xref: /linux/mm/swap_state.c (revision 962fad301c33dec69324dc2d9320fd84a119a24c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/swap_state.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  *
8  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
9  */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
24 #include "internal.h"
25 
26 /*
27  * swapper_space is a fiction, retained to simplify the path through
28  * vmscan's shrink_page_list.
29  */
30 static const struct address_space_operations swap_aops = {
31 	.writepage	= swap_writepage,
32 	.set_page_dirty	= swap_set_page_dirty,
33 #ifdef CONFIG_MIGRATION
34 	.migratepage	= migrate_page,
35 #endif
36 };
37 
38 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
39 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
40 static bool enable_vma_readahead __read_mostly = true;
41 
42 #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
43 #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
44 #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
45 #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
46 
47 #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
48 #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
49 #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
50 
51 #define SWAP_RA_VAL(addr, win, hits)				\
52 	(((addr) & PAGE_MASK) |					\
53 	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
54 	 ((hits) & SWAP_RA_HITS_MASK))
55 
56 /* Initial readahead hits is 4 to start up with a small window */
57 #define GET_SWAP_RA_VAL(vma)					\
58 	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
59 
60 #define INC_CACHE_INFO(x)	data_race(swap_cache_info.x++)
61 #define ADD_CACHE_INFO(x, nr)	data_race(swap_cache_info.x += (nr))
62 
63 static struct {
64 	unsigned long add_total;
65 	unsigned long del_total;
66 	unsigned long find_success;
67 	unsigned long find_total;
68 } swap_cache_info;
69 
70 unsigned long total_swapcache_pages(void)
71 {
72 	unsigned int i, j, nr;
73 	unsigned long ret = 0;
74 	struct address_space *spaces;
75 	struct swap_info_struct *si;
76 
77 	for (i = 0; i < MAX_SWAPFILES; i++) {
78 		swp_entry_t entry = swp_entry(i, 1);
79 
80 		/* Avoid get_swap_device() to warn for bad swap entry */
81 		if (!swp_swap_info(entry))
82 			continue;
83 		/* Prevent swapoff to free swapper_spaces */
84 		si = get_swap_device(entry);
85 		if (!si)
86 			continue;
87 		nr = nr_swapper_spaces[i];
88 		spaces = swapper_spaces[i];
89 		for (j = 0; j < nr; j++)
90 			ret += spaces[j].nrpages;
91 		put_swap_device(si);
92 	}
93 	return ret;
94 }
95 
96 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
97 
98 void show_swap_cache_info(void)
99 {
100 	printk("%lu pages in swap cache\n", total_swapcache_pages());
101 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
102 		swap_cache_info.add_total, swap_cache_info.del_total,
103 		swap_cache_info.find_success, swap_cache_info.find_total);
104 	printk("Free swap  = %ldkB\n",
105 		get_nr_swap_pages() << (PAGE_SHIFT - 10));
106 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
107 }
108 
109 void *get_shadow_from_swap_cache(swp_entry_t entry)
110 {
111 	struct address_space *address_space = swap_address_space(entry);
112 	pgoff_t idx = swp_offset(entry);
113 	struct page *page;
114 
115 	page = find_get_entry(address_space, idx);
116 	if (xa_is_value(page))
117 		return page;
118 	if (page)
119 		put_page(page);
120 	return NULL;
121 }
122 
123 /*
124  * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
125  * but sets SwapCache flag and private instead of mapping and index.
126  */
127 int add_to_swap_cache(struct page *page, swp_entry_t entry,
128 			gfp_t gfp, void **shadowp)
129 {
130 	struct address_space *address_space = swap_address_space(entry);
131 	pgoff_t idx = swp_offset(entry);
132 	XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page));
133 	unsigned long i, nr = thp_nr_pages(page);
134 	void *old;
135 
136 	VM_BUG_ON_PAGE(!PageLocked(page), page);
137 	VM_BUG_ON_PAGE(PageSwapCache(page), page);
138 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
139 
140 	page_ref_add(page, nr);
141 	SetPageSwapCache(page);
142 
143 	do {
144 		unsigned long nr_shadows = 0;
145 
146 		xas_lock_irq(&xas);
147 		xas_create_range(&xas);
148 		if (xas_error(&xas))
149 			goto unlock;
150 		for (i = 0; i < nr; i++) {
151 			VM_BUG_ON_PAGE(xas.xa_index != idx + i, page);
152 			old = xas_load(&xas);
153 			if (xa_is_value(old)) {
154 				nr_shadows++;
155 				if (shadowp)
156 					*shadowp = old;
157 			}
158 			set_page_private(page + i, entry.val + i);
159 			xas_store(&xas, page);
160 			xas_next(&xas);
161 		}
162 		address_space->nrexceptional -= nr_shadows;
163 		address_space->nrpages += nr;
164 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
165 		ADD_CACHE_INFO(add_total, nr);
166 unlock:
167 		xas_unlock_irq(&xas);
168 	} while (xas_nomem(&xas, gfp));
169 
170 	if (!xas_error(&xas))
171 		return 0;
172 
173 	ClearPageSwapCache(page);
174 	page_ref_sub(page, nr);
175 	return xas_error(&xas);
176 }
177 
178 /*
179  * This must be called only on pages that have
180  * been verified to be in the swap cache.
181  */
182 void __delete_from_swap_cache(struct page *page,
183 			swp_entry_t entry, void *shadow)
184 {
185 	struct address_space *address_space = swap_address_space(entry);
186 	int i, nr = thp_nr_pages(page);
187 	pgoff_t idx = swp_offset(entry);
188 	XA_STATE(xas, &address_space->i_pages, idx);
189 
190 	VM_BUG_ON_PAGE(!PageLocked(page), page);
191 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
192 	VM_BUG_ON_PAGE(PageWriteback(page), page);
193 
194 	for (i = 0; i < nr; i++) {
195 		void *entry = xas_store(&xas, shadow);
196 		VM_BUG_ON_PAGE(entry != page, entry);
197 		set_page_private(page + i, 0);
198 		xas_next(&xas);
199 	}
200 	ClearPageSwapCache(page);
201 	if (shadow)
202 		address_space->nrexceptional += nr;
203 	address_space->nrpages -= nr;
204 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
205 	ADD_CACHE_INFO(del_total, nr);
206 }
207 
208 /**
209  * add_to_swap - allocate swap space for a page
210  * @page: page we want to move to swap
211  *
212  * Allocate swap space for the page and add the page to the
213  * swap cache.  Caller needs to hold the page lock.
214  */
215 int add_to_swap(struct page *page)
216 {
217 	swp_entry_t entry;
218 	int err;
219 
220 	VM_BUG_ON_PAGE(!PageLocked(page), page);
221 	VM_BUG_ON_PAGE(!PageUptodate(page), page);
222 
223 	entry = get_swap_page(page);
224 	if (!entry.val)
225 		return 0;
226 
227 	/*
228 	 * XArray node allocations from PF_MEMALLOC contexts could
229 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
230 	 * stops emergency reserves from being allocated.
231 	 *
232 	 * TODO: this could cause a theoretical memory reclaim
233 	 * deadlock in the swap out path.
234 	 */
235 	/*
236 	 * Add it to the swap cache.
237 	 */
238 	err = add_to_swap_cache(page, entry,
239 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
240 	if (err)
241 		/*
242 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
243 		 * clear SWAP_HAS_CACHE flag.
244 		 */
245 		goto fail;
246 	/*
247 	 * Normally the page will be dirtied in unmap because its pte should be
248 	 * dirty. A special case is MADV_FREE page. The page'e pte could have
249 	 * dirty bit cleared but the page's SwapBacked bit is still set because
250 	 * clearing the dirty bit and SwapBacked bit has no lock protected. For
251 	 * such page, unmap will not set dirty bit for it, so page reclaim will
252 	 * not write the page out. This can cause data corruption when the page
253 	 * is swap in later. Always setting the dirty bit for the page solves
254 	 * the problem.
255 	 */
256 	set_page_dirty(page);
257 
258 	return 1;
259 
260 fail:
261 	put_swap_page(page, entry);
262 	return 0;
263 }
264 
265 /*
266  * This must be called only on pages that have
267  * been verified to be in the swap cache and locked.
268  * It will never put the page into the free list,
269  * the caller has a reference on the page.
270  */
271 void delete_from_swap_cache(struct page *page)
272 {
273 	swp_entry_t entry = { .val = page_private(page) };
274 	struct address_space *address_space = swap_address_space(entry);
275 
276 	xa_lock_irq(&address_space->i_pages);
277 	__delete_from_swap_cache(page, entry, NULL);
278 	xa_unlock_irq(&address_space->i_pages);
279 
280 	put_swap_page(page, entry);
281 	page_ref_sub(page, thp_nr_pages(page));
282 }
283 
284 void clear_shadow_from_swap_cache(int type, unsigned long begin,
285 				unsigned long end)
286 {
287 	unsigned long curr = begin;
288 	void *old;
289 
290 	for (;;) {
291 		unsigned long nr_shadows = 0;
292 		swp_entry_t entry = swp_entry(type, curr);
293 		struct address_space *address_space = swap_address_space(entry);
294 		XA_STATE(xas, &address_space->i_pages, curr);
295 
296 		xa_lock_irq(&address_space->i_pages);
297 		xas_for_each(&xas, old, end) {
298 			if (!xa_is_value(old))
299 				continue;
300 			xas_store(&xas, NULL);
301 			nr_shadows++;
302 		}
303 		address_space->nrexceptional -= nr_shadows;
304 		xa_unlock_irq(&address_space->i_pages);
305 
306 		/* search the next swapcache until we meet end */
307 		curr >>= SWAP_ADDRESS_SPACE_SHIFT;
308 		curr++;
309 		curr <<= SWAP_ADDRESS_SPACE_SHIFT;
310 		if (curr > end)
311 			break;
312 	}
313 }
314 
315 /*
316  * If we are the only user, then try to free up the swap cache.
317  *
318  * Its ok to check for PageSwapCache without the page lock
319  * here because we are going to recheck again inside
320  * try_to_free_swap() _with_ the lock.
321  * 					- Marcelo
322  */
323 static inline void free_swap_cache(struct page *page)
324 {
325 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
326 		try_to_free_swap(page);
327 		unlock_page(page);
328 	}
329 }
330 
331 /*
332  * Perform a free_page(), also freeing any swap cache associated with
333  * this page if it is the last user of the page.
334  */
335 void free_page_and_swap_cache(struct page *page)
336 {
337 	free_swap_cache(page);
338 	if (!is_huge_zero_page(page))
339 		put_page(page);
340 }
341 
342 /*
343  * Passed an array of pages, drop them all from swapcache and then release
344  * them.  They are removed from the LRU and freed if this is their last use.
345  */
346 void free_pages_and_swap_cache(struct page **pages, int nr)
347 {
348 	struct page **pagep = pages;
349 	int i;
350 
351 	lru_add_drain();
352 	for (i = 0; i < nr; i++)
353 		free_swap_cache(pagep[i]);
354 	release_pages(pagep, nr);
355 }
356 
357 static inline bool swap_use_vma_readahead(void)
358 {
359 	return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
360 }
361 
362 /*
363  * Lookup a swap entry in the swap cache. A found page will be returned
364  * unlocked and with its refcount incremented - we rely on the kernel
365  * lock getting page table operations atomic even if we drop the page
366  * lock before returning.
367  */
368 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
369 			       unsigned long addr)
370 {
371 	struct page *page;
372 	struct swap_info_struct *si;
373 
374 	si = get_swap_device(entry);
375 	if (!si)
376 		return NULL;
377 	page = find_get_page(swap_address_space(entry), swp_offset(entry));
378 	put_swap_device(si);
379 
380 	INC_CACHE_INFO(find_total);
381 	if (page) {
382 		bool vma_ra = swap_use_vma_readahead();
383 		bool readahead;
384 
385 		INC_CACHE_INFO(find_success);
386 		/*
387 		 * At the moment, we don't support PG_readahead for anon THP
388 		 * so let's bail out rather than confusing the readahead stat.
389 		 */
390 		if (unlikely(PageTransCompound(page)))
391 			return page;
392 
393 		readahead = TestClearPageReadahead(page);
394 		if (vma && vma_ra) {
395 			unsigned long ra_val;
396 			int win, hits;
397 
398 			ra_val = GET_SWAP_RA_VAL(vma);
399 			win = SWAP_RA_WIN(ra_val);
400 			hits = SWAP_RA_HITS(ra_val);
401 			if (readahead)
402 				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
403 			atomic_long_set(&vma->swap_readahead_info,
404 					SWAP_RA_VAL(addr, win, hits));
405 		}
406 
407 		if (readahead) {
408 			count_vm_event(SWAP_RA_HIT);
409 			if (!vma || !vma_ra)
410 				atomic_inc(&swapin_readahead_hits);
411 		}
412 	}
413 
414 	return page;
415 }
416 
417 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
418 			struct vm_area_struct *vma, unsigned long addr,
419 			bool *new_page_allocated)
420 {
421 	struct swap_info_struct *si;
422 	struct page *page;
423 	void *shadow = NULL;
424 
425 	*new_page_allocated = false;
426 
427 	for (;;) {
428 		int err;
429 		/*
430 		 * First check the swap cache.  Since this is normally
431 		 * called after lookup_swap_cache() failed, re-calling
432 		 * that would confuse statistics.
433 		 */
434 		si = get_swap_device(entry);
435 		if (!si)
436 			return NULL;
437 		page = find_get_page(swap_address_space(entry),
438 				     swp_offset(entry));
439 		put_swap_device(si);
440 		if (page)
441 			return page;
442 
443 		/*
444 		 * Just skip read ahead for unused swap slot.
445 		 * During swap_off when swap_slot_cache is disabled,
446 		 * we have to handle the race between putting
447 		 * swap entry in swap cache and marking swap slot
448 		 * as SWAP_HAS_CACHE.  That's done in later part of code or
449 		 * else swap_off will be aborted if we return NULL.
450 		 */
451 		if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
452 			return NULL;
453 
454 		/*
455 		 * Get a new page to read into from swap.  Allocate it now,
456 		 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
457 		 * cause any racers to loop around until we add it to cache.
458 		 */
459 		page = alloc_page_vma(gfp_mask, vma, addr);
460 		if (!page)
461 			return NULL;
462 
463 		/*
464 		 * Swap entry may have been freed since our caller observed it.
465 		 */
466 		err = swapcache_prepare(entry);
467 		if (!err)
468 			break;
469 
470 		put_page(page);
471 		if (err != -EEXIST)
472 			return NULL;
473 
474 		/*
475 		 * We might race against __delete_from_swap_cache(), and
476 		 * stumble across a swap_map entry whose SWAP_HAS_CACHE
477 		 * has not yet been cleared.  Or race against another
478 		 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
479 		 * in swap_map, but not yet added its page to swap cache.
480 		 */
481 		cond_resched();
482 	}
483 
484 	/*
485 	 * The swap entry is ours to swap in. Prepare the new page.
486 	 */
487 
488 	__SetPageLocked(page);
489 	__SetPageSwapBacked(page);
490 
491 	/* May fail (-ENOMEM) if XArray node allocation failed. */
492 	if (add_to_swap_cache(page, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow)) {
493 		put_swap_page(page, entry);
494 		goto fail_unlock;
495 	}
496 
497 	if (mem_cgroup_charge(page, NULL, gfp_mask)) {
498 		delete_from_swap_cache(page);
499 		goto fail_unlock;
500 	}
501 
502 	if (shadow)
503 		workingset_refault(page, shadow);
504 
505 	/* Caller will initiate read into locked page */
506 	SetPageWorkingset(page);
507 	lru_cache_add(page);
508 	*new_page_allocated = true;
509 	return page;
510 
511 fail_unlock:
512 	unlock_page(page);
513 	put_page(page);
514 	return NULL;
515 }
516 
517 /*
518  * Locate a page of swap in physical memory, reserving swap cache space
519  * and reading the disk if it is not already cached.
520  * A failure return means that either the page allocation failed or that
521  * the swap entry is no longer in use.
522  */
523 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
524 		struct vm_area_struct *vma, unsigned long addr, bool do_poll)
525 {
526 	bool page_was_allocated;
527 	struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
528 			vma, addr, &page_was_allocated);
529 
530 	if (page_was_allocated)
531 		swap_readpage(retpage, do_poll);
532 
533 	return retpage;
534 }
535 
536 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
537 				      unsigned long offset,
538 				      int hits,
539 				      int max_pages,
540 				      int prev_win)
541 {
542 	unsigned int pages, last_ra;
543 
544 	/*
545 	 * This heuristic has been found to work well on both sequential and
546 	 * random loads, swapping to hard disk or to SSD: please don't ask
547 	 * what the "+ 2" means, it just happens to work well, that's all.
548 	 */
549 	pages = hits + 2;
550 	if (pages == 2) {
551 		/*
552 		 * We can have no readahead hits to judge by: but must not get
553 		 * stuck here forever, so check for an adjacent offset instead
554 		 * (and don't even bother to check whether swap type is same).
555 		 */
556 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
557 			pages = 1;
558 	} else {
559 		unsigned int roundup = 4;
560 		while (roundup < pages)
561 			roundup <<= 1;
562 		pages = roundup;
563 	}
564 
565 	if (pages > max_pages)
566 		pages = max_pages;
567 
568 	/* Don't shrink readahead too fast */
569 	last_ra = prev_win / 2;
570 	if (pages < last_ra)
571 		pages = last_ra;
572 
573 	return pages;
574 }
575 
576 static unsigned long swapin_nr_pages(unsigned long offset)
577 {
578 	static unsigned long prev_offset;
579 	unsigned int hits, pages, max_pages;
580 	static atomic_t last_readahead_pages;
581 
582 	max_pages = 1 << READ_ONCE(page_cluster);
583 	if (max_pages <= 1)
584 		return 1;
585 
586 	hits = atomic_xchg(&swapin_readahead_hits, 0);
587 	pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
588 				  max_pages,
589 				  atomic_read(&last_readahead_pages));
590 	if (!hits)
591 		WRITE_ONCE(prev_offset, offset);
592 	atomic_set(&last_readahead_pages, pages);
593 
594 	return pages;
595 }
596 
597 /**
598  * swap_cluster_readahead - swap in pages in hope we need them soon
599  * @entry: swap entry of this memory
600  * @gfp_mask: memory allocation flags
601  * @vmf: fault information
602  *
603  * Returns the struct page for entry and addr, after queueing swapin.
604  *
605  * Primitive swap readahead code. We simply read an aligned block of
606  * (1 << page_cluster) entries in the swap area. This method is chosen
607  * because it doesn't cost us any seek time.  We also make sure to queue
608  * the 'original' request together with the readahead ones...
609  *
610  * This has been extended to use the NUMA policies from the mm triggering
611  * the readahead.
612  *
613  * Caller must hold read mmap_lock if vmf->vma is not NULL.
614  */
615 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
616 				struct vm_fault *vmf)
617 {
618 	struct page *page;
619 	unsigned long entry_offset = swp_offset(entry);
620 	unsigned long offset = entry_offset;
621 	unsigned long start_offset, end_offset;
622 	unsigned long mask;
623 	struct swap_info_struct *si = swp_swap_info(entry);
624 	struct blk_plug plug;
625 	bool do_poll = true, page_allocated;
626 	struct vm_area_struct *vma = vmf->vma;
627 	unsigned long addr = vmf->address;
628 
629 	mask = swapin_nr_pages(offset) - 1;
630 	if (!mask)
631 		goto skip;
632 
633 	/* Test swap type to make sure the dereference is safe */
634 	if (likely(si->flags & (SWP_BLKDEV | SWP_FS))) {
635 		struct inode *inode = si->swap_file->f_mapping->host;
636 		if (inode_read_congested(inode))
637 			goto skip;
638 	}
639 
640 	do_poll = false;
641 	/* Read a page_cluster sized and aligned cluster around offset. */
642 	start_offset = offset & ~mask;
643 	end_offset = offset | mask;
644 	if (!start_offset)	/* First page is swap header. */
645 		start_offset++;
646 	if (end_offset >= si->max)
647 		end_offset = si->max - 1;
648 
649 	blk_start_plug(&plug);
650 	for (offset = start_offset; offset <= end_offset ; offset++) {
651 		/* Ok, do the async read-ahead now */
652 		page = __read_swap_cache_async(
653 			swp_entry(swp_type(entry), offset),
654 			gfp_mask, vma, addr, &page_allocated);
655 		if (!page)
656 			continue;
657 		if (page_allocated) {
658 			swap_readpage(page, false);
659 			if (offset != entry_offset) {
660 				SetPageReadahead(page);
661 				count_vm_event(SWAP_RA);
662 			}
663 		}
664 		put_page(page);
665 	}
666 	blk_finish_plug(&plug);
667 
668 	lru_add_drain();	/* Push any new pages onto the LRU now */
669 skip:
670 	return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
671 }
672 
673 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
674 {
675 	struct address_space *spaces, *space;
676 	unsigned int i, nr;
677 
678 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
679 	spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
680 	if (!spaces)
681 		return -ENOMEM;
682 	for (i = 0; i < nr; i++) {
683 		space = spaces + i;
684 		xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
685 		atomic_set(&space->i_mmap_writable, 0);
686 		space->a_ops = &swap_aops;
687 		/* swap cache doesn't use writeback related tags */
688 		mapping_set_no_writeback_tags(space);
689 	}
690 	nr_swapper_spaces[type] = nr;
691 	swapper_spaces[type] = spaces;
692 
693 	return 0;
694 }
695 
696 void exit_swap_address_space(unsigned int type)
697 {
698 	kvfree(swapper_spaces[type]);
699 	nr_swapper_spaces[type] = 0;
700 	swapper_spaces[type] = NULL;
701 }
702 
703 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
704 				     unsigned long faddr,
705 				     unsigned long lpfn,
706 				     unsigned long rpfn,
707 				     unsigned long *start,
708 				     unsigned long *end)
709 {
710 	*start = max3(lpfn, PFN_DOWN(vma->vm_start),
711 		      PFN_DOWN(faddr & PMD_MASK));
712 	*end = min3(rpfn, PFN_DOWN(vma->vm_end),
713 		    PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
714 }
715 
716 static void swap_ra_info(struct vm_fault *vmf,
717 			struct vma_swap_readahead *ra_info)
718 {
719 	struct vm_area_struct *vma = vmf->vma;
720 	unsigned long ra_val;
721 	swp_entry_t entry;
722 	unsigned long faddr, pfn, fpfn;
723 	unsigned long start, end;
724 	pte_t *pte, *orig_pte;
725 	unsigned int max_win, hits, prev_win, win, left;
726 #ifndef CONFIG_64BIT
727 	pte_t *tpte;
728 #endif
729 
730 	max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
731 			     SWAP_RA_ORDER_CEILING);
732 	if (max_win == 1) {
733 		ra_info->win = 1;
734 		return;
735 	}
736 
737 	faddr = vmf->address;
738 	orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
739 	entry = pte_to_swp_entry(*pte);
740 	if ((unlikely(non_swap_entry(entry)))) {
741 		pte_unmap(orig_pte);
742 		return;
743 	}
744 
745 	fpfn = PFN_DOWN(faddr);
746 	ra_val = GET_SWAP_RA_VAL(vma);
747 	pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
748 	prev_win = SWAP_RA_WIN(ra_val);
749 	hits = SWAP_RA_HITS(ra_val);
750 	ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
751 					       max_win, prev_win);
752 	atomic_long_set(&vma->swap_readahead_info,
753 			SWAP_RA_VAL(faddr, win, 0));
754 
755 	if (win == 1) {
756 		pte_unmap(orig_pte);
757 		return;
758 	}
759 
760 	/* Copy the PTEs because the page table may be unmapped */
761 	if (fpfn == pfn + 1)
762 		swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
763 	else if (pfn == fpfn + 1)
764 		swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
765 				  &start, &end);
766 	else {
767 		left = (win - 1) / 2;
768 		swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
769 				  &start, &end);
770 	}
771 	ra_info->nr_pte = end - start;
772 	ra_info->offset = fpfn - start;
773 	pte -= ra_info->offset;
774 #ifdef CONFIG_64BIT
775 	ra_info->ptes = pte;
776 #else
777 	tpte = ra_info->ptes;
778 	for (pfn = start; pfn != end; pfn++)
779 		*tpte++ = *pte++;
780 #endif
781 	pte_unmap(orig_pte);
782 }
783 
784 /**
785  * swap_vma_readahead - swap in pages in hope we need them soon
786  * @fentry: swap entry of this memory
787  * @gfp_mask: memory allocation flags
788  * @vmf: fault information
789  *
790  * Returns the struct page for entry and addr, after queueing swapin.
791  *
792  * Primitive swap readahead code. We simply read in a few pages whoes
793  * virtual addresses are around the fault address in the same vma.
794  *
795  * Caller must hold read mmap_lock if vmf->vma is not NULL.
796  *
797  */
798 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
799 				       struct vm_fault *vmf)
800 {
801 	struct blk_plug plug;
802 	struct vm_area_struct *vma = vmf->vma;
803 	struct page *page;
804 	pte_t *pte, pentry;
805 	swp_entry_t entry;
806 	unsigned int i;
807 	bool page_allocated;
808 	struct vma_swap_readahead ra_info = {0,};
809 
810 	swap_ra_info(vmf, &ra_info);
811 	if (ra_info.win == 1)
812 		goto skip;
813 
814 	blk_start_plug(&plug);
815 	for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
816 	     i++, pte++) {
817 		pentry = *pte;
818 		if (pte_none(pentry))
819 			continue;
820 		if (pte_present(pentry))
821 			continue;
822 		entry = pte_to_swp_entry(pentry);
823 		if (unlikely(non_swap_entry(entry)))
824 			continue;
825 		page = __read_swap_cache_async(entry, gfp_mask, vma,
826 					       vmf->address, &page_allocated);
827 		if (!page)
828 			continue;
829 		if (page_allocated) {
830 			swap_readpage(page, false);
831 			if (i != ra_info.offset) {
832 				SetPageReadahead(page);
833 				count_vm_event(SWAP_RA);
834 			}
835 		}
836 		put_page(page);
837 	}
838 	blk_finish_plug(&plug);
839 	lru_add_drain();
840 skip:
841 	return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
842 				     ra_info.win == 1);
843 }
844 
845 /**
846  * swapin_readahead - swap in pages in hope we need them soon
847  * @entry: swap entry of this memory
848  * @gfp_mask: memory allocation flags
849  * @vmf: fault information
850  *
851  * Returns the struct page for entry and addr, after queueing swapin.
852  *
853  * It's a main entry function for swap readahead. By the configuration,
854  * it will read ahead blocks by cluster-based(ie, physical disk based)
855  * or vma-based(ie, virtual address based on faulty address) readahead.
856  */
857 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
858 				struct vm_fault *vmf)
859 {
860 	return swap_use_vma_readahead() ?
861 			swap_vma_readahead(entry, gfp_mask, vmf) :
862 			swap_cluster_readahead(entry, gfp_mask, vmf);
863 }
864 
865 #ifdef CONFIG_SYSFS
866 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
867 				     struct kobj_attribute *attr, char *buf)
868 {
869 	return sprintf(buf, "%s\n", enable_vma_readahead ? "true" : "false");
870 }
871 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
872 				      struct kobj_attribute *attr,
873 				      const char *buf, size_t count)
874 {
875 	if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
876 		enable_vma_readahead = true;
877 	else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
878 		enable_vma_readahead = false;
879 	else
880 		return -EINVAL;
881 
882 	return count;
883 }
884 static struct kobj_attribute vma_ra_enabled_attr =
885 	__ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
886 	       vma_ra_enabled_store);
887 
888 static struct attribute *swap_attrs[] = {
889 	&vma_ra_enabled_attr.attr,
890 	NULL,
891 };
892 
893 static struct attribute_group swap_attr_group = {
894 	.attrs = swap_attrs,
895 };
896 
897 static int __init swap_init_sysfs(void)
898 {
899 	int err;
900 	struct kobject *swap_kobj;
901 
902 	swap_kobj = kobject_create_and_add("swap", mm_kobj);
903 	if (!swap_kobj) {
904 		pr_err("failed to create swap kobject\n");
905 		return -ENOMEM;
906 	}
907 	err = sysfs_create_group(swap_kobj, &swap_attr_group);
908 	if (err) {
909 		pr_err("failed to register swap group\n");
910 		goto delete_obj;
911 	}
912 	return 0;
913 
914 delete_obj:
915 	kobject_put(swap_kobj);
916 	return err;
917 }
918 subsys_initcall(swap_init_sysfs);
919 #endif
920