xref: /linux/mm/swap_state.c (revision b05f8d7e077952d14acb63e3ccdf5f64404b59a4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/swap_state.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  *
8  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
9  */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/mempolicy.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/init.h>
17 #include <linux/pagemap.h>
18 #include <linux/pagevec.h>
19 #include <linux/backing-dev.h>
20 #include <linux/blkdev.h>
21 #include <linux/migrate.h>
22 #include <linux/vmalloc.h>
23 #include <linux/huge_mm.h>
24 #include <linux/shmem_fs.h>
25 #include "internal.h"
26 #include "swap.h"
27 
28 /*
29  * swapper_space is a fiction, retained to simplify the path through
30  * vmscan's shrink_folio_list.
31  */
32 static const struct address_space_operations swap_aops = {
33 	.writepage	= swap_writepage,
34 	.dirty_folio	= noop_dirty_folio,
35 #ifdef CONFIG_MIGRATION
36 	.migrate_folio	= migrate_folio,
37 #endif
38 };
39 
40 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
41 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
42 static bool enable_vma_readahead __read_mostly = true;
43 
44 #define SWAP_RA_ORDER_CEILING	5
45 
46 #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
47 #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
48 #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
49 #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
50 
51 #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
52 #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
53 #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
54 
55 #define SWAP_RA_VAL(addr, win, hits)				\
56 	(((addr) & PAGE_MASK) |					\
57 	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
58 	 ((hits) & SWAP_RA_HITS_MASK))
59 
60 /* Initial readahead hits is 4 to start up with a small window */
61 #define GET_SWAP_RA_VAL(vma)					\
62 	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
63 
64 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
65 
66 void show_swap_cache_info(void)
67 {
68 	printk("%lu pages in swap cache\n", total_swapcache_pages());
69 	printk("Free swap  = %ldkB\n", K(get_nr_swap_pages()));
70 	printk("Total swap = %lukB\n", K(total_swap_pages));
71 }
72 
73 void *get_shadow_from_swap_cache(swp_entry_t entry)
74 {
75 	struct address_space *address_space = swap_address_space(entry);
76 	pgoff_t idx = swap_cache_index(entry);
77 	void *shadow;
78 
79 	shadow = xa_load(&address_space->i_pages, idx);
80 	if (xa_is_value(shadow))
81 		return shadow;
82 	return NULL;
83 }
84 
85 /*
86  * add_to_swap_cache resembles filemap_add_folio on swapper_space,
87  * but sets SwapCache flag and 'swap' instead of mapping and index.
88  */
89 int add_to_swap_cache(struct folio *folio, swp_entry_t entry,
90 			gfp_t gfp, void **shadowp)
91 {
92 	struct address_space *address_space = swap_address_space(entry);
93 	pgoff_t idx = swap_cache_index(entry);
94 	XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio));
95 	unsigned long i, nr = folio_nr_pages(folio);
96 	void *old;
97 
98 	xas_set_update(&xas, workingset_update_node);
99 
100 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
101 	VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
102 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
103 
104 	folio_ref_add(folio, nr);
105 	folio_set_swapcache(folio);
106 	folio->swap = entry;
107 
108 	do {
109 		xas_lock_irq(&xas);
110 		xas_create_range(&xas);
111 		if (xas_error(&xas))
112 			goto unlock;
113 		for (i = 0; i < nr; i++) {
114 			VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio);
115 			if (shadowp) {
116 				old = xas_load(&xas);
117 				if (xa_is_value(old))
118 					*shadowp = old;
119 			}
120 			xas_store(&xas, folio);
121 			xas_next(&xas);
122 		}
123 		address_space->nrpages += nr;
124 		__node_stat_mod_folio(folio, NR_FILE_PAGES, nr);
125 		__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr);
126 unlock:
127 		xas_unlock_irq(&xas);
128 	} while (xas_nomem(&xas, gfp));
129 
130 	if (!xas_error(&xas))
131 		return 0;
132 
133 	folio_clear_swapcache(folio);
134 	folio_ref_sub(folio, nr);
135 	return xas_error(&xas);
136 }
137 
138 /*
139  * This must be called only on folios that have
140  * been verified to be in the swap cache.
141  */
142 void __delete_from_swap_cache(struct folio *folio,
143 			swp_entry_t entry, void *shadow)
144 {
145 	struct address_space *address_space = swap_address_space(entry);
146 	int i;
147 	long nr = folio_nr_pages(folio);
148 	pgoff_t idx = swap_cache_index(entry);
149 	XA_STATE(xas, &address_space->i_pages, idx);
150 
151 	xas_set_update(&xas, workingset_update_node);
152 
153 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
154 	VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
155 	VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
156 
157 	for (i = 0; i < nr; i++) {
158 		void *entry = xas_store(&xas, shadow);
159 		VM_BUG_ON_PAGE(entry != folio, entry);
160 		xas_next(&xas);
161 	}
162 	folio->swap.val = 0;
163 	folio_clear_swapcache(folio);
164 	address_space->nrpages -= nr;
165 	__node_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
166 	__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr);
167 }
168 
169 /*
170  * This must be called only on folios that have
171  * been verified to be in the swap cache and locked.
172  * It will never put the folio into the free list,
173  * the caller has a reference on the folio.
174  */
175 void delete_from_swap_cache(struct folio *folio)
176 {
177 	swp_entry_t entry = folio->swap;
178 	struct address_space *address_space = swap_address_space(entry);
179 
180 	xa_lock_irq(&address_space->i_pages);
181 	__delete_from_swap_cache(folio, entry, NULL);
182 	xa_unlock_irq(&address_space->i_pages);
183 
184 	put_swap_folio(folio, entry);
185 	folio_ref_sub(folio, folio_nr_pages(folio));
186 }
187 
188 void clear_shadow_from_swap_cache(int type, unsigned long begin,
189 				unsigned long end)
190 {
191 	unsigned long curr = begin;
192 	void *old;
193 
194 	for (;;) {
195 		swp_entry_t entry = swp_entry(type, curr);
196 		unsigned long index = curr & SWAP_ADDRESS_SPACE_MASK;
197 		struct address_space *address_space = swap_address_space(entry);
198 		XA_STATE(xas, &address_space->i_pages, index);
199 
200 		xas_set_update(&xas, workingset_update_node);
201 
202 		xa_lock_irq(&address_space->i_pages);
203 		xas_for_each(&xas, old, min(index + (end - curr), SWAP_ADDRESS_SPACE_PAGES)) {
204 			if (!xa_is_value(old))
205 				continue;
206 			xas_store(&xas, NULL);
207 		}
208 		xa_unlock_irq(&address_space->i_pages);
209 
210 		/* search the next swapcache until we meet end */
211 		curr = ALIGN((curr + 1), SWAP_ADDRESS_SPACE_PAGES);
212 		if (curr > end)
213 			break;
214 	}
215 }
216 
217 /*
218  * If we are the only user, then try to free up the swap cache.
219  *
220  * Its ok to check the swapcache flag without the folio lock
221  * here because we are going to recheck again inside
222  * folio_free_swap() _with_ the lock.
223  * 					- Marcelo
224  */
225 void free_swap_cache(struct folio *folio)
226 {
227 	if (folio_test_swapcache(folio) && !folio_mapped(folio) &&
228 	    folio_trylock(folio)) {
229 		folio_free_swap(folio);
230 		folio_unlock(folio);
231 	}
232 }
233 
234 /*
235  * Freeing a folio and also freeing any swap cache associated with
236  * this folio if it is the last user.
237  */
238 void free_folio_and_swap_cache(struct folio *folio)
239 {
240 	free_swap_cache(folio);
241 	if (!is_huge_zero_folio(folio))
242 		folio_put(folio);
243 }
244 
245 /*
246  * Passed an array of pages, drop them all from swapcache and then release
247  * them.  They are removed from the LRU and freed if this is their last use.
248  */
249 void free_pages_and_swap_cache(struct encoded_page **pages, int nr)
250 {
251 	struct folio_batch folios;
252 	unsigned int refs[PAGEVEC_SIZE];
253 
254 	folio_batch_init(&folios);
255 	for (int i = 0; i < nr; i++) {
256 		struct folio *folio = page_folio(encoded_page_ptr(pages[i]));
257 
258 		free_swap_cache(folio);
259 		refs[folios.nr] = 1;
260 		if (unlikely(encoded_page_flags(pages[i]) &
261 			     ENCODED_PAGE_BIT_NR_PAGES_NEXT))
262 			refs[folios.nr] = encoded_nr_pages(pages[++i]);
263 
264 		if (folio_batch_add(&folios, folio) == 0)
265 			folios_put_refs(&folios, refs);
266 	}
267 	if (folios.nr)
268 		folios_put_refs(&folios, refs);
269 }
270 
271 static inline bool swap_use_vma_readahead(void)
272 {
273 	return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
274 }
275 
276 /*
277  * Lookup a swap entry in the swap cache. A found folio will be returned
278  * unlocked and with its refcount incremented - we rely on the kernel
279  * lock getting page table operations atomic even if we drop the folio
280  * lock before returning.
281  *
282  * Caller must lock the swap device or hold a reference to keep it valid.
283  */
284 struct folio *swap_cache_get_folio(swp_entry_t entry,
285 		struct vm_area_struct *vma, unsigned long addr)
286 {
287 	struct folio *folio;
288 
289 	folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry));
290 	if (!IS_ERR(folio)) {
291 		bool vma_ra = swap_use_vma_readahead();
292 		bool readahead;
293 
294 		/*
295 		 * At the moment, we don't support PG_readahead for anon THP
296 		 * so let's bail out rather than confusing the readahead stat.
297 		 */
298 		if (unlikely(folio_test_large(folio)))
299 			return folio;
300 
301 		readahead = folio_test_clear_readahead(folio);
302 		if (vma && vma_ra) {
303 			unsigned long ra_val;
304 			int win, hits;
305 
306 			ra_val = GET_SWAP_RA_VAL(vma);
307 			win = SWAP_RA_WIN(ra_val);
308 			hits = SWAP_RA_HITS(ra_val);
309 			if (readahead)
310 				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
311 			atomic_long_set(&vma->swap_readahead_info,
312 					SWAP_RA_VAL(addr, win, hits));
313 		}
314 
315 		if (readahead) {
316 			count_vm_event(SWAP_RA_HIT);
317 			if (!vma || !vma_ra)
318 				atomic_inc(&swapin_readahead_hits);
319 		}
320 	} else {
321 		folio = NULL;
322 	}
323 
324 	return folio;
325 }
326 
327 /**
328  * filemap_get_incore_folio - Find and get a folio from the page or swap caches.
329  * @mapping: The address_space to search.
330  * @index: The page cache index.
331  *
332  * This differs from filemap_get_folio() in that it will also look for the
333  * folio in the swap cache.
334  *
335  * Return: The found folio or %NULL.
336  */
337 struct folio *filemap_get_incore_folio(struct address_space *mapping,
338 		pgoff_t index)
339 {
340 	swp_entry_t swp;
341 	struct swap_info_struct *si;
342 	struct folio *folio = filemap_get_entry(mapping, index);
343 
344 	if (!folio)
345 		return ERR_PTR(-ENOENT);
346 	if (!xa_is_value(folio))
347 		return folio;
348 	if (!shmem_mapping(mapping))
349 		return ERR_PTR(-ENOENT);
350 
351 	swp = radix_to_swp_entry(folio);
352 	/* There might be swapin error entries in shmem mapping. */
353 	if (non_swap_entry(swp))
354 		return ERR_PTR(-ENOENT);
355 	/* Prevent swapoff from happening to us */
356 	si = get_swap_device(swp);
357 	if (!si)
358 		return ERR_PTR(-ENOENT);
359 	index = swap_cache_index(swp);
360 	folio = filemap_get_folio(swap_address_space(swp), index);
361 	put_swap_device(si);
362 	return folio;
363 }
364 
365 struct folio *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
366 		struct mempolicy *mpol, pgoff_t ilx, bool *new_page_allocated,
367 		bool skip_if_exists)
368 {
369 	struct swap_info_struct *si = swp_swap_info(entry);
370 	struct folio *folio;
371 	struct folio *new_folio = NULL;
372 	struct folio *result = NULL;
373 	void *shadow = NULL;
374 
375 	*new_page_allocated = false;
376 	for (;;) {
377 		int err;
378 		/*
379 		 * First check the swap cache.  Since this is normally
380 		 * called after swap_cache_get_folio() failed, re-calling
381 		 * that would confuse statistics.
382 		 */
383 		folio = filemap_get_folio(swap_address_space(entry),
384 					  swap_cache_index(entry));
385 		if (!IS_ERR(folio))
386 			goto got_folio;
387 
388 		/*
389 		 * Just skip read ahead for unused swap slot.
390 		 */
391 		if (!swap_entry_swapped(si, entry))
392 			goto put_and_return;
393 
394 		/*
395 		 * Get a new folio to read into from swap.  Allocate it now if
396 		 * new_folio not exist, before marking swap_map SWAP_HAS_CACHE,
397 		 * when -EEXIST will cause any racers to loop around until we
398 		 * add it to cache.
399 		 */
400 		if (!new_folio) {
401 			new_folio = folio_alloc_mpol(gfp_mask, 0, mpol, ilx, numa_node_id());
402 			if (!new_folio)
403 				goto put_and_return;
404 		}
405 
406 		/*
407 		 * Swap entry may have been freed since our caller observed it.
408 		 */
409 		err = swapcache_prepare(entry, 1);
410 		if (!err)
411 			break;
412 		else if (err != -EEXIST)
413 			goto put_and_return;
414 
415 		/*
416 		 * Protect against a recursive call to __read_swap_cache_async()
417 		 * on the same entry waiting forever here because SWAP_HAS_CACHE
418 		 * is set but the folio is not the swap cache yet. This can
419 		 * happen today if mem_cgroup_swapin_charge_folio() below
420 		 * triggers reclaim through zswap, which may call
421 		 * __read_swap_cache_async() in the writeback path.
422 		 */
423 		if (skip_if_exists)
424 			goto put_and_return;
425 
426 		/*
427 		 * We might race against __delete_from_swap_cache(), and
428 		 * stumble across a swap_map entry whose SWAP_HAS_CACHE
429 		 * has not yet been cleared.  Or race against another
430 		 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
431 		 * in swap_map, but not yet added its folio to swap cache.
432 		 */
433 		schedule_timeout_uninterruptible(1);
434 	}
435 
436 	/*
437 	 * The swap entry is ours to swap in. Prepare the new folio.
438 	 */
439 	__folio_set_locked(new_folio);
440 	__folio_set_swapbacked(new_folio);
441 
442 	if (mem_cgroup_swapin_charge_folio(new_folio, NULL, gfp_mask, entry))
443 		goto fail_unlock;
444 
445 	/* May fail (-ENOMEM) if XArray node allocation failed. */
446 	if (add_to_swap_cache(new_folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
447 		goto fail_unlock;
448 
449 	memcg1_swapin(entry, 1);
450 
451 	if (shadow)
452 		workingset_refault(new_folio, shadow);
453 
454 	/* Caller will initiate read into locked new_folio */
455 	folio_add_lru(new_folio);
456 	*new_page_allocated = true;
457 	folio = new_folio;
458 got_folio:
459 	result = folio;
460 	goto put_and_return;
461 
462 fail_unlock:
463 	put_swap_folio(new_folio, entry);
464 	folio_unlock(new_folio);
465 put_and_return:
466 	if (!(*new_page_allocated) && new_folio)
467 		folio_put(new_folio);
468 	return result;
469 }
470 
471 /*
472  * Locate a page of swap in physical memory, reserving swap cache space
473  * and reading the disk if it is not already cached.
474  * A failure return means that either the page allocation failed or that
475  * the swap entry is no longer in use.
476  *
477  * get/put_swap_device() aren't needed to call this function, because
478  * __read_swap_cache_async() call them and swap_read_folio() holds the
479  * swap cache folio lock.
480  */
481 struct folio *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
482 		struct vm_area_struct *vma, unsigned long addr,
483 		struct swap_iocb **plug)
484 {
485 	struct swap_info_struct *si;
486 	bool page_allocated;
487 	struct mempolicy *mpol;
488 	pgoff_t ilx;
489 	struct folio *folio;
490 
491 	si = get_swap_device(entry);
492 	if (!si)
493 		return NULL;
494 
495 	mpol = get_vma_policy(vma, addr, 0, &ilx);
496 	folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
497 					&page_allocated, false);
498 	mpol_cond_put(mpol);
499 
500 	if (page_allocated)
501 		swap_read_folio(folio, plug);
502 
503 	put_swap_device(si);
504 	return folio;
505 }
506 
507 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
508 				      unsigned long offset,
509 				      int hits,
510 				      int max_pages,
511 				      int prev_win)
512 {
513 	unsigned int pages, last_ra;
514 
515 	/*
516 	 * This heuristic has been found to work well on both sequential and
517 	 * random loads, swapping to hard disk or to SSD: please don't ask
518 	 * what the "+ 2" means, it just happens to work well, that's all.
519 	 */
520 	pages = hits + 2;
521 	if (pages == 2) {
522 		/*
523 		 * We can have no readahead hits to judge by: but must not get
524 		 * stuck here forever, so check for an adjacent offset instead
525 		 * (and don't even bother to check whether swap type is same).
526 		 */
527 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
528 			pages = 1;
529 	} else {
530 		unsigned int roundup = 4;
531 		while (roundup < pages)
532 			roundup <<= 1;
533 		pages = roundup;
534 	}
535 
536 	if (pages > max_pages)
537 		pages = max_pages;
538 
539 	/* Don't shrink readahead too fast */
540 	last_ra = prev_win / 2;
541 	if (pages < last_ra)
542 		pages = last_ra;
543 
544 	return pages;
545 }
546 
547 static unsigned long swapin_nr_pages(unsigned long offset)
548 {
549 	static unsigned long prev_offset;
550 	unsigned int hits, pages, max_pages;
551 	static atomic_t last_readahead_pages;
552 
553 	max_pages = 1 << READ_ONCE(page_cluster);
554 	if (max_pages <= 1)
555 		return 1;
556 
557 	hits = atomic_xchg(&swapin_readahead_hits, 0);
558 	pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
559 				  max_pages,
560 				  atomic_read(&last_readahead_pages));
561 	if (!hits)
562 		WRITE_ONCE(prev_offset, offset);
563 	atomic_set(&last_readahead_pages, pages);
564 
565 	return pages;
566 }
567 
568 /**
569  * swap_cluster_readahead - swap in pages in hope we need them soon
570  * @entry: swap entry of this memory
571  * @gfp_mask: memory allocation flags
572  * @mpol: NUMA memory allocation policy to be applied
573  * @ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
574  *
575  * Returns the struct folio for entry and addr, after queueing swapin.
576  *
577  * Primitive swap readahead code. We simply read an aligned block of
578  * (1 << page_cluster) entries in the swap area. This method is chosen
579  * because it doesn't cost us any seek time.  We also make sure to queue
580  * the 'original' request together with the readahead ones...
581  *
582  * Note: it is intentional that the same NUMA policy and interleave index
583  * are used for every page of the readahead: neighbouring pages on swap
584  * are fairly likely to have been swapped out from the same node.
585  */
586 struct folio *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
587 				    struct mempolicy *mpol, pgoff_t ilx)
588 {
589 	struct folio *folio;
590 	unsigned long entry_offset = swp_offset(entry);
591 	unsigned long offset = entry_offset;
592 	unsigned long start_offset, end_offset;
593 	unsigned long mask;
594 	struct swap_info_struct *si = swp_swap_info(entry);
595 	struct blk_plug plug;
596 	struct swap_iocb *splug = NULL;
597 	bool page_allocated;
598 
599 	mask = swapin_nr_pages(offset) - 1;
600 	if (!mask)
601 		goto skip;
602 
603 	/* Read a page_cluster sized and aligned cluster around offset. */
604 	start_offset = offset & ~mask;
605 	end_offset = offset | mask;
606 	if (!start_offset)	/* First page is swap header. */
607 		start_offset++;
608 	if (end_offset >= si->max)
609 		end_offset = si->max - 1;
610 
611 	blk_start_plug(&plug);
612 	for (offset = start_offset; offset <= end_offset ; offset++) {
613 		/* Ok, do the async read-ahead now */
614 		folio = __read_swap_cache_async(
615 				swp_entry(swp_type(entry), offset),
616 				gfp_mask, mpol, ilx, &page_allocated, false);
617 		if (!folio)
618 			continue;
619 		if (page_allocated) {
620 			swap_read_folio(folio, &splug);
621 			if (offset != entry_offset) {
622 				folio_set_readahead(folio);
623 				count_vm_event(SWAP_RA);
624 			}
625 		}
626 		folio_put(folio);
627 	}
628 	blk_finish_plug(&plug);
629 	swap_read_unplug(splug);
630 	lru_add_drain();	/* Push any new pages onto the LRU now */
631 skip:
632 	/* The page was likely read above, so no need for plugging here */
633 	folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
634 					&page_allocated, false);
635 	if (unlikely(page_allocated))
636 		swap_read_folio(folio, NULL);
637 	return folio;
638 }
639 
640 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
641 {
642 	struct address_space *spaces, *space;
643 	unsigned int i, nr;
644 
645 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
646 	spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
647 	if (!spaces)
648 		return -ENOMEM;
649 	for (i = 0; i < nr; i++) {
650 		space = spaces + i;
651 		xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
652 		atomic_set(&space->i_mmap_writable, 0);
653 		space->a_ops = &swap_aops;
654 		/* swap cache doesn't use writeback related tags */
655 		mapping_set_no_writeback_tags(space);
656 	}
657 	nr_swapper_spaces[type] = nr;
658 	swapper_spaces[type] = spaces;
659 
660 	return 0;
661 }
662 
663 void exit_swap_address_space(unsigned int type)
664 {
665 	int i;
666 	struct address_space *spaces = swapper_spaces[type];
667 
668 	for (i = 0; i < nr_swapper_spaces[type]; i++)
669 		VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
670 	kvfree(spaces);
671 	nr_swapper_spaces[type] = 0;
672 	swapper_spaces[type] = NULL;
673 }
674 
675 static int swap_vma_ra_win(struct vm_fault *vmf, unsigned long *start,
676 			   unsigned long *end)
677 {
678 	struct vm_area_struct *vma = vmf->vma;
679 	unsigned long ra_val;
680 	unsigned long faddr, prev_faddr, left, right;
681 	unsigned int max_win, hits, prev_win, win;
682 
683 	max_win = 1 << min(READ_ONCE(page_cluster), SWAP_RA_ORDER_CEILING);
684 	if (max_win == 1)
685 		return 1;
686 
687 	faddr = vmf->address;
688 	ra_val = GET_SWAP_RA_VAL(vma);
689 	prev_faddr = SWAP_RA_ADDR(ra_val);
690 	prev_win = SWAP_RA_WIN(ra_val);
691 	hits = SWAP_RA_HITS(ra_val);
692 	win = __swapin_nr_pages(PFN_DOWN(prev_faddr), PFN_DOWN(faddr), hits,
693 				max_win, prev_win);
694 	atomic_long_set(&vma->swap_readahead_info, SWAP_RA_VAL(faddr, win, 0));
695 	if (win == 1)
696 		return 1;
697 
698 	if (faddr == prev_faddr + PAGE_SIZE)
699 		left = faddr;
700 	else if (prev_faddr == faddr + PAGE_SIZE)
701 		left = faddr - (win << PAGE_SHIFT) + PAGE_SIZE;
702 	else
703 		left = faddr - (((win - 1) / 2) << PAGE_SHIFT);
704 	right = left + (win << PAGE_SHIFT);
705 	if ((long)left < 0)
706 		left = 0;
707 	*start = max3(left, vma->vm_start, faddr & PMD_MASK);
708 	*end = min3(right, vma->vm_end, (faddr & PMD_MASK) + PMD_SIZE);
709 
710 	return win;
711 }
712 
713 /**
714  * swap_vma_readahead - swap in pages in hope we need them soon
715  * @targ_entry: swap entry of the targeted memory
716  * @gfp_mask: memory allocation flags
717  * @mpol: NUMA memory allocation policy to be applied
718  * @targ_ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
719  * @vmf: fault information
720  *
721  * Returns the struct folio for entry and addr, after queueing swapin.
722  *
723  * Primitive swap readahead code. We simply read in a few pages whose
724  * virtual addresses are around the fault address in the same vma.
725  *
726  * Caller must hold read mmap_lock if vmf->vma is not NULL.
727  *
728  */
729 static struct folio *swap_vma_readahead(swp_entry_t targ_entry, gfp_t gfp_mask,
730 		struct mempolicy *mpol, pgoff_t targ_ilx, struct vm_fault *vmf)
731 {
732 	struct blk_plug plug;
733 	struct swap_iocb *splug = NULL;
734 	struct folio *folio;
735 	pte_t *pte = NULL, pentry;
736 	int win;
737 	unsigned long start, end, addr;
738 	swp_entry_t entry;
739 	pgoff_t ilx;
740 	bool page_allocated;
741 
742 	win = swap_vma_ra_win(vmf, &start, &end);
743 	if (win == 1)
744 		goto skip;
745 
746 	ilx = targ_ilx - PFN_DOWN(vmf->address - start);
747 
748 	blk_start_plug(&plug);
749 	for (addr = start; addr < end; ilx++, addr += PAGE_SIZE) {
750 		if (!pte++) {
751 			pte = pte_offset_map(vmf->pmd, addr);
752 			if (!pte)
753 				break;
754 		}
755 		pentry = ptep_get_lockless(pte);
756 		if (!is_swap_pte(pentry))
757 			continue;
758 		entry = pte_to_swp_entry(pentry);
759 		if (unlikely(non_swap_entry(entry)))
760 			continue;
761 		pte_unmap(pte);
762 		pte = NULL;
763 		folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
764 						&page_allocated, false);
765 		if (!folio)
766 			continue;
767 		if (page_allocated) {
768 			swap_read_folio(folio, &splug);
769 			if (addr != vmf->address) {
770 				folio_set_readahead(folio);
771 				count_vm_event(SWAP_RA);
772 			}
773 		}
774 		folio_put(folio);
775 	}
776 	if (pte)
777 		pte_unmap(pte);
778 	blk_finish_plug(&plug);
779 	swap_read_unplug(splug);
780 	lru_add_drain();
781 skip:
782 	/* The folio was likely read above, so no need for plugging here */
783 	folio = __read_swap_cache_async(targ_entry, gfp_mask, mpol, targ_ilx,
784 					&page_allocated, false);
785 	if (unlikely(page_allocated))
786 		swap_read_folio(folio, NULL);
787 	return folio;
788 }
789 
790 /**
791  * swapin_readahead - swap in pages in hope we need them soon
792  * @entry: swap entry of this memory
793  * @gfp_mask: memory allocation flags
794  * @vmf: fault information
795  *
796  * Returns the struct folio for entry and addr, after queueing swapin.
797  *
798  * It's a main entry function for swap readahead. By the configuration,
799  * it will read ahead blocks by cluster-based(ie, physical disk based)
800  * or vma-based(ie, virtual address based on faulty address) readahead.
801  */
802 struct folio *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
803 				struct vm_fault *vmf)
804 {
805 	struct mempolicy *mpol;
806 	pgoff_t ilx;
807 	struct folio *folio;
808 
809 	mpol = get_vma_policy(vmf->vma, vmf->address, 0, &ilx);
810 	folio = swap_use_vma_readahead() ?
811 		swap_vma_readahead(entry, gfp_mask, mpol, ilx, vmf) :
812 		swap_cluster_readahead(entry, gfp_mask, mpol, ilx);
813 	mpol_cond_put(mpol);
814 
815 	return folio;
816 }
817 
818 #ifdef CONFIG_SYSFS
819 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
820 				     struct kobj_attribute *attr, char *buf)
821 {
822 	return sysfs_emit(buf, "%s\n", str_true_false(enable_vma_readahead));
823 }
824 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
825 				      struct kobj_attribute *attr,
826 				      const char *buf, size_t count)
827 {
828 	ssize_t ret;
829 
830 	ret = kstrtobool(buf, &enable_vma_readahead);
831 	if (ret)
832 		return ret;
833 
834 	return count;
835 }
836 static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
837 
838 static struct attribute *swap_attrs[] = {
839 	&vma_ra_enabled_attr.attr,
840 	NULL,
841 };
842 
843 static const struct attribute_group swap_attr_group = {
844 	.attrs = swap_attrs,
845 };
846 
847 static int __init swap_init_sysfs(void)
848 {
849 	int err;
850 	struct kobject *swap_kobj;
851 
852 	swap_kobj = kobject_create_and_add("swap", mm_kobj);
853 	if (!swap_kobj) {
854 		pr_err("failed to create swap kobject\n");
855 		return -ENOMEM;
856 	}
857 	err = sysfs_create_group(swap_kobj, &swap_attr_group);
858 	if (err) {
859 		pr_err("failed to register swap group\n");
860 		goto delete_obj;
861 	}
862 	return 0;
863 
864 delete_obj:
865 	kobject_put(swap_kobj);
866 	return err;
867 }
868 subsys_initcall(swap_init_sysfs);
869 #endif
870