break; 828 } 829 pentry = ptep_get_lockless(pte); 830 if (!is_swap_pte(pentry)) 831 continue; 832 entry = pte_to_swp_entry(pentry); 833 if (unlikely(non_swap_entry(entry))) 834 continue; 835 pte_unmap(pte); 836 pte = NULL; 837 folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx, 838 &page_allocated, false); 839 if (!folio) 840 continue; 841 if (page_allocated) { 842 swap_read_folio(folio, false, &splug); 843 if (i != ra_info.offset) { 844 folio_set_readahead(folio); 845 count_vm_event(SWAP_RA); 846 } 847 } 848 folio_put(folio); 849 } 850 if (pte) 851 pte_unmap(pte); 852 blk_finish_plug(&plug); 853 swap_read_unplug(splug); 854 lru_add_drain(); 855 skip: 856 /* The folio was likely read above, so no need for plugging here */ 857 folio = __read_swap_cache_async(targ_entry, gfp_mask, mpol, targ_ilx, 858 &page_allocated, false); 859 if (unlikely(page_allocated)) { 860 zswap_folio_swapin(folio); 861 swap_read_folio(folio, false, NULL); 862 } 863 return folio; 864 } 865 866 /** 867 * swapin_readahead - swap in pages in hope we need them soon 868 * @entry: swap entry of this memory 869 * @gfp_mask: memory allocation flags 870 * @vmf: fault information 871 * 872 * Returns the struct page for entry and addr, after queueing swapin. 873 * 874 * It's a main entry function for swap readahead. By the configuration, 875 * it will read ahead blocks by cluster-based(ie, physical disk based) 876 * or vma-based(ie, virtual address based on faulty address) readahead. 877 */ 878 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, 879 struct vm_fault *vmf) 880 { 881 struct mempolicy *mpol; 882 pgoff_t ilx; 883 struct folio *folio; 884 885 mpol = get_vma_policy(vmf->vma, vmf->address, 0, &ilx); 886 folio = swap_use_vma_readahead() ? 887 swap_vma_readahead(entry, gfp_mask, mpol, ilx, vmf) : 888 swap_cluster_readahead(entry, gfp_mask, mpol, ilx); 889 mpol_cond_put(mpol); 890 891 if (!folio) 892 return NULL; 893 return folio_file_page(folio, swp_offset(entry)); 894 } 895 896 #ifdef CONFIG_SYSFS 897 static ssize_t vma_ra_enabled_show(struct kobject *kobj, 898 struct kobj_attribute *attr, char *buf) 899 { 900 return sysfs_emit(buf, "%s\n", 901 enable_vma_readahead ? "true" : "false"); 902 } 903 static ssize_t vma_ra_enabled_store(struct kobject *kobj, 904 struct kobj_attribute *attr, 905 const char *buf, size_t count) 906 { 907 ssize_t ret; 908 909 ret = kstrtobool(buf, &enable_vma_readahead); 910 if (ret) 911 return ret; 912 913 return count; 914 } 915 static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled); 916 917 static struct attribute *swap_attrs[] = { 918 &vma_ra_enabled_attr.attr, 919 NULL, 920 }; 921 922 static const struct attribute_group swap_attr_group = { 923 .attrs = swap_attrs, 924 }; 925 926 static int __init swap_init_sysfs(void) 927 { 928 int err; 929 struct kobject *swap_kobj; 930 931 swap_kobj = kobject_create_and_add("swap", mm_kobj); 932 if (!swap_kobj) { 933 pr_err("failed to create swap kobject\n"); 934 return -ENOMEM; 935 } 936 err = sysfs_create_group(swap_kobj, &swap_attr_group); 937 if (err) { 938 pr_err("failed to register swap group\n"); 939 goto delete_obj; 940 } 941 return 0; 942 943 delete_obj: 944 kobject_put(swap_kobj); 945 return err; 946 } 947 subsys_initcall(swap_init_sysfs); 948 #endif 949