1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/swap_state.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 * 8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie 9 */ 10 #include <linux/mm.h> 11 #include <linux/gfp.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/mempolicy.h> 14 #include <linux/swap.h> 15 #include <linux/swapops.h> 16 #include <linux/init.h> 17 #include <linux/pagemap.h> 18 #include <linux/pagevec.h> 19 #include <linux/backing-dev.h> 20 #include <linux/blkdev.h> 21 #include <linux/migrate.h> 22 #include <linux/vmalloc.h> 23 #include <linux/huge_mm.h> 24 #include <linux/shmem_fs.h> 25 #include "internal.h" 26 #include "swap.h" 27 28 /* 29 * swapper_space is a fiction, retained to simplify the path through 30 * vmscan's shrink_folio_list. 31 */ 32 static const struct address_space_operations swap_aops = { 33 .dirty_folio = noop_dirty_folio, 34 #ifdef CONFIG_MIGRATION 35 .migrate_folio = migrate_folio, 36 #endif 37 }; 38 39 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly; 40 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly; 41 static bool enable_vma_readahead __read_mostly = true; 42 43 #define SWAP_RA_ORDER_CEILING 5 44 45 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2) 46 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1) 47 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK 48 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK) 49 50 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK) 51 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT) 52 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK) 53 54 #define SWAP_RA_VAL(addr, win, hits) \ 55 (((addr) & PAGE_MASK) | \ 56 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \ 57 ((hits) & SWAP_RA_HITS_MASK)) 58 59 /* Initial readahead hits is 4 to start up with a small window */ 60 #define GET_SWAP_RA_VAL(vma) \ 61 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4) 62 63 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); 64 65 void show_swap_cache_info(void) 66 { 67 printk("%lu pages in swap cache\n", total_swapcache_pages()); 68 printk("Free swap = %ldkB\n", K(get_nr_swap_pages())); 69 printk("Total swap = %lukB\n", K(total_swap_pages)); 70 } 71 72 void *get_shadow_from_swap_cache(swp_entry_t entry) 73 { 74 struct address_space *address_space = swap_address_space(entry); 75 pgoff_t idx = swap_cache_index(entry); 76 void *shadow; 77 78 shadow = xa_load(&address_space->i_pages, idx); 79 if (xa_is_value(shadow)) 80 return shadow; 81 return NULL; 82 } 83 84 /* 85 * add_to_swap_cache resembles filemap_add_folio on swapper_space, 86 * but sets SwapCache flag and 'swap' instead of mapping and index. 87 */ 88 int add_to_swap_cache(struct folio *folio, swp_entry_t entry, 89 gfp_t gfp, void **shadowp) 90 { 91 struct address_space *address_space = swap_address_space(entry); 92 pgoff_t idx = swap_cache_index(entry); 93 XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio)); 94 unsigned long i, nr = folio_nr_pages(folio); 95 void *old; 96 97 xas_set_update(&xas, workingset_update_node); 98 99 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 100 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 101 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 102 103 folio_ref_add(folio, nr); 104 folio_set_swapcache(folio); 105 folio->swap = entry; 106 107 do { 108 xas_lock_irq(&xas); 109 xas_create_range(&xas); 110 if (xas_error(&xas)) 111 goto unlock; 112 for (i = 0; i < nr; i++) { 113 VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio); 114 if (shadowp) { 115 old = xas_load(&xas); 116 if (xa_is_value(old)) 117 *shadowp = old; 118 } 119 xas_store(&xas, folio); 120 xas_next(&xas); 121 } 122 address_space->nrpages += nr; 123 __node_stat_mod_folio(folio, NR_FILE_PAGES, nr); 124 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr); 125 unlock: 126 xas_unlock_irq(&xas); 127 } while (xas_nomem(&xas, gfp)); 128 129 if (!xas_error(&xas)) 130 return 0; 131 132 folio_clear_swapcache(folio); 133 folio_ref_sub(folio, nr); 134 return xas_error(&xas); 135 } 136 137 /* 138 * This must be called only on folios that have 139 * been verified to be in the swap cache. 140 */ 141 void __delete_from_swap_cache(struct folio *folio, 142 swp_entry_t entry, void *shadow) 143 { 144 struct address_space *address_space = swap_address_space(entry); 145 int i; 146 long nr = folio_nr_pages(folio); 147 pgoff_t idx = swap_cache_index(entry); 148 XA_STATE(xas, &address_space->i_pages, idx); 149 150 xas_set_update(&xas, workingset_update_node); 151 152 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 153 VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio); 154 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 155 156 for (i = 0; i < nr; i++) { 157 void *entry = xas_store(&xas, shadow); 158 VM_BUG_ON_PAGE(entry != folio, entry); 159 xas_next(&xas); 160 } 161 folio->swap.val = 0; 162 folio_clear_swapcache(folio); 163 address_space->nrpages -= nr; 164 __node_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 165 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr); 166 } 167 168 /* 169 * This must be called only on folios that have 170 * been verified to be in the swap cache and locked. 171 * It will never put the folio into the free list, 172 * the caller has a reference on the folio. 173 */ 174 void delete_from_swap_cache(struct folio *folio) 175 { 176 swp_entry_t entry = folio->swap; 177 struct address_space *address_space = swap_address_space(entry); 178 179 xa_lock_irq(&address_space->i_pages); 180 __delete_from_swap_cache(folio, entry, NULL); 181 xa_unlock_irq(&address_space->i_pages); 182 183 put_swap_folio(folio, entry); 184 folio_ref_sub(folio, folio_nr_pages(folio)); 185 } 186 187 void clear_shadow_from_swap_cache(int type, unsigned long begin, 188 unsigned long end) 189 { 190 unsigned long curr = begin; 191 void *old; 192 193 for (;;) { 194 swp_entry_t entry = swp_entry(type, curr); 195 unsigned long index = curr & SWAP_ADDRESS_SPACE_MASK; 196 struct address_space *address_space = swap_address_space(entry); 197 XA_STATE(xas, &address_space->i_pages, index); 198 199 xas_set_update(&xas, workingset_update_node); 200 201 xa_lock_irq(&address_space->i_pages); 202 xas_for_each(&xas, old, min(index + (end - curr), SWAP_ADDRESS_SPACE_PAGES)) { 203 if (!xa_is_value(old)) 204 continue; 205 xas_store(&xas, NULL); 206 } 207 xa_unlock_irq(&address_space->i_pages); 208 209 /* search the next swapcache until we meet end */ 210 curr = ALIGN((curr + 1), SWAP_ADDRESS_SPACE_PAGES); 211 if (curr > end) 212 break; 213 } 214 } 215 216 /* 217 * If we are the only user, then try to free up the swap cache. 218 * 219 * Its ok to check the swapcache flag without the folio lock 220 * here because we are going to recheck again inside 221 * folio_free_swap() _with_ the lock. 222 * - Marcelo 223 */ 224 void free_swap_cache(struct folio *folio) 225 { 226 if (folio_test_swapcache(folio) && !folio_mapped(folio) && 227 folio_trylock(folio)) { 228 folio_free_swap(folio); 229 folio_unlock(folio); 230 } 231 } 232 233 /* 234 * Freeing a folio and also freeing any swap cache associated with 235 * this folio if it is the last user. 236 */ 237 void free_folio_and_swap_cache(struct folio *folio) 238 { 239 free_swap_cache(folio); 240 if (!is_huge_zero_folio(folio)) 241 folio_put(folio); 242 } 243 244 /* 245 * Passed an array of pages, drop them all from swapcache and then release 246 * them. They are removed from the LRU and freed if this is their last use. 247 */ 248 void free_pages_and_swap_cache(struct encoded_page **pages, int nr) 249 { 250 struct folio_batch folios; 251 unsigned int refs[PAGEVEC_SIZE]; 252 253 folio_batch_init(&folios); 254 for (int i = 0; i < nr; i++) { 255 struct folio *folio = page_folio(encoded_page_ptr(pages[i])); 256 257 free_swap_cache(folio); 258 refs[folios.nr] = 1; 259 if (unlikely(encoded_page_flags(pages[i]) & 260 ENCODED_PAGE_BIT_NR_PAGES_NEXT)) 261 refs[folios.nr] = encoded_nr_pages(pages[++i]); 262 263 if (folio_batch_add(&folios, folio) == 0) 264 folios_put_refs(&folios, refs); 265 } 266 if (folios.nr) 267 folios_put_refs(&folios, refs); 268 } 269 270 static inline bool swap_use_vma_readahead(void) 271 { 272 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap); 273 } 274 275 /* 276 * Lookup a swap entry in the swap cache. A found folio will be returned 277 * unlocked and with its refcount incremented - we rely on the kernel 278 * lock getting page table operations atomic even if we drop the folio 279 * lock before returning. 280 * 281 * Caller must lock the swap device or hold a reference to keep it valid. 282 */ 283 struct folio *swap_cache_get_folio(swp_entry_t entry, 284 struct vm_area_struct *vma, unsigned long addr) 285 { 286 struct folio *folio; 287 288 folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry)); 289 if (!IS_ERR(folio)) { 290 bool vma_ra = swap_use_vma_readahead(); 291 bool readahead; 292 293 /* 294 * At the moment, we don't support PG_readahead for anon THP 295 * so let's bail out rather than confusing the readahead stat. 296 */ 297 if (unlikely(folio_test_large(folio))) 298 return folio; 299 300 readahead = folio_test_clear_readahead(folio); 301 if (vma && vma_ra) { 302 unsigned long ra_val; 303 int win, hits; 304 305 ra_val = GET_SWAP_RA_VAL(vma); 306 win = SWAP_RA_WIN(ra_val); 307 hits = SWAP_RA_HITS(ra_val); 308 if (readahead) 309 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX); 310 atomic_long_set(&vma->swap_readahead_info, 311 SWAP_RA_VAL(addr, win, hits)); 312 } 313 314 if (readahead) { 315 count_vm_event(SWAP_RA_HIT); 316 if (!vma || !vma_ra) 317 atomic_inc(&swapin_readahead_hits); 318 } 319 } else { 320 folio = NULL; 321 } 322 323 return folio; 324 } 325 326 struct folio *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 327 struct mempolicy *mpol, pgoff_t ilx, bool *new_page_allocated, 328 bool skip_if_exists) 329 { 330 struct swap_info_struct *si = swp_swap_info(entry); 331 struct folio *folio; 332 struct folio *new_folio = NULL; 333 struct folio *result = NULL; 334 void *shadow = NULL; 335 336 *new_page_allocated = false; 337 for (;;) { 338 int err; 339 /* 340 * First check the swap cache. Since this is normally 341 * called after swap_cache_get_folio() failed, re-calling 342 * that would confuse statistics. 343 */ 344 folio = filemap_get_folio(swap_address_space(entry), 345 swap_cache_index(entry)); 346 if (!IS_ERR(folio)) 347 goto got_folio; 348 349 /* 350 * Just skip read ahead for unused swap slot. 351 */ 352 if (!swap_entry_swapped(si, entry)) 353 goto put_and_return; 354 355 /* 356 * Get a new folio to read into from swap. Allocate it now if 357 * new_folio not exist, before marking swap_map SWAP_HAS_CACHE, 358 * when -EEXIST will cause any racers to loop around until we 359 * add it to cache. 360 */ 361 if (!new_folio) { 362 new_folio = folio_alloc_mpol(gfp_mask, 0, mpol, ilx, numa_node_id()); 363 if (!new_folio) 364 goto put_and_return; 365 } 366 367 /* 368 * Swap entry may have been freed since our caller observed it. 369 */ 370 err = swapcache_prepare(entry, 1); 371 if (!err) 372 break; 373 else if (err != -EEXIST) 374 goto put_and_return; 375 376 /* 377 * Protect against a recursive call to __read_swap_cache_async() 378 * on the same entry waiting forever here because SWAP_HAS_CACHE 379 * is set but the folio is not the swap cache yet. This can 380 * happen today if mem_cgroup_swapin_charge_folio() below 381 * triggers reclaim through zswap, which may call 382 * __read_swap_cache_async() in the writeback path. 383 */ 384 if (skip_if_exists) 385 goto put_and_return; 386 387 /* 388 * We might race against __delete_from_swap_cache(), and 389 * stumble across a swap_map entry whose SWAP_HAS_CACHE 390 * has not yet been cleared. Or race against another 391 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE 392 * in swap_map, but not yet added its folio to swap cache. 393 */ 394 schedule_timeout_uninterruptible(1); 395 } 396 397 /* 398 * The swap entry is ours to swap in. Prepare the new folio. 399 */ 400 __folio_set_locked(new_folio); 401 __folio_set_swapbacked(new_folio); 402 403 if (mem_cgroup_swapin_charge_folio(new_folio, NULL, gfp_mask, entry)) 404 goto fail_unlock; 405 406 /* May fail (-ENOMEM) if XArray node allocation failed. */ 407 if (add_to_swap_cache(new_folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow)) 408 goto fail_unlock; 409 410 memcg1_swapin(entry, 1); 411 412 if (shadow) 413 workingset_refault(new_folio, shadow); 414 415 /* Caller will initiate read into locked new_folio */ 416 folio_add_lru(new_folio); 417 *new_page_allocated = true; 418 folio = new_folio; 419 got_folio: 420 result = folio; 421 goto put_and_return; 422 423 fail_unlock: 424 put_swap_folio(new_folio, entry); 425 folio_unlock(new_folio); 426 put_and_return: 427 if (!(*new_page_allocated) && new_folio) 428 folio_put(new_folio); 429 return result; 430 } 431 432 /* 433 * Locate a page of swap in physical memory, reserving swap cache space 434 * and reading the disk if it is not already cached. 435 * A failure return means that either the page allocation failed or that 436 * the swap entry is no longer in use. 437 * 438 * get/put_swap_device() aren't needed to call this function, because 439 * __read_swap_cache_async() call them and swap_read_folio() holds the 440 * swap cache folio lock. 441 */ 442 struct folio *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 443 struct vm_area_struct *vma, unsigned long addr, 444 struct swap_iocb **plug) 445 { 446 struct swap_info_struct *si; 447 bool page_allocated; 448 struct mempolicy *mpol; 449 pgoff_t ilx; 450 struct folio *folio; 451 452 si = get_swap_device(entry); 453 if (!si) 454 return NULL; 455 456 mpol = get_vma_policy(vma, addr, 0, &ilx); 457 folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx, 458 &page_allocated, false); 459 mpol_cond_put(mpol); 460 461 if (page_allocated) 462 swap_read_folio(folio, plug); 463 464 put_swap_device(si); 465 return folio; 466 } 467 468 static unsigned int __swapin_nr_pages(unsigned long prev_offset, 469 unsigned long offset, 470 int hits, 471 int max_pages, 472 int prev_win) 473 { 474 unsigned int pages, last_ra; 475 476 /* 477 * This heuristic has been found to work well on both sequential and 478 * random loads, swapping to hard disk or to SSD: please don't ask 479 * what the "+ 2" means, it just happens to work well, that's all. 480 */ 481 pages = hits + 2; 482 if (pages == 2) { 483 /* 484 * We can have no readahead hits to judge by: but must not get 485 * stuck here forever, so check for an adjacent offset instead 486 * (and don't even bother to check whether swap type is same). 487 */ 488 if (offset != prev_offset + 1 && offset != prev_offset - 1) 489 pages = 1; 490 } else { 491 unsigned int roundup = 4; 492 while (roundup < pages) 493 roundup <<= 1; 494 pages = roundup; 495 } 496 497 if (pages > max_pages) 498 pages = max_pages; 499 500 /* Don't shrink readahead too fast */ 501 last_ra = prev_win / 2; 502 if (pages < last_ra) 503 pages = last_ra; 504 505 return pages; 506 } 507 508 static unsigned long swapin_nr_pages(unsigned long offset) 509 { 510 static unsigned long prev_offset; 511 unsigned int hits, pages, max_pages; 512 static atomic_t last_readahead_pages; 513 514 max_pages = 1 << READ_ONCE(page_cluster); 515 if (max_pages <= 1) 516 return 1; 517 518 hits = atomic_xchg(&swapin_readahead_hits, 0); 519 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits, 520 max_pages, 521 atomic_read(&last_readahead_pages)); 522 if (!hits) 523 WRITE_ONCE(prev_offset, offset); 524 atomic_set(&last_readahead_pages, pages); 525 526 return pages; 527 } 528 529 /** 530 * swap_cluster_readahead - swap in pages in hope we need them soon 531 * @entry: swap entry of this memory 532 * @gfp_mask: memory allocation flags 533 * @mpol: NUMA memory allocation policy to be applied 534 * @ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE 535 * 536 * Returns the struct folio for entry and addr, after queueing swapin. 537 * 538 * Primitive swap readahead code. We simply read an aligned block of 539 * (1 << page_cluster) entries in the swap area. This method is chosen 540 * because it doesn't cost us any seek time. We also make sure to queue 541 * the 'original' request together with the readahead ones... 542 * 543 * Note: it is intentional that the same NUMA policy and interleave index 544 * are used for every page of the readahead: neighbouring pages on swap 545 * are fairly likely to have been swapped out from the same node. 546 */ 547 struct folio *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, 548 struct mempolicy *mpol, pgoff_t ilx) 549 { 550 struct folio *folio; 551 unsigned long entry_offset = swp_offset(entry); 552 unsigned long offset = entry_offset; 553 unsigned long start_offset, end_offset; 554 unsigned long mask; 555 struct swap_info_struct *si = swp_swap_info(entry); 556 struct blk_plug plug; 557 struct swap_iocb *splug = NULL; 558 bool page_allocated; 559 560 mask = swapin_nr_pages(offset) - 1; 561 if (!mask) 562 goto skip; 563 564 /* Read a page_cluster sized and aligned cluster around offset. */ 565 start_offset = offset & ~mask; 566 end_offset = offset | mask; 567 if (!start_offset) /* First page is swap header. */ 568 start_offset++; 569 if (end_offset >= si->max) 570 end_offset = si->max - 1; 571 572 blk_start_plug(&plug); 573 for (offset = start_offset; offset <= end_offset ; offset++) { 574 /* Ok, do the async read-ahead now */ 575 folio = __read_swap_cache_async( 576 swp_entry(swp_type(entry), offset), 577 gfp_mask, mpol, ilx, &page_allocated, false); 578 if (!folio) 579 continue; 580 if (page_allocated) { 581 swap_read_folio(folio, &splug); 582 if (offset != entry_offset) { 583 folio_set_readahead(folio); 584 count_vm_event(SWAP_RA); 585 } 586 } 587 folio_put(folio); 588 } 589 blk_finish_plug(&plug); 590 swap_read_unplug(splug); 591 lru_add_drain(); /* Push any new pages onto the LRU now */ 592 skip: 593 /* The page was likely read above, so no need for plugging here */ 594 folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx, 595 &page_allocated, false); 596 if (unlikely(page_allocated)) 597 swap_read_folio(folio, NULL); 598 return folio; 599 } 600 601 int init_swap_address_space(unsigned int type, unsigned long nr_pages) 602 { 603 struct address_space *spaces, *space; 604 unsigned int i, nr; 605 606 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); 607 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL); 608 if (!spaces) 609 return -ENOMEM; 610 for (i = 0; i < nr; i++) { 611 space = spaces + i; 612 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ); 613 atomic_set(&space->i_mmap_writable, 0); 614 space->a_ops = &swap_aops; 615 /* swap cache doesn't use writeback related tags */ 616 mapping_set_no_writeback_tags(space); 617 } 618 nr_swapper_spaces[type] = nr; 619 swapper_spaces[type] = spaces; 620 621 return 0; 622 } 623 624 void exit_swap_address_space(unsigned int type) 625 { 626 int i; 627 struct address_space *spaces = swapper_spaces[type]; 628 629 for (i = 0; i < nr_swapper_spaces[type]; i++) 630 VM_WARN_ON_ONCE(!mapping_empty(&spaces[i])); 631 kvfree(spaces); 632 nr_swapper_spaces[type] = 0; 633 swapper_spaces[type] = NULL; 634 } 635 636 static int swap_vma_ra_win(struct vm_fault *vmf, unsigned long *start, 637 unsigned long *end) 638 { 639 struct vm_area_struct *vma = vmf->vma; 640 unsigned long ra_val; 641 unsigned long faddr, prev_faddr, left, right; 642 unsigned int max_win, hits, prev_win, win; 643 644 max_win = 1 << min(READ_ONCE(page_cluster), SWAP_RA_ORDER_CEILING); 645 if (max_win == 1) 646 return 1; 647 648 faddr = vmf->address; 649 ra_val = GET_SWAP_RA_VAL(vma); 650 prev_faddr = SWAP_RA_ADDR(ra_val); 651 prev_win = SWAP_RA_WIN(ra_val); 652 hits = SWAP_RA_HITS(ra_val); 653 win = __swapin_nr_pages(PFN_DOWN(prev_faddr), PFN_DOWN(faddr), hits, 654 max_win, prev_win); 655 atomic_long_set(&vma->swap_readahead_info, SWAP_RA_VAL(faddr, win, 0)); 656 if (win == 1) 657 return 1; 658 659 if (faddr == prev_faddr + PAGE_SIZE) 660 left = faddr; 661 else if (prev_faddr == faddr + PAGE_SIZE) 662 left = faddr - (win << PAGE_SHIFT) + PAGE_SIZE; 663 else 664 left = faddr - (((win - 1) / 2) << PAGE_SHIFT); 665 right = left + (win << PAGE_SHIFT); 666 if ((long)left < 0) 667 left = 0; 668 *start = max3(left, vma->vm_start, faddr & PMD_MASK); 669 *end = min3(right, vma->vm_end, (faddr & PMD_MASK) + PMD_SIZE); 670 671 return win; 672 } 673 674 /** 675 * swap_vma_readahead - swap in pages in hope we need them soon 676 * @targ_entry: swap entry of the targeted memory 677 * @gfp_mask: memory allocation flags 678 * @mpol: NUMA memory allocation policy to be applied 679 * @targ_ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE 680 * @vmf: fault information 681 * 682 * Returns the struct folio for entry and addr, after queueing swapin. 683 * 684 * Primitive swap readahead code. We simply read in a few pages whose 685 * virtual addresses are around the fault address in the same vma. 686 * 687 * Caller must hold read mmap_lock if vmf->vma is not NULL. 688 * 689 */ 690 static struct folio *swap_vma_readahead(swp_entry_t targ_entry, gfp_t gfp_mask, 691 struct mempolicy *mpol, pgoff_t targ_ilx, struct vm_fault *vmf) 692 { 693 struct blk_plug plug; 694 struct swap_iocb *splug = NULL; 695 struct folio *folio; 696 pte_t *pte = NULL, pentry; 697 int win; 698 unsigned long start, end, addr; 699 swp_entry_t entry; 700 pgoff_t ilx; 701 bool page_allocated; 702 703 win = swap_vma_ra_win(vmf, &start, &end); 704 if (win == 1) 705 goto skip; 706 707 ilx = targ_ilx - PFN_DOWN(vmf->address - start); 708 709 blk_start_plug(&plug); 710 for (addr = start; addr < end; ilx++, addr += PAGE_SIZE) { 711 if (!pte++) { 712 pte = pte_offset_map(vmf->pmd, addr); 713 if (!pte) 714 break; 715 } 716 pentry = ptep_get_lockless(pte); 717 if (!is_swap_pte(pentry)) 718 continue; 719 entry = pte_to_swp_entry(pentry); 720 if (unlikely(non_swap_entry(entry))) 721 continue; 722 pte_unmap(pte); 723 pte = NULL; 724 folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx, 725 &page_allocated, false); 726 if (!folio) 727 continue; 728 if (page_allocated) { 729 swap_read_folio(folio, &splug); 730 if (addr != vmf->address) { 731 folio_set_readahead(folio); 732 count_vm_event(SWAP_RA); 733 } 734 } 735 folio_put(folio); 736 } 737 if (pte) 738 pte_unmap(pte); 739 blk_finish_plug(&plug); 740 swap_read_unplug(splug); 741 lru_add_drain(); 742 skip: 743 /* The folio was likely read above, so no need for plugging here */ 744 folio = __read_swap_cache_async(targ_entry, gfp_mask, mpol, targ_ilx, 745 &page_allocated, false); 746 if (unlikely(page_allocated)) 747 swap_read_folio(folio, NULL); 748 return folio; 749 } 750 751 /** 752 * swapin_readahead - swap in pages in hope we need them soon 753 * @entry: swap entry of this memory 754 * @gfp_mask: memory allocation flags 755 * @vmf: fault information 756 * 757 * Returns the struct folio for entry and addr, after queueing swapin. 758 * 759 * It's a main entry function for swap readahead. By the configuration, 760 * it will read ahead blocks by cluster-based(ie, physical disk based) 761 * or vma-based(ie, virtual address based on faulty address) readahead. 762 */ 763 struct folio *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, 764 struct vm_fault *vmf) 765 { 766 struct mempolicy *mpol; 767 pgoff_t ilx; 768 struct folio *folio; 769 770 mpol = get_vma_policy(vmf->vma, vmf->address, 0, &ilx); 771 folio = swap_use_vma_readahead() ? 772 swap_vma_readahead(entry, gfp_mask, mpol, ilx, vmf) : 773 swap_cluster_readahead(entry, gfp_mask, mpol, ilx); 774 mpol_cond_put(mpol); 775 776 return folio; 777 } 778 779 #ifdef CONFIG_SYSFS 780 static ssize_t vma_ra_enabled_show(struct kobject *kobj, 781 struct kobj_attribute *attr, char *buf) 782 { 783 return sysfs_emit(buf, "%s\n", str_true_false(enable_vma_readahead)); 784 } 785 static ssize_t vma_ra_enabled_store(struct kobject *kobj, 786 struct kobj_attribute *attr, 787 const char *buf, size_t count) 788 { 789 ssize_t ret; 790 791 ret = kstrtobool(buf, &enable_vma_readahead); 792 if (ret) 793 return ret; 794 795 return count; 796 } 797 static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled); 798 799 static struct attribute *swap_attrs[] = { 800 &vma_ra_enabled_attr.attr, 801 NULL, 802 }; 803 804 static const struct attribute_group swap_attr_group = { 805 .attrs = swap_attrs, 806 }; 807 808 static int __init swap_init_sysfs(void) 809 { 810 int err; 811 struct kobject *swap_kobj; 812 813 swap_kobj = kobject_create_and_add("swap", mm_kobj); 814 if (!swap_kobj) { 815 pr_err("failed to create swap kobject\n"); 816 return -ENOMEM; 817 } 818 err = sysfs_create_group(swap_kobj, &swap_attr_group); 819 if (err) { 820 pr_err("failed to register swap group\n"); 821 goto delete_obj; 822 } 823 return 0; 824 825 delete_obj: 826 kobject_put(swap_kobj); 827 return err; 828 } 829 subsys_initcall(swap_init_sysfs); 830 #endif 831