1 /* 2 * linux/mm/swap_state.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 * 7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie 8 */ 9 #include <linux/mm.h> 10 #include <linux/gfp.h> 11 #include <linux/kernel_stat.h> 12 #include <linux/swap.h> 13 #include <linux/swapops.h> 14 #include <linux/init.h> 15 #include <linux/pagemap.h> 16 #include <linux/backing-dev.h> 17 #include <linux/blkdev.h> 18 #include <linux/pagevec.h> 19 #include <linux/migrate.h> 20 21 #include <asm/pgtable.h> 22 23 /* 24 * swapper_space is a fiction, retained to simplify the path through 25 * vmscan's shrink_page_list. 26 */ 27 static const struct address_space_operations swap_aops = { 28 .writepage = swap_writepage, 29 .set_page_dirty = swap_set_page_dirty, 30 #ifdef CONFIG_MIGRATION 31 .migratepage = migrate_page, 32 #endif 33 }; 34 35 struct address_space swapper_spaces[MAX_SWAPFILES] = { 36 [0 ... MAX_SWAPFILES - 1] = { 37 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN), 38 .i_mmap_writable = ATOMIC_INIT(0), 39 .a_ops = &swap_aops, 40 } 41 }; 42 43 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0) 44 45 static struct { 46 unsigned long add_total; 47 unsigned long del_total; 48 unsigned long find_success; 49 unsigned long find_total; 50 } swap_cache_info; 51 52 unsigned long total_swapcache_pages(void) 53 { 54 int i; 55 unsigned long ret = 0; 56 57 for (i = 0; i < MAX_SWAPFILES; i++) 58 ret += swapper_spaces[i].nrpages; 59 return ret; 60 } 61 62 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); 63 64 void show_swap_cache_info(void) 65 { 66 printk("%lu pages in swap cache\n", total_swapcache_pages()); 67 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n", 68 swap_cache_info.add_total, swap_cache_info.del_total, 69 swap_cache_info.find_success, swap_cache_info.find_total); 70 printk("Free swap = %ldkB\n", 71 get_nr_swap_pages() << (PAGE_SHIFT - 10)); 72 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); 73 } 74 75 /* 76 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, 77 * but sets SwapCache flag and private instead of mapping and index. 78 */ 79 int __add_to_swap_cache(struct page *page, swp_entry_t entry) 80 { 81 int error; 82 struct address_space *address_space; 83 84 VM_BUG_ON_PAGE(!PageLocked(page), page); 85 VM_BUG_ON_PAGE(PageSwapCache(page), page); 86 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 87 88 page_cache_get(page); 89 SetPageSwapCache(page); 90 set_page_private(page, entry.val); 91 92 address_space = swap_address_space(entry); 93 spin_lock_irq(&address_space->tree_lock); 94 error = radix_tree_insert(&address_space->page_tree, 95 entry.val, page); 96 if (likely(!error)) { 97 address_space->nrpages++; 98 __inc_zone_page_state(page, NR_FILE_PAGES); 99 INC_CACHE_INFO(add_total); 100 } 101 spin_unlock_irq(&address_space->tree_lock); 102 103 if (unlikely(error)) { 104 /* 105 * Only the context which have set SWAP_HAS_CACHE flag 106 * would call add_to_swap_cache(). 107 * So add_to_swap_cache() doesn't returns -EEXIST. 108 */ 109 VM_BUG_ON(error == -EEXIST); 110 set_page_private(page, 0UL); 111 ClearPageSwapCache(page); 112 page_cache_release(page); 113 } 114 115 return error; 116 } 117 118 119 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) 120 { 121 int error; 122 123 error = radix_tree_maybe_preload(gfp_mask); 124 if (!error) { 125 error = __add_to_swap_cache(page, entry); 126 radix_tree_preload_end(); 127 } 128 return error; 129 } 130 131 /* 132 * This must be called only on pages that have 133 * been verified to be in the swap cache. 134 */ 135 void __delete_from_swap_cache(struct page *page) 136 { 137 swp_entry_t entry; 138 struct address_space *address_space; 139 140 VM_BUG_ON_PAGE(!PageLocked(page), page); 141 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 142 VM_BUG_ON_PAGE(PageWriteback(page), page); 143 144 entry.val = page_private(page); 145 address_space = swap_address_space(entry); 146 radix_tree_delete(&address_space->page_tree, page_private(page)); 147 set_page_private(page, 0); 148 ClearPageSwapCache(page); 149 address_space->nrpages--; 150 __dec_zone_page_state(page, NR_FILE_PAGES); 151 INC_CACHE_INFO(del_total); 152 } 153 154 /** 155 * add_to_swap - allocate swap space for a page 156 * @page: page we want to move to swap 157 * 158 * Allocate swap space for the page and add the page to the 159 * swap cache. Caller needs to hold the page lock. 160 */ 161 int add_to_swap(struct page *page, struct list_head *list) 162 { 163 swp_entry_t entry; 164 int err; 165 166 VM_BUG_ON_PAGE(!PageLocked(page), page); 167 VM_BUG_ON_PAGE(!PageUptodate(page), page); 168 169 entry = get_swap_page(); 170 if (!entry.val) 171 return 0; 172 173 if (mem_cgroup_try_charge_swap(page, entry)) { 174 swapcache_free(entry); 175 return 0; 176 } 177 178 if (unlikely(PageTransHuge(page))) 179 if (unlikely(split_huge_page_to_list(page, list))) { 180 swapcache_free(entry); 181 return 0; 182 } 183 184 /* 185 * Radix-tree node allocations from PF_MEMALLOC contexts could 186 * completely exhaust the page allocator. __GFP_NOMEMALLOC 187 * stops emergency reserves from being allocated. 188 * 189 * TODO: this could cause a theoretical memory reclaim 190 * deadlock in the swap out path. 191 */ 192 /* 193 * Add it to the swap cache. 194 */ 195 err = add_to_swap_cache(page, entry, 196 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN); 197 198 if (!err) { 199 return 1; 200 } else { /* -ENOMEM radix-tree allocation failure */ 201 /* 202 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 203 * clear SWAP_HAS_CACHE flag. 204 */ 205 swapcache_free(entry); 206 return 0; 207 } 208 } 209 210 /* 211 * This must be called only on pages that have 212 * been verified to be in the swap cache and locked. 213 * It will never put the page into the free list, 214 * the caller has a reference on the page. 215 */ 216 void delete_from_swap_cache(struct page *page) 217 { 218 swp_entry_t entry; 219 struct address_space *address_space; 220 221 entry.val = page_private(page); 222 223 address_space = swap_address_space(entry); 224 spin_lock_irq(&address_space->tree_lock); 225 __delete_from_swap_cache(page); 226 spin_unlock_irq(&address_space->tree_lock); 227 228 swapcache_free(entry); 229 page_cache_release(page); 230 } 231 232 /* 233 * If we are the only user, then try to free up the swap cache. 234 * 235 * Its ok to check for PageSwapCache without the page lock 236 * here because we are going to recheck again inside 237 * try_to_free_swap() _with_ the lock. 238 * - Marcelo 239 */ 240 static inline void free_swap_cache(struct page *page) 241 { 242 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) { 243 try_to_free_swap(page); 244 unlock_page(page); 245 } 246 } 247 248 /* 249 * Perform a free_page(), also freeing any swap cache associated with 250 * this page if it is the last user of the page. 251 */ 252 void free_page_and_swap_cache(struct page *page) 253 { 254 free_swap_cache(page); 255 page_cache_release(page); 256 } 257 258 /* 259 * Passed an array of pages, drop them all from swapcache and then release 260 * them. They are removed from the LRU and freed if this is their last use. 261 */ 262 void free_pages_and_swap_cache(struct page **pages, int nr) 263 { 264 struct page **pagep = pages; 265 int i; 266 267 lru_add_drain(); 268 for (i = 0; i < nr; i++) 269 free_swap_cache(pagep[i]); 270 release_pages(pagep, nr, false); 271 } 272 273 /* 274 * Lookup a swap entry in the swap cache. A found page will be returned 275 * unlocked and with its refcount incremented - we rely on the kernel 276 * lock getting page table operations atomic even if we drop the page 277 * lock before returning. 278 */ 279 struct page * lookup_swap_cache(swp_entry_t entry) 280 { 281 struct page *page; 282 283 page = find_get_page(swap_address_space(entry), entry.val); 284 285 if (page) { 286 INC_CACHE_INFO(find_success); 287 if (TestClearPageReadahead(page)) 288 atomic_inc(&swapin_readahead_hits); 289 } 290 291 INC_CACHE_INFO(find_total); 292 return page; 293 } 294 295 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 296 struct vm_area_struct *vma, unsigned long addr, 297 bool *new_page_allocated) 298 { 299 struct page *found_page, *new_page = NULL; 300 struct address_space *swapper_space = swap_address_space(entry); 301 int err; 302 *new_page_allocated = false; 303 304 do { 305 /* 306 * First check the swap cache. Since this is normally 307 * called after lookup_swap_cache() failed, re-calling 308 * that would confuse statistics. 309 */ 310 found_page = find_get_page(swapper_space, entry.val); 311 if (found_page) 312 break; 313 314 /* 315 * Get a new page to read into from swap. 316 */ 317 if (!new_page) { 318 new_page = alloc_page_vma(gfp_mask, vma, addr); 319 if (!new_page) 320 break; /* Out of memory */ 321 } 322 323 /* 324 * call radix_tree_preload() while we can wait. 325 */ 326 err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL); 327 if (err) 328 break; 329 330 /* 331 * Swap entry may have been freed since our caller observed it. 332 */ 333 err = swapcache_prepare(entry); 334 if (err == -EEXIST) { 335 radix_tree_preload_end(); 336 /* 337 * We might race against get_swap_page() and stumble 338 * across a SWAP_HAS_CACHE swap_map entry whose page 339 * has not been brought into the swapcache yet, while 340 * the other end is scheduled away waiting on discard 341 * I/O completion at scan_swap_map(). 342 * 343 * In order to avoid turning this transitory state 344 * into a permanent loop around this -EEXIST case 345 * if !CONFIG_PREEMPT and the I/O completion happens 346 * to be waiting on the CPU waitqueue where we are now 347 * busy looping, we just conditionally invoke the 348 * scheduler here, if there are some more important 349 * tasks to run. 350 */ 351 cond_resched(); 352 continue; 353 } 354 if (err) { /* swp entry is obsolete ? */ 355 radix_tree_preload_end(); 356 break; 357 } 358 359 /* May fail (-ENOMEM) if radix-tree node allocation failed. */ 360 __SetPageLocked(new_page); 361 SetPageSwapBacked(new_page); 362 err = __add_to_swap_cache(new_page, entry); 363 if (likely(!err)) { 364 radix_tree_preload_end(); 365 /* 366 * Initiate read into locked page and return. 367 */ 368 lru_cache_add_anon(new_page); 369 *new_page_allocated = true; 370 return new_page; 371 } 372 radix_tree_preload_end(); 373 ClearPageSwapBacked(new_page); 374 __ClearPageLocked(new_page); 375 /* 376 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 377 * clear SWAP_HAS_CACHE flag. 378 */ 379 swapcache_free(entry); 380 } while (err != -ENOMEM); 381 382 if (new_page) 383 page_cache_release(new_page); 384 return found_page; 385 } 386 387 /* 388 * Locate a page of swap in physical memory, reserving swap cache space 389 * and reading the disk if it is not already cached. 390 * A failure return means that either the page allocation failed or that 391 * the swap entry is no longer in use. 392 */ 393 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 394 struct vm_area_struct *vma, unsigned long addr) 395 { 396 bool page_was_allocated; 397 struct page *retpage = __read_swap_cache_async(entry, gfp_mask, 398 vma, addr, &page_was_allocated); 399 400 if (page_was_allocated) 401 swap_readpage(retpage); 402 403 return retpage; 404 } 405 406 static unsigned long swapin_nr_pages(unsigned long offset) 407 { 408 static unsigned long prev_offset; 409 unsigned int pages, max_pages, last_ra; 410 static atomic_t last_readahead_pages; 411 412 max_pages = 1 << READ_ONCE(page_cluster); 413 if (max_pages <= 1) 414 return 1; 415 416 /* 417 * This heuristic has been found to work well on both sequential and 418 * random loads, swapping to hard disk or to SSD: please don't ask 419 * what the "+ 2" means, it just happens to work well, that's all. 420 */ 421 pages = atomic_xchg(&swapin_readahead_hits, 0) + 2; 422 if (pages == 2) { 423 /* 424 * We can have no readahead hits to judge by: but must not get 425 * stuck here forever, so check for an adjacent offset instead 426 * (and don't even bother to check whether swap type is same). 427 */ 428 if (offset != prev_offset + 1 && offset != prev_offset - 1) 429 pages = 1; 430 prev_offset = offset; 431 } else { 432 unsigned int roundup = 4; 433 while (roundup < pages) 434 roundup <<= 1; 435 pages = roundup; 436 } 437 438 if (pages > max_pages) 439 pages = max_pages; 440 441 /* Don't shrink readahead too fast */ 442 last_ra = atomic_read(&last_readahead_pages) / 2; 443 if (pages < last_ra) 444 pages = last_ra; 445 atomic_set(&last_readahead_pages, pages); 446 447 return pages; 448 } 449 450 /** 451 * swapin_readahead - swap in pages in hope we need them soon 452 * @entry: swap entry of this memory 453 * @gfp_mask: memory allocation flags 454 * @vma: user vma this address belongs to 455 * @addr: target address for mempolicy 456 * 457 * Returns the struct page for entry and addr, after queueing swapin. 458 * 459 * Primitive swap readahead code. We simply read an aligned block of 460 * (1 << page_cluster) entries in the swap area. This method is chosen 461 * because it doesn't cost us any seek time. We also make sure to queue 462 * the 'original' request together with the readahead ones... 463 * 464 * This has been extended to use the NUMA policies from the mm triggering 465 * the readahead. 466 * 467 * Caller must hold down_read on the vma->vm_mm if vma is not NULL. 468 */ 469 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, 470 struct vm_area_struct *vma, unsigned long addr) 471 { 472 struct page *page; 473 unsigned long entry_offset = swp_offset(entry); 474 unsigned long offset = entry_offset; 475 unsigned long start_offset, end_offset; 476 unsigned long mask; 477 struct blk_plug plug; 478 479 mask = swapin_nr_pages(offset) - 1; 480 if (!mask) 481 goto skip; 482 483 /* Read a page_cluster sized and aligned cluster around offset. */ 484 start_offset = offset & ~mask; 485 end_offset = offset | mask; 486 if (!start_offset) /* First page is swap header. */ 487 start_offset++; 488 489 blk_start_plug(&plug); 490 for (offset = start_offset; offset <= end_offset ; offset++) { 491 /* Ok, do the async read-ahead now */ 492 page = read_swap_cache_async(swp_entry(swp_type(entry), offset), 493 gfp_mask, vma, addr); 494 if (!page) 495 continue; 496 if (offset != entry_offset) 497 SetPageReadahead(page); 498 page_cache_release(page); 499 } 500 blk_finish_plug(&plug); 501 502 lru_add_drain(); /* Push any new pages onto the LRU now */ 503 skip: 504 return read_swap_cache_async(entry, gfp_mask, vma, addr); 505 } 506